Fibroblastenbasierter VEGF-Gentransfer zur experimentellen Präfabrikation myocutaner Transplantate

Untersuchung des Einflusses des Applikationszeitpunktes auf die VEGF induzierte Neoangiogenese

> Dissertation zur Erlangung des akademischen Grades doctor medicinae (Dr. med.)

vorgelegt dem Rat der Medizinischen Fakultät der Friedrich-Schiller-Universität Jena

von Rhea Machlitt

geboren am 03.04.1989 in Jena

Gutachter:

- 1. Prof. Dr. med. Dr. med. dent. Stefan Schultze-Mosgau, Direktor der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/ Plastische Chirurgie des Universitätsklinikums Jena
- 2. Prof. Dr. med. habil. Utz Settmacher, Direktor der Klinik für Allgemein-, Viszeral- und Gefäßchirurgie des Universitätklinikums Jena
- 3. PD Dr. Dr. Michael Thorwarth, Lehrbeauftragter der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie/ Plastische Chirurgie des Universitätsklinikums Jena

Tag der öffentlichen Verteidigung: 04.02.2014

Abkürzungsverzeichnis

Δd	Aqua dest
hEGE	hasic Fibroblast Growth Faktor
	complementary Desoxyribonucleic Acid
ECM	Extra Cellulare Matrix
EGE	Enidermal Growth Eaktor
HIF	Hypoxia Inducible Factor
HP\/	Humane Papillomaviren
la	
IGE	Insulin-like growth factor
IHCE	Immunhistochemische Färbung
kD	Kilodalton
KGF	Keratinocyte Growth Factor
I R-Reaktion	Reaktion zwischen Entry Clone und Ziel-Vektor
M.	Musculus
MAP Kinase	Mitogen Activated Protein Kinase
mRNA	Messanger Ribonucleic Acid
MW	Mittelwert
NO	Stickstoffmonoxid
PBS	Phosphate Buffered Saline
PDGF	Platelet Derived Growth Factor
PIGF	Placental Growth Factor
PY	Pack Years
rhVEGF	recombinant human Vascular Endothelial Growth Factor
SD	Standard Deviation (dt. Standardabweichung)
SH 2/3 Domäne	Src-homology 2/3 Domäne
TGF	Transforming Growth Factor
TNF	Tumor Necrosis Factor
TNM	Tumor Nodes Metastases = Klassifikation maligner Tumoren
TBS	Tris Buffered Saline
UICC	Union internationale contre le cancer
UV-B	Ultraviolettstrahlung im Wellenlängenbereich von 280 bis 315 nm
VEGF	Vascular Endothelial Growth Factor
VEGFR	Vascular Endothelial Growth Factor Receptor

Inhaltsverzeichnis

1.	Zus	ammenfassung	11
2.	Einl	eitung	13
	2.1	Tumore des Kopf-Hals-Bereichs	13
	2.2	Myocutane Transplantate	15
	2.3	Komplikationen myocutaner Transplantate	16
	2.4	VEGF – ein vaskulärer Wachstumsfaktor	18
	2.4.2 2.4.2 2.4.3 2.4.4	 Funktionen und Einflussfaktoren von VEGF VEGF-Rezeptoren VEGF-Isoformen VEGF als Permeabilitätsfaktor 	18 19 22 23
	2.5	Die Neovaskularisation	24
	2.5. ² 2.5.2	 Bedeutung der Neovaskularisation Bedeutung des vaskulären endothelialen Wachstumsfaktors in der Angiogenese 	24 25
	2.5.3	3 Nachweis der Angiogenese mittels immunhistochemische F	28
	2.5.4	Arteriogenese 5 Nachweis der Arteriogenese mittels immunhistochemische Färbung	29
		mit aSMA Antikörpern	30
	2.6	Ergebnisse vorangegangener in Vitro und in Vivo Experimente	31
3.	Ziel	e der Arbeit	34
4.	Mate	erial und Methode	35
	4.1	Material	35
	4.2	Methode	36
	4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2. 4.2.	 Gruppeneinteilungen Gewinnung der Mukosabiopsien und Fibroblastenisolierung Transfektion und Injektion Herstellung der Gefrierschnitte Herstellung der Stammlösung Prinzip der Immunhistochemie Immunhistochemische Färbung mit Anti-α-SMA Antikörper und Anti- CD31 Antikörper Mikroskopische und histomorphometrische Auswertung 	36 38 39 41 41 42 44 45
	4.2.9	9 Statistik	46

5.	Erge	bnisse	47
5	5.1	Immunhistochemische Untersuchung	47
5	5.2	Statistische Auswertung	50
	5.2.1 5.2.2 5.2 5.2 5.2.3 5.2 5.2 5.2 5.2 5.2.4 5.2 5.2	Einfluss der Lokalisation Vergleich der Untersuchungsgruppen 2.2.1 Ergebnisse zur Lokalisation Haut 2.2.2 Ergebnisse zur Lokalisation M. gracilis Vergleich der Ligationszeitpunkte 2.3.1 Ergebnisse zur Lokalisation Haut 2.3.2 Ergebnisse zur Lokalisation Muskel Vergleich der Entnahmezeitpunkte 2.4.1 Ergebnisse zur Lokalisation Haut 2.4.2 Ergebnisse zur Lokalisation Muskel	50 56 64 73 73 76 80 80 85
6.	Disk	ussion	91
6	i.1 '	VEGF in der Forschung	91
6	5.2 I	Diskussion der Methode	93
	6.2.1 6.2.2	VEGF transfektierte Fibroblasten Ischämie – Modell am Hinterlauf der Wistar Ratte	93 95
6	5.3 I	Diskussion der Ergebnisse	96
	6.3.1 6.3.2	Neovaskularisation in Haut und Muskel VEGF ₁₆₄ transfektierte Fibroblasten induzieren die Angiogenese und	96
	6.3.3 6.3.4	Arteriogenese Der Ligationszeitpunkt Der Entnahmezeitpunkt	97 101 103
6	i.4 /	Aussichten und klinische Anwendung	105
7.	Schl	ussfolgerungen	107
8.	Liter	atur- und Quellenverzeichnis	108
9.	Anha	ang	141
E	Ehrenw	örtliche Erklärung	177

Abbildungsverzeichnis

Abb. 1	Prozentuale Verteilung der Tumorlokalisationen an allen Krebs- neuerkrankungen in Deutschland 2008	12
Abb. 2	Übersicht der VEGF Rezeptoren und ihrer Liganden	19
Abb. 3	Übersicht der VEGF Signalwege	20
Abb. 4	Formation des primären Gefäßnetzwerkes aus Vorläuferzellen	23
Abb. 5	Schematischer Ablauf der Bildung eines neuen Blutgefäßes	26
Abb. 6	VEGF ₁₆₄ -Expression von transfektierten Fibroblasten in Vitro	31
Abb. 7	Vergleich der kapillären Dichte zwischen gesunder Haut und der implantierten Kollagenmembran mit oder ohne VEGF ₁₆₄ transfektierte Fibroblasten	31
Abb. 8	Schematischer Versuchsaufbau als Flow-Chart	36
Abb. 9	Reihenfolge der durchgeführten Interventionen	37
Abb. 10	Genkarte pcDNA3.1/nV5-Dest VEGF-Plasmid	39
Abb. 11	Ligationsstelle der Art. femoralis superficialis am Hinterlauf der Wistar Ratte Prinzip der immunbistochemischen Förhemethode	40
AUD. 12		40
ADD. 13	CD31)	40
Abb. 14	Gefrierschnitt M. gracilis der Kontrollgruppe (IHCF mit CD31)	47
Abb. 15	Gefrierschnitt Haut der Interventionsgruppe (IHCF mit α -SMA)	48
Abb. 16	Gefrierschnitt Haut der Kontrollgruppe (IHCF mit α -SMA)	48
Abb. 17	MW, SD und p-Wert der Lumenanzahl nach Lokalisation (IHCF mit α -SMA)	54
Abb. 18	MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen (IHCF mit CD31)	56
Abb. 19	MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut	58
Abb. 20	MW, SD und p-Wert der Lumenfläche in µm ² für die Lokalisation Haut nach Versuchsgruppen (IHCF mit CD31)	59
Abb. 21	MW, SD und p-Wert der Lumenfläche in μ m ² für die Lokalisation Haut nach Versuchsgruppen (IHCF mit α -SMA)	61
Abb. 22	MW und SD der Lumenanzahl für die Lokalisation Haut innerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit α-SMA und CD31)	62
Abb. 23	MW und SD der Lumenfläche in μ m ² für die Lokalisation Haut in- nerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit α -SMA und CD31)	63
Abb. 24	MW, SD und p-Wert der Lumenanzahl für die Lokalisation M. gra- cilis innerhalb der Interventions- und Kontrollgruppen (mit nicht transfektierten Fibroblasten sowie mit PBS) (IHCF mit CD31)	64

Abb. 25	MW, SD und p-Wert der Lumenanzahl für die Lokalisation M. gra-	66
	cilis innerhalb der Interventions- und Kontrollgruppen (mit nicht	
	transfektierten Fibroblasten sowie mit PBS) (IHCF mit α-SMA)	

- Abb. 26 MW, SD und p-Wert der Lumenfläche in µm² für die Lokalisation 67 M. gracilis innerhalb der Interventions- und Kontrollgruppen (mit nicht transfektierten Fibroblasten sowie mit PBS) (IHCF mit CD31)
- Abb. 27 MW, SD und p-Wert der Lumenfläche in μm² für die Lokalisation 69 M. gracilis innerhalb der Interventions- und Kontrollgruppen (mit nicht transfektierten Fibroblasten sowie mit PBS) (IHCF mit α-SMA)
- Abb. 28MW und SD der Lumenanzahl für die Lokalisation M. gracilis in-
nerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit
α-SMA und CD31)70
- **Abb. 29** MW und SD der Lumenfläche in μm² für die Lokalisation M. graci-71 lis innerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit α-SMA und CD31)
- Abb. 30 MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut 73 innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit CD31)
- Abb. 31 MW, SD und p-Wert der Lumenfläche in μm² für die Lokalisation 77
 M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit α-SMA)
- Abb. 32 MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut 80 innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31)
- **Abb. 33** MW, SD und p-Wert der Lumenfläche in μm² für die Lokalisation 81 Haut innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31)
- Abb. 34MW, SD und p-Wert der Lumenfläche in μm² für die Lokalisation86M. gracilis innerhalb der Interventionsgruppe nach Entnahmezeit-
punkten (IHCF mit CD31)86
- **Abb. 35**Effekt von VEGF auf die kapilläre Dichte97
- Abb. 36Histomorphometrische Beurteilung der Neovaskularisation100

Tabellenverzeichnis

Tab.	1	MW und SD der Lumenanzahl nach Lokalisation (IHCF mit CD31)	49
Tab.	2	Paarweiser Vergleich der Lumenanzahl nach Lokalisation bei An- passung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)	50
Tab.	3	MW und SD der Lumenfläche in μ m ² nach Lokalisation (IHCF mit CD31)	50
Tab.	4	Paarweiser Vergleich der Lumenfläche nach Lokalisation in µm ² bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)	51
Tab.	5	MW und SD der Lumenanzahl nach Lokalisation (IHCF mit α -SMA)	51
Tab.	6	Paarweiser Vergleich der Lumenanzahl nach Lokalisation bei An- passung für Mehrfachvergleich: Bonferroni (IHCF mit α -SMA)	52
Tab.	1	Mive und SD der Lumentiache in μm^2 (HCF mit d-SMA)	52
Tab.	8	Paarweiser Vergleich der Lumenfläche in μm ² nach Lokalisation bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α- SMA)	53
Tab.	9	MW und SD der Lumenanzahl für die Lokalisation Haut nach Ver- suchsgruppen (IHCF mit CD31)	55
Tab.	10	Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)	56
Tab.	11	MW und SD der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen (IHCF mit α -SMA)	57
Tab.	12	Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)	57
Tab.	13	MW und SD der Lumenfläche in µm² für die Lokalisation Haut nach Versuchs-gruppen (IHCF mit CD31)	58
Tab.	14	Paarweiser Vergleich der Lumenfläche in µm ² für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachver- gleich: Bonferroni (IHCF mit CD31)	59
Tab.	15	MW und SD der Lumenfläche in μm^2 für die Lokalisation Haut nach Versuchs-gruppen (IHCF mit α -SMA)	60
Tab.	16	Paarweiser Vergleich der Lumenfläche in μ m ² für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachver- gleich: Bonferroni (IHCF mit α-SMA)	60
Tab.	17	MW und SD der Lumenanzahl für die Lokalisation M. gracilis nach Versuchs-gruppen (IHCF mit CD31)	63
Tab.	18	Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis nach Versuchsgruppen bei Anpassung für Mehrfachver- gleich: Bonferroni (IHCF mit CD31)	64
Tab.	19	MW und SD der Lumenanzahl für die Lokalisation M. gracilis nach Versuchs-gruppen (IHCF mit α -SMA)	65
Tab.	20	Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis nach Versuchsgruppen bei Anpassung für Mehrfachver- gleich: Bonferroni (IHCF mit α-SMA)	65

MW und SD der Lumenfläche in um² für die Lokalisation M. graci-Tab. 21 66 lis nach Versuchsgruppen (IHCF mit CD31) Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Tab. 22 67 M. gracilis nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31) Tab. 23 MW und SD der Lumenfläche in µm² für die Lokalisation M. graci-68 lis nach Versuchsgruppen (IHCF mit α -SMA) Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation 68 Tab. 24 M. gracilis nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α -SMA) MW und SD von Lumenanzahl und Lumenfläche in um² für die 72 Tab. 25 Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit CD31) Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut 73 Tab. 26 innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31) Tab. 27 Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation 74 Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31) Tab. 28 MW und SD von Lumenanzahl und Lumenfläche in µm² für die 74 Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit α -SMA) Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut Tab. 29 75 innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA) Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Tab. 30 75 Haut inner-halb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA) Tab. 31 MW und SD von Lumenanzahl und Lumenfläche in µm² für die 75 Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit CD31) Tab. 32 Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. 76 gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31) Tab. 33 Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation 76 M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31) Tab. 34 MW und SD von Lumenanzahl und Lumenfläche in µm² für die 76 Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit α -SMA) Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. 77 Tab. 35 gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Tab. 36	Paarweiser Vergleich der Lumenfläche in µm ² für die Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Ligationszeit-	78
	punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)	
Tab. 37	MW und SD von Lumenanzahl und Lumenfläche in µm² für die	79
	Lokalisation Haut innerhalb der Interventionsgruppe nach Entnah- mezeitpunkten (IHCF mit CD31)	
Tab. 38	Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut	80
	innerhalb der Interventionsgruppe nach Entnahmepunkten bei An- passung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)	
Tab. 39	Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation	81
	Haut innerhalb der Interventionsgruppe nach Entnahmezeitpunk-	
	ten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)	
Tab. 40	MW und SD von Lumenanzahl und Lumenfläche in µm ² für die	82
	Lokalisation Haut innerhalb der Interventionsgruppe nach Entnah-	
Tab 44	mezeitpunkten (IHCF mit α-SMA)	00
Tap. 41	innerhalb der Interventionsgruppe nach Entrahmenunkten bei An	83
	nassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)	
Tab. 42	Paarweiser Vergleich der Lumenfläche in um ² für die Lokalisation	83
	Haut innerhalb der Interventionsgruppe nach Entnahmepunkten	
	bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-	
	SMA)	
Tab. 43	MW und SD von Lumenanzahl und Lumenfläche in µm² für die	84
	Lokalisation M. gracilis innerhalb der Interventionsgruppe nach	
Tab 44	Entrahmezeitpunkten (IHCF mit CD31)	05
Tap. 44	racilis innerhalb der Interventionsgruppe nach Entrahmenunkten	85
	bei Annassung für Mehrfachvergleich: Bonferroni (IHCF mit	
	CD31)	
Tab. 45	Paarweiser Vergleich der Lumenfläche in µm ² für die Lokalisation	85
	M. gracilis innerhalb der Interventionsgruppe nach Entnahme-	
	punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF	
	mit CD31)	
Tab. 46	MW und SD von Lumenanzahl und Lumenfläche in μ m ² für die	87
	Lokalisation M. gracilis innernalo der interventionsgruppe nach	
Tab 17	Entranmezenpunkten (INCF mit d-SMA) Paanweiser Verdleich der Lumenanzahl für die Lokalisation M	87
140. 47	aracilis innerhalb der Interventionsgruppe nach Entnahmepunkten	07
	bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-	
	SMA)	
Tab. 48	Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation	88
	M. gracilis innerhalb der Interventionsgruppe nach Entnahme-	
	punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF	
	mit α-SMA)	

1. Zusammenfassung

Karzinome im Mund- und Rachenraum gehören zu den häufigsten Tumorlokalisationen (Zentrum für Krebsregisterdaten 2008). Ein wichtiges Betätigungsfeld in der Mund-Kiefer-Gesichtschirurgie ist die Tumortherapie. Neben der Resektion ist die Rekonstruktion für die postoperative Lebensqualität der Patienten ausschlaggebend (Kessler et al. 2004). Freie myocutane Transplantate gewinnen zunehmend für die routinemäßige Defektdeckung an Bedeutung (Hausamen et al. 2011). Viele Komplikationen dieser rekonstruktiven Verfahren finden ihre Ursache in kompromittierten Transplantatlagern und unzureichender Neovaskularisation. Radiatio (Benatar et al. 2013, Mueller und Schultze-Mosgau 2009), Diabetes mellitus (Valentini et al. 2008), Nikotinabusus (Ely et al. 2009) oder das fortgeschrittene Alter der Patienten (Rivard et al. 2000) steigern das Risiko für einen Transplantatverlust. Insofern ist die Initiation der Angiogenese und Arteriogenese ein gegenwärtiger Forschungsschwerpunkt. Nachweislich gilt der vascular endothelial growth factor (VEGF) als dominierender Wachstumsfaktor für Gefäßneubildung und -entwicklung (Howdieshell et al. 2001). Bisherige Studien demonstrieren, dass die sichere und effektive Applikation von VEGF die größte Herausforderung in der Manipulation der Angiogenese darstellt (Elçin et al. 2001, Epstein et al. 2001). Vorangegangene Studien unserer Forschungsgruppe haben bereits in Vitro und in Vivo die Sicherheit und Effektivität autogener Fibroblasten, die mit einem VEGF-Plasmid transfektiert wurden, nachgewiesen (Mueller et al. 2010-A, Mueller et al. 2010-B). Ziel dieser Arbeit ist es, den Einfluss VEGF transfektierter Fibroblasten auf die Angiogenese und Arteriogenese am Beispiel des ischämischen Hinterlaufes von Wistar Ratten zu untersuchen. Weiterhin wird die Bedeutung des Applikationszeitpunktes eruiert.

Hierzu wurden an der dorso-lateralen Zunge von 120 Wistar Ratten Mukosa-Biopsien entnommen (Tierversuch Reg.-Nr.02-002/09). Aus den Gewebeproben wurden Fibroblasten isoliert. Die Tiere wurden nun zufällig in zwei Gruppen eingeteilt. Die Fibroblasten der Tiere in der Kontrollgruppe wurden nicht manipuliert. Die Fibroblasten der Tiere in der Interventionsgruppe wurden mit pcDNA3.1/nV5-DEST transfektiert. Im Bereich der Leistenregion wurde an einem definierten Punkt die Injektion durchgeführt. Die Wistar Ratten der Kontrollgruppen wurden unilateral mit PBS und kontralateral mit nicht transfektierten Fibroblasten beimpft. In der Interventionsgruppe wurden unilateral VEGF transfektierte Zellen injiziert. Bei 20 Wistar Ratten aus jeder Gruppe wurde die Arteria femoralis superficialis simultan mit der Injektion oder eine Woche bzw. zwei Wochen nach der Injektion ligiert. Drei, fünf, sieben und vierzehn Tage nach Ligation wurden je 15 Tiere pro Gruppe sakrifiziert und Proben aus dem Musculus gracilis und der darüber liegenden Haut entnommen. Die Gefäßdarstellung erfolgt mit Hilfe der immunhistochemischen Färbung mit Anti-CD31-Antikörpern zum Nachweis der Angiogenese und mit Anti-α-SMA-Antikörpern zum Nachweis der Arteriogenese. Im Anschluss wurden die histologischen Schnitte hinsichtlich ihrer Gefäßanzahl und Gefäßfläche statistisch ausgewertet.

Die Mittelwerte der Gefäßanzahl und Gefäßfläche der CD31 und α-SMA positiven Gefäße in der Haut und in dem Muskel sind in der Interventionsgruppe signifikant größer als in den Kontrollgruppen. Die Gefäßparameter der Interventionsgruppe waren im Vergleich zur Kontrollgruppe zum Teil fünfmal so hoch. Sowohl in der Haut als auch im Muskel besteht für beide immunhistochemischen Färbungen keine Signifikanz zwischen den unterschiedlichen Ligationszeitpunkten. Bei der Betrachtung der Ergebnisse der Entnahmezeitpunkte ist die Reduktion der Gefäßparameter vom dritten Tag nach Ligation bis zum fünften Tag nach Ligation in allen betrachteten Fällen zu finden. In der Haut sind am dritten Tag nach Ligation zum Teil signifikant mehr Gefäße vorhanden als zu den weiteren Beobachtungszeitpunkten, während im Muskel die Anzahl und Fläche der Lumina zwei Wochen nach Ligation im Vergleich zu den anderen Entnahmezeitpunkten zum Teil signifikant größer sind.

Die Ergebnisse meiner experimentellen Forschung belegen einen pro - angiogenetischen und pro - arteriogenetischen Effekt der VEGF transfektierten Fibroblasten. Dabei wurde die Neovaskularisation sowohl in der Haut als auch im Muskel initiiert. Der Zeitraum zwischen Injektion der transfektierten Fibroblasten und Ligation der versorgenden Arterie hat keinen Einfluss auf die Neovaskularisation. Nach der Ligation ist davon auszugehen, dass in der Haut am dritten Tag und im Muskel nach zwei Wochen die meisten Gefäße vorkommen.

2. Einleitung

2.1 Tumore des Kopf-Hals-Bereichs

Die fünfthäufigste Tumorlokalisation bei Männern ist mit einer Inzidenz von 13,9% die Mundhöhle und der Rachen. Bei Frauen steht sie an 15. Stelle mit einer Inzidenz von 4,3% (Zentrum für Krebsregisterdaten 2008, siehe Abb. 1). Die meisten Tumore des oberen aerodigestiv Traktes sind Plattenepithelkarzinome - bösartige epitheliale Neubildungen. Weniger häufig kommen Adenokarzinome, Lymphome und andere seltene Entitäten vor. Die 5-Jahres-Überlebensrate wird mit 45-78% angegeben (Hoffman et al. 1998, Kessler et al. 2004, Guntinas-Lichius et al. 2010, Holom et al. 2013).

Deutschland 2008. Grafik entnommen aus: Zentrum für Krebsregisterdaten 2008.

Der Konsum von Alkohol, Nikotin und vor allem deren Kombination erhöhen das Risiko für die Entstehung eines Plattenepithelkarzinoms im Kopf-Hals-Bereich genauso wie schlechte Mundhygiene (Guha et al. 2007). Ein Patient mit 40 PYs und fünf alkoholischen Getränken pro Tag hat ein 40-mal größeres Risiko zu erkranken (Zhang et al. 2000, Lewin et al. 1998, Goldenberg et al. 2004). Neben diesen Onkogen assoziierten Karzinomen findet man HPV assoziierte Tumore des Halses und Kopfes, die eine höhere Überlebensrate aufweisen und vor allem bei Patienten unter 45 Jahren auftreten (Gillison et al. 2000, Kreimer et al. 2005, Chaturvedi et al. 2008). Die klinischen Symptome variieren je nach Lokalisation voreinander und reichen von nicht heilenden Geschwüren und Ulcera bis zu Halsschmerzen, Dysphagie, Heiserkeit oder Lymphandenopathie. Für die Erkennung früher Stadien ist eine genaue Inspektion und Palpation in der klinischen Untersuchung des Mund-Rachen-Raumes erforderlich (Kunkel und Hertrampf 2010). Die Diagnose wird mit Hilfe einer Biopsie gestellt. Zur Erfassung der lokalen und regionalen Ausmaße sowie der Metastasierung dienen bildgebenden Untersuchungen wie Sonografie, CT, MRT und PET (Dammann et al. 2005). Mit diesen Daten ist das Staging des Patienten mittels TNM Klassifikation und UICC Stadium möglich. Daraus leitet sich die Planung der Therapie mit einem multidisziplinären Team aus Radiologen, Onkologen und Chirurgen ab (siehe Anhang TNM Klassifikation, S.172; UICC Stadium, S. 173). Für Karzinome des Mund-Rachen-Raumes ist vor allem in geringen Stadien (T1 und T2 N0 M0) die chirurgische Resektion des Tumors sowie eine eventuelle Lymphknotenchirurgie und anschließende Radiotherapie die Methode der ersten Wahl. Patienten mit Tumore größeren Ausmaßes (T3 oder T4 N1 M1) profitieren von einer Kombination aus chirurgischer Intervention mit Ausräumung der Lymphknoten und Radiochemotherapie. Karzinome mit ausgedehnter lokaler Infiltration werden mit neoadjuvanten Radiochemotherapie-Schemata behandelt um eine organerhaltende Resektion des Tumors zu ermöglichen. Ziel der multimodalen Therapie ist die Tumor- und Rezidivfreiheit des Patienten. Gleichfalls sind die soziale Integration und die damit einhergehende funktionelle und ästhetische Wiederherstellung wichtig für die Erhaltung der Lebensqualität (Kessler et al. 2004). Um diesen Anspruch zu gewährleisten, erfolgt nach der Resektion des Tumors im Gesunden die Rekonstruktion der entstandenen Defekte (Aitasalo et al. 1997, Forastiere et al. 2003, Denis et al. 2004, Breuninger et al. 2008). Die rekonstruktive Chirurgie umfasst lokale Rotations- oder Verschiebeplastiken sowie den freien Gewebetransfer. Bis zu einer bestimmten Ausdehnung ist die Ernährung des verpflanzen Gewebes über die Serum Imbibierung möglich. Werden diese Grenzen überschritten, muss die Vitalität des Gewebes durch eine vaskuläre Versorgung gesichert werden (Bauch et al. 2004). Diese mikrovaskulären cutanten, myocutanen oder osteomyocutanen Transplantate dienen bei einem großen Teil der Tumorpatienten der Rekonstruktion von Zunge, Mundboden oder Pharynx (Hausamen et al. 2011). Folglich ist die Tumortherapie und plastische Chirurgie ein obligater Aufgabenbereich der Mund-Kiefer-Gesichtschirurgie. Myocutane Transplantate werden in anderen Tumorentitäten wie dem Mamma-Karzinom für die funktionelle und ästhetische Wiederherstellung genutzt (Vega 2009 et al., Vega et al. 2008). Neben der Tumorchirurgie werden mikrochirurgische Transplantate für die

Rekonstruktion von Bauchwanddefekten (Rauchfuss et al. 2012), von chronischen Wunden (Ozkan et al. 2005), nach Verbrennungen (Feng et al. 2010) oder nach Unfällen (Chang et al. 2010) angewendet. Die vielseitigen Einsatzgebiete begründen das große Interesse an diesem Verfahren.

2.2 Myocutane Transplantate

Die myocutane Transplantation definiert sich mit der autologen Verpflanzung von Muskelgewebe, subkutanem Fett und Haut eines Spendergebietes in ein Empfängergebiet. Sie dienen der Wiederherstellung ausgedehnter dreidimensionaler Defekte. Beispiele für Spendergebiete sind der M. pectoralis major, M. latisimus dorsi, M. vastus lateralis oder M. gracilis. Es werden gestielte und freie Lappen unterschieden. Gestielte Lappen bleiben durch den versorgenden Gefäßstiel mit dem Spendergebiet verbunden. Der Lappen kann um diesen Stiel in den Defekt rotiert werden. Nachteile dieses Verfahrens sind die begrenzten Einsatzgebiete und unzulängliche ästhetische Ergebnisse. Aus diesem Grund ist die gestielte Transplantation zurzeit die Methode zweiter Wahl und wird nach Verlust des primären Transplantates oder bei speziellen Indikationen eingesetzt. Methode der ersten Wahl sind freie Transplantate (El-Marakby 2006). Die versorgenden Gefäße des freien Lappens werden im Spendergebiet präpariert und mit der Hebung des Lappens in ihrer Kontinuität unterbrochen. Anschließend werden diese an die Gefäße des Empfängergebietes mikrochirurgisch mittels einer End-zu-End oder End-zu-Seit Anastomose angeschlossen. Vielfältige Verwendungsmöglichkeiten des Transplantates und gute ästhetische-funktionelle Ergebnisse sind Vorteile dieser Methode (Ehrenfeld und Mast 2000). Das Spendergebiet wird abhängig von der Größe des Transplantates primär verschlossen oder mit einem Hauttransplantat gedeckt. Nach mikrochirurgischer Anastomose der Anschlussgefäße ist die Revaskularisierung des Lappens von entscheidender Bedeutung. Kriterien für eine erfolgreiche Einheilung sind Quantität, Qualität und Proliferationsfähigkeit der Gefäße des Transplantates und des Transplantatlagers (Hausamen et al. 2011). Innerhalb der proliferativen Phase der Wundheilung wachsen Gefäßen aus dem Lappen in das Empfängergebiet und umgekehrt. Der Begriff Inosculation beschreibt die Bildung von Anastomosen zwischen Transplantat und -lager (Converse et al. 1975). Drei direkte endotheliale Mitogene konnten identifiziert werden, die für diese Entwicklung verantwortlich sind. Neben VEGF sind bFGF und PDGF zu nennen. Dabei spielt die VEGF induzierte Neoangiogenese die dominierende Rolle (Brown et. al. 1992, Corral et al. 1999, Howdieshell et al. 2001). Zugleich maximiert VEGF die Permeabilität und Vasodilatation in der Wundregion und ist damit für die inflammatorische Substratphase wichtig. Auch induziert VEGF die Bildung von Granulationsgewebe (Dvorak et al. 1995, Howdieshell et al. 2001). Die Expression des Wachstumsfaktors wird durch den Grad der Hypoxie und indirekte angiogenetische Cytokine, die im Rahmen der primären Wundheilung von lokalen oder eingewanderten Zellen freigesetzt werden, beeinflusst. Beispiele sind der KGF, TGFβ-1, TNFα, EGF und Interleukine (Brogi et al. 1994). Der Erfolg myocutaner Transplantate ist unmittelbar von der Durchblutung und Versorgung mit Sauerstoff abhängig. Voraussetzung für die Optimierung dieser vaskulären Parameter ist nicht nur eine korrekte chirurgische Technik (Oswald et al. 1988, Schmelzeisen et al. 1996). Die postnatale Gefäßbildung, -entwicklung und Inosculation sind Prämissen für das Überleben des verpflanzen Gewebes (Vedder et al. 1994, Falco et al. 1992). In kompromittierten Transplantatlagern mit einer schlechten vaskulären Situation kann sich das Risiko für Komplikationen um das Fünffache erhöhen (Bozikov et al. 2006).

2.3 Komplikationen myocutaner Transplantate

Komplikationen myocutaner Transplantate umfassen neben dem Transplantatverlust Wunddehiszensen, orale Fistelbildungen, Hämatome, Infektionen, Thrombosen der Anschlussgefäße oder partielle Nekrosen. Die Komplikationsrate für vaskulär gestielte Transplantate beträgt zwischen 28-40%. Die Erfolgsrate für freie Lappen wird mit 85-97 % angegeben (Evans et al. 1994, Gürlek et al. 1998, Vartanian et al. 2004, Bozikov et al. 2006, Valentini et al. 2008, Pohlenz et al. 2012). Komplikationen myocutaner Transplantate sind auf verschiedenste Faktoren zurückzuführen. Vorbestrahltes Gewebe stellt für den Chirurgen eine besondere Herausforderung dar. Neben der starken Fibrosierung des Gewebes, der reduzierten Proliferationsrate und dem proinflammatorischen Milieu (Tobita et al. 2010) sind die Veränderungen an den Gefäßen maßgeblich. Die perikapilläre Fibrose und defizitäre Mikrovaskularisierung des Transplantatlagers werden für eine verzögerte Wundheilung verantwortlich gemacht. Die Arterien zeigen nach Radiatio eine verdickte Wand durch die Hyalinose der Media, Intimaablösungen und Bildung von Mikrothrombi. Die vorbenannten Prozesse resultiert in einer erhöhten Gefahr für Thrombosen und verringern die angiogenetische Potenz (Guelinckx et al. 1984, Aitasalo et al. 1997, Schultze-Mosgau et al. 2000, Schultze-Mosgau et al. 2002, Mueller und Schultze-Mosgau 2009). Die diabetische Mikroangiopathie stellt bei vielen Patienten mit Diabetes mellitus Typ II ein erhöhtes Risiko dar. Vielfältige biochemische Mechanismen verursachen eine Akkumulation von nicht enzymatisch glykosylierten Proteinen, Sorbitol und reaktiven Sauerstoffspezies. Ferner kann eine Überaktivität der Proteinkinase C induziert werden. Die resultierende Verengung der Kapillarlumen hat eine reduzierte Perfusion zur Folge (Valentini et al. 2008, Ngo et al. 2005). Diabetische Ratten wiesen bei Cooley et al. eine verzögerte Reendothelisation auf (Cooley et al. 1992). Entsprechend dem Zentrum für Krebsregisterdaten steigen mit zunehmenden Alter die Inzidenzraten von Tumoren im Mund- und Rachenraum (Zentrum für Krebsregisterdaten 2008). Risikosteigernd auf perioperative Komplikationen wirken vielfältige metabolische, bronchopulmonale und kardiovaskuläre Erkrankungen der multimorbiden, älteren Patienten (Goodson und Hunt 1979, Shaari et al. 1998). Eine experimentelle Studie konnte die endotheliale Dysfunktion, charakterisiert durch eine reduzierte Vasodilatation und NO-Produktion, nachweisen. Gewebe fortgeschrittenen Alters reagieren nach einem ischämischen Reiz folglich mit einer inadäquaten Cytokinproduktion und Angiogenese. Die beeinträchtigte Neovaskularisierung konnte in Tier-experimentellen Studien auf eine reduzierte VEGF-Expression zurückgeführt werden (Rivard et al. 1999). Der VEGF-Mangel ist wahrscheinlich auf eine reduzierte HIF-1 Aktivität zurückzuführen (Rivard et al. 2000). Mit der Supplementierung von zentralen Wachstumsfaktoren wie z. B. VEGF kann dieses Defizit ausgeglichen werden (Rivard et al. 1999, Gennaro et al. 2003). Des Weiteren geht der im Patientengut weit verbreitete Nikotinabusus mit einer erhöhten Komplikationsrate einher (Padubidri et al. 2001, Marin et al. 2008, Ely et al. 2009). Neben diesen prädisponierenden Risikofaktoren stellt die intra- und postoperative Ischämie eine Gefahr für das Transplantat dar (Suominen et al. 1995). Zusätzlich werden Nekrosen durch das viel untersuchte Ischämie-Reperfusions-Syndrom verursacht (Menger et al. 1997). Im Vergleich zu anderen Geweben wie z. B. der Haut ist der guergestreifte Skelettmuskel hinsichtlich seiner hohen Stoffwechselaktivität Nekrose-gefährdeter. Zwei bis drei Stunden nach einer Ischämie kommt es zu einer Entzündungsreaktion und einem irreversiblen Untergang von Muskelzellen durch die Überschreitung der Ischämietoleranz (Zelt et al. 1986, Blaisdell 2002). Des Weiteren ergab die Untersuchung der Angiogenese in myocutanen Transplantaten, dass Nekrosen vor allem in distalen Bereichen mit besonders starker Hypoxie auftreten. Ferner wurde nachgewiesen, dass in diesen Bereichen die VEGF-Konzentration niedriger ist als in Bereichen einer milden Ischämie (Erdmann et al. 2003). Folglich sind die Optimierung der Gefäßsituation und die Initiation der Neovaskularisation durch VEGF therapeutische Ansatzpunkte für die Reduktion von Komplikationen. Die Präfabrikation myocutaner Transplantate mit VEGF₁₆₄ transfektierten Fibroblasten stellt eine Möglichkeit dar. Die Verknüpfung von konservativer rekonstruktiver Chirurgie und innovativem Tissue Engineering machen den Reiz des Forschungsgebietes aus.

2.4 VEGF – ein vaskulärer Wachstumsfaktor

2.4.1 Funktionen und Einflussfaktoren von VEGF

Der Vascular Endothelial Growth Factor (VEGF), oder auch Vascular Permeability Factor genannt, spielt eine zentrale Rolle in der embryonalen und adulten Vasculogenese, Angiogenese, Lymphangiogenese sowie Arteriogenese. Zusätzlich reguliert er die Permeabilität von Gefäßen. Die Bedeutsamkeit des pleiotropen Wachstumsfaktors vermitteln Studien mit VEGF defizitären Mäusen. Die Tiere sind aufgrund ihrer kardiovaskulären Fehlentwicklung noch vor der Geburt gestorben (Carmeliet et al. 1996, Ferrara et al. 1996). Der Wachstumsfaktor steigert die Zellproliferation, steuert die Zellmigration und sichert das Überleben der Zelle mit Hilfe der Apoptose-Inhibition. Dabei ist VEGF hoch spezifisch für Endothelzellen. Die Expression des potenten Mitogens wird durch Hypoxie (Levy et al. 1995, Pugh und Ratcliffe 2003), Hypoglykämie (Park et al. 2001), UV-B (Trompezinski et al. 2001) sowie verschiedene Cytokine wie PDGF (Finkenzeller et al. 1997), TNFα (Ryuto et al. 1996), TGFβ (Breier et al. 2002), KGF (Deroanne et al. 1997), IGF-I (Goad et al. 1996) sowie Interleukine (Jung et al. 2001, Tzeng et al. 2013) gesteuert und potenziert. Viele Studien haben die Interaktion zwischen einer akuten Hypoxie und VEGF erforscht. Durch den Sauerstoffmangel wird der Hypoxia-Inducible Faktor 1(HIF-1) stabilisiert und führt durch die Bindung an den Promotor und CIS regulatorische Elemente des VEGF-Gens zur Erhöhung der Transkriptionsrate (Liu et al. 1995, Pugh und Ratcliffe 2003). Zusätzlich greifen posttranskriptionelle Mechanismen, wie z. B. die Stabilisierung der VEGF-mRNA und Unterstützung der Translation (Stein et al. 1995, Forsythe et al. 1996, Claffey et al. 1998). Aber auch die VEGF-Rezeptoren werden vermehrt exprimiert (Gerber et al. 1997, Waltenberger et al. 1996). Die Hypoxie induzierte VEGF-Expression hat eine gerichtete Angiogenese zur Folge und verhindert die Apoptose. VEGF und seine Rezeptoren stehen stets in räumlicher und zeitlicher Assoziation zu physiologischen Ereignissen der Angiogenese und können somit durch eine adaptierte Antwort eine adäquate Versorgung gewährleisten (Levy et al. 1995).

2.4.2 VEGF-Rezeptoren

VEGF bindet an Oberflächenrezeptoren der Tyrosin-Kinase-Familie. Durch die Bindung des Faktors dimerisiert der Rezeptor zu Homo- oder Heterodimeren und gibt das Signal in die Zelle weiter. Man unterscheidet den Kinase-Domäne-Rezeptor (KDR, Flk-1 oder VEGFR 2), den Fms like Tyrosin-Kinase-Rezeptor (Flt-1 oder VEGFR 1) und den VEGFR 3 (Flt-4) (Vries et al. 1992, Terman et al. 1992). Flt-1 hat eine 50-mal höhere Bindungsaffinität zu VEGF als KDR, während KDR hauptsächlich das Signal für die Angiogenese vermittelt und damit wissenschaftlich relevanter ist (Muller et al. 1997). Die Rezeptoren VEGFR 1 und 2 werden vorwiegend auf Gefäßendothelzellen aber auch auf hämatopoetischen Zellen exprimiert. Beide Rezeptoren binden an der zweiten Immunglobulin-ähnlichen Domäne VEGF A (Davis-Smyth et al. 1996). Der VEGFR 3 ist vorwiegend im Endothel von Lymphgefäßen vorzufinden (Partanen und Paavonen 2001, Cébe-Suarez et al. 2006, Bernaudin et al. 2013). Die Abb. 2 zeigt die drei Domänen des Rezeptors. Die extrazelluläre Domäne besteht aus sieben Immunglobulin-artigen Bereichen und dient der Bindung des Liganden. Die transmembranöse Domäne verankert den Rezeptor in der Zellmembran und die zytosolische Domäne beinhaltet einen juxamembranösen Teil, ein gespaltenes katalytisches Zentrum und einen C-terminalen Schwanz (Olsson et al. 2006).

<u>Abb. 2</u> Übersicht der VEGF-Rezeptoren und ihrer Liganden. Grafik entnommen aus: Cébe-Suarez et al. 2006.

Die Bindung des Liganden an die extrazelluläre Domäne des Rezeptors führt zu einer Dimerisierung und Aktivierung des katalytischen Zentrums. Die zwei aktivierten Kinase-Domänen werden in Apposition gebracht sodass die Tyrosin-Reste sich wechselseitig phosphorylieren (Autophosphorylierung). Die Aktivität der Tyrosin-Kinase-Domäne wird weiter gesteigert. Außerhalb des aktiven Zentrums werden weitere Tyrosin-Reste phosphoryliert. Damit werden Bindungsstellen für zytoplasmatische Brückenproteine geschaffen. Zugleich werden intrazelluläre Enzyme über SH₂- und SH₃-Domänen rekrutiert und durch Heterophosphorylierung aktiviert. Es entsteht ein Gerüstwerk aus verschiedenen Signalkaskaden. Die Signalproteine gelangen bis in den Zellkern, wo sie die Genexpression beeinflussen können (Müller-Esterl und Brandt 2009). Zusätzlich wird die Interaktion mit dem Rezeptor sowie die Dauer und Qualität des Rezeptorsignals mittels ko-stimulatorischer Moleküle, wie z. B. Neuropilin (NRP) und Heperansulfatproteoglykan, beeinflusst (Ruhrberg et al. 2002, siehe Abb. 2). Der Corezeptor Neuropilin bindet spezifisch an VEGF₁₆₅ und erhöht die Effektivität sowie Stabilität der Bindung des Wachstumsfaktors an seinen Rezeptor. Neuropilin ist ein wichtiger Regulator der Angiogenese (Soker et al. 1998). Neoplasien, die den Corezeptor exprimieren, verzeichnen eine erhöhte Tumorangiogenese (Miao et al. 2000).

Die Hauptaufgabe des VEGFR 2 besteht in der Differenzierung von primitiven Vorläufer der Endothelzellen und Proliferation von Endothelzellen innerhalb der Neovaskularisation. VEGFR 1 hingegen wird eine modulatorische anti-angiogenetische Funktion zugeschrieben. Der Rezeptor reguliert Zell-Zell / Zell-Matrix Interaktionen sowie Permeabilität der Gefäße und Migration von Zellen (Barleon et al. 1996, Kanno et al. 2000, Robinson und Stringer 2001). Die Unterschiede ergeben sich aus Fähigkeit die Minotgen Aktivated Protein Kinasen (MAP – Kinase) zu aktivieren. Die MAP Kinase und folgende Kinasen wie z. B. Ras und Raf sind Schlüsselkomponenten in der Transduktion von Signalen für Wachstum und Transformation. Damit wird die Kernaktivität und Transkription durch VEGFR 2 moduliert sowie der Eintritt in die Synthese-Phase des Zellzyklus angeregt. Aus diesem Grund ist VEGF für das Überleben der Endothelzellen essentiell und kann der Apoptose entgegenwirken (Thakker et al. 1999, Fujio und Walsh 1999). Die Abb. 3 fasst die Signalwege und die Funktionen von VEGF und seinen Rezeptoren zusammen.

Abb. 3 Übersicht der VEGF-Signalwege. Grafik entnommen aus: KEGG, bioCarta 2013.

Die Rezeptoren regulieren sich auch untereinander (Olsson et al. 2006). Die limitierte Antwort der Zielzelle auf das VEGF-Signal ist wichtig für eine exakte, lokal begrenzte Reaktion. Die Internalisierung und der Abbau des Rezeptors durch Proteasomen oder Lysosomen wird dazu benötig (Singh et al. 2005). Zusätzlich kann die Kinaseaktivität des Rezeptors durch eine schnelle Dephosphorylierung mittels Tyrosin-spezifischer Phosphatasen vermindert werden (Guo et al. 2000, Gallicchio et al. 2005).

2.4.3 VEGF-Isoformen

Strukturell stellt sich das VEGF-Molekül als ein antiparallels Homodimer dar, das durch zwei Disulfid-Brücken in Kopf-Schwanz-Art mit einem großen Overlap verbunden ist. Die Rezeptor-Bindungsstellen befinden sich an den entgegengesetzten, N-terminalen Polen des Dimers. Des Weiteren bestehen funktionelle hotspots für die Bindung bestimmter Faktoren (Muller et al. 1997). Man unterscheidet verschieden lange Isoformen des Polypeptids-VEGF, die durch alternatives Splicing entstehen. VEGF A bis VEGF D, PIGF und sieben Subtypen des VEGF A gehören zu der Familie des humanen endothelialen Wachstumsfaktors (Takahashi und Shibuya 2005). Da nur VEGF A an die beiden für die Regulation der Angiogenese verantwortlichen Rezeptoren bindet, ist eine Isoform dieses Polypeptids bezüglich unserer Studie interessant. Mit dem Ziel eine lokale Angiogenese in den Geweben Muskel und Haut ohne systemische Effekte zu induzieren, definieren sich die Eigenschaften der benötigten VEGF-Isoform wie folgt. Das Polypeptid sollte die Angiogenese induzieren, eine möglichst hohe Aktivität zeigen und eine geringe Diffusionskapazität aufweisen. Die unterschiedliche Bindungsfähigkeit der Wachstumsfaktoren an Heparansulfat reguliert ihre Interaktion mit dem Rezeptor und damit ihre biologische Aktivität (Park et al. 1993, Neufeld et al. 1999). Der kürzeste Subtyp VEGF A121 hat keine Heparansulfat-Bindungsstelle und ist dadurch hoch diffusibel. Mit diesen Eigenschaften ist die Isoform nicht für die vorliegende Studie geeignet. Wie auch das etwas längere VEGF A145, welches vor allem in reproduktiven Organen gefunden wurde. Die langen Isoformen des Angiogenesefaktors VEGF A189 und VEGF A206 binden mit einer hohen Affinität an Heparansulfat und sind dadurch mäßig aktiv (Hutchings et al. 2003). Diese Eigenschaft ist gleichfalls ein Ausschlusskriterium für unseren Versuch. VEGFA₁₆₅ hat durch seinen basischen Charakter die Möglichkeit der Heparansulfat-Bindung und eine mittlere Diffusionskapazität.

VEGF A₁₆₅ ist neben VEGF A₁₂₁ der dominante Faktor für die Aktivierung der Endothelzellproliferation und der Angiogenese in Vivo (Woolard et al. 2004). Das in unserem Versuch verwendete VEGF A₁₆₄ der Ratte ist das Äquivalent zum humanen VEGF A₁₆₅ und weist in gleicher Weise die oben beschriebenen optimalen Eigenschaften auf (Shima et al. 1996).

2.4.4 VEGF als Permeabilitätsfaktor

Der vaskuläre endotheliale Wachstumsfaktor kann unwahrscheinlich schnell die Permeabilität eines Gefäßes erhöhen und ist dabei 50.000-mal potenter als Histamin (Senger et al. 1993). Zusätzlich wird die Expression und Aktivierung der NO Synthase (eNOS) gefördert (Fukumura et al. 2001, Chen et al. 2009). Das entstehende NO führt zu einer Vasodilatation und erhöhten Gefäßdurchlässigkeit. Die Erhöhung der Permeabilität ist für physiologische Vorgänge wie Wundheilung und Gefäßwachstum unerlässlich. Zu unterscheiden sind verschiedene Stärken der Durchlässigkeit von Gefäßen. Gefäße, die VEGF induziert fenestriert sind, bieten gelösten Stoffen die Möglichkeit das Gefäß zu verlassen (Roberts und Palade 1997). Kleinere Proteine können über VEGF vermittelte Bildung von Caveolae, vesikulo-vakuolaren Organellen und transendothelialen Poren aus dem Gefäß gelangen (Dvorak et al. 1999). Die Extravasation größerer Proteine oder gar Erythrozyten bedarf der Auflösung der aus vaskulär-endothelialen Cadherinen bestehenden Adhäsionsverbindungen (Bates et al. 2002). Die histologischen Korrelate zeigten sich in losen Interzellularkontakten und relativ großen Interzellularspalten. Die Grundlage für die Aussprossung und Remodellierung der Gefäße ist die resultierende erhöhte Zellmotilität (Flamme et al. 1995). Durch die Regulation der Permeabilität ist VEGF an der Entstehung von Ödemen und Aszites beteiligt. Die VEGF induzierte Durchlässigkeit der Gefäße ermöglicht das invasive Wachstum und die hämatogen-lymphogene Ausbreitung von malignen Neubildungen sowie die Entstehung von Metastasen (Ferrara und Henzel 1989, Gospodarowicz et al.1989).

2.5 Die Neovaskularisation

2.5.1 Bedeutung der Neovaskularisation

Die Entstehung neuer Gefäße sowohl im embryonalen als auch im adulten Organismus beschreibt die Neovaskularisation. In der Gefäßentwicklung und -neubildung unterscheidet man die Vaskulogenese, Angiogenese und Arteriogenese. Unter der Vaskulogenese versteht man die Differenzierung von Vorläuferzellen (Progenitorzellen), den aus dem Mesoderm stammenden Hämangioblasten, und die Formation des primären Gefäßnetzwerkes in der Embryonalentwicklung. Die Hämangioblasten bilden Blutinseln. Zellen, die innerhalb der Blutinseln liegen, repräsentieren die hämatopoetischen Vorläuferzellen (hämatopoetische Stammzelle). Zellen, welche die äußere Begrenzung der Blutinsel bilden, differenzieren sich zu einfachen Endothelzellen (endotheliale Progenitorzellen). Letztere bilden den initialen Gefäßplexus. Am Anfang der vierten Woche der Embryonalentwicklung des Menschen setzt der erste Herzschlag ein. Durch die Ausschwemmung der hämatopoetischen Stammzellen aus den Blutinseln fließt zum ersten Mal Blut im primären Gefäßsystem (Kässmeyer et al. 2009, Carmeliet 2003). Die Abb. 4 bildet die Entstehung der embryonalen Gefäße aus den Hämangioblasten ab.

<u>Abb. 4</u> Formation des primären Gefäßnetzwerkes aus Vorläuferzellen. Grafik entnommen aus: Carmeliet 2003.

Hämangioblasten konnten nach der Geburt im peripheren Blut nachgewiesen werden. Die endothelialen Progenitorzellen werden durch Gewebehypoxie mobilisiert und migrieren dann in die Region in der die Neovaskularisierung stattfindet (Asahara et al. 1997, Takahashi et al. 1999). Die embryonale Gefäßneubildung weist eine hohe Plastizität auf. Entsprechend den Anforderungen des umgebenden Organs bzw. Gewebes findet eine strukturelle Anpassung statt. So existieren im Gehirn sehr dichte Zell-Zell Verbindungen, die keine toxischen Stoffe in das empfindliche System von Neuronen vordringen lassen. Demgegenüber sind die Sinusoide der Leber für einen maximalen Stoffaustausch stark fenestriert (Ribatti et al. 2009). Die Möglichkeit der Anpassung der Gefäßversorgung wird auch nach der Geburt in physiologischen Situationen während des weiblichen Reproduktionszyklus oder der Hypertrophie skelettaler Muskulatur für die Entstehung neuer Seitenäste und Lumenvergrößerungen vorhandener Gefäße benötigt. Die gleichen Mechanismen greifen auch in pathologischen Situationen wie der Myokardischämie (Lorier et al. 2011), dem Verschluss peripherer Gefäße (Wu et al. 2010) oder bei Wundheilungsstörungen (Brown et al. 1992). Ebenso wurde nachgewiesen, dass eine abnormale Neovaskularisation Teil des Pathomechanismus vieler Erkrankungen ist. Arteriosklerose (Celletti et al. 2001), Arthritis, Retinopathie (Pierce et al. 1995, Alon et al. 1995, Benjamin et al. 1998, Aiello und Wong 2000) oder Entwicklung maligner Tumore (Dvorak et al. 1991, Brown et al. 1993, Brown et al. 1995, Brown et al. 1996, Arastèh und Hannah 2000) sind nur einige Beispiele. Dieses Wissen führte zur Entwicklung neuer Therapiestrategien (Brekken et al. 2000, Luttun et al. 2002, Dvorak 2005, Kieran et al. 2012, Bhadada et al. 2011).

2.5.2 Bedeutung des vaskulären endothelialen Wachstumsfaktors in der Angiogenese

Die Angiogenese definiert die Entstehung von Kapillaren aus einem bereits bestehenden Gefäß. Die Endothelzelle stellt den elementaren zellulären Baustein für die Entwicklung eines neuen Gefäßes dar. Im Rahmen der Entwicklung bzw. des Wachstums von Geweben migrieren Zellen weg von ihrem Ursprung und den ernährenden Gefäßen. Je größer die Distanz zwischen den bestehenden Gefäßen und den wandernden Zellen wird, desto schlechter wird die Versorgung mit Sauerstoff und Nährstoffen. Unter hypoxischen Bedingungen werden über die Aktivierung von HIF-1 pro-angiogenetische Expressionsmuster induziert. Das zentrale Signalmolekül ist dabei VEGF. Das potente Mitogen induziert neben der Proliferation auch die Migration dieser Zellen. Entlang des entstandenen Konzentrationsgradienten von VEGF migrieren nun Endothelzellen bzw. deren Vorläufer und bilden neue Gefäße. Der Wachstumsfaktor fördert die Freisetzung von Matrix-Metalloproteinase, Heparinase, Tryptase, Kallekreine und Cathepsine, welche die subendotheliale Basalmembran und extrazellulären Matrix (ECM) abbauen. Zusätzlich werden spezielle Integrine gebildet, die für den fokalen Adhäsionswechsel während der Angiogenese verantwortlich sind (Soldi et al. 1999). Diese komplexen Vorgänge werden durch wechselnde Zell-Zell und Zell-Matrix Interaktionen z.B. mittels CD31 sowie verschiedenster Faktoren und Modulatoren des epithelialen Wachstums reguliert (DeLisser et al. 1997, Pinter et al. 1997). Des Weiteren werden durch den Abbau der ECM matrixgebundene angiogenetische Aktivatoren wie VEGF, FGF, TGF-β sowie TNFα zusätzlich freigesetzt. Somit können die migrierenden Endothelzellen ungehindert vorstoßen. Gleichzeitig müssen zur Kontrolle der Proteolyse und Angiogenese Inhibitoren wie z. B. Thrombospondin-1, Arrestin, Tumstatin, Angiostatin, Endostatin, Antithrombin wirken (Carmeliet 2004, Carmeliet und Collen 1998). Jeder Gefäßspross besteht wie in der Abb. 5 aus einer Spitze und einen Schaft. An der Spitze sitzt die "tipcell". Sie ist eine hoch polarisierte Endothelzelle, die Filopodien bildet und ein spezielles VEGFR 2 Expressionsmuster aufweist. Die "tipcell" migriert hinter den wandernden Zellen her und wird dabei durch den VEGF-Gradienten geleitet. Als Sensoren und Motoren dienen die Filopodien. Die Proliferation der Endothelzellen im Schaft wird durch die aktuelle VEGF-Konzentration kontrolliert (Benedito et all. 2010).

<u>Abb. 5</u> Schematischer Ablauf der Bildung eines neuen Blutgefäßes. Grafik entnommen aus: Benedito et al. 2010.

Wird die VEGF-Konzentration reduziert oder die Rezeptoraktivierung gehemmt, bilden sich weniger Aussprossungen und kürzere Filopodien. Ist dagegen die VEGF-Konzentration zu hoch, bilden sich zu viele Aussprossungen und vermehrt Filopodien an Endothelzellen des Schaftes. Das Resultat ist ein chaotisches Netzwerk von Gefäßen mit abberanten Fusionen und Hyperperfusion. Die zwei Phänomene Migration und Proliferation werden also unabhängig voneinander durch die VEGFR 2 Stimulation gesteuert (Gerhardt et al. 2003). Des Weiteren scheinen die verschiedenen Isoformen unterschiedliche Einflüsse zu haben. In Experimenten mit Mäusen konnte nachgewiesen werden, dass VEGF₁₆₄ der entscheidende Wachstumsfaktor bei der Entwicklung und Remodelierung von Gefäßen ist. Für die präzise Lokalisation von Gefäßen, deren korrekte Aufteilung sowie hierarchische Anordnung ist eine feine Balance von Heparansulfat gebundenen VEGF und frei diffusiblen VEGF essentiell (Stalmans et al. 2002, Ruhrberg et al. 2002). Neben der VEGF induzierten Proliferation und Migration ist die Inhibition der Apoptose essentiell für die Stabilisierung der neu gebildeten Gefäße (Alon et al. 1995). Vielfältige Experimente legen nah, dass für jedes Organ oder Gewebe spezielle Zellen existieren, welche für die Leitung der Gefäßentwicklung, -sprossung und Arteriogenese verantwortlich sind. So konnte nachgewiesen werden, dass sensorische Neuronen der Haut und ihre Schwanzellen via VEGF das Wachstum von Gefäßen dirigieren und die Arteriogenese induzieren (Mukouyama et al. 2002). Auch in der embryonalen Lunge konnte demonstriert werden, dass das bronchiale Epithel von proximal nach distal einen VEGF-Gradienten erzeugt (Healy et al. 2000).

2.5.3 Nachweis der Angiogenese mittels immunhistochemische Färbung mit CD31 Antikörpern

Das Platelet Endothelial Cell Adhesion Molecule-1 (PECAM-1 oder auch CD31) ist ein 130 kD schweres transmembranöses Zell-Adhäsions Molekül. Das aus drei Domänen bestehende CD31 gehört der Immunglobulin Superfamilie (Ig CAMs) an. Extrazellulär weist das Molekül sechs immunglobulinartige homologe Domänen auf. Darauf folgt eine kurze transmembranöse Domäne sowie der cytoplasmatische Anteil, welcher sowohl funktionelle als auch strukturelle Funktionen erfüllt. Nach Dimerisierung der PE-CAM-1 Moleküle werden Signalen in die Zelle übermittelt, die einen Adhäsionswechsel benachbarter Zellen durch die Rekrutierung weiterer Rezeptoren und transmembranöser Moleküle bewirken (Newman 1997, Pinter et al. 1997, Elias et al. 1998). Die physiologische Funktion von CD31 besteht neben der Stabilisierung interzellulärer Kontakte darin, die Extravasation von Leukozyten und anderen immunkompetenten Zellen zu ermöglichen. Zusätzlich hat es Einfluss auf die Aktivierung von T-Zellen, die Chemotaxis von Neutrophilen sowie Monozyten. CD31 wird von vaskulären Endothelzellen exprimiert. Dort sind sie vor allem in basaler Position entlang der lateralen Plasmamembran zu finden (DeLisser et al. 1997). Des Weiteren ist CD31 auf den Oberflächen von Zellen der myeloiden Linie und Thrombozyten vertreten (Albelda et al. 1991, Elias et al. 1998). Nicht repräsentiert ist das Molekül auf Fibroblasten, Epithelzellen, Myozyten und weiteren Zellen, die nicht am Aufbau von Gefäßen beteiligt sind (Newman 1997). Die immunhistochemische Färbung mit Anti-CD31-Antikörpern ist eine sensitive Methode für die Detektion vaskulärer Endothelzellen und Quantifizierung der Angiogenese. Überdies ist CD31 ein Marker für VEGF verursachte Tumoren (Lutzky et al. 2006, Tang et al. 1993). Die Expression des transmembranösen Moleküls kann durch Hypoxie (Kalra et al. 1996) und Zytokine wie z. B. VEGF (Romer et al. 1995, Healy et al. 2000) beeinflusst werden.

2.5.4 Bedeutung des vaskulären endothelialen Wachstumsfaktors in der Arteriogenese

Nach der Entwicklung primitiver Gefäße entstehen durch die Remodellierung funktionsfähige Arterien, Kapillaren und Venen. Dieser Prozess der Arteriogenese beschreibt die Reifung eines Gefäßes durch perizytäre Ummantelung des Endothelschlauches, Ausstattung mit kontraktilen glatten Muskelzellen und Stabilisierung des Gefäßes. Ferner wird der Durchmesser reguliert, die Flussrichtung etabliert und die Gefäßdichte entsprechend der Ansprüche feinjustiert. Das Wachstum von Kollateralen kennzeichnet die Differenzierung von Arterien aus bereits bestehenden arterioarteriolaren Anastomosen und ist eine spezielle Form der Arteriogenese in der die Kaliberexpansion im Vordergrund steht. Das Wachstum von Kollateralen ist mit einer Hochregulation der arteriogenetischen Stimulatoren VEGF, PDGF-BB und FGF verbunden (Wu et al. 2010). Den Anstoß für die Arteriogenese gibt neben der Hypoxie der erhöhte Shear Stress. Dieser entsteht durch die erhöhte Schubspannung sowie dem verstärkten Blutfluss vor der Stenose und durch den verminderten Blutdruck nach der Stenose. Mechanosensible Komplexe aus VEGFR 2, CD31 und vaskulären endothelialen Cadherinen an Adhäsionsverbindungen registrieren diese Alternation (Tzima et al. 2005). Der pleiotrope Wachstumsfaktor VEGF rekrutiert Pericyten und kann den Durchmesser der Gefäße und die Dichte der α-SMA positiven Zellen erhöhen (Benjamin et al. 1998, Tirziu et al. 2012). Zugleich kommt es durch die Aktivierung des Endothels zu einer MCP-1 (Monocyt Chemoattractand Protein - 1) assoziierten Migration von Monozyten in die Gefäßwand (Bao et al. 1999). Durch die Ausschüttung bestimmter Zytokine und Wachstumsfaktoren wird ein arteriogenetisches Milieu geschaffen. Für den Abbau der Basalmembran und ECM werden Proteasen sekretiert um die Gefäßwand zu modifizieren und der Kaliberexpansion Raum zu verschaffen (Arras et al. 1998, van Royen et al. 2001, Galis und Khatri 2002, Bauer et al. 2005). Die α-SMA positiven Zellen migrieren von den Arterien entlang der Äste in Richtung der Venen. Die Ummantelung beginnt mit der Ausbildung von perikapillären Sphinkter bestehend aus Clustern glatter Muskelzellen. Die Hauptäste werden als erstes eingehüllt. Später folgen die kleineren Seitenäste. Sind die Gefäße ummantelt, findet keine Remodellierung mehr statt und die Gefäße überleben transiente Fluktuationen der Sauerstoffkonzentration. Die Perizyten sind von einer Basalmembran umgeben und exprimieren α-SMA. Sie sind mit Endothelzellen assoziiert dessen Proliferation und Migration von ihnen reguliert wird (Benjamin et al. 1998). Die Retinopathie des Frühgeborenen stellt eine pathophysiologische Manifestation dieser Prozesse dar. Die Frühgeborenen werden einer chronischen Hyperoxie durch die Sauerstoffinkubatoren ausgesetzt. Dies führt zu einer Reduktion des initialen Gefäßplexus. Wenn die Säuglinge von ihren Sauerstoffinkubatoren getrennt werden, geraten die Zellen der Retina in eine extreme Hypoxie und die massiven Mengen an ausgeschütteten VEGF induzieren eine unkontrollierte Neovaskularisierung. Es folgt ein aberrantes Gefäßwachstum in deren Konsequenz eine Hyperproliferation und Fusion von Gefäßen steht. Letztlich können die anormale Verteilung und Größe der Lumina bis zur Blindheit des Säuglings führen (Alon et al. 1995, Benjamin et al. 1998).

2.5.5 Nachweis der Arteriogenese mittels immunhistochemische Färbung mit α -SMA Antikörpern

Alpha Smooth Muscle Actin (α-SMA) ist ein zur Superfamilie der Aktine gehörendes 42 kDa schweres Zellskelettprotein. Aktine sind die am besten konservierten Eiweiße im Genom von Säugetieren und Vögeln. Es existieren die Isoformen β- und γ- Muskel Aktin, welche in allen eukariotischen Zellen zu finden sind. Weiterhin gibt es drei Isoformen des α-Muskel Aktins, die Differenzierungsmarker für glatte Muskelzellen, Skelettmuskelzellen und Herzmuskelzellen darstellen. Innerhalb der Zellen bilden die Aktine eine Helixstruktur und organisieren sich in mikrofilamentären Bündeln (Skalli et al. 1989). Aktin bindende Proteine vernetzen die Aktinfilamente zu supramolekularen Strukturen und ermöglichen die vielfältigen Funktionen des Strukturproteins. Z. B. wird durch die Interaktion mit Myosin, Troponin und Tropomyosin die Kontraktion von Muskeln ermöglicht. Die Form, Stabilität, Motilität und Migration der Zellen hängt von der Funktionalität der Aktin Filamente ab (Herman et al. 1993, Rassow 2008, Müller-Esterl und Brandt 2009). α-SMA ist ein spezieller Marker für vaskuläre glatte Myocyten, Perizyten, Myofibroblasten sowie Myoepithelzellen in den Wänden mittlerer und großer Gefäße (Skalli et al. 1989). Mittels immunhistochemischer Färbung dieses Proteins kann sensitiv die Initiation der Arteriogenese analysiert werden. α-SMA markiert ebenso glatte Muskulatur in Speicheldrüsen, in den Drüsen der Mammae und im uterinen Myometrium. Endothelzellen, Epithelzellen, Fibroblasten, Lymphozyten, Skelettmuskelzellen, Fettzellen und Schwann-Zellen werden nicht angefärbt. Durch die immunhistochemische Färbung mit α-SMA können Leiomyome, Leiomyosarkome ebenso wie polymorphe Adenome und kapilläre Hämangiome identifiziert werden (Dako Denmark A/S 2008).

2.6 Ergebnisse vorangegangener in Vitro und in Vivo Experimente

Der Gebrauch von pro-angiogenetischen und pro-arteriogenetischen Cytokinen für die Initiation des Gefäß- sowie Kollateralenwachstums in ischämischem Gewebe wird therapeutische Angiogenese genannt. Das Studiendesign sieht eine langsame konstitutive Freisetzung von VEGF₁₆₄ unter Nutzung autogener transfektierten Fibroblasten vor, die mittels der Produktion des endogenen VEGFs die Neoangiogenese stimulieren sollen. Verwiesen wird auf vorangegangenen experimentellen Studien in denen bereits nachgewiesen wurde, dass unter Anwendung des Basic Nukleofactor Kit 24 Stunden nach der Transfektion des VEGF₁₆₄-Gens in autogene Fibroblasten eine Erfolgsquote von 63% erreicht wird. In der weiteren Beobachtung erreichte die Transgenexpression am zweiten Tag mit 74,33% ihr Maximum und fiel ab Tag drei wiederum auf 50,67%. Am vierten Tag wurde eine Persistenz der Expression von 41,0% gemessen, die bis Tag sieben auf 22,0% weiter absank und am neunten Tag 15,0% erreichte. Das VEGF-Niveau nicht transfektierter Fibroblasten und transfektierter Fibroblasten ist zwei Wochen nach der Manipulation gleich. Die Abb. 6 stellt den Verlauf der VEGF₁₆₄-Expression dar.

<u>Abb. 6</u> VEGF₁₆₄-Expression von transfektierten Fibroblasten in Vitro. Grafik entnommen aus: Mueller et al. 2010-A.

In Vitro wurde eine signifikant gesteigerte HUVEC-Stimulation durch VEGF₁₆₄ transfektierte Fibroblasten festgestellt. Auch in Vivo konnte eine gesteigerte Expression von VEGF₁₆₄ nachgewiesen werden. Im Rahmen eines Tierversuches wurde die Angiogenese mittels implantierten Kollagenmembranen untersucht, sowie die systemischen Auswirkungen eruiert. Nach Transplantation einer Kollagenmembran in den Musculus gracilis der Maus und Injektion von VEGF₁₆₄ transfektierten Fibroblasten ist die kapilläre Dichte im Vergleich zu einer gesunden, unverwundeten Haut nach sieben Tagen nahezu gleich (siehe Abb. 7).

<u>Abb. 7</u> Vergleich der kapillären Dichte zwischen gesunder Haut und der implantierten Kollagenmembran mit oder ohne VEGF₁₆₄ transfektierte Fibroblasten. Grafik im Original bei Mueller et al. 2010-A. Die vorliegende Abb. wurde durch den Verfasser verändert.

Die VEGF₁₆₄ transfektierten Fibroblasten zeigten keine Verteilung in das Blut oder andere Organe und verblieben am Ort ihrer Injektion. Das Gleiche gilt für die Konzentration von VEGF₁₆₄. Veränderungen in der Gefäßarchitektur im umgebenden Gewebe konnten nicht detektiert werden (Mueller et al. 2010-A, Mueller et al. 2010-B). Ebenfalls wurde bereits der positive Effekt von VEGF auf vorbestrahltes Gewebe untersucht (Schultze-Mosgau et al. 2003).

3. Ziele der Arbeit

Ziel dieser experimentellen Arbeit ist den Einfluss autogener VEGF₁₆₄ transfektierter Fibroblasten auf die Neovaskularisation in ischämischem myocutanem Gewebe zu eruieren. Am Beispiel des Hinterlaufes der Wistar Ratte dient der Musculus gracilis mit der darüber liegenden Haut nach Unterbindung der Arteria femoralis superficialis als Modell für die milde Ischämie innerhalb eines myocutanen Transplantates dar. Die separate Untersuchung der Anteile des Musculus gracilis und der Haut oberhalb des Musculus gracilis sollen einen Einblick in die differierende Anatomie und Dichte der Gefäße ermöglichen sowie einen Vergleich der Gefäßentwicklung nach Injektion der VEGF₁₆₄ transfektierten Fibroblasten und Ligation der Arteria femoralis superficialis zulassen. Dabei ist davon auszugehen, dass in den Bioptaten der Haut eine stärkere Wirkung durch das epitheliale Mitogen zu erwarten ist. Die Auswertung der Gefäßanzahl und Gefäßfläche der immunhistochemischen Färbungen mit Anti-CD31-Antikörpern und Anti-a-SMA-Antikörpern fungieren als Beleg für die Sicherheit und Effektivität der Initiation der postnatalen Angiogenese und Arteriogenese durch die konstitutive Expression des Transgens VEGF₁₆₄. Auf diese Weise kann der Nachweis erbracht werden, dass der pleiotrope Wachstumsfaktor sowohl die Sprossung kleiner Gefäße und Kapillaren bewirkt als auch die Bildung und Kaliberexpansion von Gefäßen mit kontraktiler pericytärer Ummantelung initiiert. Weiterführend besteht die Intension des Experimentes darin, die Auswirkung des Zeitraumes zwischen der Applikation der autogenen VEGF₁₆₄ transfektierten Fibroblasten und dem Einsetzen der Ischämie durch Ligation der Arteria femoralis superficialis auf den Grad der Neovaskularisation zu analysieren. Die simultane Injektion und Ligation ist in Folge der zu erwartenden hohen VEGF-Konzentration das erfolgversprechendste Verfahren. Gleichzeitig ist der Zeitpunkt der maximalen Gefäßdichte nach Ligation der versorgenden Arterie interessant für die klinische Anwendung. Nach Unterbindung der Arteria femoralis superficialis ist davon auszugehen, dass die Gefäßanzahl und die Gefäßfläche zu jedem Untersuchungszeitpunkt weiter ansteigen und nach zwei Wochen ihr Maximum erreichen.

4. Material und Methode

4.1 Material

Nachfolgende Materialen wurden im Rahmen der Untersuchungen verwendet.

Material	Hersteller
Aceton	Mallinckrodt Baker B.V., Holland
Antibody Diluent Dako REAL [™]	Dako, Deutschland
Anti α-SMA Antikörper, monoklonal, Klon	Dako, Deutschland
M0851, Isotyp mouse IgG1	
Anti CD31 Antikörper, monoklonal, KG	Santa Cruz Biotechnology, Deutsch-
Klon FC-1506, Isotyp goat IgG1	land
Anti CD31 Antikörper, monoklonal, VG	Santa Cruz Biotechnology, Deutsch-
Klon TLD-3A12, Isotyp mouse IgG1	land
Anti Mouse Antikörper, monoklonal, Klon	Dako, Deutschland
E0464, Isotyp rabbit IgG1	
Dako Liquid DAB + Substrate Chromogen	Dako, Dänemark
System	
Deckgläschen 24X60 mm	Menzel-Gläser, Deutschland
Stoppuhr	Tfa-Dostmann GmbH & Co
Feinwaage - Sartorius LE 323S	Sartorius, Deutschland
Fettstift	Dako, Deutschland
Feuchte Kammer – MIST magnetic im-	CellPathplc, USA
muno staining tray	
Gefiermikrotom, Model Leica CM3050S	Leica Mikrosystems, Deutschland
Gefiermikrotom – Klinge C35	Feather, Deutschland
Hämalaunlösung - Mayers Hämalaun	Merk, Deutschland
Streptavidin HRP Komplex	Biofx Laboratories, USA
Küvetten neo Filtertips hydrophob in den	Neo Labhigge Laborbedarf-Vertrieb
Größen 0,5-10µl, 1-100µl und 10-1000µl	GmbH, Deutschland
Lichtmikroskop Axioplan 2 imaging	Carl Zeiss, Deutschland
Messzylinder 1000:10	Vit Lab, Deutschland
Mounting Medium – Vecta Mount	Vector Laboratories, USA

Mallinckrodt Baker B.V., Holland
Menzel-Gläser, Deutschland
GIBCO Invitrogen, USA
Sentron, USA
Eppendorf, Deutschland
DakoCytomation, Deutschland
IKA, Deutschland
Dr. K. Hollborn& Söhne, Deutschland
Finetek Europe e.V., Niederlande
Dako, Deutschland

4.2 Methode

4.2.1 Gruppeneinteilungen

Jede der 120 Wistar-Ratten wurde an der dorso-lateralen Zunge bioptiert. Aus den gewonnenen Mukosapräperaten wurden die Fibroblasten isoliert. Nun wurden die 120 Tiere zufällig in zwei randomisierte Gruppen von je 60 Tieren eingeteilt. Die Fibroblasten der ersten Gruppe, der Interventionsgruppe, wurden mit dem pcDNA3.1/nV5-Dest VEGF-Plasmid, der die VEGF₁₆₄-cDNA codiert, transfektiert und über 24 Stunden ohne weitere Manipulation kultiviert. Die Fibroblasten der zweiten Gruppe, der Kontrollgruppe, wurden ohne weitere Manipulation über weitere 24 Stunden kultiviert. Bei jeder der 120 Wistar-Ratten wurden in der Leistenregion an einem definierten Punkt die Injektionen durchgeführt. Den Ratten der Kontrollgruppe wurde in die Region des unilateralen M. gracilis PBS und in die Region des kontralateralen M. gracilis die nicht transfektierte Fibroblasten injiziert. In der Interventionsgruppe wurden die Tiere in der Region des unilateralen M. gracilis mit VEGF₁₆₄ transfektierten Fibroblasten beimpft. Die isolierten Fibroblasten aus der Mukosa eines Tieres wurden wieder in die Leiste desselben Tieres injiziert. Die Wistar-Ratten der Kontrollgruppe und Interventionsgruppe wurden nun wiederum in 3 Gruppen á 20 Tieren zufällig randomisiert eingeteilt. Bei den ersten 20 Tieren wurde zwei Wochen nach der Injektion die Art. femoralis
superficialis ligiert. Bei den nächsten 20 wurde eine Woche nach der Injektion die Art. femoralis superficialis ligiert. Bei den letzten 20 Tieren wurde simultan zur Injektion die Art. femoralis superficialis ligiert. Jeweils 5 Ratten jeder Gruppe wurden am dritten, fünften, siebenten und vierzehnten Tag nach der Ligation der Art. femoralis superficialis sakrifiziert. Die Proben wurden aus der Haut, der oberflächlichen, kaudalen und kranialen Portio des Musculus gracilis entnommen. Die Proben wurden direkt nach der Entnahme in flüssigen Stickstoff für 10 min gefroren und bei -80°C bis zur weiteren Bearbeitung gelagert. Das Flow-Chart der Abb. 8 fasst den Versuchsaufbau nochmals zusammen. Die Abb. 9 zeigt in Form eines Zeitstrahls die Reihenfolge der Interventionen.

Gewinnung der Mucosapräparate aus der dorso-lateralen Schleimhaut der Zunge von 120 Wistar Ratten und Isolierung der Fibroblasten

Abb. 8 Schematischer Versuchsaufbau als Flow-Chart. Eigene Darstellung.

<u>Abb. 9</u> Reihenfolge der durchgeführten Interventionen. Eigene Darstellung.

4.2.2 Gewinnung der Mukosabiopsien und Fibroblastenisolierung

Insgesamt standen 120 männliche Wistar-Ratten für diese Studie zur Verfügung (200-250g, mittleres Alter: 3 Monate, Harlan Winkelmann GmbH, Borchen, Deutschland). Die Tiere wurden alleine in Makrolon Typ III Käfigen (Techniplast, Varese, Italy) bei einer Temperatur von 22°C, 55% Luftfeuchtigkeit und 12 Stunden Tag und Nacht Zyklus gehalten. Die Ratten wurden mit einer Standardnagerdiät (N° 1320, Altromin, Lage, Germany) und Wasser ad libitum gefüttert. Das Tierexperiment wurde vom Thüringer Ministerium für Lebensmittelsicherheit und Verbraucherschutz (TLLV) genehmigt (Tierversuch Reg.-Nr.: 02-002/09). Die Tiere wurden mit einer Mischung aus Ketamin (Ketavet®, Pharmaciaand Upjohn, Erlangen, Deutschland) und Xylazine (Rompun®, Bayer, Leverkusen, Deutschland) im Verhältnis 2:1 (2,5ml/kg Körpergewicht) über eine intraperitoneale Injektion anästhesiert. Die oralen Mukosabiopsien der Größe 0,5x1 cm² wurden von jeder Ratte im Bereich der dorso lateralen Oberfläche der Zunge nach etabliertem Protokoll entnommen (Mueller et al. 2010-A, Mueller et al. 2010-B). Die Gewebeproben wurden in kleine Stücke geschnitten und mit einer antibiotischen und antimykotischen Lösung (Sigma Aldrich, Taufkirchen, Deutschland) gespült. Für zwei bis drei Stunden erfolge die Digestion mit Kollagenase (Roche Diagnostics GmbH, Mannheim, Germany) und Dispase (Roche Diagnostics GmbH, Mannheim, Germany). Die Zellen wurden in eine Kultur mit Dulbecco's modified Eagle's Medium (Gibco, Invitrogen, Paisley, UK) mit einem Anteil von 10% fetalem Rinderserum transferiert. Wenn eine Konfluenz von 90% erreicht wurde, wurden die Zellen mit 2,5mg/ml Trypsin und 0,2mg/ml EDTA (Gibco, Karlsruhe, Germany) passagiert. Die erste Passage fand in unserem Experiment Verwendung. Mittels Neubauers Zählkammer (Brand, Wertheim, Deutschland) und Tryptanblau Färbung wurde die Gesamtzahl der Fibroblasten quantifiziert (Mueller et al. 2010-A, Mueller et al. 2010-B).

4.2.3 Transfektion und Injektion

Die Fibroblasten der Versuchsgruppe wurden mit pcDNA3.1/nV5-Dest VEGF-Plasmid transfektiert und über weitere 24 Stunden kultiviert. Die VEGF₁₆₄-cDNA wurde von dem Institut für Pathologie der Friedrich-Alexander-Universität Erlangen/Nürnberg zur Verfügung gestellt. Die rattenspezifische cDNA von VEGF wurde in einen pGEM-3Zf(+) Vektor einkloniert. Nun folgte die Subklonierung der VEGF₁₆₄-cDNA in den eukaryotischen Expressionsvektor pcDNA3.1/n V5-DEST mit dem Gateway-Verfahren (Invitrogen). Die VEGF₁₆₄-Sequenz wurde dann per LR-Reaktion in den Destinations (Expressions)-Vektor zwischen die Rekombinationskassete (attR1 und attR2) transferiert. In diesem Plasmid wird VEGF₁₆₄ konstitutiv unter Kontrolle eines CMV (Cytomegalovirus) Promotors als N-terminales V5-Fusionsprotein exprimiert. Der Vektor trägt eine Ampicillin-Resistenz für eine Selektion in Bakterienstamm DH5 Alpha. Die Abb. 10 zeigt die Genkarte des VEGF-Plasmids. 5x10⁵ Fibroblasten wurden in 100 µl Nukleofactor Lösung (Basic Nukleofactor Kit For Primary Mammalian Fibroblasts, Amaxa, Cologne, Deutschland) resuspendiert und mit 3µg VEGF-Plasmid gemischt. Die Elektroporation wurde mittels Nukleofaktor I Device (Amaxa, pulsingprogram P-22) ausgeführt.

107 VEGF transfektierte Fibroblasten wurden in der Interventionsgruppe in die Region des unilateralen M. gracilis injiziert. In den Kontrollgruppen wurden ebenfalls 107 nicht transfektierte Fibroblasten in der Region des kontralateralen M. gracilis und PBS in der Region des unilateralen M. gracilis injiziert. Dabei wurde jede Wistar-Ratte mit den eigenen Fibroblasten beimpft. Darauf folgte die Ligation der Art. femoralis superficialis gleichzeitig mit der Injektion oder eine Woche bzw. zwei Wochen nach Injektion bei je 20 Wistar-Ratten. Die Operation verlief unter sterilen Bedingungen und unter Zuhilfenahme mikrochirurgischer Techniken. Die Art. femoralis wurde nach einer Hautinzision aufgesucht, von der Vene separiert und die rechte und linke Art. femoralis superficialis ligiert. Die Abb. 11 veranschaulicht die Lokalisation der Ligatur. Drei, fünf, sieben und vierzehn Tagen nach Ligation der Art. femoralis wurden die Tiere sakrifiziert und die benötigten Proben aus der Haut und dem M. gracilis entnommen.

<u>Abb. 11</u> Ligationsstelle der Art. femoralis superficialis am Hinterlauf der Wistar Ratte. Grafik im Original bei Jia 2011. Die vorliegende Abb. wurde durch den Verfasser verändert.

4.2.4 Herstellung der Gefrierschnitte

Zur Herstellung der Kryo-Gewebeschnitte habe ich die gefrorenen Proben in Tissue Tek eingebettet. Die Kryoschnitte wurden von mir in einem Gefriermikrotom in einer Dicke von 10µm angefertigt und auf einen beschichteten Objektträger überführt. Die Schnitte habe ich dann 30 min bei Raumtemperatur getrocknet und wiederum bei -80°C für den nächsten Schritt aufbewahrt (siehe Anhang Versuchsprotokoll, S. 170).

4.2.5 Herstellung der Stammlösung

Herstellung der Tris-Puffer Stammlösung (1:10): 60,5g Tris (Trishydroxymethylaminomethan, auch Tromethamin genannt) habe ich in 700ml Aqua dest (A.d.) gelöst, dann wurden 90g NaCl hinzugefügt und schließlich der Messzylinder bis auf 1000ml mit A.d. aufgefüllt. Die Lösung habe ich so lange mit dem Rührwerk gerührt bis sie klar wurde. Die fertige Lösung wurde von mir auf einen pH-Wert von 7,6 mittels tropfenweiser HCl-Zugabe und simultaner Kontrolle durch ein pH-Messgerät eingestellt (siehe Anhang Versuchsprotokoll, S. 170). Herstellung der gebrauchsfertigen Tris-Buffered Saline (TBS): Die Stammlösung habe ich auf 1:10 verdünnt. Dafür nehme ich 100ml Stammlösung und 900ml A.d. Zusätzlich wurden 0,2-0,5ml Tween 20 dazugegeben. Tween vermindert die unspezifische Hintergrundfärbung durch Entfernung ungebundener Antikörper und verbessert die Verteilung der Reagenzien (Dako 2010, siehe Anhang Versuchsprotokoll, S. 170).

4.2.6 Prinzip der Immunhistochemie

Die immunhistochemischen Färbemethoden gewinnen sowohl in der Forschung zunehmend an Bedeutung als auch in der täglichen Routinepathologie. Die Spezifität und Sensitivität der Färbungen konnte in den letzten Jahren merklich verbessert werden (Brandtzaeg 1998, Matos et al. 2010). Das Ziel ist ein bestimmtes Antigen in einem histologischen Präparat mittels optischer Darstellung nachzuweisen. Bei dieser Verfahrensweise macht man sich die Eigenschaft von Antikörpern zunutze mit einem speziellen Antigen eine feste Bindung einzugehen. Dieser Antikörper wird mit einem Markerenzym konjugiert und kann somit sichtbar gemacht werden. Zum Einsatz kommen monoklonale oder polyklonale Antikörper. Die Ersteren weisen eine höhere Spezifität auf und werden damit häufiger eingesetzt (Lipman et al. 2005). Des Weiteren wird zwischen der direkten und indirekten Methode unterschieden. Bei der direkten Methode ist der primäre Antikörper mit einem Enzym konjugiert. Diese Methode bedarf zwar weniger Färbeschritte, allerdings ist die Intensität der Färbung gering, da jedes Antigen durch lediglich ein Enzym angefärbt wird. Durch die indirekte Methode hingegen kann das Farbsignal vervielfacht werden. Sie bedarf allerdings mehrerer Schritte. Vorerst wird das Antigen mit einem nicht konjugierten primären Antikörper besetzt. Darauf folgt der konjugierte sekundäre Antikörper, der an mehrere Stellen des primären Antikörpers binden kann. Der Sekundärantikörper wird nun mit mehreren Markerenzymen besetzt. Ein Antigen wird somit durch viele Enzyme angefärbt (Noll et al. 2000). Bei dem Markerenzym handelt es sich entweder um die Meerrettichperoxidase oder um die alkalische Phosphatase. Für die Visualisierung wird ein Substrat zugegeben, welches mit dem Markerenzym reagiert und durch eine Farbreaktion das Antigen sichtbar macht. Das Resultat kann durch ein Lichtmikroskop beurteilt werden. Die Färbung ist stabil und kann nach entsprechender Fixierung und Eindeckelung archiviert werden (Taylor 1978). Bei der Verbesserung der Farbergebnisse haben sich verschiedenste Methoden entwickelt. Meine histologischen Gewebeschnitte habe ich mit der labeled-streptavidin-biotin-technique (LSAB-Methode) gefärbt. Dies ist eine hoch sensitive indirekte immunhistochemische Methode (Giorno 1984, Shi et al. 1988). In der Abb. 12 werden die einzelnen Schritte der immunhistochemischen Färbemethode bildlich dargestellt. Im ersten Schritt wird der unkonjugierte Primärantikörper zugegeben und damit das Antigen markiert. Nun folgt der Sekundärantikörper. Dieser ist biotinyliert und kann an verschiedenen Epitopen des FC Fragments des Primärantikörpers binden. Im Folgenden wird Streptavidin, welches an den Biotin Anteil des Sekundärantiköpers vier Bindungsstellen vorfindet und dort mit einer starken Affinität bindet, hinzugefügt (Guesdon et al. 1979, Dako 2007). Zusätzlich ist Streptavidin mit mehreren Meerrettichperoxidasen komplexiert (Matsumura et al. 1989). Anstatt des von mir verwendeten Steptavidins wurde in der Abb. 12 Avidin verwendet. Das nun folgende Substrat 3,3-Diaminobenzidin (DAB) wird durch die Peroxidase oxidiert und zeigt eine braune Färbung (Noll et al. 2000, Dako 2009). Durch die vielfache Markierung eines Antigens kann das Signal wesentlich gesteigert werden und damit eine maximale Sensitivität und Spezifität erreicht werden. Mit dem Ziel die Hintergrundaktivität bzw. -färbung so gering wie möglich zu halten, wird der histologische Schnitt vor Zugabe der Antikörper mit Normalserum von der Spezies der Sekundärantikörpers inkubiert. Damit wird eine unspezifische Bindung des Sekundärantikörpers verhindert (Noll et al. 2000).

<u>Abb. 12</u> Prinzip der immunhistochemischen Färbemethode. Grafik entnommen aus: VECTOR Laboratories.

4.2.7 Immunhistochemische Färbung mit Anti-α-SMA Antikörper und Anti-CD31 Antikörper

Die Objektträger habe ich nach dem Auftauen 20 min bei Raumtemperatur getrocknet und 10 min in eiskaltem Aceton bei –20°C fixiert. Nach der Fixation trockneten die Objektträger 5 min an der Luft und anschließend wurden die einzelnen Schnitte mit einem Wachstift eingekreist. Dann habe ich die Proben 5 min in TBS gewaschen. Alle weiteren Schritte fanden in einer feuchten Kammer statt, um dem Austrocknen der Gewebeschnitte entgegenzuwirken. Bei jeder Färbung wurden zwei bis drei Positivkontrollen sowie eine Negativkontrolle mitgeführt. Für jeden Antikörper standen zwei Objektträger je Bioptat zur Verfügung. Mit dem Ziel eine unspezifische Bindung der Antikörper zu vermeiden und damit die Hintergrundfärbung zu reduzieren, habe ich einen Rabbit Serum Block verwendet. Die Inkubation der Gewebeschnitte mit fünfprozentigen Rabbit Serum (250µl Serum mit 5ml PBS verdünnt) erfolgt für 20 min bei Raumtemperatur. Durch mechanisches Abklopfen entfernte ich die Blockierungslösung vom Objektträger Die Schnitte konnten nun von mir mit 100µl Primärantikörper 1:50 in Antikörper Diluent inkubiert werden und wurden über Nacht bei 4°C gelagert.

Für die Markierung des gefäßendothelspezifischen transmembranösen Zell-Adhäsions-Moleküls CD31 habe ich in den Proben der Versuchsgruppe den monoklonalen unkonjugierten Anti-CD31-Antikörper vom Isotyp goat IgG1 genutzt. In den Kontrollgruppengruppen fand der Isotyp mouse IgG1 Verwendung. Um in den Bioptaten die perivaskulären glatten Muskelzellen anzufärben, wurde der monoklonale unkonjugierte mouse antihuman IgG a-SMA-Antikörper genutzt. Jeweils der oberste Gewebeschnitt dient als Negativkontrolle und wird nur mit Antikörper Diluent inkubiert. Am nächsten Tag habe ich die Schnitte 3x 5min mit TBS gewaschen. Die Inkubation mit 100µl des 1:1000 in TBS verdünnten polyclonalen, biotinylierten rabbit anti-mouse bzw. anti-goat IgG Sekundärantikörpers dauerte bei Raumtemperatur 60 min. Die Negativkontrollen wurden mit TBS inkubiert. Nachfolgend habe ich die Schnitte 3x 5min in TBS gewaschen. Um den Sekundärantikörper sichtbar zu machen, fand das Dako LSAB-System mit dem HRP-Komplex (Horseraddish-Peroxidase-Komplex) in der Verdünnung 1:1000 in TBS Verwendung. Die Peroxidase konjugierte Streptavidin Moleküle bildeten einen Komplex mit den biotinylierten Sekundärantikörpern. Auf jeden Schnitt habe ich 100µl gegeben. Der Dako HRP-Komplex inkubierte 30 min. Nachfolgend wurden die Schnitte nochmals 3x 5 min mit TBS gewaschen. Jetzt habe ich je 1 Tropfen (oder 20µl) DAB-Chromogen in 1ml Substrat-Puffer zugeben und pro Gewebeschnitt 50µl appliziert. Die Horseraddish Peroxidase oxidierte das DAB-Chormogen, sodass es zu einer braunen Färbung des Zielantigens kam. Das Dako Liquid DAB mit Substrat Chromogen musste 2-10 min reagieren. Wenn sich unter dem Mikroskop eine ausreichende Färbung darstellte, konnten die Schnitte mit Leitungswasser abgespült werden. Die Gegenfärbung wurde mit Hämalaun (1:1 verdünnt mit A.d.) für 5 min vorgenommen. Danach folgte das Bläuen unter Leitungswasser für weitere 5 min. Die Objektträger wurden nachmals 5 min mit A.d. gewaschen. Zuletzt habe ich die gefärbten Gewebeschnitte mit Mounting Medium eingedeckt und ein Deckglas aufgelegt (siehe Anhang Versuchsprotokoll, S. 170).

4.2.8 Mikroskopische und histomorphometrische Auswertung

Anschließend wurden die Proben von mir mit einer 100-fachen Vergrößerung mikroskopiert und mittels der Softwear Anxiovision Rel. 4.5 (Carl Zeiss) digitale Bilder angefertigt (Hochauflösende Mikroskopie Kamera Axio Cam HRc, Carl Zeiss Worldwide). Die Bilder habe ich nun mit der Softwear GSA Image Analyser ausgewertet. Dabei habe ich die Anzahl der Gefäße sowie die Gesamtfläche aller Gefäße im Gesichtsfeld erfasst. Als ein Gefäß habe ich eine Braunfärbung von mindestens 10 Pixeln Größe definiert (Cross 2001, Brey et al. 2003). Das Vorhandensein von Erythrozyten und/ oder eines Lumens galt nicht als Kriterium. Die so gewonnen Daten habe ich in das Statistikprogramm IMB SPSS Statistics Version 19 übertragen.

4.2.9 Statistik

Die statistische Analyse erfolgte nach Beratung durch Herrn Dr. rar. nat. Mario Walther vom Institut für Medizinische Statistik, Informatik und Dokumentation (IMSID) der Friedrich-Schiller-Universität Jena und mittels SPSS 19.0 für Windows®. Zunächst wurde eine explorative Datenanalyse und eine deskriptive Statistik von mir durchgeführt, um eine Übersicht über die Mittelwerte und Standardabweichungen der Gefäßanzahl und der Gefäßfläche in Bezug auf die unterschiedlichen Gruppen, Lokalisatio-Ligationszeitpunkte und Entnahmezeitpunkte zu erhalten. nen. Statistische Untersuchungen auf Signifikanz erfolgten mittels einer Analyse der Varianz für Messwiederholungen (ANOVA). Innerhalb der Varianzanalyse untersuchte ich ob mehrere unabhängige Gruppen sich bezüglich des Mittelwertes einer stetigen Zielvariable unterscheiden. Die Innersubjektfaktoren sind die unabhängigen Faktoren. Die Lumenanzahl oder die Gesamtgefäßfläche der Lumina wurden als Innersubjektfaktoren definiert. Die Zwischensubjektfaktoren sind die abhängigen Faktoren. Die Lokalisation, die Gruppe, der Ligationszeitpunkt oder der Entnahmezeitpunkt wurden als Zwischensubjektfaktor definiert. Im paarweisen Vergleich auf der Basis des T-Tests werden alle möglichen Kombinationen der Inner- und Zwischensubjektfaktoren mit der Methode nach Bonferroni auf signifikante Unterschiede untersucht. Mit Hilfe dieser Methode kann die Alphafehler – Kumulierung neutralisiert werden. Die mittlere Differenz gibt den positiven oder negativen Einfluss der Faktoren wieder. Das Signifikanzniveau liegt bei fünf Prozent.

5. Ergebnisse

5.1 Immunhistochemische Untersuchung

Für diese Arbeit wurden die Gefäße an Hand von Biopsien aus verschiedenen Anteilen des M. gracilis und der Haut oberhalb dieses Muskels untersucht. Ziel war es zu beweisen, dass die Injektion VEGF transfektierter Fibroblasten nach Ligation der Art. femoralis superficialis die Gefäßanzahl und die Gefäßfläche beeinflusst. In den nach Probenaufblockung erstellten Gefrierschnitten wurden vaskuläre Endothelzellen mit markierten Anti-CD31-Antikörpern detektiert. Mittels des intermembranösen Zell-Adhäsions-Moleküls CD31 wurden die Gesamtheit aller Gefäße erfasst. Perivaskuläre glatte Muskelzellen wurden mit Anti-α-SMA-Antikörpern angefärbt. Damit wurden alle muskulären Gefäße registriert. Der verwendete Farbstoff Diaminobenzidin wird durch die Perioxidasen des zweiten Antikörpers oxidiert und färbt sich braun. Die umgebenden quergestreiften Muskelzellen reagierten nicht positiv auf die Antikörper. Das perivaskuläre Bindegewebe reagiert an einigen Stellen ebenfalls positiv, jedoch in einem weitaus geringeren Maß als die tatsächlichen Ziele der Antikörper.

<u>Abb. 13</u> Gefrierschnitt M. gracilis der Interventionsgruppe (IHCF mit CD31)

<u>Abb. 14</u> Gefrierschnitt M. gracilis der Kontrollgruppe (IHCF mit CD31)

Die mikroskopischen Bilder des M. gracilis der Abb. 13/14 zeigen den typischen Aufbau quergestreifter skelettaler Muskulatur. Die Myocyten sind zum größten Teil im Querschnitt zu sehen. Randständig unter der Zellmembran sind die Zellkerne zu erkennen. Durch das Perimysium wird eine Gruppe von Muskelfasern zusammengefasst. Zwischen den Bündeln von Muskelfasern verlaufen bindegewebige Septen mit Gefäßen. Die Myozyten wurden durch das Schneiden am Mikrotom z. T. stark geschädigt. Bei dem Vergleich der angefärbten, CD31 positiven Gefäße der Abb. 13/14 fällt bereits ein deutlicher Unterschied zwischen der Interventionsgruppe und der Kontrollgruppe auf. In den Abb. 15/16 sind die muskulären Gefäße der Haut oberhalb des M. gracilis dargestellt. Die mikroskopischen Bilder zeigen den typischen Aufbau der Haut. Die äußerste Schicht bildet das mehrschichtig verhornende Plattenepithel der Epidermis. Darauf folgen die Dermis mit ihrer bindegewebigen Struktur sowie ihrem Gefäßreichtum, und die Subkutis mit den Bindegewebs- und Fettzellen. Zahlreiche Hautanhangsgebilde wie Haarbälge und Talgdrüsen sind in den Schnitten der Haut zu erkennen. In beiden Geweben sind keine Veränderungen in der Architektur der Gefäße sowie des umgebenden Gewebes wahrnehmbar. Angiome oder andere Tumoren sind in den histologischen Schnitten der Haut und des Muskels nicht zu erkennen.

<u>Abb. 15</u> Gefrierschnitt Haut der Interventionsgruppe (IHCF mit α-SMA)

<u>Abb. 16</u> Gefrierschnitt Haut der Kontrollgruppe (IHCF mit α-SMA)

In der Interventionsgruppe (Abb.15) sind deutlich mehr α-SMA positive Gefäße zu sehen, verglichen mit der Kontrollgruppe (Abb.16). Zur Quantifizierung dieser Unterschiede wurden die Anzahl der Gefäße sowie die von ihnen eingenommene Fläche bestimmt und mittels paarweisen Vergleichs statistisch ausgewertet. Das Signifikanzniveau ist auf einen Wert von p=0,05 festgelegt.

5.2 Statistische Auswertung

5.2.1 Einfluss der Lokalisation

Jeder Wistar-Ratte wurde eine Biopsie der Haut über dem M. gracilis entnommen, sowie Biopsien aus dem oberflächlichen, kaudalem und kranialem Anteilen des M. gracilis. Die hieraus gefertigten immunhistochemischen Färbungen wurden hinsichtlich der Anzahl der Gefäßlumina sowie der Fläche, die von den Gefäßlumina eingenommen wird, mikroskopisch untersucht. Der untersuchte Ausschnitt hatte eine Fläche von 147.403,2 μ m². Dabei wurden zum einen mit Hilfe des CD31 Antikörpers alle Gefäße und zum anderen mit Hilfe des α-SMA Antikörpers die muskulären Gefäße betrachtet.

In den Biopsien der Haut konnten 382 CD31 positiven Gefäßlumina gezählt werden, die eine Fläche von 4735,1 µm² einnehmen. In den Biopsien des oberflächlichen, kaudalen sowie kranialen Anteils des M. gracilis wurden mit 251, 226 und 236 CD31 positiven Lumina ein Drittel weniger Gefäße registriert als in der Lokalisation Haut. Die verschiedenen Anteile des Muskels differieren jedoch kaum in ihrer Lumenanzahl (siehe Tab.1).

Lokalisation	Mittelwert	Standardabweichung
Haut	382	309
Oberflächlicher Muskelanteil	251	171
Kaudaler Muskelanteil	226	179
Kranialer Muskelanteil	236	154

Tab. 1	MW und SD der Lumenanzahl nach Lokalisation (IHCF mit CD31)

Der paarweise Vergleich bestätigt, dass in der Haut signifikant mehr Gefäße vorhanden sind als in den Lokalisationen oberflächlicher Muskelanteil ($p \le 0,0001$), kaudaler Muskelanteil ($p \le 0,0001$) sowie kranialer Muskelanteil ($p \le 0,0001$). Zwischen den einzelnen Muskelanteilen konnte kein signifikanter Unterschied festgestellt werden (siehe Tab.2).

Tab. 2Paarweiser Vergleich der Lumenanzahl nach Lokalisation bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	130	24	≤0,0001
	Kaudaler Muskelanteil	156	28	≤0,0001
	Kranialer Muskelanteil	146	28	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	26	18	0,96
	Kranialer Muskelanteil	16	17	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-10	19	1

Die Gefäßfläche aller Gefäße, die durch den CD31 Antikörper angefärbt wurden, halbiert sich im Vergleich zur Haut (4735,1 μ m²) in den Lokalisationen oberflächlicher Muskelanteil (2593,5 μ m²), kaudaler Muskelanteil (2289,6 μ m²) und kranialer Muskelanteil (2533,6 μ m²). Die einzelnen Muskelanteile nehmen nahezu die gleiche Fläche ein (siehe Tab. 3).

Tab. 3	MW und SD der	Lumenfläche in um ²	² nach Lokalisation	(IHCF mit CD31)
				(

Lokalisation	Mittelwert	Standardabweichung
Haut	4735,1	3860
Oberflächlicher Muskelanteil	2593,5	2723,6
Kaudaler Muskelanteil	2289,6	2378
Kranialer Muskelanteil	2533,6	3248

In dem statistische Test konnte berechnet werden, dass keinen signifikanten Unterschied zwischen den Muskelanteilen des M. gracilis besteht. In der Haut hingegen nehmen die CD31 positiven Gefäßlumina signifikant mehr Fläche ein als in den anderen Lokalisationen (p≤0,0001, siehe Tab.4).

<u>Tab. 4</u> Paarweiser Vergleich der Lumenfläche nach Lokalisation in µm² bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	2159,6	293,6	≤0,0001
	Kaudaler Muskelanteil	2463,5	277,1	≤0,0001
	Kranialer Muskelanteil	2219,6	320	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	303,9	213,2	0,94
	Kranialer Muskelanteil	60	273,6	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-244	282	1

Die muskulären Gefäße in der Haut beziffern sich auf 362 Lumina mit einer Fläche von 5229,2 μ m². Dies sind circa 50-mal mehr α -SMA positive Lumina als in den Lokalisationen oberflächlicher (68), kaudaler (61) und kranialer (60) Anteil des M. gracilis. Im Gegensatz dazu sind in den Anteilen des M. gracilis die Gefäßflächen fast gleich groß (siehe Tab.5).

Tab. 5 MW und SD der Lumenanzahl nach Lokalisation (IHCF mit α-SMA)

Lokalisation	Mittelwert	Standardabweichung
Haut	305	164
Oberflächlicher Muskelanteil	67	53
Kaudaler Muskelanteil	56	37
Kranialer Muskelanteil	60	46

Die Haut hat signifikant mehr α-SMA positive Gefäßlumina als die Anteile des M. gracilis (p≤0,0001), was der paarweise Vergleich verifiziert. Signifikanzen im Vergleich der Anzahl muskulärer Gefäße zwischen den verschiedenen Muskelanteilen können nicht berechnet werden (siehe Tab.6).

<u>Tab. 6</u>	Paarweiser Vergleich der Lumenanzahl nach Lokalisation bei Anpassung für		
Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)			

Lokalisation (I)	Lokalisation(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	-
Haut	Oberflächlicher Muskelanteil	238	16	≤0,0001
	Kaudaler Muskelanteil	250	16	≤0,0001
	Kranialer Muskelanteil	245	16	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	11	5	0,23
	Kranialer Muskelanteil	7	6	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-5	5	1

Die von den muskulären Gefäßen eingenommene Fläche ist mit 2391,1 μ m² im oberflächlichen Muskelanteil, 1767,3 μ m² im kaudalen und 2019,6 μ m² im kranialen Muskelanteil ungefähr halb so groß im Vergleich zu der Haut oberhalb des M. gracilis (5229,2 μ m²). Der kaudale Muskelanteil beansprucht weniger Lumenfläche als der Oberflächliche. Der kraniale Teil des M. gracilis liegt mit seinem Mittelwert zwischen den beiden anderen Anteilen des Muskels (siehe Tab.7).

<u>Tab. 7</u> MW und SD der Lumenfläche in μ m² (HCF mit α -SMA)

Lokalisation	Mittelwert	Standardabweichung
Haut	5229,2	3420,8
Oberflächlicher Muskelanteil	2391,1	2607,9
Kaudaler Muskelanteil	1767,3	1465,5
Kranialer Muskelanteil	2019,6	1806

Der statistische Test zeigt hier in gleicher Weise, dass in der Haut signifikant mehr Fläche von den muskulären Gefäßen eingenommen wird als im oberflächlichen, kaudalen und kranialen Muskelanteil ($p \le 0,0001$). Die unterschiedlichen Anteile des M. gracilis weisen jedoch keine signifikanten Unterschiede auf (siehe Tab. 8).

<u>Tab. 8</u> Paarweiser Vergleich der Lumenfläche in μm² nach Lokalisation bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	2838,2	340,6	≤0,0001
	Kaudaler Muskelanteil	3461,9	318	≤0,0001
	Kranialer Muskelanteil	3209,6	308,9	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	623,7	244,4	0,073
	Kranialer Muskelanteil	371,4	216,6	0,54
Kaudaler Muskelanteil	Kranialer Muskelanteil	-252,3	143	0,49

Zusammenfassend bringen die Signifikanztests den Beweis, dass in der Haut signifikant mehr Gefäße, bezogen auf die immunhistochemischen Färbungen mit Anti-CD31 und Anti- α -SMA-Antikörpern, vorhanden sind als in allen anderen untersuchten Lokalisationen. Die Abb. 17 stellt exemplarisch die Anzahl der Lumina α -SMA positiver Gefäße in den verschiedenen Lokalisationen grafisch dar. Die signifikant höheren Werte in der Lokalisation Haut fallen auf. Zwischen den verschiedenen Anteilen des M. gracilis bestehen keine signifikanten Unterschiede. Im gleichen Maße nehmen die CD31 und α -SMA positive Gefäße der Haut signifikant mehr Fläche ein als die Lumina der verschiedenen Muskelanteile.

Im Folgenden habe ich die Anzahl und Fläche der Gefäßlumina für die verschiedenen Lokalisationen getrennt nach Versuchsgruppen untersucht. Die statistischen Signifikanztests für die Färbung mit α-SMA Antikörpern resultierten für alle Versuchsgruppen in den gleichen Ergebnissen (siehe Anhang, S. 155-160). Die CD31 positiven Gefäße zeigten hinsichtlich der Lokalisationen in der Interventionsgruppe ein analoges Verhältnis (siehe Anhang, S. 141). In den Kontrollgruppen zeigte sich in Bezug auf die Fläche CD31 positiver Gefäße ebenfalls signifikant größere Mittelwerte für die Lokalisation Haut gegenüber den Anteilen des M. gracilis, die untereinander kaum differieren. Die Lumenanzahl hingegen zeigt keine signifikanten Unterschiede zwischen allen Lokalisationen, mit Ausnahme des Vergleichs der Haut mit dem oberflächlichen Anteil in der Kontrollgruppe mit nicht transfektierten Fibroblasten (siehe Anhang, S. 142-145). Somit hat die Injektion der VEGF transfektierten Fibroblasten eine deutlichere Steigerung der Anzahl CD31 positiver Gefäße in der Haut gegenüber den Anteilen des M. gracilis bewirkt. Da zwischen dem oberflächlichen, kaudalen und kranialen Muskelanteilen nachweislich keine signifikanten Unterschiede bestehen, habe ich diese zu der Lokalisation Musculus gracilis zusammengefasst. Im Folgenden eruiere ich getrennt für Haut und Muskel in welcher Art und Weise sich die einzelnen Untersuchungsgruppen verhalten und vergleiche die Ergebnisse der zwei immunhistochemischen Färbungen.

5.2.2 Vergleich der Untersuchungsgruppen

5.2.2.1 Ergebnisse zur Lokalisation Haut

Die drei Versuchsgruppen umfassen je 60 Tiere. In der Interventionsgruppe wurden den Wistar-Ratten 107 Fibroblasten, welche zuvor aus den Mukosabioptaten der Tiere isoliert und mit einem konstitutiv exprimierenden VEGF₁₆₄-Plasmid transfektieren wurden, in die Region des unilateralen M. gracilis injiziert. Die gleiche Anzahl an Fibroblasten, die ebenfalls aus den Mukosabioptaten gewonnen, allerdings nicht transfektiert wurden, injizierten wir in der ersten Kontrollgruppe in die Region des kontralateralen M. gracilis. Denselben Wistar-Ratten wurde in die Region des unilateralen M. gracilis PBS injiziert.

Die untersuchten Bioptate wurden von der Haut oberhalb des M. gracilis entnommen. Die Betrachtung der Mittelwerte der Anzahl CD31 positiver Gefäße in der Haut ergibt in der Interventionsgruppe mit 751 Lumina rund fünf-mal mehr Lumina als in der Kontrollgruppe mit PBS (168 Lumina) und rund drei-mal mehr Lumina in der Kontrollgruppe mit nicht transfektierten Fibroblasten (258 Lumina). Zwischen den Kontrollgruppen besteht ein Unterschied von rund 100 Gefäßen (siehe Tab. 9).

Gruppe	Mittelwert	Standardabweichung
Interventionsgruppe	751	283
Kontrollgruppe mit nicht	258	132
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	168	52

Tab. 9MW und SD der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen
(IHCF mit CD31)

Die folgende Analyse durch den paarweisen Vergleich ergibt mit einer Signifikanz von p≤0,0001 einen Vorteil der Interventionsgruppe gegenüber der Kontrollgruppe mit PBS und der Kontrollgruppe mit nicht transfektierten Fibroblasten. Während zwischen den beiden Kontrollgruppen keine signifikanten Unterscheide zu erkennen sind (siehe Tab.10). In der Abb. 18 sind diese Daten in einem Diagramm aufgetragen. Die signifikant höhere Anzahl von CD31 positiven Gefäßlumina in der Interventionsgruppe ist deutlich sichtbar.

<u>Tab. 10</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	tenier	
Interventionsgruppe	Kontrollgruppe mit nicht	583	43	≤0,0001
	transfektierten Fibroblasten			
Interventionsgruppe	Kontrollgruppe mit PBS	493	43	≤0,0001
Kontrollgruppe mit nicht	Kontrollgruppe mit PBS	90	42	0,1
transfektierten Fibroblasten				

<u>Abb. 18</u> MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen (IHCF mit CD31)

Bei der Betrachtung der muskulären Gefäße fällt auf, dass sich die Anzahl der Lumina in der Kontrollgruppe mit PBS (247) und in der Kontrollgruppe mit den nicht transfektierten Fibroblasten (279) kaum unterscheiden. In der Interventionsgruppe findet man mit 399 α -SMA positiven Gefäßen deutlich mehr Lumina als in den beiden anderen Versuchsgruppen (siehe Tab. 11).

	Gruppe	Mittelwert	Standardabweichung
	Interventionsgruppe	399	243
	Kontrollgruppe mit nicht	279	64
tr	ansfektierten Fibroblasten		
	Kontrollgruppe mit PBS	247	98

Tab. 11MW und SD der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen
(IHCF mit α-SMA)

Somit konnte auch im statistischen Test kein signifikanter Unterschied zwischen der Kontrollgruppe mit PBS und der Kontrollgruppe mit den nicht transfektierten Fibroblasten (p=1) gezeigt werden. Im Vergleich zu der Interventionsgruppe weisen sowohl die Kontrollgruppe mit PBS (p \leq 0,0001) als auch die Kontrollgruppe mit nicht transfektierten Fibroblasten (p=0,005) signifikant weniger muskuläre Gefäße auf (siehe Tab.12). In der Abb. 19 sind die Ergebnisse nochmals visuell aufgearbeitet.

Tab. 12Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut nach Ver-
suchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-
SMA)

Gruppe (I)	Gruppe(J)	Mittlere Differenz (I-J)	Standard- fehler	Sig.
Interventionsgruppe	Kontrollgruppe mit nicht trans- fektierten Fibroblasten	120	37	0,005
Interventionsgruppe	Kontrollgruppe mit PBS	152	37	≤0,0001
Kontrollgruppe mit nicht transfektierten Fibroblasten	Kontrollgruppe mit PBS	32	36	1

<u>Abb. 19</u> MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut nach Versuchsgruppen (IHCF mit α-SMA)

Die von den Gefäßen eingenommene Fläche, bezogen auf die immunhistochemische Färbung mit Anti-CD31-Antikörpern, ist in der Interventionsgruppe mit 9526,5 μ m² um ein dreifaches größer als in der Kontrollgruppe mit PBS (3179,8 μ m²) und um ein fünffaches größer als in der Kontrollgruppe mit nicht transfektierten Fibroblasten (1950,9 μ m²). Die Kontrollgruppen differieren mit einer Fläche von 1228,9 μ m² um etwa ein Drittel (siehe Tab. 13).

<u>Tab. 13</u>	MW und SD der Lumenfläche in µm² für die Lokalisation Haut nach Versuchs-
	gruppen (IHCF mit CD31)

Gruppe	Mittelwert	Standardabweichung
Interventionsgruppe	9526,5	3029
Kontrollgruppe mit nicht	1950,9	1059,2
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	3179,8	1629,9

Wie das Diagramm der Abb. 20 verdeutlicht, bestätigen die Ergebnisse des paarweisen Vergleichs, dass in der Interventionsgruppe eine signifikant größere Fläche durch die CD31 positiven Gefäße eingenommen wird als in den beiden Kontrollgruppen (p≤0,0001). In der Kontrollgruppe mit nicht transfektierten Fibroblasten wird signifikant weniger Fläche durch die Lumina eingenommen als durch die Lumina der Kontrollgruppe mit PBS (p=0,04) (siehe Tab. 14).

<u>Tab. 14</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Interventionsgruppe	Kontrollgruppe mit nicht trans-	7575,7	492,4	≤0,0001
	fektierten Fibroblasten			
Interventionsgruppe	Kontrollgruppe mit PBS	6346,7	492,4	≤0,0001
Kontrollgruppe mit nicht trans-	Kontrollgruppe mit PBS	-1229	481,6	0,04
fektierten Fibroblasten				

<u>Abb. 20</u> MW, SD und p-Wert der Lumenfläche in µm² für die Lokalisation Haut nach Versuchsgruppen (IHCF mit CD31)

Bereits in der deskriptiven Statistik wird deutlich, dass in der Interventionsgruppe (8072,1 μ m²) im Vergleich zu den beiden Kontrollgruppen (Kontrollgruppe mit nicht transfektierten Fibroblasten 3897,6 μ m², Kontrollgruppe mit PBS 3954,8 μ m²) die Mittelwerte für die Gefäßfläche, die von den muskulären Lumina eingenommen wird, doppelt so hoch sind. Die muskulären Gefäße der Kontrollgruppen beanspruchen nahezu die gleiche Fläche (siehe Tab.15).

Tab. 15MW und SD der Lumenfläche in μm^2 für die Lokalisation Haut nach Versuchsgruppen (IHCF mit α -SMA)

Gruppe	Mittelwert	Standardabweichung
0.0000		e
Interventionsaruppe	8072 1	3975.3
interventionograppe	0072,1	0070,0
Kontrollaruppe mit nicht	3954.8	2085.2
Rona oligitappe mit mont	0004,0	2000,2
transfektierten Eibroblasten		
Kontrollarunne mit PBS	3807.6	2204.8
Kontroligruppe mit PBS	3097,0	2204,0
1		

Während die Kontrollgruppen untereinander im paarweisen Vergleich nicht signifikant unterschiedlich sind, zeigt sich eine deutliche Signifikanz von p≤0,0001 im Vergleich der Kontrollgruppen mit der Interventionsgruppe (siehe Tab. 16). Die Abb. 21 zeigt die signifikant höheren Werte der Interventionsgruppe.

Tab. 16Paarweiser Vergleich der Lumenfläche in μm^2 für die Lokalisation Haut nach
Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit
 α -SMA)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-	Sig.
Interventionsgruppe	Kontrollaruppe mit nicht trans	1117 3	686.7	<0 0001
interventionsgruppe		4117,5	000,7	20,0001
	fektierten Fibroblasten			
Interventionsgruppe	Kontrollgruppe mit PBS	4174,6	686,7	≤0,0001
Kontrollgruppe mit nicht trans-	Kontrollgruppe mit PBS	57,3	671,6	1
fektierten Fibroblasten				

<u>Abb. 21</u> MW, SD und p-Wert der Lumenfläche in μ m² für die Lokalisation Haut nach Versuchsgruppen (IHCF mit α -SMA)

Für die immunhistochemischen Färbungen mit Anti-CD31 und Anti-α-SMA-Antikörpern lässt sich zusammenfassend sagen, dass die VEGF₁₆₄ transfektierten Fibroblasten in den Bioptaten der Haut einen positiven Einfluss auf die Gefäßneubildung haben. Im gleichen Maße in dem die Lumenanzahl CD31 positiver Gefäße durch den Angiogenesefaktor VEGF um ein fünffaches steigt, nimmt die Anzahl an Gefäßen mit glatter Muskulatur, also den α-SMA positiven Gefäßen, um circa ein Drittel zu. In Bezug auf die Fläche, die von den Gefäßen eingenommen wird, wurden sowohl für CD31 positive Gefäße als auch für α-SMA positive Gefäße in den Kontrollgruppen signifikant geringere Werte registriert als in der Interventionsgruppe. Wobei die Lumenfläche durch den Wachstumsfaktor für die immunhistochemische Färbung mit Anti-CD31-Antikörpern um das Vierfache gesteigert wurde und für die immunhistochemische Färbung mit Anti-a-SMA-Antikörpern um das Zweifache gesteigert wurde. Die Schlussfolgerung hieraus lautet, dass durch die Stimulation mit VEGF₁₆₄ im größeren Ausmaß die Anzahl und Fläche kleiner Gefäße und Kapillaren in der Haut steigt. Gefäße, die mit glatten Muskelzellen ummantelt sind, wachsen dagegen hauptsächlich in ihrer Fläche, weniger in ihrer Anzahl. Interessant ist auch, dass in der Haut das Verhältnis von Gefäßen mit und ohne perivaskultären glatten Muskelzellen durch die konstitutive Expression des VEGF₁₆₄-Plasmids verändert wurde (Kontrollgruppe mit PBS Verhältnis α-SMA:CD31 3:2, Interventionsgruppe Verhältnis α-SMA:CD31 1:2). Die Abb. 22 stellt die Mittelwerte der Lumenanzahl für die zwei immunhistochemischen Färbungen in Bezug auf die Interventionsgruppe und die Kontrollgruppe mit PBS gegenüber. Das Diagramm verdeutlicht den veränderten Anteil muskulärer Gefäße.

Bei der Betrachtung der Lumenfläche zeigt sich ein ähnliches Bild. In der Kontrollgruppe mit PBS wird von den muskulären Gefäßen etwas mehr Fläche eingenommen als von den CD31 positiven Gefäßen (Verhältnis α -SMA:CD31 1,2:1). In der Interventionsgruppe dreht sich dieses Verhältnis um. CD31 positive Gefäße beanspruchen etwas mehr Fläche für sich als α -SMA positive Gefäße (Verhältnis α -SMA:CD31 1:1,2). Die durch VEGF₁₆₄ induzierte Veränderung ist noch einmal im Diagramm der Abb. 23 zu sehen.

5.2.2.2 Ergebnisse zur Lokalisation M. gracilis

Das Untersuchungsmaterial entstammt dem oberflächlichem, kaudalem und kranialem Anteilen des M. gracilis. Die im M. gracilis betrachteten CD31 positiven Gefäße sind in der Interventionsgruppe (357) in circa doppelt so großer Anzahl zu finden, verglichen mit den Kontrollgruppen (Kontrollgruppe mit nicht transfektierten Fibroblasten 201, Kontrollgruppe mit PBS 175). Die Kontrollgruppen differieren in ihrer Lumenanzahl nur unwesentlich voneinander (siehe Tab. 17).

Tab. 17MW und SD der Lumenanzahl für die Lokalisation M. gracilis nach Versuchs-
gruppen (IHCF mit CD31)

Gruppe	Mittelwert	Standardabweichung
Interventionsgruppe	357	127
Kontrollgruppe mit nicht	201	115
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	175	72

Der statistische Test verdeutlicht den signifikanten Unterschied zwischen der Interventionsgruppe und der Kontrollgruppe mit PBS ($p \le 0,0001$) sowie zwischen der Interventionsgruppe und der Kontrollgruppe mit nicht transfektierten Fibroblasten ($p \le 0,0001$). Die Kontrollgruppen untereinander weisen keine signifikante Differenz auf (siehe Tab.18). In der Abb. 24 sind die Daten visuell aufgearbeitet.

Tab. 18Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis nach Ver-
suchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit
CD31)

Gruppe (I)	Gruppe(J)	Mittlere Differenz (I- J)	Standard- fehler	Sig.
Interventionsgruppe	Kontrollgruppe mit nicht transfektierten Fibroblasten	181	25	≤0,0001
Interventionsgruppe	Kontrollgruppe mit PBS	156	25	≤0,0001
Kontrollgruppe mit nicht transfektierten Fibroblasten	Kontrollgruppe mit PBS	26	25	1

<u>Abb. 24</u> MW, SD und p-Wert der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Interventions- und Kontrollgruppen (mit nicht transfektierten Fibroblasten sowie mit PBS) (IHCF mit CD31)

Betrachtet man die Anzahl α-SMA positiver Gefäße im M. gracilis, findet man in der Interventionsgruppe (88 Lumina) circa ein Drittel mehr Gefäße als in der Kontrollgruppe mit nicht transfektierten Fibroblasten (67 Lumina). Aber auch doppelt so viele Gefäßlumina im Vergleich zur Kontrollgruppe mit PBS (37 Lumina). In der Kontrollgruppen mit nicht transfektierten Fibroblasten sind wiederum im Mittel zweimal mehr Lumina detektiert wurden als in der Kontrollgruppe mit PBS (siehe Tab. 19).

Tab. 19MW und SD der Lumenanzahl für die Lokalisation M. gracilis nach Versuchsgruppen (IHCF mit α -SMA)

Gruppe	Mittelwert	Standardabweichung
Interventionsgruppe	88	43
Kontrollgruppe mit nicht	67	30
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	37	17

Der paarweise Vergleich stellte eine Signifikanz zwischen der Interventionsgruppe und der Kontrollgruppe mit nicht transfektierten Fibroblasten (p=0.02) sowie zwischen der Interventionsgruppe und der Kontrollgruppe mit PBS (p≤0,0001) fest. Im Vergleich der Kontrollgruppe mit PBS und der Kontrollgruppe mit nicht transfektierten Fibroblasten besteht ebenfalls ein signifikanter Unterschied mit p≤0,0001, wie auch das Diagramm der Abb. 25 bestätigend darlegt (siehe Tab. 20).

Tab. 20Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis nach Ver-
suchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-
SMA)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Interventionsgruppe	Kontrollgruppe mit nicht	21	8	0,02
	transfektierten Fibroblasten			
Interventionsgruppe	Kontrollgruppe mit PBS	51	8	≤0,0001
Kontrollgruppe mit nicht	Kontrollgruppe mit PBS	30	8	≤0,0001
transfektierten Fibroblasten				

In Bezug auf den Parameter Lumenfläche nehmen CD31 positive Gefäße in der Interventionsgruppe (5627,6 μ m²) circa fünfmal mehr Fläche ein als in den beiden Kontrollgruppen (Kontrollgruppe mit PBS 1271,5 μ m², Kontrollgruppe mit nicht transfektierten Fibroblasten 997,4 μ m²). Die Kontrollgruppen unterscheiden sich mit 274,1 μ m² nur geringfügig voneinander (siehe Tab. 21).

<u>Tab. 21</u> MW und SD der Lumenfläche in µm² für die Lokalisation M. gracilis nach Versuchsgruppen (IHCF mit CD31)

Gruppe	Mittelwert	Standardabweichung
Interventionsgruppe	5627,6	2262
Kontrollgruppe mit nicht	997,4	548,5
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	1271,5	494,9

Der paarweise Vergleich verifiziert, dass mit einer Signifikanz von p≤0,0001 die Fläche der CD31 positiven Lumina in der Interventionsgruppe größer ist als in den beiden Kontrollgruppen, was auch im Diagramm der Abb. 26 dargestellt wird. Im Vergleich der Kontrollgruppen konnte keine signifikante Differenz berechnet werden (siehe Tab. 22).

<u>Tab. 22</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation M. gracilis nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-	Sig.
		Differenz (I-J)	fehler	
Interventionsgruppe	Kontrollgruppe mit nicht	4630,3	323,8	≤0,0001
	transfektierten Fibroblasten			
Interventionsgruppe	Kontrollgruppe mit PBS	4356,2	323,8	≤0,0001
Kontrollgruppe mit nicht	Kontrollgruppe mit PBS	-274,1	323,8	1
transfektierten Fibroblasten				

<u>Abb. 26</u> MW, SD und p-Wert der Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Interventions- und Kontrollgruppen (mit nicht transfektierten Fibroblasten sowie mit PBS) (IHCF mit CD31) Ähnliches gilt für die α -SMA positiven Gefäße. In der Kontrollgruppe mit PBS (1118,5 μ m²) und in der Kontrollgruppe mit nicht transfektierten Fibroblasten (1443 μ m²) nehmen die muskulären Lumina ungefähr vier-mal weniger Fläche ein als in der Interventionsgruppe (4245,9 μ m²). Zwischen den Kontrollgruppen besteht eine unbedeutende Differenz (siehe Tab. 23).

Gruppe	Mittelwert	Standardabweichung
Clappo		etandalaabiretenang
Interventionsgruppe	4245,9	2747,2
Kontrollgruppe mit nicht	1118,2	593,2
transfektierten Fibroblasten		
Kontrollgruppe mit PBS	1443	455,6

Dies bestätigt sich auch im statistischen Test. Wie die Abb. 27 zeigt, beträgt die Signifikanz im Vergleich der Interventionsgruppe zu der Kontrollgruppe mit PBS und zu der Kontrollgruppe mit nicht transfektierten Fibroblasten p≤0,0001. Zwischen den beiden Kontrollgruppen besteht kein signifikanter Unterschied (siehe Tab. 24).

Tab. 24Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
nach Versuchsgruppen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF
mit α-SMA)

Gruppe (I)	Gruppe(J)	Mittlere	Standard-feh-	Sig.
		Differenz (I-J)	ler	L
Interventionsgruppe	Kontrollgruppe mit nicht	2802,9	387,5	≤0,0001
	transfektierten Fibroblasten			l
Interventionsgruppe	Kontrollgruppe mit PBS	3127,4	387,5	≤0,0001
Kontrollgruppe mit nicht	Kontrollgruppe mit PBS	-324,5	387,5	1
transfektierten Fibroblasten				l

In Zusammenschau der erhobenen Daten für den M. gracilis ist von einem deutlichen Effekt der VEGF₁₆₄-Plasmide in den injizierten transfektierten Fibroblasten auszugehen. Betrachtet man die absoluten Werte für die immunhistochemischen Färbungen mit Anti-CD31-Antikörpern ist die Lumenanzahl durch die VEGF-Stimulation in der Interventionsgruppe zwei Mal so hoch im Vergleich zur den beiden Kontrollgruppe. Auf die Anzahl von Lumina mit perivaskulären glatten Muskelzellen hat das potente Mitogen VEGF den gleichen Effekt. Die Kontrollgruppe mit PBS hat die Hälfte der Gefäßlumina mit perivaskulären Muskelzellen der Interventionsgruppe vorzuweisen. Die VEGF transfektierten Fibroblasten haben auch einen signifikanten Einfluss in Bezug auf die Lumenfläche. Die Fläche CD31 positiver Gefäße konnte auf das Fünffache gesteigert werden. Die Fläche α-SMA positiver Gefäße konnte durch den konstitutiv exprimierenden VEGF₁₆₄-Plasmid um das Vierfache gesteigert werden. Resümierend betrachtet, steigt im Muskel die Anzahl und die Fläche der Kapillaren und kleinen Gefäße durch die Manipulation mit VEGF transfektierten Fibroblasten. Im gleichen Maße wie die Anzahl und die Fläche der muskulären Gefäße. Im M. gracilis sind knapp ein Fünftel der erfassten Gefäße mit α-SMA positiven perivaskulären glatten Muskelzellen ausgestattet (Verhältnis α-SMA:CD31 1:5). Wie das Diagramm der Abb. 28 verdeutlicht, ist das Verhältnis der muskulären Gefäße zu allen Gefäßen für alle Untersuchungsgruppen gleich und wird somit im Muskel durch den Einfluss der VEGF transfektierten Fibroblasten nicht verändert.

<u>Abb. 28</u> MW und SD der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit α-SMA und CD31)

Auch das Verhältnis der Fläche α-SMA positiver Gefäße zu der Fläche CD31 positiver Gefäße wird durch die Manipulation mit den transfektierten Fibroblasten nur minimal von 1:1 in der Kontrollgruppe mit PBS auf 1:1,3 in der Interventionsgruppe verschoben. Die Abb. 29 visualisiert die Ergebnisse.

<u>Abb. 29</u> MW und SD der Lumenfläche in μ m² für die Lokalisation M. gracilis innerhalb der Interventions- und Kontrollgruppe mit PBS (IHCF mit α -SMA und CD31)

Im Vergleich der Ergebnisse der Haut und des Muskels fällt auf, dass in der Haut mehr muskuläre Gefäße vorkommen als im Musculus gracilis. Während in der Haut die Anzahl der α -SMA positiven Gefäße ungefähr mit der Anzahl der übereinstimmt, findet man im Muskel ein Fünftel weniger α -SMA positive Gefäße als CD31 positiven Gefäße. Bezogen auf die Gefäßfläche sind sich Muskel und Haut ähnlich. CD31 positive Gefäße nehmen durch die Manipulation mit VEGF transfektierten Fibroblasten etwas mehr Fläche ein als α -SMA positive Gefäße. Gleichzeitig scheint das Mitogen VEGF in der Haut das Wachstum von Kapillaren und kleinen Gefäße stärker anzuregen als im Muskel. Das Wachstum muskulärer Gefäße wurde hingegen durch den Wachstumsfaktor im Muskel im stärkeren Maße angeregt als in der Haut.
5.2.3 Vergleich der Ligationszeitpunkte

5.2.3.1 Ergebnisse zur Lokalisation Haut

Nach Injektion der 107 VEGF₁₆₄ transfektierten Fibroblasten in die Region des M. gracilis erfolgte die Unterbindung der Art. femoralis superficialis bei je 20 Wistar-Ratten simultan mit der Injektion oder eine Woche bzw. zwei Wochen danach. In die folgende statistische Auswertung sind nur Tiere der Interventionsgruppe einbezogen.

In der Haut der Wistar Ratten findet man in der Konstellation simultane Injektion und Ligation die meisten CD31 positiven Gefäße (822) und diese nehmen auch die größte Fläche ein (9983,1 μ m², siehe Tab. 25). Die Abb. 30 gibt die Anzahl der CD31 positiven Gefäßlumina zu den verschiedenen Ligationszeitpunkten für die Bioptate der Haut wieder.

	Ligationszeitpunkt	Mittelwert	Standardabweichung
	nach Injektion		
Lumenanzahl	simultan	822	367
	1 Woche	674	124
	2 Wochen	760	311
Lumenfläche in	simultan	9983,1	3210
μm²	1 Woche	9314,5	2590,1
	2 Wochen	9200,5	3578,8

<u>Tab. 25</u> MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit CD31)

<u>Abb. 30</u> MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit CD31)

In den paarweisen Vergleichen Ligationszeitpunkte konnten keine Signifikanzen für die Gefäßanzahl oder Gefäßfläche CD31 positiver Lumina gefunden werden (siehe Tab. 26, 27).

<u>Tab. 26</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	148	116	0,63
simultan	2 Wochen	62	125	1
1 Woche	2 Wochen	-86	125	1

<u>Tab. 27</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	668,5	1268,4	1
simultan	2 Wochen	782,6	1370,1	1
1 Woche	2 Wochen	114,1	1370,1	1

Bei der Betrachtung der muskulären Gefäße ist die Lumenanzahl in der Versuchsanordnung zwei Wochen zwischen Injektion und Ligation am höchsten (457) während die Lumenfläche in der Gruppe eine Woche zwischen Injektion und Ligation am größten ist (9262 μ m², siehe Tab. 28).

Tab. 28MW und SD von Lumenanzahl und Lumenfläche in μm^2 für die Lokalisation Haut
innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit α -SMA)

	Ligationszeitpunkt	Mittelwert	Standardabweichung
	nach Injektion		
Lumenanzahl	simultan	307	148
	1 Woche	446	207
	2 Wochen	457	356
Lumenfläche in	simultan	7735,7	4032
μm²	1 Woche	9262	3994,3
	2 Wochen	6934,2	3894,9

Eine Signifikanz wurde in den statistischen Tests für die Lumenanzahl und Lumenfläche zwischen den unterschiedlichen Zeitpunkten der Ligation der Art. femoralis superficialis und Injektion der VEGF transfektierten Fibroblasten nicht festgestellt (siehe Tab. 29, 30). Tab. 29Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachver-
gleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-139	98	0,5
simultan	2 Wochen	-150	106	0,5
1 Woche	2 Wochen	-11	106	1

Tab. 30Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation Haut inner-
halb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-1526,3	1625,3	1
simultan	2 Wochen	801,5	1755,9	1
1 Woche	2 Wochen	2327,8	1755,9	0,59

5.2.3.2 Ergebnisse zur Lokalisation Muskel

Die Gefäße im M. gracilis sind in der immunhistochemischen Färbung mit CD31 Antikörpern zum Ligationszeitpunkt simultane Ligation und Injektion in der höchsten Anzahl vertreten. Die Lumenfläche ist ebenfalls für die gleichzeitige Injektion und Ligation mit 6062,9 μ m² am größten (siehe Tab. 31).

Tab. 31MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation M.
gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit
CD31)

	Ligationszeitpunkt	Mittelwert	Standardabweichung
	nach Injektion		
Lumenanzahl	simultan	396	144
	1 Woche	331	96
	2 Wochen	342	140
Lumenfläche in	simultan	6062,9	2322,1
μm²	1 Woche	4977,7	2077
	2 Wochen	5842,3	2420,1

Die Anzahl und Fläche der Lumina zeigen keine signifikanten Unterschiede im paarweisen Vergleich der verschiedenen Ligationszeitpunkte (siehe Tab. 32, 33).

<u>Tab. 32</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	65	52	0,7
simultan	2 Wochen	54	52	0,9
1 Woche	2 Wochen	-11	52	1

<u>Tab. 33</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	1085,2	929,8	0,8
simultan	2 Wochen	220,6	929,8	1
1 Woche	2 Wochen	-864,7	929,8	1

Für die immunhistochemische Färbung mit α -SMA findet man die größten Mittelwerte für die Gefäßanzahl (111 Lumina) und -fläche (5469,1 μ m²) in der Konstellation Ligation der Art. femoralis superficialis zwei Wochen nach Injektion der transfektierten Fibroblasten (siehe Tab. 34). Das Diagramm der Abb. 31 visualisiert die Lumenfläche α -SMA positiver Gefäße zu den unterschiedlichen Ligationszeitpunkten für die Lokalisation M. gracilis.

Tab. 34MW und SD von Lumenanzahl und Lumenfläche in μm^2 für die Lokalisation M.
gracilis innerhalb der Interventionsgruppe nach Ligationszeitpunkten (IHCF mit
 α -SMA)

	Ligationszeitpunkt	Mittelwert	Standardabweichung
	nach Injektion		
Lumenanzahl	simultan	80	36
	1 Woche	75	34
	2 Wochen	111	51
Lumenfläche in	simultan	3855,3	1986
μm²	1 Woche	3413,3	1821,3
	2 Wochen	5469,1	3767,9

In Kongruenz zu den vorherigen statistischen Tests konnten auch hier keine signifikanten Unterschiede zwischen den Ligationszeitpunkten für die Parameter Lumenanzahl und -fläche gefunden werden (siehe Tab. 35, 36).

Tab. 35Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	5	17	1
simultan	2 Wochen	-31	17	0,23
1 Woche	2 Wochen	-36	17	0,12

Tab. 36Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Interventionsgruppe nach Ligationszeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	442	1,8	1
simultan	2 Wochen	-1613,9	1,9	0,5
1 Woche	2 Wochen	-2055,9	1,9	0,2

Der paarweise Vergleich der unterschiedlichen Applikationszeitpunkte für die Lokalisationen Haut oberhalb des M. gracilis und Anteile des M. gracilis resultiert für keine der beiden immunhistochemischen Färbungen und für keinen der Parameter Anzahl und Fläche der Gefäßlumina in einem signifikanten Ergebnis. In den Kontrollgruppen besteht für die immunhistochemische Färbung mit Anti-α-SMA-Antikörpern ebenfalls kein signifikanter Unterschied zwischen den Ligationszeitpunkten für die Lokalisationen Haut und Muskel sowie in Bezug auf die Parameter Lumenanzahl und -fläche (siehe Anhang, S. 160-164). Für die CD31 positiven Gefäße wurden analoge Ergebnisse festgestellt bis auf eine Ausnahme. In der Kontrollgruppe mit nicht transfektierten Fibroblasten wurden im M. gracilis signifikant höhere Mittelwerte der Gefäßparameter für den Ligationszeitpunkt zwei Wochen nach Injektion registriert (siehe Anhang, S. 145-149). Die Mittelwerte der Interventionsgruppe legen nah, dass für die CD31 positiven Gefäße, eine zeitnahe Ligation der Art. femoralis nach Injektion der transfektierten Fibroblasten mit einer höheren Anzahl und größeren Fläche an Gefäßen einhergeht gegenüber einer längeren Zeitperiode zwischen Injektion und Ligation. Für die Gefäße mit perivaskulären glatten Muskelzellen scheint dagegen eine längere Zeitperiode zwischen Injektion und Ligation für die Bildung von mehr Lumina und zur Vergrößerung der Lumenfläche von Vorteil gegenüber einer kürzeren Zeitperiode. Diese Effekte konnten in den Kontrollgruppen nicht beobachtet werden und sind damit auf die Wirkung der VEGF transfektierten Fibroblasten zurückzuführen.

5.2.4 Vergleich der Entnahmezeitpunkte

5.2.4.1 Ergebnisse zur Lokalisation Haut

Nach Ligation der Art. femoralis superficialis wurden je 15 Wistar-Ratten der Interventionsgruppe nach drei Tagen, nach fünf Tagen, nach sieben Tagen und nach vierzehn Tagen sakrifiziert. Die vorherigen Analysen haben belegt, dass der Ligationszeitpunkt keinen signifikanten Einfluss auf die Gefäßanzahl und -fläche hat. Aus diesem Grund habe ich die Entnahmezeitpunkte unabhängig von den Ligationszeitpunkten ausgewertet. In den dargestellten Berechnungen wurden nur die Versuchstiere der Interventionsgruppe einbezogen.

Die CD31 positive Gefäße der Haut über dem M. gracilis haben am dritten Tag nach Ligation der Art. femoralis die höchste Anzahl an Lumina (981). Zum fünften Tag nehmen sie auf 635 Lumina, also um circa ein Drittel, ab um dann bis zum 14. Tag wieder auf 746 Lumina anzusteigen. Die Fläche die von CD31 positiven Gefäßen eingenommen wird, ist am dritten Tag nach Ligation am höchsten (12081,4 μ m²) und sinkt bis zum fünften Tag nach Ligation um ein Drittel auf 8376,2 μ m². Bis zum siebten Tag steigt die Lumenfläche kaum an (8681 μ m²) und bleibt auf diesem Niveau bis zum 14. Tag nach Ligation (8688 μ m², siehe Tab.37).

	Entnahmezeitpunkt	Mittelwert	Standardabweichung
	nach Ligation		
Lumenanzahl	3 Tage	981	361
	5 Tage	635	229
	7 Tage	640	151
	14 Tage	746	204
Lumenfläche in	3 Tage	12081,4	2156,7
μm²	5 Tage	8376,2	2627,5
	7 Tage	8681	3585,5
	14 Tage	8688	1844

Tab. 37MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut
innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31)

In den Berechnungen des paarweisen Vergleichs der Lumenanzahlen sind Signifikanzen zwischen den Entnahmezeitpunkten drei Tage und fünf Tage (p=0,04) sowie zwischen den Entnahmezeitpunkten drei Tage und sieben Tage (p=0,05), nicht aber zwischen dem Entnahmezeitpunkten drei Tage und 14 Tage zu finden. Zwischen den anderen Entnahmezeitpunkten bestehen ebenfalls keine signifikanten Differenzen (siehe Tab. 38). Wie das Diagramm in der Abb. 32 visualisiert, sinkt die Lumenanzahl signifikant vom dritten Tag bis zum fünften Tag nach Ligation der Art. femoralis superficialis.

<u>Tab. 38</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der Interventionsgruppe nach Entnahmepunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	345	119	0,04
	7Tage	340	119	0,05
	14Tage	235	133	0,53
5Tage	7Tage	-5	119	1
	14Tage	-111	133	1
7Tage	14Tage	-106	133	1

<u>Abb. 32</u> MW, SD und p-Wert der Lumenanzahl für die Lokalisation Haut innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31) Durch den statistische Vergleich der Lumenfläche zu den Entnahmezeitpunkten konnte berechnet werden, dass CD31 positive Gefäße am dritten Tag nach Ligation mehr Fläche einnehmen als zu den Entnahmezeitpunkt fünf Tage (p=0,04). Zwischen den anderen Entnahmezeitpunkten konnten keine Signifikanzen berechnet werden (siehe Tab. 39). Die Abb. 33 stellt die Entwicklung der Lumenfläche CD31 positiver Gefäße in der Haut der Wistar-Ratten nach Ligation der Art. femoralis superficialis dar.

<u>Tab. 39</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut innerhalb der Interventionsgruppe nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3 Tage	5Tage	3705,2	1275,4	0,04
	7Tage	3400,4	1275,4	0,07
	14Tage	3393,4	1426	0,15
5Tage	7Tage	-304,8	1275,4	1
	14Tage	-311,8	1426	1
7Tage	14Tage	-7	1426	1

<u>Abb. 33</u> MW, SD und p-Wert der Lumenfläche in µm² für die Lokalisation Haut innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31)

In der Haut wurden am dritten Tag nach Ligation der Art. femoralis superficialis die höchsten Mittelwerte mit 507 α -SMA positiven Lumina gezählt. Danach sinken die Werte bis auf 341 (fünfter Tag), steigen wieder leicht bis zum siebten Tag (396) und fallen wiederum bis zum 14. Tag nach Ligation (326). Bezogen auf die Fläche, die von den muskulären Gefäßen eingenommen wird, finden wir zum Entnahmezeitpunkt Tag drei wiederum den höchsten Wert (8939 μ m²). Mit fortschreitendem Entnahmezeitpunkt fällt die Gefäßfläche α -SMA positiver Gefäße kontinuierlich bis zum Tag 14 um ein Viertel auf 6781,5 μ m² ab (siehe Tab. 40).

Tab. 40MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation Haut
innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit α-
SMA)

	Entnahmezeitpunkt	Mittelwert	Standardabweichung
	nach Ligation		
Lumenanzahl	3 Tage	507	350
	5 Tage	341	107
	7 Tage	396	222
	14 Tage	326	224
Lumenfläche	3 Tage	8939	3681,7
in µm²	5 Tage	8216	4529,7
	7 Tage	7921,8	4737,5
	14 Tage	6781,5	2698,7

Die Zahlen der muskulären Gefäße in der Haut oberhalb des M. gracilis erbrachten in den statistischen Tests keine signifikanten Unterschiede. Dies gilt sowohl für die Anzahl der Gefäße als auch für die Fläche, welche von den Gefäßen eingenommen wird (siehe Tab. 41, 42).

Tab. 41Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Interventionsgruppe nach Entnahmepunkten bei Anpassung für Mehrfachver-
gleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	166	115	0,95
	7Tage	111	115	1
	14Tage	181	128	1
5Tage	7Tage	-55	115	1
	14Tage	15	128	1
7Tage	14Tage	70	128	1

Tab. 42Paarweiser Vergleich der Lumenfläche in μ m² für die Lokalisation Haut inner-
halb der Interventionsgruppe nach Entnahmepunkten bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α -SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	723	1934,9	1
	7Tage	1017,2	1934,9	1
	14Tage	2157,5	2163,2	1
5Tage	7Tage	294,2	1934,9	1
	14Tage	1434,5	2163,2	1
7Tage	14Tage	1140,3	2163,2	1

Über die Entwicklung der Anzahl und Fläche von den CD31 positiven Gefäßen nach Injektion der VEGF₁₆₄ transfektierten Fibroblasten und Ligation der Art. femoralis innerhalb des Untersuchungszeitraumes von 14 Tagen kann ich lediglich die Aussage konstatieren, dass am dritten Tag nach Ligation mehr Gefäße vorhanden sind, die auch eine größere Fläche einnehmen, als an den folgenden untersuchen Tagen nach Ligation. Den absoluten Werten der immunhistochemischen Färbung mit Anti-CD31-Antikörpern folgend, scheint die Anzahl und die Fläche der Lumina bis zum Entnahmezeitpunkt 14. Tag wieder zu steigen. Im Gegensatz dazu nehmen die Mittelwerte der immunhistochemischen Färbung mit Anti- α -SMA-Antikörpern bis zwei Wochen nach Ligation weiter ab.

5.2.4.2 Ergebnisse zur Lokalisation Muskel

Die oberflächlichen, kaudalen und kranialen Anteile des M. gracilis zeigen hinsichtlich der Gefäßanzahl für die immunhistochemische Färbung mit CD31 die höchsten Mittelwerte zum Entnahmezeitpunkt dritter Tag mit 420 Lumina. Die Anzahl der Gefäßlumina fällt vom dritten zum fünften (303) Tag nach Ligation. Am siebenten Tag nach Unterbindung der Art. femoralis superficialis erreichte die Anzahl der Gefäße das Minimum mit 301 Lumina. Bis zum Entnahmezeitpunkt Tag 14 steigt die Lumenanzahl wieder auf 401 Lumina an. Die Gefäßfläche hingegen fällt vom dritten Tag nach Ligation der Art. femoralis superficialis von 5577 μ m² auf 4415,6 μ m² am fünften Tag. Bis zum Entnahmezeitpunkt 14. Tag steigt die Gefäßfläche um das rund Zweifache auf 7793,6 μ m² an (siehe Tab. 43).

<u>Tab. 43</u>	MW und SD von Lumenanzahl und Lumenfläche in µm ² für die Lokalisation M.
	gracilis innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit
	CD31)

	Entnahmezeitpunkt	Mittelwert	Standardabweichung
	nach Ligation		
Lumenanzahl	3 Tage	420	142
	5 Tage	303	137
	7 Tage	301	92
	14 Tage	401	104
Lumenfläche	3 Tage	5577	1852,5
in µm²	5 Tage	4415,6	1456,2
	7 Tage	4724,2	1770,3
	14 Tage	7793,6	2418,3

Der paarweise Vergleich der Entnahmezeitpunkte für die Anzahl CD31 positiver Lumina ergibt keine Signifikanz (siehe Tab. 44).

<u>Tab. 44</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Entnahmepunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	117	57	0,28
	7Tage	118	57	0,27
	14Tage	19	57	1
5Tage	7Tage	2	57	1
	14Tage	98	57	0,57
7Tage	14Tage	100	57	0,54

Im Gegensatz dazu konnte im paarweisen Vergleich der Flächen, die von CD31 positiven Gefäßen eingenommen wird, bewiesen werden, dass am 14. Tag nach Ligation der Art. femoralis die Fläche der Lumina im Muskel signifikant größer ist als zu den Entnahmezeitpunkten fünf (p=0,004) und sieben (p=0,01). Zwischen den anderen Entnahmezeitpunkten besteht kein statistisch signifikanter Unterschied (siehe Tab. 45). Das Diagramm der Abb. 34 veranschaulicht die Entwicklung der Lumenfläche CD31 positiver Gefäße im M. gracilis nach Ligation der Art. femoralis superficialis.

Tab. 45Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Interventionsgruppe nach Entnahmepunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	1161,4	898,6	1
	7Tage	852,8	898,6	1
	14Tage	-2216,6	898,6	0,1
5Tage	7Tage	-308,6	898,6	1
	14Tage	-3378,1	898,6	0,004
7Tage	14Tage	-3069,4	898,6	0,01

<u>Abb. 34</u> MW, SD und p-Wert der Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit CD31)

Die Anzahl der Lumina muskulärer Gefäße ist an Tag drei nach Unterbindung der Art. femoralis im Mittel 96 und sinkt bis zum Entnahmezeitpunkt fünfter Tage nach Ligation um ein Fünftel auf 77 Lumina ab. Bis sieben Tage nach Ligation bleibt der Mittelwert konstant. Zum Entnahmezeitpunkt 14. Tag steigt die Anzahl der Lumina auf das Maximum von 104. Die Fläche, die von α -SMA positiven Lumina eingenommen wird, beträgt am dritten Tag nach Ligation im Mittel 4334,9 µm². Bis zum Entnahmezeitpunkt fünf sinkt die Gefäßfläche auf 3284,4 µm² um bis zum Entnahmezeitpunkt 14. Tag auf das Maximum von 5570,3 µm² anzusteigen (siehe Tab. 46).

Tab. 46MW und SD von Lumenanzahl und Lumenfläche in μm^2 für die Lokalisation M.
gracilis innerhalb der Interventionsgruppe nach Entnahmezeitpunkten (IHCF mit
 α -SMA)

	Entnahmezeitpunkt	Mittelwert	Standardabweichung
	nach Ligation		
Lumenanzahl	3 Tage	96	31
	5 Tage	77	39
	7 Tage	77	34
	14 Tage	104	62
Lumenfläche	3 Tage	4334,9	2013,73
in µm²	5 Tage	3284,4	1465
	7 Tage	3794	1871,2
	14 Tage	5570,3	4479,3

Im statistischen Signifikanztest konnten sowohl für die Anzahl als auch für die Fläche α -SMA positiver Lumina keine signifikanten Unterschiede zwischen den Entnahmezeitpunkten berechnet werden (siehe Tab. 47, 48).

Tab. 47Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Interventionsgruppe nach Entnahmepunkten bei Anpassung für Mehrfach-
vergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	19	20	1
	7Tage	19	20	1
	14Tage	-8	20	1
5Tage	7Tage	0	20	1
	14Tage	-27	20	1
7Tage	14Tage	-27	20	1

Tab. 48Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Interventionsgruppe nach Entnahmepunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	1050,5	1286	1
	7Tage	540,9	1286	1
	14Tage	-1235,4	1286	1
5Tage	7Tage	-509,6	1286	1
	14Tage	-2285,8	1286	0,5
7Tage	14Tage	-1776,2	1286	1

Die Gefäße in den Anteilen des M. gracilis reduzieren sich in ihrer Anzahl vom dritten bis zum fünften Tag nach Ligation der Art. femoralis und Injektion der VEGF transfektierten Fibroblasten in Bezug auf die beiden immunhistochemischen Färbungen. In den darauf folgenden Beobachtungstagen nimmt die Anzahl der CD31 und α -SMA positiven Gefäßlumina kontinuierlich zu. Am 14. Tag nach Ligation der Art. femoralis sind zum Teil mehr Gefäße vorhanden als am dritten Tag nach Ligation. Ein ähnliches Verhalten zeigt die untersuchte Gefäßfläche. Die von den CD31 und α -SMA positiven Gefäßlumina eingenommene Fläche verringert sich im Zeitraum zwischen den Entnahmezeitpunkten Tag drei und Tag fünf. Daraufhin scheinen die Gefäße innerhalb des Beobachtungszeitraumes wieder an Fläche zuzunehmen. Die mit CD31 Antikörpern markierten Gefäße nehmen bis zum 14. Tag nach Ligation der Art. femoralis sogar signifikant mehr Fläche ein als am fünften und siebten Tag.

Bei der Betrachtung der Ergebnisse für die Haut und den Muskel kann keine eindeutige Aussage über das Verhalten der Anzahl und Fläche CD31 und α-SMA positiven Gefäße im Untersuchungszeitraum getroffen werden. Die Reduktion der Werte vom dritten Tag nach Ligation bis zum fünften Tag nach Ligation ist in allen betrachteten Fällen zu finden - in der Haut deutlicher als im Muskel. Die Beurteilung der weiteren Entwicklung ist schwierig da sich die Gefäße inhomogen verändern. In den meisten Fällen nehmen die Anzahl und Fläche der Lumina mehr oder weniger zu. Die Zunahme des Gefäßwachstums ist im Musculus gracilis deutlicher zu erkennen als in der Haut. In den Analysen der Entnahmezeitpunkte innerhalb der Kontrollgruppen konnte der Abfall der Gefäßparameter vom dritten bis zum fünften Tag nach Ligation nicht nachvollzogen werden und unterstützt die These, dass dieses Ergebnis auf die Wirkung der VEGF transfektierten Fibroblasten zurückzuführen ist. Im Gegensatz dazu nehmen die CD31 und α-SMA positiven Gefäße in Fläche und Anzahl vom ersten Entnahmezeitpunkt bis zum zweiten Entnahmezeitpunkt zu. In den meisten Fällen nimmt Anzahl und Fläche der Lumina nach dem fünften oder siebten Tag nach Ligation ab und steigt zum Teil bis zum 14. Tag nach Ligation über die Anfangswerte (siehe Anhang, S. 149-154). Für die immunhistochemische Färbung mit CD31 konnten in der Kontrollgruppe mit PBS zwei Wochen nach Ligation signifikant höhere Mittelwerte der Gefäßanzahl und - fläche berechnet werden im Vergleich zum dritten Tag nach Ligation (siehe Anhang, S. 153).

6. Diskussion

6.1 VEGF in der Forschung

Viele Forschungsgruppen haben sich mit der Thematik rund um die Angiogenese und Arteriogenese befasst. Zum einen wurde VEGF bei den verschiedensten Karzinomentitäten als Wachstumsfaktor der tumorösen Neovaskularisation identifiziert (Dvorak et al. 1991, Brown et al. 1993, Brown et al. 1995, Brown et al. 1996, Brekken et al. 2000). Außerdem wurde VEGF als Motor der Pathogenese unterschiedlicher Erkrankungen wie der Arthritis, dem Diabetes, der Makuladegeneration oder der Retinopathie erkannt (Carmelite 2003). Hieraus leiten sich vielfältige Therapieoptionen ab (Ferrara 2001, Luttun et al. 2002). In der Behandlung von Karzinomen und Lymphomen werden heute routinemäßig VEGF-Inhibitoren eingesetzt (Adamcic et al. 2012, Meadows und Hurwitz 2012). Sehr intensiv wurden die therapeutischen Anwendungsmöglichkeiten des Angiogenesefaktors bei der kardialen bzw. koronaren Ischämie sowie der peripheren arteriellen Verschlusskrankheit erforscht. Die klinischen Phase I Studien konnten einen signifikanten Vorteil nachweisen (Isner et al. 1998, Rosengart et al. 1999, Hendel et al. 2000, Losordo et al. 2002). Die VIVA Studie (Vascular Endothelial Growth Factor in Ischämia for Vaskular Angiogenesis) ist die erste doppelblinde, Placebo-kontrollierten Studien mit intracoronarer und intravenöser rhVEGF-Gabe. 178 Patienten wurden in eine Placebogruppe, eine Niedrig-Dosis Gruppe mit 17 ng/kg*min rhVEGF und eine Hoch-Dosis Gruppe mit 50 ng/kg*min rhVEGF eingeteilt. Zum primären Endpunkt (60 Tage nach Therapieende) konnten keine Unterschiede zwischen den Gruppen festgestellt werden. Zum sekundären Endpunkt (120 Tage nach Therapieende) zeigte sich eine Benefit der VEGF-Gruppen gegenüber der Placebogruppe. Einen signifikanten Unterschied in Bezug auf die Anginaklasse ergab sich im Vergleich der Placebogruppe mit der Hoch-Dosis Gruppe. Weitere Signifikanzen konnten nicht nachgewiesen werden. Weiterhin wurde belegt, dass die Verwendung von VEGF sicher ist und gut toleriert wird. Eine Hypotonie trat nur bei den VEGF therapierten Patienten auf. Ebenfalls zeigten sich bei 90% der Hoch-Dosis Patienten Flush-Reaktionen. Auf renale Insuffizienz, allergische Reaktionen, angeborene Herzfehler oder Fußödeme hatte die Injektion von VEGF keinen negativen Einfluss. Damit zeigt VEGF eine exzellente kurz-Zeit-Sicherheit. Kein Patient entwickelte einen Tumor oder ophthalmologische Abnormalitäten (Henry et al. 2003). Ein anderes Einsatzgebiet für VEGF ist die Wundheilung.

Chronische, ischämische (Bauer et al. 2005, Lohmeyer et al. 2011) oder diabetische (Rivard et al. 1999, Brem et al. 2009) Wunden heilen durch die induzierte Neovaskularisation schneller und mit weniger Narbengewebe. Dies ist auch interessant für die rekonstruktive Chirurgie mit mikrovaskulären oder gestielten Transplantaten. Der Transplantatverlust durch Ischämie ist der größte Risikofaktor für die Wiederherstellungschirurgie (Oswald et al. 1988, Schmelzeisen et al. 1996). Die positive Wirkung von VEGF auf die Angiogenese und Arteriogenese in Hauttransplantaten und myocutanen Transplantaten wurde bereits in vielen experimentellen Studien nachgewiesen. In der Forschungsgruppe Zhang et al. konnte die Transplantat-Überlebensrate in gleichem Maße wie die Funktionsfähigkeit der Transplantate durch VEGF gesteigert werden. Die VEGF induzierte Neovaskularisierung ermöglicht die Hebung voluminöserer Lappen und beschleunigt deren Einheilung. Gleichzeitig ist der Wachstumsfaktor für die Vasodilatation und Ödembildung verantwortlich. Diese sind für die frühzeitige Serum Imbibierung und Inosculation in den Phasen der Einheilung von Transplantaten wichtig (Taub et al. 1998, Kryger et al. 1999, Zhang et al. 2003, Gurunluoglu et al. 2005, Zheng et al. 2007, Zhang und Lineaweaver 2011). Für myocutane Transplantate ist vorrangig der Blutfluss für den Erfolg des Transplantates entscheidend, da hier im Vergleich zu kutanen Transplantaten die Ernährung über Diffusion nicht ausreichend ist (Maeda et al. 1999). An dieser Stelle knüpft unser Studiendesign der myocutanen Ischämie an. Die Intension dieser Untersuchung besteht darin Wundheilungsstörungen myocutaner Transplantate sowie deren Verlust mittels der pro-angiogenetische Therapie und Verbesserung der vaskulären Situation zu minimieren. Meines Wissens wurden in der vorliegenden Arbeit erstmals die vaskulären Kompensationsmechanismen am Ischämie-Modell des Hinterlaufs der Wistar Ratte unter dem Einfluss VEGF164 transfektierter Fibroblasten eruiert. Mit dem Ziel die Angiogenese und Arteriogenese nachzuvollziehen, wurden in den Bioptaten von Haut und Muskel die Gefäßlumina in ihrer Anzahl und Fläche erfasst. Die durch VEGF induzierte Angiogenese, die hauptsächlich die Neubildung kleiner Gefäße und Kapillaren umfasst, wurde durch die immunhistochemische Anfärbung von CD31 nachgewiesen. Die Arteriogenese, die die Bildung muskulärer Gefäße voraussetzt, wurde durch die immunhistochemische Anfärbung von α-SMA nachgewiesen. Ein zusätzlicher Vorteil dieser Studie ist der große Pol von Versuchstieren mit 120 Wistar Ratten. Jede Versuchsgruppe umfasst dadurch 60 Tiere. Dies sind mehr als Gesamtzahl aller Tiere in den meisten Experimenten (Li et al. 2009, Spanholtz et al. 2009). Ein weiterer Anspruch dieser Untersuchung ist es den optimalen Applikationszeitpunkt für die Injektion der VEGF₁₆₄ transfektierten Fibroblasten zur Präfabrikation myocutaner Transplantate in der klinischen Anwendung festlegen zu können. Ebenfalls soll die zeitliche Abfolge der Gefäßveränderungen analysiert werden.

6.2 Diskussion der Methode

6.2.1 VEGF transfektierte Fibroblasten

Der vaskuläre endotheliale Gefäß Wachstumsfaktor - VEGF - ist der zentrale Motor der Neovaskularisation und steht im Mittelpunkt mannigfaltiger Forschungsinhalte. In der Literatur liegen die Schwerpunkte auf den Gebieten der myokardialen Ischämie (Losordo et al. 2002, Hendel et al. 2000, Henry et al. 2003) und der Ischämie peripherer Extremitäten (Isner et al. 1998, Arveschoug 1999, Baumgartner et al. 2000). Das lokale kontrollierte Gefäßwachstum ohne die Verursachung systemischer Nebenwirkungen stellte die größte Herausforderung dar. Verschiedene Systeme der Freisetzung pro-angiogenetischer Faktoren haben sich entwickelt. In einigen Studien wurden intramuskuläre oder intraarterielle Injektionen von VEGF in Form des Proteins oder der codierenden DNA bzw. RNA durchgeführt (Takeshita et al. 1994-A, Takeshita et al. 1994-B, Taub et al. 1998, Losordo et al. 2002). Neben der geringen Wirksamkeit bedingt durch den schnellen Abbau und die niedrige lokale Konzentration des Faktors ist der Nachweis von VEGF in Blut, Leber, Milz, Lunge und Niere zu kritisieren (Elçin et al. 2001). Durch die systemische Verteilung können Vasodilatation, Hypotension, Ödembildung oder die Neovaskularisierung okkulter Tumoren verursacht werden (Epstein et al. 2001). Ebenfalls wurden bei Überschreiten einer bestimmten lokalen Schwellendosis Angiome und aberrante knotige Strukturen induziert (Lee et al. 2000). In Anlehnung an Ozawa et al. ist nicht die verabreichte Gesamtdosis des Mitogens sondern die aktuelle lokale Konzentration entscheidend für die Entwicklung einer veränderten Gefäßarchitektur (Drake und Little 1995, Ozawa et al. 2004). Polymere Trägersubstanzen stellen eine Möglichkeit dar die vorteilhafte langsame und langfristige Abgabe des Faktors oder seiner DNA zu ermöglichen (Elçin et al. 2001, Christensen et al. 2007). Die resultierenden Entzündungsreaktionen auf das Fremdmaterial, der unkontrollierte Abbau des Polymers sowie die Freisetzung cytotoxischer Substanzen lassen die klinische Einsatzfähigkeit dieser Methode anzweifeln (Kim und Burgess 2002, Kang et al. 2008, Hunt et al. 2012). Die Polymer bedingte Inflammation kann zu Wundheilungsstörungen führen (Popa et al. 2007). Ein weiteres Verfahren, das große Verbreitung fand, stellt die Integration der VEGF-DNA mit Hilfe eines viralen Vektors dar (Su et al. 2004, Brem et al. 2009, Mathison et al. 2012). Dabei wird die Eigenschaften der Viren, die Zellmembran der Wirtszelle zu penetrieren und ihr genetisches Material in den Zellkern zu integrieren, genutzt (Krisky et al. 1998, Cavazzana-Calvo et al. 2000). Sicherheitsbedenken für die klinische Anwendung ergeben sich aus dem ungewissen onkogenetischen, toxischen und immungenetischen Potential des inserierten viralen Materials (Cristiano 1998, Schatzlein 2001). In diesem Projekt bedienten wir uns dem Instrument der Transfektion. In einem aufwendigen Verfahren haben wir die individuellen Fibroblasten jeder Ratte isoliert und mit einer VEGF-cDNA transfektiert. Die Zellpopulation der Fibroblasten eignet sich gut für diese Studie. Sie kommen in nativem myocutanem Gewebe vor und sind hypomobile Zelle, die z.B. im Vergleich zu Makrophagen, eine geringe systemische Verteilung erwarten lassen (Welsch und Sobotta 2006). Gonçalves et al. wiesen eine längere Transgenexpression durch Fibroblasten im Vergleich zu Myoblasten nach (Gonçalves et al. 2012). Der Vorteil der ex vivo Transfektion liegt in der Möglichkeit homogene Zellpopulationen zu produzieren und deren Anzahl an Zelle zu kontrollieren (Rinsch et al. 2001). Die vorherigen Ergebnisse unserer Forschungsgruppe belegen den Erfolg der Methode (Mueller et al. 2010-A, Mueller et al. 2010-B). Gleichzeitig konnte nachgewiesen werden, dass sich weder die transfektierten Fibroblasten noch der Wachstumsfaktor systemisch verteilen (Mueller et al. 2010-B). Durch den Gen Transfer basierend auf körpereigenen Zellen besteht keine Infektionsgefahr und es wird kein körperfremdes Material eingebracht. Damit verwendeten wir eine sichere und effiziente Methode der lokalisierten und kontrollierten Induktion der Gefäßneubildung durch VEGF. Die transfektierten Fibroblasten müssen einmalig injiziert werden und exprimieren konstitutiv, unabhängig von äußeren Faktoren, bis zu zwei Wochen das Transgen. Die Begrenzung der VEGF-Synthese ist wichtig um die Bildung von vaskulären Malformationen zu vermeiden (Lee et al. 2000, Schwarz et al. 2000). Aus dem gleichen Grund wurden nur 107 VEGF transfektierten Fibroblasten pro Wistar Ratte injiziert. Im Vergleich zu anderen Studien, die bis zu 10⁷ Fibroblasten angewendet haben, ist das eine geringe Menge (Lee et al. 2000, Kondoh et al. 2004, Li et al. 2009). Die vorangestellten in Vitro Versuche zeigten, dass die transfektierten Fibroblasten eine maximale VEGF-Konzentration von im Mittel 550 ng pro ml pro Tag exprimieren (Mueller et al. 2010-A). Die Konzentrationen sind deutlich niedriger als in anderen Studien, die täglich bis zu 1000 µg VEGF intraarteriell appliziert haben (Takeshita et al. 1994-B). Die VEGF₁₆₄ transfektierten Fibroblasten zeigten aber dennoch eine effizientere VEGF-Synthese als adenoviral transferierte Fibroblasten ten mit einer VEGF-Produktion von ca. 35 ng pro ml pro Tag oder weniger (Kondoh et al. 2004, Gao et al. 2007).

6.2.2 Ischämie – Modell am Hinterlauf der Wistar Ratte

Das von uns genutzte Modell der Ischämie des Hinterlaufs von Ratten ist ein vielfältig und routiniert genutztes Verfahren. Es erlaubt die Untersuchung von postnatalen vaskulären Anpassungsmechanismen auf ischämischen Stress in Vivo und ist ein Mittel um die Effektivität von Gen-Targeting-Strategien auf die Neovaskularisation und natürlich vorkommenden Kompensationsmechanismen zu erforschen (Challiss et al. 1986, Couffinhal et al. 1998). Wir haben die Arteria femoralis superficialis, wie die Abb. 11 (siehe S. 40) schematisch zeigt, nach dem Abgang der Arteria femoralis profunda und der Arteria epigastrica ligiert. Die resultierende Ischämie ist als mild einzustufen, da Kollateralkreisläufe zwischen den Ästen der Arteria femoralis superficialis und der Arteria femoralis profunda existieren. Der Musculus gracilis wird durch die Arteria femoralis profunda oder Arteria circumflexa femoris medialis versorgt. Arteriae perforantes, die von diesen Gefäßen abgehen, sind die entscheidenden Gefäße für die Versorgung der Muskulatur und der darüber liegenden Haut. Die Arteria obturatoria versorgt mit einem Ast den proximalen Teil des Musculus gracilis. All diese Gefäße werden nach der Ligation der Arteria femoralis superficialis noch durchblutet. Die Arteria femoralis superficialis hingegen gibt einige kleinere Äste in den distalen Anteil des M. gracilis ab, die durch die Ligation die Ischämie induzieren. Damit sind die Gefäße noch durchblutet, die auch bei einer mikrochirurgischen Transplantation des Musculus gracilis und der darüber liegenden Haut als Anschlussgefäße dienen würden. Das Modell demonstriert die optimale mikrovaskuläre Transplantation von myocutanem Gewebe (Schmelzeisen et al. 1996, Čerrý und Salomon 2006, Hausamen et al. 2011). Der Vorteil dieser Technik ist die Einfachheit und Reproduzierbarkeit. Die minimale chirurgische Intervention vermindert traumatische Läsionen durch die Präparation. Insofern werden die Ergebnisse durch die resultierende Entzündungsreaktion minimal verfälscht. Nachteilig ist, dass die komplizierten Vorgänge und Heterogenität, welche das Verpflanzen myocutaner Gewebe mit sich bringt, hier nicht nachgestellt werden können. So bleiben die Schäden durch die Reperfusion nach Ischämie und die vielfältigen Komplikationen durch die Anastomose unberücksichtigt. Dennoch stellt das Ischämie-Modell des Hinterlaufs von Wistar Ratten eine geeignete Methode dar um die milde Ischämie eines myocutanen Transplantates nachzustellen. Das Gewebe verfügt noch über eine versorgende Arterie aber die ursprüngliche Perfusion existiert nicht mehr (Gravvanis et al. 2011). Das Tierexperiment offeriert die Möglichkeit in Vivo die kompensatorischen Mechanismen der postnatalen Arteriogenese und Angiogenese unter dem Einfluss von VEGF zu eruieren (Challiss et al. 1986, Limbourg et al. 2009).

6.3 Diskussion der Ergebnisse

6.3.1 Neovaskularisation in Haut und Muskel

Die physiologische Verteilung der Gefäße in den Geweben der Haut und des Muskels lassen die Hypothese zu, dass in der Haut mehr Gefäß vorkommen als in den untersuchten Bioptaten des Musculus gracilis. Aus diesem Grund ist auch ein vermehrter Anstieg der Gefäßanzahl und Gefäßfläche in den Proben der Haut im Vergleich zu den Proben der Muskelanteile zu erwarten. Pettersson et. al. haben bereits eine ausgeprägtere und nachhaltigere VEGF induzierte Angiogenese der Gefäße der Haut im Vergleich zum Muskel konstatiert (Pettersson et al. 2000). Die Ergebnisse meiner Studie bestätigen diese Feststellung. Präzise formuliert sind in der Haut im Vergleich zu den Anteilen des Musculus gracilis mehr Gefäße präsent und diese nehmen eine größere Fläche ein. Dieses Verhältnis wurde durch die Manipulation mit VEGF transfektierten Fibroblasten noch verstärkt. Diese Aussage gilt sowohl für die Gesamtheit aller Gefäße als auch für die muskulären Gefäße. Ebenfalls wurde in der Haut durch die VEGF₁₆₄ transfektierten Fibroblasten das Verhältnis kleinerer Gefäße und Kapillaren zu muskulären Gefäßen zu Gunsten der Ersteren verändert. Im Muskel ist dies nicht der Fall. Im Vergleich der Lokalisationen fällt auf, dass der Anteil muskulärer Gefäße in der Haut deutlich größer ist als im Muskel. Des Weiteren wurden drei Anteile des Musculus gracilis untersucht. Zu erwarten ist eine verminderte Angiogenese in den kaudalen Anteilen des Muskels auf Grund der zunehmenden distalen Ischämie nach Ligation der Arteria femoralis superficialis. Andere Forschungsgruppen haben belegt,

dass distale Anteile von Transplantaten einer intensiveren Ischämie ausgesetzt sind als die proximalen Anteile. Gleichzeitig wurde die VEGF-Konzentration untersucht. Bei milder Ischämie ist ein deutlicher Anstieg der VEGF-Konzentration im Vergleich zur Kontrolle zu verzeichnen. Eine massive Ischämie jedoch führt zu keinem Anstieg der VEGF-Expression (Erdmann et al. 2003, Zhang et al. 2003). Zwischen den oberflächlichen, kaudalen und kranialen Anteilen des Musculus gracilis unserer Wistar Ratten bestehen keine signifikanten Unterschiede in der Gefäßanzahl und -fläche. In allen Anteilen des Musculus gracilis wurde die Neovaskularisation in gleichem Maße gefördert. Durch die Blutversorgung der Arteriae perforantes scheint kein Unterschied im Sauerstoffangebot innerhalb des Musculus gracilis zu bestehen. Damit bildet sich in diesem Modell kein ischämischer Gradient, der mit einem myocutanen Transplantat vergleichbar ist. Weiterhin zeigte die histomorphometrische Auswertung der Schnitte im Gegensatz zu anderen Studien (Lee et al. 2000, Schwarz et al. 2000) keine Veränderung der Gefäßarchitektur oder Entwicklung von Neoplasien.

6.3.2 VEGF₁₆₄ transfektierte Fibroblasten induzieren die Angiogenese und Arteriogenese

Die Anregung der postnatale Angiogenese durch den vaskulären endothelialen Wachstumsfaktor wurde bereits durch viele experimentelle Arbeiten belegt (Schwarz et al. 2000, Kang et al. 2008, Xie et al. 2011, Kim et al. 2012). In ischämischen Myokard wurde das VEGF induzierte Wachstum von Kapillaren und kleinen Gefäßen nachgewiesen. Zusätzlich zeigte sich eine Verkleinerung der Infarktgröße und eine Verbesserung der kardialen Funktion (Heilmann et al. 2003, Su et al. 2004, Gonçalves et al. 2010, Mathison et al. 2012). Daraus leitet sich die Ausgangsthese dieser Arbeit ab. Durch die VEGF₁₆₄ transfektierten Fibroblasten, die nachweislich konstitutiv VEGF₁₆₄ exprimieren, wird die Angiogenese in der Haut und dem Muskel von Wistar Ratten nach Ligation der Arteria femoralis superficialis initiiert. Die Ergebnisse unserer Studie belegen, dass in der Interventionsgruppe im Vergleich zu den Kontrollgruppen die Anzahl und Fläche der Kapillaren und kleinen Gefäße signifikant größere Ausmaße einnehmen. Dabei konnte die Anzahl aller Gefäße in der Haut im Vergleich zur Kontrollgruppe um das Fünffache und im Muskel um das Zweifache gesteigert werden. Die von allen Gefäßen eingenommene Fläche vergrößerte sich in der Haut im Vergleich zur Kontrollgruppe um das Dreifache und im Muskel um das Fünffache. Andere Studien haben einen Anstieg der kapillären Dichte um das 1,6 fache (Takeshita et al. 1994-A, Schwarz et al. 2000) bis 2,5 fache (Takeshita et al. 1994-B) ergeben. Die Abb. 35 stellt die Ergebnisse von Takeshita et al. dar. Die kapilläre Dicht im ischämischen Hinterlauf von Hasen wird durch eine intraarterielle Injektion von rekombinanten humanem VEGF₁₆₅ gesteigert.

<u>Abb. 35</u> Effekt von VEGF auf die kapilläre Dichte. Grafik im Original bei Takeshita et al. 1994-B. Die vorliegende Abb. wurde durch den Verfasser verändert.

In Vivo Versuche unserer Forschungsgruppe ergaben einen Anstieg der Lumenanzahl um das 1,4 fache während sich die Lumenfläche durch den Einfluss von VEGF verdoppelt (Mueller et al. 2010-B). Die Abb. 36 (siehe S. 100) zeigt die histomorphometische Beurteilung einer Kollagenmembran, die in den Musculus gracilis implantiert und in der Interventionsgruppe mit VEGF₁₆₄ transfektierten Fibroblasten behandelt wurde. Die ersten beiden Säulen stellen die Kontrollgruppen und die dritte Säule die Interventionsgruppe dar. Das Diagramm A zeigt die Anzahl und das Diagramm C die Fläche CD31 positiver Gefäße. Der Effekt auf die Angiogenese liegt deutlich unter den Ergebnissen dieser Studie. Die Unwirksamkeit nicht transfektierter Fibroblasten auf die Angiogenese konnte ebenfalls empirisch belegt werden.

Mit dem Ziel die Blutversorgung des ischämischen Gewebes nach Verschluss der zuführenden Arterie zu gewährleisten, kommt es zur Vasodilatation aller Kapillaren und Gefäße (Unthank et al. 1995, Chen et al. 2009). Das Wachstum und die Neubildung von Kapillaren und kleinen Gefäßen folgt auf die Hypoxie induzierte VEGF-Produktion. Kapillaren sind naturgemäß für den Stoff- und Gasaustausch ausgelegt und nicht für den Transport von Blut. Aus diesem Grund können sie eine suffiziente Durchblutung des unterversorgten Gewebes mit der nötigen Fließgeschwindigkeit nicht in ausreichendem Maße sicherstellen (van Royen et al. 2001). Ein ausreichender Blutfluss und ein geringer Druckgradient nach Ligation der versorgenden Arterie kann langfristig nur durch die Bildung von Kollateralen, also mittleren und großen Gefäßen mit einer perizytären muskulären Ummantelung, gewährleistet werden (Unthank et al. 1995, Hershey et al. 2001, Hoefer et al. 2001). Die Arteriogenese definiert diesen Prozess. Der Einfluss des Wachstumsfaktors VEGF auf die Anregung der postnatalen Arteriogenese wird jedoch gegenteilig diskutiert. Hämodynamischen und mechanischen Effekten durch den veränderten Blutfluss nach Verschluss einer Arterie werden als Initiatoren der Arteriogenese angesehen (Schierling et al. 2009, Tzima et al. 2005). Dabei spielt nicht nur die Proliferation und Migration endothelialer glatter Muskelzellen eine Rolle, die durch VEGF angeregt wird (Benjamin et al. 1998, Ishida et al. 2001, Tirziu et al. 2012). Das Rekrutieren und die Aktivierung von Monozyten scheinen essentiell für die Angiogenese und Arteriogenese zu sein (Helisch et al. 2000, Heil et al. 2002). In Vitro Versuche bestätigen zum einen das Wachstum von Kapillaren und zum anderen einen erhöhten Anteil endothelialer glatter Muskelzellen unter dem Einfluss von VEGF (An et al. 2013). Analysen der Embryogenese belegen die suffiziente Initiation der Arteriogenese durch den Wachstumsfaktor (Leung et al. 2013). Demgegenüber ergaben Untersuchungen nach Exzision der Arteria femoralis des Hasen ohne weitere Manipulation, dass die Bildung von funktionalen Kollateralen zu einer Zeit stattfindet in der die VEGF-Konzentration nicht erhöht ist (Hershey et al. 2001). Eine andere Forschungsgruppe mit dem gleichen Ischämie - Modell nutzte adenoviral transferierte Fibroblasten, die VEGF oder bFGF exprimieren. Sie fand heraus, dass VEGF die Bildung von Kollateralgefäßen initiiert. Der Effekt von bFGF ist allerdings signifikant größer als von VEGF (Kondoh et al. 2004). Die intraarterielle und intramuskuläre Injektion des Proteins VEGF führt im Ischämie Modell des Hasen zu einer Verbesserung des hämodynamischen Defizites und einer Zunahme der Kollateralarterien (Takeshita et al. 1994-A, Takeshita et al. 1994-B). Mit Hilfe von VEGF sowie VEGFR 1 und 2-defizitären Mäusen konnten Clayton et al. beweisen, dass der Wachstumsfaktor und seine Rezeptoren Determinanten der Arteriogenese sind (Clayton et al. 2008). Ansinnen dieses Tierexperiments war es den Effekt VEGF₁₆₄ transfektierter Fibroblasten auf die Arteriogenese in der Haut und dem Musculus gracilis nach Ligation der Arteria femoralis superficialis zu klären. Dazu nutzten wir den Nachweis muskulärer Gefäße mittels immunhistochemischer Anfärbung von perivaskulären glatten Muskelzellen. In beiden Lokalisationen konnten in der Interventionsgruppe größere Werte, bezogen auf die Parameter Lumenanzahl und -fläche, registriert werden als in den Kontrollgruppen. Auch in Bezug auf die muskulären Gefäße kann ein Effekt durch die Injektion der nicht transfektierten Fibroblasten ausgeschlossen werden. In der Haut stiegen im Vergleich zur Kontrollgruppe die Anzahl der muskulären Lumina um das 1,6 fache und die Fläche der muskulären Lumina um das Doppelte. Die muskulären Gefäße des Musculus gracilis vermehren sich im Vergleich zur Kontrollgruppe in ihrer Anzahl um das Doppelte und in ihrer Fläche um das Vierfache. Damit wird deutlich, dass VEGF innerhalb von zwei Wochen vorrangig die Vergrößerung der Lumenfläche bewirkt und in geringerem Maße die Anzahl muskulärer Gefäße steigert. Kondoh et al. stellten keine Differenz in der Dichte SMC positiver Gefäße nach intraarterieller Injektion adenoviral VEGF transferierter Fibroblasten zwischen der Kontrollgruppe und der Versuchsgruppe fest (Kondoh et al. 2004). Im Gegensatz dazu zeigte eine anderen Studien die Zunahme der Kollateralen um das Dreifache (Takeshita et al. 1994-A). Voruntersuchungen unserer Forschungsgruppe in Vivo stellten einen signifikanten Anstieg muskulärer Gefäße um das Zweifache fest (Mueller et al. 2010-B). Die Abb. 36 zeigt die Ergebnisse. Die ersten beiden Säulen stellen die Kontrollgruppe und die dritte Säule die Interventionsgruppe dar. Das Diagramm B veranschaulicht die Anzahl und das Diagramm D die Fläche α-SMA positiver Gefäße. Die Initiation der Arteriogenese hat in den vorliegenden Ergebnissen der Haut das gleiche Ausmaß. Während ein deutlicherer Effekt im Musculus gracilis erzielt werden konnte.

<u>Abb. 36</u> Histomorphometrische Beurteilung der Neovaskularisation. Grafik im Original bei Mueller et al. 2010-B. Die vorliegende Abb. wurde durch den Verfasser verändert.

Alle Ergebnisse dieser Arbeit untermauern die These, dass die von uns eingesetzten VEGF₁₆₄ transfektierten Fibroblasten geeignet sind in myocutanem ischämischem Gewebe die Angiogenese und Arteriogenese zu aktivieren. Infolgedessen eignen sich VEGF₁₆₄ transfektierte Fibroblasten für die Präfabrikation myocutaner Transplantate.

6.3.3 Der Ligationszeitpunkt

In unserem Versuchsaufbau nehmen zwei verschiedene Faktoren Einfluss auf die Angiogenese und Arteriogenese. Zum einen wirken die VEGF exprimierenden Fibroblasten – die exogene indizierte VEGF-Produktion. Zum anderen wirkt der hypoxische Stimulus verursacht durch die Ligation der Arteria femoralis superficialis – die endogen induzierte VEGF-Produktion. Ein Anspruch der vorliegenden Studie ist die effizienteste zeitliche Abfolge dieser pro-angiogenetischen Stimuli der Neovaskularisation zu ermitteln. Die gleichzeitige Injektion und Ligation lässt durch Summation der Stimuli die höchsten VEGF-Konzentrationen erwarten. Die Dosis abhängige Initiation der Neovaskularisation (Takeshita et al. 1994-A, Hendel et al. 2000) lässt die Vermutung zu, dass in dieser Anordnung die Gefäßparameter am stärksten beeinflusst werden. Eine experimentelle Studie untersuchte den optimalen Zeitpunkt der Präfabrikation von ischämischen Transplantaten am Beispiel von Ratten durch die Injektion von Fibroblasten, die VEGF produzieren. Die Autoren konstatierten, dass die Transgen exprimierenden Fibroblasten eine Woche vor der Ischämie in ein Transplantat injiziert werden müssen um eine signifikante Wirkung zu erzielen. Die Injektion zwei Wochen vor Ischämie oder simultan mit der Ischämie zeigte keine Effektivität (Spanholtz et al. 2009). Analog ist die Injektion der genmodifizierten Fibroblasten in ischämisches Myokard eine Woche vor der Ischämie am erfolgreichsten (Gonçalves et al. 2010). Im Widerspruch dazu konnte in einer Untersuchung an epigastrischen Hauttransplantaten keine Evidenz für den Vorzug eines Zeitpunktes der subdermalen Gentherapie mit VEGF mit einem adenoviralen Vektor bewiesen werden (Gurunluoglu et al. 2002). In Anlehnung an diese Ergebnisse konnte in unserem Experiment kein signifikanter Vorteil eines Ligationszeitpunktes in Bezug auf die untersuchten Parameter belegt werden. Dennoch sind die größten Mittelwerte der Anzahl und Fläche aller CD31 positiven Gefäße in der Konstellation simultane Injektion der VEGF₁₆₄ transfektierten Fibroblasten und Ligation der Arteria femoralis zu finden. Dies deutet darauf hin, dass in dieser Versuchsanordnung die höchste VEGF-Konzentration vorhanden ist. Findet die Ligation später als die Injektion statt, kann davon ausgegangen werden, dass durch die exogene und endogene Induktion der VEGF-Expression zwei Maxima der VEGF-Konzentration aufeinander folgen. Die Mittelwerte der Anzahl und Fläche muskulärer Gefäße deuten darauf hin, dass in der Versuchsanordnung Ligation zwei Wochen nach Injektion der VEGF transfektierten Fibroblasten der größten Effekt auf die Arteriogenese erzielt werden kann. Durch die konsekutive Produktion des Transgenes wird bereits im normoxischen Gewebe die Neovaskularisation angeregt. Des Weiteren haben die Gefäße in dieser Konstellation 14 Tage länger Zeit auf den VEGF-Stimulus zu reagieren. Die Aquirierung kontraktiler Pericyten und die Ummantelung mit α-SMA positiven Zellen findet zeitlich nach der initialen Gefäßbildung statt (Benjamin et al. 1998). Interessant wäre die Beobachtung der Gefäßentwicklung in künftigen Experimenten über einen längeren Zeitraum. Eine Studien an Transplantaten von Ratten zeigte, dass drei Stunden nach Ischämie der Gehalt von dem pro - angiogenetischen VEGFR 2 deutlich ansteigt und nach sechs bis 18 Stunden wieder auf Normalniveau sinkt (Chen et al. 2007). So könnten in folgenden Experimenten die VEGF-Rezeptor-Konzentrationen nach Ischämie des Zielgewebes untersucht werden. Die Applikation der transfektierten Fibroblasten mit ihrem Maximum der VEGF-Produktion können so auf die sensibelste Phase der Rezeptoren abgestimmt werden.

6.3.4 Der Entnahmezeitpunkt

Die Hypoxie und die hohe VEGF-Konzentration induzieren eine Vasodilatation nach Ligation der Arteria femoralis superficialis (van der Zee et al. 1997, Chen et al. 2009). Die maximale Fläche der Gefäße wird für den Transport von Blut in das hypoxische Gewebe genutzt. Gleichzeitig kommt es zur Anregung der Angiogenese. Entlang des VEGF-Gradienten werden neue Gefäße gebildet. Die Etablierung von Kollateralkreisläufen über die Arteriogenese senkt den Druckgradienten und verbessert die Sauerstoffversorgung. Eine Woche nach Ligation der Arterie erholt sich der Blutfluss langsam (Couffinhal et al. 1998, Jia et al. 2011). Die zunehmend aeroben Bedingungen führen zu einem aeroben Metabolismus, der den Abfall der endogenen, Hypoxie bedingten VEGF-Konzentration verursacht (Diamond et al. 2005). Neben pro-angiogenetisch wirkenden Cytokinen werden auch anti-angiogenetische Faktoren gebildet. Dabei spielt auch die unterschiedliche Expression der VEGF-Rezeptoren eine regulierende Rolle (Ho et al. 2012, Imoukhuede et al. 2013). Der pro-angiogenetische VEGFR 2 sinkt um 80% drei Tage nach Beginn der Ischämie während die Expression des antiangiogenetischen VEGFR 1 zehn Tage nach Beginn der Ischämie zunimmt (Imoukhuede et al. 2011, Imoukhuede et al. 2013). Die Gefäße erfahren in der Phase der Remodellierung eine Anpassung an das Angebot und den Verbrach von Sauerstoff und Nährstoffen. Benjamin et al. analysierten am Modell der Retina eine ausgeprägte Regression der Kapillaren, die in Kapillar-freien Zonen um die Arteriolen resultierte (Benjamin et al. 1998). Diese Regulation ist zu einen wichtig für Etablierung eines suffizienten Blutflusses (Hershey et al. 2001, Hoefer et al. 2001) und bietet zum anderen Schutz vor der Entwicklung vaskulärer Malformationen wie z. B. Angiomen (Darke und Little et al.). Der beschriebene Kompensationsmechanismus ist beendet, wenn wenige großkalibrige Gefäße den Blutfluss der Arteria femoralis superficialis ersetzen können und 50% der prästenotischen dilatorischen Reserven gesichert sind (Hoefer et al. 2001). Dass die VEGF₁₆₄ transfektierten Fibroblasten in der vorliegenden Studie einen stärkeren Effekt auf die Neovaskularisation haben als das Hypoxie induzierte endogen produzierte VEGF belegen die signifikanten höheren Werte der Interventionsgruppe im Vergleich zu den Kontrollgruppen. Laut meiner Hypothese nimmt die Lumenanzahl und -fläche innerhalb des Beobachtungszeitraumes von zwei Wochen in Folge der Ligation der Arteria femoralis superficialis und der Injektion VEGF₁₆₄ transfektierter Fibroblasten konstant zu. Untersuchungen an Kollagenmembranen, die in den Musculus gracilis implantiert und in die VEGF₁₆₄ transfektierte Fibroblasten injiziert wurden, beweisen eine Zunahme der Anzahl und Fläche CD31 und α-SMA positiver Gefäße vom siebenten postoperativen zum vierzehnten postoperativen Tag. Nur die Anzahl der CD31 positiven Gefäße ist in diesem Zeitraum gleichbleibend hoch (Mueller et al. 2010-B). Die Abb. 36 (siehe S. 100) zeigt die Lumenanzahl und -fläche für die beiden immunhistochemischen Färbungen. Die Ergebnisse dieser Studie konnten nur zum Teil bestätigt werden. Unerwartet ist, dass in den Bioptaten der Haut und des Muskels die Anzahl und Fläche aller Gefäße vom dritten Tag nach Ligation bis zum fünften Tag nach Ligation abfällt und bis zum Ende der Beobachtungszeit wieder mehr oder weniger ansteigt. In einigen Fällen übertreffen die Werte nach zweiwöchiger Ligation die Werte zum Beobachtungsbeginn. Während in der Haut die Anzahl und Fläche α-SMA positiver Gefäße innerhalb des Beobachtungszeitraumes sinkt, verhalten sie sich im Muskel kongruent zu den CD31 positiven Gefäßen. Die Analyse der Kontrollgruppen ergab in Gegensatz dazu, dass die Gefäßparameter vom dritten bis zum fünften Tag ansteigen. In den meisten Fällen nehmen die Gefäßparameter nach dem fünften Tag nach Ligation ab und steigen zum Teil bis zum Beobachtungsende über die Anfangswerte. Die Konsequenz aus diesen Ergebnisse ist, dass durch die VEGF₁₆₄ transfektierten Fibroblasten der Abfall der Gefäßparameter im Rahmen der Remodellierung vom fünften Tag nach Ligation auf den dritten Tag nach Ligation vorgezogen wird. Dies lässt die Vermutung zu, dass das Transgen die Anpassungsmechanismen von myocutanem Gewebe an eine Ischämie beschleunigt. Hershey et al. bestätigen am Beispiel des Hinterlaufes von Hasen, dass ohne Manipulation mit exogenen VEGF am fünften Tag nach Ischämie die maximale kapilläre Sprossung erreicht wird (Hershey et al. 2001). Da andere Experimente ein Plateau der Gefäßneubildung nach über 20 Tagen beobachtet haben (Benjamin et al. 1998, Couffinhal et al. 1998), empfehle ich ein längerer Untersuchungszeitraum in zukünftigen Experimenten. Extrahiert man die Analyseergebnisse auf die Präfabrikation myocutaner Transplantate ist in der klinischen Anwendung drei Tage oder zwei Wochen nach Injektion der VEGF₁₆₄ transfektierten Fibroblasten und Ligation der versorgenden Arterie von einem maximalen Gefäßangebot auszugehen.

6.4 Aussichten und klinische Anwendung

Die VEGF₁₆₄ transfektierten Fibroblasten regen die Angiogenese und Arteriogenese in Vivo an und sind für die Präfabrikation myocutaner Transplantate geeignet. Ihre Effektivität und Sicherheit konnte bewiesen werden. Trotz aller Einflussmöglichkeiten auf die Neubildung von Gefäßen sollten auch immer die Gefahren einer solchen Therapie in der klinischen Anwendung am Patienten Rechnung getragen werden. In einigen Studien konnte die angiogenetische Wirkung von VEGF an Patienten mit Ischämie des Myokards oder peripherer Extremitäten bewiesen werden (Isner et al. 1998, Rosengart et al. 1999, Hendel et al. 2000). Die initiale Reaktion auf VEGF besteht neben der Formation erweiterter dünnwandiger Perizyten-armer Gefäße in einer Hyperpermeabilität der Gefäße, welche eine Ödembildung des umgebenden Gewebes und die Extravasation von Blutbestandteilen zur Folge hat (Bates und Harper 2002). Die resultierenden Nebenwirkungen sind Wassereinlagerungen (Baumgartner et al. 2000) und Hypotonie (Henry et al. 2003). Weiterhin ist VEGF an der Pathogenese vielfältiger Erkrankungen beteiligt. Das exprimierte Transgen kann zur Bildung oder Progression von Tumoren (Lee et al. 2000) oder zum Progress der Krankheitsbilder Arteriosklerose (Celletti et al. 2001), Autoimmunarthritis und Retinopathie führen (Pierce et al. 1995, Helisch und Schaper 2000, Ferrara 2001, Luttun et al. 2002). Systemische Effekte der VEGF transfektierten Fibroblasten und dessen Transgens sind nicht auszuschließen (Epstein et al. 2001). Dennoch besteht der Vorteil dieser Methode in der lokalen Applikation und in der lokalen Begrenzung ohne nachweisliche systemische Verteilung. Um einen gezielteren Einsatz des Transgens zu ermöglichen, analysiert unsere Forschungsgruppe an dem gleichen Ischämie-Modell den Effekt transfektierter Fibroblasten, die VEGF nicht konstitutiv sondern Hypoxie abhängig exprimieren. Mit dem Ziel die Angiogenese und Arteriogenese mit noch größerer Effektivität zu initiieren, ist die Kombination mit anderen angiogenetischen Faktoren oder Stammzellen (Gao et al. 2007, Yi et al. 2006) möglich. Beispiele sind bFGF (Kondoh et al. 2004, Spanholtz et al. 2011), PDGF (Richardson et al. 2001, Zhang et al. 2013) und Angiopoetin-1 (Siddiqui 2003). In zukünftigen Untersuchungen sollte eine längere Beobachtungszeit anberaumt werden vor allem, um die Entwicklung der muskuläre Gefäße besser einschätzen zu können und Langzeiteffekte zu evaluieren. Weiterhin könnte in einer nächsten Stufe der Einfluss VEGF₁₆₄ transfektieren Fibroblasten auf mikrovaskuläre myocutane Transplantaten am Beispiel des von Schultze-Mosgau et al. etablierten Modell des modifizierten freien myocutanen Gracilislappen eruiert werden (Schultze-Mosgau et al. 2001). Die VEGF induzierte Osteogenese konnte in Studien mit Knochendefekten von Hasen nachgewiesen werden (Li et al. 2009). Die verbesserte Regenerationsfähigkeit von Knochengewebe unter dem Einfluss von VEGF konnte auch in Ratten bestätigt werden (Kim et al. 2012). Hieraus ergibt sich die Möglichkeit die Anwendung VEGF transfektierter Fibroblasten auf die Präfabrikation osteomyocutaner Transplantate zu erweitern. Die bisherigen Betrachtungen beschränkten sich auf das Transplantat. Im gleichen Maße kann aber auch das kompromittierte Transplantatlager mit dieser Methode für die Transplantation vorbereitet werden. Patienten mit chronische Wunden, myokardiale Ischämien oder peripheren arteriellen Verschlüssen könnten von einer Therapie mit VEGF₁₆₄ transfektierten Fibroblasten profitierten.

7. Schlussfolgerungen

In der vorliegenden Studie wurden erstmals die Injektion VEGF₁₆₄ transfektierter Fibroblasten im Ischämie Modell des Hinterlaufes der Wistar Ratte erfolgreich eingesetzt um die Neubildung von Gefäßen zu erforschen. Die Ergebnisse meiner experimentellen Forschung belegen einen pro-angiogenetischen und pro-arteriogenetischen Effekt der VEGF₁₆₄ transfektierten Fibroblasten. Die Transfektion von Fibroblasten mit einem Plasmid stellten eine sichere und effektive Methode dar. Die Ligation der Arteria femoralis superficialis bedingt eine milde Ischämie des Musculus gracilis mit der darüber liegenden Haut der Wistar Ratte. Mit Einschränkungen eignet sich dieses Modell für die Untersuchung von vaskulären Anpassungsmechanismen innerhalb eines myocutanen Transplantates. Die Neovaskularisation wurde sowohl in der Haut als auch im Muskel initiiert. Die Bildung kleiner Gefäße und Kapillaren wurde vor allem in der Haut gefördert. Dem gegenüber stand im Muskel die Kaliberexpansion muskulärer Gefäße im Vordergrund. Die einzelnen Anteile des Musculus gracilis verhielten sich in den Untersuchungen äquivalent. Die Architektur der Gefäße wurde durch das Transgen nicht verändert. Der Zeitraum zwischen Injektion der VEGF₁₆₄ transfektierten Fibroblasten und Ligation der versorgenden Arterie hatte keinen signifikanten Einfluss auf Qualität und Quantität der Gefäße. Allerdings legen die Mittelwerte nah, dass eine simultane Abfolge der Interventionen das Wachstum kleiner Gefäße und Kapillaren am stärksten stimuliert. Ein längerer Zeitraum der VEGF-Expressionssteigerung wirkt hingegen positiv auf die Neubildung muskulärer Gefäße. Die Unterbindung der Arteria femoralis superficialis resultiert in einem Abfall der Gefäßparameter im Rahmen der Remodellierung für die Interventionsgruppe am dritten Tag und für die Kontrollgruppen am fünften Tag des Beobachtungszeitraumes. Die Anpassungsmechanismen an die Ischämie scheinen durch den Wachstumsfaktor beschleunigt zu werden. Zwei Wochen nach Ischämie steigen die Anzahl und Fläche der Gefäßlumina zum Teil über ihre Anfangswerte. Zusammenfassend ist die Qualität und Quantität der Angiogenese und Arteriogenese induziert durch VEGF₁₆₄ transfektierten Fibroblasten geeignet für die Präfabrikation myocutaner Transplantate.

8. Literatur- und Quellenverzeichnis

Buch

Bauch J, Betzler M, Lobenhoffer P. 2004. Chirurgie upgrade 2004. Erste Aufl. Berlin: Springer Berlin, 290-301.

Hausamen J, Machtens E, Reuther JF, Eufinger H, Kübler A, Schliephake H. 2011. Mund-, Kiefer- und Gesichtschirurgie. vierte Aufl. Berlin: Springer Berlin, 621-639, 672-702

Müller-Esterl W und Brandt U. 2009. Biochemie. Korrigierter Nachdr. 2009 der ersten Aufl. 2004. Heidelberg: Spektrum, Akad. Verl., 436-444

Noll S, Höfler H, Schaub-Kuhnen S. 2000. Praxis der Immunhistochemie. erste Aufl. München: Urban & Fischer, 13-19, 52-53, 71-72

Rassow J. 2008. Biochemie. zweite Aufl. Stuttgart: Thieme, 382-386

Schmelzeisen R, Neukam FW, Hausamen JE. 1996. Atlas der Mikrochirurgie im Kopf-Halsbereich. München: Hanser Verlag, 185-193

Welsch U, Sobotta J. 2006. Lehrbuch Histologie. zweite Aufl. München: Elsevier, Urban & Fischer Verlag, 110-113

Internetdokument

Benedito R, Roca C, Sörensen I, Adams S, Gossler A, Fruttiger M, Bixel MG, Adams RH. 2010. Identification of a molecular 'switch' controlling blood vessel growth. http://www.mpg.de/402495/forschungsSchwerpunkt. 10.03.2013.

Dako Denmark A/S. 2007. Dako LSAB2 System-HRP. http://www.dako.com/down-load.pdf?objectid=105444004. 02.03.2013.

Dako Denmark A/S. 2008. Monoclonal Mouse Anti-Human Smooth Muscle Actin Clone 1A4 Code M0851. http://www.dako.com/download.pdf?objectid=103467003. 20.03.2013
Dako Denmark A/S. 2009. Dako Liquid DAB+ Substrate Chromogen System. http://www.dako.com/download.pdf?objectid=107096003. 02.03.2013.

Dako Denmark A/S. 2010. Dako Tween 20 Code S1966. http://www.dako.com/down-load.pdf?objectid=117897002. 20.03.2013

Kunkel M, Hertrampf K. 2010. 1 S 2 k - Leitlinie: Diagnostik und Management von Vorläuferläsionen des oralen Plattenepithelkarzinoms in der Zahn - , Mund - und Kieferheilkunde , Stand: 01.03.2010. http://www.awmf.org/uploads/tx_szleitlinien/007-092I_S2k_Vorlaeuferlaesionen_Plattenepithelkarzinom.pdf. 10.03.2013.

KEGG B. VEGF signaling pathway. http://www.genecopoeia.com/product/search/pathway/h_vegfPathway.php. 10.03.2013.

VECTOR Laboratories. VECTASTAIN ABC Systems. http://www.vectorlabs.com/catalog.aspx?catID=42. 10.03.2013.

Zentrum für Krebsregisterdaten. 2008. Mundhöhle und Rachen. http://www.krebsdaten.de/Krebs/DE/Home/Datenbankabfrage/datensaetze_gesamt_tabelle.html. 02.03.2013.

Zentrum für Krebsregisterdaten. 2008. Prozentualer Anteil der häufigsten Tumorlokalisationen an allen Krebsneuerkrankungen in Deutschland 2008. http://www.krebsdaten.de/Krebs/DE/Content/Krebsarten/krebsarten_node.html. 10.03.2013.

Zeitschriftenaufsatz

Adamcic U, Skowronski K, Peters C, Morrison J, Coomber BL. 2012. The effect of bevacizumab on human malignant melanoma cells with functional VEGF/VEGFR2 autocrine and intracrine signaling loops. Neoplasia (New York, N.Y.), 14(7):612–623.

Aiello LP und Wong J. 2000. Role of vascular endothelial growth factor in diabetic vascular complications. Kidney International, 58(77):113–119.

Aitasalo K, Relander M, Virolainen E. 1997. The success rate of free flaps after preoperative irradiation in head and neck reconstruction. Annales chirurgiae et gynaecologiae, 86(4):311–317. Albelda SM, Muller WA, Buck CA, Newman PJ. 1991. Molecular and cellular properties of PECAM-1 (endoCAM/CD31): a novel vascular cell-cell adhesion molecule. The Journal of cell biology, 114(5):1059–1068.

Alon T, Hemo I, Itin A, Pe'er J, Stone J, Keshet E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature medicine, 1(10):1024–1028.

An G, Ji C, Wei Z, Chen H, Zhang J. 2013. Engineering of Corpus Cavernosum Using Vascular Endothelial Growth Factor-expressing Muscle-derived Stem Cells Seeded on Acellular Corporal Collagen Matrices. Urology, 81(2):424–431.

Arastéh K und Hannah A. 2000. The role of vascular endothelial growth factor (VEGF) in AIDS-related Kaposi's sarcoma. The oncologist, 5 Suppl 1. 28–31.

Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W. 1998. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. The Journal of clinical investigation, 101(1):40–50.

Arveschoug A und Christensen KS. 1999. Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation, 99(22):2967–2968.

Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. 1997. Isolation of putative progenitor endothelial cells for angiogenesis. Science (New York, N.Y.), 275(5302):964–967.

Bao X, Lu C, Frangos JA. 1999. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF kappa B, and egr-1. Arteriosclerosis, thrombosis, and vascular biology, 19(4):996–1003.

Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marmé D. 1996. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood, 87(8):3336–3343.

Bates DO und Harper SJ. 2002. Regulation of vascular permeability by vascular endothelial growth factors. Vascular pharmacology, 39(4-5):225–237.

Bauer SM, Bauer RJ, Liu Z, Chen H, Goldstein L, Velazquez OC. 2005. Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. Journal of vascular surgery, 41(4):699– 707.

Baumgartner I, Rauh G, Pieczek A, Wuensch D, Magner M, Kearney M, Schainfeld R, Isner JM. 2000. Lower-extremity edema associated with gene transfer of naked DNA encoding vascular endothelial growth factor. Annals of internal medicine, 132(11):880–884.

Benatar MJ, Dassonville O, Chamorey E, Poissonnet G, Ettaiche M, Pierre CS, Benezery K, Hechema R, Demard F, Santini J, Bozec A. 2013. Impact of preoperative radiotherapy on head and neck free flap reconstruction: A report on 429 cases. Journal of plastic, reconstructive & aesthetic surgery : JPRAS.

Benjamin LE, Hemo I, Keshet E. 1998. A plasticity window for blood vessel remodelling is defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and VEGF. Development (Cambridge, England), 125(9):1591– 1598.

Bernaudin J, Kambouchner M, Lacave R. 2013. La circulation lymphatique, structure des vaisseaux, développement, formation de la lymphe. Revue générale. Revue de pneumologie clinique,

Bhadada SV, Goyal BR, Patel MM. 2011. Angiogenic targets for potential disorders. Fundamental & clinical pharmacology, 25(1):29–47.

Blaisdell FW. 2002. The pathophysiology of skeletal muscle ischemia and the reperfusion syndrome: a review. Cardiovascular surgery (London, England), 10(6):620– 630.

Bozikov K und Arnez ZM. 2006. Factors predicting free flap complications in head and neck reconstruction. Journal of plastic, reconstructive & aesthetic surgery : JPRAS, 59(7):737–742.

Brandtzaeg P. 1998. The increasing power of immunohistochemistry and immunocytochemistry. Journal of immunological methods, 216(1-2):49–67.

Breier G, Blum S, Peli J, Groot M, Wild C, Risau W, Reichmann E. 2002. Transforming growth factor-beta and Ras regulate the VEGF/VEGF-receptor system during tumor angiogenesis. International journal of cancer. Journal international du cancer, 97(2):142–148.

Brekken RA, Overholser JP, Stastny VA, Waltenberger J, Minna JD, Thorpe PE. 2000. Selective inhibition of vascular endothelial growth factor (VEGF) receptor 2 (KDR/Flk-1) activity by a monoclonal anti-VEGF antibody blocks tumor growth in mice. Cancer research, 60(18):5117–5124.

Brem H, Kodra A, Golinko MS, Entero H, Stojadinovic O, Wang VM, Sheahan CM, Weinberg AD, Woo SLC, Ehrlich HP, Tomic-Canic M. 2009. Mechanism of sustained release of vascular endothelial growth factor in accelerating experimental diabetic healing. The Journal of investigative dermatology, 129(9):2275–2287.

Breuninger H, Bootz F, Hauschild A, Kortmann R, Wolff K, Stockfleth E, Szeimies M, Rompel R, Garbe C. 2008. Short German guidelines: squamous cell carcinoma. Journal der Deutschen Dermatologischen Gesellschaft = Journal of the German Society of Dermatology: JDDG, 6 Suppl 1. S5-8.

Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, Patrick CW. 2003. Automated selection of DAB-labeled tissue for immunohistochemical quantification. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 51(5):575–584.

Brogi E, Wu T, Namiki A, Isner JM. 1994. Indirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only. Circulation, 90(2):649–652.

Brown LF, Berse B, Jackman RW, Tognazzi K, Guidi AJ, Dvorak HF, Senger DR, Connolly JL, Schnitt SJ. 1995. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human pathology, 26(1):86–91. Brown LF, Berse B, Jackman RW, Tognazzi K, Manseau EJ, Senger DR, Dvorak HF. 1993. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer research, 53(19):4727–4735.

Brown LF, Tognazzi K, Dvorak HF, Harrist TJ. 1996. Strong expression of kinase insert domain-containing receptor, a vascular permeability factor/vascular endothelial growth factor receptor in AIDS-associated Kaposi's sarcoma and cutaneous angiosarcoma. The American journal of pathology, 148(4):1065–1074.

Brown LF, Yeo KT, Berse B, Yeo TK, Senger DR, Dvorak HF, van de Water L. 1992. Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of experimental medicine, 176(5):1375–1379.

Carmeliet P und Collen D. 1998. Vascular development and disorders: molecular analysis and pathogenic insights. Kidney international, 53(6):1519–1549.

Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380(6573):435–439.

Carmeliet P. 2003. Angiogenesis in health and disease. Nature medicine, 9(6):653–660.

Carmeliet P. 2004. Manipulating angiogenesis in medicine. Journal of internal medicine, 255(5):538–561.

Cavazzana-Calvo M, Hacein-Bey S, Saint Basile G de, Gross F, Yvon E, Nusbaum P, Selz F, Hue C, Certain S, Casanova JL, Bousso P, Deist FL, Fischer A. 2000. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science (New York, N.Y.), 288(5466):669–672.

Cébe-Suarez S, Zehnder-Fjällman A, Ballmer-Hofer K. 2006. The role of VEGF receptors in angiogenesis; complex partnerships. Cellular and molecular life sciences: CMLS, 63(5):601–615.

Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. 2001. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature medicine, 7(4):425–429.

Challiss RA, Hayes DJ, Radda GK. 1986. An investigation of arterial insufficiency in the rat hindlimb. Correlation of skeletal muscle bloodflow and glucose utilization in vivo. The Biochemical journal, 240(2):395–401.

Chang K, Lai C, Chang C, Lin C, Lai C, Lin S. 2010. Free flap options for reconstruction of complicated scalp and calvarial defects: report of a series of cases and literature review. Microsurgery, 30(1):13–18.

Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. 2008. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 26(4):612–619.

Chen W, Zhang F, Chen MB, Lineaweaver WC. 2007. Expression of vascular endothelial growth factor receptor-2 in the muscle flap with ischemic injury in rats. The Journal of surgical research, 140(1):45–49.

Chen Z, Persons B, Lin L, Lineaweaver WC, Zhang F. 2009. Vascular endothelial growth factor upregulates inducible nitric oxide synthase expression in the muscle flap ischemia model in the rat. Journal of reconstructive microsurgery, 25(4):219–225.

Christensen LV, Chang C, Yockman JW, Conners R, Jackson H, Zhong Z, Feijen J, Bull DA, Kim SW. 2007. Reducible poly(amido ethylenediamine) for hypoxia-inducible VEGF delivery. Journal of controlled release: official journal of the Controlled Release Society, 118(2):254–261.

Claffey KP, Shih SC, Mullen A, Dziennis S, Cusick JL, Abrams KR, Lee SW, Detmar M. 1998. Identification of a human VPF/VEGF 3' untranslated region mediating hypoxia-induced mRNA stability. Molecular biology of the cell, 9(2):469–481.

Clayton JA, Chalothorn D, Faber JE. 2008. Vascular endothelial growth factor-A specifies formation of native collaterals and regulates collateral growth in ischemia. Circulation research, 103(9):1027–1036.

Converse JM, Smahel J, Ballantyne DL, Harper AD. 1975. Inosculation of vessels of skin graft and host bed: a fortuitous encounter. British journal of plastic surgery, 28(4):274–282.

Cooley BC, Hanel DP, Anderson RB, Foster MD, Gould JS. 1992. The influence of diabetes on free flap transfer: I. Flap survival and microvascular healing. Annals of plastic surgery, 29(1):58–64.

Corral CJ, Siddiqui A, Wu L, Farrell CL, Lyons D, Mustoe TA. 1999. Vascular endothelial growth factor is more important than basic fibroblastic growth factor during ischemic wound healing. Archives of surgery (Chicago, III. : 1960), 134(2):200–205.

Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM. 1998. Mouse model of angiogenesis. The American journal of pathology, 152(6):1667– 1679.

Cristiano RJ. 1998. Viral and non-viral vectors for cancer gene therapy. Anticancer research, 18(5A):3241–3245.

Cross SS. 2001. Observer accuracy in estimating proportions in images: implications for the semiquantitative assessment of staining reactions and a proposal for a new system. Journal of clinical pathology, 54(5):385–390.

Dammann F, Horger M, Mueller-Berg M, Schlemmer H, Claussen CD, Claussen C, Hoffman J, Eschmann S, Bares R. 2005. Rational diagnosis of squamous cell carcinoma of the head and neck region: comparative evaluation of CT, MRI, and 18FDG PET. AJR. American journal of roentgenology, 184(4):1326–1331.

Davis-Smyth T, Chen H, Park J, Presta LG, Ferrara N. 1996. The second immunoglobulin-like domain of the VEGF tyrosine kinase receptor Flt-1 determines ligand binding and may initiate a signal transduction cascade. The EMBO journal, 15(18):4919–4927. DeLisser HM, Christofidou-Solomidou M, Strieter RM, Burdick MD, Robinson CS, Wexler RS, Kerr JS, Garlanda C, Merwin JR, Madri JA, Albelda SM. 1997. Involvement of endothelial PECAM-1/CD31 in angiogenesis. The American journal of pathology, 151(3):671–677.

Denis F, Garaud P, Bardet E, Alfonsi M, Sire C, Germain T, Bergerot P, Rhein B, Tortochaux J, Calais G. 2004. Final results of the 94-01 French Head and Neck Oncology and Radiotherapy Group randomized trial comparing radiotherapy alone with concomitant radiochemotherapy in advanced-stage oropharynx carcinoma. Journal of clinical oncology: official journal of the American Society of Clinical Oncology, 22(1):69–76.

Deroanne CF, Hajitou A, Calberg-Bacq CM, Nusgens BV, Lapière CM. 1997. Angiogenesis by fibroblast growth factor 4 is mediated through an autocrine up-regulation of vascular endothelial growth factor expression. Cancer research, 57(24):5590– 5597.

Diamond MP, El-Hammady E, Munkarah A, Bieber EJ, Saed G. 2005. Modulation of the expression of vascular endothelial growth factor in human fibroblasts. Fertility and sterility, 83(2):405–409.

Drake CJ und Little CD. 1995. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 92(17):7657–7661.

Dvorak HF. 2005. Angiogenesis: update 2005. Journal of thrombosis and haemostasis : JTH, 3(8):1835–1842.

Dvorak HF, Brown LF, Detmar M, Dvorak AM. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. The American journal of pathology, 146(5):1029–1039. Dvorak HF, Nagy JA, Feng D, Brown LF, Dvorak AM. 1999. Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyper-permeability in angiogenesis. Current topics in microbiology and immunology, 237. 97–132.

Dvorak HF, Sioussat TM, Brown LF, Berse B, Nagy JA, Sotrel A, Manseau EJ, van de Water L, Senger DR. 1991. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. The Journal of experimental medicine, 174(5):1275–1278.

Ehrenfeld M und Mast G. 2000. Gestielte muskulokutane und fasziokutane Lappen. Mund-, Kiefer- und Gesichtschirurgie : MKG, 4 Suppl 1. S299-305.

Elçin YM, Dixit V, Gitnick G. 2001. Extensive in vivo angiogenesis following controlled release of human vascular endothelial cell growth factor: implications for tissue engineering and wound healing. Artificial organs, 25(7):558–565.

Elias CG, Spellberg JP, Karan-Tamir B, Lin CH, Wang YJ, McKenna PJ, Muller WA, Zukowski MM, Andrew DP. 1998. Ligation of CD31/PECAM-1 modulates the function of lymphocytes, monocytes and neutrophils. European journal of immunology, 28(6):1948–1958.

El-Marakby HH. 2006. The reliability of pectoralis major myocutaneous flap in head and neck reconstruction. Journal of the Egyptian National Cancer Institute, 18(1):41–50.

Ely PB, Kobayashi LA, Campos JHO, Gomes HC, Juliano Y, Ferreira LM. 2009. Nicotine on rat TRAM flap. Acta cirúrgica brasileira / Sociedade Brasileira para Desenvolvimento Pesquisa em Cirurgia, 24(3):216–220.

Epstein SE, Kornowski R, Fuchs S, Dvorak HF. 2001. Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation, 104(1):115–119.

Erdmann D, Sweis R, Wong MS, Niklason LE, Du Laney TV, Levin LS, Klitzman B, Olbrich KC. 2003. Vascular endothelial growth factor expression in pig latissimus

dorsi myocutaneous flaps after ischemia reperfusion injury. Plastic and reconstructive surgery, 111(2):775–780.

Evans GR, Schusterman MA, Kroll SS, Miller MJ, Reece GP, Robb GL, Ainslie N. 1994. The radial forearm free flap for head and neck reconstruction: a review. American journal of surgery, 168(5):446–450.

Falco NA, Pribaz JJ, Eriksson E. 1992. Vascularization of skin following implantation of an arteriovenous pedicle: implications in flap prefabrication. Microsurgery, 13(5):249–254.

Feng C, Yang J, Chuang S, Huang C, Hsiao Y, Lai C. 2010. Free medial thigh perforator flap for reconstruction of the dynamic and static complex burn scar contracture. Burns: journal of the International Society for Burn Injuries, 36(4):565–571.

Ferrara N. 2001. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American journal of physiology. Cell physiology, 280(6):C1358-66.

Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380(6573):439–442.

Ferrara N und Henzel WJ. 1989. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and biophysical research communications, 161(2):851–858.

Finkenzeller G, Sparacio A, Technau A, Marmé D, Siemeister G. 1997. Sp1 recognition sites in the proximal promoter of the human vascular endothelial growth factor gene are essential for platelet-derived growth factor-induced gene expression. Oncogene, 15(6):669–676.

Flamme I, Reutern M von, Drexler HC, Syed-Ali S, Risau W. 1995. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Developmental biology, 171(2):399–414.

Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, Glisson B, Trotti A, Ridge JA, Chao C, Peters G, Lee D, Leaf A, Ensley J, Cooper J. 2003. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. The New England journal of medicine, 349(22):2091–2098.

Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. 1996. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Molecular and cellular biology, 16(9):4604–4613.

Fujio Y und Walsh K. 1999. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. The Journal of biological chemistry, 274(23):16349–16354.

Fukumura D, Gohongi T, Kadambi A, Izumi Y, Ang J, Yun CO, Buerk DG, Huang PL, Jain RK. 2001. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proceedings of the National Academy of Sciences of the United States of America, 98(5):2604– 2609.

Galis ZS und Khatri JJ. 2002. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circulation research, 90(3):251–262.

Gallicchio M, Mitola S, Valdembri D, Fantozzi R, Varnum B, Avanzi GC, Bussolino F. 2005. Inhibition of vascular endothelial growth factor receptor 2-mediated endothelial cell activation by Axl tyrosine kinase receptor. Blood, 105(5):1970–1976.

Gao F, He T, Wang H, Yu S, Yi D, Liu W, Cai Z. 2007. A promising strategy for the treatment of ischemic heart disease: Mesenchymal stem cell-mediated vascular endothelial growth factor gene transfer in rats. The Canadian journal of cardiology, 23(11):891–898.

Gennaro G, Ménard C, Michaud S, Rivard A. 2003. Age-dependent impairment of reendothelialization after arterial injury: role of vascular endothelial growth factor. Circulation, 107(2):230–233.

Gerber HP, Condorelli F, Park J, Ferrara N. 1997. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk1/KDR, is up-regulated by hypoxia. The Journal of biological chemistry, 272(38):23659–23667.

Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology, 161(6):1163–1177.

Gillison ML, Koch WM, Capone RB, Spafford M, Westra WH, Wu L, Zahurak ML, Daniel RW, Viglione M, Symer DE, Shah KV, Sidransky D. 2000. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. Journal of the National Cancer Institute, 92(9):709–720.

Giorno R. 1984. A comparison of two immunoperoxidase staining methods based on the avidin-biotin interaction. Diagnostic immunology, 2(3):161–166.

Goad DL, Rubin J, Wang H, Tashjian AH, Patterson C. 1996. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology, 137(6):2262–2268.

Goldenberg D, Lee J, Koch WM, Kim MM, Trink B, Sidransky D, Moon C. 2004. Habitual risk factors for head and neck cancer. Otolaryngology--head and neck surgery: official journal of American Academy of Otolaryngology-Head and Neck Surgery, 131(6):986–993.

Gonçalves GA, Vassallo PF, dos Santos L, Schettert IT, Nakamuta JS, Becker C, Tucci PJF, Krieger JE. 2010. Intramyocardial transplantation of fibroblasts expressing vascular endothelial growth factor attenuates cardiac dysfunction. Gene therapy, 17(3):305–314.

Goodson WH und Hunt TK. 1979. Wound healing and aging. The Journal of investigative dermatology, 73(1):88–91.

Gospodarowicz D, Abraham JA, Schilling J. 1989. Isolation and characterization of a vascular endothelial cell mitogen produced by pituitary-derived folliculo stellate cells.

Proceedings of the National Academy of Sciences of the United States of America, 86(19):7311–7315.

Gravvanis A, Papalois A, Delikonstantinou I, Pentilas N, Zogogiannis I, Tsoutsos D, Karakitsos D. 2011. Changes in arterial blood flow of free flaps after the administration of sildenafil in swine. Microsurgery, 31(6):465–471.

Guelinckx PJ, Boeckx WD, Fossion E, Gruwez JA. 1984. Scanning electron microscopy of irradiated recipient blood vessels in head and neck free flaps. Plastic and reconstructive surgery, 74(2):217–226.

Guesdon JL, Ternynck T, Avrameas S. 1979. The use of avidin-biotin interaction in immunoenzymatic techniques. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 27(8):1131–1139.

Guha N, Boffetta P, Wünsch Filho V, Eluf Neto J, Shangina O, Zaridze D, Curado MP, Koifman S, Matos E, Menezes A, Szeszenia-Dabrowska N, Fernandez L, Mates D, Daudt AW, Lissowska J, Dikshit R, Brennan P. 2007. Oral health and risk of squamous cell carcinoma of the head and neck and esophagus: results of two multicentric case-control studies. American journal of epidemiology, 166(10):1159–1173.

Guntinas-Lichius O, Wendt T, Buentzel J, Esser D, Lochner P, Mueller A, Schultze-Mosgau S, Altendorf-Hofmann A. 2010. Head and neck cancer in Germany: a sitespecific analysis of survival of the Thuringian cancer registration database. Journal of cancer research and clinical oncology, 136(1):55–63.

Guo DQ, Wu LW, Dunbar JD, Ozes ON, Mayo LD, Kessler KM, Gustin JA, Baerwald MR, Jaffe EA, Warren RS, Donner DB. 2000. Tumor necrosis factor employs a protein-tyrosine phosphatase to inhibit activation of KDR and vascular endothelial cell growth factor-induced endothelial cell proliferation. The Journal of biological chemistry, 275(15):11216–11221.

Gürlek A, Miller MJ, Amin AA, Evans GR, Reece GP, Baldwin BJ, Schusterman MA, Kroll SS, Robb GL. 1998. Reconstruction of complex radiation-induced injuries using free-tissue transfer. Journal of reconstructive microsurgery, 14(5):337–340.

Gurunluoglu R, Meirer R, Shafighi M, Huemer GM, Yilmaz B, Piza-Katzer H. 2005. Gene therapy with adenovirus-mediated VEGF enhances skin flap prefabrication. Microsurgery, 25(5):433–441.

Gurunluoglu R, Ozer K, Skugor B, Lubiatowski P, Carnevale K, Siemionow M. 2002. Effect of transfection time on the survival of epigastric skin flaps pretreated with adenovirus encoding the VEGF gene. Annals of plastic surgery, 49(2):161–169.

Healy AM, Morgenthau L, Zhu X, Farber HW, Cardoso WV. 2000. VEGF is deposited in the subepithelial matrix at the leading edge of branching airways and stimulates neovascularization in the murine embryonic lung. Developmental dynamics: an official publication of the American Association of Anatomists, 219(3):341–352.

Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W. 2002. Blood monocyte concentration is critical for enhancement of collateral artery growth. American journal of physiology. Heart and circulatory physiology, 283(6):H2411-9.

Heilmann CAU, Attmann T, Thiem A, Haffner E, Beyersdorf F, Lutter G. 2003. Gene therapy in cardiac surgery: intramyocardial injection of naked plasmid DNA for chronic myocardial ischemia. European journal of cardio-thoracic surgery: official journal of the European Association for Cardio-thoracic Surgery, 24(5):785–793.

Helisch A und Schaper W. 2000. Angiogenesis and arteriogenesis--not yet for prescription. Zeitschrift für Kardiologie, 89(3):239–244.

Hendel RC, Henry TD, Rocha-Singh K, Isner JM, Kereiakes DJ, Giordano FJ, Simons M, Bonow RO. 2000. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation, 101(2):118–121.

Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle AC, Fine J, McCluskey ER. 2003. The VIVA trial: Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis. Circulation, 107(10):1359–1365.

Herman IM. 1993. Actin isoforms. Current opinion in cell biology, 5(1):48-55.

Hershey JC, Baskin EP, Glass JD, Hartman HA, Gilberto DB, Rogers IT, Cook JJ. 2001. Revascularization in the rabbit hindlimb: dissociation between capillary sprouting and arteriogenesis. Cardiovascular research, 49(3):618–625.

Ho VC, Duan L, Cronin C, Liang BT, Fong G. 2012. Elevated vascular endothelial growth factor receptor-2 abundance contributes to increased angiogenesis in vascular endothelial growth factor receptor-1-deficient mice. Circulation, 126(6):741–752.

Hoefer IE, van Royen N, Buschmann IR, Piek JJ, Schaper W. 2001. Time course of arteriogenesis following femoral artery occlusion in the rabbit. Cardiovascular research, 49(3):609–617.

Hoffman HT, Karnell LH, Funk GF, Robinson RA, Menck HR. 1998. The National Cancer Data Base report on cancer of the head and neck. Archives of otolaryngology--head & neck surgery, 124(9):951–962.

Holom GH, Seland H, Strandenes E, Liavaag PG, Lybak S, Løes S, Tornes K, Vintertun HN. 2013. Head and neck reconstruction using microsurgery: a 9-year retrospective study. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery,

Howdieshell TR, Callaway D, Webb WL, Gaines MD, Procter CD, Sathyanarayana, Pollock JS, Brock TL, McNeil PL. 2001. Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. The Journal of surgical research, 96(2):173–182.

Hunt NC, Shelton RM, Henderson DJ, Grover LM. 2012. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor. Tissue engineering. Part A,

Hutchings H, Ortega N, Plouët J. 2003. Extracellular matrix-bound vascular endothelial growth factor promotes endothelial cell adhesion, migration, and survival through integrin ligation. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 17(11):1520–1522. Imoukhuede PI, Dokun AO, Annex BH, Popel AS. 2013. Endothelial cell-by-cell profiling reveals temporal dynamics of VEGFR1 and VEGFR2 membrane-localization following murine hindlimb ischemia. American journal of physiology. Heart and circulatory physiology,

Imoukhuede PI und Popel AS. 2011. Quantification and cell-to-cell variation of vascular endothelial growth factor receptors. Experimental cell research, 317(7):955–965.

Ishida A, Murray J, Saito Y, Kanthou C, Benzakour O, Shibuya M, Wijelath ES. 2001. Expression of vascular endothelial growth factor receptors in smooth muscle cells. Journal of cellular physiology, 188(3):359–368.

Isner JM, Baumgartner I, Rauh G, Schainfeld R, Blair R, Manor O, Razvi S, Symes JF. 1998. Treatment of thromboangiitis obliterans (Buerger's disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. Journal of vascular surgery, 28(6):964-73; discussion 73-5.

Jia Y, Qin J, Zhi Z, Wang RK. 2011. Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice. Journal of biomedical optics, 16(8):86004.

Jung YD, Liu W, Reinmuth N, Ahmad SA, Fan F, Gallick GE, Ellis LM. 2001. Vascular endothelial growth factor is upregulated by interleukin-1 beta in human vascular smooth muscle cells via the P38 mitogen-activated protein kinase pathway. Angiogenesis, 4(2):155–162.

Kalra VK, Shen Y, Sultana C, Rattan V. 1996. Hypoxia induces PECAM-1 phosphorylation and transendothelial migration of monocytes. The American journal of physiology, 271(5 Pt 2):H2025-34.

Kang S, Lim H, Seo S, Jeon O, Lee M, Kim B. 2008. Nanosphere-mediated delivery of vascular endothelial growth factor gene for therapeutic angiogenesis in mouse ischemic limbs. Biomaterials, 29(8):1109–1117. Kanno S, Oda N, Abe M, Terai Y, Ito M, Shitara K, Tabayashi K, Shibuya M, Sato Y. 2000. Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in human vascular endothelial cells. Oncogene, 19(17):2138–2146.

Kässmeyer S, Plendl J, Custodis P, Bahramsoltani M. 2009. New insights in vascular development: vasculogenesis and endothelial progenitor cells. Anatomia, histologia, embryologia, 38(1):1–11.

Kessler P, Grabenbauer G, Leher A, Schultze-Mosgau S, Rupprecht S, Neukam FW. 2004. Plattenepithelkarzinome der Mundhöhle. Uberlebenswahrscheinlichkeit und Lebensqualität-Erste Ergebnisse von 2 Behandlungsstrategien. Mund-, Kiefer- und Gesichtschirurgie : MKG, 8(5):302–310.

Kieran MW, Kalluri R, Cho Y. 2012. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harbor perspectives in medicine, 2(12):a006593.

Kim J, Kim T, Jin G, Park J, Yun Y, Jang J, Kim H. 2012. Mineralized poly(lactic acid) scaffolds loading vascular endothelial growth factor and the in vivo performance in rat subcutaneous model. Journal of biomedical materials research. Part A,

Kim T und Burgess DJ. 2002. Pharmacokinetic characterization of 14C-vascular endothelial growth factor controlled release microspheres using a rat model. The Journal of pharmacy and pharmacology, 54(7):897–905.

Kondoh K, Koyama H, Miyata T, Takato T, Hamada H, Shigematsu H. 2004. Conduction performance of collateral vessels induced by vascular endothelial growth factor or basic fibroblast growth factor. Cardiovascular research, 61(1):132–142.

Kreimer AR, Clifford GM, Boyle P, Franceschi S. 2005. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 14(2):467–475.

Krisky DM, Wolfe D, Goins WF, Marconi PC, Ramakrishnan R, Mata M, Rouse RJ, Fink DJ, Glorioso JC. 1998. Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. Gene therapy, 5(12):1593–1603.

Kryger Z, Dogan T, Zhang F, Komorowska-Timek E, Shi DY, Cheng C, Lineaweaver WC, Buncke HJ. 1999. Effects of VEGF administration following ischemia on survival of the gracilis muscle flap in the rat. Annals of plastic surgery, 43(2):172–178.

Lee RJ, Springer ML, Blanco-Bose WE, Shaw R, Ursell PC, Blau HM. 2000. VEGF gene delivery to myocardium: deleterious effects of unregulated expression. Circulation, 102(8):898–901.

Lee S und Thiele C. 2010. Factors associated with free flap complications after head and neck reconstruction and the molecular basis of fibrotic tissue rearrangement in preirradiated soft tissue. Journal of oral and maxillofacial surgery: official journal of the American Association of Oral and Maxillofacial Surgeons, 68(9):2169–2178.

Leung A, Ciau-Uitz A, Pinheiro P, Monteiro R, Zuo J, Vyas P, Patient R, Porcher C. 2013. Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification. Developmental cell, 24(2):144–158.

Levy AP, Levy NS, Wegner S, Goldberg MA. 1995. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. The Journal of biological chemistry, 270(22):13333–13340.

Lewin F, Norell SE, Johansson H, Gustavsson P, Wennerberg J, Biörklund A, Rutqvist LE. 1998. Smoking tobacco, oral snuff, and alcohol in the etiology of squamous cell carcinoma of the head and neck: a population-based case-referent study in Sweden. Cancer, 82(7):1367–1375.

Li R, Stewart DJ, Schroeder HP von, Mackinnon ES, Schemitsch EH. 2009. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. Journal of or-thopaedic research: official publication of the Orthopaedic Research Society, 27(1):8–14.

Limbourg A, Korff T, Napp LC, Schaper W, Drexler H, Limbourg FP. 2009. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia. Nature protocols, 4(12):1737–1746.

Lipman NS, Jackson LR, Trudel LJ, Weis-Garcia F. 2005. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR journal / National Research Council, Institute of Laboratory Animal Resources, 46(3):258–268.

Liu Y, Cox SR, Morita T, Kourembanas S. 1995. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5' enhancer. Circulation research, 77(3):638–643.

Lohmeyer JA, Liu F, Krüger S, Lindenmaier W, Siemers F, Machens H. 2011. Use of gene-modified keratinocytes and fibroblasts to enhance regeneration in a full skin defect. Langenbeck's archives of surgery / Deutsche Gesellschaft für Chirurgie, 396(4):543–550.

Lorier G, Touriño C, Kalil RAK. 2011. Coronary angiogenesis as an endogenous response to myocardial ischemia in adults. Arquivos brasileiros de cardiologia, 97(6):e140-8.

Losordo DW, Vale PR, Hendel RC, Milliken CE, Fortuin FD, Cummings N, Schatz RA, Asahara T, Isner JM, Kuntz RE. 2002. Phase 1/2 placebo-controlled, doubleblind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation, 105(17):2012–2018.

Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, Klerck B de, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert J, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. 2002. Revascularization of ischemic tissues by PIGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nature medicine, 8(8):831–840.

Lutzky VP, Carnevale RP, Alvarez MJ, Maffia PC, Zittermann SI, Podhajcer OL, Issekutz AC, Chuluyan HE. 2006. Platelet-endothelial cell adhesion molecule-1 (CD31) recycles and induces cell growth inhibition on human tumor cell lines. Journal of cellular biochemistry, 98(5):1334–1350. Maeda M, Nakamura T, Fukui A, Koizumi M, Yamauchi T, Tamai S, Nagano-Tatsumi K, Haga S, Hashimoto K, Yamamoto H. 1999. The role of serum imbibition for skin grafts. Plastic and reconstructive surgery, 104(7):2100–2107.

Marin VP, Pytynia KB, Langstein HN, Dahlstrom KR, Wei Q, Sturgis EM. 2008. Serum cotinine concentration and wound complications in head and neck reconstruction. Plastic and reconstructive surgery, 121(2):451–457.

Mathison M, P Gersch R, Nasser A, Lilo S, Korman M, Fourman M, Hackett N, Shroyer K, Yang J, Ma Y, Crystal RG, Rosengart TK. 2012. In vivo cardiac cellular reprogramming efficacy is enhanced by angiogenic preconditioning of the infarcted myocardium with vascular endothelial growth factor. Journal of the American Heart Association, 1(6):e005652.

Matos LL de, Trufelli DC, Matos MGL de, da Silva Pinhal MA. 2010. Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker insights, 5. 9–20.

Matsumura K, Tsuji T, Shinozaki F, Sasaki K, Takahashi M. 1989. Immunohistochemical determination of growth fraction in human tumors. Pathology, research and practice, 184(6):609–613.

Meadows KL und Hurwitz HI. 2012. Anti-VEGF therapies in the clinic. Cold Spring Harbor perspectives in medicine, 2(10):

Menger MD, Rücker M, Vollmar B. 1997. Capillary dysfunction in striated muscle ischemia/reperfusion: on the mechanisms of capillary "no-reflow". Shock (Augusta, Ga.), 8(1):2–7.

Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M. 2000. Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 14(15):2532–2539. Mueller CK und Schultze-Mosgau S. 2009. Radiation-induced microenvironments-the molecular basis for free flap complications in the pre-irradiated field? Radiotherapy and oncology: journal of the European Society for Therapeutic Radiology and Oncology, 93(3):581–585.

Mueller CK, Thorwarth MW, Schultze-Mosgau S. 2010-A. Angiogenic gene-modified fibroblasts for induction of localized angiogenesis. The Journal of surgical research, 160(2):340–348.

Mueller CK, Thorwarth M, Schultze-Mosgau S. 2010-B. Transgenic overexpression of VEGF164 enhances topical neoangiogenesis without detectable local or systemic side effects. Annals of plastic surgery, 65(1):85–90.

Mukouyama Y, Shin D, Britsch S, Taniguchi M, Anderson DJ. 2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell, 109(6):693–705.

Muller YA, Li B, Christinger HW, Wells JA, Cunningham BC, Vos AM de. 1997. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proceedings of the National Academy of Sciences of the United States of America, 94(14):7192–7197.

Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. The FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 13(1):9–22.

Newman PJ. 1997. The biology of PECAM-1. The Journal of clinical investigation, 100(11 Suppl):S25-9.

Ngo BT, Hayes KD, DiMiao DJ, Srinivasan SK, Huerter CJ, Rendell MS. 2005. Manifestations of cutaneous diabetic microangiopathy. American journal of clinical dermatology, 6(4):225–237.

Olsson A, Dimberg A, Kreuger J, Claesson-Welsh L. 2006. VEGF receptor signalling - in control of vascular function. Nature reviews. Molecular cell biology, 7(5):359–371.

Oswald P, Tilgner A, Schumann D. 1988. The influence of postoperative vessel occlusion on the viability of free microvascular skin-fat flaps and island flaps in rats. Journal of reconstructive microsurgery, 4(5):403–407.

Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM. 2004. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. The Journal of clinical investigation, 113(4):516–527.

Ozkan O, Coşkunfirat OK, Ozgentaş HE. 2005. Reliability of free-flap coverage in diabetic foot ulcers. Microsurgery, 25(2):107–112.

Padubidri AN, Yetman R, Browne E, Lucas A, Papay F, Larive B, Zins J. 2001. Complications of postmastectomy breast reconstructions in smokers, ex-smokers, and nonsmokers. Plastic and reconstructive surgery, 107(2):342-9; discussion 350-1.

Park JE, Keller GA, Ferrara N. 1993. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Molecular biology of the cell, 4(12):1317– 1326.

Park SH, Kim KW, Lee YS, Baek JH, Kim MS, Lee YM, Lee MS, Kim YJ. 2001. Hypoglycemia-induced VEGF expression is mediated by intracellular Ca2+ and protein kinase C signaling pathway in HepG2 human hepatoblastoma cells. International journal of molecular medicine, 7(1):91–96.

Partanen TA und Paavonen K. 2001. Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microscopy research and technique, 55(2):108–121.

Pettersson A, Nagy JA, Brown LF, Sundberg C, Morgan E, Jungles S, Carter R, Krieger JE, Manseau EJ, Harvey VS, Eckelhoefer IA, Feng D, Dvorak AM, Mulligan RC, Dvorak HF. 2000. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Laboratory investigation; a journal of technical methods and pathology, 80(1):99–115.

Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LE. 1995. Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proceedings of the National Academy of Sciences of the United States of America, 92(3):905–909.

Pinter E, Barreuther M, Lu T, Imhof BA, Madri JA. 1997. Platelet-endothelial cell adhesion molecule-1 (PECAM-1/CD31) tyrosine phosphorylation state changes during vasculogenesis in the murine conceptus. The American journal of pathology, 150(5):1523–1530.

Pohlenz P, Klatt J, Schön G, Blessmann M, Li L, Schmelzle R. 2012. Microvascular free flaps in head and neck surgery: complications and outcome of 1000 flaps. International journal of oral and maxillofacial surgery, 41(6):739–743.

Popa ER, van der Strate BWA, Brouwer LA, Tadema H, Schipper M, Fernandes B, Hendriks M, van Luyn MJA, Harmsen MC. 2007. Dependence of neovascularization mechanisms on the molecular microenvironment. Tissue engineering, 13(12):2913– 2921.

Pugh CW und Ratcliffe PJ. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nature medicine, 9(6):677–684.

Rauchfuss F, Bader R, Dittmar Y, Schultze-Mosgau S, Settmacher U, Scheuerlein H. 2012. Die M. latissimus dorsi-Lappenplastik--Salvage-Option bei der komplizierten Rezidiv-Narbenhernie. Handchirurgie, Mikrochirurgie, plastische Chirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft für Handchirurgie : Organ der Deutschsprachigen Arbeitsgemeinschaft für Mikrochirurgie der Peripheren Nerven und Gefässe : Organ der Vereinigung der Deutschen Plastischen Chirurgen, 44(2):93–96.

Ribatti D, Nico B, Crivellato E. 2009. Morphological and molecular aspects of physiological vascular morphogenesis. Angiogenesis, 12(2):101–111.

Richardson TP, Peters MC, Ennett AB, Mooney DJ. 2001. Polymeric system for dual growth factor delivery. Nature biotechnology, 19(11):1029–1034.

Rinsch C, Quinodoz P, Pittet B, Alizadeh N, Baetens D, Montandon D, Aebischer P, Pepper MS. 2001. Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene therapy, 8(7):523–533.

Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM. 2000. Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. The Journal of biological chemistry, 275(38):29643–29647.

Rivard A, Fabre JE, Silver M, Chen D, Murohara T, Kearney M, Magner M, Asahara T, Isner JM. 1999. Age-dependent impairment of angiogenesis. Circulation, 99(1):111–120.

Rivard A, Silver M, Chen D, Kearney M, Magner M, Annex B, Peters K, Isner JM. 1999. Rescue of diabetes-related impairment of angiogenesis by intramuscular gene therapy with adeno-VEGF. The American journal of pathology, 154(2):355–363.

Roberts WG und Palade GE. 1997. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer research, 57(4):765–772.

Robinson CJ und Stringer SE. 2001. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of cell science, 114(Pt 5):853–865.

Romer LH, McLean NV, Yan HC, Daise M, Sun J, DeLisser HM. 1995. IFN-gamma and TNF-alpha induce redistribution of PECAM-1 (CD31) on human endothelial cells. Journal of immunology (Baltimore, Md. : 1950), 154(12):6582–6592.

Rosengart TK, Lee LY, Patel SR, Kligfield PD, Okin PM, Hackett NR, Isom OW, Crystal RG. 1999. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatment of coronary artery disease using direct intramyocardial administration of an adenovirus vector expressing the VEGF121 cDNA. Annals of surgery, 230(4):466-70; discussion 470-2.

Ruhrberg C, Gerhardt H, Golding M, Watson R, Ioannidou S, Fujisawa H, Betsholtz C, Shima DT. 2002. Spatially restricted patterning cues provided by heparin-binding

VEGF-A control blood vessel branching morphogenesis. Genes & development, 16(20):2684–2698.

Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M. 1996. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. The Journal of biological chemistry, 271(45):28220–28228.

Schatzlein AG. 2001. Non-viral vectors in cancer gene therapy: principles and progress. Anti-cancer drugs, 12(4):275–304.

Schierling W, Troidl K, Troidl C, Schmitz-Rixen T, Schaper W, Eitenmüller IK. 2009. The role of angiogenic growth factors in arteriogenesis. Journal of vascular research, 46(4):365–374.

Schultze-Mosgau S, Keilholz L, Rödel F, Labahn D, Neukam FW. 2001. Experimental model for transplantation of a modified free myocutaneous gracilis flap to an irradiated neck region in rats. International journal of oral and maxillofacial surgery, 30(1):63–69.

Schultze-Mosgau S, Rödel F, Keilholz L, Grabenbauer GG, Wiltfang J, Radespiel-Tröger M, Sauer R, Neukam FW. 2000. Vaskularisation von freien myokutanen Grazilislappen im ersatzschwachen Transplantatlager nach präoperativer Radiotherapie. Eine experimentelle Untersuchung. Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al], 176(11):498–505.

Schultze-Mosgau S, Grabenbauer GG, Wehrhan F, Radespiel-Tröger M, Wiltfang J, Sauer R, Rödel F. 2002. Histomorphologische Strukturveränderungen von Kopf-Hals-Gefässen nach prä- oder postoperativer Radiotherapie. Strahlentherapie und Onkologie : Organ der Deutschen Röntgengesellschaft ... [et al], 178(6):299–306.

Schultze-Mosgau S, Wehrhan F, Rödel F, Amann K, Radespiel-Tröger M, Grabenbauer GG. 2003. Improved free vascular graft survival in an irradiated surgical site following topical application of rVEGF. International journal of radiation oncology, biology, physics, 57(3):803–812. Schwarz ER, Speakman MT, Patterson M, Hale SS, Isner JM, Kedes LH, Kloner RA. 2000. Evaluation of the effects of intramyocardial injection of DNA expressing vascular endothelial growth factor (VEGF) in a myocardial infarction model in the rat--angiogenesis and angioma formation. Journal of the American College of Cardiology, 35(5):1323–1330.

Senger DR, Connolly DT, van de Water L, Feder J, Dvorak HF. 1990. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer research, 50(6):1774–1778.

Shaari CM, Buchbinder D, Costantino PD, Lawson W, Biller HF, Urken ML. 1998. Complications of microvascular head and neck surgery in the elderly. Archives of otolaryngology--head & neck surgery, 124(4):407–411.

Shi ZR, Itzkowitz SH, Kim YS. 1988. A comparison of three immunoperoxidase techniques for antigen detection in colorectal carcinoma tissues. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 36(3):317–322.

Shima DT, Kuroki M, Deutsch U, Ng YS, Adamis AP, D'Amore PA. 1996. The mouse gene for vascular endothelial growth factor. Genomic structure, definition of the transcriptional unit, and characterization of transcriptional and post-transcriptional regulatory sequences. The Journal of biological chemistry, 271(7):3877–3883.

Siddiqui AJ, Blomberg P, Wärdell E, Hellgren I, Eskandarpour M, Islam KB, Sylvén C. 2003. Combination of angiopoietin-1 and vascular endothelial growth factor gene therapy enhances arteriogenesis in the ischemic myocardium. Biochemical and bio-physical research communications, 310(3):1002–1009.

Singh AJ, Meyer RD, Band H, Rahimi N. 2005. The carboxyl terminus of VEGFR-2 is required for PKC-mediated down-regulation. Molecular biology of the cell, 16(4):2106–2118.

Skalli O, Pelte MF, Peclet MC, Gabbiani G, Gugliotta P, Bussolati G, Ravazzola M, Orci L. 1989. Alpha-smooth muscle actin, a differentiation marker of smooth muscle

cells, is present in microfilamentous bundles of pericytes. The journal of histochemistry and cytochemistry: official journal of the Histochemistry Society, 37(3):315–321.

Soker S, Takashima S, Miao HQ, Neufeld G, Klagsbrun M. 1998. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 92(6):735–745.

Soldi R, Mitola S, Strasly M, Defilippi P, Tarone G, Bussolino F. 1999. Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. The EMBO journal, 18(4):882–892.

Spanholtz T, Maichle A, Niedworok C, Stoeckelhuber BM, Krüger S, Wedel T, Aach T, Middeler G, Hellwig-Bürgel T, Bader A, Krengel S, Müller OJ, Franz WM, Lindenmaier W, Machens H. 2009. Timing and targeting of cell-based VEGF165 gene expression in ischemic tissue. The Journal of surgical research, 151(1):153–162.

Spanholtz TA, Theodorou P, Holzbach T, Wutzler S, Giunta RE, Machens H. 2011. Vascular endothelial growth factor (VEGF165) plus basic fibroblast growth factor (bFGF) producing cells induce a mature and stable vascular network--a future therapy for ischemically challenged tissue. The Journal of surgical research, 171(1):329– 338.

Stalmans I, Ng Y, Rohan R, Fruttiger M, Bouché A, Yuce A, Fujisawa H, Hermans B, Shani M, Jansen S, Hicklin D, Anderson DJ, Gardiner T, Hammes H, Moons L, Dewerchin M, Collen D, Carmeliet P, D'Amore PA. 2002. Arteriolar and venular patterning in retinas of mice selectively expressing VEGF isoforms. The Journal of clinical investigation, 109(3):327–336.

Stein I, Neeman M, Shweiki D, Itin A, Keshet E. 1995. Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Molecular and cellular biology, 15(10):5363–5368.

Su H, Joho S, Huang Y, Barcena A, Arakawa-Hoyt J, Grossman W, Kan YW. 2004. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proceedings of the National Academy of Sciences of the United States of America, 101(46):16280–16285. Suominen S und Asko-Seljavaara S. 1995. Free flap failures. Microsurgery, 16(6):396–399.

Takahashi H und Shibuya M. 2005. The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions. Clinical science (London, England: 1979), 109(3):227–241.

Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T. 1999. Ischemia- and cytokine-induced mobilization of bone marrowderived endothelial progenitor cells for neovascularization. Nature medicine, 5(4):434–438.

Takeshita S, Pu LQ, Stein LA, Sniderman AD, Bunting S, Ferrara N, Isner JM, Symes JF. 1994-A. Intramuscular administration of vascular endothelial growth factor induces dose-dependent collateral artery augmentation in a rabbit model of chronic limb ischemia. Circulation, 90(5 Pt 2):228-34.

Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, Symes JF, Isner JM. 1994-B. Therapeutic angiogenesis. A single intraarterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J. Clin. Invest., 93(2):662-670

Tang DG, Chen YQ, Newman PJ, Shi L, Gao X, Diglio CA, Honn KV. 1993. Identification of PECAM-1 in solid tumor cells and its potential involvement in tumor cell adhesion to endothelium. The Journal of biological chemistry, 268(30):22883–22894.

Taub PJ, Marmur JD, Zhang WX, Senderoff D, Nhat PD, Phelps R, Urken ML, Silver L, Weinberg H. 1998. Locally administered vascular endothelial growth factor cDNA increases survival of ischemic experimental skin flaps. Plastic and reconstructive surgery, 102(6):2033–2039.

Taylor CR. 1978. Immunoperoxidase techniques: practical and theoretical aspects. Archives of pathology & laboratory medicine, 102(3):113–121.

Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Böhlen P. 1992. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochemical and biophysical research communications, 187(3):1579–1586.

Thakker GD, Hajjar DP, Muller WA, Rosengart TK. 1999. The role of phosphatidylinositol 3-kinase in vascular endothelial growth factor signaling. The Journal of biological chemistry, 274(15):10002–10007.

Tilgner A, Herrberger U, Schumann D. 1989. Neovaskularisation des myocutanen Rectus abdominis-Insellappens der Ratte. Zeitschrift für experimentelle Chirurgie, Transplantation, und künstliche Organe : Organ der Sektion Experimentelle Chirurgie der Gesellschaft für Chirurgie der DDR, 22(5):302–307.

Tirziu D, Jaba IM, Yu P, Larrivée B, Coon BG, Cristofaro B, Zhuang ZW, Lanahan AA, Schwartz MA, Eichmann A, Simons M. 2012. Endothelial nuclear factor-κB-dependent regulation of arteriogenesis and branching. Circulation, 126(22):2589–2600.

Tobita T, Izumi K, Feinberg SE. 2010. Development of an in vitro model for radiationinduced effects on oral keratinocytes. International journal of oral and maxillofacial surgery, 39(4):364–370.

Trompezinski S, Pernet I, Schmitt D, Viac J. 2001. UV radiation and prostaglandin E2 up-regulate vascular endothelial growth factor (VEGF) in cultured human fibroblasts. Inflammation research: official journal of the European Histamine Research Society, 50(8):422–427.

Tzeng H, Tsai C, Chang Z, Su C, Wang S, Hwang W, Tang C. 2013. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma. Biochemical pharmacology, 85(4):531–540.

Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA. 2005. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437(7057):426–431.

Unthank JL, Nixon JC, Lash JM. 1995. Early adaptations in collateral and microvascular resistances after ligation of the rat femoral artery. Journal of applied physiology (Bethesda, Md. : 1985), 79(1):73–82. Valentini V, Cassoni A, Marianetti TM, Mitro V, Gennaro P, Ialongo C, Iannetti G. 2008. Diabetes as main risk factor in head and neck reconstructive surgery with free flaps. The Journal of craniofacial surgery, 19(4):1080–1084.

van der Zee R, Murohara T, Luo Z, Zollmann F, Passeri J, Lekutat C, Isner JM. 1997. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation, 95(4):1030–1037.

van Royen N, Piek JJ, Buschmann I, Hoefer I, Voskuil M, Schaper W. 2001. Stimulation of arteriogenesis; a new concept for the treatment of arterial occlusive disease. Cardiovascular research, 49(3):543–553.

Vartanian JG, Carvalho AL, Carvalho SMT, Mizobe L, Magrin J, Kowalski LP. 2004. Pectoralis major and other myofascial/myocutaneous flaps in head and neck cancer reconstruction: experience with 437 cases at a single institution. Head & neck, 26(12):1018–1023.

Vedder NB, Bucky LP, Richey NL, Winn RK, May JW. 1994. Improved survival rates of random flaps in rabbits with a monoclonal antibody that blocks leukocyte adherence. Plastic and reconstructive surgery, 93(5):1035–1040.

Vega SJ, Sandeen SN, Bossert RP, Perrone A, Ortiz L, Herrera H. 2009. Gracilis myocutaneous free flap in autologous breast reconstruction. Plastic and reconstructive surgery, 124(5):1400–1409.

Vega S, Smartt JM, Jiang S, Selber JC, Brooks CJM, Herrera HR, Serletti JM. 2008. 500 Consecutive patients with free TRAM flap breast reconstruction: a single surgeon's experience. Plastic and reconstructive surgery, 122(2):329–339.

Vries C de, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT. 1992. The fmslike tyrosine kinase, a receptor for vascular endothelial growth factor. Science (New York, N.Y.), 255(5047):989–991.

Waltenberger J, Mayr U, Pentz S, Hombach V. 1996. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation, 94(7):1647–1654.

Woolard J, Wang W, Bevan HS, Qiu Y, Morbidelli L, Pritchard-Jones RO, Cui T, Sugiono M, Waine E, Perrin R, Foster R, Digby-Bell J, Shields JD, Whittles CE, Mushens RE, Gillatt DA, Ziche M, Harper SJ, Bates DO. 2004. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression. Cancer research, 64(21):7822–7835.

Wu S, Wu X, Zhu W, Cai W, Schaper J, Schaper W. 2010. Immunohistochemical study of the growth factors, aFGF, bFGF, PDGF-AB, VEGF-A and its receptor (Flk-1) during arteriogenesis. Molecular and cellular biochemistry, 343(1-2):223–229.

Xie F, Yang L, Tang S, Zheng Y, Yi C, Xia W, Pan Y, Ma G, Yang Y. 2011. [Establishment of new vessels model by implantation of VEGF165 in mouse]. Zhonghua zheng xing wai ke za zhi = Zhonghua zhengxing waike zazhi = Chinese journal of plastic surgery, 27(5):373–375.

Yi C, Xia W, Zheng Y, Zhang L, Shu M, Liang J, Han Y, Guo S. 2006. Transplantation of endothelial progenitor cells transferred by vascular endothelial growth factor gene for vascular regeneration of ischemic flaps. The Journal of surgical research, 135(1):100–106.

Zelt RG, Olding M, Kerrigan CL, Daniel RK. 1986. Primary and secondary critical ischemia times of myocutaneous flaps. Plastic and reconstructive surgery, 78(4):498– 503.

Zhang F, Oswald T, Lin S, Cai Z, Lei M, Jones M, Angel MF, Lineaweaver WC. 2003. Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat. British journal of plastic surgery, 56(7):653–659.

Zhang F und Lineaweaver W. 2011. Acute and sustained effects of vascular endothelial growth factor on survival of flaps and skin grafts. Annals of plastic surgery, 66(5):581–582. Zhang H, Jia X, Han F, Zhao J, Zhao Y, Fan Y, Yuan X. 2013. Dual-delivery of VEGF and PDGF by double-layered electrospun membranes for blood vessel regeneration. Biomaterials, 34(9):2202–2212.

Zhang ZF, Morgenstern H, Spitz MR, Tashkin DP, Yu GP, Hsu TC, Schantz SP. 2000. Environmental tobacco smoking, mutagen sensitivity, and head and neck squamous cell carcinoma. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 9(10):1043–1049.

Zheng Y, Yi C, He L, Wang Y, Feng S, Liu D, Guo S. 2007. [Effects of mouse NIH3T3 cells transfected with VEGF gene on neovascularization of ischemic flaps]. Zhonghua wai ke za zhi [Chinese journal of surgery], 45(3):203–206.

9. Anhang

Anhangsverzeichnis

9.1	Statistische Auswertung	142
9.1.1	CD31	142
9.1.1.1	Vergleich der Lokalisationen innerhalb der Interventionsgruppe	142
9.1.1.2	Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	143
9.1.1.3	Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit PBS	145
9.1.1.4	Vergleich der Ligationszeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit nicht transfektierten Fibroblasten	146
9.1.1.5	Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	147
9.1.1.6	Vergleich der Ligationszeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit PBS	148
9.1.1.7	Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit PBS	149
9.1.1.8	Vergleich der Entnahmezeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit nicht transfektierten Fibroblasten	150
9.1.1.9	Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	152
9.1.1.10	Vergleich der Entnahmezeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit PBS	153
9.1.1.11	Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit PBS	155
9.1.2	α-SMA	156
9.1.2.1	Vergleich der Lokalisationen innerhalb der Interventionsgruppe	156
9.1.2.2	Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	158
9.1.2.3	Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit PBS	159
9.1.2.4	Vergleich der Ligationszeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit nicht transfektierten Fibroblasten	161
9.1.2.5	Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	162
9.1.2.6	Vergleich der Ligationszeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit PBS	163
9.1.2.7	Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit PBS	164
9.1.2.8	Vergleich der Entnahmezeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit nicht transfektierten Fibroblasten	165
9.1.2.9	Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten	166
9.1.2.10	Vergleich der Entnahmezeitpunkt für die Lokalisation Haut inner- halb der Kontrollgruppe mit PBS	168
9.1.2.11	Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis in- nerhalb der Kontrollgruppe mit PBS	169

9.2	Versuchsprotokoll	171
9.3	TNM Klassifikation	173
9.4	UICC Stadium	174
9.5	Lebenslauf	175

9.1 Statistische Auswertung

9.1.1 CD31

9.1.1.1 Vergleich der Lokalisationen innerhalb der Interventionsgruppe

<u>Tab. 1</u> MW und SD von Lumenanzahl und Lumenfläche in μ m² innerhalb der Interventionsgruppe nach Lokalisationen (IHCF mit CD31)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	751	283
	Oberflächlicher Muskelanteil	404	182
	Kaudaler Muskelanteil	314	180
	Kranialer Muskelanteil	324	187
Lumenfläche in	Haut	9526,5	3029
μm²	Oberflächlicher Muskelanteil	5738,7	2824,4
	Kaudaler Muskelanteil	4868,9	2581,5
	Kranialer Muskelanteil	5565,6	4424,2

<u>Tab. 2</u> Paarweiser Vergleich der Lumenanzahl innerhalb der Interventionsgruppe nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	347	49	≤0,,0001
	Kaudaler Muskelanteil	437	48	≤0,,0001
	Kranialer Muskelanteil	427	55	≤0,,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	90	39	0,16
	Kranialer Muskelanteil	80	41	0,36
Kaudaler Muskelanteil	Kranialer Muskelanteil	-10	39	1

<u>Tab. 3</u> Paarweiser Vergleich der Lumenfläche in µm² innerhalb der Interventionsgruppe nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Diffe-	Standard-	Sig.
		renz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	3787,8	783	≤0,,0001
	Kaudaler Muskelanteil	4657,6	642,8	≤0,,0001
	Kranialer Muskelanteil	3960,9	872	≤0,,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	869,8	626,2	1
	Kranialer Muskelanteil	173,1	847,3	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-696,7	869,4	1

- 9.1.1.2 Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten
- <u>Tab. 4</u> MW und SD von Lumenanzahl und Lumenfläche in µm² innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Lokalisationen (IHCF mit CD31)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	258	132
	Oberflächlicher Muskelanteil	177	113
	Kaudaler Muskelanteil	207	206
	Kranialer Muskelanteil	218	139
Lumenfläche in	Haut	1950,9	1059,2
μm²	Oberflächlicher Muskelanteil	927,7	556,4
	Kaudaler Muskelanteil	992,9	933,5
	Kranialer Muskelanteil	1071,4	703,3
<u>Tab. 5</u> Paarweiser Vergleich der Lumenanzahl innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Diffe- renz (I-J)	Standard- fehler	Sig.
Haut	Oberflächlicher Muskelanteil	81	24	0,01
	Kaudaler Muskelanteil	51	39	1
	Kranialer Muskelanteil	41	32	1
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	-30	32	1
	Kranialer Muskelanteil	-40	21	0,36
Kaudaler Muskelanteil	Kranialer Muskelanteil	-10	37	1

<u>Tab. 6</u> Paarweiser Vergleich der Lumenfläche in µm² innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Diffe-	Standard-	Sig.
		renz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	1023,1	175,3	≤0,,0001
	Kaudaler Muskelanteil	957,9	222,8	0,001
	Kranialer Muskelanteil	879,4	215,5	0,001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	-65,2	144,2	1
	Kranialer Muskelanteil	-143,7	122,7	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-78,5	169,1	1

9.1.1.3 Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit PBS

Tab. 7MW und SD von Lumenanzahl und Lumenfläche in μ m² innerhalb der Kontroll-
gruppe mit PBS nach Lokalisationen (IHCF mit CD31)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	168	52
	Oberflächlicher Muskelanteil	188	112
	Kaudaler Muskelanteil	164	108
	Kranialer Muskelanteil	173	87
Lumenfläche in	Haut	3179,8	1629,9
μm²	Oberflächlicher Muskelanteil	1376,2	856,5
	Kaudaler Muskelanteil	1222	814,7
	Kranialer Muskelanteil	1216,3	553

Tab. 8Paarweiser Vergleich der Lumenanzahl innerhalb der Kontrollgruppe mit PBS
nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit
CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Diffe-	Standard-	Sig.
		renz (I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	-20	18	1
	Kaudaler Muskelanteil	3	19	1
	Kranialer Muskelanteil	-5	16	1
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	24	21	1
	Kranialer Muskelanteil	15	23	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-9	20	1

<u>Tab. 9</u> Paarweiser Vergleich der Lumenfläche in µm² innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Lokalisation (I)	Lokalisation(J)	Mittlere Diffe-	Stan-	Sig.
		renz (I-J)	dard-feh-	
			ler	
Haut	Oberflächlicher Muskelanteil	1803,6	304,4	≤0,,0001
	Kaudaler Muskelanteil	1957,9	267,2	≤0,,0001
	Kranialer Muskelanteil	1963,6	267,1	≤0,,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	154,2	177,5	1
	Kranialer Muskelanteil	159,9	173,5	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	5,7	138,2	1

- 9.1.1.4 Vergleich der Ligationszeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten
- <u>Tab. 10</u> MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten (IHCF mit CD31)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	215	83
	1 Woche	248	161
	2 Wochen	310	132
Lumenfläche in µm ²	simultan	2378,4	1016,3
·	1 Woche	1674,6	987,4
	2 Wochen	1799,6	1120

Tab. 11Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten
bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-33	53	1
simultan	2 Wochen	-96	53	0,24
1 Woche	2 Wochen	-63	53	0,73

Tab. 12Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut inner-
halb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligations-
zeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	703,8	425,7	0,32
simultan	2 Wochen	578,8	425,7	0,55
1 Woche	2 Wochen	-125	425,7	1

- 9.1.1.5 Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten
- Tab. 13MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach
Ligationszeitpunkten (IHCF mit CD31)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	122	25
	1 Woche	145	46
	2 Wochen	335	98
Lumenfläche in µm²	simultan	1011,8	387,8
·	1 Woche	613,4	122,6
	2 Wochen	1366,8	694,2

<u>Tab. 14</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-23	26	1
simultan	2 Wochen	-214	26	≤0,,0001
1 Woche	2 Wochen	-190	26	≤0,,0001

<u>Tab. 15</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	398,4	189,6	0,13
simultan	2 Wochen	-355	189,6	0,21
1 Woche	2 Wochen	-753,4	189,6	0,001

- 9.1.1.6 Vergleich der Ligationszeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS
- <u>Tab. 16</u> MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten (IHCF mit CD31)

	Ligationszeitpunkt nach	Mittelwert	Standardabweichung
	Injektion		
Lumenanzahl	simultan	173	54
	1 Woche	177	59
	2 Wochen	153	43
Lumenfläche in µm²	simultan	3195,9	1423,8
•	1 Woche	3547,7	1970,3
	2 Wochen	2795,9	1494,9

<u>Tab. 17</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-4	21	1
simultan	2 Wochen	20	21	1
1 Woche	2 Wochen	24	21	0,82

<u>Tab. 18</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-351,8	672,6	1
simultan	2 Wochen	400	672,6	1
1 Woche	2 Wochen	751,8	672,6	0,82

- 9.1.1.7 Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS
- Tab. 19MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten (IHCF
mit CD31)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	151	39
	1 Woche	201	94
	2 Wochen	173	69
Lumenfläche in µm²	simultan	1175,2	324,9
•	1 Woche	1485,8	646,4
	2 Wochen	1153,5	424,8

<u>Tab. 20</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-50	29	0,29
simultan	2 Wochen	-22	29	1
1 Woche	2 Wochen	28	29	1

Tab. 21Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung
für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-310,6	197,7	0,38
simultan	2 Wochen	21,7	197,7	1
1 Woche	2 Wochen	332,3	197,7	0,31

- 9.1.1.8 Vergleich der Entnahmezeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten
- Tab. 22MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut
innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnah-
mezeitpunkten (IHCF mit CD31)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	243	113
	5 Tage	253	163
	7 Tage	264	164
	14 Tage	272	96
Lumenfläche in µm²	3 Tage	1238,7	957,1
	5 Tage	2436,8	1131,2
	7 Tage	1887,3	947,6
	14 Tage	2240,6	938

Tab. 23Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeitpunk-
ten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-10	65	1
	7Tage	-21	65	1
	14Tage	-29	65	1
5Tage	7Tage	-11	65	1
	14Tage	-19	65	1
7Tage	14Tage	-7	65	1

<u>Tab. 24</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-1198,1	469,8	0,1
	7Tage	-648,6	469,8	1
	14Tage	-1001,9	469,8	0,24
5Tage	7Tage	549,5	469,8	1
	14Tage	196,2	469,8	1
7Tage	14Tage	-353,4	469,8	1

9.1.1.9 Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten

Tab. 25MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach
Entnahmezeitpunkten (IHCF mit CD31)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	212	106
	5 Tage	191	133
	7 Tage	189	104
	14 Tage	210	134
Lumenfläche in µm²	3 Tage	930,6	609,2
·	5 Tage	1140	704,5
	7 Tage	967	444,4
	14 Tage	951,9	469

<u>Tab. 26</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	20	57	1
	7Tage	22	57	1
	14Tage	2	57	1
5Tage	7Tage	2	57	1
	14Tage	-18	57	1
7Tage	14Tage	-21	57	1

Tab. 27Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation M. gracilis
innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnah-
mezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit
CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-209,4	267,2	1
	7Tage	-36,5	267,2	1
	14Tage	-21,3	267,2	1
5Tage	7Tage	209,4	267,2	1
	14Tage	173	267,2	1
7Tage	14Tage	15,2	267,2	1

- 9.1.1.10 Vergleich der Entnahmezeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS
- <u>Tab. 28</u> MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten (IHCF mit CD31)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	145	49
	5 Tage	173	32
	7 Tage	178	68
	14 Tage	176	55
Lumenfläche in µm²	3 Tage	1849	816,1
	5 Tage	3590,6	1419,2
	7 Tage	3044,5	901,6
	14 Tage	4235,2	2161,9

<u>Tab. 29</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-1742	674	0,09
	7Tage	-1196	674	,051
	14Tage	-2386	674	0,01
5Tage	7Tage	546	674	1
	14Tage	-645	674	1
7Tage	14Tage	-1191	674	0,52

Tab. 30Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation Haut inner-
halb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-1741,6	674	0,09
	7Tage	-1195,5	674	0,51
	14Tage	-2386,2	674	0,007
5Tage	7Tage	546	674	1
	14Tage	-644,6	674	1
7Tage	14Tage	-1190,6	674	0,52

9.1.1.11 Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS

<u>Tab. 31</u> MW und SD von Lumenanzahl und Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten (IHCF mit CD31)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	170	65,2
	5 Tage	152	25,9
	7 Tage	155	51
	14 Tage	223	107
Lumenfläche in µm ²	3 Tage	1179,9	459,5
	5 Tage	1032,3	278,3
	7 Tage	1332,6	336,6
	14 Tage	1541	714,1

<u>Tab. 32</u> Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	18	33	1
	7Tage	15	33	1
	14Tage	-53	33	0,67
5Tage	7Tage	-3	33	1
	14Tage	-71	33	0,21
7Tage	14Tage	-68	33	0,27

<u>Tab. 33</u> Paarweiser Vergleich der Lumenfläche in µm² für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit CD31)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	147,5	225,1	1
	7Tage	-152,8	225,1	1
	14Tage	-361,2	225,1	0,71
5Tage	7Tage	-300,3	225,1	1
	14Tage	-508,7	225,1	0,18
7Tage	14Tage	-208,4	225,1	1

9.1.2 α-SMA

9.1.2.1 Vergleich der Lokalisationen innerhalb der Interventionsgruppe

<u>Tab. 34</u> MW und SD von Lumenanzahl und Lumenfläche in μ m² innerhalb der Interventionsgruppe nach Lokalisationen (IHCF mit α -SMA)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	399	243
	Oberflächlicher Muskelanteil	93	63
	Kaudaler Muskelanteil	66	37
	Kranialer Muskelanteil	85	63
Lumenfläche in	Haut	8072,1	3975,3
μm²	Oberflächlicher Muskelanteil	4557,3	3548,6
	Kaudaler Muskelanteil	3063,1	1937,2
	Kranialer Muskelanteil	3653,6	2369,9

Tab.,35Paarweiser Vergleich der Lumenanzahl innerhalb der Interventionsgruppe nach
Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-
SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	306	43	≤0,0001
	Kaudaler Muskelanteil	332,4	43	≤0,0001
	Kranialer Muskelanteil	314	44	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	27	13	0,3
	Kranialer Muskelanteil	8	16	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-18	11	0,7

Tab. 36Paarweiser Vergleich der Lumenfläche in μm^2 innerhalb der Interventions-
gruppe nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni
(IHCF mit α -SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	3514,9	895,1	0,003
	Kaudaler Muskelanteil	5009	771,9	≤0,0001
	Kranialer Muskelanteil	4419	768,3	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	1494,1	713,2	0,27
	Kranialer Muskelanteil	903,7	626,1	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-590,4	411,7	1

9.1.2.2 Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit nicht transfek-

tierten Fibroblasten

Tab. 37MW und SD von Lumenanzahl und Lumenfläche in μ m² innerhalb der Kontroll-
gruppe mit nicht transfektierten Fibroblasten nach Lokalisationen (IHCF mit α-
SMA)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	279	64
	Oberflächlicher Muskelanteil	70	53
	Kaudaler Muskelanteil	71	38
	Kranialer Muskelanteil	60	32
Lumenfläche in	Haut	3897,6	2204,8
μm²	Oberflächlicher Muskelanteil	1522	822
	Kaudaler Muskelanteil	1387,6	590,6
	Kranialer Muskelanteil	1419,4	619,4

Tab. 38Paarweiser Vergleich der Lumenanzahl innerhalb der Kontrollgruppe mit nicht
transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehrfach-
vergleich: Bonferroni (IHCF mit α-SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	209	14	≤0,0001
	Kaudaler Muskelanteil	207	12	≤0,0001
	Kranialer Muskelanteil	219	12	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	-2	8	1
	Kranialer Muskelanteil	9	10	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	11	7	0,7

Tab. 39Paarweiser Vergleich der Lumenfläche in μ m² innerhalb der Kontrollgruppe mit
nicht transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α-SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	2375,6	354,5	≤0,0001
	Kaudaler Muskelanteil	2510	374,1	≤0,0001
	Kranialer Muskelanteil	2478,2	356,7	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	134,4	139,5	1
	Kranialer Muskelanteil	102,6	162,7	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-31,8	139,7	1

- 9.1.2.3 Vergleich der Lokalisationen innerhalb der Kontrollgruppe mit PBS
- Tab. 40MW und SD von Lumenanzahl und Lumenfläche in μ m² innerhalb der Kontroll-
gruppe mit PBS nach Lokalisationen (IHCF mit α -SMA)

	Lokalisation	Mittelwert	Standardabweichung
Lumenanzahl	Haut	247	98
	Oberflächlicher Muskelanteil	41	29
	Kaudaler Muskelanteil	31	20
	Kranialer Muskelanteil	39	23
Lumenfläche in	Haut	3954,8	2085,2
μm²	Oberflächlicher Muskelanteil	1274,3	1239,3
	Kaudaler Muskelanteil	959,1	445,5
	Kranialer Muskelanteil	1122	675,3

Tab. 41Paarweiser Vergleich der Lumenanzahl innerhalb der Kontrollgruppe mit PBS
nach Lokalisationen bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit
α-SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	206	17	≤0,0001
	Kaudaler Muskelanteil	216	18	≤0,0001
	Kranialer Muskelanteil	208	16	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	10	5	0,21
	Kranialer Muskelanteil	2	6	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-7	5	0,71

Tab. 42Paarweiser Vergleich der Lumenfläche in μ m² innerhalb der Kontrollgruppe mit
nicht transfektierten Fibroblasten nach Lokalisationen bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α-SMA)

Lokalisation (I)	Lokalisation(J)	Mittlere Differenz	Standard-	Sig.
		(I-J)	fehler	
Haut	Oberflächlicher Muskelanteil	2680,5	435,1	≤0,0001
	Kaudaler Muskelanteil	2995,7	377,5	≤0,0001
	Kranialer Muskelanteil	2832,8	383,8	≤0,0001
Oberflächlicher Muskelanteil	Kaudaler Muskelanteil	315,2	206,5	0,82
	Kranialer Muskelanteil	152,3	201,3	1
Kaudaler Muskelanteil	Kranialer Muskelanteil	-162,9	106,7	0,82

9.1.2.4 Vergleich der Ligationszeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten

<u>Tab. 43</u> MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten (IHCF mit α-SMA)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	279	77
	1 Woche	282	79
	2 Wochen	275	30
Lumenfläche in µm ²	simultan	3723,9	1460,5
	1 Woche	4814, 2	2642,6
	2 Wochen	3326,4	1850,2

Tab. 44Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeitpunkten
bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-3	27	1
simultan	2 Wochen	4	27	1
1 Woche	2 Wochen	7	27	1

Tab. 45Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation Haut inner-
halb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligations-
zeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-1090,3	834,7	0,6
simultan	2 Wochen	397,5	834,7	1
1 Woche	2 Wochen	1487,8	834,7	0,25

9.1.2.5 Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten

Tab. 46MW und SD von Lumenanzahl und Lumenfläche in μm^2 für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach
Ligationszeitpunkten (IHCF mit α -SMA)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	68	34
	1 Woche	60	24
	2 Wochen	73	32
Lumenfläche in µm²	simultan	1456	832
·	1 Woche	973	301,1
	2 Wochen	926	385,5

Tab. 47Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligationszeit-
punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	7	12	1
simultan	2 Wochen	-5	12	1
1 Woche	2 Wochen	-13	12	0,95

Tab. 48Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Ligati-
onszeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-
SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	832	227,5	0,12
simultan	2 Wochen	301,1	227,5	0,08
1 Woche	2 Wochen	385,5	227,5	1

9.1.2.6 Vergleich der Ligationszeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS

Tab. 49MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation Haut
innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten (IHCF mit α-
SMA)

			<u> </u>
	Ligationszeitpunkt nach	Mittelwert	Standardabweichung
	Injektion		
	пјекион		
Lumenanzahl	simultan	057	110
		257	110
	1 Woche	267	102
		201	102
	0 M/a ah an		
	2 wocnen	216	83
l umenfläche in um²	simultan		
	Simulan	3276	1339,6
	1 Woche	4070.0	0017.4
		4073,8	2617,4
	2 Wochen	37/13	2300 0
		5745	2390,9

Tab. 50Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für Mehrfach-
vergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-10	40	1
simultan	2 Wochen	40	40	1
1 Woche	2 Wochen	50	40	0,67

Tab. 51Paarweiser Vergleich der Lumenfläche in μm^2 für die Lokalisation Haut inner-
halb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α -SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-1397,8	893,2	0,38
simultan	2 Wochen	-467,1	893,2	1
1 Woche	2 Wochen	930,7	893,2	0,91

9.1.2.7 Vergleich der Ligationszeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS

Tab. 52MW und SD von Lumenanzahl und Lumenfläche in μ m² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten (IHCF
mit α -SMA)

	Ligationszeitpunkt nach Injektion	Mittelwert	Standardabweichung
Lumenanzahl	simultan	47	23
	1 Woche	32	10
	2 Wochen	32	12
Lumenfläche in µm²	simultan	1269,1	332,8
	1 Woche	1671,7	573,5
	2 Wochen	1388,1	357

Tab. 53Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	14	7	0,1
simultan	2 Wochen	15	7	0,09
1 Woche	2 Wochen	0	7	1

Tab. 54Paarweiser Vergleich der Lumenfläche in μm² für die Lokalisation M. gracilis
innerhalb der Kontrollgruppe mit PBS nach Ligationszeitpunkten bei Anpassung
für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Ligationszeitpunkt (I)	Ligationszeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
simultan	1 Woche	-402,6	177,5	0,09
simultan	2 Wochen	-119	177,5	1
1 Woche	2 Wochen	283,6	177,5	0,36

9.1.2.8 Vergleich der Entnahmezeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten

Tab. 55MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation Haut
innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnah-
mezeitpunkten (IHCF mit α-SMA)

	Entnahmezeitpunkt nach	Mittelwert	Standardabweichung
	Ligation		
Lumenanzahl	3 Tage	268	89
	5 Tage	284	37
	7 Tage	272	63
	14 Tage	291	66
Lumenfläche in µm ²	3 Tage	3987,5	2160
	5 Tage	4215,7	1176,1
	7 Tage	3525,7	1498,9
	14 Tage	4090,4	3228,2

Tab. 56Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeitpunk-
ten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-16	31	1
	7Tage	-4	31	1
	14Tage	-22	31	1
5Tage	7Tage	12, 6	31	1
	14Tage	-6,1	31	1
7Tage	14Tage	-18, 7	31	1

Tab. 57Paarweiser Vergleich der Lumenfläche in μ m² für die Lokalisation Haut inner-
halb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahme-
zeitpunkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α -SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-228,2	1019,7	1
	7Tage	461,8	1019,7	1
	14Tage	-102,9	1019,7	1
5Tage	7Tage	690	1019,7	1
	14Tage	125,3	1019,7	1
7Tage	14Tage	-564,8	1019,7	1

- 9.1.2.9 Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten
- Tab. 58MW und SD von Lumenanzahl und Lumenfläche in μ m² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit nicht transfektierten Fibroblasten nach
Entnahmezeitpunkten (IHCF mit α -SMA)

	r		
	Entnahmezeitpunkt nach	Mittelwert	Standardabweichung
	Ligation		
Lumenanzahl	3 Tage	72	29
	5 Tage	75	31
	7 Tage	60	40
	14 Tage	62	21
Lumenfläche µm²	3 Tage	1036,7	552,6
	5 Tage	1064,6	181,8
	7 Tage	914,2	331,6
	14 Tage	1458,5	950,4

Tab. 59Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeit-
punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-3	14	1
	7Tage	12	14	1
	14Tage	10	14	1
5Tage	7Tage	15	14	1
	14Tage	13	14	1
7Tage	14Tage	-2	14	1

Tab. 60Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Kontrollgruppe mit nicht transfektierten Fibroblasten nach Entnahmezeit-
punkten bei Anpassung für Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sia.
3Tage	5Tage	-27,9	274	1
	7Tage	122,5	274	1
	14Tage	-421,9	274	0,8
5Tage	7Tage	150,4	274	1
	14Tage	-394	274	0,96
7Tage	14Tage	-544	274	0,33

9.1.2.10 Vergleich der Entnahmezeitpunkt für die Lokalisation Haut innerhalb der Kontrollgruppe mit PBS

Tab. 61MW und SD von Lumenanzahl und Lumenfläche in μm² für die Lokalisation Haut
innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten (IHCF mit α-
SMA)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	252	123
	5 Tage	273	85
	7 Tage	224	112
	14 Tage	238	78
Lumenfläche in µm²	3 Tage	3632,2	2147,1
	5 Tage	4248,5	2589,2
	7 Tage	3796,2	2642,4
	14 Tage	3913, 3	1655,6

Tab. 62Paarweiser Vergleich der Lumenanzahl für die Lokalisation Haut innerhalb der
Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für Mehr-
fachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-21	48	1
	7Tage	27	48	1
	14Tage	14	48	1
5Tage	7Tage	48	48	1
	14Tage	35	48	1
7Tage	14Tage	-13	48	1

Tab. 63Paarweiser Vergleich der Lumenfläche in μm^2 für die Lokalisation Haut inner-
halb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α -SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-616,3	1081,1	1
	7Tage	-164	1081,1	1
	14Tage	-281	1081,1	1
5Tage	7Tage	452,3	1081,1	1
	14Tage	335,3	1081,1	1
7Tage	14Tage	-117	1081,1	1

- 9.1.2.11 Vergleich der Entnahmezeitpunkt für die Lokalisation M. gracilis innerhalb der Kontrollgruppe mit PBS
- Tab. 64MW und SD von Lumenanzahl und Lumenfläche in μ m² für die Lokalisation M.
gracilis innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten (IHCF
mit α -SMA)

	Entnahmezeitpunkt nach Ligation	Mittelwert	Standardabweichung
Lumenanzahl	3 Tage	34	16
	5 Tage	39	11
	7 Tage	32	14
	14 Tage	43	25
Lumenfläche in µm²	3 Tage	1531,7	419
	5 Tage	1404,3	343
	7 Tage	1531,7	554,6
	14 Tage	1304,3	515,8

Tab. 65Paarweiser Vergleich der Lumenanzahl für die Lokalisation M. gracilis innerhalb
der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpassung für
Mehrfachvergleich: Bonferroni (IHCF mit α-SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	-4	8	1
	7Tage	2	8	1
	14Tage	-8	8	1
5Tage	7Tage	6	8	1
	14Tage	-4	8	1
7Tage	14Tage	-11	8	1

Tab. 66Paarweiser Vergleich der Lumenfläche in μm^2 für die Lokalisation M. gracilis
innerhalb der Kontrollgruppe mit PBS nach Entnahmezeitpunkten bei Anpas-
sung für Mehrfachvergleich: Bonferroni (IHCF mit α -SMA)

Entnahmezeitpunkt (I)	Entnahmezeitpunkt (J)	Mittlere Differenz (I-J)	Standardfehler	Sig.
3Tage	5Tage	127,4	219,5	1
	7Tage	0	219,5	1
	14Tage	227,5	219,5	1
5Tage	7Tage	-127,4	219,5	1
	14Tage	100	219,5	1
7Tage	14Tage	227,5	219,5	1

9.2 Versuchsprotokoll

Immunhistochemische Färbung von Kryoschnitten mit Anti α-SMA und Anti CD31

1. Aufgabenstellung: Arbeitsprotokoll zur Immunhistochemischen Färbung von Kryoschnitten

2. Materialien Geräte:

- Objektträger Superfrost Plus (Gerhard Menzel GmbH)
- Mikrotom Klinge C35 (Feather)
- TissueTek Kryomedium (Cat. Nr. 4583, Sakura)
- 24 x 60 mm Deckgläschen (Menzel Gläser)
- Messzylinder, Küvetten, Pipetten, pH-Meter, Labor Wage, Kryostat

3. Chemikalien und Lösungen:

- 10x Tris Puffer (Stammlösung) 60,5g Tris in 70ml A.d. lösen auf 1000ml mit A.d. auffüllen, dann 90g NaCl lösen, pH Wert auf 7,6 mit 37% HCl einstellen.
- Gebrauchsfertige TBS Verdünnen der Stock Lösung 10x Tris Puffer 1:10 + 0,2 – 0,5ml Tween 20, pH Wert auf 7,6 einstellen
- Saures Hämalaun nach Mayer (Merck) 150ml Mayers Hämalaun auf 100ml A.d. auffüllen, filtrieren, wöchentlich bis zweiwöchentlich erneuern
- DAB Liquid (K3468; DAKO) 1 Tropfen (20 µl) DAB Chromogen im 1ml von Substrat Puffer lösen
- Antibody Diluent (S2022; DAKO)
- 5% Rabbit Serum (X 0902; DAKO) 50µl Serum + 1ml TBS
- Erster Antikörper:
 - (1) α-SMA: monoclonal mouse anti human smooth muscle actin (M0851;DAKO) 1:50 Verdünnung mit Antibody Diluent
 - (2) CD31: monoclonal goat anti CD31 (FC-1506, DAKO) oder monoclonal mouse anti CD31 (TLD-3A12, DAKO)
- Zweiter Antikörper: biotinisierter sekundärer Antikörper, rabbit anti mouse IgG (E 0464; DAKO) 1:100 Verdünnung mit TBS
- Streptavidin HRP Komplex (Cat. Nr. 900 000 02; BioFx Laboratories) 1:1000
 Verdünnung mit TBS

- VectaMount Mounting Medium (H-5000; Vector Laboratories)
- Aceton

4. Durchführung

(1) Zur Herstellung der Kryo-Gewebeschnitte wurden die Gewebeproben direkt nach der Entnahme in Flüssigen Stickstoff für 10 min gefroren und anschließen in Tissue Tek eingebettet und bei -80°C gelagert. Die Kryoschnitte wurden auf einem Gefriermikrotom mit einer Dicke von 10µm angefertigt und auf einen beschichteten Objektträger überführt. Die Schnitte wurden 30 min bei Raumtemperatur getrocknet und mit einem Wachsstift zur besseren Durchführbarkeit der Färbung eingekreist.

(2)	Fixierung mit eiskaltem Aceton	10 min (-20 °C)
(3)	PBS	1x 10 min (RT)
(4)	5 % Rabbit Serum	30 min (RT)
(5)	Inkubation mit 1. Antikörper 1:50 in TBS	über Nacht (4 °C)
(6)	Waschen in TBS	3x 5 min (RT)
(7)	Inkubation mit dem 2. Antikörper 1:100 in Tris	60 min (RT)
(8)	Waschen in TBS	3x 5 min
(9)	HRP – Komplex 1:1000 in TBS	30 min (RT)
(10)	Waschen in TBS	3x 5 min
(11)	DAB Substrat	ca. 10 min
(12)	Waschen mit A.d.	1x 5 min
(13)	Gegenfärbung mit Hämalaun	ca. 5 min
(14)	Bläuen in Leitungswasser	2 min
(15)	Waschen in A.d.	2 min
(16)	Eindeckeln mit VectaMount	

(RT=Raumtemperatur)

Erstellungsdatum: 02.08.2010; Autor: Maia Mtsariashvili; Experimentelle Mund-, Kiefer-und Gesichtschirurgie

9.3 TNM Klassifikation

TNM classification	Tumor features
TX	Primary tumor* cannot be evaluated
Т0	No primary tumor found
Tis	Carcinoma in situ **
T1	Tumor 2 cm or less in greatest diameter ***
T2	Tumor 2-5 cm in greatest diameter
Т3	Tumor >5cm in greatest diameter
Τ4	Tumor involves deep structures such as skeletal muscle, cartilage or bone
NX	Regional lymph nodes cannot be evaluated
N0	No regional lymph node metastases
N1	Regional lymph node metastases
MX	Presence of distant lymph node metastases cannot be evaluated
M0	No distant lymph node metastases
M1	Distant lymph node metastases

 Table 1:
 TNM classification of cutaneous squamous cell carcinoma

* In the case of multiple simultaneous tumors, the tumor with the highest T category is classified and the number of distinct tumors given in brackets, e.g. T2.

** Tis (Carcinoma in situ): Metastasis is not possible.

*** T1-4 (Invasive SCC): The tumor is capable of being locally destructive, involving skeletal muscle, cartilage and bone, as well as of metastasis. The local destruction is reflected in the T4 category. As T category increases, the risk of metastasis increased, but this clinical scheme only gives a rough estimate of metastatic potential.

Grafik im Original entnommen aus: Breuninger et al. 2008.

9.4 UICC Stadium

Stage	Primary tumor	Lymph nodes	Distant metastases
Stage 0	Tis	N0	M0
Stage I	T1	N0	M0
Stage II	Τ2	N0	M0
	Т3	N0	M0
Stage III	T4	N0	M0
	Any T	N1	M0
Stage IV	Any T	Any N	M1

Table 2: Staging of squamous cell carcinoma (UICC 2002)

Grafik im Original entnommen aus: Breuninger et al. 2008.

9.5 Lebenslauf

Persönliche Daten

Name:	Rhea Machlitt, geb. Mansel	
Geboren am:	3. April 1989	
Familienstand:	verheiratet	
Anschrift:	07745 Jena, Tatzendpromenade 41	

Schulbildung

08/1999 - 08/2007 Herder-Gymnasium Nordhausen

Studium

- 10/2007 07/2009 Vorklinisches Studium an der Friedrich-Schiller-Universität Jena
- 10/2009 07/2012 Klinisches Studium an der Friedrich-Schiller-Universität Jena
- 08/2012 07/2013 Praktisches Jahr im Universitätsklinikum Jena
- 08/2013 12/2013 Zweites Staatsexamen Humanmedizin
- Ab 01/2014 Assistenzärztin an der Klinik und Poliklinik für Mund-, Kiefer- und Gesichtschirurgie der Universitätsklinik Jena

Unterschrift des Verfassers

Ehrenwörtliche Erklärung

Hiermit erkläre ich, dass mir die Promotionsordnung der Medizinischen Fakultät der Friedrich-Schiller-Universität bekannt ist, ich die Dissertation selbst angefertigt habe und alle von mir benutzten Hilfsmittel, persönlichen Mitteilungen und Quellen in meiner Arbeit angegeben sind, mich folgende Personen bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts unterstützt haben: Herr Prof. Dr. Dr. Schultze-Mosgau, Frau Dr. Müller, Herr Dr. Walther, meinen Eltern, meinen Mann, die Hilfe eines Promotionsberaters nicht in Anspruch genommen wurde und dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Arbeiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen, dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere wissenschaftliche Prüfung eingereicht habe und dass ich die gleiche, eine in wesentlichen Teilen ähnliche oder eine andere Abhandlung nicht bei einer anderen Hochschule als Dissertation eingereicht habe.

Ort, Datum

Unterschrift des Verfassers