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On limit point and limit circle

classification for PT symmetric

operators

Tomas Ya. Azizov∗and Carsten Trunk

Abstract

A prominent class of PT -symmetric Hamiltonians is

H :=
1

2
p2 + x2(ix)N , for x ∈ Γ

for some nonnegative number N . The associated eigenvalue problem is
defined on a contour Γ in a specific area in the complex plane (Stokes
wedges), see [3, 5]. In this short note we consider the case N = 2 only.
Here we elaborate the relationship between Stokes lines and Stokes wedges
and well-known limit point/limit circle criteria from [11, 6, 10].
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1 Introduction

In this paper we consider the quantum system described by the Hamiltonian

H =
1

2m
p2 − x4, (1.1)

where g is real and positive, see [4] (or [3] with N = 4). The Hamiltonian (1.1)
is of particular interest because the corresponding −ϕ4 quantum field theory
might be a good model for describing the dynamics of the Higgs sector of the
standard model as the −ϕ4 theory is asymptotically free and thus nontrivial,
cf. [4] and the references therein. Consider the one-dimensional Schrödinger
eigenvalue problem (where we assume, for simplicity, all constants equal to one)

− y′′(z)− z4y(z) = λy(z), z ∈ Γ, (1.2)
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associated with the non-Hermitian Hamiltonian in (1.1). Here, λ ∈ C and the
number z runs along a complex contour Γ which is within a Stokes wedge (for
details we refer to Section 2). In the situation considered here, the Stokes wedge
does not include the real-x axis. We will not use the same complex contour that
Jones and Mateo employed in their operator analysis of the Hamiltonian (1.1)
in [8]. Instead we use a more simple contour which is not as smooth as the one
used in [4, 8]. In this short note, we associate with (1.1) an operator in a L2(R)
space with some boundary conditions. Moreover, we determine the cases when
the expression (1.1) is in limit point or limit circle case. This classification is
due to [11]; for a more recent refinement see [6, 10].

2 Limit point and limit circle classification

Recall (see, e.g., [3, 4]) that the curve Γ is located in two Stokes wedges and
tends to infinity in each of these wedges. A Stokes wedge is an open sector in
the complex plane with vertex zero. In the situation considered here (N=4), the
complex plane decomposes into six sectors, each with vertex zero, angle π

3 , and
with a boundary contained in the set of all complex numbers with

arg z ∈ {0, π
3
,
2π

3
, π,

4π

3
,
5π

3
}.

To be more explicit: In the case considered here, we have six Stokes wedges Sj ,
j = 1, . . . , 6, defined by

Sj =
{
z ∈ C : (j − 1)

π

3
< arg z < j

π

3

}
.

According to the rules imposed by PT -symmetry, the contour Γ has to satisfy
some symmetry assumptions, i.e., Γ is assumed to be located in

S1 ∪ S3 =

{
z ∈ C : 0 < arg z <

π

3
or

2π

3
< arg z < π

}
. (2.1)

However, in this note we will also consider the case when Γ coincides with some
Stokes line: Γ ⊂ {z ∈ C : arg z ∈ {π

3 ,
2π
3 }}.

Let ϕ with 0 < ϕ ≤ π
3 . Here (for simplicity) we assume that Γ is given by

Γ := {xeiϕsgn x : x ∈ R}.

Note that 0 < ϕ < π
3 corresponds to the case that Γ is contained in a Stokes

wedge. This case is usually assumed, cf. [3, 4, 5, 8, 9] whereas ϕ = π
3 corresponds

to the case that Γ coincides with some Stokes lines.

Our approach starts with the idea of Mostafazadeh in [9] to map the problem
(1.2) back onto the real axis using a real parametrization. Here (contrary to
[9]) we use the following parametrization z : R → C,

z(x) := xeiϕsgnx
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Then y solves (1.2) for z ̸= 0 if and only if w, w(x) := y(z(x)), solves

−e−2iϕw′′(x)− e4iϕx4w(x) = λw(x) if x > 0, (2.2)

−e2iϕw′′(x)− e−4iϕx4w(x) = λw(x) if x < 0. (2.3)

We define for a complex number α the operator Aα with domain domAα in
L2(R). The domain domAα consists of all w ∈ L2(R) which are locally abso-
lutely continuous on R such that w′ is locally absolutely continuous on R \ {0}
with

Aαw ∈ L2(R) and w′(0+) = αw′(0−).

For w ∈ domAα we define Aαw in the following way:

Aαw :=

{
−e−2iϕw′′(x)− e4iϕx4w(x) if x > 0,
−e2iϕw′′(x)− e−4iϕx4w(x) if x < 0.

The two (linearly independent) solutions y± of (2.2) satisfy as x → ∞ (see, e.g.,
[7, pg. 58])

y±(x) ∼
[
e−4iϕs(x)

]−1/4
exp

(
±
∫ ∞

0

Re s(t)1/2dt

)
with s(x) := −e6iϕx4 − e2iϕλ. We use the notation f(x) ∼ g(x) to mean that
f(x)/g(x) → 1 as x → ∞ The same holds for the two solutions of (2.3) (as
x → −∞) which is easily seen by replacing x by −x. We have

Re s(t)1/2 ∼ −t2 sin 3ϕ.

The following theorem is the main result of this note. It is a consequence of
the above observations and follows from the classification given in [11] (see also
[6, 10]).

Theorem 2.1. (i) If 0 < ϕ < π
3 , then (2.2) and (2.3) are in limit point case.

In particular this implies that one solution of (2.2) is not in L2(R+) and
that one solution of (2.3) is not in L2(R−).

(ii) If ϕ = π
3 , then (2.2) and (2.3) in limit circle case. In particular this

implies that both solutions of (2.2) are in L2(R+) and that both solution
of (2.3) are in L2(R−).

Theorem 2.1 allows the following mathematical interpretation: If Γ coincides
with a Stokes line, then (2.2) and (2.3) are in limit circle case. If Γ is contained
in a Stokes wedge, then (2.2) and (2.3) are in limit circle case.

3 Point spectrum of Aα in the limit circle case

In the case Γ coincides with a Stokes line, both solutions of (2.2) are in L2(R+)
and that both solution of (2.3) are in L2(R−). It is easily seen, that there exist
a linear combination of these solutions which is in domAα and the following
theorem follows.
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Theorem 3.1. Assume that Γ coincides with a Stokes line. Then the point
spectrum σp(Aα) of Aα coincides with the complex plane,

σp(Aα) = C.

In the situation of Theorem 3.1 a boundary condition is missing. In order
to avoid the situation in Theorem 3.1, one has to impose so-called boundary
conditions at ±∞, see e.g., [1, 2].
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