Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 14/03

On limit point and limit circle classification for PT symmetric operators

Tomas Ya. Azizov and Carsten Trunk

Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677 69-3621
Fax: +49 3677 69-3270
http://www.tu-ilmenau.de/math/

On limit point and limit circle classification for $\mathcal{P} \mathcal{T}$ symmetric operators

Tomas Ya. Azizov*and Carsten Trunk

Abstract

A prominent class of $\mathcal{P} \mathcal{T}$-symmetric Hamiltonians is $$
H:=\frac{1}{2} p^{2}+x^{2}(i x)^{N}, \quad \text { for } x \in \Gamma
$$ for some nonnegative number N. The associated eigenvalue problem is defined on a contour Γ in a specific area in the complex plane (Stokes wedges), see $[3,5]$. In this short note we consider the case $N=2$ only. Here we elaborate the relationship between Stokes lines and Stokes wedges and well-known limit point/limit circle criteria from [11, 6, 10].

Keywords: non-Hermitian Hamiltonian, Stokes wedges, limit point, limit circle, $\mathcal{P} \mathcal{T}$ symmetric operator, spectrum, eigenvalues

1 Introduction

In this paper we consider the quantum system described by the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 m} p^{2}-x^{4} \tag{1.1}
\end{equation*}
$$

where g is real and positive, see [4] (or [3] with $N=4$). The Hamiltonian (1.1) is of particular interest because the corresponding $-\phi^{4}$ quantum field theory might be a good model for describing the dynamics of the Higgs sector of the standard model as the $-\phi^{4}$ theory is asymptotically free and thus nontrivial, cf. [4] and the references therein. Consider the one-dimensional Schrödinger eigenvalue problem (where we assume, for simplicity, all constants equal to one)

$$
\begin{equation*}
-y^{\prime \prime}(z)-z^{4} y(z)=\lambda y(z), \quad z \in \Gamma \tag{1.2}
\end{equation*}
$$

[^0]associated with the non-Hermitian Hamiltonian in (1.1). Here, $\lambda \in \mathbb{C}$ and the number z runs along a complex contour Γ which is within a Stokes wedge (for details we refer to Section 2). In the situation considered here, the Stokes wedge does not include the real- x axis. We will not use the same complex contour that Jones and Mateo employed in their operator analysis of the Hamiltonian (1.1) in [8]. Instead we use a more simple contour which is not as smooth as the one used in $[4,8]$. In this short note, we associate with (1.1) an operator in a $L^{2}(\mathbb{R})$ space with some boundary conditions. Moreover, we determine the cases when the expression (1.1) is in limit point or limit circle case. This classification is due to [11]; for a more recent refinement see [6, 10].

2 Limit point and limit circle classification

Recall (see, e.g., $[3,4]$) that the curve Γ is located in two Stokes wedges and tends to infinity in each of these wedges. A Stokes wedge is an open sector in the complex plane with vertex zero. In the situation considered here $(N=4)$, the complex plane decomposes into six sectors, each with vertex zero, angle $\frac{\pi}{3}$, and with a boundary contained in the set of all complex numbers with

$$
\arg z \in\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3}\right\} .
$$

To be more explicit: In the case considered here, we have six Stokes wedges S_{j}, $j=1, \ldots, 6$, defined by

$$
S_{j}=\left\{z \in \mathbb{C}:(j-1) \frac{\pi}{3}<\arg z<j \frac{\pi}{3}\right\}
$$

According to the rules imposed by $\mathcal{P} \mathcal{T}$-symmetry, the contour Γ has to satisfy some symmetry assumptions, i.e., Γ is assumed to be located in

$$
\begin{equation*}
S_{1} \cup S_{3}=\left\{z \in \mathbb{C}: 0<\arg z<\frac{\pi}{3} \text { or } \frac{2 \pi}{3}<\arg z<\pi\right\} . \tag{2.1}
\end{equation*}
$$

However, in this note we will also consider the case when Γ coincides with some Stokes line: $\Gamma \subset\left\{z \in \mathbb{C}: \arg z \in\left\{\frac{\pi}{3}, \frac{2 \pi}{3}\right\}\right\}$.

Let ϕ with $0<\phi \leq \frac{\pi}{3}$. Here (for simplicity) we assume that Γ is given by

$$
\Gamma:=\left\{x e^{i \phi \operatorname{sgn} x}: x \in \mathbb{R}\right\}
$$

Note that $0<\phi<\frac{\pi}{3}$ corresponds to the case that Γ is contained in a Stokes wedge. This case is usually assumed, cf. $[3,4,5,8,9]$ whereas $\phi=\frac{\pi}{3}$ corresponds to the case that Γ coincides with some Stokes lines.

Our approach starts with the idea of Mostafazadeh in [9] to map the problem (1.2) back onto the real axis using a real parametrization. Here (contrary to [9]) we use the following parametrization $z: \mathbb{R} \rightarrow \mathbb{C}$,

$$
z(x):=x e^{i \phi \operatorname{sgn} x}
$$

Then y solves (1.2) for $z \neq 0$ if and only if $w, w(x):=y(z(x))$, solves

$$
\begin{array}{ll}
-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x)=\lambda w(x) & \text { if } x>0 \\
-e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x)=\lambda w(x) & \text { if } x<0 \tag{2.3}
\end{array}
$$

We define for a complex number α the operator A_{α} with domain dom A_{α} in $L^{2}(\mathbb{R})$. The domain $\operatorname{dom} A_{\alpha}$ consists of all $w \in L^{2}(\mathbb{R})$ which are locally absolutely continuous on \mathbb{R} such that w^{\prime} is locally absolutely continuous on $\mathbb{R} \backslash\{0\}$ with

$$
A_{\alpha} w \in L^{2}(\mathbb{R}) \quad \text { and } \quad w^{\prime}(0+)=\alpha w^{\prime}(0-)
$$

For $w \in \operatorname{dom} A_{\alpha}$ we define $A_{\alpha} w$ in the following way:

$$
A_{\alpha} w:= \begin{cases}-e^{-2 i \phi} w^{\prime \prime}(x)-e^{4 i \phi} x^{4} w(x) & \text { if } x>0 \\ -e^{2 i \phi} w^{\prime \prime}(x)-e^{-4 i \phi} x^{4} w(x) & \text { if } x<0\end{cases}
$$

The two (linearly independent) solutions $y^{ \pm}$of (2.2) satisfy as $x \rightarrow \infty$ (see, e.g., [7, pg. 58])

$$
y^{ \pm}(x) \sim\left[e^{-4 i \phi} s(x)\right]^{-1 / 4} \exp \left(\pm \int_{0}^{\infty} \operatorname{Re} s(t)^{1 / 2} d t\right)
$$

with $s(x):=-e^{6 i \phi} x^{4}-e^{2 i \phi} \lambda$. We use the notation $f(x) \sim g(x)$ to mean that $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$ The same holds for the two solutions of (2.3) (as $x \rightarrow-\infty)$ which is easily seen by replacing x by $-x$. We have

$$
\operatorname{Re} s(t)^{1 / 2} \sim-t^{2} \sin 3 \phi
$$

The following theorem is the main result of this note. It is a consequence of the above observations and follows from the classification given in [11] (see also [6, 10]).
Theorem 2.1. (i) If $0<\phi<\frac{\pi}{3}$, then (2.2) and (2.3) are in limit point case. In particular this implies that one solution of (2.2) is not in $L^{2}\left(\mathbb{R}^{+}\right)$and that one solution of (2.3) is not in $L^{2}\left(\mathbb{R}^{-}\right)$.
(ii) If $\phi=\frac{\pi}{3}$, then (2.2) and (2.3) in limit circle case. In particular this implies that both solutions of (2.2) are in $L^{2}\left(\mathbb{R}^{+}\right)$and that both solution of (2.3) are in $L^{2}\left(\mathbb{R}^{-}\right)$.

Theorem 2.1 allows the following mathematical interpretation: If Γ coincides with a Stokes line, then (2.2) and (2.3) are in limit circle case. If Γ is contained in a Stokes wedge, then (2.2) and (2.3) are in limit circle case.

3 Point spectrum of A_{α} in the limit circle case

In the case Γ coincides with a Stokes line, both solutions of (2.2) are in $L^{2}\left(\mathbb{R}^{+}\right)$ and that both solution of (2.3) are in $L^{2}\left(\mathbb{R}^{-}\right)$. It is easily seen, that there exist a linear combination of these solutions which is in $\operatorname{dom} A_{\alpha}$ and the following theorem follows.

Theorem 3.1. Assume that Γ coincides with a Stokes line. Then the point spectrum $\sigma_{p}\left(A_{\alpha}\right)$ of A_{α} coincides with the complex plane,

$$
\sigma_{p}\left(A_{\alpha}\right)=\mathbb{C}
$$

In the situation of Theorem 3.1 a boundary condition is missing. In order to avoid the situation in Theorem 3.1, one has to impose so-called boundary conditions at $\pm \infty$, see e.g., [1, 2].

References

[1] T.Ya. Azizov and C. Trunk, On domains of $\mathcal{P} \mathcal{T}$ symmetric operators related to $-y^{\prime \prime}(x)+(-1)^{n} x^{2 n} y(x)$, J. Phys. A: Math. Theor. 43 (2010), 175303.
[2] T.Ya. Azizov und C. Trunk, $\mathcal{P} \mathcal{T}$ symmetric, Hermitian and \mathcal{P}-self-adjoint operators related to potentials in $\mathcal{P} \mathcal{T}$ quantum mechanic, J. Math. Phys. 53 (2012), 012109.
[3] C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{P} \mathcal{T}$ symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246.
[4] C.M. Bender, D.C. Brody, J.-H. Chen, H.F. Jones, K.A. Milton and M.C. Ogilvie, Equivalence of a complex $\mathcal{P} \mathcal{T}$-symmetric quartic Hamiltonian and a Hermitian quartic Hamiltonian with an anomaly, Phys. Rev. D 74 (2006), 025016.
[5] C.M. Bender, D.C. Brody and H.F. Jones, Complex extension of quantum mechanics Phys. Rev. Lett. 89 (2002) 270401.
[6] B.M. Brown, D.K.R. McCormack, W.D. Evans and M. Plum, On the spectrum of second-order differential operators with complex coefficients, Proc. R. Soc. A 455 (1999), 1235-1257.
[7] M.S.P. Eastham, The asymptotic solution of linear differential systems, London Mathematical Society, Monograph 4, 1989.
[8] H.F. Jones and J. Mateo, Equivalent Hermitian Hamiltonian for the nonHermitian $-x^{4}$ potential, Phys. Rev. D 73 (2006), 085002.
[9] A. Mostafazadeh, Pseudo-Hermitian description of $\mathcal{P} \mathcal{T}$-symmetric systems defined on a complex contour, J. Phys. A 38 (2005), 3213.
[10] J. Qi, H. Sun and Z. Zheng, Classification of Sturm-Liouville differential equations with complex coefficients and operator realizations, Proc. R. Soc. A 467 (2011), 1835-1850.
[11] A.R. Sims, Secondary conditions for linear differential operators of the second order, J. Math. Mech. 6 (1957), 247-285.

Contact information

Tomas Ya. Azizov
Voronezh State University, Faculty of Mathematics
Universitetskaya pl. 1, 394006 Voronezh, Russia
azizov@math.vsu.ru

Carsten Trunk

Institut für Mathematik, Technische Universität Ilmenau
Postfach 100565, D-98684 Ilmenau, Germany
carsten.trunk@tu-ilmenau.de

[^0]: *The research of T.Ya. Azizov was supported by grant 12-01-00102-a of the RFBR.

