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Abstract

In the beginning of the 20th century, scientists realized the necessity of purifying
enzymes to unravel their mechanistic nature. A century and tremendous progresses
in the natural sciences later, molecular and particularly systems biology became fun-
damental pillars of modern biology. Next to descriptive studies, it enables the quan-
titative description of diverse biological processes. Along the advances in the field,
natural scientists developed an increasing interest in theoretical models comprising
the dynamics of biological systems. They allow not only a deeper understanding,
but also a prediction of the behavior of the investigated process or species. In
the first part of my thesis, I present my contribution to the field of studying the
dynamics of biological phenomena. I present fundamental issues arising, when ne-
glecting substrate inhibition in kinetic modeling. Furthermore, I describe a model
that considers experimental data to simulate the transition of normal proliferating
into cellular senescent cells. Cellular senescence is an irreversible cell cycle arrested
state, which is believed to prevent uncontrolled cell growth.

In recent years, the size and complexity of published metabolic networks increased
notably, however, given the advent of massive data generating high-throughput se-
quencing methods and the successful annotation of complete genomes. Since these
large-scaled models are more comprehensive, they commonly prohibit a mechanis-
tic modeling approach, due to missing kinetic data or computational infeasibility.
In order to analyze such models, nevertheless, constraint-based methods proved to
be suitable tools. In general, these methods are based on known physiological re-
strictions, stoichiometric information and network structure and do not require the
specification of single kinetic parameter values. In the second part of my thesis,
I contribute three studies to constraint-based modeling. I describe the established
concept of elementary flux modes, which resemble non-decomposable and theoret-
ically feasible pathways of metabolic networks. I demonstrate the procedure at a
small example network of photosynthate metabolism. Subsequently, I present the
analysis of the nitrogen metabolism network of Chlamydomonas reinhardtii with re-
spect to circadian regulation, which gives rise to about three million elementary flux
modes. Despite this large, yet still computable set, obtaining all elementary flux
modes of larger, up to genome-scale metabolic models is commonly not feasible.
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Flux balance analysis, a linear programing based method, circumvents this prob-
lem, by calculating single optimized fluxes. In the last study of this thesis, I present
a comprehensive work on metabolic costs of amino acid and protein production in
Escherichia coli. These costs were both manually calculated as well as based on a
flux balance analysis of an E. coli genome-scale metabolic model.

I conclude with discussing the conducted studies in respect of the chosen anal-
ysis methods and the respective current knowledge base. Both approaches, either
dynamic or constraint-based modeling, proved to be suitable strategies to describe
biological processes at different levels. Whereas dynamic modeling allowed for a
precise description of the temporal behavior of biological species, constraint-based
modeling enabled studies, where the complexity of the investigated phenomena pro-
hibits kinetic modeling. Finally, I give an outlook to further modeling possibilities,
which were not considered in this thesis.



Zusammenfassung

Zu Beginn des 20. Jahrhunderts erkannten Wissenschaftler die Notwendigkeit, Enzy-
me aufreinigen zu müssen, um ihrer mechanistischen Natur auf den Grund zu gehen.
Ein Jahrhundert mit bedeutenden Fortschritten in den Biowissenschaften später,
entwickelte sich sowohl die Molekular- als auch die Systembiologie zu bedeutenden
Grundsäulen der modernen Biologie. Diese erlaubt neben rein deskriptiven Studi-
en auch quantitative Beschreibungen von biologischen Prozessen. Darüber hinaus
entwickelten die Wissenschaftler ein gesteigertes Interesse an theoretischen Model-
len, welche die Dynamiken von biologischen Systemen beschreiben können. Solche
Modelle erlauben nicht nur ein tieferes Verständnis, sondern auch eine präzisere
Vorhersage des Verhaltens der untersuchten Prozesse oder Spezies. Im ersten Teil
meiner Dissertation präsentiere ich meinen Beitrag zu Dynamikstudien von biologi-
schen Phänomenen. Ich stelle eine Arbeit vor, die das Vernachlässigen von Substrat-
kompetition in kinetischen Modellen und dessen Auswirkungen darlegt. Desweiteren
beleuchte ich unter Berücksichtigung von experimentellen Daten die Überführung
von proliferierenden zu seneszenten Zellen. Zelluläre Seneszenz ist ein unumkehr-
barer zellzyklusarretierter Zustand und daher ein potenzieller Mechanismus zum
Schutz gegen unkontrolliertes Zellwachstum.

Jedoch führten in jüngerer Zeit moderne Verfahren der Hochdurchsatzsequenzie-
rung und die steigende Anzahl von annotierten Genomen zu einer erhöhten Komple-
xität publizierter metabolischer Netzwerke. Der bedeutend größere Umfang dieser
Modelle verhindert in der Regel einen mechanistischen Modellierungsansatz, da ki-
netische Daten meist nicht komplett verfügbar sind oder der Rechenaufwand zur Si-
mulation zu hoch ist. Um diese Modelle trotzdem vernünftig analysieren zu können,
hat sich die Anwendung von auf Einschränkungen basierenden Methoden bewährt.
Diese Methoden beruhen auf bekannten physiologischen Beschränkungen, stöchio-
metrischer Information und der Netzwerkstruktur an sich. Dabei benötigen sie keine
Information über kinetische Parameter. Im zweiten Teil meiner Dissertation, stelle
ich drei Arbeiten vor, die diesem Methodenbereich zuzuordnen sind. Ich beschreibe
das etablierte Konzept der elementaren Flussmoden, welche nicht zerlegbare und
theoretisch mögliche Flüsse in metabolischen Netzwerken repräsentieren. Ich de-
monstriere die Nützlichkeit der Methode anhand eines kleinen Beispielnetzwerkes
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des photosyntetischen Metabolimus. Anschließend stelle ich eine Arbeit vor, die
sich mit dem Stickstoffmetabolismus der Grünalge Chlamydomonas reinhardtii un-
ter Beachtung von zirkadianer Regulation befasst. Diese Arbeit resultierte in der
Berechnung und Analyse von ca. drei Millionen elementaren Flussmoden. Nichtsde-
stotrotz ist die Berechnung aller elementarer Flussmoden in einem noch größeren
bzw. genomskaligen metabolischen Modell in der Regel nicht möglich. Die Flussbi-
lanzanalyse, ein weiteres auf Einschränkungen basierendes Verfahren, umgeht dieses
Problem, indem sie einzelne optimierte Flüsse berechnet. In der letzten Studie die-
ser Dissertation stelle ich eine umfassende Arbeit vor, die die metabolischen Kosten
von Aminosäure- und Proteinproduktion in Escherichia coli darlegt. Neben einer
manuellen Berechnung, basieren die ermittelten Kosten auf einer Flussbilanzanalyse
des genomskaligen Modells von E. coli.

Ich schließe die Arbeit mit einer Diskussion der vorgestellten Studien im Kon-
text der gewählten Analysemethode und des jeweiligen aktuellen Wissensstandes
ab. Beide Ansätze, sowohl die dynamische Modellierung, als auch die Nutzung von
auf Einschränkungen basierenden Methoden, erwiesen sich als günstige Strategi-
en, um biologische Prozesse auf unterschiedlichen Ebenen beschreiben zu können.
Während die dynamische Modellierung eine präzise Beschreibung von temporalem
Verhalten biologischer Spezies erlaubte, ermöglichten auf Einschränkungen beruhen-
de Methoden Studien, deren Komplexität eine kinetische Modellierung verhindern.
Zuletzt gebe ich einen Ausblick auf weitere Modellierungsmöglickeiten, welche im
Rahmen dieser Arbeit keine Verwendung fanden.
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INTRODUCTION 1

1. Introduction
Truth is ever to be found in
simplicity, and not in the
multiplicity and confusion of
things.

(Sir Isaac Newton)

Although nowadays the study of dynamics is essential and most promising in
nearly all aspects of natural sciences, in the beginning it was a habitat for physicists
only. In his most influential work Philosophiæ Naturalis Principia Mathematica,
Isaac Newton presented his laws of motion in 1687 and applied them to the study
of planet movements. Together with the concept of differential equations, scientists
were soon able to study natures temporal behavior in many facets.

Until the beginning of the 20th century, however, complex biochemical processes
were extremely difficult to be realistically mapped onto mathematical models. Con-
sequently, scientists began to purify enzymes to mathematically clarify their cat-
alytic activity. In 1902, Victor Henri mathematically formulated the influence of
substrate concentration on an intermediary enzyme-substrate complex in a catalytic
reaction (Henri 1902, 1903). In 1913, Leonor Michaelis and Maud Menten rediscov-
ered and elaborated on Henris equation (Michaelis and Menten 1913), which is why
its today’s correct reference should be Henri-Michaelis-Menten equation. Together
with the steady state modification, introduced by George Briggs and John Haldane
(1925), virtually all kinetic velocity studies were based on these two enzyme de-
scriptions until the 1950’s. In 1956, Edward King and Carl Altman introduced a
schematic method to derive a rate law under the steady state assumption, regard-
less of the number of enzyme-containing intermediate complexes (King and Altman
1956), allowing for the easy deduction of bi- or terreactant kinetics. Finally, writing
sophisticated kinetic rate equations became conveniently easy with the proposed
nomenclature by William Cleland (Cleland 1963).

A decade before, Watson and Crick discovered the structure of DNA (Watson and



INTRODUCTION 2

(a) (b)

Figure 1.1.: Scheme of the explanatory capacity. By iteratively refining and testing
model parameters (Fig. 1.1a, adapted from Kitano (2002)), experimental
and theoretical efforts can be combined resulting in a model, which po-
tentially allows for an increasing comprehension of the studied phenomena
(Fig. 1.1b).

Crick 1953). This groundbreaking discovery, the increasing interest in metabolic
fluxes and by a great extent the development of metabolic control theory (allow-
ing for the determination of flux control, Kacser and Burns (1973); Heinrich and
Rapoport (1974)) eventually led to the rise of systems biology as a new field in the
life sciences.

In general, systems biology endeavors to combine discovery and hypothesis-driven
science (Ideker et al. 2001; Kitano 2002). Whereas the former led to among oth-
ers, the complete sequencing of the human genome (Lander et al. 2001; Consortium
2004), the latter is dedicated to create testable hypotheses (Ideker et al. 2001).
Its overall aim centers around the intricate connection of experimental efforts and
computational methods leading to an iterative process of experiment and model rec-
onciliation (cf. Fig. 1.1a). At the end of such an endeavor, the studied phenomena
can be comprehended by both, experimental observations and theoretical predic-
tions. In general, this leads to a more comprehensive picture than if studied only
by experiment or modeling (see also scheme in Fig. 1.1b).

Along the rise of sophisticated metabolic models up to genome-scale, however,
determining realistic and tissue specific accompanying kinetic parameters became
even more difficult than before. This is primarily due to a common lack of compre-
hensive kinetic data, especially in the context of specific tissues. Together with the
advent of next-generation high-throughput sequencing techniques (Margulies et al.
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Figure 1.2.: Modell availability scheme. The narrowing width of subsequent trape-
zoids indicates the bottleneck in deriving models of increasing predictive
power based on the layers below.

2005; Soon et al. 2013), the disbalance between data and model availability increased
even more. Naturally, shortly after the first reconstructed metabolic model had been
analyzed and published (Edwards and Palsson 1999), the number of further pub-
lished models steadily increased. This led to metabolic reconstructions of more than
sixty organisms (Kim et al. 2012), including genome-scale models of Escherichia coli
(Feist et al. 2007) and Homo sapiens (Duarte et al. 2007; Thiele et al. 2013), among
others. The speed of upcoming raw data from next-generation sequencing projects
(Weckwerth 2011; Scholz et al. 2012) surpassed the model generation rate, never-
theless, due to its highly automated processing. Thus, the bottleneck of scientific
discovery gradually shifted from data generation to model derivation and evaluation.
In fact, this led to a whole cascade of bottlenecks ranging from the generation of
genome data to annotated genomes towards realistic kinetic modeling (see scheme
at Fig. 1.2).

Consequently, to assess the quality of genome-scaled models, tools are required,
which are appropriate to cope with large-scale metabolic networks. These tools or
methods should potentially deliver valuable solutions in affordable time given sim-
plifying, yet reasonable assumptions. Among these methods elementary flux mode
analysis and flux balance analysis emerged as most promising tools. In short, they
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are based on the steady state assumption and tackle questions arising in connec-
tion with metabolic networks, such as: What is the theoretical maximum yield of
a certain metabolite based on the availability of another metabolite? or What is
the optimal energy or biomass production rate with respect to certain physiological
constraints? Thus, these methods are qualified to answer some of the questions
regarding the dynamics of a system, particularly concerning its steady state pheno-
type.

In summary, the field of systems biology provides more raw data at decreasing
costs than ever before and challenges bioinformatics to select the most promising
analysis or model construction tools for a given study project. In fact, metabolic
models up to genome-scale require efficient analyses and prohibit a comprehensive
kinetic simulation due to a lack of data and computational power. Specific biolog-
ical processes can be studied very well with kinetic modeling, nevertheless, if the
problem is moderately scaled and public databases allow for the deduction of kinetic
parameters.

In my thesis, I present several techniques and tools, in order to study complex
biological phenomena. I will start with introducing the concept of dynamic modeling
via differential equations. Next, I will explain the concepts of elementary flux modes
and flux balance analysis that were used in order to investigate models, which are
inaccessible to classic kinetic simulations.

1.1. Dynamic modeling
A promising method to approach the dynamics of biological processes or mechanisms
is the application of differential equations. Both, Leibniz and Newton independently
developed the fundamental principles of differential equations in the second half of
the 17th century1. They are since then of widespread use in the study of the dynamics
of various observations ranging from the natural sciences to technology. A differen-
tial equation is an equation of a function of one or more variables including not only
the function itself, but also its derivatives of any orders. Differential equations can
be furthermore categorized into ordinary and partial differential equations. Whereas
the former involves only derivatives of one independent variable, the latter contains
more than one independent variable. The conducted studies presented in chapter 2

1In fact, Newton mistrusted Leibniz and accused him of having replicated his ideas, which led to
one of the most famous controversies in science history (cf. Hall (1980)).
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comprise investigations of temporal behaviors and therefore could be modeled by
ordinary differential equations (ODEs). Next, ODEs with time t as the independent
variable will be introduced in more detail. Let ẋi ≡ dxi/dt, (i = 1, . . . , n), then a
system of ordinary differential equations can be described by:

ẋ1 = f1(x1, . . . , xn)
... (1)

ẋn = fn(x1, . . . , xn).

In biology, the variables xi typically reflect the concentrations of molecular com-
pounds or of populations in a given (eco-)system. The functions fi are determined
in the context of the studied problem. An ODE system is said to be linear, if the
right hand side of ẋi contains only xi to the first power, otherwise nonlinear. In
general, nonlinear systems are more complex and usually difficult to solve analyti-
cally. The functions f of the ODE system (1) are termed autonomous, since they
are not explicitly dependent on time as e. g. given by ẋ = f(x, t). Such systems
are usually more complicated to solve, since more information is required (x and
t) to predict the systems behavior in the future. To circumvent this issue, typi-
cally, an additional equation is added to an n-dimensional given system. whereby
the time-dependency is described by setting xn+1 = t and ẋn+1 = 1. Thus, any
time-dependent or nonautonomous n-dimensional system can be rewritten as an
(n+1)-dimensional autonomous system.

Since in molecular biology, most systems commonly contain numerous reaction
species, these reactions can be described by the deterministic form of ODEs. If the
number of involved species of the reactant system is sufficiently high, mass action
kinetics provide a satisfying approximation of the real reaction processes. Based on
mass-action kinetics, elementary chemical reactions can be represented by an ODE
(cf. Heinrich and Schuster (1996); Strogatz (2000)), as e. g.:

∅ k−→ S ⇔ Ṡ = k,

S
k−→ ∅⇔ Ṡ = −kS,

2S1 + S2
k−→ P ⇔


Ṡ1 = −2S2

1S2

Ṡ2 = −kS2
1S2

Ṗ = kS2
1S2.
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(a) Exemplary trajectories (b) Scheme of hysteresis

Figure 1.3.: Phase plane and hysteresis concept. (a) Depicted are exemplary trajec-
tory courses starting at two different initial value pairs (x1(0), x2(0)), The
curve or trajectory starting at given initial values represents the function
solutions x1(t) and x2(t) in the n-dimensional solution space (here, n=2)
or phase plane. (b) Scheme of hysteresis curve in parameter space. By
increasing q the lower stable fixed point vanishes beyond q” and the sys-
tem variables “jump” into the remaining stable fixed point (upper branch).
Once, in the large-amplitude branch, the system stays at the fixed point,
even if q is reduced again, but not beyond q’. This “robustness” against
parameter variation is termed hysteresis.

Although simple, such rate equations can be challenging to be analyzed analytically.
The situation is even more problematic with nonlinear rate equations, which can
be derived based on the assumption of elementary mass action reactions. Typical
representatives of nonlinear rate equations are Henry-Michaelis-Menten kinetics, Hill
kinetics or kinetics describing bi-molecular reaction mechanisms. Thus, an analytical
analysis is often infeasible, which is why such systems are commonly solved by
numerical algorithms allowing e. g. for time-course studies. Examples of solving
algorithms may be given by, but are not limited to, the Runge-Kutta or Hooke &
Jeeves procedures (Runge 1895; Kutta 1901; Hooke and Jeeves 1961).

Notably, even without actually solving the system, it is still possible to derive
meaningful properties by e. g. geometric inspecting the solution of the system given
by trajectories in the phase space. A trajectory describes the progress of the system
or model variables x1, . . . , xn in the n-dimensional phase space (see also Fig. 1.3a).

Furthermore, either by a graphical analysis of the vector field (spanned e. g. by
ẋ over x) or by an analytical analysis the properties of ODE systems can be fur-
ther characterized. At points where ẋ = 0, there is no change in concentration,
population number or any other described quantity. These points are called fixed
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points and are distinguishable as unstable (repellors), stable (attractors) or half-
stable fixed points. The latter is a mixed form of the first two, as it is repelling
system quantities from one and attracting from the opposite direction. A fourth
possibility is given by neutrally stable fixed points, where perturbations are neither
declining nor accumulating (a nearby trajectory is neither attracted nor repelled).
This fixed point type is typical for mechanical systems in the absence of friction,
such as in harmonic oscillators.

Whenever the stability of a fixed point is changed due to a change in parameter
values, a bifurcation occurs, wherefore such points are also called bifurcation points.
Bifurcations occur in various forms, e. g. saddle-node or transcritical bifurcations.
A saddle-node bifurcation is characterized as a parameter variation that lets two
fixed points move towards, collide and destroy each other. In other situations,
however, a fixed point must exist for all possible parameter values, but may change
its stability as parameters are varied. Such a mechanism is typically represented
by transcritical bifurcations. Going into more detail of bifurcation types is beyond
the scope of this thesis, but might be obtained by studying e. g. Strogatz (2000)
or Jetschke (2009). One important property in bifurcation analysis arises when
multiple stable states exists. In such cases, the variation of parameters can invoke
jumps or hysteresis of the modeled quantities as exemplified in Fig. 1.3b. In general,
hysteresis characterizes a system, whose current stable state is not only dependent
on its current parameter values, but also from the past states of the system. Upon
a sufficient change in parameter values the current stable state vanishes, causing
the system to rapidly change into another possible stable state. Notably, the system
cannot immediately turn back by solely inverting the source of that change. Instead,
in order to switch back to the original state the parameters need to be reversely
changed beyond the range, where multiple stable states exist, if possible. Thus, the
system “remembers“ its past history. The study Schäuble et al. (2012), presented
and described in more detail in chapter 2, makes use of this behavior in order to
model different cell fates upon different amount of stress. Given high stress doses,
our model switches from proliferation and recovery of healthy or mildly damaged
cells to transforming cells into cellular senescence. Among other things, we show
that the hysteresis property is critical to our model in order to explain the sudden
change of cell fates upon altered stress amounts.
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1.2. Constraint-based methods
When studying dynamic systems in biology and particularly metabolic pathways,
two main problems arise regularly: The intrinsic parameters of a model are often not
well determined or the simulation of a model may be computationally infeasible. The
reasons for the first issue are manifold and arise from the context of the model itself.
In genome-scale models it is often simply not possible to derive all kinetic parameters
associated to the model reactions, since it requires a vast amount of experimental lab
work and time, which is commonly not available. In other cases, kinetic parameters
may not be identifiable. Here, existing experimental tools deliver measurements of
limited resolution or identify parameters values, which differ notably from an in
vivo situation (Teusink et al. 2000). Further sophisticated biological mechanisms
might require even more advanced sensitive measurements. An example is given by
the attempt to measure the concentration ratio of the redox pair of nicotinamide
adenine dinucleotide, NAD+ and NADH: In a basic environment, NAD+ is extremely
unstable, whereas NADH is unstable in an acidic milieu. Thus, both metabolites
cannot be extracted in parallel, which makes it difficult to determine the exact
ratio of these molecules by extraction methods alone. Beside these measurement
issues, a model structure itself might simply not allow for identifying a parameter.
A more complete and detailed discussion on identifiability analysis and its potential
is provided by Raue et al. (2010).

The second problem arises primarily from the emergence of high-throughput se-
quence analysis tools and the maturation of early models into comprehensive up
to genome-scale metabolic models. To analyze these models, fitting or simulating
hundreds of species with an even higher number of variable parameters is required.
In consequence, the computational demand for parameter estimation increases ex-
ponentially with model size and thus, becomes computationally infeasible.

Both problems, lack of knowledge and computational infeasibility, asked for the
development or application of alternative approaches, which circumvent these obsta-
cles. A common possibility is to assume reasonable simplifications that allow for an
efficient computation, but still provide results. In the 1980’s Seressiotis and Bailey
pioneered by proposing an algorithm capable of computing a metabolic pathway,
based on the concept of artificial intelligence (Seressiotis and Bailey 1986). Later,
Mavrovouniotis et al. (1990) presented an improved method that explored all the
possibilities of a given network. Both algorithms had in common that the computed
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Figure 1.4.: Scheme of feasible flux cone for FBA and EFM analysis. The cone
is spanned by the stoichiometric balance of intermediate metabolites as well
as thermodynamic admissible reaction directions. The solution of an FBA
optimization is restricted to be one of the corners of the flux cone, which
corresponds to the optimized function value. In contrast, EFM analysis
allows every valid linear combination of fluxes within the convex cone.

solution is in agreement to the stoichiometric constraints of the studied reaction
system, although not adequately supported by an underlying theory. The study
of network invariants (Reder 1988) and extreme currents (Clarke 1988; Schuster
and Schuster 1993) led soon to the concept of extreme pathways and T-invariants,
among others. Finally, the concepts of elementary flux modes (EFMs, Schuster
(1994)) and flux balance analysis (FBA, Varma and Palsson (1994)) emerged as
approaches, which are categorized as constraint-based methods. Both methods have
fundamental assumptions in common: All metabolite species contained in the net-
work model are assumed to operate at steady state. Moreover, irreversible reactions
can only be used in the thermodynamical feasible direction. More formally, these
assumptions read:

SV = 0, (2)

V irr ≥ 0 (3)

with S being the stoichiometric matrix representation of all metabolites (rows) tak-
ing part in the model comprised reactions (columns). The vector V =

(
V rev V irr

)T
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is the sorted vector of reversible and irreversible feasible fluxes through the associated
reactions in S. A nonzero coefficient of S at entry (i, j) resembles either consump-
tion (negative coefficient) or production (positive coefficient) of the ith metabolite
taking part in the jth reaction. If the coefficient is zero, the jth reaction is nei-
ther consuming nor producing the ith metabolite. Eq. (2) ensures that at steady
state, all internal metabolite concentrations in a given metabolic system are bal-
anced and hence, are produced and consumed in the same amount by the system
intrinsic reactions. Thus, they do not accumulate or deplete over the investigated
time frame. The inequality (3) ensures that irreversible reactions can only be used
in the thermodynamical feasible direction.

Both constraints, stoichiometric balancing and feasible flux directions, restrict an
allowed flux distribution to lie within a convex cone of the solution space (Fig. 1.4).
Since the studies presented in chapter 3 of this thesis are based either on EFM or
FBA analysis, both methods will be introduced in more detail further on.

1.2.1. Elementary Flux Modes

In principal, EFMs serve to decompose a given metabolic network in well defined
and distinct minimal set of reactions that can operate at steady state (Schuster
1994; Schuster et al. 1999, 2000).

Essential to the concept of EFMs is the classification of metabolites as internal
or external metabolites. Internal metabolites comprise intermediary components of
metabolic systems and have to be in agreement with the steady state assumption
(2). On the contrary, external metabolites can take part in reactions not included
in the model and are allowed to vary in their concentrations. Hence, they form
the source and the sink of the model. The categorization of internal or external
metabolites has a noteworthy impact on the number of computed EFMs and thus,
on the computation time (see also Fig. 1.5).

To allow for the computation of EFMs it is assumed that the metabolites of a
given system are homogeneously distributed throughout the model. The time-course
of the metabolites X1, . . . , Xn can then be described by:

Ẋ = SV (X, p) (4)

with S being the stoichiometric matrix and V being a vector of net reaction rates,
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Figure 1.5.: Exemplified relationship between the number of reactions and the
number of valid EFMs. The number of EFMs is given in logarithmic
scale. The different magnitudes of EFM sets for models with approximately
an equal number of reactions arise from different interconnectivity and num-
ber of internal metabolites of the respective models.

dependent on the metabolite X and parameters p, respectively. Since S comprises
only internal metabolites, Eq. (4) can be simplified according to the steady state
condition, as represented by Eq. (2) (Schuster 1994):

SV (X, p) = 0. (5)

In fact, dynamic processes are naturally never completely constant over time. This
assumption is still largely true in the approximate context of network models, as
long as no intermediate concentration varies significantly in the studied time frame.

The basis for EFM computation is the determination of the nullspace of the stoi-
chiometric matrix S. The nullspace, also known as kernel, describes the Eucledian
subspace of all vectors V satisfying Eq. (5). The calculation of basis vectors cor-
responding to the nullspace already infers potential system pathways. However, a
set of basis vectors does not account for irreversible reactions and is not unique by
definition. This implies that desired pathways may not be found by a basis vector
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analysis alone. Note that a reaction is also determined as being irreversible, if at
any time point one reaction direction has a surpassing flux compared to the opposite
direction. Furthermore, modeling gene knockouts or enzyme deficiencies could infer
a loss of basis vectors, although still feasible fluxes might exist.

EFMs are designed to circumvent the limitations given by a set of basis vectors.
First, the subvector V irr of V needs to satisfy the inequality (3). The relations (3)
and (5) then form a linear (in-)equality system, where the solutions to V are freely
scalable. Thus, a flux mode is defined as follows:

F = {V ∈ Rr | V = λV ∗, λ > 0}, (6)

where F is a set of flux modes, r is the number of reactions and Rr is the r-
dimensional Euclidean solution space. The constant λ is an arbitrary scaling factor,
which is commonly chosen as small as possible, for the sake of simplicity. The
nonzero vector V ∗ is compliant with the following properties:

(i) sign restriction: Inequality (3) is fulfilled

(ii) steady state condition: V ∗ is in agreement with Eq. (5)

Still, the flux modes are not minimal and thus, not elementary. To ensure non-de-
composability, V ∗ needs to be further restricted:

(iii) non-decomposability: No vector V̂ with the following properties exists:

• V̂ satisfies (i) and (ii)

• V ∗i = 0→ V̂i = 0 and it exists a j fulfilling: V̂j = 0 and V̂j 6= V ∗j

Therefore, a flux mode F is called elementary, if no valid vector V̂ exists, which
contains more zero-positions or less active reactions than V ∗. Finally, an EFM can
be defined as:

Definition 1 An elementary flux mode is a minimal set of reactions in a metabolic
network that can operate at steady state.

In contrast to basis vectors, EFMs are unique up to a scaling by λ > 0. Consequently,
a complete set of EFMs corresponds to all possible minimal reaction pathways of a
system. Naturally, feasible fluxes of a system can also be a superposition of EFMs:

V =
∑

k

φke
(k), φ > 0, (7)
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where e(k) are feasible EFMs and φ ensures that the linear combination of EFMs
satisfy the inequality (3).

Considering the formalism above, a noncyclic EFM can be understood as a non-
decomposable path through a model converting one set of external metabolites into
another, by consuming and producing a balanced set of internal metabolites. These
information can be used to conduct e. g. molar yield studies (cf. Poolman et al.
(2003); Trinh et al. (2008)). Nonzero cyclic EFMs are a special case of EFMs, where
internal metabolites are transformed into each other in a circular manner and arise
e. g. from futile cycles, where energy such as ATP is dissipated (Gebauer et al.
2012). A more thorough description of the concept of EFMs is given in Schäuble
et al. (2011b), chapter 3.

Fig. 1.6 represents a simple instructive model, demonstrating the definition of
EFMs within a given network. The model, as defined by a model scheme and its
corresponding stoichiometric matrix (Fig. 1.6a and 1.6b) gives rise to four EFMs
(Fig. 1.6c-1.6f). Note that the complete network as represented by Fig. 1.6a is not a
valid EFM itself, since it represents a linear combination of the four possible EFMs
and can be decomposed.

A number of tools were developed, capable of EFM computation. The first al-
gorithms were based on Gaussian elimination (Schuster 1994; Pfeiffer et al. 1999).
After a number of improvements (Wagner 2004; Gagneur and Klamt 2004; Klamt
et al. 2005; Wagner and Urbanczik 2005), the currently most efficient algorithm
to enumerate all EFMs is given by Terzer and Stelling (2008). It makes use of a
parallel computation of bit pattern trees to significantly speed up the calculation
process. Despite the effort, the computation of all EFMs corresponding to notably
large genome-scale metabolic models remains infeasible, regardless of the applied
algorithm. Particularly genome-scaled networks comprise a multitude of branched
pathways, which cause a combinatorial explosion of feasible minimal routes (see also
Fig. 1.5). Consequently, the computation of EFMs increases exponentially with the
network size. This becomes problematic when considering the increasing number of
large or genome-scale metabolic networks that have been published in recent years
(Kim et al. 2012). Here, either calculating a valid sample (Kaleta et al. 2009b) or
enumerating the shortest valid EFMs (de Figueiredo et al. 2009) can circumvent this
problem at the cost of deriving only a subset of valid EFMs.
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(a) Scheme (b) Stoichiometric matrix

(c) EFM1 (d) EFM2

(e) EFM3 (f) EFM4

Figure 1.6.: Introductory model and associated EFMs. (a) Model scheme. Species
M1e, M4e and M5e are external versions of the respective internal metabo-
lites. Co1 and Co2 resemble cofactors of reaction 1, which are external as
well and need thus, not to be balanced. Arrows depict irreversible and re-
versible reactions. (b) Stoichiometric matrix associated to Fig. 1.6a. (c-f)
All possible EFMs of the given model.

1.2.2. Flux Balance Analysis

Next to EFM analysis, flux balance analysis (FBA) can be considered one of the
fundamental approaches of systems biology (Varma and Palsson 1994; Papin et al.
2004; Westerhoff and Palsson 2004).

When Fell and Small studied pathways in adipose tissues responsible for trans-
forming glucose to fat in 1986, they and others started the successful story of FBA
(Fell and Small 1986). They realized the effectiveness of an earlier suggestion made
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by Watson (Watson 1984, 1986) who proposed to tackle possible biochemical fluxes
by the means of linear programming. This approach is reasonable, since mass bal-
ance as well as capacity constraints restrict the solution to lie within a convex cone
(cf. Fig. 1.4). The mass balance constraint is imposed directly by the stoichio-
metric matrix representation of the given network, whereas the capacity constraint
is related to the lower and upper bounds of all reactions. Moreover, by manipu-
lating the lower and upper bounds, uptake or excretion rates can be defined for
specific metabolites (Savinell and Palsson 1992a). These can comprise ingredients
of a given growth media or a desired product and can be matched to experimentally
determined fluxes (Savinell and Palsson 1992b).

Having a reconstructed model at hand and adding sufficient knowledge about a
feasible flux range, FBA can be used to predict flux through any objective reaction.
A common objective is the optimization of growth. This can be quantified by the
biomass function, which constitutes the yield at which metabolic compounds such
as amino or nucleic acids, lipids and proteins are converted into biomass. More
generally, the biomass objective function describes the rate at which all of the re-
quired biomass precursors are produced in the correct proportions (Feist and Palsson
2010). Altogether, the metabolic reactions are thus, defined by a system of linear
equations and (in-)equality constraints. To compute an FBA a linear program is
typically formulated as follows:

max cTV,

SV = 0, (8)

lb ≤ V ≤ lb.

Let n be the number of reactions contained in a given model. The objective vector
c of length n is defined as a vector of weights, corresponding to the contribution
of each reaction to the objective function. Vector V of length n represents the
optimized flux through all reactions with respect to vector c. All feasible lower
and upper bounds of the systems reactions are defined in the vectors lb and ub of
length n, respectively. For irreversible reactions, the corresponding coefficients of
lb are zero. Commonly, vector c is designed to maximize growth yield (maximizing
the output of the biomass function). The linear programming formulation (8) is
compliant with the steady state and irreversibility conditions as given by Eq. (2)
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and the inequality (3) and can be solved efficiently by algorithms based on e. g. the
simplex (Dantzig et al. 1955) or interior point approach (Karmarkar 1984). Note
that the running time of the simplex approach is exponential at worst (compared
to a polynomial runtime of interior point methods), but proved to be practically
efficient in most cases. In fact, FBA is thus applicable to large-scaled metabolic
networks up to genome-scale, in contrast to e. g. enumerating all EFMs.

Therefore it is of no surprise that FBA has been extensively used to test recon-
structed metabolic models (Feist et al. (2007); Boyle and Morgan (2009); Oberhardt
et al. (2009); Thiele et al. (2013)). Furthermore, FBA has been extended in several
ways to account e. g. for dynamics of a metabolic network (Mahadevan et al. 2002),
variable optimal fluxes (Mahadevan and Schilling 2003), minimization of metabolic
adjustments (MOMA, Segrè et al. (2002)) or for flux balance in microbial commu-
nities (Khandelwal et al. 2013). These extension are valuable, since particularly
the classic approach of optimizing one objective function is questionable (Schuster
et al. 2008; Feist and Palsson 2010). Obviously, microorganisms and more complex
organisms are not simply optimizing one objective given an ever changing natural
environment. In contrast, several optimal flux distributions potentially exist, which
reflect e. g. robustness to nutritional availability or the capability of optimizing
metabolism in communities of multiple bacteria (Schuetz et al. 2012).

1.3. Biological background
Taken together, modeling dynamic models with differential equations or constraint-
based methods enables the study of a broad range of biological organisms and pro-
cesses.

In chapter 2 and 3, I present five different studies, whereby two focus on the
theoretical aspects of kinetic (Schäuble et al. (2013), chapter 2) and EFM based
modeling (Schäuble et al. (2011b), chapter 3). In the remaining three studies, I
applied the presented methods to study cellular senescence in primary human fi-
broblasts, circadian regulation in the green algae Chlamydomonas reinhardtii and
metabolic costs of amino acid and protein production in Escherichia coli. In the
remainder of this chapter, I will introduce the biological background of these studies
in more detail.
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1.3.1. Cellular senescence, the irreversible cell cycle arrest

DNA damage and mutations are thought to be key events in the manifestation of
biological aging. The driving causes for prolonging life or longevity are still unknown,
however, whereas particularly cellular maintenance systems are thought to recognize
and repair damage, if possible (Vijg 2008).

It has been long known that in vitro cells show a limited replicative capacity, which
ends up in a permanent and irreversible cell cycle lock (Hayflick and Moorhead 1961).
This phenomena, termed cellular senescence, is regularly encountered along aging
(Campisi and Sedivy 2009) and is known to potentially delay aging related diseases
(Baker et al. 2011). In this context, cellular senescence might also play a tumor
suppressing role (Krizhanovsky et al. 2008). Unique to senescent cells is their active
metabolism alongside an indifference to mitogenic or apoptotic stimuli, despite their
inability to proliferate (Chaturvedi et al. 1999; Marcotte et al. 2004). Senescent cells
show notable changes in their cytoskeleton and feature an increased cell size, accom-
panied with additional numbers of lysosomes, vacuoles and mitochondria (Cristofalo
et al. 2004). From a molecular perspective, specific biomarkers have been established
and connected to cellular senescence (Dimri et al. 1995; Narita et al. 2003; Kuilman
et al. 2010; Sikora et al. 2011). Among others, these include senescence-associated
β-galactosidase (SA-β-Gal, Dimri et al. (1995)), telomere dysfunction-induced foci
(TIF) (Herbig et al. 2004; Jeyapalan et al. 2007) and heterochromatine foci (SAHF).
The latter are known to occur in primary human cell types after up-regulation of p-
16, but not in all of them (Narita et al. 2003; Kosar et al. 2011). Moreover, a notable
up-regulation of the cell cycle regulators p16, p21 and p53 is known (Robles and
Adami 1998; Ressler et al. 2006). Finally, senescent cells express matrix-degrading
proteases as well as inflammatory chemokines and cytokines, which are known as
senescence-messaging secretome (SMS) or senescence-associated secretory pheno-
type (SASP) (Shelton et al. 1999; Acosta et al. 2008; Kuilman and Peeper 2009;
Coppé et al. 2010).

Essential for the induction of senescence is a functioning cellular DNA damage
response system and several pathways, including p53-p21 and p16-pRb (Kuilman
et al. 2010). On the other hand, telomere-dependent cellular senescence is induced
by an increased DNA damage response at dysfunctional telomeres (Herbig et al.
2004). Here, uncapped telomeres accumulate increased levels of phosphorylated
H2AX, as well as several repair factors (d’Adda di Fagagna et al. 2003; Takai et al.
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2003; Herbig et al. 2004; Jeyapalan et al. 2007; Nakamura et al. 2009). These fac-
tors initiate a number of downstream processes, leading to, among others, the p53
induced transcription of p21, which ultimately results in cell cycle arrest (Herbig
et al. (2004); Gire et al. (2004); Goodarzi et al. (2008), reviewed in Ben-Porath and
Weinberg (2004, 2005); Shay and Wright (2005); Cosme-Blanco and Chang (2008)).
Whereas the p53-p21 pathway is always activated by cells with damaged telom-
eres, the p16-pRb pathway alone is not sufficient to induce DNA damage associated
senescence (Herbig et al. 2004). Interestingly, DNA damaging treatments like irra-
diation trigger the same response cascade, if the DNA damage surpasses a certain
threshold (Di Leonardo et al. 1994; Serrano et al. 1997; Robles and Adami 1998;
Toussaint et al. 2000; Hwang 2002; Zhao et al. 2004; Debacq-Chainiaux et al. 2005;
Havelka et al. 2007; Mallette et al. 2007). Overexpression of activated oncogenes,
such as RAS, triggers oncogene-induced senescence (Serrano et al. 1997; Dimri et al.
2000; Pearson et al. 2000), which in turn is primarily dependent on the p16-pRb
pathway (Pantoja and Serrano 1999). Due to their low or absent levels of p16, how-
ever, primary human fibroblasts are resistant to RAS-induced senescence (Benanti
and Galloway 2004). Taken together, cellular senescence is understood as a system-
atic reaction to various stress inducing events, including DNA damage and telomere
shorting (Rodier and Campisi 2011).

SA-β-Gal is generally considered to be a good quantitative senescence marker,
particularly when combined with Ki67-negativity (absence of proliferation) and ob-
servation of developed DNA damage foci (Lawless et al. 2010). The activity of
SA-β-Gal is detectable at high levels in senescent cells, but not in pre-senescent
or reversibly cell cycle arrested (quiescent) mammalian cells (Dimri et al. 1995).
Moreover, the marker can be induced by artificially triggering a cell cycle arrest in
immortal cell lines, where otherwise the marker would be undetectable (Dimri et al.
1995).

Due to accumulating damage, the decreasing speed and finally stop of prolifera-
tion, an aged cell population can in fact be considered a mixture of proliferating, cell
cycle arrested and senescent cells (Faragher et al. 1993; Kill et al. 1994). The cell
cycle inhibitors p16 and p21 are suitable markers to reflect the arrested cell state,
whereas SA-β-Gal potentially reflects a senescent cell. Together with the growth
curves, these markers enable the study of mixed cell populations at any timepoint,
which is the basis for the presented model in Schäuble et al. (2012) in chapter 2.



INTRODUCTION 19

1.3.2. The green algae Chlamydomonas reinhardtii as model
organism for nitrogen assimilation

Although an EFM based analysis results in a set of theoretically possible minimal
fluxes, kinetic parameters are not considered. Thus, connecting regulatory events
to EFM analysis is challenging. By including genomic sequence data, the dynamics
of a system can still be investigated with a constraint-based modeling approach. To
demonstrate the value of this procedure, we analyzed the nitrogen uptake system
of the green algae Chlamydomonas reinhardtii in Schäuble et al. (2011a) presented
in chapter 3. Here, we focused on the algae’s capacity of integrating nitrogen into
certain amino acids.

The haploid unicellular green algae is an exceptional model organism and has
been used to study various biological processes such as photosynthetic mechanisms,
microtubule assembly, flagella usage and movement, or mineral nutritions, among
others (Rochaix et al. 1998). Moreover, its sequenced and annotated genome (http:
//www.chlamy.org/) allows for comparative genomics and functional studies.

Common to all phototrophic organisms is the necessity of incorporating inor-
ganic nitrogen compounds into metabolic components, which is a key requisite of
survival and growth (Daniel-Vedele et al. 1998). Although required in great abun-
dances, plants must compete for nitrogen in the soil with (a-)biotic processes, such
as microbial consumption or erosion. In consequence, plants have evolved efficient
mechanisms to acquire different nitrogen sources already at low concentrations. Be-
sides, whenever plants are harvested, soil nitrogen is removed and thus, remains
only available at lower concentrations. Considering nitrate, whose concentration in
natural soil can vary from 10 μM to 100 mM, it is either stored in the vacuoles or
further reduced. Assimilating nitrogen from nitrate involves two transport and two
reduction steps, occurring in the cytosol (nitrate reductase: NO−3 → NO−2 ) and the
chloroplast (nitrite reductase: NO−2 → NH+

4 , cf. Fig. 2, Schäuble et al. (2011a),
chapter 3). Finally, ammonium is incorporated into carbon skeletons via the glu-
tamine or glutamate pathway (Crawford and Arst 1993; Crawford 1995; Lam et al.
1995; Daniel-Vedele et al. 1998). The reducing energy is provided by NAD(P)H
for nitrate reductase and reduced ferredoxin for nitrite reductase. Therefore, in-
corporating nitrogen is not only dependent on its availability in the phototrophic
organism’s environment, but also on sufficiently available energy. This is particularly
challenging for plants at night. Notably, numerous genes and putative transporters

http://www.chlamy.org/
http://www.chlamy.org/
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are involved in nitrogen assimilation of C. reinhardtii. Considering as well that small
quantities of nitrite are toxic and perturb plant growth (Oke 1966), the importance
of sensitive regulation of the nitrogen uptake pathway becomes apparent (Fernández
and Galván 2007).

In fact, the nitrogen metabolism of the green algae is circadian-clock regulated,
which in turn is influenced by the heteromer CHLAMY1, among others. This mRNA
binding factor consists of two subunits, C1 and C3, whereby the latter is well con-
served in humans (Zhao et al. 2004). CHLAMY1 is known to recognize and bind UG
repeats of at least seven repetitions, which are located in the 3’ UTR of a number
of mRNAs of e. g. nitrite reductase or argininosuccinate lyase, both key enzymes in
the nitrogen and arginine pathway, respectively (Mittag 1996; Waltenberger et al.
2001; Zhao et al. 2004). Moreover, by introducing UG-repeat motifs in the 3’ UTR
of reporter luciferase genes, these genes obtain circadian expression (Kiaulehn et al.
2007). The binding activity of CHLAMY1 is circadian-clock controlled, as is indi-
cated by its activity increase at dusk, which decreases again at dawn. Since it has
been shown that the activity of nitrite reductase and UG≥7-repeat reporter con-
structs peak along sunrise, CHLAMY1 is assumed to prevent translation of recog-
nized mRNAs during the night (Iliev et al. 2006; Kiaulehn et al. 2007). Furthermore,
at least the subunit C3 has been shown to interact with further clock components,
highlighting its importance to adjust to daily light and temperature cycles (Dathe
et al. 2012).

To assess the nitrogen uptake capability of C. reinhardtii, we connected the nitro-
gen uptake pathway to energy providing pathways of the central metabolism and
to possible sink pathways of suitable amino acids. To study the influence of cir-
cadian regulation, we considered partial as well as complete translation prevention
of CHLAMY1 affected mRNAs. Although the kinetic parameters of all involved
enzymes are not available, we can still show that the impact of circadian regulation
on C. reinhardtii is substantial.

1.3.3. The microorganism Escherichia coli in a biotechnological
context

Biotechnological applications have been used by mankind already for thousands of
years. In general, biotechnology aims at modifying living organisms in order to
improve various processes, such as milk production, or the cultivation of high yield
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crops. Since the end of the last century, biotechnology significantly advanced with
the advent of genomics and recombinant gene technologies, which allows the mod-
ification and industrial usage of microorganisms. Since Escherichia coli, a Gram-
negative and facultative anaerobic bacteria, is comparably easy to genetically ma-
nipulate, it emerged as one of the most used bacteria to synthesize desired biological
products (Lee 1996). Specifically, E. coli is used for the production of recombinant
proteins, which in turn are essential for medical, technical as well as scientific pur-
poses (Makrides 1996; Baneyx and Mujacic 2004; Kayser et al. 2005; Heizer et al.
2006; Carlson 2007). Moreover, E. coli is extensively used to produce amino acids,
which in turn are used by the pharmaceutical or cosmetical industry or as food
additives (Wendisch et al. 2006; Park and Lee 2010a,b). E. coli’s success in bio-
engineering is also based on the possibility to let it grow to high cell densities,
particularly when providing defined medium with glucose or better, glycerol as car-
bon substrate (Korz et al. 1995; Rinas et al. 1995; Lee 1996; Shiloach and Fass 2005).
On the other hand, at unbalanced conditions, together with an excessive availabil-
ity of carbon sources, E. coli excretes acetate, which can prevent further growth,
once acetate accumulates to toxic concentrations (Luli and Strohl 1990; Wolfe 2005;
Shiloach and Rinas 2009). Acetate at moderate concentrations, however, can also
serve as carbon source (Wolfe 2005).

Thus, from a biotechnological perspective it is of importance to elucidate the pos-
sible yields of desired end-products, like amino acids and proteins based on suitable
major carbon compounds, such as glucose, glycerol or acetate. To allow for an un-
biased prediction of amino acid production capabilities, the complete information
of the entire network should be taken into account. The substantial influence of co-
factors or precursors on metabolic production pathways is only then fully integrated
in computed yield numbers. Therefore, the previously computed numbers, based on
limited models need to be treated with caution (Varma et al. 1993; Burgard and
Maranas 2001). Based on a genome-scale metabolic model (Feist et al. 2007), we
updated these numbers and additionally computed measures of ATP consumption
and per kilodalton costs of flux distributions (Kaleta et al. (2013), chapter 3). By
comparing these numbers across different amino acids, we derived a comprehensive
overview of metabolic costs in E. coli. This can potentially serve to setup further
industrial designs of producing amino acids or proteins in the future.
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2. Dynamic Modelling
Substrate competition and cellular senescence

Chapter summary. This chapter is dedicated to the study of dynamic models
based on ODE modeling approaches. The first study elucidates the impact of sub-
strate competition on kinetic rate laws. We show that certain network structures
result in notable concentration changes of modeled entities, if substrate competition
is ignored. Therefore, our results should influence mechanistic modeling, whenever
one of the comprised study cases are contained in the studied biological process. Fur-
thermore, we derived reversible kinetic rate laws considering substrate competition
that might simplify further studies. In the second study, we included experimental
data of primary human fibroblasts to develop a dynamic model of cellular senescence.
This model differentiates between proliferating, cell cycle arrested and senescent cells
and allows for a quantitative description of respective growth curves. Moreover, by
incorporating experimentally derived data of biomarkers, we estimate the transition
rates between these cellular states. Thereby, our model enables the evaluation of the
specificity of further biomarkers to reflect a particular cellular state.
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1. Introduction

Substrate competition has been reported to have implications
in different biochemical processes, including degradation of poly-
meric carbohydrates [1], plant secondary metabolism [2], meta-
bolic transport [3–5], signal transduction pathways [6] and gene
regulation [7,8]. All these have in common that different substrates
compete for the active site of the same enzyme. Substrate compe-
tition is also used to describe biochemical mechanisms where two
different enzymes compete for the same substrate. L-Arginine, for
example, is a substrate for both nitric oxide synthase and arginase,
and competition between the enzymes plays a role in asthma
development [9]. This type of competition has also been described
as a possible mechanism behind changes in methylation patterns
in cancer cells [10]. While the reaction rates of the latter type of
competition can be described by standard Michaelis–Menten
kinetics (MMK), descriptions of reaction rates of the first type of
substrate competition require some modifications. Surprisingly,
applicable rate laws describing competition between different sub-
strates for the same enzyme are not available for reversible reac-
tions. Although the rate laws described here can be used for

substrate competition in different cellular processes, our examples
will focus on metabolic processes.

For irreversible reactions substrate competition is comparable
to enzyme inhibition. The different substrates can be viewed as
inhibitors of each others reactions, and hence, the mechanism of
substrate competition can be described by adapting the kinetic rate
laws from competitive inhibition. The mechanisms of enzyme inhi-
bition have been thoroughly investigated for decades, and the
kinetics are mostly based on the original reaction rate equation
by Henri, Michaelis and Menten [11–13]. In 1977, Chou and Talaly
published a generalised equation for the analysis of multiple inhib-
itors for various mechanisms of irreversible reactions [14]. Further-
more, they provided general rules for the different inhibition
mechanisms that can be applied to various kinetic rate laws. Ding-
erkus et al. [15] used a rate law that is similar to irreversible MMK
with competitive inhibition to describe the competition between
tryptophan and other amino acids to get across the blood–brain
barrier. Although the reverse transport rate might be low under
physiological conditions, the amino acid transporters are indeed
reversible. Thus, to describe the dynamics of these transport pro-
cesses more accurately, reversible rate laws are required. To our
knowledge, explicit kinetic rate laws that describe steady states
of reversible reactions, which include substrate competition, are
not available in the literature. In contrast to irreversible reactions,
the competitive binding of the product must also be considered for
reversible reactions. So far, only kinetic rate laws for the initial

0014-5793/$36.00 � 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.febslet.2013.06.025

⇑ Corresponding author. Tel.: +47 77646889
E-mail address: ines.heiland@uit.no (I. Heiland).

1 These authors have contributed equally to this work.

FEBS Letters 587 (2013) 2818–2824

journal homepage: www.FEBSLetters .org

DYNAMIC MODELLING 23



velocity in the absence of products have been described [16,17].
However, these rate equations are not suitable for steady state cal-
culations. To close this gap we applied the rules provided by Chou
and Talaly [14] to derive rate laws for reversible reactions, based
on the quasi steady state assumption.

To study the impact of substrate competition, we constructed
three toy models that resemble real pathway scenarios. We used
the models to simulate the impact of substrate competition on:
(i) substrate accumulation over time, (ii) steady state concentra-
tions of intermediates for increasing substrate concentrations,
and (iii) the metabolic capacity of the system. Although it may
be valid to neglect competition in some cases, we show that it is
very difficult to safely judge whether this is appropriate in complex
pathways.

2. Methods

Three generalised toy models were made to study the effect of
substrate competition as a result of enzymes catalysing multiple
reactions in (A) different pathways, (B) different branches within
one pathway or (C) multistep reactions (schemes see Figs. 1–3).
Four versions of each model were set up: the first two models de-
scribe an irreversible mechanism, of which one includes competi-
tion and the other neglecting it. The other two models contain
reversible reactions, again one containing competition and the
other neglecting it. To ensure that the observed effect was due to
competition alone, we standardised the setup of the models. The
input reactions were modelled using mass action kinetics (Eq.
(1)), whereas transitions between intermediate species and output
reactions were modelled using standard Michaelis–Menten kinet-
ics for irreversible (Eq. (2)) and reversible (Eq. (3)) reactions. The
Michaelis–Menten constant (Km) was arbitrarily set to 0.02 mM
and maximal velocity (V) was set to 1 mM/h, for the respective
parameters in all reactions.

v ¼ k1S ð1Þ

v ¼ VS
Km þ S

ð2Þ

v ¼
Vf

S
KS

m
� Vr

P
KP

m

S
KS

m
þ P

KP
m
þ 1

ð3Þ

The full description of all used models can be found in the Supple-
mentary material.

2.1. Substrate competition

Based on the rules described by Chou and Talaly [14] the rate
law for monomolecular irreversible reactions with any number of
competing substrates can be described as follows:

v1 ¼
VS1

Km1 1þ
Xn

i¼2

Si
Kmi

 !
þ S1

ð4Þ

where S1 competes with n-1 substrates S2, . . .,n for the binding site
of the catalysing enzyme. The variables Kmi

describe the Michaelis
constants for the respective substrates Si. An equally simple rela-
tionship could not be found in the literature for reversible reactions.
A general formulation for reversible reactions including competi-
tion between multiple substrates can be deduced by recognising
that not only the substrates but also the products compete for the
binding site of the free enzyme. Thus the Km-values have to be mod-
ified as follows:

Km1 ¼ Km1 1þ
Xn

i¼2

Si

KSi
m

þ Pi

KPi
m

 ! !
ð5Þ

The resulting kinetic rate law for mono-molecular mechanism then
becomes:

v1 ¼
Vf

S1

K
S1
m

þ Vr
P1

K
P1
mXn

i¼1

Si

K
Si
m

þ Pi

K
Pi
m

� �
þ 1

ð6Þ

with S1 and P1 competing with n-1 other substrates S2, . . .,n and n-1
other products P2, . . .,n for the binding site of the catalysing enzyme.

Kinetic rate laws for other reaction mechanisms as well as the
derivation for the mono-molecular reaction (Eq. (6)) can be found
in the Supplementary materials.

2.2. Steady state analysis and time course simulations

Steady state analyses are commonly performed to predict spe-
cies concentrations and reaction rates. To see the effect of compe-
tition on predicted species concentrations, we used COPASI [18] to
analyse the influence of increasing input-species concentrations on
the steady state of the respective toy model. External concentra-
tions were varied from 0.001 to 1 mM with a step size of
0.001 mM. The results for the concentrations at which a steady
state was found were used to calculate the difference between
the corresponding models including or neglecting competition.
The last concentration in the scan that yielded a steady state was
considered to be the metabolic capacity of the model correspond-
ing to the saturating concentration of the system.

Additionally, time course calculations were performed to study
the differences over time. The uptake rate was set to 1 mM/h and
the concentration of the external metabolites Aex and Bex was set
to 0.05 mM.

3. Results

In irreversible reactions substrate competition can be described
by competitive inhibition kinetics by substituting inhibitory
Michaelis–Menten constants KI with the respective Km values of
the competing substrates (see Section 2 for details). This is possible
as reactions with substrate competition and reactions with com-
petitive inhibition both have the same number of competing li-
gands. In reversible reactions, however, both substrates and the
respective products compete for the active binding site of an en-
zyme. The number of compounds that influence enzyme kinetics
is 2n, which is the sum of n competing substrates and the n com-
peting products. In contrast, an irreversible competitive inhibition
describes n ligands influencing the kinetics of an enzyme, as it is
accessible to n-1 inhibitors and one substrate. Hence, substrate
competition in reversible reactions cannot be simulated by rate
laws describing competitive inhibition.

Surprisingly, explicit kinetic rate laws for substrate competition
of reversible reactions were not available in the literature. To de-
rive these rate laws we modified the rule provided for irreversible
competitive inhibition by Chou and Talaly [14]. The modification
was based on the consideration that in reversible reactions both
substrate and product compete for the binding to the active site
of the enzyme (details see Section 2). This modified rule (Eq. (5))
was subsequently applied to derive kinetic rate laws for mono-
and bimolecular reactions of different types (see Eq. (6) and Sup-
plementary material). Our modified rule was proven to be correct
for a monomolecular reaction, by deriving the kinetic rate law with
an independent method (Supplementary material).
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The effect of substrate competition was systematically studied
in metabolic networks by mimicking three different types of sub-
strate competition: competition between substrates in different
pathways (Case A), competition between substrates of different
branches within the same pathway (Case B) and multi-step reac-
tions catalysed consecutively by two alternating enzymes (Case
C). For each case we constructed four models: The first two resem-
ble an irreversible reaction mechanism, where one includes and
one neglects substrate competition. The next two models describe
a reversible reaction scenario, again one including and one

neglecting substrate competition. The models were used to analyse
the effects of competition in simulations, by observing: (i) changes
over time for all substrates before reaching a steady state, (ii)
changes in the actual steady state concentrations of the substrates,
and (iii) changes in saturation levels for the respective pathways.

3.1. Case A – Competition between different pathways

The first scenario comprises two or more independent path-
ways that contain one or more common enzymes or transporters.

A B

C D

E F

Fig. 1. Competition between different pathways. (A, B) Schematic diagram of two independent pathways sharing one common enzyme. One reaction in each branch is
catalysed by the same enzyme (highlighted). The y-axis shows the relative difference in metabolic concentrations over time (C and D) or at steady state (E and F) between the
model considering substrate competition and the model neglecting it. We considered two different sets of reactions. In the left panels (A, C, E) all reactions are irreversible. In
the right panels (B, D, F) all reactions except inflow and outflow reactions (reactions leaving or entering the grey area) are reversible.
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As an example, neutral amino acids are metabolised by indepen-
dent pathways, but depend on common transporters to get across
the cell membrane. Experiments have shown that the competition
between these amino acids for transport across membranes is sig-
nificant [5].

To simulate effects of competition between pathways, we con-
structed two simple linear pathways (see Fig. 1A and B). One reac-
tion in each pathway was set to be catalysed by the same enzyme.
Consequently, its substrates will compete for the active site.

First, we investigated the influence of competition over time by
analysing the accumulation of intermediate substrates (Fig. 1C and
D). The external substrates Aex and Bex were both set to 0.05 mM,

which is above the half saturation points (Km = 0.02 mM) used in
the models. The plots show that neglecting competition led to
underestimation of upstream competing substrate (A1 and B1) con-
centrations and overestimation of final product (A2 and B2) concen-
trations at early time points. In the reversible system, upstream
substrate (A and B) concentrations were also underestimated.

Second, we scanned the dependency of the steady state concen-
tration of the intermediates on the availability of external sub-
strates. Because the two pathways are identical, a scan of
external metabolite Aex will provide the symmetric result of scan-
ning Bex. Therefore, we chose to only scan Aex, and used values from
far below (0.001 mM) to far above (1 mM) the Km values

A

C

E

B

D

F

Fig. 2. Competition within a branched pathway. (A, B) Schematic diagram of a branched pathway. One reaction in each branch is catalysed by the same enzyme (highlighted).
The y-axis shows the relative difference in metabolic concentrations over time (C and D) or at steady state (E and F) between the model considering substrate competition and
the model neglecting it. In the left panels (A, C, E) all reactions are irreversible. In the right panels (B, D, F) all reactions except inflow and outflow reactions (reactions leaving
or entering the grey area) are reversible.
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(0.02 mM), while Bex was kept constant at 0.05 mM. Fig. 1 E shows
that only the concentration of the upstream competing metabo-
lites (A1 and B1) were affected by substrate competition in the irre-
versible scenario.

In the reversible case, on the other hand, all metabolites up-
stream of the competing reaction (A, B, A1 and B1) showed differ-
ences in concentrations between the model including
competition and the one neglecting it (Fig. 1F). In both the irrevers-
ible and the reversible models, neglecting competition led to a de-
crease in the steady state concentration of A1 (and A in the
reversible case) when the availability of external Aex species in-
creased. Thus, with increasing Aex concentrations, A1 predomi-
nantly occupied enzyme E2, resulting in accumulation of B1 (and
B for the reversible case) upstream of the competing reaction.

Finally, we analysed the effects of competition on the metabolic
capacity of the modelled system. The capacity of the system can be
measured by identifying saturation points, beyond which one or

more intermediates accumulate, and steady state can no longer
be achieved. Simulations showed that the metabolic capacity was
lower for models that considered substrate competition (see
Table 1).

3.2. Case B – Competition in a branched pathway

The second scenario is a linear pathway that branches into two
or more consecutive reactions, which lead to different final prod-
ucts (see Fig. 2A and B). The competition between substrates in dif-
ferent branches of a pathway occurs for instance in the tryptophan
pathway. Tryptophan is an essential amino acid in the human diet
and is involved in the synthesis of a variety of important metabo-
lites, such as serotonin or NAD. The enzyme indoleamine-2,3-diox-
ygenase (IDO, EC: 1.13.11.52) catalyses four different reactions in
different branches, and is one of several enzymes that catalyse
multiple reactions in the tryptophan pathway.

A

C

E

B

D

F

Fig. 3. Multistep pathway with alternating enzymes. As in the previous figures, we considered either a pathway with solely irreversible reactions (left panels) or with all
internal reactions being reversible but inflow and outflow reaction being irreversible (right panels). A and B show the respective reaction schemes. The enzymes catalysing
more than one reaction are highlighted. In C and D the relative differences of the final product over time has been calculated. In E and F the differences in steady state
concentration between models that consider substrate competition and models that do not are plotted against the concentration of the external substrate Aex.
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To investigate the effects of competition within one pathway,
we created a toy model where two intermediates in different
branches compete for the enzyme E3 (Fig. 2A and B).

The time-dependent changes of the intermediates of the path-
way are shown in Fig. 2C and D. Investigating the model version
with irreversible reactions, a transient phase needs to be distin-
guished from the state reached asymptotically. In both phases,
neglecting substrate competition has an effect, though in different
directions (see Fig. 2C). In the model with reversible reactions
(Fig. 2D), the production of both A2 and B2 is initially faster in
the model ignoring the substrate competition, since A1, A2 and B2

are connected by reversible reactions and are thus balanced.
By investigating the steady state concentrations, we see that all

metabolites (except A in the irreversible case) are changed when
ignoring substrate competition (Fig. 2E and F), but the effects are
different for irreversible and reversible reactions. Although both
the time dependent behaviour and the steady state concentration
are different between the model considering substrate competition
and model neglecting it, the saturation points for all models are
equal (Table 1).

3.3. Case C – Multistep reactions with alternating enzymes

The last case we studied is a pathway, where multiple consecu-
tive reactions are catalysed by the same enzyme. Prominent exam-
ples can be found in pathways that process polymers, such as
starch and glycogen synthesis and degradation, and fatty acid deg-
radation [19,20,1]. In all these cases, the enzymes accept substrates
of different chain lengths, sometimes with increasing or decreasing
affinities. In the case of fatty acid degradation, several enzymes
process the substrate in an alternating manner. Based on the latter
example, we constructed a toy model with two alternating en-
zymes in a linear pathway (Fig. 3A and B).

In this multistep scenario, the time-dependent simulations
showed that the concentrations of most intermediates was lower
in the models neglecting competition. However, some of them
were transiently higher, including the production of the final prod-
uct A5 (Fig. 3C and D). In contrast, the steady state concentration of
A5 was the same for all models, regardless of substrate competition
(Fig. 3E and F). The steady state concentrations of all other inter-
mediates were lower in the models without competition, since
the intermediates did not compete for the catalytic binding sites.

Finally, the saturation points, and thus the metabolic capacity of
the pathway, was much lower in models with substrate competi-
tion (Table 1). Thus, for this pathway, neglecting substrate compe-
tition leads to a large overestimation of metabolic capacity.

4. Discussion

Recent studies show that the contribution of substrate compe-
tition to the dynamics of biomolecular networks can be significant
[1,21,6,15,22,20,23]. Although elegant, most of these modelling ap-
proaches are mathematically complex and do not provide general,
readily applicable rate laws for constructing models that consider
substrate competition. We have therefore reviewed and derived
explicit kinetic rate laws for various types of reaction mechanisms.

For irreversible systems, standard MMK rate laws can be ex-
tended to include competition between an arbitrary number of
substrates [14]. We have complemented these results by deriving
rate laws for reversible monomolecular reactions, and for multire-
actant reactions, such as ping-pong and bi-bi mechanisms. More-
over, we have provided a description of how to modify other
existing rate laws, based on the modification of the rules originally
proposed by Chou and Talaly [14].

To investigate the effect of including substrate competition, we
constructed and investigated three toy models. The results show
that ignoring competition can potentially influence the time
dependent behaviour of the models, the steady state concentra-
tions of intermediate and final products, and the metabolic capac-
ity of a pathway. The degree of influence depends on the structure
of the pathway(s), the position of enzymes that face competing
substrates within a pathway, and the concentration of the compet-
ing substrates. Substrates with concentrations far below the en-
zyme’s Michaelis–Menten (Km) constant will result in very little
competition, while at substrate concentrations above Km, competi-
tion can be significant. In our time dependent simulations, external
metabolite concentrations were set just above the Km value used in
the models. At this level we expected to see moderate effects from
the competition between the two substrates. To assess the effects
of increasing competition on the dynamics of the system, steady
state simulations were performed with external concentrations
ranging from far below to far above the model Km value. The most
pronounced effect was observed in case C, which resembles for
example polymer chain prolongation. Here, simulations that ig-
nored competition underestimated the time needed for substrate
accumulation, the steady state concentrations of most intermedi-
ate substrates, as well as the metabolic capacity of the system. It
has furthermore been noted earlier for a similar case that substrate
competition influences metabolic control analysis of the system
[24].

The other two cases displayed more moderate, but notable,
changes. In case A, competition between two pathways, time
dependent simulations showed a modest impact from competition,
and a more notable effect on intermediate steady state concentra-
tions. In contrast, the steady state concentrations of the final prod-
ucts were unaffected.

In the more complex case B, with competition between two
pathway branches, substrate competition affected both steady
state concentrations and time dependent changes in concentra-
tions of most metabolites. The level of competition was similar
to that observed in case A.

In general these result show that models ignoring substrate
competition will, to a varying degree, give incorrect estimations
of pathway dynamics. In certain scenarios, however, competition
can apparently be safely ignored, such as in the study of steady
state concentrations of final product of a pathway, that is structur-
ally similar to case A and C. However, the simple toy models used
here do not encompass the complexity of real biological pathways,
and hence possible effects of substrate competition should be ex-
plored. One example that can illuminate this is the tryptophan
metabolic pathway, which is highly branched. One of the pathway
enzymes, aromatic L-amino acid decarboxylase (DDC, EC 4.1.1.28),

Table 1
The values represent the highest external concentration that allow for a steady state.

Case A Case B Case C

irrev. (mM) rev. (mM) irrev. (mM) rev. (mM) irrev. (mM) rev. (mM)

with comp. 0.95 0.95 1 1 0.5 0.13
w/o comp. 1 1 1 1 1 0.95

Abbreviations: with comp., with competition; w/o comp., without competition; irrev., irreversible; rev., reversible.
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catalyses reactions both in different branches of the tryptophan
pathway, and in other amino acid pathways (e.g. tyrosine metabo-
lism and histidine metabolism). A model that includes all of the
reactions catalysed by DDC would therefore be described by a com-
bination of cases A and B. The effect of substrate competition on
the behaviour and control of metabolism in this case could be more
difficult to predict without explicitly modelling substrate
competition.

A wide range of pathways, including glycolytic, fatty acid, and
amino acid pathways, incorporate several enzymes that can pro-
cess different substrates from the same or different pathways. In
living cells, particular events of substrate competition may be pre-
vented by compartmentalisation or tissue specific usage of certain
pathways or branches of a pathway [25]. In such cases one might
argue for ignoring competition in models. However, de-compart-
mentalised models are often assumed, for the sake of simplicity,
or because information about compartmentalisation is not avail-
able. It may thus be difficult to judge whether substrate competi-
tion should be included or not. To help solve this issue, more
experiments characterising metabolite transporters and the com-
partmentalisation of compounds and enzymes are needed. To cap-
ture the true dynamics of pathways where substrate competition is
suspected or has been determined, competition should be explic-
itly modelled. The results presented here, together with the cited
experimental work on substrate competition, strongly suggest that
future modelling efforts should consider substrate competition.
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Abstract

Primary human fibroblasts in tissue culture undergo a limited number of cell divisions before entering a non-replicative
‘‘senescent’’ state. At early population doublings (PD), fibroblasts are proliferation-competent displaying exponential
growth. During further cell passaging, an increasing number of cells become cell cycle arrested and finally senescent. This
transition from proliferating to senescent cells is driven by a number of endogenous and exogenous stress factors. Here, we
have developed a new quantitative model for the stepwise transition from proliferating human fibroblasts (P) via reversibly
cell cycle arrested (C) to irreversibly arrested senescent cells (S). In this model, the transition from P to C and to S is driven by
a stress function c and a cellular stress response function F which describes the time-delayed cellular response to
experimentally induced irradiation stress. The application of this model based on senescence marker quantification at the
single-cell level allowed to discriminate between the cellular states P, C, and S and delivers the transition rates between the
P, C and S states for different human fibroblast cell types. Model-derived quantification unexpectedly revealed significant
differences in the stress response of different fibroblast cell lines. Evaluating marker specificity, we found that SA-b-Gal is a
good quantitative marker for cellular senescence in WI-38 and BJ cells, however much less so in MRC-5 cells. Furthermore
we found that WI-38 cells are more sensitive to stress than BJ and MRC-5 cells. Thus, the explicit separation of stress
induction from the cellular stress response, and the differentiation between three cellular states P, C and S allows for the first
time to quantitatively assess the response of primary human fibroblasts towards endogenous and exogenous stress during
cellular ageing.
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Introduction

Ageing is an omnipresent process observed throughout all

organisms, yet its fundamental driving forces remain unclear.

Some aspects of ageing are believed to be recapitulated during

cellular senescence of some types of primary mammalian cells in

cell culture systems [1]. Notably, experimental clearance of

cellular senescent cells in mice delays ageing-related pathologies

in at least some tissues [2]. In vitro, cellular senescence manifests as

a permanent cell cycle arrest resulting from the replicative

exhaustion of cultured normal diploid cells [3]. Senescence also

acts as an efficient tumor suppressor mechanism [4].

Although senescent cells are unable to proliferate, they are still

viable and metabolically active, but resistant to mitogenic or

apoptotic stimuli [5,6]. To identify senescent cells in vitro and in
vivo, specific biomarkers have been established [7,8] reviewed in

[9,10]. Senescent cells are characterized by an increased cell size

associated with higher numbers of lysosomes, vacuoles and

mitochondria, and major changes in the cytoskeleton (reviewed

in [11]). Diagnostically important senescence markers include a

high activity of senescence-associated b-galactosidase (SA-b-Gal)

[8], telomere dysfunction-induced foci (TIF) [12,13] as well as up-

regulation of the cell cycle regulators p16, p21 and p53 [14,15].

Many, but not all primary human cell types develop senescence

associated heterochromatin foci (SAHF) [7,16]. Furthermore,

senescent cells express matrix-degrading proteases and inflamma-

tory chemokines and cytokines, known as the senescence-

messaging secretome (SMS) or senescence-associated secretory

phenotype (SASP) [17–21].

Several mechanisms are essential for the induction of senescence

including an intact DNA damage response and functional p53-p21,

p16-pRb, and p38-MAPK pathways [9]. Telomere-dependent

cellular senescence is induced by an increased DNA damage response

(DDR)-activity at dysfunctional telomeres [12]. Uncapped telomeres

focally accumulate high levels of phosphorylated H2AX and repair

factors such as p-ATM, 53BP1, MDC1, and pNBS1 [12,13,22–24].

Activated ATM at dysfunctional telomeres induces the downstream

effectors Chk1 and Chk2. These kinases activate p53, which induces

transcription of p21 to promote cell cycle arrest [12,25,26], reviewed

in [27–30]. While cells with damaged telomeres always activate the

p53-p21-pathway, the p16-pRb-pathway alone is not sufficient to
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trigger DNA damage-induced senescence [12]. DNA damaging

interventions such as irradiation or drug treatment induce the same

cascade of responses if DNA damage exceeds a certain threshold

[15,31–39]. Overexpression of activated oncogenes, e.g. RAS,

induces oncogene-induced senescence (OIS) [35,40,41], probably

also through signaling from hyperproliferation-induced DNA dam-

age sites, in this case at collapsed replication forks [35,42–44]. OIS

appears to be mainly dependent on the p16-pRb-pathway [45].

Consistent with these observations, freshly isolated normal human

epidermal fibroblasts are resistant to RAS-induced senescence

because of their low or absent levels of p16 [46]. In general, cellular

senescence is considered to be a stress-response program which can

be activated by various stressors most prominently by excessive DNA

damage and telomere shortening [47].

Cultured senescent cells can be easily identified by the absence

of proliferation (Ki67-negativity) combined with the identification

of DNA damage foci. Additionally, in particular when being

combined with the two markers, SA-b-Gal activity is a good

quantitative indicator of senescence [48]. SA-b-Gal activity is

detectable at high levels in senescent, but not in pre-senescent or

quiescent mammalian cells in culture [8]. Furthermore, the

marker is undetectable in immortal cell lines, yet is induced when

cells are growth-arrested by genetic manipulations [8]. Recently,

we have identified accumulation of annexin A5 at the nuclear

envelope as an additional robust and quantitative marker for

cellular senescence [49].

With increased age, cell populations, either in tissues or in

culture, will be a mixture of proliferating, cell cycle arrested and

senescent cells [50,51]. Cell cycle inhibitors, in particular p21 and

p16, diagnostically indicate the presence of arrested human

fibroblast cells. On the other hand, robust senescence markers such

as SA-b-Gal identify senescent cells. In parallel, growth curves of

cell populations yield the information on total cell number so that at

any time point, three cellular states can be estimated: proliferating,

cell cycle arrested and senescent cells. This enables the establish-

ment of quantitative computer models describing cellular growth

and the transition to senescence. Here we present such a model,

depict its properties and apply the new model to the analysis of

growth rates. The cellular response to low dose irradiation (low

stress) driving primary cells into cell cycle arrest without senescence,

can be quantitatively described by the model. At high dose

irradiation, higher population doublings and thus higher stress

levels, cells become senescent, a transition also well described by the

model. From the quantitative fit of the growth curves by our model,

the population of the arrested C and senescent S states can be

estimated and compared to experimental values. We also employed

the model to quantitatively describe subtle differences in the cellular

ageing process of different primary human fibroblasts.

Materials and Methods

Cell Lines
Primary human fibroblasts MRC-5 (primary cells, Homo sapiens,

14 weeks gestation male, fibroblasts from normal lung, normal

diploid karyotype), WI-38 (primary cells, Homo sapiens, 3 months

gestation female, fibroblasts from normal lung, normal diploid

karyotype) and BJ (primary cells, Homo sapiens, newborn male,

fibroblasts from normal foreskin, normal diploid karyotype), IMR-

90 (primary cells, Homo sapiens, fibroblasts from normal lung,

normal diploid karyotype) were obtained from ATCC (LGC

Standards GmbH, Wesel, Germany). HFF (primary cells, Homo

sapiens, fibroblasts from foreskin, normal diploid karyotype) cells

were kind gifts of T. Stamminger (University of Erlangen,

Kronschnabl and Stamminger [52]).

Cell Culture
Cells were cultured as recommended by ATCC in Dulbeccos

modified Eagles low glucose medium (DMEM) with L-glutamine

(PAA Laboratories, Pasching, Austria), supplemented with 10%

fetal bovine serum (FBS) (PAA Laboratories). Cells were grown

under normal air conditions in a 9.5% CO2 atmosphere at 37uC.

For sub-culturing, the remaining medium was discarded and cells

were washed in 1xPBS (pH 7.4) (PAA Laboratories) and detached

using trypsine/EDTA (PAA Laboratories). Primary fibroblasts

were sub-cultured in a 1:4 ( = 2 PDs) or 1:2 ( = 1 PD) ratio.

Immuno-fluorescence
Analysis of senescence (p21, p16) and heterochromatin markers

(recognizing SAHFs) as well as the DNA damage indicator

cH2AX were determined by immuno-fluorescence at the single

cell level. For this analysis in young and senescent cells, cells were

fixed in 4% paraformaldehyde (in 1xPBS, pH 7.4) for 10 min.

Cells were permeabilisized using 0.25% Triton-X 100 (in 1xPBS,

pH 7.4) for 3 min. Primary antibodies (anti-p21 (H-164, Santa

Cruz), anti-p16 (BD Pharmingen), anti-cH2AX (16–193, Upstate,

USA)) were diluted in 1xPBS (pH 7.4) and incubated on the cells

for 1 hr at RT. SAHFs (‘‘dense DAPI regions’’) were visualized

either by DAPI staining or by immune-fluorescence using anti-

bodies against H3K9me3 (ab8898, Abcam, Cambridge, UK) or

H4K20me3 (ab9053, Abcam). The secondary fluorescently

labeled antibodies were incubated for 1 hr at RT. The DNA

was stained with 49-6-diamidine-2-phenyl indole (DAPI, Invitro-

gen, Carlsbad, USA) by mounting the slides in Prolong gold

antifade reagent (Invitrogen). Cells were imaged using a Zeiss

LSM 510 or LSM 710 microscope with a 63x/1.40 oil immersion

objective. Immuno-fluorescence results were obtained by deter-

mining the number of cells positive for the respective marker in

relation to the total cell number. 100 cells, identified by DAPI-

stained nuclei, were visually investigated by fluorescence micros-

copy in each experiment. Marker-positive cells were identified by

detecting the specific fluorescence-labeled antibodies, cells without

the respective marker did not show fluorescence. Mean values and

standard deviations represent a minimum of three independent

experiments.

Induction of Cellular Senescence
Cellular senescence was induced by c-irradiation: human

fibroblast cells were irradiated by ionizing radiation in a

Gammacell GC40 (MDS Nordion, Ottawa, Canada) by 137Cs as

radioactive isotope. Exposure time was determined by correcting

the irradiation dose of 1.23 Gy/min with decay time. Cells were

seeded 1 day before exposure, irradiated at RT, and subsequently

cultured at 37uC.

Detection of SA-b-galactosidase
The SA-b-galactosidase (SA-b-Gal) assay was performed as

described by Dimri et al. [8]. Cells were washed in 1xPBS (pH 7.4)

and fixed in 4% paraformaldehyde (pH 7.4), 10 min at RT. After

washing the cells in 1xPBS (pH 7.4), staining solution consistent of

1 mg/ml X-Gal, 8 mM citric acid/sodium phosphate pH 6,0,

5 mM K3Fe(CN)6, 5 mM K4Fe(CN)6, 150 mM NaCl, 2 mM

MgCl2, was added. The enzymatic reaction occurred without CO2

for 4–16 hours at 37uC. After incubation the cells were washed in

1xPBS (pH 7.4) and, in order to visualize cell nuclei, DNA and

Senescence Model
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SAHFs, mounted with DAPI-containing Prolong Gold antifade

reagent (Invitrogen).

Model Simulation
We simulated our model of cell cycle arrest and cellular

senescence as a system of ordinary differential equations using

standard ODE solvers from the MATLAB environment (http://

www.mathworks.com; Natick, USA). For simplicity, linear kinetics

were chosen for the transition between different cell states.

Experimental data were fitted by the model using MATLABs

lsqnonlin function. The quality of the fit was evaluated by solving

the least squares optimization problem.

Model Adjustments for c-irradiation Induced DNA
Damage

After a stress situation, cells will always continue to proliferate if

a single functional cell survived. We thus considered a cell

concentration below one as growth termination criteria in our

simulation. For high irradiation doses, cells are critically damaged

and transformed into a senescent cell state, with the number of

proliferating cells reduced below one. However, if cells are only

slightly damaged by a low irradiation dose, proliferating cells

survived and the cell population recovered.

Results

Model Deduction
Constant growth. A number of immortal cell lines show

constant and stable growth (Figure 1). Freshly isolated primary

fibroblasts share this feature during the early periods of their

lifespan, although their growth rate can be lower. In a most simple

approach, this situation can be described by a cell population

solely consisting of proliferating cells (Figure 2A). With a

population of healthy, proliferating cells, P(t), constantly growing

with time t, the time-dependent change of P(t) depends on the

constant growth factor r (Eq. 1):

dP(t)

dt
~rP(t) ð1Þ

Eq. 1 results in exponential growth and yields in a linear graph

when plotting population doublings (PD) versus time (Figure 1).

Fitting this minimal model to experimental data on various rodent

species from the literature [53] and our own data (HeLa cells),

starting with a single cell, we derive unique division rates r for

different cell lines which vary up to a factor of 7.8 between

minimal and maximal growth rates (Table 1). Cells not only from

different species but also cells from the same species but at

different age (e.g. growth rates of adult versus embryonic squirrel

Figure 1. Fit of Eq. 1 to constant growth for HeLa (own data: green squares, fit: blue line) and rat fibroblast cells (data: blue circles
[53], fit: red dashed line). See also Table 1.
doi:10.1371/journal.pone.0042150.g001
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fibroblasts, see Table 1) show a significant difference in their

unhampered constant growth speed. The fastest growth rate was

measured for the cancer cell line HeLa which is supposed to be

made possible by neglecting cellular maintenance [54–56].

Complete model. Mild stress can lead to short term

reversible cell cycle arrest [57,58]. We quantitatively analyzed

this effect by irradiating MRC-5 fibroblasts with 0.5 Gy, inducing

low levels of DNA damage as indicated by increased numbers of

cH2AX DNA repair foci determined using immuno-fluorescence

(Figure 3A). Within 16 hrs after irradiation, the number of p21-

positive cells (determined by immuno-fluorescence) increased

indicating short term cell cycle arrest (Figure 3B); within the

following hours, the number of p21-positive cells decayed to

background levels (73 hrs) indicating successful DNA repair and

return into the cell cycle. This low dose irradiation did neither

result in an increase of the number of p16-positive cells

(investigated using immuno-fluorescence, Figure 3C) nor in the

up-regulation of the cellular senescence marker SA-b-Gal

(percentage of SA-b-Gal positive cells, Figure 3D). The cell

population continued to grow with a slight time lag, consistent

with cell cycle re-entry after a transient cell cycle arrest (Figure 4A).

In order to quantitatively describe this reversible cell cycle arrest,

we introduced the additional cell cycle state ‘‘C’’ (Figure 2B) with

the rate f1 for the transition from proliferating cells P to cell cycle

arrested cells C and the rate f2 for the transition back into the cell

cycle. This model can be described by the following equations:

dP(t)

dt
~rP(t){f1P(t)zf2C(t) ð2aÞ

dC(t)

dt
~f1P(t){f2C(t) ð2bÞ

After high dose irradiation, MRC-5 (20 Gy) (or WI-38 (15 Gy))

fibroblasts showed a very different response (Figure 3A–D).

Immediately after irradiation, all cells had a highly elevated

number of cH2AX repair foci which decreased only slightly within

the following 6 days (Figure 3A). The number of p21, and now

also the number of p16-positive cells increased after irradiation,

associated with a complete stop of cell proliferation and a constant

increase of the number of SA-b-Gal-positive cells (Figure 3B, C,

D). SA-b-Gal, a quantitative marker of cellular senescence [8,48],

indicates the presence of an increased number of cells irreversibly

arrested in the cell cycle. This senescent phenotype extends our

model by an additional state ‘‘S’’ which is populated by rate f3
from the C state (Eq. 3c); S cannot be derived directly from the P

state, nor can it return into the C or P state (no back reaction,

Figure 2C, upper part).

The simple model (Eq. 2a, b) with time-independent parameters

f1 and f2 describes an immediate response to mild stress. However,

we only observed an immediate response for the appearance of

cH2AX repair foci (Figure 3A). For other markers, we observed a

slightly delayed response, with p21 levels reaching maximal levels

about 16 hrs after irradiation when cH2AX DNA damage foci

already had declined close to background levels (Figure 3A, B). We

thus have to consider a delayed cellular response to stress.

Furthermore, the transition from reversibly (C) to irreversibly (S)

arrested cells depends on the level of irradiation, or, in general, on

the stress level applied to the cells. Thus, the P-C-S transition

model presented in Figure 2C (upper part) must be extended to

include a stress factor and a cellular stress response function F,

sensing this difference: F allows for continued population growth

under mild stress, but emphasizes the transition to the senescent

phenotype when faced with harsh stress, resulting ultimately in

replicative senescence (Figure 2C). This model can be described by

the equations:

dP(t)

dt
~rP(t){f1F (t)P(t)zf2C(t) ð3aÞ

dC(t)

dt
~f1F(t)P(t){f2C(t){f3C(t) ð3bÞ

dS(t)

dt
~f3C(t) ð3cÞ

Table 1. Constant growth, model parameter r fitted to
experimental data.

Species Parameter r

House mouse 0.28

Embryonic squirrel 0.20

Squirrel 0.09

Naked mole rat 0.16

Gerbil 0.25

Chinchilla 0.13

Rat 0.32

Chipmunk 0.13

Guinea pig 0.26

Muskrat 0.15

Hamster 0.28

HeLa 0.70

Experimental data from the literature (rodent species [53]) and our own data
(HeLa cells).
doi:10.1371/journal.pone.0042150.t001

Figure 2. Model scheme. a, proliferation; b, extension with second
cell state species; c, complete final model (upper part: P-C-S transitions;
lower part: stress induction and cell response function F).
doi:10.1371/journal.pone.0042150.g002
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dF (t)

dt
~cF (t) 1{

F (t)

K

� �
{

F (t)2

1zF (t)2
ð3dÞ

The stress response function F(t) (Eq. 3a, b, d), multiplied by the

stress expression c, describes the influence of cellular stress

phenomena, such as exposure to irradiation, oxidative stress,

telomere shortening, etc. While the external stress itself can be

short, function F describes the cellular response, which can be

delayed relative to the various stresses: function F can ‘‘remember’’

that a stress event has occurred, as its value might not decrease

rapidly, once the stress itself has disappeared.

Function F, adapted from Ludwig et al. [59] was chosen to have a

bi-stable behavior (Eq. 3d): below a certain stress threshold, the F

value is low (resembling a healthy cell), but F rapidly turns to high

values once this threshold is exceeded (resembling an endangered

cell). Once the stress function c dropped below threshold values, F

decreases slowly, describing a slow return to the normal cell state.

Indeed, a bifurcation analysis confirmed that function F, chosen in

this form, is bi-stable and, depending on parameter values, switches

between two states (Supplement S1). F is defined by two parameters,

K and c. Whereas K is the maximal value F can reach, c denotes

various forms of stress, ranging from sudden stress such as

irradiation pulses, to accumulating stress resulting e.g. from

telomere shortening or non-physiological oxygen concentrations

which represent long term effects. When irradiation is applied,

c.0 for the time cells are exposed to irradiation, and c= 0

otherwise. In contrast, when simulating long-term stress, we

substituted a slowly increasing function for c in order to resemble

accumulating effects (see below), according to Equation 4:

dc(t)

dt
~azbc(t),c0~0:001 ð4Þ

Introducing a stress (c) and a response (F) function separately,

offers the advantage that the effect of any kind of stress and the cell-

specific response to this stress can be modeled individually or in

selected combinations, as large variations had been observed [60],

and cells from different tissue origin might respond differently [46].

Here we analyzed cells from the same tissue source (lung; MRC-5,

WI-38), the same donor age (MRC-5, WI-38, BJ) and the same/

different gender (male: MRC-5, BJ; female: WI-38).

Figure 3. Relative number MRC-5 fibroblast cells positive for cellular markers after irradiation by the doses 0, 0.5 and 20 Gy. MRC-5.
a, DNA damage marker cH2AX; b, cell cycle arrest marker p21; c, cycle arrest marker p16; d, senescence marker SA-b-Gal. The experimental error in
such experiments is less than 65%.
doi:10.1371/journal.pone.0042150.g003
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Sensitivity analysis. We investigated the sensitivity of the

model parameter values regarding the resulting PD curves and

cell state distributions in the culture (Supplement S2). The

analysis clearly showed that our model is most sensitive to the

variation of the growth rate r (resembling its particular

importance for the maximal replicative capacity of the fibroblast

Figure 4. PD curves of human fibroblasts. Model fitting of different radiation doses and experimentally derived PDs. The data were fitted using
the same parameter set for all radiation doses (differing only in the applied amount of irradiation time) applying the model described by Eq. 3a–d: a,
MRC-5 fibroblast, different radiation doses 0, 0.5 and 20 Gy; b, WI-38 fibroblast, radiation doses 0, 2 and 15 Gy.
doi:10.1371/journal.pone.0042150.g004
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cells) and much less sensitive to the other parameter f1–3, K, a
and b. Interestingly, WI-38 cells are notably less sensitive to f2
and f3 variation than BJ cells.

Model Application to Differently Stressed Cells
Irradiation induced DNA damage in human fibroblast

WI-38 cells with 0, 2, or 15 Gy. Primary human WI-38

fibroblasts were c-irradiated with 2 Gy or 15 Gy inducing low or

high levels of DNA damage, respectively. The cellular stress

response was analyzed by immonu-fluorescence before and 0.5

hours, 1 day and 6 days after irradiation [61]. Immediately after

irradiation, we observed increased cH2AX levels, which, after low

irradiation, decayed to background levels within one day, whereas

they decayed to background levels only after three days when

irradiated with a high dose. One and 6 days after irradiation we

noticed an increase in p21 levels which was only slight after low,

but strong after high levels of irradiation, while p16 levels

increased only after 6 days and high dose irradiation. The number

of SA-b-Gal positive cells within the population increased from

low levels (1363%) for untreated cells to 3061% and 6766%

after 6 days for 2 Gy and 15 Gy irradiated cells, respectively, as

revealed by the SA-b-Gal staining. Compared to untreated cells,

low level irradiation delayed growth but cells continued to

proliferate after about one day (Figure 4B). In contrast, high

irradiation levels resulted in severe DNA damage so that cells

stopped proliferation irreversibly (Figure 4B).

Applying our model for stress-induced cell cycle arrest and

senescence (Figure 2C), we simulated the irradiation experiment

by selecting a value for c in the range of values 700,c,6,000.

The value of c is crucial for the quantitative description of the low

irradiation growth curve. Without irradiation, we apply here c= 0,

and for strong irradiation, c exceeds a threshold value and is not

well-defined above. For c,700, we observe that cells are able to

recover even from strong irradiation, and cells under mild

irradiation are only insignificantly hampered in growth, indicating

that its value is set too low. In contrast, for c.6,000, our

simulation does not allow cells suffering from mild irradiation to

recover, showing that such high c values cannot resemble

sensitivity of WI-38 cells to irradiation. Consequently, setting

c= 2,800 arbitrary units for the irradiation time (zero for no

irradiation, 108 sec for 2 Gy, 13.5 min for 15 Gy), we were able to

fit one set of model parameters (r, f1, f2 and f3) to the three different

measured growth curves. For the values r = 0.46, f1 = 3.8, f2 = 16

and f3 = 0.26 and three different irradiation times for c, we

obtained a convincing description of the experimental behavior

(see Figure 4B).

Irradiation induced DNA damage in human fibroblast

MRC-5 cells with 0, 0.5, or 20 Gy. A similar irradiation

experiment was conducted using MRC-5 cells, c-irradiated with

0.5 Gy or 20 Gy, as described above (see Figure 3A–D). Applying

our model, we successfully fitted the parameter set r = 0.51,

f1 = 4.0, f2 = 16 and f3 = 0.42 to the measured growth curves

(Figure 4A). In order to resemble irradiation-induced damage, c
was selected within the range of values 800,c,29,000. For

c,800, we again observed that mildly stressed cells grew almost

without delay and that cells suffering from strong irradiation were

still able to recover. For c.29,000, we observed that even low

dose irradiated cells were unable to recover, indicating again that

such high c values are outside of the relevant range. We set c= 0

for no irradiation, c= 8,000 over 27 sec for 0.5 Gy, and over

18 min for 20 Gy. Choosing the same c value for the time of

irradiation as for WI-38 fibroblasts (c= 2,800), we were unable to

explain the MRC-5 data. Although we could fit well the 20 Gy

irradiation data with c= 2,800, the mildly irradiated MRC-5 cells

appeared to be not sufficiently stressed, resulting in a growth rate

almost as high as cells that were not irradiated. Nevertheless, both

values of c indicate a rapid change of F to the endangered state,

triggering subsequent cell cycle arrest. The different c values

suggest that WI-38 fibroblasts are considerably more sensitive to

(this) stress compared to MRC-5 cells (see also [60]), consistent

with a lower c value for the exposure time. Choosing a similar

sensitivity for MRC-5 cells (c values similar to WI-38 levels), would

reduce the quality of the fitted curves considerably.

‘‘S’’ feedback on proliferation. Another hallmark of

cellular senescence is the formation of a senescence associated

secretory phenotype (SASP) which is marked by the secretion of

inflammatory cytokines [20,21,62,63]. The secretion of these

factors is mainly dependent on an increased and persistent DNA

damage response and is therefore specific for senescent cells [64].

These secreted factors might have an effect on the growth

behavior of the cell population. To investigate the effect of SASP

secreted from ‘‘S’’ cells on the growth behavior (rate r) of

proliferating ‘‘P’’ cells and their transition to ‘‘C’’ cells (f1, f2), early

passage MRC-5 cells were cultured in medium harvested from

cells which were senescent for at least one week. This senescence-

conditioned medium was then constantly kept on the young cells

and replaced with fresh senescence-conditioned medium every

week. In this preliminary experiment, young cells did not show

impaired proliferation compared to control cells. Thus, senes-

cence-conditioned medium did not induce senescence in young

passage fibroblasts. Only at very late passages, cells cultured with

the senescence-conditioned medium tend to senesce approximate-

ly two population doublings earlier than control cells. In a more

extensive study, influences of short cytokine half-lives or strong

dilution effects should be excluded. Nevertheless, our preliminary

data indicate that the presence of ‘‘S’’ cells seem to influence the

growth of the whole cell population in its entirety only slightly (‘‘S’’

seems to have little influence on r, f1 and f2).

Replicative senescence induced by 20% oxygen and

telomere shortening. When human fibroblast WI-38, BJ and

MRC-5 cells continue to grow, they stop proliferation when

reaching their Hayflick limit [3]. This state of replicative

senescence may be determined by both, cell-specific stress

responses (due to for example constant oxidative stress) and

telomere shortening [65]. The growth behavior and the number of

cells with up-regulated markers p21, p16, SA-b-Gal and SAHF

were determined for MRC-5, WI-38 and BJ cell lines [49].

Immuno-fluorescence analyses of all three cell lines showed, after a

certain time in culture, an elevated number of cells with higher

levels of p16, p21 and SA-b-Gal. Our studies additionally revealed

that senescent cells accumulated persistent DNA damage, as

shown by increased cH2AX levels (data not shown) and loss of the

proliferation marker Ki67 [49]. WI-38 cells showed a low number

of cells with up-regulated markers for p16, p21, SA-b-Gal and

SAHFs at PD 40 but high numbers at PD 60 (here, all cells were

SA-b-Gal positive), with very little delay between the various

markers indicating an immediate transition from proliferation to

senescence (see Figure 5B). To quantitatively describe these data,

we substituted c according to Equation 4 using a= 0.002 and

b= 0.028 for the description of the long term accumulating stress.

With the fitted values r = 0.47, f1 = 0.40, f2 = 0.43 and f3 = 0.66, we

obtained a quantitative fit of the WI-38 growth curve (Figure 5A)

and the marker increase (Figure 5B).

For BJ fibroblast cells at higher PDs, the timing of the up-

regulation of senescence markers varied strongly: p21 levels started

to increase already at PD 30 while the number of SA-b-Gal

positive cells started to increase at PD 50 (Figure 6B). Even at high

PD values, BJ cells did not show SAHF formation. Highly
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compacted heterochromatin foci, termed senescence associated

heterochromatin foci (SAHF), develop during senescence in many,

but, as also shown here, not all primary human cell types [7,16].

Applying c (Eq. 4) with a= 0.001 and b= 0.016 for the description

of long-term accumulating stress and the fitted values r = 0.30,

f1 = 1.1, f2 = 2.45 and f3 = 0.27 we obtained a quantitative fit of the

BJ growth curve (Figure 6A) with a good fit for p21 and SA-b-Gal

increase (Figure 6B), in particular at higher PD values. Compared

to WI-38 cells, BJ cells showed a much broader transition from

partial cell cycle arrest to senescence, indicated by the increase of

Figure 5. Simulation of WI-38 fibroblast data. a, Experimental growth data (circled) were fitted by model Eq. 3a–d using Eq. 4 as an expression
for monotonically increasing stress c; b, the fraction of proliferating cells P, cells showing a cell cycle arrest or a senescent phenotype (C+S) and solely
the fraction of senescent cells S are shown together with the appearance of biomarkers. Biomarker values (p16, p21, SA-b-Gal and SAHF) were
measured by immune-fluorescence as number of positive cells [49].
doi:10.1371/journal.pone.0042150.g005
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ageing markers and growth curves. We noticed for BJ cells other

than in WI-38 cells, the number of p21 up-regulated cells is not a

quantitative indicator of cell cycle arrested C cells: between PDs

30 and 55, this number is considerably higher than the calculated

number of C cells (Figure 6B). Indeed, cell cycle arrest is regulated

by CDKs (inhibited by p21); thus, p21 is only an indirect marker

of cell cycle arrest. p21 seems to titrate CDKs differently in

different fibroblasts.

This is consistent with our observations in MRC-5 cells

(Figure 7A, B). The up-regulation of senescence markers started

already at low PDs: the number of p16 and SA-b-Gal positive cells

started to increase at PD 48 (Figure 7B), immediately followed by

SAHF formation. Applying c (Eq. 4) with a= 0.004 and

b= 0.0042 and the fitted values r = 0.489, f1 = 6.64, f2 = 5.99

and f3 = 0.26, we obtained a quantitative fit of the MRC-5 growth

curve (Figure 7A) with a good fit for p21 at low PDs and an

Figure 6. Simulation of BJ fibroblast data. a, experimental data (circled) were fitted by model Eq. 3a–d using Eq. 4 as an expression for
monotonically increasing stress c; b, the fraction of proliferating cells P, cells showing a cell cycle arrest or a senescent phenotype (C+S) and solely the
fraction of senescent cells S are shown together with the appearance of biomarkers. Biomarker values (p16, p21, SA-b-Gal and SAHF) were measured
by immune-fluorescence as number of positive cells [49].
doi:10.1371/journal.pone.0042150.g006
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unsatisfying fit at higher PD values. Other than for WI-38 and BJ

cells, the number of SA-b-Gal positive MRC-5 cells increased

considerably while the cells still continued to grow (with only a

slightly reduced rate). We were not able to find a set of model

parameters which quantitatively describes both, the marker up-

regulation as S cells as well as the growth curve. This suggests that

Figure 7. Simulation of MRC-5 fibroblast data. a, experimental data (circled) were fitted by model Eq. 3a–d using Eq. 4 as an expression for
monotonically increasing stress c; b, the fraction of proliferating cells P, cells showing a cell cycle arrest or a senescent phenotype (C+S) and solely the
fraction of senescent cells S are shown together with the appearance of biomarkers. Biomarker values (p16, p21, SA-b-Gal and SAHF) were measured
by immune-fluorescence as number of positive cells [49].
doi:10.1371/journal.pone.0042150.g007
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in MRC-5 cells SA-b-Gal might increase not solely due to the cell

transition into cellular senescence but additionally also due to

other reasons, a finding consistent with a previous report [66].

Thus, identified by our model, SA-ß-Gal seems to be a good

quantitative senescence marker in WI-38 and BJ cells but not in

MRC-5 cells.

Although applying similar irradiation stress to WI-38 and

MRC-5 cells, the cellular response is described by a roughly 3-fold

lower c value for WI-38 compared to MRC-5 cells. Obviously,

WI-38 cells are more sensitive to irradiation than MRC-5 cells.

This corresponds to WI-38 cells showing a rather sharp transition

to senescence at low PD values. In contrast, BJ and MRC-5

fibroblasts undergo a considerably smoother transition towards

cellular senescence at higher PD values. When in these three

fibroblast cell lines, reactive oxygen species (ROS) production and

telomere shortening accumulate to a similar extent, then the early

and fast transition into senescence would indicate WI-38 cells

indeed being more sensitive compared to the other two cell lines,

consistent with published reports [60]. This agrees with results

from the analysis of the f1, f2 and f3 parameter values and the c
expression influenced by a and b: for BJ cells, f1 and f2 are notably

larger than for WI-38 cells, resembling a relatively high flux

towards C cells and back to proliferating P cells. We interpret this

as a higher maintenance workload for BJ than for WI-38 cells. In

contrast, f3 is more than 2-fold smaller for BJ cells than for WI-38

cells resulting in a considerable delay for the BJ population to

build-up a significant senescence cell fraction.

Influence from tissue origin and age. The observed

cellular proliferation and the transition into senescence can vary

depending on the tissue of origin and the age of the source tissue.

Indeed, our data clearly indicate that for example cells from the

same tissue source and the same donor age, but different gender

(MRC-5 and WI-38 cell-lines) show clear differences in growth

curves and transition to senescence. In order to determine if these

observed differences are significant, we measured the experimental

variance of our data by comparing the growth curves and the

transition into senescence of primary human fibroblasts from the

same tissue source (lung, MRC-5, WI-38), same donor age (MRC-

5, WI-38 and BJ) and same or different gender (male: MRC-5, BJ;

female: WI-38) as biological and technical replicates. When two

aliquots of the same cell line but from different (commercial)

sources were analyzed in parallel (biological replicates), we noticed

small but significant differences between the growth curves of

biological replicates for BJ, HFF, MRC-5 and WI-38 cells, but not

IMR-90 cells. These small growth curve differences between two

biological replicates, when fitted by our model, yielded in

variations of transition rates between proliferating and cell cycle

arrested cells (model parameters f1 and f2). In contrast, when cell-

lines were separated into technical triplicates at early PD and

analyzed in parallel, we observed no differences in their growth

behavior: technical replicates showed excellent quantitative

agreement between their growth curves yielding in identical

model parameter values. Thus, the differences between the five

human fibroblast cell-lines described above are significant.

Reduced growth rates can be explained by the presence of

C and S cells with high r values. Experimentally determined

cellular markers and our model identify the presence of cell cycle

arrested and senescent cells in cell populations, as reported by

others [60]. Thus, population growth might be determined by a

constant (maximal) growth rate r for the proliferating P cells in the

population, while the cell cycle arrested C and S cells do not

contribute, i.e. the overall growth rate of the whole population is

reduced relative to the maximal r value since it is a mixture of

proliferating and non-proliferating cells. Fastest growth (r = 0.7,

see Table 1) was observed for cancerous HeLa cells assumed not to

be involved in cellular maintenance. We thus asked if we could

explain the various growth rates presented in Table 1 by our

model (Eq. 2a-b), now keeping r constant (r = rmax addressing the

high value of rmax = 0.7 observed for HeLa cells) and fitting the

transfer rate f1. Indeed, we obtained constant growth fitting the

experimental values by a constant value for r and different values

for f1, as given in Table 2. Thus, the observed variation in

population growth could be explained by a constant high growth

rate for the proliferating cells and for example by a varying

amount of cell cycle arrested cells, which are assumed to be

involved in cellular maintenance functions. This agrees with

published observations on oxidative damage, for example for

human fibroblast IMR-90 cells which divide faster under low level

(3%) oxygen, with a doubling time 4–20% shorter, than for cells

cultured under high (20%) oxygen, inducing more damage and

thus requiring more maintenance [67]. However, different growth

rates could also be explained by alternative cellular processes. The

analysis of the biochemical origin of growth rate variation requires

additional studies.

Proliferation at constant stress depends on r relative to f1
f3/f1+ f2. Finally, we analytically investigated our model

assuming a constant stress level (see Supplement S3), which is

given, for instance, for constantly high (20%) oxygen levels. Our

analysis shows that for r# f1 f3/(f2+f3) the population is not able to

grow, as the growth factor r is too small to overcome the cell cycle

arresting and senescence effects. f1 and f2 have opposing effects:

low f1 and high f2 promote cell growth, while high f1 and low f2
values result in senescence. While low f3 values result in a growing

population, even high values of f3 can be overcome by sufficiently

high proliferation rates r when the stress response function F is

sufficiently small. Thus, regardless of the transition rate from C to

S cells, the population can still grow under high C to S transitions

as long as the C fraction of the population is low (mediated by low

f1 and high f2 values). High f3 values could be important for

populations living in environments that show high risks for rapid

stress promoting events, where a fast transition into a senescent

phenotype might be necessary for survival. In contrast, cells that

rarely encounter dangerous events can afford rather low f3 values,

as cell cycle arrested cells might well be rescued.

Table 2. Values of the parameter f1 in the model extension.

Species Parameter f1

House mouse 2.00

Embryonic squirrel 3.02

Squirrel 8.31

Naked mole rat 3.83

Gerbil 2.28

Chinchilla 5.01

Rat 1.61

Chipmunk 4.84

Guinea pig 2.11

Muskrat 4.12

Hamster 1.88

f1 values for model extension with cell cycle arrest species. Same experimental
data as in Table 1. For all simulations parameter r = rmax is set to 0.70
determined for HeLa cell growth rate and parameter f2 to 1.
doi:10.1371/journal.pone.0042150.t002
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Discussion

DNA damage is detected by cellular checkpoints. Checkpoints

use a signaling mechanism either to stall the cell cycle until the

damage has been repaired successfully or, if repair is unsuccessful,

to target the cell for destruction via apoptosis. Under strong stress,

some cell types cannot return to proliferation and enter the

senescence state [47,68,69]. Here we present a quantitative model

to simulate transient cell cycle arrest and cellular senescence. Next

to the proliferating state P, we introduce a cell cycle arrested state

C which is populated by rate f1 and returns to proliferation by rate

f2. Once arrested, cells can become senescent (state S) with rate f3.

In our model, the transition to the senescent state is considered as

being irreversible (no back reaction). To some extent, the arrested

state C is experimentally identified by the cell cycle inhibition

marker p21, and the senescent state S by SA-b-Gal (and partly by

p16). Our model combines these values of the different cellular

states with the growth curves of these cells, quantitatively

describing these.

Since the cellular response to stress is delayed, we introduced a

stress response function F describing this behavior, as analogously

used by [59]. F was designed to allow for a switch-like behavior

distinguishing reversible cell cycle arrest as a consequence of low

stress from irreversible arrest due to high or long-term stress. In its

switched state, F cannot change back immediately after the stress

source has decayed. Its nonlinear form is necessary to model two

possible and well distinguishable steady states, describing here

proliferating and strongly stressed cells. Moreover, we required F

to enable a switch-like behavior from one state into the other in a

rapid sigmoidal manner, once a critical point is exceeded. Switch-

like behavior can be modeled also by other formulations (like, for

example, by double negative feedback loops), however, choosing F

in the form presented here offers the advantage of convenient

analytical properties combined with a minimal amount of free

parameters.

The stress itself can either be permanent (e.g. constantly high

levels of oxygen), transient (due to, for example, induction of DNA

damage by c-irradiation pulses) or might increase with time (like

telomere shortening). We therefore introduced a stress induction

factor of the form c = a+bt with a time-independent influence a
and a time-dependent contribution bt.

A rigorous analytical analysis of the model for constant stress

resulted in a relation between growth rate r and the transition rate

quotient f1 f3/(f2+f3) which determines the fate of the cell

population: with r smaller than the quotient, proliferation will

stop while the population will continue to grow for r . f1 f3/(f2+f3).

We compared cellular data obtained for different stress levels in

three different human fibroblast cell types. First, we induced two

different levels of DNA damage by short and long term c-

irradiation, and successfully fitted our model by a single parameter

set to the three growth curves. Then, we successfully fitted our

model to cells growing into replicative senescence, regarded here

to be mainly induced by oxidative stress and telomere shortening.

Again, our model is able to explain the observed behavior by

quantitatively describing the growth curves.

Applying our model to the experimental growth curves, we

detected response differences between the WI-38 and the BJ or

MRC-5 cell lines, consistent with published data on fibroblast line-

specific properties [46,60]. Such differences are not obvious from

inspecting the experimental data, however, it could be well

detected by our quantitative model analysis. WI-38 cells seem to

be more sensitive to stress compared to MRC-5 cells since they

reacted to smaller c stress values. This is combined with a higher

flux between P and C cells and a low transition into S cells for BJ

cells, compared to lower transitions between P and C combined

with a higher flux to S for WI-38 cells. This suggests considerable

maintenance workload in BJ cells, which might explain its higher

resistance to stress. Consistently, WI-38 cells show a faster

transition to senescence at lower PD values than BJ and MRC-5

cells.

The observed differences in C (seen in BJ and MRC-5) and S

cell fractions (seen in MRC-5) compared to p21 and SA-b-Gal

marker levels, respectively, can be explained by the qualitative

nature of these markers. It cannot be ruled out that their up-

regulation has additional side-effects, which ultimately influence

the growth behavior of the respective cell line. Therefore, our

work highlights the need for further exploration of more specific

cell cycle arrest- and senescence-specific biomarkers [9,10].

Earlier, the influence of telomere shortening on cell proliferation

was analyzed in network models of cell senescence [70–74]. Sozou

and Kirkwood [72] applied a stochastic model for human diploid

fibroblasts in which telomere reduction, oxidative stress linked to

mitochondrial damage and nuclear somatic mutations were

considered. Their model resulted in simulations that were in good

agreement with data on intra-clonal variability in cell doubling

potential published by [75]. Modeling the influence of telomere

length on cellular senescence, Golubev et al. [73] conclude that

telomere length decrease is a correlate of cell proliferation that,

however, cannot alone account for senescence, instead also free

radical damage influences have to be taken into account,

consistent with statements by [72]. Portugal et al. [74] presented

a stochastic growth model based on cell divisions in each time

interval being a random process the probability of which decreases

linearly with telomere shortening. The authors observed a good

approximation of the qualitative growth of cultured human

mesenchymal stem cells. In these models, theoretical parameters

were not fitted to experimental data, in particular not to cellular

growth curves. Lawless et al. [48] presented an analytical model

fitting two cellular states, proliferation and senescence, to human

fibroblast growth curves. Their model was successfully used to

evaluate markers of cellular senescence. However, the model does

not consider the intermediate state of transiently cell cycle arrested

cells. When faced with mild stress, we observed here that a portion

of the cells entered a temporary and reversible cell cycle arrest and

not a senescence state, as indicated by the lack of SA-ß-Gal up-

regulation (see Figure 3D). In a series of sophisticated analyses, B.

Novak, J. J. Tyson and collaborators modeled the protein

interaction network for the regulation of DNA synthesis and

mitosis [76,77]. Their approach provides a theoretical framework

for the understanding of cell cycle regulation and presents

increasingly complex models of the networks controlling cell

growth and division. However, these authors did not model the

cellular transition into senescence. Cellular senescence is main-

tained and reinforced by a DNA damage-ROS production

feedback loop [78]. Passos et al. [78] presented a biochemically

detailed stochastic model for this feedback loop on a single cell

basis. Applying this model to our data, we were able to

qualitatively simulate the cellular response to low as well as high

irradiation. However, this model does not quantitatively compare

cellular response to growth curve, a strength of our model.

In addition to entering the cell cycle arrested state C or the

senescent state S as described here by our model, fibroblast cells

may become apoptotic, enter the quiescent state or terminally

differentiate. To address this question, specific markers for these

cellular states should be quantified in order to further extend our

current model.
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7. Narita M, Nũnez S, Heard E, Narita M, Lin AW, et al. (2003) Rb-mediated

heterochromatin formation and silencing of E2F target genes during cellular

senescence. Cell 113: 703–716.

8. Dimri GP, Lee X, Basile G, Acosta M, Scott G, et al. (1995) A biomarker that

identifies senescent human cells in culture and in aging skin in vivo. Proc Natl
Acad Sci U S A 92: 9363–9367.

9. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of

senescence. Genes Dev 24: 2463–2479.

10. Sikora E, Arendt T, Bennett M, Narita M (2011) Impact of cellular senescence

signature on ageing research. Ageing Res Rev 10: 146–152.

11. Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M (2004) Replicative
senescence: a critical review. Mech Ageing Dev 125: 827–848.

12. Herbig U, Jobling WA, Chen BPC, Chen DJ, Sedivy JM (2004) Telomere
shortening triggers senescence of human cells through a pathway involving

ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14: 501–513.

13. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U (2007) Accumulation of
senescent cells in mitotic tissue of aging primates. Mech Ageing Dev 128: 36–44.

14. Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, et al.

(2006) p16INK4A is a robust in vivo biomarker of cellular aging in human skin.
Aging Cell 5: 379–389.

15. Robles SJ, Adami GR (1998) Agents that cause DNA double strand breaks lead
to p16INK4a enrichment and the premature senescence of normal fibroblasts.

Oncogene 16: 1113–1123.

16. Kosar M, Bartkova J, Hubackova S, Hodny Z, Lukas J, et al. (2011) Senescence-
associated heterochromatin foci are dispensable for cellular senescence, occur in

a cell type- and insult-dependent manner and follow expression of p16(ink4a).

Cell Cycle 10: 457–468.
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64. Rodier F, Coppé J-P, Patil CK, Hoeijmakers WAM, Muñoz DP, et al. (2009)

Persistent DNA damage signalling triggers senescence-associated inflammatory
cytokine secretion. Nat Cell Biol 11: 973–979.

65. Shin J-S, Hong A, Solomon MJ, Lee CS (2006) The role of telomeres and

telomerase in the pathology of human cancer and aging. Pathology 38: 103–113.
66. Lee BY, Han JA, Im JS, Morrone A, Johung K, et al. (2006) Senescence-

associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5: 187–
195.

67. Chen Q, Fischer A, Reagan JD, Yan LJ, Ames BN (1995) Oxidative DNA

damage and senescence of human diploid fibroblast cells. Proc Natl Acad
Sci U S A 92: 4337–4341.

68. Toussaint O, Remacle J, Dierick J-F, Pascal T, Frippiat C, et al. (2002) Stress-
induced premature senescence: from biomarkers to likeliness of in vivo

occurrence. Biogerontology 3: 13–17.
69. Toussaint O, Weemaels G, Debacq-Chainiaux F, Scharffetter-Kochanek K,

Wlaschek M (2011) Artefactual effects of oxygen on cell culture models of

cellular senescence and stem cell biology. J Cell Physiol 226: 315–321.
70. Tan Z (1999) Intramitotic and intraclonal variation in proliferative potential of

human diploid cells: explained by telomere shortening. J Theor Biol 198: 259–
268.

71. Rubelj I, Vondracek Z (1999) Stochastic mechanism of cellular aging–abrupt

telomere shortening as a model for stochastic nature of cellular aging. J Theor
Biol 197: 425–438.

72. Sozou PD, Kirkwood TB (2001) A stochastic model of cell replicative senescence
based on telomere shortening, oxidative stress, and somatic mutations in nuclear

and mitochondrial DNA. J Theor Biol 213: 573–586.
73. Golubev A, Khrustalev S, Butov A (2003) An in silico investigation into the

causes of telomere length heterogeneity and its implications for the Hayflick

limit. J Theor Biol 225: 153–170.
74. Portugal RD, Land MGP, Svaiter BF (2008) A computational model for

telomere-dependent cell-replicative aging. Biosystems 91: 262–267.
75. Smith JR, Whitney RG (1980) Intraclonal variation in proliferative potential of

human diploid fibroblasts: stochastic mechanism for cellular aging. Science 207:

82–84.
76. Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ (2006) Analysis of

a generic model of eukaryotic cell-cycle regulation. Biophys J 90: 4361–4379.
77. Tyson JJ, Novak B (2008) Temporal organization of the cell cycle. Curr Biol 18:

R759-R768.
78. Passos JF, Nelson G, Wang C, Richter T, Simillion C, et al. (2010) Feedback

between p21 and reactive oxygen production is necessary for cell senescence.

Mol Syst Biol 6: 347.

Senescence Model

PLoS ONE | www.plosone.org 14 August 2012 | Volume 7 | Issue 8 | e42150

DYNAMIC MODELLING 43



CONSTRAINT-BASED MODELLING 44

3. Constraint-Based Modelling
Applications of EFM analysis and FBA

Chapter summary. The previous chapter comprised ODE based studies, where
kinetic rate laws were applied to study the dynamics of the given systems. Once
a system becomes considerably complex, however, the knowledge of specific kinetic
rate laws or the computational power to simulate is commonly not available. Conse-
quently, a simulation via deterministic ODE systems is then infeasible. An approach
to circumvent these issues is represented by constraint-based modeling methods. In
the first study of this chapter, our work on introducing the established concept of
EFM analysis is presented. Next to giving a detailed description of the method, we
demonstrate its usefulness on a study case of the photosynthate metabolism. The
second study in this chapter comprises an elaborate network of the nitrogen uptake
metabolism of the green algae C. reinhardtii. Here, we investigated the role of cir-
cadian regulation by analyzing the EFM set arising from the modeled network by
integrating knowledge about sequence motifs that are recognized by a circadian clock
regulated element. In the last study, a comprehensive summary of metabolic costs
of amino acid and protein production in E. coli is presented. We calculated different
measures of costs based on a manual calculation and an FBA of a genome-scale
model of E. coli. This potentially enables an efficient choice of growth media for
future industrial designs in order to optimize amino acid or protein production.
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Abstract

The aim of this chapter is to discuss the basic principles and reasoning behind

elementary flux mode analysis (EFM analysis)—an important tool for the analy-

sis of metabolic networks. We begin with a short introduction into metabolic

pathway analysis and subsequently outline in detail fundamentals of EFM

analysis by way of a small example network. We discuss issues arising in the

reconstruction of metabolic networks required for EFM analysis and how they

can be circumvented. Subsequently, we analyze a more elaborate example

network representing photosynthate metabolism. Finally, we give an overview

of applications of EFM analysis in biotechnology and other fields and discuss

issues arising when applying methods from metabolic pathway analysis to

genome-scale metabolic networks.
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1. Introduction

Exploring the structure of metabolic networks is a key step in order to
understand the fundamental properties of living systems (Price et al., 2004;
Ruppin et al., 2010). Such networks summarize the capabilities of a subsystem
or the entire metabolism of an organism and show, for instance, how a set of
source compounds the organism can find in its environment can be converted
into the constituent metabolites and macromolecules of which it consists.

However, it is often not possible to identify important routes in metabolic
networks from their reactions alone (Schuster et al., 1999). Due to this
problem a large array of methods that allow one to analyze such networks
based on network stoichiometry and constraints upon fluxes and concentra-
tions have been developed (Price et al., 2004). These methods are often
referred to as constraint-based methods. One important method for identify-
ing pathways in metabolic networks is the concept of elementary flux modes
(EFMs; Schuster et al., 1999) and the related extreme pathways (Schilling et al.,
2000). EFMs correspond tominimal sets of reactions that canwork together at
steady state while obeying thermodynamical constraints on the direction of
reaction fluxes that make some reactions practically irreversible at physiologi-
cal conditions. The fundamentals of that approach are based on earlierwork by
Clarke (1981). An EFM is minimal in the sense that removing one reaction
will preclude any steady-state flux through the remaining set of reactions of
which it consists.

In this work, we will give a detailed introduction into EFM analysis and
the concepts upon which this method is based. We will outline this method
by way of several example networks that also allow us to demonstrate
principal avenues of its application. Further, we will give a brief overview
on recent works applying the concept of EFMs. Finally, we will address
challenges that arise from the advent of genome-scale metabolic networks
that summarize the metabolic capabilities of entire organisms and how they
can be met in the context of EFM analysis.

2. Elementary Flux Modes

The concept of EFMs (Schuster and Hilgetag, 1994; Schuster et al.,
1999) allows one to decompose a reaction network into well-defined
metabolic pathways. As stated above, they are defined as minimal sets of
reactions that allow for a steady-state flux that uses irreversible reactions
only in the thermodynamically feasible direction. To apply EFM analysis,
only information on the reaction stoichiometry of the network and infor-
mation on reaction directionality is required, information that is often much

438 Sascha Schäuble et al.
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easier to obtain than details on the precise kinetics governing reactions. The
reaction stoichiometry indicates for each reaction the number of metabolite
molecules consumed or produced: the stoichiometric coefficient is negative
if a metabolite is a substrate of a reaction and positive if it is a product.

The information of reaction stoichiometry is gathered in the stoichio-
metric matrix N, where mij of N is the coefficient of the ith metabolite
taking part in the jth reaction:

N ¼

m11 m12 � � � m1m

m21 m22 � � � m2m

..

. . .
.

mn1 mn2 � � � mnm

0
BBB@

1
CCCA

Note that external metabolites are often not included in N, as they are
not considered in the context of the steady-state condition that will be
discussed more thoroughly below. Instead they are often part of a parameter
vector p as their concentrations are assumed to be constant.

At this point it is important to note that while most applications of EFM
analysis focus on small-molecule metabolism an application to more com-
plex compounds such as DNA and proteins is not precluded. Thus, EFM
and extreme pathway analysis have also been used to investigate signaling
and regulatory networks (Behre and Schuster, 2009; Gianchandani et al.,
2006, 2009).

In order to define a systems boundary, the set of metabolites of a reaction
network is decomposed into internal and external metabolites. While inter-
nal metabolites are required to be balanced within the network and thus
subjected to the steady-state condition, external metabolites are assumed to
be buffered. Mechanisms that buffer these metabolites can be, for instance,
supply from a growth medium, drain through dilution or participation in a
large number of reactions beyond the scope of the metabolic network.
Metabolites that are, thus, often considered as external are metabolites of
the growth medium, biomass precursors such as amino acids and nucleotides
as well as energy currency cofactors such as ATP, NADH, or NADPH.

Under these premises, an EFM can be understood as a path through the
network that transforms a set of external (substrate) metabolites into another
set of external (product) metabolites over the intermediate of a set of
balanced internal metabolites. Figure 22.1 illustrates the principle of EFMs
in a biologically relevant pathway—the TCA cycle, the powerplant that
provides many organisms with sufficient energy.

Note that for two reasons it is of utter importance to determine the state of
a metabolite, that is, which metabolite can be defined as external or internal.
First, the simulated uptake or production of particular metabolites, or the
maintenance of energy greatly depends on this definition. Second, especially in
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dense networks, where the number of EFMs grows exponentiallywith the size
of the network (Klamt and Stelling, 2002), determining the state of metabo-
lites has a very strong influence on the number of resulting EFMs (Dandekar
et al., 2003; Gagneur and Klamt, 2004; Schuster et al., 2002b).

In fact, examining particularly compact networks is rather common, since
metabolic networks often contain bi- or even multimolecular reactions. By
transforming a multitude of metabolites into another, these reactions signifi-
cantly increase the complexity of the network and hence the number of
EFMs. However, as computer performance increases and more efficient
algorithms to compute EFMs are developed, networks of increasing size
can be investigated using EFM analysis (Gagneur and Klamt, 2004; Pfeiffer
et al., 1999; Terzer and Stelling, 2008; Urbanczik and Wagner, 2005).

2.1. Mathematical background

Although specific kinetic data is not required, some general assumptions
about the kinetics of the system under consideration have to be made for
EFM analysis.

For simplicity, it is reasonable to assume that the metabolites are homo-
geneously distributed and that the cell does not exhibit a time-dependent
inflow or outflow behavior. Thus, the time-course of the concentrations of
metabolites can be described formally by the differential equation:

dS

dt
¼ NV S;pð Þ � mS ð22:1Þ

AcCoA

OAA

Mal

Glx Glx

ICit

Succ

Pyr

PEP

AcCoA

OAA

Mal

ICit

Succ

Pyr

PEP

A B

Figure 22.1 EFMs in a simplified model of the TCA cycle including adjacent reactions
of glycolysis. The model comprises the metabolites phosphoenolpyruvate (PEP), pyru-
vate (Pyr), acetyl-Coenzyme-A (AcCoA), isocitrate (ICit), succinate (Succ), malate
(Mal), oxaloacetate (OAA), and glyoxylate (Glx) where only the metabolite PEP is set
to external status (boxed metabolite). (A) Shows all reactions considered, while (B)
displays one valid EFM that completely oxidises PEP. Release and fixation of CO2 has
been omitted for clarity.
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where S ¼ (S1, S2, . . ., Sn)
T, V, and p are the vectors of the concentrations

of internal metabolites, net reaction rates, and parameters, respectively.
The growth rate m can be taken into account using two approaches. The

first approach is to consider dilution by growth to be so small for the time
frame of the analysis that it can be neglected. Alternatively, growth can be
modeled within the stoichiometric matrix N through addition of an artifi-
cial biomass reaction that drains components of the cell, or their precursors,
in their relative amounts.

Under the time frame considered, it is reasonable to assume that the con-
centrations of internal metabolites stay constant (Clarke, 1981; Pfeiffer et al.,
1999; Schuster andHilgetag, 1994). Hence, their production and consumption
need tobebalanced.Thus,Eq. (22.1) canbe simplifiedby setting it equal to zero:

NV S;pð Þ ¼ 0 ð22:2Þ

Obviously, as organisms undergo dynamic processes, no concentrationwill
be completely constant over time. Nevertheless, this assumption also holds in
the approximate context as long as no intermediates accumulate or are depleted
to a considerable extent over time, for instance, in the case of oscillations.

A first simple approach to analyze the steady-state condition (Eq. (22.2))
is the computation of the null space of N. The null space or kernel refers to
the Euclidean subspace of all vectors V fulfilling Eq. (22.2). It already
features some simple pathways in the network and can be computed by
utilizing standard methods of linear algebra (Strang, 2009) such as Gaussian
elimination. Note that basis vectors can be understood as steady-state flux
distributions across the system.

However, this set of basis vectors is not unique, that is, there can be several
sets of basis vectors. Further, they do not take into account the irreversibility
of some reactions and might use them in a thermodynamically infeasible
direction. To overcome these drawbacks, it is required that a subvector ofVirr

of V, in which the coefficients correspond to irreversible reactions, satisfies

Virr � 0 ð22:3Þ

Hence, a linear inequality system is formed by the Eqs. (22.2) and (22.3).
Now, a flux mode V� 2 R

r with r being the number of reactions within a
network is defined as follows:

(i) steady-state condition: V* satisfies Eq. (22.2)
(ii) sign restriction: V* satisfies Eq. (22.3)

A first important observation is that if a flux vector V fulfils Eqs. (22.2)
and (22.3), also lV with l > 0 fulfils both equations. Hence, the analysis
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should be restricted to a set of flux modes in which none can be derived as a
simple scalar/multiple of another.

Another important observation from Eqs. (22.2) and (22.3) is that two
flux modes V1 and V2 can be linearly combined by l1V1 þ l2V2 with l1,
l2 > 0 and we again obtain a flux mode. Thus, the analysis can be restricted
to elementary flux modes. A flux mode is called elementary if suppressing the
flux through any reaction used by it implies that there is no flux through the
remaining reactions that satisfies Eqs. (22.2) and (22.3) (Schuster and
Hilgetag, 1994). This is equivalent to stating that a flux mode V0 is called
elementary if there is no other flux mode V00 that uses a proper subset of the
reactions ofV0 (Schuster et al., 2002a). In mathematical terms, this statement
can be formulated by defining the support “supp” of a flux mode V, which
includes all nonzero elements of V as

supp Vð Þ ¼ ijVi 6¼ 0f g ð22:4Þ

Then, a flux mode V0 is called elementary if there exists no other flux
mode V00 such that

supp V
00

� �
� supp V0ð Þ: ð22:5Þ

Thus, EFMs can be defined as suggested by Schuster and Hilgetag (1994):

Definition 1 An EFM is a minimal set of enzymes that can operate at
steady state with all irreversible reactions used in the correct direction.

An interesting property of the set of EFMs of a reaction network is that
they are unique up to scaling by a factor l > 0. Moreover, every flux mode
V (which hence satisfies Eqs. (22.2) and (22.3)) can be written as positive
linear combination of EFMs:

V ¼
X
k

�ke
kð Þ; � > 0 ð22:6Þ

where e(k) refers to the set of EFMs and �k represents a scaling factor.
In Fig. 22.2, all of the EFMs of the example network in Fig. 22.1 are

displayed. Again, the metabolite PEP is the only external species, whereas all
other metabolites are considered to be intermediates and thus set to internal
status (balanced at steady state). The model gives rise to four EFMs, of
which two correspond to the interconversion of PEP and OAA and the
interconversion of PEP and Pyr, respectively (Fig. 22.2B and C). Addition-
ally to these two trivial EFMs, we find two EFMs that constitute all possible
pathways on which PEP can be oxidized by this network. The first EFM

442 Sascha Schäuble et al.
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(Fig. 22.2D) corresponds to the classical scheme of PEP oxidation along the
TCA cycle. The other pathway, in contrast, utilizes reactions from
the glyoxylate shunt to oxidize PEP. Until some years ago, the enzymes of
the glyoxylate shunt have only been considered to play a role in gluconeo-
genesis/anaplerosis rather than catabolism of glucose (Fig. 22.2E). However,
they have been found to be used for PEP oxidation during growth of
Escherichia coli (Fischer and Sauer, 2003) and Mycobacterium tuberculosis (Beste
and McFadden, 2010) on low glucose concentrations. The corresponding
pathway has been called PEP-glyoxylate cycle. Why are there no more
EFMs? One might argue that in principle there should exist at least one
more EFM that uses the complete TCA cycle and the PEP-glyoxylate cycle
simultaneously (Fig. 22.2F). While this can be observed in E. coli (Fischer and
Sauer, 2003), the resulting set of reactions does not constitute an EFM since it
is not minimal, that is, it is just a superposition of two pathways. In conse-
quence, any steady-state flux that uses the TCA cycle and the PEP-glyoxylate
cycle simultaneously corresponds to a linear combination of two EFMs.

3. Application

3.1. Network reconstruction

In order to apply EFM analysis, an accurate model is required. In the most
simple case, the particular metabolic network of interest is already published
and ready for an EFM analysis, as is the case for classic model organisms,
such as Escherichia coli or Bacillus subtilis. Although a continuously rising
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Figure 22.2 The simplified TCA cycle in (A), as depicted Fig. 22.1 gives rise to four
EFMs, shown in (B)–(E). The flux in (F) would utilize all reactions, which is a violation
of condition (iii) and thus not a regular EFM, since it uses the combined reactions of the
EFMs in (D) and (E). Abbreviations are explained in Fig. 22.1.
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number of models are published, it is often necessary to reconstruct a model
from scratch if data concerning an organism of interest is not publicly
available or insufficient. One should not underestimate the notable efforts
and complications that come along with a model reconstruction effort. This
becomes even more crucial, as more and more sequenced genomes are
publicly available and allow for a genome-scale reconstruction and analysis
of metabolic networks. Even in these cases, the reconstruction task can
consume months until a high-quality model is developed (Feist et al., 2009;
Ruppin et al., 2010; Thiele and Palsson, 2010).

For instance, one might encounter the obstacle that databases like KEGG
(Kanehisa et al., 2010) orMetaCyc (Caspi et al., 2010) that comprise metabolic
pathway data contain contradicting information. This can be due to different
conventions concerning the protonation of metabolites or differences in the
reversibility assignment of reactions. The latter can be thermodynamically
feasible in forward and backward direction or only in one of them. This issue is
of critical importance, as those databases commonly form the starting point for
the reconstruction process. Since data from different databases often do not
agree with each other, including data frommultiple sources, such as genomic,
proteomic, or bibliomic sources, is most recommended if not mandatory, in
order to reconstruct a high-quality model.

Note that genome-scale metabolic models are nevertheless abstractions
from real world biological pathways and do not cover the complete set of
reactions featured by the underlying organism per se, for instance, if some
reactions have not yet been identified. Moreover, if no gene ID can be found
in public databases, it is rather common that corresponding reactions, for
instance, transporters are artificially introduced into the system in order to fill
open gaps. This occurs very often in eukaryotes that feature different compart-
ments and cell types. Although reasonable, this should naturally be regarded as a
danger to the correctness of a model and hence be considered when recon-
structing and ultimately analyzing ametabolic network.Therefore, subsequent
analysis can only be considered accurate if the underlying model is as complete
as sources will allow. If information is missing or inconsistent, sometimes
biochemical expertise can be used to improve on this situation.

One good starting point for a reconstruction are central metabolic
pathways as they are described in biochemistry textbooks. Although these
networks represent only a small fraction of a complete biological system,
they are commonly found in most organisms and have already been inves-
tigated for decades.

3.2. Application to photosynthate metabolism

In order to demonstrate howEFManalysis can be used in detail wewill analyze
a metabolic model of photosynthesis. This model (Fig. 22.3; Appendix)
includes the photosynthate metabolism of the chloroplast stroma and
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comprises reactions from the Calvin cycle, which is primarily regulated by the
thioredoxin system (Schürmann and Jacquot, 2000). In contrast to thework of
Poolman et al. (2003), who analyzed a similar model with respect to triose
phosphate export in detail, we will investigate the production of sucrose and
starch. Sucrose and starch are the major carbohydrate storage compounds in
plants. Moreover, sucrose is the carbohydrate transported in the phloem and
also corresponds to the sugar commonly used in everyone’s kitchen.

If all reactions are taken into account, the system gives rise to 42 EFMs in
total. As we will limit the analysis on EFMs during daytime (where the two
dotted reactions in Fig. 22.3 are inactive), only 12 EFMs are relevant. These
EFMs are listed in Table 22.1 and characterize three groups of EFMs of
which some are shown in Fig. 22.4. These groups can be differentiated

e–

Stroma

Cytosol

Figure 22.3 Reactions of the Calvin cycle, including parts of glycolysis. Unidirec-
tional (bidirectional) arrows indicate irreversible (reversible) reactions. Dashed reac-
tions are activated whereas dotted reactions are downregulated during the day. Boxed
metabolites are set to external and all others to internal status for EFM analysis.
Abbreviations ofmetabolites: PGA, 3-phosphoglycerate; BPGA, glycerate-1, 3-bisphos-
phate; GAP, glyceraldehyde-3-phosphate; DAP, dihydroxyacetone phosphate; FBP,
fructose-1, 6-bisphosphate; F6P, fructose-6-phosphate; E4P, erythrose-4-phosphate;
SBP, sedoheptulose-1,7-bisphosphate; S7P, sedoheptulose-7-phosphate; R5P, ribose-
5-phosphate; Ru5P, ribulose-5-phosphate; RuBP, ribulose-1, 5-bisphosphate; X5P,
xylulose-5-phosphate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate.
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Table 22.1 Twelve EFMs active during the day

Group No. Overall reaction Enzymes

I (1) No net transformation -TPI GAPExch -DAPExch TPIc

I (2) No net transformation StaSyn StaPase Lightreact1

II (3) 6CO2 þ 12e– ! Starch 6 Rubisco 12 PGK 12 GAPDH 5 TPI 3 Ald1 3 FBPase

PGI PGM StaSyn 2 TK1 2 Ald2 2 SBPase 2 TK2

2 R5PI 4 Xu5PE 6 Ru5PK 19 Lightreact1 12

Lightreact2

II (4) 6CO2 þ 12e– ! Starch 6 Rubisco 12 PGK 12 GAPDH 3 Ald1 3 FBPase PGI

PGM StaSyn 2 TK1 2 Ald2 2 SBPase 2 TK2 2 R5PI

4 Xu5PE 6 Ru5PK 5 GAPExch -5 DAPExch 19

Lightreact1 5 TPIc 12 Lightreact2

III (5) 12CO2 þ 24e– ! Sucr 12 Rubisco 24 PGK 24 GAPDH 8 TPI 4 Ald1 4

FBPase 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 4 GAPExch 36 Lightreact1

2 TPIc 2 Aldc 2 FBPasec SucSyn 24 Lightreact2

III (6) 12CO2 þ 24e– ! Sucr 12 Rubisco 24 PGK 24 GAPDH 10 TPI 4 Ald1 4

FBPase 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 2 GAPExch 2 DAPExch 36

Lightreact1 2 Aldc 2 FBPasec SucSyn 24 Lightreact2

III (7) 12CO2 þ 24e– ! Sucr 12 Rubisco 24 PGK 24 GAPDH 12 TPI 4 Ald1 4

FBPase 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 4 DAPExch 36 Lightreact1

-2 TPIc 2 Aldc 2 FBPasec Suc Syn 24 Lightreact2
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III (8) 12CO2 þ 24e– ! Sucr 12 Rubisco 24 PGK 24 GAPDH 4 Ald1 4 FBPase 4

TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI 8 Xu5PE 12

Ru5PK 12 GAPExch -8 DAPExch 36 Lightreact1

10 TPIc 2 Aldc 2 FBPasec SucSyn 24 Lightreact2

III (9) 12CO2 þ 4 � Starch

þ 24e– ! 3 � Sucr

12 Rubisco 24 PGK 24 GAPDH 10 TPI -4 PGI -4

PGM 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 6 GAPExch 6 DAPExch 4

StaPase 36 Lightreact1 6 Aldc 6 FBPasec 3 SucSyn

24 Lightreact2

III (10) 12CO2 þ 4 � Starch

þ 24e– ! 3 � Sucr

12 Rubisco 24 PGK 24 GAPDH 16 TPI -4 PGI -4

PGM 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 12 DAPExch 4 StaPase 36

Lightreact1 -6 TPIc 6 Aldc 6 FBPasec 3 SucSyn 24

Lightreact2

III (11) 12CO2 þ 4 � Starch

þ 24e– ! 3 � Sucr

12 Rubisco 24 PGK 24 GAPDH 4 TPI -4 PGI -4

PGM 4 TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI

8 Xu5PE 12 Ru5PK 12 GAPExch 4 StaPase 36

Lightreact1 6 TPIc 6 Aldc 6 FBPasec 3 SucSyn 24

Lightreact2

III (12) 12CO2 þ 4 � Starch

þ 24e– ! 3 � Sucr

12 Rubisco 24 PGK 24 GAPDH -4 PGI -4 PGM 4

TK1 4 Ald2 4 SBPase 4 TK2 4 R5PI 8 Xu5PE 12

Ru5PK 16 GAPExch -4 DAPExch 4 StaPase 36

Lightreact1 10 TPIc 6 Aldc 6 FBPasec 3 SucSyn 24

Lightreact2

The group classification is given in the first column, while the net transformation is given in the third and the fluxes of the reactions in the fourth column. An overview of
the reaction scheme is given in Fig. 22.3.
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according to their net transformation of external metabolites: in the first
group, no net transformation occurs while EFMs of the second and third
group produce starch and sucrose, respectively.

The first group comprises two cycles that are present during the day.
The first reflects reversible DAP and GAP exchange across the cytosolic
membrane with concurrent antiport of Pi (EFM 1, Fig. 22.4A). As this cycle
is not driven thermodynamically by external metabolites, it is detailed
balanced and can, thus, not carry any steady-state flux due to thermody-
namical reasons. The second EFM is a futile cycle, as it consumes ATP from
the light reactions, while interconverting starch and G1P back and forth
(EFM 2, Fig. 22.4A). As energy is available in excess through the light
reactions, both starch and sucrose can be produced at daytime.

e–

e–

e–

e–

A B

C D

Stroma

Cytosol

Stroma

Cytosol

Stroma

Cytosol

Stroma

Cytosol

Figure 22.4 Selected EFMs of the model of Fig. 22.3. (A) Displays two cycling EFMs
that show no net transformation (EFM 1—solid arrows, EFM 2—dashed arrows). The
EFM in (B) describes starch production, via Rubisco. Sucrose synthesis from CO2 alone
or from CO2 and starch is displayed in (C) and (D), respectively. The selected EFMs as
well as further EFMs are described in Table 22.1 and in the text. Names of enzymes are
given in Fig. 22.3.
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The EFMs synthesizing starch (EFMs 3 and 4, see also Fig. 22.4) can be
differentiated by their location. While EFM 3 (Fig. 22.4B) occurs solely in
the stroma, EFM 4 (not shown in Fig. 22.4) comprises reactions of the
stroma and the cytosol. Nevertheless, both EFMs require 19 mol of ATP
and 12 mol of NADPH, provided by the light reactions in order to produce
1 mol of starch (i.e., the metabolite that represents one hexose unit in starch)
and are thus equally “expensive” in the context of this model.

Sucrose can be produced solely from carbon dioxide (EFMs 5–8) or both,
from carbon dioxide and starch (EFMs 9–12). An interesting question is which
of the pathways is energeticallymore efficient, since both use the same amount
of ATP and NADPH provided by the light reactions, but produce different
quantities of sucrose from different sets of precursors. Producing 3 mol of
sucrose from carbon dioxide alone requires an investment of three times 36
mol of ATP and 24mol ofNADPHprovided by the light reactions and hence
anoverall consumptionof 108mol ofATP and72mol ofNADPH.Producing
3 mol of sucrose from starch and carbon dioxide requires an investment of 36
mol of ATP, 24 mol of NADPH, and 4 mol of starch. Producing 4 mol of
starch through EFMs of group II requires an additional investment of four
times 19 mol of ATP and 12 mol of NADPH. In consequence, an overall
36 þ 4 � 19 ¼ 112 mol of ATP and 24 þ 4 � 12 ¼ 72 mol of NADPH
are consumed to produce 3 mol of sucrose through EFMs 9–12. Thus,
producing sucrose through EFMs 5–8 is energetically more favorable.
Hence, while sucrose biosynthesis from light and starch is in principle possible,
it is slightly more expensive for plants to rely also on starch deposits, if the light
source is not sufficient. For further selected EFMs, see Fig. 22.4.

Since Table 22.1 comprises 12 EFMs, there are 30 EFMs left. All
these 30 EFMs have in common that they either use reactions of the
oxidative pentose phosphate pathway (OPPP in Fig. 22.3) or the transaldo-
lase. These reactions are downregulated during the day and, thus, not
available (Schürmann and Jacquot, 2000). All of these EFMs additionally
use Rubisco or sedoheptulose-bisphosphatase (SBPase), reactions which are
downregulated during the night (Schürmann and Jacquot, 2000). In conse-
quence, these 30 EFMs are also downregulated during the night.

Hence, neither starch production nor sucrose synthesis is possible during
night in the context of this model. Even if an ATP source were available
during night, additional reactions that are downregulated during this phase
of the day would be required. A detailed description and analysis of triose
phosphate biosynthesis in plants is given in Poolman et al. (2003).

3.3. Overview of further applications of EFM analysis

EFM analysis has been used intensively to analyze the metabolic capabilities
of organisms. One important example is the analysis of metabolic pathways
in the central metabolism of Escherichia coli that provided evidence for the
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existence of an alternative pathway for the complete oxidation of glucose
apart from the TCA cycle (Liao et al., 1996; Schuster et al., 1999). This
pathway, now called PEP-glyoxylate cycle, after it had been experimentally
confirmed (Fischer and Sauer, 2003), makes use of the glyoxylate shunt and
skips several reactions of the TCA cycle (Fig. 22.2E). Recently, this
pathway has also been reported in Mycobacterium tuberculosis (Beste and
McFadden, 2010). Another example is the analysis of a long-standing
issue in biochemistry: the question whether even-chain fatty acids can be
converted into carbohydrates in humans at steady state. Even though there
exists a connected route between acetyl-CoA—the product of b-oxidation
of even-chain fatty acids—and glucose along the TCA cycle, there can
be no steady-state flux along this route at steady state. Analyzing a metabolic
network comprising relevant reactions, de Figueiredo et al. (2009b)
could indeed show that there exists no elementary mode within this
network that converts fatty acids into glucose thus confirming earlier results
(Weinman et al., 1957).

Another important application of EFM analysis is the investigation of the
susceptibility of metabolic networks to perturbations. A useful property of
EFMs is that the knockout of an enzyme can be simulated by removing
all EFMs that contain a reaction that is catalyzed by that enzyme. In
consequence, enzyme deficiencies can be easily analyzed and EFM analysis
has been used to understand metabolic pathways within a mutant of E. coli
that lacks an outer membrane and the cell wall (Kenanov et al., 2010).
Moreover, it has been used to analyze medical implications of enzyme
deficiencies in human erythrocytes (Çakir et al., 2004; Schuster
and Kenanov, 2005). On a larger scale, EFM analysis has been used to
analyze and compare different networks with regard to their susceptibility to
random perturbations (Behre et al., 2008; Stelling et al., 2002; Wilhelm
et al., 2004).

EFM analysis can also be used to facilitate the interpretation and integra-
tion of large-scale experimental data sets. The analysis of such data sets is and
has been an important focus in Systems Biology since data analysis is
currently lagging behind data generation (Palsson and Zengler, 2010).
EFM analysis is a suitable tool in this endeavor as has been shown in a
study which investigates regulatory adaptations of E. coli to different carbon
sources (Stelling et al., 2002) and in another work in which transcriptomic
changes during the response to stresses in yeast have been analyzed
(Schwartz et al., 2007).

One particular successful area of application of EFM analysis is biotech-
nology. It has been used in the design and implementation of several strains
of E. coli overproducing various biotechnological products of interest
(Carlson et al., 2002; Trinh and Srienc, 2009; Trinh et al., 2006; Unrean
et al., 2010). The motivation behind these applications is to reduce the space
of admissible fluxes toward a smaller space in which the production of the
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CONSTRAINT-BASED MODELLING 58



desired product is presumably coupled to a cellular objective such as max-
imizing the growth rate. This is achieved by knocking out genes that
remove EFMs that have low yields in the desired product. Such knockout
strategies can be identified by using the concept of minimal cut sets (Klamt,
2006)-minimal sets of reactions that allow to block a given set of EFMs.
Also other theoretical tools based on EFM analysis that allow one to identify
genetic modifications that increase the flux to a desired product have been
proposed recently (Boghigian et al., 2010; Bohl et al., 2010; Hädicke and
Klamt, 2010).

3.4. Pathway analysis in genome-scale metabolic networks

EFMs can only be enumerated in small to medium-scale metabolic net-
works. These restrictions come from the exponential increase in the num-
ber of EFMs with network size (Klamt and Stelling, 2002). In recent years,
the algorithms to compute EFMs have been considerably improved
(Gagneur and Klamt, 2004; Terzer and Stelling, 2008; Urbanczik and
Wagner, 2005) such that networks with up to 25 million EFMs could be
analyzed (Terzer and Stelling, 2008). However, the estimated number of
EFMs in genome-scale metabolic networks is much larger. For instance, it
has been estimated that the number of extreme pathways, a subset of the
EFMs, in a genome-scale metabolic network of humans is approximately
1029 (Yeung et al., 2007). Thus, even with drastic improvements in algo-
rithms and hardware the enumeration of all EFMs in most genome-scale
metabolic networks appears to be infeasible, apart from the difficulty to
analyze such a large set of EFMs.

To counter this problem, recently, several approaches that allow for a
pathway-based analysis even in genome-scale metabolic networks have
been developed. They can be divided into two types. The first type aims
to enumerate a subset of the EFMs or extreme pathways that fulfill certain
biotechnological criteria (de Figueiredo et al., 2009a; Kaleta et al., 2009a; Xi
et al., 2009) and the second analyses sets of reactions that are part of a
pathway of the entire system within a specific subsystem, so-called elemen-
tary flux patterns (Kaleta et al., 2009b).

The advantage of the first methodology is that a subset of EFMs can be
enumerated without requiring to compute the entire set as was necessary
using classical algorithms for EFM computation. If one is interested in the
shortest EFMs using a specific reaction, a mixed-integer linear program-
ming formulation can be used to compute EFMs (de Figueiredo et al.,
2009a). Alternatively, large sets of EFMs using a specific reaction can be
obtained using a genetic algorithm that allows one to sample EFMs
randomly (Kaleta et al., 2009a). Also random sampling methods have been
used to identify subsets of extreme pathways in large-scale networks
(Xi et al., 2009).
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The second methodology, elementary flux pattern analysis (Kaleta et al.,
2009b), allows one to identify pathways within a subsystem of metabolism
that are compatible with a steady-state flux of the entire system. Due to this
strong link of elementary flux patterns with the entire system it is further
possible to analyze how a subsystem integrates into the remaining system.
Using this approach, many methods building on EFM analysis can also be
applied to subsystems of genome-scale metabolic networks. Another inter-
esting property of elementary flux patterns is that they put no constraints on
the connectivity between the reactions of the subsystem that are considered.
In consequence, it is even possible to analyze subsystems that comprise two
sets of reactions that do not interface each other through common substrates
or products. This can be of importance when analyzing, for instance, the
dependencies between a set of reactions within a parasite and a set of
reactions within the host in order to understand how both organisms
interact on a metabolic level. Thus, critical metabolic dependencies
between the host and the parasite can be identified in order to develop
new drugs that affect the parasite but have only a small deleterious effect on
the host. The analysis of such consortium pathways going across two or
more organisms is a topic of high current interest (Bordbar et al., 2010;
Raghunathan et al., 2009).

4. Conclusion

EFM analysis is a useful tool that allows the decomposition of bio-
chemical networks into minimal constituent pathways. Thus, EFM analysis
has already seen a wide array of applications ranging from theoretical works
to biotechnology and has made significant contributions to research in these
fields. However, EFM analysis in its classical form cannot be applied to
genome-scale metabolic networks which has been considered as a down-
turn of this method. But with the development of new tools and concepts
that port EFM analysis to such networks some hurdles have already been
vanquished. In consequence, even in the era of genome-scale metabolic
networks, EFM analysis is still a central tool for the analysis of metabolic
pathways.
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Appendix

Reaction scheme of the photosynthate metabolism in metatool format
(discussed in Section 3.2).

-METEXT
CO2 Starch e Sucr
-CAT
#reactions of the Calvin cycle (down at night)
Rubisco : CO2 þ RuBP ¼ > 2 PGA
PGK : PGA þ ATP ¼ BPGA þ ADP
GAPDH : BPGA þ NADPH ¼ NADP þ GAPs þ Pis
FBPase : FBPs ¼ > F6Ps þ Pis
SBPase : SBP ¼ > S7P þ Pis
Ru5PK : Ru5P þ ATP ¼ > RuBP þ ADP
StaSyn : G1P þ ATP ¼ > ADP þ 2 Pis þ Starch
Lightreact2 : ADP þ Pis ¼ > ATP
Lightreact1 : NADPred : NADP þ e ¼ > NADPH
#stroma reactions
TPI : GAPs ¼ DAPs
Ald1 : DAPs þ GAPs ¼ FBPs
TK1 : F6Ps þ GAPs ¼ E4P þ X5P
Ald2 : E4P þ DAPs ¼ SBP
TK2 : GAPs þ S7P ¼ X5P þ R5P
R5PI : R5P ¼ Ru5P
Xu5PE : X5P ¼ Ru5P
PGI : F6Ps ¼ G6Ps
PGM : G6Ps ¼ G1P
StaPase : Starch þ Pis ¼ > G1P
#cytoplasmatic reactions
TPIc : GAPc ¼ DAPc
Aldc : GAPc þ DAPc ¼ FBPc
FBPasec : FBPc ¼ > F6Pc þ Pic
SucSyn : 2 F6Pc ¼ > Sucr þ 2 Pic
#transport reactions
GAPExch : GAPs þ Pic ¼ Pis þ GAPc
DAPExch : DAPs þ Pic ¼ Pis þ DAPc
#unique in oxPPP #down at day
TA : F6Ps þ GAPs ¼ E4P þ S7P
OPPP : G6Ps þ 2 NADP ¼ > 2 NADPH þ CO2 þ Ru5P
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Introduction

Metabolic pathway analysis is a well established and very useful

tool in Systems Biology [1,2]. One concept in this field is that of

elementary flux modes (EFMs), which represents a minimal set of

reactions that can operate at steady state with all reactions

proceeding in the thermodynamically feasible direction [3]. The

EFM approach has proved its value in diverse biotechnological

applications [4]. It has been used to find efficient routes for the

production of particular target compounds, such as fatty acids in

plants [5], or methionine [6] and cyanophycin [7] in bacteria, to

find possible targets for the engineering of metabolic networks

through knock-outs or knock-ins [8,9], as well as to assess the

impact of enzyme deficiencies [10,11] or the robustness of

metabolic networks [12]. Note that in contrast to optimality based

approaches like Flux Balance Analysis [13], EFM analysis has the

advantage of providing a more comprehensive overview of the

existing routes through a given network by providing a complete

data set of possible fluxes rather than solely an optimality restricted

set. A disadvantage arises from the problem of combinatorial

explosion [14]. Therefore, it is impossible to compute all EFMs in

genome-scale models up to now, although advances have been

made recently coping with large networks [15].

Beside a growing number of methods for the analysis of

metabolic networks, connecting experimental data to reconstruct-

ed models remains a major task to systems biology [16–20].

However, this potential should not be underestimated, as immense

data are produced by modern techniques, such as high throughput

sequencing, as well as microarrays and proteomics. Moreover,

inherent information in DNA sequences, like recognition motifs,

can be utilised as well and ultimately applied to network analysis,

linking genomics, proteomics and metabolomics. This offers an

access to regulation processes that possibly lead to altered

metabolic fluxes and consequently influence the entire metabolism

of an organism.

To demonstrate the usefulness of our method with a case study,

we describe the analysis of a reconstructed metabolic network of

nitrogen uptake in the green algae Chlamydomonas reinhardtii, a

model process for green crop plants. Assimilating nitrogen is a key

step of metabolism required by phototrophic organisms in order to

grow and survive in natural habitats [21]. Nitrogen metabolism in

this green algae is circadian-clock regulated, via an mRNA

binding factor named CHLAMY1, a heteromer that consists of

two subunits, C1 and C3, the latter being well conserved in

humans [22]. This regulator is known to bind UG-repeats that

comprise at least seven non-interrupted UG-repetitions and are

located in the 39 UTR of various mRNAs including nitrite

reductase and argininosuccinate lyase [22–24]. It has been shown

experimentally that introduction of UG-repeats into the 39 UTR

of reporter constructs results in circadian expression [25]. The

binding activity is controlled by the circadian clock, as it increases

at the end of the day and decreases again at the end of the night.

As activity levels of nitrite reductase, whose mRNA bears a UG-

repeat, and of reporters that are under control of the UG-repeats

are highest at the beginning of the day, it is assumed that

CHLAMY1 binding prevents translation during the night [25,26].

Here, we combine genome based sequence and metabolic

pathway analyses by computing EFMs. This allows us to evaluate

the changes in nitrogen assimilation and amino acid anabolism

that are caused by CHLAMY1 binding and thus, determine the

physiological role of this circadian RNA-binding factor. We study

amino acid biosynthesis of alanine, glycine, asparagine, lysine and
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arginine, which permits physiological interpretation and compar-

ison to known data from other organisms. These amino acids were

chosen as they are either overrepresented in C. reinhardtii or contain

a high nitrogen content in their side chain and, thus, are

particularly suitable for nitrogen storage.

As we will show, the application of optimality principles that

solely focus on analysing maximum yields like in Flux Balance

Analysis [13], only offers a limited view on a given system and is

therefore not suitable for our approach as the complete capability

of the network has to be taken into account.

Results

As it is not feasible to analyse the complete metabolism of C.

reinhardtii using elementary flux mode analysis, we first had to

confine our model. C. reinhardtii is able to grow either autotrophi-

cally, heterotrophically or mixotrophically. As we simulate only

metabolism during the night here, we have chosen acetate and

glucose-6-phosphate (G6P) as carbon sources. G6P is provided by

starch degradation. The degradation is not explicitly included into

the model.

To model the nitrogen uptake, we analysed the biosynthesis of

five different amino acids. First, we selected amino acids that have

the highest nitrogen to carbon ratio, those are lysine, asparagine

and arginine. Furthermore, we analysed the amino acid

composition of all predicted proteins in C. reinhardtii and identified

glycine and alanine as most abundant and highly overrepresented

amino acids compared to other organisms (Fig. 1). Additionally,

glutamate, glutamine and aspartate are present in the model as

intermediates.

Taken together, our reconstructed model of nitrogen metabo-

lism of C. reinhardtii comprises 105 reactions and 95 metabolites.

An overview is given in Fig. 2, while a complete list of reactions

can be found in the Supplementary Tables S1 and S2. The

sequence analysis revealed that six enzymes are entirely encoded

by mRNAs that contain UG§7-repeats in their 39 UTRs and are

hence presumably under control of CHLAMY1 (Fig. 2).

The computation of EFMs gave rise to 404252 EFMs for

glycine, 684036 EFMs for alanine, 177294 EFMs for asparagine,

406560 EFMs for lysine and 1352352 EFMs for arginine

biosynthesis, when G6P as well as acetate were assumed to be

available. Three example EFMs are depicted in Fig. 3. The shown

EFMs producing asparagine and lysine are the most efficient ones

with respect to the yield of amino acids under study per mole

carbon source. As for arginine, a less efficient mode is shown to

reduce overlap with the other depicted modes and to show another

variant, running via the pentose phosphate pathway.

Maximum carbon yields
To compare the biosynthetic yield of different amino acids, we

calculated a so called carbon yield. As described in the Analysis

section it was calculated based on the stoichiometric equations of

EFMs. It represents the number of carbon atoms in the target

amino acid divided by the number of carbon atoms in the carbon

source. As beside G6P and acetate, CO2 was the only carbon

source that was set external, a carbon yield lower than 1

corresponds to a release of CO2 during biosynthesis. In contrast,

a carbon yield greater than one corresponds to a non

photosynthetic incorporation of CO2.

We compared maximum carbon yields of EFMs for the

unperturbed system and the extreme case, where the mRNAs of

enzymes under control of CHLAMY1 are completely downreg-

ulated. For this analysis, we first computed all EFMs that convert

one of the given carbon sources (G6P or acetate) into glycine,

alanine, asparagine, lysine or arginine (Fig. 4). During a second

run we removed those enzymes whose translation is potentially

downregulated during the night by CHLAMY1. As argininosuc-

cinate lyase (ASL) is encoded by an UG§7-repeat-containing

mRNA and subsequently modelled inactive, there are no EFMs

for arginine synthesis left under these conditions. Furthermore,

Figure 1. Distribution of amino acids among different species. Percentage share of amino acids are given for each amino acid using one
letter code. The amino acid compositions of selected organisms were derived from complete genome ORF prediction from different databases (see
Analysis section). HSA: Homo sapiens, MMU: Mus musculus, ATH: Arabidopsis thaliana, CRE: Chlamydomonas reinhardtii.
doi:10.1371/journal.pone.0023026.g001
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Figure 2. Overview of the reconstructed network of nitrogen metabolism in C. reinhardtii. Co-factors such as ATP and NAD(P)H creation or
consumption, or CO2 , phosphate and water as well as the reactions of pyrophosphatase and the electron transport chain are not shown. For a list of
all abbreviations, modelled reactions and species, see Supplementary Tables S1 and S2. External metabolites are framed and enzymes, whose mRNAs
are downregulated by CHLAMY1 are encircled. As only the NADPH dependent variant of isocitrate dehydrogenase (IDH) is affected by CHLAMY1, it is
marked with a dashed circle.
doi:10.1371/journal.pone.0023026.g002
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Figure 3. Three example elementary flux modes (EFMs). Solid arrows, most efficient EFM producing asparagine; dashed arrows, most efficient
EFM producing lysine; dotted arrows, one selected EFM producing arginine via the pentose phosphate pathway.
doi:10.1371/journal.pone.0023026.g003
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since nitrite reductase has the same property, we do no longer find

EFMs with nitrate and nitrite consumption if we assume complete

downregulation of CHLAMY1 regulated mRNAs and thus,

corresponding enzymes. Hence, in this case all EFMs use

ammonium as sole nitrogen source.

Beside glycine, the maximum yields for biosynthesis of all amino

acids are reduced, if complete downregulation by CHLAMY1 was

assumed. However, analysing maximum yields only uses a very

small portion of the information about the network’s metabolic

capabilities. In contrast, EFMs offer a more detailed view on the

metabolic capacity. This significant advantage will be exploited

below.

Yield distribution
To make use of the full potential of flux distribution, we first

took all EFMs and respective yields into account, rather than

analysing solely optimised fluxes with respect to carbon yields.

Again, as ASL is a key step in arginine biosynthesis that is

inactivated by CHLAMY1, we did not conduct any further

analysis of arginine metabolism.

From Fig. 5 it can be observed that CHLAMY1 predominantly

downregulates pathways that have lower yields. Although, the

maximum yields decrease the mean carbon yields for all amino

acids increase after removing EFMs affected by CHLAMY1

(Fig. 6).

Weighted influence
Note that until now all EFMs were discarded that contain at

least one reaction that is under influence of CHLAMY1. However,

such drastic downregulation is questionable and asks for a more

realistic modelling.

In the following calculations we therefore circumvented the need

to inactivate fluxes, regulated by CHLAMY1, which is usually

enforced by EFM analysis. We now assume downregulation of the

corresponding fluxes to 10% due to CHLAMY1 binding, rather

than complete inactivation. We reduced the impact of inhibited

EFMs by weighting EFMs differently, depending on whether they

are under CHLAMY1 control or not (Fig. 7). The extent of

downregulation by CHLAMY1 is chosen arbitrarily, as corre-

sponding quantitative data is not available. However, reduction

factors deviating slightly from 10% do not change the result

qualitatively here. Note that downregulation leads to a reduced

increase of the interquartile range compared to inactivation (see also

Fig. 5). This is due to the large portion of CHLAMY1 controlled

fluxes numbering 388832 (96.19%) for glycine, 674436 (98.6%) for

alanine, 173543 (97.88%) for asparagine and 394404 (97.01%) for

lysine biosynthesis, respectively (Fig. 8). However, this provides

a more realistic view on the metabolic state than complete

downregulation.

Additionally, we calculated the mean of molar yields by using

the formula for weighted means given by Eq. (3). This enables us

to weight every derived yield and hence, also the underlying flux,

represented by its respective EFM. We applied a weight of 10% to

EFMs affected by CHLAMY1 and a unity weight to all remaining

fluxes. The resulting mean yield is considerably increased upon

CHLAMY1 binding (Fig. 9).

Discussion

In this study, we have outlined a method that interconnects

sequence based knowledge with metabolic pathway analysis. The

method has been illustrated by nitrogen metabolism of C.

reinhardtii, which is under the control of the circadian clock. The

Figure 4. Comparison of maximum carbon yields that are obtained by EFM analysis. The carbon yield was calculated based on
stoichiometric equations as described in the Analysis section. It represents the number of carbon atoms in the target amino acid divided by the
number of carbon atoms in the carbon source. The comparison is based on ammonium uptake and all possible carbon sources (G6P and acetate).
Yields correspond to two different conditions: C, the complete set of enzymes are active at normal rate; UG{, all CHLAMY1 regulated mRNAs and
thus, related enzymes are completely inactive. In this all-or-nothing modelling approach, growth on nitrate or nitrite, as well as arginine biosynthesis,
is impossible if CHLAMY1 regulation is considered, since nitrite reductase (NiR) and argininosuccinate lyase (ASL) are essential for these processes (see
text and Fig. 2).
doi:10.1371/journal.pone.0023026.g004
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calculated elementary flux modes provide a data set that is well-

suited for quantifying and understanding the complex architecture

of this network. The large number of modes (e. g. 1352352 for

arginine) point to a considerable redundancy of this network.

Intriguingly, our results show that downregulation of circadian

controlled enzymes improves carbon distribution and thus,

Figure 5. Carbon yield distribution considering complete inactivation. Box plots (with whiskers ranging from minimum to maximum and
thick solid line indicating the median) of carbon yield distribution for glycine (Gly), alanine (Ala), asparagine (Asn) and lysine (Lys) associated pathways
based on all available carbon sources. Complete inactivation of CHLAMY1 affected reactions is considered here. Knockout of ASL completely inhibits
arginine biosynthesis and is hence, not shown (see also Fig. 2). If not marked with UG{, boxplots show complete EFM distribution. Otherwise, they
show distribution for all EFMs that are not affected by CHLAMY1 downregulation.
doi:10.1371/journal.pone.0023026.g005

Figure 6. Mean yields assuming complete downregulation by CHLAMY1. In contrast to Fig. 4, the carbon yields of either all EFMs (C) or all
those EFMs that do not have CHLAMY1 regulated mRNAs (UG{) were calculated here. The sum of these yields divided by the number of
corresponding EFMs results in the mean yield shown. An increase of the mean yield after downregulation by CHLAMY1 can be observed for all amino
acids, except for arginine, as in this case CHLAMY1 downregulates expression of ASL, which is crucial for the arginine pathway (see also Fig. 2).
doi:10.1371/journal.pone.0023026.g006
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decreases energy consumption. The somewhat counter-intuitive

result that knocking out or downregulating several enzymes may

lead to an increase in average yield arises, because poor pathways

are deleted or downregulated, so that more efficient pathways

become more dominant. A similar phenomenon was observed

earlier in the context of strain optimisation [9,27,28]. Our

approach focuses on analysing altered fluxes due to regulatory

influences in general. We compare two or more physiological

situations (e. g. day- and night-time) rather than manipulated

setups. Other examples may be provided by hibernation vs.

summertime stage or different developmental stages such as

embryonic vs. adult. The regulatory information can be provided

in a wide variety of forms, including transcriptional regulatory

events as time-dependent constraints [29].

Additionally, we have considered information derived from

sequence data. Since it is known that many regulatory proteins

bind to specific motifs in the mRNA or to promoters, such

information is extremely useful in modelling regulation of

metabolism. Moreover, measuring fluxes in detail is already a

demanding task for simple model organisms, like Escherichia coli or

Saccharomyces cerevisiae, but might be virtually infeasible for higher

organisms, when regulatory complexity becomes more sophisti-

cated. Thus, our approach proves to be an easy-to-use, helpful

method to determine the type and impact of influences of

regulatory factors.

Considering only the maximum carbon yields of pathways

summarised in Fig. 4, indicates that C. reinhardtii remains able to

synthesise glycine, alanine, asparagine and lysine but with reduced

theoretical effectiveness while not being able to synthesis arginine

if one assumes complete downregulation by CHLAMY1 at night-

time. However, as there are more than three million possible

routes within the network producing the target amino acids and

the main portion of all EFMs (above 96% for all amino acids, see

also Fig. 8) is affected by CHLAMY1 action, solely focusing on

maximum carbon yields provides a limited view and would lead to

misinterpretations. Furthermore, the calculation of the maximal

yield is sensitive to the size of the model and the carbon sources

chosen. If we use glyceraldehyde-3-phosphate (GAP) and acetate

as carbon source and thus, remove glycolysis and the pentose

phosphate pathway from the model, the maximum yield does not

change between sets of EFMs with and without CHLAMY1

affected reactions (see Fig. 10).

To study the spectrum of metabolic capabilities, we analysed the

whole yield distribution. The results, shown in Fig. 5, reveal that

CHLAMY1 influences the mRNA expression of enzymes mainly

taking part in EFMs that realise low yields. Thus, translational

downregulation by CHLAMY1 during the night leads to an

increased median yield for the considered amino acid production

whereas the maximum yield decreases.

During night-time, photosynthesis is impossible and, hence,

energy is largely limited. A prohibition of energy-consuming

reactions that usually contribute to low carbon yields during the

night has already been observed experimentally for Arabidopsis

thaliana [30]. The decrease in maximum carbon yield observed in

our analysis is mainly due to the fact that G6PI is regulated by

CHLAMY1 and thus, G6P is forced to enter the pentose

phosphate pathway (PPP). This might be necessary as the PPP is

required for the synthesis of nucleotides. As DNA-replication

occurs preferentially during the night, this regulatory compromise

can be considered as an optimised outcome of evolution.

Taken together, our results are in good agreement with

experimental observations and evolutionary considerations. In

contrast to the dependency of the decrease of the maximum yields

on the model size and carbon source chosen, the increase of the

yield distribution can be found for both G6P and GAP as carbon

source (see Fig. 5 and Fig. 10, respectively).

Beside ASL and NiR, CHLAMY1 regulated enzymes are

identified based on UG-repeats found in the annotated 39 UTR of

Figure 7. Carbon yield distribution considering partial downregulation. Weighted mean value of carbon yield distribution for the same
pathways as in Fig. 5 based on all available carbon and nitrogen sources, considering downregulation of CHLAMY1 affected enzymes to 10%. Either
all enzymes are active at normal rate or CHLAMY1 is assumed to downregulate mRNAs with UG§7-repeat–motif to 10% activity (UG0:1) leading
subsequently to reduced yield contribution of the affected EFMs.
doi:10.1371/journal.pone.0023026.g007
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the respective genes. For ASL and NiR CHLAMY1 binding has

been shown experimentally and the introduction of the respective

39 UTR sequences into luciferase constructs lead to a robust

circadian enzyme activity [25]. Furthermore, NiR activity has

been shown to cycle in circadian manner [26]. To analyse how the

prediction of CHLAMY1 regulated enzymes based on sequence

analysis might influence our results we calculated the yield

distribution with only ASL and NiR downregulated by

CHLAMY1 for comparison. As Fig. 11 shows, NiR and ASL

are the enzymes mainly contributing to an increased yield. As

G6PI is still active in this case the maximum yield is equal to that

of the complete model. This again demonstrates that the

calculation of the maximum yield alone is relatively sensitive to

changes in the model and may lead to misinterpretations.

The analysis presented here was restricted to the influence of

CHLAMY1 regulation on metabolism. There might be other

processes influencing the circadian regulation of nitrogen metab-

olism like transcriptional and posttranslational regulation. It has

been described that the transcription of some enzymes included in

our model are regulated in a circadian manner [31]. However, all

enzymes described in the aforementioned approach have isoen-

zymes that are not under the control of the circadian clock. As we

did not distinguish between different isoforms as long as they use

the same cofactors, an inclusion of transcriptional regulation

would not affect our simulations. Furthermore, we did not include

any compartmentalisation in our model, as due to the resulting

complexity the calculation of all EFMs would not be feasible.

Here, we have assumed that all fluxes contribute with equal

probability to an overall flux, as done earlier in the case of

incomplete knowledge [11]. This assumption probably does not

describe reality properly. However, it allows one to analyse the

robustness and full flexibility against altered environmental

conditions. Moreover, it enables us to predict qualitative changes

of the metabolic system under investigation. Furthermore, it has

been noticed that approaches based on optimality principles are

dependent on the applied constraints [13,32–34] and matching

them to experimental results meets with various difficulties

[35,36]. As we have shown in this study, weighting EFMs affected

by regulating factors differently from unaffected EFMs, preserves

the EFM inherent yield, while changing the overall yield

distribution (Fig. 7). Additionally, computing a weighted arithme-

tic mean of all carbon yields provides valuable information about

effects of the regulating factors, while circumventing artificial all-

or-none simulations. The simplicity of this approach provides the

advantage that no parameters, like reaction rates, are required and

no additional assumption have to be made.

Further analysis of the calculated EFMs shows that only

approximately 1/50th of the original set of EFMs is still fully active

after CHLAMY1 binding. Therefore, the metabolic flux through

the system is considerably reduced during the night-time, which is

in line with the reduction of carbon and energy consumption when

photosynthesis is inactive. This holds independently of the carbon

source chosen. Particularly EFMs with a low yield are suppressed,

so that the average yield increases. If CHLAMY1 binding is

reduced at the end of the night resulting in the expression of target

enzymes at the beginning of the day when photosynthetic energy is

again available, the metabolic capability and robustness of

nitrogen metabolism is greatly increased and allows fast incorpo-

ration of nitrogen into the organism. As energy is no longer

limiting, there is no need to restrict to those reactions with high

yields and low energy consumption. Therefore, CHLAMY1

binding during the night appears to ensure energy conservation

while still allowing nitrogen fixation. Due to the stabilisation of

mRNA by CHLAMY1 and release at the end of the night

[23,25,26], it furthermore enables a high metabolic capacity as

soon as enough energy is available.

Fig. 7 reveals that downregulation rather than inactivation of

CHLAMY1 affected reactions, still leads to an increase in global

carbon yields, although the increase is remarkably lower. This is

due to the large portion of CHLAMY1 influenced fluxes.

In general, using weighted influences instead of the simplified

all-or-none approach, can be used to study the impact of two

regulators leading to different residual activity of enzymes.

Furthermore, it could also be used to interpret microarray or

other expression data. Here, fold changes could be used as

weighting factors to simulate metabolic changes of a given system.

Hence, it provides a useful tool to connect the growing amount of

high throughput expression data to pathway analysis.

Analysis

Calculating amino acid composition
The amino acid compositions of selected organisms were

derived from complete genome open reading frame (ORF)

prediction data in fasta file format. The fasta files from Homo

sapiens, Mus musculus, and Arabidopsis thaliana were obtained from

the UniProt database [37], while the fasta file for Chlamydomonas

Figure 8. Number of EFMs with and without circadian
regulation. More than 96% of all elementary flux modes (gray) are
influenced by CHLAMY1. Remaining elementary flux modes, assuming
complete downregulation by CHLAMY1, are shown in black.
doi:10.1371/journal.pone.0023026.g008
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Figure 9. Mean yields assuming partial downregulation of genes by CHLAMY1. All EFMs have been used to calculate a weighted mean
according to Eq. 3. An increase of the weighted mean yield can again be observed for all amino acids as in Fig. 6. However, the increase is less
pronounced.
doi:10.1371/journal.pone.0023026.g009

Figure 10. Yield distribution for GAP and acetate as carbon source. Carbon yield distribution was calculated assuming complete
inactivation. In contrast to Fig. 5 GAP and acetate were used as carbon source and the maximum yields (upper whiskers) do not change between EFM
sets including all enzyme or those that are not affected by CHLAMY1 downregulation (UG{). Box plots (with whiskers ranging from minimum to
maximum and thick solid line indicating the median) of carbon yield distribution for glycine (Gly), alanine (Ala), asparagine (Asn) and lysine (Lys)
associated pathways based on all available carbon sources.
doi:10.1371/journal.pone.0023026.g010
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reinhardtii was fetched from a database provided by the Joint

Genome Institute [38]. These files were scanned for total amino

acid distribution and the results summarised in Fig. 1.

Pathway reconstruction
A metabolic network comprising the nitrogen metabolism in C.

reinhardtii (Fig. 2) was reconstructed using the KEGG [39] and

ChlamyCyc [40] databases, the biochemical pathways textbook

[41] as well as bibliomic data. All reactions were manually curated,

which included mass balancing if required and verification of

reaction reversibility based on existing biochemical knowledge. If

the irreversibility was not conclusive, we set the corresponding

reaction reversible.

The carbohydrate metabolism under study includes glycolysis,

gluconeogenesis, the pentose phosphate pathway, acetate uptake,

the citrate cycle and the glyoxylate shunt. The nitrogen uptake

model was reconstructed using data from [42–45]. Moreover, the

biosynthetic pathways of glycine, alanine, asparagine, lysine and

arginine, which provide the target metabolites of the model, are

taken into account by comparing charts [41] with the above-

mentioned databases and biological literature. The accessible

carbon sources are acetate, simulating heterotrophic growth, and

glucose-6-phosphate (G6P), resulting from starch breakdown

during the night. Moreover, molecular nitrogen is provided by

nitrate, nitrite or ammonium uptake. Consequently, those

substances as well as G6P, acetate and the five above-mentioned

amino acids are modelled as external metabolites, that is, their

concentrations are considered to be buffered. In contrast, we

modelled all energy and redox carriers, such as ATP, NAD(P)H

and ferredoxin, as internal. The network in SMBL A SBML

version of the network is provided in the Supplements.

Sequence analysis
The mRNA sequences that are associated to the enzymes

included in the model were analysed for perfect UG§7-repeats

(UG UG UG) in annotated 39 UTR [22] of models from the Joint

Genome Institute database version 4.0 of C. reinhardtii [38].

Special emphasis had to be put on isoenzymes, as in several

cases mRNAs encoding enzymes contained UG§7-repeats, while

others associated to enzymes catalysing the same reaction did not.

As we did not regard localisation of enzymes and did not

distinguish between isoenzymes as long as they use the same

cofactors, the corresponding reactions were simulated not to be

under control of the circadian clock via CHLAMY1 for the EFM

analysis.

Computation of elementary flux modes
EFMs were computed with efmtool [46] inside the MATLAB

environment, version 2008b (The MathWorks, Natick, MA, USA).

Details of elementary flux mode calculation are described

elsewhere [46,47].

Calculation of yields
In order to compare the effectiveness of different modelled

amino acid pathways, we computed carbon yields according to:

carbon yield~
#C(aa)

#C(G6Pzacetate)
, ð1Þ

where #C(aa) and #C(G6Pzacetate) refer to the numbers of

carbon atoms in the considered target amino acid (aa) and in the

substrates G6P and acetate, respectively. The number of carbon

atoms were obtained from the overall chemical equation of each

elementary mode. The mean yields �yy of all yields yi were

calculated according to standard formula for mean calculation:

�yy~
1

n

Xn

i~1

yi, ð2Þ

Weighted yields
To calculate the effect of CHLAMY1 downregulation rather

than full inactivation of the influenced enzymes, yields from EFMs

were weighted differently in the resulting yield distribution. We

arbitrarily assumed downregulation to 10% as experimental

measures for the degree of downregulation are not available. For

the calculation of the yield distribution and visualisation in boxplot

graphics the yields unaffected by CHLAMY1 were counted ten

times, whereas yields affected by that regulator were only taken

into account once.

Additionally, we calculated weighted mean yields for a

simplified visualisation of the downregulating effect of

CHLAMY1. To do so we computed the weighted arithmetic

Figure 11. Combined carbon yield distribution for complete
downregulation by CHLAMY1. For the depicted boxplots the yield
distribution for all amino acids including arginine have been combined
into one yield distribution. Box plots (with whiskers ranging from
minimum to maximum and thick solid line indicating the median) of
carbon yield distribution are based on all available carbon and nitrogen
sources. Complete inactivation of CHLAMY1 affected enzymes is
considered here.
doi:10.1371/journal.pone.0023026.g011
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mean yield �yyw according to the following equation:

�yyw~

P
i wi � yiP

i

wi

, ð3Þ

with wi being the weight of the derived carbon yield yi . These

weighting factors can be defined in various ways. Here, we use the

definition given above based on the fractional extent of

downregulation.

Supporting Information

Table S1 Overview of modelled metabolites and corresponding

abbreviations.

(PDF)

Table S2 Overview of modelled enzymes and corresponding

EC–numbers, abbreviations as well as JGI database IDs (cre v4.0;

http://genome.jgi-psf.org/Chlre4/). The code of the UG§7-

repeats is as follows: i – intron, e – exon, 59/39 UTR – the 59

or 39 untranslated region of an enzyme. For bold marked UG§7-

repeat entries CHLAMY1 binding has been shown experimen-

tally.

(PDF)
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1  Introduction

In a technological setup, many biological products are
currently being synthesized using bacteria such as
Escherichia coli. E. coli is the most common bacterial host
employed for the production of recombinant proteins that
are required for pharmaceutical and technical applica-
tions but also for research purposes [1–3] and is one of the
workhorses of synthetic biology [4, 5]. In addition, E. coli
emerges as an important producer of amino acids utilized
as food additives or as components of cosmetics and

pharmaceuticals [6–8]. Thus, a deeper understanding of
the metabolic costs of amino acid and protein production
and the characteristics of the corresponding pathways is
crucial for the rational design of producer strains.

Using defined medium with glucose or especially with
glycerol as carbon substrate, E. coli can be grown to high
cell densities when cells are kept under balanced growth
conditions with reduced carbon supply [9–12]. When
grown under unbalanced conditions with carbon sub-
strate excess, acetate formation can occur, which if accu-
mulating to toxic concentrations, can prevent further
growth and product formation [13–15]. However, acetate
at moderate concentrations can also be utilized as carbon
source [15]. Thus, glucose, glycerol, and acetate are major
starting carbon compounds, which are transformed into
amino acids and proteins.

While pathways for synthesizing individual amino
acids are biochemically well-defined in textbooks [16],
they usually cover only a small portion of reactions that are
required to convert a source compound such as glucose
into a certain product. However, a pathway has to be con-
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sidered in the context of the entire network to account
also for precursor production or balancing of co-factors
and, thus, to allow for an unbiased characterization and
comparison with other pathways.

In this work, we analyze amino acid and protein syn-
thesis by determining and characterizing flux distribu-
tions of all required reactions using three different meth-
ods and evaluating three different measures for cost. We
start with a “manual” computation of amino acid biosyn-
thetic cost from central metabolic precursors, as done by
Stouthamer et al. [17] and Akashi and Gojobori [18]. We
update and correct the values given by Stouthamer in the
light of new knowledge of metabolic pathways in E. coli.

We proceed by using two different linear program-
ming (LP) methods, which allow a computation of flux dis-
tributions with maximal yield (product-to-substrate ratio)
[19] in a genome-scale metabolic model of E. coli [20]. In
the first method, the “LP standard” method, we assume
that flux distributions have to balance energy currency
metabolites such as adenosine triphosphate (ATP) and
nicotinamide adenine dinucleotide (phosphate) hydrate
[NAD(P)H]. We relax this requirement in the second 
“LP unlimited energy” method formulation where it is
assumed that the cells have an excess of energy [ATP
(H+)] and free electrons available. In the following, we will
distinguish between these three methods by using the
terms “manual”, “LP standard” and “LP unlimited energy”,
respectively. Computing the measures of ATP consump-

tion, carbon yield, and per kilodalton cost for flux distri-
butions and comparing them across different amino acids
allows to draw important conclusions on the characteris-
tics of amino-acid biosynthetic pathways. The different
cost measures that we compute reflect different aspects
of the biosynthetic routes as well as the carbon sources.
While yield is strongly influenced by the molecular mass
of a carbon source, ATP consumption is influenced by the
energetic content of a carbon source and carbon yield by
the position at which a carbon source enters central
metabolism. Linear programming has been previously
used to compute maximal yields of different amino acids
in E. coli using reduced models available at that time [21,
22]. We have extended these studies using a genome-
scale metabolic model leading to more accurate data from
linear programming and determined the metabolic cost of
protein synthesis for which we additionally need to con-
sider the cost of polymerizing amino acids into proteins.
These calculations can serve as a starting point to design
improved media for the production of amino acids and
proteins since they indicate the metabolic cost of the pro-
duction of individual amino acids and entire proteins for
the cell.

2  Materials and methods

2.1  Data

As metabolic model, we used the genome-scale recon-
struction of E. coli metabolism iAF1260 [20]. For informa-
tion on how we modified the metabolic network for our cal-
culations see Supporting information, Text  S1. For the
manual determination of flux distributions for amino acid
production we used pathways as displayed in the meta-
bolic maps of E. coli of the BiGG database [23] as reference.
Data on the sequence of proteins and mass of individual
amino acids were taken from EcoCyc [24]. For details on
the computation of the synthesis cost of all amino acids
present in the cell see Supporting information, Text S2.

2.2  Manual computation of amino acid costs

Precursors of individual amino acids were assumed to be
those as described before [25] (Supporting information,
Table S1 and Fig. 1). Costs in terms of NADPH, NADH,
flavin adenine dinucleotide hydrate (FADH), ATP, and
methylenetetrahydrofolate (Mlthf) were determined for
each pathway. It was assumed that the energy content of
NADPH is equal to that of NADH and twice that of FADH
and ATP. In the case of alternative routes for biosynthesis
of an amino acid, the cost of the pathway with the lowest
number of ATP consumed was used as reference. Fur-
thermore, all intermediates of biosynthetic pathways
except precursors and energetic co-factors were assumed
to be balanced. To calculate overall ATP costs for each

www.biotechnology-journal.com

Figure 1. Simplified representation of central metabolism considered for
the production of precursors for amino acid biosynthesis. Uptake routes
for carbon sources are also depicted. Note that the reaction converting
Succ to Mal reduces 1 mol of FAD+, which is equivalent to converting
1 mol of ADP into ATP in E. coli. Metabolites connected with dashed lines
are identical. Metabolites considered as carbon sources are drawn in
 boxes. For a list of abbreviations, see Supporting information, Table S5.
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amino acid, the ATP produced during formation of each
precursor from the respective amount of carbon source
was added to the overall ATP cost of the amino acid. For
these calculations glycolysis, tricarboxylic acid (TCA)
cycle, and pentose phosphate pathway are assumed to
synthesize precursors (Fig. 1). The corresponding data are
provided in Supporting information, Table S2.

2.2.1  Computation of yields
Yields were computed by determining, for each amino
acid, the amount of carbon source that is required to pro-
duce the precursors of these amino acids (Supporting
information, Table S2). In the case that the biosynthetic
pathway consumes ATP, it was assumed that ATP is bal-
anced by oxidizing the respective quantities of carbon
source. If ATP is produced, it was assumed that the ener-
gy is dissipated or utilized through other means (e.g., pro-
tein synthesis) and thus does not affect yield. In E. coli,
complete oxidation of 1 mol of glucose leads to a theoret-
ical maximum yield of 26  mol of ATP, 1  mol of glycerol
yields a maximum of 15 mol of ATP and 1 mol of acetate
yields a maximum of 7 mol of ATP. Additionally, it was
assumed that the carbon source is used to supply Mlthf in
cases where the biosynthesis of the amino acid requires
this compound. Using linear programming, we deter-
mined that 1  mol of glucose can be used to convert
4.55 mol of tetrahydrofolate into Mlthf. For glycerol and
acetate this number is 2.48 and 1.16, respectively. Total
glucose consumption for synthesis of each amino acid
was determined by summing up the amount of carbon
source required to produce the precursors, the amount of
carbon source oxidized to produce ATP, and the amount
of carbon source required to produce tetrahydrofolate.
Yields were then computed by dividing one by the
amount of carbon sources consumed. Hence, the result-
ing yield is given in mol/mol.

2.3  Computational methods

Linear programming was used to compute optimal flux
distributions. Given the stoichiometric matrix of the meta-
bolic network, in which rows correspond to metabolites
and columns to reactions, we assumed that all intermedi-
ates are balanced (steady-state condition) and that
reversible reactions are only used in thermodynamically
feasible directions. For computational reasons we split
reversible reactions into irreversible forward and back-
ward steps. For details on how we computed yield-optimal
flux distributions with and without assuming an unlimit-
ed energy supply see Supporting information, Text S3.

3  Results

For our computations, we used a genome-scale model of
E. coli metabolism  [20]. We assumed aerobic conditions

and unlimited availability of ammonia, sulfate, water
(including H+, OH–), and carbon dioxide. For the intercon-
version of energy equivalents in the form of ATP, NADH,
NADPH and FADH we used ATP as reference assuming a
Phosphate/Oxygen (P/O) ratio of 2.0. Thus, 2 mol of ATP
are energetically equivalent to 1 mol of NADH, 1 mol of
NADPH and 2 mol of FADH. Since this value depends on
culture conditions, the data provided for the manual yield
computations in Supporting information, Table S2 allow to
determine yields also for other P/O ratios.

3.1  Methods to characterize amino acid
biosynthetic flux distributions

There exist various approaches to characterize flux distri-
butions. Two important aspects are the yield, a measure
that describes the product-to-substrate ratio, and ener-
getic cost, such as the amount of ATP consumed or pro-
duced by a flux distribution.

Yield can be expressed by different quantities. A
measure that is not biased by the mass of the final prod-
uct is carbon yield. The carbon yield of a flux distribution
relates the amount of carbon atoms present in the source
compounds of a flux distribution to the carbon atoms in
the final product. Thus, a carbon yield equal to 1 C-mol/
C-mol indicates that the same numbers of carbon atoms
are present in the source compounds and in the product.
Hence, a carbon yield below 1 C-mol/C-mol indicates that
carbon atoms have been lost to a side-product. A similar
measure is cost per kilodalton, that is, the amount of
source compounds that is required to synthesize 1 kDa of
pathway product. In contrast to carbon yield, this meas-
ure does also take into account elements other than car-
bon.

Apart from measures to characterize flux distribu-
tions, methods to determine them are another important
issue. In the classical work of Stouthamer [17] it was
assumed that glycolysis, pentose phosphate pathway,
and citric acid cycle are used to produce a set of prede-
fined precursors for amino acid biosynthesis. From these
precursors biosynthetic pathways leading to amino acids
are relatively linear and there seldom exist alternative
routes. These pathways were then characterized in terms
of ATP, NADPH and NADH consumed and produced. In
an extension of this work, Akashi and Gojobori [18] and
Heizer et al. [5] additionally took into account the energy
produced during synthesis of the precursors and deter-
mined the overall amount of carbon source required to
synthesize each amino acid.

Besides this manual method to determine flux distri-
butions, another commonly used approach is linear pro-
gramming [22, 26, 27]. This method allows to determine a
flux distribution that is optimal with respect to an objec-
tive function [4, 19, 28–30]. Such calculations allow the
determination of the maximal amount of product that can
be synthesized from a set of source compounds. This is

Biotechnol. J. 2013, 8

www.biotecvisions.com

CONSTRAINT-BASED MODELLING 79



Biotechnology
Journal Biotechnol. J. 2013, 8

4 © 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

particularly useful in bioengineering to predict the best
yield that can be expected upon manipulating biosyn-
thetic pathways. In this LP standard approach, it is com-
monly assumed that flux distributions balance all inter-
mediates including energy-currency co-factors. Addi-
tionally, these calculations can be performed with a net-
work that contains a reaction that converts
energy-currency co-factors back into their active form,
thus simulating unlimited energy supply (see Sect. 2 and
Supporting information, Text S3). In vivo, such an artificial
electron supply can be introduced, for instance, by a light-
driven proton pump [16]. Moreover, these calculations
offer the possibility to determine the energy-independent
performance limits of the metabolic network and allow to
analyze pathways independent of energy-supplying reac-
tions.

3.2  Costs of amino acid biosynthesis

3.2.1  Manual computation of ATP costs
A simplified representation of the metabolic network con-
sidered for production of central metabolic intermediates
of amino acid biosynthesis is depicted in Fig. 1. We com-
puted ATP consumption of amino acid biosynthesis for

the synthesis from central metabolic precursors (Support-
ing information, Table S1) and the overall costs from dif-
ferent carbon sources (Table 1). Starting from the precur-
sors, glycine and serine are the cheapest amino acids
since their biosynthesis is ATP neutral. Methionine,
whose biosynthesis consumes 20 mol of ATP, is the most
expensive amino acid. A table similar to Supporting infor-
mation, Table  S1, which is often used as reference for
amino acid biosynthesis cost, has been published [25],
but contains several errors. These are due to biosynthetic
pathways not known at the time of publication and an
erroneous balancing of carbon atoms in several cases.
Furthermore, we consider the consumption and produc-
tion of Mlthf, which serves as a principal donor of C1-bod-
ies for several amino acid biosynthetic pathways. This is
of particular importance for the overproduction of amino
acids whose synthesis requires this compound [31]. Addi-
tionally taking into account the amount of ATP produced
during synthesis of precursors gives rise to costs as dis-
played in Table 1. In this table 10 out of the 20 amino acids
are listed with a negative ATP consumption when using
glucose as carbon substrate and thus, a net ATP produc-
tion along their corresponding pathways. This is most
pronounced for leucine with a net production of 9 mol of

www.biotechnology-journal.com

Table 1. Characteristics of flux distributions producing the 20 amino acids from glucose, glycerol, and acetate

AAa) Glucose Glycerol Acetate

ATP Yieldsc) (mol/mol) ATP Yields (mol/mol) ATP Yields (mol/mol)
cons.b)

Manual LP Std LP UE
cons.

Manual LP Std LP UE
cons.

Manual LP Std LP UE

Ala –1 2.00 2.00 2.00 –3 1.00 1.00 1.00 –1 0.50 0.50 0.50
Arg 0 1.00 0.89 1.33 –4 0.50 0.51 0.67 5 0.27 0.25 0.33
Asn 2 1.73 1.74 2.00 0 1.00 1.00 1.00 1 0.47 0.47 0.50
Asp 0 2.00 1.86 2.00 –2 1.00 1.00 1.00 –1 0.50 0.50 0.50
Cys 8 1.24 1.03 2.00 6 0.71 0.60 1.00 8 0.32 0.27 0.50
Glu –7 1.00 1.15 1.33 –11 0.50 0.60 0.67 –2 0.33 0.33 0.33
Gln –6 1.00 1.19 1.33 –10 0.50 0.61 0.67 –1 0.33 0.33 0.33
Gly –2 2.00 2.73 4.00 –4 1.00 1.54 2.00 –2 0.50 0.71 1.00
His 3 0.75 0.89 1.20 4.33 0.42 0.49 0.60 7.67 0.19 0.22 0.30
Ile 7 0.79 0.75 1.00 3 0.45 0.44 0.50 6 0.21 0.20 0.25
Leu –9 0.67 0.75 0.80 –15 0.33 0.38 0.40 –5 0.20 0.20 0.20
Lys 5 0.84 0.80 1.00 1 0.48 0.47 0.50 4 0.22 0.21 0.25
Met 18 0.71 0.62 2.00 16 0.40 0.36 1.00 17 0.19 0.16 0.50
Phe 0 0.57 0.56 0.60 –4.33 0.30 0.30 0.30 2.33 0.14 0.14 0.15
Pro –2 1.00 1.01 1.33 –6 0.50 0.57 0.67 3 0.29 0.29 0.33
Ser –2 2.00 2.00 2.00 –4 1.00 1.00 1.00 –2 0.50 0.50 0.50
Thr 6 1.37 1.30 2.00 4 0.78 0.75 1.00 5 0.37 0.35 0.50
Trp –1 0.44 0.47 0.50 –2 0.25 0.25 0.25 6 0.11 0.12 0.13
Tyr –2 0.57 0.58 0.60 –6.33 0.30 0.30 0.30 0.33 0.15 0.15 0.15
Val –2 1.00 1.00 1.00 –6 0.50 0.50 0.50 –2 0.25 0.25 0.25

a) Amino acids.
b) ATP cons. indicates the number of ATP consumed according to the manual calculations for each carbon source as indicated on the top of the rows (assuming 1

NADH = 1 NADPH = 2 FADH = 2 ATP).
c) Yields corresponds to yields obtained from different computation schemes for flux distributions: Manual corresponds to manual computation, LP Std corresponds

to LP using the standard formulation (LP standard) and LP UE corresponds to linear programming assuming unlimited energy supply (LP unlimited energy). 
For information about the ATP consumption for LP standard and LP unlimited energy see Supporting information, Tables S3–S5.
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ATP. The most expensive amino acid is methionine,
which consumes 18  mol of ATP, which arises primarily
from incorporating sulfur. Using glycerol as carbon
source, the biosynthesis of 13 amino acids entails a net
production of ATP. Compared to glucose as carbon source,
the effect of ATP production through amino acid synthe-
sis is even more pronounced with leucine being the
cheapest amino acid with a net production of 15 mol of
ATP. When synthesizing amino acids from acetate, only 8
amino acids entail a net production of ATP. Thus, the
metabolic cost associated with the production of amino
acids depends strongly on the carbon source. This issue
will be discussed in more detail in Sect. 3.3.

We furthermore computed the yields of the flux distri-
butions determined with the manual approach (Table 1).
For growth on glucose, tryptophan has the lowest yield of
0.444 mol/mol, while alanine, aspartate, glycine and ser-
ine allow for the highest yield of 2.0 mol/mol.

3.2.2  Calculating costs by linear programming
We computed the maximum yields of individual amino
acid biosynthetic flux distributions starting from different
carbon sources using linear programming  under the
assumption that (i) pathways have to balance energy con-
taining co-factors (LP standard) and (ii) that reduction
potential in form of NADH is available in excess (LP unlim-
ited energy). In consequence, also NADPH and ATP are
available in unlimited amounts.

3.2.2.1  LP standard formulation
The yields for the LP standard case are displayed in
Table  1. They contained only slight deviations or were

identical in most cases to the yields computed with the
manual method in Sect. 3.2.1. However, in particular the
yields of amino acids that implied a net production of ATP
are higher than in the manual computations. In this case,
we assumed that the organism uses standard routes
through central metabolism to produce the precursors
and uses the route with the smallest overall ATP con-
sumption to produce the amino acid from the precursors.
Thus, we used two basic assumptions for the identifica-
tion of the corresponding flux distribution: (i) Standard
routes of central metabolism are used and (ii) the yield of
the amino acids is maximized.

These two assumptions are conflicting to some extent
since the standard routes in central metabolism often pro-
duce energy in form of ATP, which in turn necessarily
reduces the amount of synthesizable product. This is par-
ticularly apparent from the production of acetyl coenzyme A
(acetyl-CoA) that is required in leucine biosynthesis. On
the standard route through glycolysis, acetyl-CoA can be
produced from 0.5 mol of glucose with an accompanied
release of 1 mol of carbon dioxide. Using an alternative
route via the pentose phosphate pathway, nucleotide syn-
thesis and deoxynucleotide degradation (Fig. 2A) 5/6 mol
of glucose are converted into 1  mol of glyceraldehyde 
3-phosphate (G3P) and acetyl-CoA. Here, the carbon
dioxide releasing step is avoided and only 1/3 mol of glu-
cose are required to produce 1  mol of acetyl-CoA, but
require an overall 2 mol of ATP. When converting glucose
into acetyl-CoA along glycolysis 5  mol of ATP are pro-
duced in total instead. Thus, in the case of leucine biosyn-
thesis the yield from the manual computations is
0.667 mol/mol with 9 mol of ATP produced while the opti-
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Figure 2. (A) Pathway for production of acetyl-CoA that bypasses carbon dioxide production: 1 mol of glycerol-3P (G3P) and 2/3 mol of fructose-6P (F6P)
are converted into 1 mol of AcCoA and G3P each. Dashed arrows correspond to lumped reactions. (B) Simplified representation of glycine biosynthetic
and related pathways in E. coli from 3-phosphoglycerate (3PG) and oxaloacetate (OAA). Small numbers above the arrows indicate relative fluxes larger than
one. The upper flux distribution produces 2 mol of ATP with a yield of 1 mol of glycine from 1 mol of 3PG. The lower pathway consumes 9 mol of ATP with
a glycine-over-3PG yield of two. (C) Simplified representation of a pathway that allows fixation of carbon dioxide by tetrahydrofolate (Thf). Please note that
10-formyltetrahydrofolate (10Fthf) can be converted into 5-Mlthf that is required for methionine biosynthesis. Additional abbreviations: 1DR1P, 2-deoxy-D-
ribose-1-phosphate; 2DR5P, 2-deoxy-D-ribose-5-phosphate; 2Obut, 2-oxobutanoate; Acald, acetaldehyde; Adn, adenosine; dAD, deoxyadenosine; dAT(M)P,
deoxy-AT(M)P; FGAM, N2-formyl-N1-(5-phospho-D-ribosyl)glycinamide; For, formate; GAR, N1-(5-phospho-D-ribosyl)-glycinamide; PpCoA, propanoyl-
CoA; R1P, ribose-1-phosphate.
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mal yield is 0.752 mol/mol and uses the route depicted in
Fig. 2A to synthesize acetyl-CoA.

Furthermore, in some cases there exist several routes
to produce amino acids, where a pathway with a less
favorable ATP balance can result in a higher yield. One
example is glycine biosynthesis (Fig.  2B). There exist
three pathways for glycine biosynthesis in E.  coli, two
from oxaloacetate via threonine biosynthesis and one
from 3-phosphoglycerate via serine biosynthesis. Starting
from 1 mol of 3-phosphoglycerate, 1 mol of glycine is pro-
duced along with a zero net consumption of ATP (Sup-
porting information, Table S1). Additionally, this pathway
produces 1  mol of Mlthf, which can be converted back
into tetrahydrofolate while reducing 1 mol of NADP+ and,
thus, providing 2 mol of ATP, which is the overall ATP pro-
duction along this pathway. The other pathway via threo-
nine has a net consumption of 1 mol of oxaloacetate and
9 mol of ATP. Hence, the pathway via serine has the high-
er ATP production but the lower yield. In contrast, the
pathway via threonine has a higher yield but consumes
ATP. In consequence, the optimal pathway combines the
ATP production along the pathway via serine with the
ATP consumption of the pathway via threonine in order to
achieve a higher yield than with the ATP-producing path-
way alone. In vivo, glycine biosynthesis via serine is the
major source of glycine since a strain with a knockout in
the enzyme converting serine to glycine, serine hydroxy -
methyltransferase (GlyA), is glycine auxo trophic [2].

3.2.2.2  Linear programming assuming unlimited
energy supply (LP unlimited energy)

The yields of yield-optimal flux distributions assuming
unlimited energy supply are shown in Table 1. In a few
cases, these yields are similar to LP standard-computed
flux distributions. Glycine biosynthesis is particularly

interesting, since the yield increases from 2.7 to
4.0 mol/mol, as the pathway via threonine can be used
exclusively if energy is available in excess. However,
4.125 mol of ATP per mol glycine produced are required to
achieve this yield (Supporting information, Table S3).

The most drastic increase can be observed for methio-
nine biosynthesis, where the yield increases more than
threefold from 0.621 to 2.0  mol/mol. Thereby, the cost
increases to 36.25 mol of ATP per mol of methionine pro-
duced (Supporting information, Table S3). The reasons for
this drastic increase are due to two carbon atoms of
methionine that can be provided from carbon dioxide. On
the biosynthetic pathway of methionine, 1 mol of 3-phos-
phoglycerate is converted into 1 mol of methionine. Addi-
tionally, 1 mol of L-homoserine is converted into pyruvate
and 1  mol of 5-Mlthf is converted into tetrahydrofolate,
thereby providing two additional carbon atoms. During
conversion of pyruvate back into L-homoserine, one car-
bon dioxide is fixed. Furthermore, a pathway that allows
fixation of carbon dioxide by tetrahydrofolate and uses
reactions of threonine degradation and purine biosynthe-
sis can be used to convert tetrahydrofolate into 5-Mlthf
(Fig. 2C). In consequence, 1 mol of glucose can be used to
synthesize 2  mol of methionine. However, as the high
energetic cost suggests, this pathway might not be feasi-
ble under physiological conditions. Nevertheless, these
numbers are important as they show the maximal theo-
retical yield from the carbon source even though addi-
tional energy (electrons) would be required from another
source.

3.2.3  Carbon yields of amino acid biosynthesis
Next, we determined the carbon yields of the flux distri-
butions for the different computation schemes and car-
bon sources (Fig. 3). In case of the flux distributions com-
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Figure 3. Fraction of carbon atoms
retained after biosynthesis of different
amino acids for different cost computa-
tion schemes and carbon sources 
(given in C-mol/C-mol).
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puted with the manual method using glucose as carbon
source, carbon yields are mostly below 1  C-mol/C-mol
with the exception of alanine, serine, asparagine and
aspartate. For the latter two amino acids, carbon yields
are even above 1 C-mol/C-mol, showing that the synthe-
sis of these amino acids involves fixation of carbon diox-
ide. The rather low carbon yield of cysteine and methion-
ine of around 0.5 C-mol/C-mol is due to the high energy
investment for their biosyntheses (Table 1). Using the LP
standard formulation to compute maximal yields only
slightly changes the carbon yields in comparison to the
manual computations (Fig.  3). Assuming an unlimited
energy supply, we found that the carbon yields are above
1 C-mol/C-mol in ten cases, equal to 1 C-mol/C-mol in five
cases and below 1  C-mol/C-mol in another five cases
(Fig. 3). Thus, the biosynthesis of half of the amino acids
can, theoretically, be used to fix carbon dioxide. For glyc-

erol as carbon source the yields tend to be slightly higher
than in the case of glucose utilization. For acetate, the car-
bon yields show a strong decrease with only one being
larger than one if assuming unlimited energy supply. This
can be explained by gluconeogenesis requiring the action
of either phosphoenolpyruvate carboxykinase or malic
enzyme to produce phosphoenolpyruvate or pyruvate,
respectively, from acetate. In both cases, one carbon atom
is lost to carbon dioxide.

3.2.4  Costs per kilodalton and overall amino acid
synthesis

One bias present in the number of ATPs required for the
synthesis of individual amino acids as well as the yields is
that the masses of the amino acids are neglected. Thus,
the yields computed via the manual method assuming
glucose as carbon source indicate that the production of

Biotechnol. J. 2013, 8
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Figure 4. (A) Number of carbon source molecules
required for the production of 1 kDa of each amino acid
for various carbon sources. For the computation, yields
from the manual computations were used as reference.
(B) Number of glucose molecules consumed for the pro-
duction of the amount of each amino acid present in one
E. coli cell (comprising protein bound and free amino
acids). Yields from the manual computations were used.
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(Sect.  2). Besides amino acids, additional energy is
required to translate the mRNA from DNA and to poly-
merize amino acids. We assumed that each amino acid
requires a nucleotide triplet that can be synthesized with
a cost of 6 ATP [17]. Furthermore, we assumed that on
average 30 proteins are translated per mRNA [25]. Thus,
the transcription costs add up to 6  ATP/30 copies per
mRNA = 0.2 ATP per amino acid. The costs of translation
are 4 ATP per amino acid [32]. In consequence, the cost of
polymerization is approximately 4.2 ATP per amino acid
residue. Since LP-based costs tend to involve non-canon-
ical routes for the synthesis of individual amino acids, we
used the costs calculated with the manual method.

3.3.1  ATP investment for protein production
In order to analyze the impact of biosynthesis and poly-
merization cost on metabolism, we first computed the
average ATP investment per residue required for the
biosynthesis of every protein of E.  coli, including poly-
merization costs. A histogram of these values over all pro-
teins of E. coli assuming glucose as carbon source shows
that the synthesis and polymerization of the amino acids
to generate most proteins consume ATP with a median of
3.7 mol of ATP cost per residue (Fig. 5). Since the poly-
merization costs of 4.2 mol of ATP per residue are includ-
ed, there is on average a net production of 3.7–4.2 =
0.5 mol of ATP per residue if accounting only for the costs
of amino acid syntheses.

This result is even more pronounced using glycerol as
carbon source (Fig. 5A). Here, 0.44 mol of ATP are con-
sumed on average per residue. Thus, based on glycerol,
for most proteins the polymerization cost of amino acids
can be replenished from the energy produced during
amino acid biosynthesis alone. This particular character-
istic of protein production from glycerol is, as discussed in

www.biotechnology-journal.com

tryptophan (yield of 0.44  mol/mol) is almost five times 
as expensive as the production of alanine (yield of
2.0  mol/mol). However, alanine only contains 3 carbon
atoms whereas tryptophan contains 11. To reduce this
bias we computed for each amino acid the number of car-
bon source molecules that are required to synthesize an
equivalent of 1 kDa of the amino acid including the costs
of oxidizing carbon sources to provide energy for amino
acid synthesis (Fig. 4).

In the context of these numbers, tryptophan is only
twice as expensive as alanine. Moreover, these costs
show that phenylalanine and methionine are almost as
expensive as tryptophan if synthesized from glucose and
more expensive if synthesized from glycerol.

Furthermore, we computed the overall number of glu-
cose molecules invested into the production of the
amount of every amino acid present in one E.  coli cell,
based on the yields from the manual calculations and the
biomass composition of E. coli reported in [20] (Fig. 4B).
These numbers show that while tryptophan is the most
expensive amino acid in terms of per molecule synthesis
cost, it only represents 1.1% of all proteic amino acids on
a molar basis and its production requires only 2.5%
(2.3×107 glucose molecules) of the glucose consumed for
the production of all amino acids. In contrast, the biosyn-
thesis of leucine that comprises 8.4% of all proteic amino
acids demands 1.2×108 glucose molecules, which corre-
sponds to 13% of the glucose consumed for total amino
acid production.

3.3  Computation of protein synthesis costs

In a next step, we combined the computation of the
biosynthesis costs of individual amino acids with the
computation of the biosynthesis cost of entire proteins

Figure 5. Cost of protein production. (A) Histogram of the average ATP balance (per amino acid) in the synthesis of amino acids for all proteins in E. coli
including polymerization costs. For the corresponding numbers for each protein of E. coli see Supporting information, Data S1. (B) Histogram of the cost
of the biosynthesis of all E. coli proteins (per residue and mol of protein) from various carbon sources. Costs are given as the average mass of carbon
source (in Da) that is required per residue of the protein. Yields of individual amino acids from the manual computations were used. These numbers
include polymerization costs. For the corresponding numbers of each protein of E. coli see Supporting information, Data S1.
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Section 3.2, due to the fact that the synthesis of 65% of
amino acids from glycerol provides a surplus of energy.

A completely different picture can be obtained for
acetate (Fig. 5A), where the synthesis of amino acids con-
tained in proteins has a median of 5.19 mol of ATP con-
sumed per residue. Hence, a larger fraction of carbon
source has to be additionally oxidized in order to synthe-
size amino acids and to provide ATP for polymerization in
comparison to glucose and glycerol.

3.3.2  Carbon source required to produce proteins
We determined the amount of carbon source that is
required to produce each protein. In order to reduce bias
due to the different sizes of proteins, we divided the
amount of carbon source required for the production of
each protein by the respective number of amino acid
residues contained in the protein. Moreover, we account-
ed for the different molecular masses of the carbon
sources by determining, for each carbon source, the mass
of the carbon source molecules required to synthesize
each amino acid residue.

Analyzing the histogram of the per residue costs of all
proteins, we found monomodal distributions that resem-
ble each other for the three carbon sources (Fig. 5B). For
glucose, we found a median of 204  Da of glucose con-
sumed per amino acid residue per protein. For glycerol
and acetate, the respective medians are at 178 and 259 Da
of carbon source, respectively. Thus, also considering the
mass of the invested carbon source, glycerol is most effec-
tive for protein production.

4  Discussion

Here, we have characterized amino acid biosynthetic
pathways in E. coli starting from different carbon sources
using different types of costs. The knowledge of ATP
yields is of great relevance in biochemistry in general.
Many pathways (not only amino acid-producing path-
ways) are characterized and compared according to their
ATP yield. This has practical implications in biotechnolo-
gy and synthetic biology because products of interest can
only be produced when the net energy balance allows
this. Moreover, energy-efficient pathways are obviously of
special interest. Furthermore, these numbers can serve as
an important guideline for optimizing growth media for
recombinant protein production. Depending on the phys-
iological condition of the organism during the production
process, such as intracellular ATP levels or levels of amino
acid precursors, as well as experimental conditions, such
as concentration of the carbon source, different cost
measures can be most informative.

Classically, the ATP consumption along amino acid
biosynthetic pathways as well as the product yield have
been considered the most important factors [17, 18]. How-
ever, as we have shown, flux distributions with a high pro-

duction of ATP often have a reduced yield with respect to
the carbon substrate. We demonstrate that yield-optimal
flux distributions of individual amino acids can contain
non-canonical routes, which can potentially increase
product yields compared to those routes that are normal-
ly used by the cell. Moreover, our analysis of protein pro-
ducing flux distributions showed that the polymerization
costs of a large number of proteins could be partially or, in
the case of glycerol, almost fully compensated by energy
produced during biosynthesis of amino acids. These
results are confirmed to some extent by the findings that
glycerol is often better suited as carbon source than glu-
cose, in particular after recombinant protein production
has been initiated [33, 34].

In order to reduce the bias due to the different molec-
ular mass of individual amino acids we have computed
carbon yields and costs per kilodalton. These computa-
tions showed that with the carbon sources considered
here, carbon atoms are lost to carbon dioxide in most
amino acid synthesizing flux distributions. However, in
theory there exist flux distributions that allow for fixation
of carbon atoms from carbon dioxide for half of the amino
acids. The calculations showed that tryptophan is,
despite being the largest amino acid, not the most expen-
sive amino acid if accounting for the mass of amino acids.
Instead, phenylalanine as well as methionine are equally
expensive, if synthesized from glucose. Assuming canon-
ical routes for the production of amino acid precursors,
methionine is the most expensive amino acid. Its biosyn-
thesis from glucose costs 18 mol of ATP, which is of par-
ticular importance for the design of production processes
and strains over-producing this amino acid, as it is one of
the most important commercial amino acids [7, 31, 35]. In
contrast, considering the quantities in which amino acids
are present in E. coli, we found that the cell invests the
largest amount of carbon source molecules into the pro-
duction of leucine. Our analysis gives a detailed overview
on the metabolic costs of amino acid and protein synthe-
sis from different points of view. These results can serve
as an important guideline for the improvement of produc-
tion media. In particular, the utilization of glycerol as car-
bon source and the supplementation of expensive amino
acids as indicated by our analysis may help to consider-
ably improve production processes.
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4. Discussion

Studying the dynamics of biological systems is a compelling albeit challenging en-
deavor. A primary goal is to understand the inherent dynamics and their driving
causes, since it explains in more detail the underlying mechanism of a studied phe-
nomena. This is feasible for small, well defined and definite problems, which allow
for simulations of time dependent transition courses of model species. Larger scaled
problems, however, commonly prohibit such an approach due to their sheer complex-
ity. In these cases, assuming that a system is operating at steady state still enables
a comprehensive analysis, as numerous studies have shown (cf. Papin et al. (2004);
Trinh et al. (2008); Lewis et al. (2010, 2012); Unrean and Srienc (2012); Khandelwal
et al. (2013); Harcombe et al. (2013)). As has been mentioned before, all included
model species or state variables are assumed constant over time at steady state, thus
are neither accumulating nor depleting.

This thesis is dedicated to five studies in systems biology comprising dynamic
and constraint-based models, the latter being used when the corresponding project
proved to be of a scale, where kinetic modeling was not feasible.

4.1. ODE based modeling to study substrate
competition and cellular senescence

In chapter 2, two studies are presented that were assessed with an ODE based
approach. In the first study we investigated the effect on metabolic network simu-
lations, when common kinetic rate laws, such as the Michaelis-Menten kinetics are
extended to include the possibility of substrate competition. This theoretical work
provides valuable insights for the interpretations of experiments. In addition, we
list modified rate laws for more sophisticated bi-bi reaction mechanisms.

In the second study, we conducted a classical systems biology project, where we in-
tegrated experimental data of primary human fibroblasts into a hypothetical model
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of cellular senescence and proceeded with an iterative model refinement process that
gave rise to new experiments. In short, the combination of our model and exper-
imental data revealed that different cell lines of human fibroblasts are not equally
robust against external stresses. Furthermore, our model allowed us to discrimi-
nate between different cell types at every simulation time-point and the transition
rates between them. By quantitatively fitting growth curves we can evaluate marker
specificity to resemble a certain cell type, which can be of help for further marker
studies in cell populations. Forthcoming, both studies are discussed in more detail.

4.1.1. Effect of substrate competition potentially influences
simulation results

Substrate competition has already been reported to influence various biochemical
mechanisms, such as the degradation of polymeric carbohydrates (Kartal et al.
2011), metabolic transport (Marquez and Van Bambeke 2011; Pardridge and Choi
1986) or gene regulation (Lee et al. 1995; Jöres and Wagner 2003). Moreover, the
effect of substrate competition can be substantial, as several studies have shown
(Kartal et al. 2011; Kim et al. 2011; De Vos et al. 2011; Dingerkus et al. 2012;
Baks et al. 2006; Pomerening 2008; Venkatraman et al. 2011). Considering an irre-
versible Michaelis-Menten mechanism, Chou and Talaly derived an appealing simple
rate law modification, which considers the competition of an arbitrary number of
substrates for the binding site of the associated enzyme (Chou and Talaly 1977).
Note that substrate competition in irreversible reactions is in principle equivalent
to a competitive inhibition mechanism of a repressor. Two or more substrates can
hinder each other to attach to the enzymatic binding site, thus mimicking the ef-
fect of a competitive inhibitor. However, we have not found readily applicable rate
laws which include aspects of competition in a reversible kinetic rate law, when the
product is taken into account as well. Under the assumption that only one substrate
at a time can be catalyzed, we filled this gap by deriving rate laws for reversible
Michaelis-Menten kinetics. Additionally, we proposed modified rate laws accounting
for substrate competition in bimolecular mechanisms, such as the bi-bi ordered or
ping-pong mechanism.

In order to evaluate, whether kinetic rate laws that include the possibility of sub-
strate competition have an actual effect on metabolic network simulation, we con-
structed and simulated three artificial study cases: A, competition between complete
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distinct pathways, B, competition in branched pathways and C, multistep reactions
with alternating identical enzymes (see section 2).

To assess effects of substrate competition on both, time dependent and steady
state concentrations, we conducted two in silico experiments. In the first experi-
ment we fixed the external input substrate concentration and studied the transitional
concentrations leading towards a steady state. In a second experiment, we studied
the steady state concentrations deviating from simulations where substrate concen-
tration is neglected, considering increasing external input substrate concentrations.

Our results show that only under certain circumstances substrate competition can
be neglected. One example is provided by two distinct metabolic pathways, where
one enzyme catalyzes one reaction in each pathway. Here, substrate competition
can be neglected, if one is only interested in the steady state concentration of the
final product. On the other hand, one might be particularly interested in the con-
centration of an intermediate metabolite. Already in this simply reaction scheme,
we have shown that substrate competition can have a substantial effect on involved
intermediate metabolites (see also Fig. 1, Schäuble et al. (2013), chapter 2).

The effect of substrate competition is even more pronounced, when considering
multistep pathways, where one enzyme catalyzes multiple reactions (case C). A
prominent example of multistep reaction systems, is given by polymer chain elonga-
tion, among others. Starting with only the initial substrate present, our time course
simulations show that the concentration of most metabolites is underestimated. In
contrast, the transient concentration of the final product and of some intermediates
is overestimated, when substrate competition is ignored (Fig. 3 in Schäuble et al.
(2013), chapter 2). The steady state simulations confirm that this difference in in-
termediate metabolite concentrations increases for increasing concentrations of the
initial external metabolite. In contrast, the steady state concentrations of the first
and last considered metabolite do not change upon substrate competition, due to
the irreversible uptake or release of these metabolites, which prevent a change in the
simulated steady state concentrations. The underestimation of most of the metabo-
lites is noteworthy, nevertheless, especially in reversible systems. Interestingly, it
has also been noted before that metabolic control analysis is affected as well in a
multistep reaction system (Cascante et al. 1990).

Our results for study cases A and B show less obvious, yet still notable results. In
case A, where we studied substrate competition in two distinct pathways, the time
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course shows medium temporary changes for the product of the simulated pathway.
Additionally, the concentrations of the intermediate metabolites are underestimated
throughout the simulated time frame and stay underestimated at the steady state,
when competition is ignored (Fig. 1, Schäuble et al. (2013), chapter 2). Again, the
concentration of the final product does not change due to its irreversible excretion.
The more complex case B shows modest relative differences in both time course and
steady state simulations. Notably, the concentration of the final products differ and
may be under- or overestimated, when neglecting substrate competition, whereas the
difference is more pronounced in an irreversible reaction scheme (Fig. 2, Schäuble
et al. (2013), chapter 2). When considering reversible reactions, already modest
differences occur at a first transition phase for the last metabolites. After this phase
the differences virtually vanish, but increase again, once the external concentration
of the initial substrate is increased notably beyond the Km of the enzyme under
investigation.

Summarizing, our results show that already in exemplifying artificial minimal
pathways substrate competition can have a significant impact on both time course
as well as steady state concentrations. In consequence, ignoring substrate competi-
tion can distort pathway simulation results to a varying degree. The differences in
simulation results will even increase when taking into account that in many path-
ways substrate competition can occur in a combination of the here showed study
cases. For instance, the enzyme aromatic-l-amino-acid decarboxylase (DDC, EC:
4.1.1.28) present in the tryptophan pathway contains a combination of our modeled
cases A and B. This enzyme catalyzes both, reactions in different branches of the
pathway, as well as reactions on other pathways, such as the tyrosine or histidine
pathway. An exact determination of the involved metabolite concentration may thus
be difficult to acquire, when substrate competition is ignored.

It might be argued that cells of more complex organisms prevent substrate compe-
tition effects by compartmentalization or because of a tissue specific use of certain
pathways (McKenna 2012). In the modeling realm, however, compartmentalized
pathways are often not considered, since information about compartmentalization
is frequently missing. To solve this dilemma more experimental clarification is re-
quired, an endeavor which is often not feasible due to technical reasons. Here,
including substrate competition or not is hard to decide. We have shown that often
occurring pathway constellations infer notable differences in substrate concentrations
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when including competition. Thus, our presented results clearly suggest to consider
substrate competition, since it potentially increases the quality of the estimation of
a pathway’s dynamics.

4.1.2. Modeling cellular senescence allows for a quantitative
description of growth curves of human fibroblasts and
evaluation of cell state indicating biomarkers

Since Leonard Hayflick’s observation that isolated human cells show a limited ca-
pacity to replicate (Hayflick and Moorhead 1961), cellular senescence relishes a wide
interest in the field. To contribute to its clarification, we presented a classic systems
biology approach in a collaboration with the group of Prof. Stephan Diekmann
from the Fritz-Lippmann Institute in Jena. We evaluated experimental growth and
biomarker data of primary human fibroblasts in order to derive a dynamic model,
which sheds light on the dynamics of cellular senescence. Our modeling results sug-
gested further experiments in turn, not only to refine model parameters, but also to
tackle new questions that arose from the modeling itself.

Key to our modeling approach was the differentiation of three cell types: prolif-
erating (P), cell cycle arrested (C) and senescent (S) cells. Via cellular checkpoints,
cells detect DNA damage and depending on the magnitude of the damage either
activate repair mechanisms, while arresting the cell cycle or induce an orderly cell
destruction via activation of apoptotic pathways. When facing harsh stress, how-
ever, some cell types can neither be destroyed, nor are able to re-enter the cell cycle,
but lock irreversibly in a senescent cell state (Rodier and Campisi 2011; Toussaint
et al. 2002, 2011). We hypothesized that before cells enter an irreversible senescent
cell state, they attempt recovery while being cell cycle arrested, since mild stress
can potentially be overcome and repaired. Thus, next to a constant proliferation
rate r, which determines how fast P cells can reproduce in the absence of damage,
we introduced three transition rates f1, f2 and f3. These rates dictate the transition
between the three considered cell types. While f1 and f2 describe the reversible
conversion between P and C cells, f3 accounts for the irreversible C to S transition
(see also Fig. 2 Schäuble et al. (2012), chapter 2).

So far our model is able to resemble infinite growth or no growth, as an analytical
analysis of our model has shown (see supplementary material, Schäuble et al. (2012),
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chapter A). To account also for replicative senescence, or in other words for the
transition from growth to proliferation stop, we added an equation F to our model.
F serves as a stress aggregating and processing unit and was required to allow the cell
population to tolerate mild stress, but to stop growth in a fast switch-like behavior
when the stress dose surpasses a critical level. We realized F as a single nonlinear
function, which has been similarly used in Ludwig et al. (1978). The chosen form of
F, which only influences the transition rate from P to C cells, allowed us to acquire a
simple, yet meaningful equation. It still features, nonetheless, the desired behavior
of robustness and bistability, when stress is severe. As long as the stress level is still
moderate, F allows the cells to repair the damage and re-enter proliferation. In its
second stable state, however, the bistable property of F prohibits the instant switch-
back, once the stress source disappeared, thus mimicking stress remembrance. F’s
nonlinear form allows therefore for a sigmoidal switch, which infers a fast slow down
of cell proliferation and finally, senescence, when stress doses are critically high
for a sufficient amount of time. Notably, specific network structures, like double
negative feedback loops, can potentially resemble the desired bistability effects in
the context of a biological pathway. Nevertheless, we chose F as described for the
sake of simplicity and its advantageous analytical properties.

We distinguished the stress form itself into three categories: pulsed, increasing
over time, or permanent. The pulsed form might origin from a sudden intensive
stress, such as a radiation impulse, or sudden oxygen deficiency, whereas increasing
stress over time resembles e. g. mutation accumulation or telomere shortening. A
permanent high stress dose can correspond to a constant high concentration of reac-
tive oxygen species, among others. To be able to simulate these stress types within
our model, we introduced a stress term of the form γ = α+βt, which influences the
behavior of the stress response function F. Whereas α depicts a time-independent
stress influence, β denotes a time-dependent contribution.

We fitted our model to different cellular data of three different primary human
fibroblasts. Firstly, a pulsed stressor was introduced by irradiating cells once for a
short time, and once for a longer time-period (simulating mild and severe stress).
The results were compared to cells of the same fibroblast type, which have not been
irradiated. We successfully fitted one parameter set for all three scenarios (no stress,
short and long stress pulse) per fibroblast dataset, thus, having only the amount of
stress defining the fate of the cell population. Secondly, we fitted our model to cells
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growing into cellular senescence induced primarily by oxidative stress and telomere
shortening. Here, we obtained a convincing quantitative fit of the respective growth
curves.

By comparing fitted parameters and inferred growth curves, we detected different
response sensitivities for WI-38, BJ and MRC-5 fibroblasts, which is in agreement
with published cell line properties (Benanti and Galloway 2004; Itahana et al. 2003).
WI-38 cells are potentially more susceptible to stress, especially when compared to
MRC-5 data, since the former cell type showed a more pronounced reaction to
smaller γ values. Additionally, WI-38’s stress susceptibility is apparent from a low
P to C and a high C to S transition rate, whereas BJ cells show a high flux between
P and C cells, but a low transition to S cells. The advanced resistance of BJ cells
to stress might be caused by a constantly high maintenance flux, as is resembled
by its high flux between P and C cells. This picture is coherent with the faster
transition of WI-38 cells into senescence at lower population doublings than BJ or
MRC-5 cells.

We were not able to show a consistent picture of marker up-regulation for C cells
(p21 in BJ and MRC-5 cells) and S cells (SA-β-Gal in MRC-5 cells), however, which
might be caused by the rather unspecific nature of the markers p21 and SA-β-Gal to
resemble C and S cell fractions, respectively. We cannot rule out that these markers
do not have further side effects, which might affect the transition rates or growth
itself. Thus, our work highlights the need for further validation of these biomarkers
or a study of more specific biomarkers that reflect cell cycle arrested or senescent
cells. For instance, annexin A5 might serve as an alternative senescence marker as it
accumulates at the nuclear envelope during replicative as well as artificially induced
senescence (Klement et al. 2012).

Next to our modeling approach, specific senescence related issues have been ana-
lyzed, such as the influence of telomere shortening (Tan 1999; Rubelj and Vondracek
1999; Sozou and Kirkwood 2001; Golubev et al. 2003; Portugal et al. 2008). The
stochastic model published by Sozou and Kirkwood (2001) includes telomere short-
ening, oxidative stress and proposes a link to mitochondrial damage as well as nuclear
somatic mutations. This model is in well agreement with variable cell doubling po-
tential, published already decades ago by Smith and Whitney (1980). The influence
of telomere length on cellular senescence was modeled by Golubev et al. (2003),
who propose that telomere shortening alone does not account for senescence. In-
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stead, further effects such as stress via accumulation of reactive oxygen species have
to be taken into account as well, which is in agreement with Sozou and Kirkwood
(2001). Furthermore, Portugal et al. (2008) presented a pure theoretical stochastic
model where the cell devision probability decreases with decreasing telomere length.
A well described theoretical framework for cell cycle regulation and devision was
presented by Csikász-Nagy et al. (2006); Tyson and Novak (2008), comprising a
protein interaction network of the regulation of DNA synthesis and mitosis, but not
cellular senescence. Lawless et al. (2010) published a simple model to assess marker
specificity in cellular senescence. The authors did not consider an intermediate cell
cycle arrested cell state C, however, whereas we could show that upon mild stress,
in vitro cell populations can regain their original proliferation rate, once the damage
from a mild stress source has been repaired (see also Fig. 4, Schäuble et al. (2012),
chapter 2). By stochastically modeling single cells, Passos et al. (2010) showed that
DNA damage induces a feedback loop of reactive oxygen species production ,which
sustains cellular senescence. Integrating our data into their model also indicates the
cellular response to low as well as high stress doses. Nevertheless, it does not allow
for a quantitative comparison to the growth curve of the respective population, a
strength we see in our model.

In summary, our model enables the determination of specific cell fractions at every
simulation time point and a comparison to marker specific up-regulations in the
investigated cell population or at a single cell level. Despite its value, our endeavor
to describe cellular senescence can be further extended to describe additional cellular
states such as quiescent or terminally differentiated cells. Moreover, cells might enter
apoptotic pathways upon certain stress events. To include these aspects as well, a
further set of markers need to be quantified, which can again be well evaluated by
our modular modeling approach.

4.2. Constraint-based methods enable the study of
large-scale models

The prior studies demonstrated convincingly that the dynamics of a system can be
well studied by dynamic models. Constructing and analyzing these models by the
means of ordinary differential equations enables a time dependent and, if existing,
a steady state analysis, thus giving valuable insight into the dynamics of a system.
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The combination of experimental data with a given theoretical model, nevertheless,
usually increases the significance of a model. Besides, deriving dynamic models
comes with a price, since the type of the included reaction velocities needs to be
identified and requires the determination of model parameters. Even if the under-
lying kinetic rate law is known, commonly the precise parameter value is difficult
to assess in a given biological context. Therefore, using kinetic modeling techniques
to investigate the dynamics of a system bears the disadvantage that the parameter
space becomes easily overwhelmingly vast. In small encapsulated models, conduct-
ing necessary experiments might still be achievable, but already moderately scaled
models would require a tremendous, if not infeasible, workload. This accounts es-
pecially for mechanistic modeling approaches, where various parameters that define
the regulation and saturation of enzymes need to be included and critically influence
a model’s behavior. Hence, the prior biological knowledge of underlying kinetics is
unsatisfactory, whereas the computational power required for simulation is often
unavailable. In consequence, constraint-based methods emerged as a promising ap-
proach to study a specific biological phenomena or organism (Papin et al. 2004).
Forthcoming, I discuss three studies, which are comprised in chapter 3, were I uti-
lized the advantages of EFM analysis as well as FBA analysis in order to tackle
problems that were prohibited to approach with an ODE based analysis.

In the first study, we introduced the concept of EFMs and applied it to a pho-
tosynthate model to analyze starch and sucrose usage. In the second study, we
investigated the role of the circadian regulated heteromer CHLAMY1 in nitrogen
metabolism of the green algae C. reinhardtii. In the third and last study, we provide
a broad overview of metabolic costs of amino acid and protein production in E. coli
based on an FBA analyis, which is of particular importance for an optimal growth
media choice in biotechnology and metabolic bioengineering.

4.2.1. Elementary Flux Modes provide a large application range
and propose infeasibility of sucrose and starch production
in plants at night

Exploring the fundamental properties of metabolic networks, significantly improves
our understanding of the mechanisms intrinsic in living systems (Price et al. 2004;
Ruppin et al. 2010). Based on network stoichiometry and concentration constraints,
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a number of methods have been developed to determine important routes in metabol-
ic networks, known as constraint-based methods (Price et al. 2004). One important
representative of this method class is the concept of EFMs (Schuster 1994; Schuster
et al. 1999), which allow for a decomposition of a given reaction network into feasible
minimal reaction pathways.

In Schäuble et al. (2011b), presented in chapter 3, we described in detail the
mathematical background for EFM computation and analysis. Furthermore, we
exemplified the usefulness of the method by analyzing a simple example network of
the TCA cycle including the glyoxylate shunt, which gave rise to all four possible
EFMs, when considering phosphoenolpyruvate (PEP) as external metabolite source.
Although it has been shown that at least E. coli and Mycobacterium tuberculosis use
the complete TCA cycle in parallel to the PEP-glyoxylate cycle (Fischer and Sauer
2003; Beste et al. 2011), our analysis does not include a single EFM, which resembles
this behavior. In fact, the definition of EFMs to be minimal does not allow for such
an EFM, since the simultaneous use of the complete TCA cycle is a superposition of
two pathways and can thus be represented by the overlay of two EFMs (see Fig. 22.2,
Schäuble et al. (2011b), chapter 3).

To show the usefulness of EFM analysis to determine important network prop-
erties, we additionally presented an accurate reconstruction of the photosynthate
metabolism and its EFM based analysis. The model comprises reactions from the
Calvin cycle and includes the photosynthate metabolism of the chloroplast stroma.
The Calvin cycle is primarily regulated by the thioredoxin system (Schürmann and
Jacquot 2000). In contrast to Poolman et al. (2003), who analyzed a similar model
with respect to triose phosphate excretion, we focused on the systems starch and
sucrose production capability.

The complete system gave rise to 42 EFMs, whereas only 12 remained, when
considering the down-regulation of reactions from the oxidative pentose phosphate
pathway and transaldolase at daytime (Schürmann and Jacquot 2000). Sucrose
can be produced solely from carbon dioxides or from both, carbon dioxides and
starch. The EFM yield analysis shows that the production via carbon dioxides only
is energetically more efficient. However, plants might also rely on starch, when light
sources are not available. Since the 30 remaining EFMs also rely on the activity
of Rubisco or sedoheptulose-bisphosphatase, these EFMs are not operable at night,
because these reactions are down-regulated at night (Schürmann and Jacquot 2000).
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In consequence, neither starch nor sucrose production is possible at night in the
context of our model. Even if an ATP source would be available, still starch and
sucrose build-up is not possible due to the down-regulation of key reactions during
night.

Naturally, EFM analysis is not limited to the analysis of photosynthesis alone, but
has a wide range of applicability. In our work, we discuss several such possibilities.
Among others, EFM analysis has been used to analyze an alternative path to oxidize
glucose, (Liao et al. 1996; Schuster et al. 1999) or the response of yeast to external
stresses (Schwartz et al. 2007). Knock out simulations are possible as well and
let to the study of a mutated E. coli strain that lacks a cell wall (Kenanov et al.
2010) or to enzyme deficiency studies in human erythrocytes (Çakir et al. 2004;
Schuster and Kenanov 2005). Alternatively, functional deficiencies can be explored
by computing and analyzing minimal cut sets, an EFM related concept (Klamt
2006). EFM analysis is also important in the context of bioengineering, where the
study and design of microorganism enables the overproduction of biotechnological
relevant metabolites (Carlson et al. 2002; Trinh et al. 2006; Trinh and Srienc 2009;
Unrean et al. 2010).

We emphasize that in general EFM analysis strongly depends on a models qual-
ity. Even though the number of available models is steadily increasing, often it
is unavoidable to conduct a network reconstruction from scratch. The amount of
time required to reconstruct a high quality model can be enormous, however, since
databases on metabolism regularly contain contradicting information (Feist et al.
2009; Ruppin et al. 2010; Thiele and Palsson 2010). Examples include but are not
limited to diverse information about reaction reversibility states or the protonation
status of metabolites.

Since the number of EFMs increases exponentially with network size (Klamt and
Stelling 2002), the computation and analysis of all EFMs is limited to moderately
sized networks even when considering modern highly parallelized computation meth-
ods (Terzer and Stelling (2008), cf. Fig. 1.5). For instance, the number of extreme
pathways, a subset of EFMs, in a genome-scale metabolic network of the human
metabolism (Duarte et al. 2007) has been estimated to be about up to 1029 (Yeung
et al. 2007). Thus, regardless of the chosen method to assess EFMs, computing the
complete set of all EFMs is unfeasible for most genome-scale models. Enumerat-
ing a subset of feasible EFMs or calculating all EFMs of a subsystem, which are
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still valid with respect to the complete network has been shown to circumvent the
model-size limitation of EFM applicability. Without the necessity of computing
all EFMs the first approach allows to calculate the shortest EFMs (de Figueiredo
et al. 2009) or a large sample set of EFMs using a specific reaction (Kaleta et al.
2009b). Alternatively, elementary flux patterns can be computed, which allow for
the identification of possible EFMs within a subsystem which is still valid in the
entire network (Kaleta et al. 2009a).

Taken together EFM analysis has proven to be a promising tool to break down
metabolic networks into minimal feasible pathways. When considering the increasing
number of available genome-scale models, however, the classic approach to compute
all EFMs of a given network is impracticable. Even though not all EFMs are com-
putable anymore, a particular interesting subset of EFMs is still assessable. Thus,
the advantage of EFM analysis ranging from pure theoretical to biotechnological
relevant applications, persists in the present and in the future.

4.2.2. EFM analysis predicts a shut down of less effective
nitrogen assimilation pathways in C. reinhardtii via the
circadian controlled factor CHLAMY1 at night

The green algae C. reinhardtii has proven a valuable model organism for crop plants,
whereby nitrogen metabolism is essential for growth and survival (Harris 2008).
To contribute a new perspective on algae science, we investigated the impact of
circadian control on C. reinhardtii’s nitrogen metabolism. We conducted an EFM
based pathway analysis, and included information about the circadian regulator
CHLAMY1. Due to a lack of knowledge about involved kinetic parameters, a kinetics
based analysis of the dynamics of the nitrogen uptake and assimilation pathways
was not feasible. Assessing the theoretical capacity of this metabolic network proved
to be valuable, nevertheless, as will be discussed further on.

As a novel aspect we interconnected sequence data into our analysis pipeline of
interpreting the calculated EFM set. The heteromer CHLAMY1 is known to recog-
nize and down-regulate mRNA transcripts containing UG≥7 repeats at their 5’ UTR
at night (Iliev et al. 2006; Kiaulehn et al. 2007). To include CHLAMY1 based reg-
ulation into our model, we investigated C. reinhardtii’s sequence information. This
allowed for the identification of enzymes that are solely encrypted by mRNAs con-
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taining UG≥7 repeats. Our approach circumvents the complexity of flux analyses,
which might be infeasible for higher organisms and proved to be a simple yet effi-
cient and viable method to determine the degree of influence of regulatory factors.
In total, six enzymes of the nitrogen pathway are affected by CHLAMY1 in the
context of our model. Although more transcripts with a CHLAMY1 recognizable
UG≥7 repeat exist, we only simulated a down-regulation, when no isoenzyme can
compensate the affected catalytic deficiencies.

The reconstructed network gave rise to about three million EFMs in total, which
comprise the incorporation of nitrogen into the amino acids glycine, alanine, as-
paragine, lysine and arginine based on the carbon sources Glucose-6-phosphate
(G6P) or acetate. These amino acids had been chosen as nitrogen sinks, since
they comprise an efficient and above average nitrogen to carbon ratio. We only con-
sidered a non-compartmentalized model, since the complete knowledge about the
transport reactions connecting the compartments was not available. Moreover, the
complexity of the resulting EFM set would have produced a tremendous number of
EFMs, which are difficult to assess and interpret.

The sheer number of EFMs suggests a high redundancy and potentially robustness
present in the network. Interestingly, our analysis shows that CHLAMY1 shuts down
the majority of valid EFMs, narrowing down the solution space for possible nonzero
fluxes (see also Fig. 8, Schäuble et al. (2011a), chapter 3). At first glance that might
seem intriguing. The down-regulation of inefficient pathways upon CHLAMY1 ac-
tion at night, however, results in a decrease in the overall energy consumption of
nitrogen uptake processes. Similar mechanisms of forcing certain pathways to be left
feasible have also been observed in strain optimization (Wlaschin et al. 2006; Trinh
and Srienc 2009; Hädicke and Klamt 2010). Here, we focused on different physi-
ological situations (day and night phases) instead of strain manipulation. Further
examples may be present in hibernating organisms, or by comparing developmental
versus old tissues.

The analysis of the maximum carbon yields of the investigated pathways shows
that the green algae can still incorporate nitrogen, although with reduced theoreti-
cal efficiency, when G6P or acetate is available at night. For instance, the arginine
synthesizing pathway is completely knocked out, when considering complete down-
regulation by CHLAMY1. Here, CHLAMY1 down-regulates the final synthesizing
step into arginine, which is catalyzed by the enzyme argininosuccinate lyase (ASL,
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see also Fig. 2, Schäuble et al. (2011a), chapter 3). If the external carbon source
G6P is interchanged with glyceraldehyde-3-phosphate (GAP), which effectively re-
moves the glycolysis and pentose phosphate pathway from the model, the maximum
carbon yields do not change at all, regardless of CHLAMY1 action. Thus, a con-
straint based modeling approach aiming solely at optimal fluxes such as an FBA
analysis is not suitable to detect possible quantitative differences. In contrast, our
EFM analysis revealed that about 96 % of all EFMs are affected by CHLAMY1 at
night. This result suggests that only a small portion of nitrogen incorporating fluxes
remain feasible upon CHLAMY1 down-regulation (Fig. 8, Schäuble et al. (2011a),
chapter 3). Moreover, it strengthens the idea that CHLAMY1 acts as a global reg-
ulator of a flux distribution rather than affecting only optimal fluxes. Indeed, the
down-regulation of mRNAs recognized by CHLAMY1 during the night infers an
increase in the median yield of amino acid production at the cost of losing most
optimal fluxes (Fig. 5, Schäuble et al. (2011a), chapter 3). As has been shown in
various microbacteria, relaxing the need of operating only optimal pathways pro-
vides a trade-off between flexibility and optimal fluxes in fluctuating environments
(Schuetz et al. 2012). Thus, sacrificing optimal, but cost intensive nitrogen assimilat-
ing fluxes at night potentially allows for an adjusted workload of energy and nitrogen
metabolism throughout the daily light dark cycle. This in turn enables an efficient
uptake of nitrogen residues throughout the day and particularly at night. Since
light is unavailable to photosynthetic active organisms at night, particularly energy
consuming reactions and thus fluxes are prohibitive, which has also been experi-
mentally confirmed in Arabidopsis thaliana (Piques et al. 2009). For C. reinhardtii,
the decrease in maximum carbon yield is mainly due to the influence of CHLAMY1
on phosphoglucose isomerase (G6PI). The down-regulation of G6PI forces G6P to
be converted via the pentose phosphate pathway, which is required by nucleotide
synthesis. Since DNA replication is primarily occurring at night, this might well be
affected by an evolutionary process to provide sufficient building block concentra-
tions for DNA synthesis.

Summarizing, the concept of evolutionary adaption or optimization to fluctuating
environments as well as experimental observations agree nicely with our theoretical
investigation. Rather than altering optimal fluxes, we found a noteworthy change in
yield distribution for both, G6P and GAP as carbon sources. We have also shown
that the main contribution to the altered flux distribution is brought out by shutting
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down nitrite reductase (NiR) and ASL. It has been shown experimentally that both
factors are recognizable by CHLAMY1 (Kiaulehn et al. 2007; Iliev et al. 2006). In
this project we restricted our investigation to one regulator. Even though we have
shown that CHLAMY1 greatly influences flux distribution, it cannot be ruled out
that other processes such as (post-)transcriptional or (post-)translational regulation
influences nitrogen uptake as well. It has been shown e. g. that the transcription of
several enzymes that are included in our model, are regulated in a circadian manner
(Kucho et al. 2005). In our approach, we left reactions unaffected whenever there is
an isoenzyme present that is capable of conducting the identical reaction. Thus, in-
cluding such transcriptional information into our model has no effect on simulation
results, since for all affected reactions of our model, isoenzymes exist that are not
circadian clock controlled. We are aware of the fact that our analysis was based on
the assumption that all fluxes have an equal likelihood to occur, as has been done
earlier by Kenanov et al. (2010) in the case of incomplete knowledge. Although this
is a notable simplification, it allows for an efficient analysis of the models intrinsic
robustness and adjustments during diurnal changes. Besides, approaching metabolic
system with optimality principles bears a noteworthy dependency on applied con-
straints (Edwards et al. 2001; Ibarra et al. 2002; Famili et al. 2003) and meets with
various difficulties such as scaling flux results to experimental results (Schuster et al.
2008; Feist and Palsson 2010).

One might also argue that treating regulation in a boolean on/off manner provides
only a limited analysis. Therefore, we additionally calculated weighted arithmetic
means of the carbon yield distribution, which allowed us to fine-tune the extend
of the regulatory influence. The observation of changed yield distribution upon
CHLAMY1 regulation persists, nevertheless, although with less clarity. Regardless
of the chosen carbon source, our analysis had shown that during the night, the
metabolic flux capability is reduced to about 2 % of all possible fluxes. Notably,
fluxes with particularly low yields are down-regulated, which economizes energy
and carbon sources. Therefore, down-regulation instead of inactivation leads to less
pronounced yield alterations due to the large amount of affected EFMs. Starting
with the day and CHLAMY1 inactivation, all fluxes are feasible again. Hence,
the dependency on energy efficient routes becomes less critical due to the extra
amount of available energy through photosynthesis. Since CHLAMY1 binds and
stabilizes recognized mRNAs during the night, but releases the respective transcripts
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with daylight, it ensures a high metabolic capacity as soon as additional energy is
available. Thus, it enables a most efficient nitrogen fixation during night as well as
day time.

Taken together, we have shown that one regulatory factor can have a tremen-
dous impact on metabolic flux distributions. In consequence, it allows for an ac-
tive metabolic system that corresponds optimal to the corresponding environmental
condition. Moreover, we have proposed using weighted influences instead of ac-
tive/inactive regulation, which might be useful for a number of applications, such
as studying different impacts of multiple regulators or weighting EFMs according
to fold changes given by microarray data. Finally, our findings with respect to
C. reinhardtii might have implications for further studies and biotechnological de-
sign of e. g. biofuel production. Here, nitrogen starvation of the green algae is
currently heavily studied (Bono et al. 2013; Ito et al. 2013; James et al. 2013).

4.2.3. Computing costs of metabolic compounds with FBA
guides the search for suitable, efficient growth media for
E. coli

By introducing the concept of EFMs and exemplifying a valuable application to
a model organism, we demonstrated the usefulness of approaching larger scaled
models by the means of constraint-based modeling. However, EFM analysis is only
one possibility of a constraint-based modeling approach. Although not appropriate
for the prior study, FBA has proven its value in many other studies, especially when
assessing information about optimal growth behavior (Varma and Palsson 1994;
Burgard and Maranas 2001; Segrè et al. 2002; Feist and Palsson 2010; Khandelwal
et al. 2013; Chakrabarti et al. 2013).

Optimality or achieving the highest efficiency plays an important role in metabolic
engineering as well. Here, E. coli became a widely used industrial organism for
biosynthetic production such as recombinant proteins or low-weight amino acid com-
pounds. Due to the notable dependency on a given growth media, determining the
metabolic costs associated to this production is of high biotechnological interest. We
described the required biosynthetic pathways for amino acid production in E. coli
based on different carbon sources (see also Kaleta et al. (2013), chapter 3). Further-
more, we presented different types of costs, since the desired optimal solution may



DISCUSSION 103

differ given an alternative experimental or industrial setup. Primarily, the physio-
logical conditions of a given organismic host, such as the amount of available ATP
or amino acid precursors, determine the chosen cost type. Note that optimizing
the ATP yield is a preferred goal, since energy balance is a prerequisite to assess
biotechnological products of interest. Additionally, the experimental environment
may contain different carbon source concentrations. Thus, different cost measures
should be appreciated. In fact, the product yield itself, but also the ATP consump-
tion of amino acid production pathways has hitherto been accepted to be primarily
optimized (Stouthamer 1973; Akashi and Gojobori 2002). However, as our results
show, an efficient ATP production often causes the product yield to be less optimal
in the context of the consumed carbon sources. We have demonstrated that the bio-
chemical routes that enable yield optimal fluxes can be non-trivial and differ from
routes that are normally favored by cells. Interestingly, our analysis of flux distri-
butions for protein syntheses are often accompanied by energy producing pathways,
which can partially compensate the energy demand of amino acid polymerization.
In the case of glycerol as carbon source the compensation is even nearly matched up
to protein production costs. Our observations are in line with prior studies, where
glycerol has been shown to be favorable compared to glucose as carbon source, es-
pecially once recombinant protein production is stably running (Luo et al. 2006;
Berger et al. 2011).

We noted that our results are biased by the different molecular complexity and
mass of different amino acids. To complete our findings with cost calculations cir-
cumventing this bias, we additionally computed carbon yields as well as costs on a
kilodalton basis. These calculations reveal that in amino acid producing flux distri-
butions most of the lost carbons are due to a carbon dioxide release accompanying
the synthesizing process. In contrast, for half of the amino acids exist theoreti-
cal flux distributions that provide carbon fixation from carbon dioxide. Moreover,
our calculations, which considered the mass of amino acids as well, showed that
phenylalanine as well as methionine are the most expensive amino acids, if glu-
cose is the carbon source. Presuming short canonical production routes for amino
acid precursors, the synthesis of methionine from glucose consumes 18 mol of ATP.
Since methionine is one of the most important synthetically produced amino acids
(Ikeda 2003; Krömer et al. 2006; Park and Lee 2010b), this number might be of
high relevance. Interestingly, our calculations showed that the largest amino acid
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tryptophan is not the most expensive amino acid to produce, if the mass of amino
acids is taken into account as well. Instead, when considering the concentrations of
amino acids present in E. coli, the microbacteria invests most of its carbon sources
into synthesizing leucine.

Taken together, our calculations based on different carbon sources and considering
different cost measures, provide a comprehensive overview on metabolic production
costs of amino acids as well as proteins. We expect our numbers to serve as a refer-
ence to guide the choice of optimal growth media for biotechnological relevant E. coli
strains. In general, our calculations suggest that preferring glycerol as well as sup-
plementing particularly expensive amino acids may notably improve the efficiency
of synthetic production of biological compounds.
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5. Conclusion

This thesis is dedicated to the study of complex dynamic processes in systems biol-
ogy. I approached given study objects either with ODE based modeling techniques,
or with constraint-based methods. The latter approach was used, once specific in-
formation about enzyme kinetics were too complex to assess and thus, not available,
or if the computational demand for modeling and simulation was overwhelming and
surpassed a feasible solution space. Both approaches enabled me to model and an-
alyze system properties in an efficient manner, giving rise to valuable insights at
the cost of reasonable and simplifying assumptions. Such assumptions comprise
e. g. negligible space occurrences of model entities or mandatory balanced masses
of intermediary metabolites in metabolic networks.

Even though well approved and valuable, studies in the life sciences are not limited
to the here considered approaches. An ODE based approach is a promising method,
when the modeled species number is high and thus, fluctuations and noise are com-
parably low. In contrast, investigations dedicated to a small number of entities may
require a different approach. Here, the stochastic impact is noteworthy and should
be taken into account as well. This can be achieved e. g. by modeling a system with
the well known Gillespie algorithm to study the probability of species occurrences
(Gillespie 1976) or by appreciating noise management in molecular systems (Brugge-
man et al. 2009). Moreover, the systems studied in chapter 2 were assumed to be
homogeneously distributed. Although well justified in these studies, different scales
of biological phenomena as well as the number of comprised species may well infer
a heterogeneously distributed population. Additionally to a potential noise effect
when modeled species numbers are low, here, spatial dynamics need to be taken
into account as well. To deal with spatiality, further methods are required, such as
partial differential equations, or individual-based modeling. These are commonly
used in ecology and systems biology (Grimm et al. 2005; Martin et al. 2013).

Approaching larger scaled systems poses particularly the challenge to keep a prob-
lem solvable. Most commonly, studying dynamic models based e. g. on kinetics is
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prohibited due to its computational demand in conjugation with the regular lack
of knowledge of velocity affecting parameters. As I have shown in chapter 3, ap-
proaching this class of biological problems with constraint-based methods provides
valuable insights into model properties, while keeping the problem in a solvable re-
gion. In order to cope with emerging technological advances, such as next generation
sequencing techniques and subsequent model generation up to genome scale, several
extension to EFM and FBA have been proposed. Notably, EFM based methods were
developed to enable its application to genome scale models (Kaleta et al. 2009a,b;
de Figueiredo et al. 2009). Concerning FBA, the method has been extended to
account e. g. for multiple optimal fluxes (Mahadevan et al. 2002) or potential cross
feeding in microbial communities (Khandelwal et al. 2013).

Among others, these efforts exemplify the state-of-the-art of both methods. They
are a promising alternative, when dynamic modeling efforts fail, even if it comes
with an acceptable decrease in the predictive power of the dynamics of a model.
Particularly the recent advances in generating context specific models based on
expression data in an automatic manner (Jerby et al. 2010; Zur et al. 2010; Jensen
and Papin 2010; Wang et al. 2012) will potentially deliver further applications of
the described methods in the future.

Finally, if we think again back to Newton and his study of planet movements,
it is regularly neither wise nor appropriate to model and study as many details as
possible in order to draw conclusion about the underlying mechanistic principles.
Without the knowledge of Einsteins’s theory of relativity, Newton was still able to
propose a realistic model of gravity, which essentially influenced further research not
only in astro physics. In contrast, appreciating the scale of detail of an investigated
phenomena should always guide the choice in the utilized tool or method, to allow
for an efficient yet valuable and meaningful analysis.
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D. Segrè, D. Vitkup, and G. M. Church. Analysis of optimality in natural and
perturbed metabolic networks. Proc Natl Acad Sci U S A, 99(23):15112–15117,
2002.

A. Seressiotis and J. A. Bailey. Mps: An algorithm and data base for metabolic
pathway synthesis. Biotechnol Lett, 8:837–842, 1986.

M. Serrano, A. W. Lin, M. E. McCurrach, D. Beach, and S. W. Lowe. Oncogenic
ras provokes premature cell senescence associated with accumulation of p53 and
p16INK4a. Cell, 88(5):593–602, 1997.

J. W. Shay and W. E. Wright. Senescence and immortalization: role of telomeres
and telomerase. Carcinogenesis, 26(5):867–874, 2005.



Bibliography 126

D. N. Shelton, E. Chang, P. S. Whittier, D. Choi, and W. D. Funk. Microarray
analysis of replicative senescence. Curr Biol, 9(17):939–945, 1999.

J. Shiloach and U. Rinas. Glucose and acetate metabolism in E. coli - System level
analysis and biotechnological applications in protein production processes, pages
377–400. Springer-Verlag, Berlin, Heidelberg, New York, 2009.

J. Shiloach and R. Fass. Growing E. coli to high cell density–a historical perspective
on method development. Biotechnol Adv, 23(5):345–357, 2005.

E. Sikora, T. Arendt, M. Bennett, and M. Narita. Impact of cellular senescence
signature on ageing research. Ageing Res Rev, 10(1):146–152, 2011.

J. R. Smith and R. G. Whitney. Intraclonal variation in proliferative potential of
human diploid fibroblasts: stochastic mechanism for cellular aging. Science, 207
(4426):82–84, 1980.

W. W. Soon, M. Hariharan, and M. P. Snyder. High-throughput sequencing for
biology and medicine. Mol Syst Biol, 9:640, 2013.

P. D. Sozou and T. B. Kirkwood. A stochastic model of cell replicative senescence
based on telomere shortening, oxidative stress, and somatic mutations in nuclear
and mitochondrial DNA. J Theor Biol, 213(4):573–586, 2001.

A. H. Stouthamer. A theoretical study on the amount of atp required for synthesis
of microbial cell material. Antonie Van Leeuwenhoek, 39(3):545–65, 1973.

S. H. Strogatz. Nonlinear Dynamics and Chaos. Westview Press, 2000.

H. Takai, A. Smogorzewska, and T. de Lange. DNA damage foci at dysfunctional
telomeres. Curr Biol, 13(17):1549–1556, 2003.

Z. Tan. Intramitotic and intraclonal variation in proliferative potential of human
diploid cells: explained by telomere shortening. J Theor Biol, 198(2):259–268,
1999.

M. Terzer and J. Stelling. Large-scale computation of elementary flux modes with
bit pattern trees. Bioinformatics, 24(19):2229–2235, 2008.



Bibliography 127

B. Teusink, J. Passarge, C. A. Reijenga, E. Esgalhado, C. C. van der Weijden,
M. Schepper, M. C. Walsh, B. M. Bakker, K. van Dam, H. V. Westerhoff, and
J. L. Snoep. Can yeast glycolysis be understood in terms of in vitro kinetics of the
constituent enzymes? Testing biochemistry. Eur J Biochem, 267(17):5313–5329,
2000.

I. Thiele and B. Ø. Palsson. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat Protoc, 5(1):93–121, 2010.

I. Thiele, N. Swainston, R. M. T. Fleming, A. Hoppe, S. Sahoo, M. K. Aurich,
H. Haraldsdottir, M. L. Mo, O. Rolfsson, M. D. Stobbe, S. G. Thorleifsson,
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1 Full derivation of kinetic rate law for monomolecular reactions

Figure 1: Reaction diagram for two substrates competing for the active site of an enyme.

List of differential equations for the metabolic compounds in Figure 1:

Ṡ1 = −k11E · S1 + k-11ES1

Ṡ2 = −k12E · S2 + k-12ES2

...

Ṡn = −k1nE · Sn + k-1nESn

Ė = −(k11E · S1 + k12E · S2 + · · ·+ k1nE · Sn)

+ (k-11ES1 + k-12ES2 + · · ·+ k-1nESn)

+ (k21ES1 + k22ES2 + · · ·+ k2nESn)

− (k-21E · P1 + k-22E · P2 + · · ·+ k-2nE · Pn)

ĖS1 = k11E · S1 − k-11ES1 − k21ES1 + k-21E · P1

ĖS2 = k12E · S2 − k-12ES2 − k22ES2 + k-22E · P2

...

ĖSn = k1nE · Sn − k-1nESn − k2nESn + k-2nE · Pn

Ṗ1 = k21ES1 − k-21E · P1

Ṗ2 = k22ES2 − k-22E · P2

...

Ṗn = k2nESn − k-2nE · Pn

2
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The generalised rate law for the production of P1 with n competing substrates for the binding site of the enzyme E
and the substitutions Vf = k21Et, Vr = k−11Et reads:

Ṗ1 = v0n =

Vf
S1

KS1
m

− Vr
P1

KP1
m

n∑

i=1

(
Si

KSi
m

+
Pi

KPi
m

)
+ 1

(1)

The proof is given via mathematical induction.

Base case: n = 2

Conservation relation:

Et = E + ES1 + ES2 (2)

Deduction

ĖS1 = 0
k11E · S1 + k-21E · P1 − (k-11 + k21)ES1 = 0

E =
(k-11 + k21)ES1

k11S1 + k-21P1
(3)

ĖS2 = 0

E =
(k-12 + k22)ES2

k12S2 + k-22P2
(4)

(3) = (4)

ES2 = ES1
(k-11 + k21)(k12S2 + k-22P2)

(k11S1 + k-21P1)(k-12 + k22)
(5)

(5)→ (2)

ES2 = Et − ES1 − E

ES1
(k-11 + k21)(k12S2 + k-22P2)

(k11S1 + k-21P1)(k-12 + k22)︸ ︷︷ ︸
ES2

= Et − ES1 −
(k-11 + k21)ES1

k11S1 + k-21P1︸ ︷︷ ︸
E

Et = ES1

(
1 +

(k-11 + k21)(k12S2 + k-22P2)

(k11S1 + k-21P1)(k-12 + k22)
+

(k-11 + k21)

k11S1 + k-21P1

)

ES1 =
Et

k11S1 + k-21P1

k-11 + k21

1 +
k11S1 + k-21P1

k-11 + k21
+

k12S2 + k-22P2

k-12 + k22

(6)

(6)→ (3)

E =
Et

1 +
k11S1 + k-21P1

k-11 + k21
+

k12S2 + k-22P2

k-12 + k22

(7)

(6), (7)→ Ṗ1

Ṗ1 = k12ES1 − k1−2E · P1

=
k21Et

k11S1

k-11 + k21
+ k21Et

k-21P1

k-11 + k21
− k-21EtP1

S2

KS2
m

+
P2

KP2
m

+
S1

KS1
m

+
P1

KP1
m

+ 1

3
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Ṗ1 = v0 =

k21Et
S1

KS1
m

− k-11Et
P1

KP1
m

S1

KS1
m

+
P1

KP1
m

+
S2

KS2
m

+
P2

KP2
m

+ 1

=

Vf
S1

KS1
m

− Vr
P1

KP1
m

2∑

i=1

(
Si

KSi
m

+
Pi

KPi
m

)
+ 1

(8)

� Eq. (1) holds for some n according to induction hypothesis → Show that it holds for n + 1

Inductive step

(1) holds for some n according to induction hypothesis → Show that it holds for n + 1
Steady state assumption yields:

ĖS1 = ĖS2 = · · · = ĖSn = ĖSn+1 = 0

Conservation relation yields:

ES2 = Et − E − ES1 − ES3 − ES4 − · · · − ESn − ESn+1 (9)

ES1
(k-11 + k21)(k12S2 + k-22P2)

(k11S1 + k-21P1)(k-12 + k22)︸ ︷︷ ︸
ES2

=

Et −
(k-11 + k21)ES1

k11S1 + k-21P1︸ ︷︷ ︸
E

−ES1−

ES1
(k-11 + k21)(k13S3 + k-23P3)

(k11S1 + k-21P1)(k-13 + k23)︸ ︷︷ ︸
ES3

−

ES1
(k-11 + k21)(k14S4 + k-14P4)

(k11S1 + k-21P1)(k-14 + k24)︸ ︷︷ ︸
ES4

−

· · ·−

ES1
(k-11 + k21)(k1nSn + k-1nPn)

(k11S1 + k-21P1)(k-1n + k2n)︸ ︷︷ ︸
ESn

−

ES1
(k-11 + k21)(k1n+1Sn+1 + k-1n+1Pn+1)

(k11S1 + k-21P1)(k-1n+1 + k2n+1)︸ ︷︷ ︸
ESn+1

4
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Et = ES1

(
1 +

(k-11 + k21)

k11S1 + k-21P1
+

(k-11 + k21)(k12S2 + k-22P2)

(k11S1 + k-21P1)(k-12 + k22)
+

(k-11 + k21)(k13S3 + k-23P3)

(k11S1 + k-21P1)(k-13 + k23)
+

· · ·+
(k-11 + k21)(k1nSn + k-2nPn)

(k11S1 + k-21P1)(k-1n + k2n)
+

(k-11 + k21)(k1n+1Sn+1 + k-2n+1Pn+1)

(k11S1 + k-21P1)(k-1n+1 + k2n+1)

)

ES1 =
Et

k11S1+k-21P1

k-11+k21

1 + k11S1+k-21P1

k-11+k21
+ k12S2+k-22P2

k-12+k22
+ · · ·+ k1nSn+k-2nPn

k-1n+k2n
+ k1n+1Sn+1+k-2n+1Pn+1

k-1n+1+k2n+1

(10)

(10)→ (9)

E =
Et

1 + k11S1+k-21P1

k-11+k21
+ k12S2+k-22P2

k-12+k22
+ · · ·+ k1nSn+k-2nPn

k-1n+k2n
+ k1n+1Sn+1+k-2n+1Pn+1

k-1n+1+k2n+1

(11)

(10), (11)→ Ṗ1

Ṗ1 = k12ES1 − k1−2E · P1

Ṗ1 =
k21Et

S1

K
S1
m

− k-11Et
P1

K
P1
m

S1

K
S1
m

+ S2

K
S2
m

+ P2

K
P2
m

+ P1

K
P1
m

+ · · ·+ Sn

KSn
m

+ Pn

KPn
m

+ Sn+1

K
Sn+1
m

+ Pn+1

K
Pn+1
m

+ 1

=

k21Et
S1

KS1
m

− k-11Et
P1

KP1
m

n∑

i=1

(
Si

KSi
m

+
Pi

KPi
m

)
+

Sn+1

K
Sn+1
m

+
Pn+1

K
Pn+1
m

+ 1

Ṗ1 =

k21Et
S1

KS1
m

− k-11Et
P1

KP1
m

n+1∑

i=1

(
Si

KSi
m

+
Pi

KPi
m

)
+ 1

�

2 Proof of substitution rule

Classic reversible Michaelis-Menten kinetics:

v =

Vf
S1

KS1
m

− Vr
P1

KP1
m

S1

KS1
m

+
P1

KP1
m

+ 1
(12)

Now, by adding the competition of one competing substrate and one product as competitive inhibition by changing
the Km according to the rules described in [1], Eq. (12) becomes:

5
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v =

Vf
S1

KS1
m (1 +

S2

KS2
m

+
P2

KP2
m

)
− Vr

P1

KP1
m (1 +

S2

KS2
m

+
P2

KP2
m

)

S1

KS1
m (1 +

S2

KS2
m

+
P2

KP2
m

)
+

P1

KP1
m (1 +

S2

KS2
m

+
P2

KP2
m

)
+ 1

(13)

By multiplying both, numerator and denominator with the Term (1 +
S2

KS2
m

+
P2

KP2
m

) Eq. (13) becomes:

v =

Vf
S1

KS1
m

− Vr
P1

KP1
m

S1

KS1
m

+
P1

KP1
m

+ 1 +
S2

KS2
m

+
P2

KP2
m

=

Vf
S1

KS1
m

− Vr
P1

KP1
m

S1

KS1
m

+
S2

KS2
m

+
P1

KP1
m

+
P2

KP2
m

+ 1

=

Vf
S1

KS1
m

− Vr
P1

KP1
m

2∑

i=1

(
Si

KSi
m

+
Pi

KPi
m

)
+ 1

(14)

�
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3 Kinetic rate laws for bi-molecular reactions including substrate com-
petition

3.1 Ordered Bi-Bi system

Scheme

E + A1

k1−−⇀↽−−
k−1

EA1 + B
k2−−⇀↽−−
k−2

EA1B
k3−−⇀↽−−
k−3

P + EQ1

k4−−⇀↽−−
k−4

E + Q1

Following the King-Altman method of deriving a steady-state velocity equation and making use of the Cleland nomen-
clature as described in Segel (1975), the resulting rate equation without substrate inhibtion in terms of kinetic constants
reads:

v =

VfVr

(
[A][B]− [P ][Q]

Keq

)

VrKiaKmB
+ VrKmB

[A] + VrKmA
[B] +

VfKmQ
[P ]

Keq
+

VfKmP
[Q]

Keq
+ Vr[A][B]

+
VfKmQ

[A][P ]

KeqKia
+

Vf [P ][Q]

Keq
+

VrKmA
[B][Q]

Kiq
+

Vr[A][B][P ]

Kip
+

Vf [B][P ][Q]

KibKeq

(15)

where

Vf =
k3k4

(k3 + k4)
Vr =

k−1k−2

(k−1 + k−2)
Keq =

k1k2k3k4
k−1k−2k−3k−4

KmA
=

k3k4
k1(k3 + k4)

KmB
=

k4(k−2 + k3)

k2(k3 + k4)
Kia =

k−1

k1

Kib =
k−1 + k−2

k2
KmP

=
k−1(k−2 + k3)

k−3(k−1 + k−2)
KmQ

=
k−1k−2

k−4(k−1 + k−2)

Kip =
k3 + k4
k−3

Kiq =
k4
k−4

Now, we introduce species A2 and Q2, which compete with A and Q, respectively, for the single binding site of the
free enzyme. It is reasonable to assume that only one species at a time can bind to the catalytic site.
The competition follows the mechanism of a competitive inhibition and thus, only affects the respective kinetic’s km
value, but not the maximal velocities in either direction. Thus, the terms KmA

and KmQ
in Eq. (15) need to be

extended by the term (1 + [A2]
KmA2

+ [Q2]
KmQ2

):

v =
VfVr

(
[A][B]− [P ][Q]

Keq

)

VrKiaKmB
+ VrKmB

[A] + VrKmA

(
1 + [A2]

KmA2

+ [Q2]
KmQ2

)
[B] +

VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[P ]

Keq
+

VfKmP
[Q]

Keq

+Vr[A][B] +
VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[A][P ]

KeqKia
+

Vf [P ][Q]
Keq

+
VrKmA

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[B][Q]

Kiq
+ Vr[A][B][P ]

Kip
+

Vf [B][P ][Q]
KibKeq

(16)

The km values for B and P species remain unaffected, as the competition occurs only at the initial step of the reaction
in either direction. Consequently, only the species A and Q face competitors for the binding site of the free enzyme.
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3.2 Theorell-Chance Bi Bi system

Theorell and Chance proposed 1951 an Ordered Bi Bi mechanism without a central complex which contains both
substrates. Using the King-Altman/Cleland scheme leads to a velocity equation equal to (15) without terms of
combined ABP and BPQ species. Thus, from Eq. (16) we can directly derive the velocity equation, where two
additional species A2 and Q2 compete for the binding site of the free enzyme species:

v =
VfVr

(
[A][B]− [P ][Q]

Keq

)

VrKiaKmB
+ VrKmB

[A] + VrKmA

(
1 + [A2]

KmA2

+ [Q2]
KmQ2

)
[B] +

VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[P ]

Keq
+

VfKmP
[Q]

Keq

+Vr[A][B] +
VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[A][P ]

KeqKia
+

Vf [P ][Q]
Keq

+
VrKmA

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[B][Q]

Kiq

(17)

3.3 Ping Pong Bi Bi system

The Ping Pong Bi Bi mechanism distinguishes from an Ordered Bi Bi as here, a product is released between the
addition of two substrates. Again, by applying the King-Altman method a velocity equation can be derived:

v =
VfVr

(
[A][B]− [P ][Q]

Keq

)

VrKmB
[A] + VrKmA

[B] +
VfKmQ

[P ]

Keq
+

VfKmP
[Q]

Keq
+ Vr[A][B] +

VfKmQ
[A][P ]

KeqKia
+

Vf [P ][Q]
Keq

+
VrKmA

[B][Q]

Kiq

(18)

The definition of the kinetic konstants is the same as for the Ordered Bi Bi system, except for Kib and Kip:

Kib =
k−3

k3
Kip =

k2
k−2

Following the argument given above, only the Km values are affected, when additional A2 and Q2 species compete
with A and Q, respectively for the binding site of the free enzyme. Consequently, Eq. (18) can be modified in the
same manner:

v =
VfVr

(
[A][B]− [P ][Q]

Keq

)

VrKmB
[A] + VrKmA

(
1 + [A2]

KmA2

+ [Q2]
KmQ2

)
[B] +

VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[P ]

Keq
+

VfKmP
[Q]

Keq
+ Vr[A][B]

+
VfKmQ

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[A][P ]

KeqKia
+

Vf [P ][Q]
Keq

+
VrKmA

(
1+

[A2]
KmA2

+
[Q2]

KmQ2

)
[B][Q]

Kiq

(19)

Note that Eq. (17) and (19) differ only by the term VrKiaKmB
, which is missing in the denominator of the Ping Pong Bi

Bi mechanism. Hence, if the backward maximum velocity Vr, the Michaelis-Menten constant KmB
or the dissociation

constant Kia are sufficiently small (close to zero), the Ping-Ping Bi Bi system is virtually not distinguishable from the
Theorell-Chance mechanism.
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4 Detailed model descriptions

For the sake of simplicity all Michaelis-Menten constants KmX
are the same for A and B species, respectively.

4.1 Case A - Competition between different pathways

A(0) = A1(0) = A2(0) = B(0) = B1(0) = B2(0) = 0

4.1.1 Irreversible kinetics

Parameter Vf kA kB KmA
KmB

Aex Bex

Value 1 1 1 0.02 0.02 0.05 0.05

Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− VfA1(t)

KmA
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA
+ A1(t)

− VfA2(t)

KmA
+ A2(t)

dB(t)

d(t)
= kBBex −

VfB(t)

KmB
+ B(t)

dB1(t)

d(t)
=

VfB(t)

KmB
+ B(t)

− VfB1(t)

KmB
+ B1(t)

dB2(t)

d(t)
=

VfB1(t)

KmB
+ B1(t)

− VfB2(t)

KmB
+ B2(t)

9
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Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− VfA1(t)

KmA

(
1 + B1(t)

KmB

)
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA

(
1 + B1(t)

KmB

)
+ A1(t)

− VfA2(t)

KmA
+ A2(t)

dB(t)

d(t)
= kBBex −

VfB(t)

KmB
+ B(t)

dB1(t)

d(t)
=

VfB(t)

KmB
+ B(t)

− VfB1(t)(
KmB

(1 + A1(t)
KmA

)
+ B1(t)

dB2(t)

d(t)
=

VfB1(t)(
KmB

(1 + A1(t)
KmA

)
+ B1(t)

− VfB2(t)

KmB
+ B2(t)

4.1.2 Reversible kinetics

Parameter Vf Vr kA kB KmA
KmB

Aex Bex

Value 1 1 1 1 0.02 0.02 0.05 0.05
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SUPPLEMENTARY MATERIAL 140



Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

dA1(t)

d(t)
=

VfA(t)
KmA

− VrA1(t)
KmA

1 + dA(t)
KmA

+ A1(t)
KmA

−
VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

dA2(t)

d(t)
=

VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

− VfA2(t)

KmA
+ A2(t)

dB(t)

d(t)
= kBBex −

VfB(t)
KmB

− VrB1(t)
KmB

1 + B(t)
KmB

+ B1(t)
KmB

dB1(t)

d(t)
=

VfB(t)
KmB

− VrB1(t)
KmB

1 + B(t)
KmB

+ B1(t)
KmB

−
VfB1(t)
KmB

− VrB2(t)
KmB

1 + B1(t)
KmB

+ B2(t)
KmB

dB2(t)

d(t)
=

VfB1(t)
KmB

− VrB2(t)
KmB

1 + B1(t)
KmB

+ B2(t)
KmB

− VfB2(t)

KmB
+ B2(t)

Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

dA1(t)

d(t)
=

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

−
VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ B1(t)
KmB

+ B2(t)
KmB

dA2(t)

d(t)
=

VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ B1(t)
KmB

+ B2(t)
KmB

− VfA2(t)

KmA
+ A2(t)

dB(t)

d(t)
= kBBex −

VfB(t)
KmB

− VrB1(t)
KmB

1 + B(t)
KmB

+ B1(t)
KmB

dB1(t)

d(t)
=

VfB(t)
KmB

− VrB1(t)
KmB

1 + B(t)
KmB

+ B1(t)
KmB

−
VfB1(t)
KmB

− VrB2(t)
KmB

1 + A1(t)
KmA

+ A2(t)
KmA

+ B1(t)
KmB

+ B2(t)
KmB

dB2(t)

d(t)
=

VfB1(t)
KmB

− VrB2(t)
KmB

1 + A1(t)
KmA

+ A2(t)
KmA

+ B1(t)
KmB

+ B2(t)
KmB

− VfB2(t)

KmB
+ B2(t)
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4.2 Case B - Competition in a branched pathway

A(0) = A1(0) = A2(0) = B1(0) = B2(0) = 0

4.2.1 Irreversible kinetics

Parameter Vf kA kB KmA
KmB

Aex

Value 1 1 1 0.02 0.02 0.05

Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− 2
VfA1(t)

KmA
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA
+ A1(t)

− VfA2(t)

KmA
+ A2(t)

dB1(t)

d(t)
=

VfA1(t)

KmA
+ A1(t)

− VfB1(t)

KmB
+ B1(t)

dB2(t)

d(t)
=

VfB1(t)

KmB
+ B1(t)

− VfB2(t)

KmB
+ B2(t)

Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− VfA1(t)

KmA
+ A1(t)

− VfA1(t)

KmA

(
1 + B1(t)

KmB

)
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA

(
1 + B1(t)

KmB

)
+ A1(t)

− VfA2(t)

KmA
+ A2(t)

dB1(t)

d(t)
=

VfA1(t)

KmA
+ A1(t)

− VfB1(t)

KmB

(
1 + A1(t)

KmA

)
+ B1(t)

dB2(t)

d(t)
=

VfB1(t)

KmB

(
1 + A1(t)

KmA

)
+ B1(t)

− VfB2(t)

KmB
+ B2(t)
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4.2.2 Reversible kinetics

Parameter Vf Vr kA Kf
mA

Kr
mA

Kf
mB

Kr
mB

Aex

Value 1 1 1 0.02 0.02 0.02 0.02 0.05

Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

Kf
mA

− VrA1(t)
Kr

mA

1 + A(t)

Kf
mA

+ A1(t)
Kr

mA

dA1(t)

d(t)
=

VfA(t)

Kf
mA

− VrA1(t)
Kr

mA

1 + A(t)

Kf
mA

+ A1(t)
Kr

mA

−
VfA1(t)

Kf
mA

− VrA2(t)
Kr

mA

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

−
VfA1(t)

Kf
mA

− VrB1(t)
Kr

mB

1 + A1(t)

Kf
mA

+ B1(t)
Kr

mB

dA2(t)

d(t)
=

VfA1(t)

Kf
mA

− VrA2(t)
Kr

mA

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

− VfA2(t)

KmA
+ A2(t)

dB1(t)

d(t)
=

VfA1(t)

Kf
mA

− VrB1(t)
Kr

mB

1 + A1(t)

Kf
mA

+ B1(t)
Kr

mB

−
VfB1(t)

Kf
mB

− VrB2(t)
Kr

mB

1 + B1(t)

Kf
mB

+ B2(t)
Kr

mB

dB2(t)

d(t)
=

VfB1(t)

Kf
mB

− VrB2(t)
Kr

mB

1 + B1(t)

Kf
mB

+ B2(t)
Kr

mB

− VfB2(t)

KmB
+ B2(t)
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Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

Kf
mA

− VrA1(t)
Kr

mA

1 + A(t)

Kf
mA

+ A1(t)
Kr

mA

dA1(t)

d(t)
=

VfA(t)

Kf
mA

− VrA1(t)
Kr

mA

1 + A(t)

Kf
mA

+ A1(t)
Kr

mA

−
VfA1(t)

Kf
mA

− VrA2(t)
Kr

mA

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

+ B1(t)

Kf
mB

+ B2(t)
Kr

mB

−
VfA1(t)

Kf
mA

− VrB1(t)
Kr

mB

1 + A1(t)

Kf
mA

+ B1(t)
Kr

mB

dA2(t)

d(t)
=

VfA1(t)

Kf
mA

− VrA2(t)
Kr

mA

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

+ B1(t)

Kf
mB

+ B2(t)
Kr

mB

− VfA2(t)

KmA
+ A2(t)

dB1(t)

d(t)
=

VfA1(t)

Kf
mA

− VrB1(t)
Kr

mB

1 + A1(t)

Kf
mA

+ B1(t)
Kr

mB

−
VfB1(t)

Kf
mB

− VrB2(t)
Kr

mB

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

+ B1(t)

Kf
mB

+ B2(t)
Kr

mB

dB2(t)

d(t)
=

VfB1(t)

Kf
mB

− VrB2(t)
Kr

mB

1 + A1(t)

Kf
mA

+ A2(t)
Kr

mA

+ B1(t)

Kf
mB

+ B2(t)
Kr

mB

− VfB2(t)

KmB
+ B2(t)

4.3 Case C - Multistep reactions with alternating enzymes

A(0) = A1(0) = A2(0) = A3(0) = A4(0) = A5(0) = 0

4.3.1 Irreversible kinetics

Parameter Vf kA KmA
Aex

Value 1 1 0.02 0.05

Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− VfA1(t)

KmA
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA
+ A1(t)

− VfA2(t)

KmA
+ A2(t)

dA3(t)

d(t)
=

VfA2(t)

KmA
+ A2(t)

− VfA3(t)

KmA
+ A3(t)

dA4(t)

d(t)
=

VfA3(t)

KmA
+ A3(t)

− VfA4(t)

KmA
+ A4(t)

dA5(t)

d(t)
=

VfA4(t)

KmA
+ A4(t)

− VfA5(t)

KmA
+ A5(t)
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Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)

KmA
+ A(t)

dA1(t)

d(t)
=

VfA(t)

KmA
+ A(t)

− VfA1(t)

KmA

(
1 + A3(t)

KmA

)
+ A1(t)

dA2(t)

d(t)
=

VfA1(t)

KmA

(
1 + A3(t)

KmA

)
+ A1(t)

− VfA2(t)

KmA

(
1 + A4(t)

KmA

)
+ A2(t)

dA3(t)

d(t)
=

VfA2(t)

KmA

(
1 + A4(t)

KmA

)
+ A2(t)

− VfA3(t)

KmA

(
1 + A1(t)

KmA

)
+ A3(t)

dA4(t)

d(t)
=

VfA3(t)

KmA

(
1 + A1(t)

KmA

)
+ A3(t)

− VfA4(t)

KmA

(
1 + A2(t)

KmA

)
+ A4(t)

dA5(t)

d(t)
=

VfA4(t)

KmA

(
1 + A2(t)

KmA

)
+ A4(t)

− VfA5(t)

KmA
+ A5(t)

4.3.2 Reversible kinetics

Parameter Vf Vr kA KmA
Aex

Value 1 1 1 0.02 0.05

Ordinary differential equation system neglecting substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

dA1(t)

d(t)
=

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

−
VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

dA2(t)

d(t)
=

VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

−
VfA2(t)
KmA

− VrA3(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

dA3(t)

d(t)
=

VfA2(t)
KmA

− VrA3(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

−
VfA3(t)
KmA

− VrA4(t)
KmA

1 + A3(t)
KmA

+ A4(t)
KmA

dA4(t)

d(t)
=

VfA3(t)
KmA

− VrA4(t)
KmA

1 + A3(t)
KmA

+ A4(t)
KmA

−
VfA4(t)
KmA

− VrA5(t)
KmA

1 + A4(t)
KmA

+ A5(t)
KmA

dA5(t)

d(t)
=

VfA4(t)
KmA

− VrA5(t)
KmA

1 + A4(t)
KmA

+ A5(t)
KmA

− VfA5(t)

KmA
+ A5(t)
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Ordinary differential equation system with substrate competition

dA(t)

d(t)
= kAAex −

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

dA1(t)

d(t)
=

VfA(t)
KmA

− VrA1(t)
KmA

1 + A(t)
KmA

+ A1(t)
KmA

−
VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

dA2(t)

d(t)
=

VfA1(t)
KmA

− VrA2(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

−
VfA2(t)
KmA

− VrA3(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

+ A5(t)
KmA

dA3(t)

d(t)
=

VfA2(t)
KmA

− VrA3(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

+ A5(t)
KmA

−
VfA3(t)
KmA

− VrA4(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

dA4(t)

d(t)
=

VfA3(t)
KmA

− VrA4(t)
KmA

1 + A1(t)
KmA

+ A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

−
VfA4(t)
KmA

− VrA5(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

+ A5(t)
KmA

dA5(t)

d(t)
=

VfA4(t)
KmA

− VrA5(t)
KmA

1 + A2(t)
KmA

+ A3(t)
KmA

+ A4(t)
KmA

+ A5(t)
KmA

− VfA5(t)

KmA
+ A5(t)
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Supplement S1 Bifurcation analysis of the stress response F(t) 
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Substituting (S1.2) into (S1.1) yields 
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Thus, a saddle-note bifurcation occurs if T increases and becomes greater than (S1.3). The 

current stable fixpoint is annihilated by the instable one. Increasing F further leads to a rapid 

change to the only stable fixpoint left, resembling bistable behavior. 
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Supplement S2 Sensitivity analysis 

The sensitivity of each parameter k was approximated by fixating all parameters except for k, 

which was uniformly varied in the vicinity of 10% around its optimal value. Repeated 100 

times for each parameter, this resulted in a set of 100 simulation runs per parameter k. The 

variance of the final population doubling (PD) values of these runs was further analyzed and 

interpreted as sensitivity measure to variation of parameter k. 

The sensitivity sk for variation of parameter k was calculated via 

   
 

   
(∑(    ̅)

 

 

   

)

 
 

  

with n being the number of simulation runs and xi the final PD value of simulation i. 

This procedure was conducted using the BJ and WI-38 replicative senescence data and has 

been repeated for every parameter given by model Equations 3a-d and 4. The sensitivities 

resulting from the variation of single parameter values are shown in Figure S2.1. 

 

Figure S2.1 

 

 

Sensitivity of model parameters as described by Eq. 3a-d and Eq. 4. The model is most 
sensitive to the variation of the growth rate r, resembling its particular importance for the 
maximal replicative capacity of cell cultures. Regarding the parameters f1-3, BJ as well as WI-
38 cells show qualitatively the highest sensitivity for P -> C transition, followed by its back 
transition (with rate f2) and the C->S transition rate f3. Interestingly, WI-38 cells are notably 
less sensitive to f2 and f3 variation than BJ cells. β shows a higher sensitivity than α, as it is a 
concentration dependent parameter, whereas concentration independent α is responsible 
for linearly accumulating long term stress. 
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Supplement S3 Analytical Analysis of the complete cellular senescence model 

Assumption: Let )(tF  be constant: 11
ˆ)( ftFf   

The ODE system reduces to:  

CfPfrCfPfrPP 2121 )ˆ(ˆ   

CfCfPfC 321
ˆ=   (S3.1) 

CfS 3=  

Observation: As the concentration of P  increases with parameter r , no conservation relation can 

be retrieved from this system. 

However, calculating the fractions 
SCP

P
R


=1 , 

SCP

C
R


=2  and 

SCP

S
R


=3 , yields 

the conservation relation: 

1=321 RRR    (S3.2) 

The population doublings are calculated as follows: 

            )(= 2 SCPlogPD    (S3.3) 

By substituting (S3.1) into (S3.3) we derive: 

)(= 2 SCPlogDP   (S3.4) 

)(
1

2

1
= SCP

SCPln
 


 (S3.5) 

1

(1)

2
=

2
= R

ln

r

SCP

P

ln

r


 (S3.6) 

Thus, the time dependent concentration change of DP  is zero, if r  or 1R  is zero and greater than 

zero otherwise, since r , 1R > 0. Consequently, 1R  is zero, if P  is zero, implying that no proliferating 

cells are left to the population. 

Moreover, applying the conservation relation (S3.2), it is sufficient to derive a solution for 1R  and 2R

in order to know the concentration fraction of 3R . 
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Isoclines 
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





  

2123211 )(ˆ= RrRRffRf   (S3.8) 

By setting (S3.7) and (S3.8) equal to zero we derive the following isoclines: 

:0=1R   

11

2

12
1

2

2 =
ˆ

= yR
f

rf
R

f

r
R


   (S3.9) 

:0=2R   

113212
ˆ=)( RfffrRR   

2

321

11
2 =

ˆ
= y

ffrR

Rf
R


 (S3.10) 

Further  analysis of (S3.9) and (S3.10):  
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f

rf
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
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 (S3.17) 

It is now convenient to look into a graphical representation of 1y  and 2y . According to (S3.9), (S3.10) 

and (S3.13- S3.17) the graphs look as follows: 

Figure  S3.1: 1
ˆ> fr  

 

Figure  S3.2: 1
ˆ= fr    
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Figure  S3.3: 1
ˆ< fr  

 

 

The parameter settings that relate to Figure S3.1 and S3.2 always yield a stable nonzero solution for 

1R  and 2R  and thus 0DP . Now, case 3 (Figure S3.3) is of particular interest, as further decrease 

of r  relative to 1f̂  yields:  

Figure  S3.4: 1
ˆ<< fr  

 

Parameter settings according to Figure S3.3, again yield a nonzero stable solution for 1R  and 2R , 

whereas in the case of Figure S3.4, the only stable solution for 1R  and 2R  is zero. 

We derive this solution by computing: 

 

(0)(0) 21 yy    (S3.18) 
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1
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ˆ
=(0)

f

rf
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The fixed point at (0,0) in the ),( 21 RR -plane is stable, if (S3.18) holds.  
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32

31
ˆ

ff

ff
r


  (S3.22) 

Thus, 1R  and consequently (S3.4) equals zero, if (S3.21) or (S3.22) holds, respectively, or is greater 

than zero otherwise.  
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Supplementary Material

Table S1

Abbreviation Name

13BPG 1,3-Bisphosphoglycerate
23DHD 2,3-dihydrodipicolinate
2PG 2-Phospho-glycerate
3PG 3-Phospho-glycerate
6PGN 6-Phospho-gluconate
Ac Acetate
AcCoA Acetyl-coenzyme-A
AcD Acetaldehyde
AcGlu Acetyl-glutamate
AcGlu5s Acetyl-glutamate 5-semialdehyde
AcGluP Acetylglutamyl-phosphate
Aconitate Aconitate
AcOrn Acetyl-ornithine
AcP Acetylphosphate
ADP Adenosine diphosphate
aKetG α-Ketoglutarate
Ala Alanine
AMP Adenosine monophosphate
Arg Arginine
ArgSucc Arginino-succinate
Asn Asparagine
Asp Aspartate
AspSemi Aspartate-semialdehyde
Asyl4Po Aspartyl-4-phosphate
ATP Adenosine triphosphate
biPO3−

4 Pyrophosphate
CarPO Carbamoyl-phosphate
Citr Citrulline
Citrate Citrate
CO2 Carbon dioxide
CoA Coenzyme A
DHAP Dihydroxyacetone-phosphate

continued on next page
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Abbreviation Name

DiAPi L,L-Diaminopimelate
E4P Erythrose-4-phosphate
F16BP Fructose-1,6-biphosphate
F6P Fructose-6-phosphate
Fum Fumerate
G6P Glucose-6-phosphate
GAP Glyceraldehyde-3-phosphate
GL6P Glucono-1,5-lactone-6-phosphate
Gln Glutamine
Glu Glutamate
Glu5P Glutamate-5-phosphate
Glu5s Acetyl-glutamate-5-semialdehyde
Gly Glycine
GlyOx Glyoxylate
H Hydrogen
H2O Water
HCO−

3 Hydrogencarbonate
Isocitrate Isocitrate
Lys Lysine
Malate Malate
MDiAPi Meso-diaminopimelate
NAD(H) Nicotinamide adenine dinucleotide
NADP(H) Nicotinamide adenine dinucleotide phosphate
NH+

4 Ammonium
NO−

2 Nitrite
NO−

3 Nitrate
Orn Ornithine
Oxaloacetate Oxaloacetate
oxFdx oxidized Ferredoxin
PEP Phosphoenolpyruvate
PO3−

4 Phosphate
Pyr Pyruvate
R5P Ribose-5-phosphate
redFdx reduced Ferredoxin
Ru5P Ribulose-5-phosphate
S17BP Sedoheptulose-1,7-bisphosphate

continued on next page

2

SUPPLEMENTARY MATERIAL 157



Abbreviation Name

S7P Sedoheptulose-7-phosphate
SuccCoA Succinylcoenzyme-A
Succinate Succinate
tHD Tetrahydrodipicolinate
UQ Ubiquinone
UQH2 Ubiquinol
X5P Xylulose-5-phosphate

3
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Supplementary Material

Table S2

Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

Anase Asparaginase 3.5.1.1 187983 3*i

ACD Acetaldehyde Dehydrogenase 1.2.1.10 133318 1*i

AdK Adenylate Kinase 2.7.4.3 24512

103322

114363

118113 1*i

129362

133184

194134

194947

196741

ACH Aconitate Hydratase 4.2.1.3 129025
195293

ACS Acetyl CoA Synthetase 6.2.1.1 196311 1*i

119897 1*i

391501
194063

AGK Acetylglutamate Kinase 2.7.2.8 78991

143603 1*i

AGS Argininosuccinate Synthase 6.3.4.5 58140

AGT Alanine-glyoxylate transaminase 2.6.1.44 133057

194541

205967 1*i

AHD Aspartate Kinase 2.7.2.4 161455
196316
196925

AK Acetate Kinase 2.7.2.1 128476 1*i

129982 1*i

AKDG α-Ketoglutarate Dehydrogenase Complex 1.8.1.4 57890 1*i

1.8.1.5 205763

2.3.1.61 145395

2.3.1.62 145987

continued on next page
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Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

AKDG α-Ketoglutarate Dehydrogenase Complex 1.2.4.2 79471

ALD Aldehyde Dehydrogenase 1.2.1.3 135609 1*i

ALDO Aldolase 4.1.2.13 24459

29185

152892

196304

AOD Acetylornithinase 3.5.1.16 155546

ARG1 Acetyl-gamma-glutamyl-phosphate
Reductase

1.2.1.38 191987 1*i, 1*3’ UTR

ARG9 Acetylornithine Aminotransferase 2.6.1.11 119395
139007

AS Asparagine Synthase 6.3.5.4 140252
167865

ASL Argininosuccinate Lyase 4.3.2.1 101662 1*3’ UTR

ASSD Aspartate Semialdehyde Dehydrogenase 1.2.1.11 148810

AST Aspartate Aminotransferase 2.6.1.1 118364 2*i

126943 2*i

129557

146923

170056 1*i

174097 2*i

186959 2*i

206390 2*i

BP Inorganic Pyrophosphatase 3.6.1.1 133620

137778

174103

CIS Citrate Synthase 2.3.3.1 24263 2*i

194915

CMPS Carbamoyl-phosphate Synthase 6.3.5.5 128227
195255

DPA Diaminopimelic Acid Aminotransferase 2.6.1.- 129557

DPD Diaminopimelate Decarboxylase 4.1.1.20 146886 3*i

DPE Diaminopimelate Epimerase 5.1.1.7 150957

DPR Dihydrodipicolinate Reductase 1.3.1.26 205760

DPR Dihydrodipicolinate Reductase 1.3.1.26 395433 1*i

DPS Dihydrodipicolinate Synthase 4.2.1.52 126518

continued on next page
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Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

En Enolase 4.2.1.11 83064

FBA Sedoheptulose-Bisphosphate Aldolase 4.1.2.- 24459

FBP Fructose-1,6-Bisphosphatase 3.1.3.11 24084

Fdx GOGAT Glutamate Synthase,
Ferredoxin-dependent

1.4.7.1 140487

FR Ferredoxin Reductase 195553

FUM Fumarate Hydratase 4.2.1.2 195953
282848

G6PI Phosphoglucose Isomerase 5.3.1.9 135220 1*3’ UTR

GAPD Glyceraldehyde-3-phosphate
Dehydrogenase

1.2.1.12 16652
102889

2*i

129019

140618

153894

195910

196442

196443

GAPN Triosephosphate Dehydrogenase 1.2.1.9 102889

GDH Glutamate Dehydrogenase 1.4.1.3 82916 2*i

137469 1*i

GLD Glucose-6-phosphate-1-Dehydrogenase 1.1.1.49 119861 1*i, 1*e

309903

173841

GNA Glutamate Acetyltransferase 2.3.1.35 288806 3*i

GS Glutamine Synthetase 6.3.1.2 129468 1*3’ UTR

133971

136895

147468 1*3’ UTR

GSD Glutamate-5-semialdehyde
Dehydrogenase

1.2.1.41 130812

ICL Isocitrate Lyase 4.1.3.1 104431 1*i

191668

IDH Isocitrate Dehydrogenase
(NADP+-dependent)

1.1.1.42 196567 1*3’ UTR

Isocitrate Dehydrogenase
(NAD+-dependent)

196042

continued on next page
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Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

IDH Isocitrate Dehydrogenase
(NAD+-dependent)

196044 1*i

MAS Malate Synthase 2.3.3.9 196328 1*i

MDH Malate Dehydrogenase 1.1.1.37 60444

126023

137163 1*i

158129

MME Malate Dehydrogenase (NADP+ dep.) 1.1.1.40 126820

147722 3*i

196351 3*i

196831 2*i

196832

MME Malate Dehydrogenase (NAD+ dep.) 1.1.1.38 196833

NAD(P)H
GOGAT

Glutamate Synthase,
NAD(P)H-dependent

1.4.1.14 205746

NAGS Acetylglutamate Synthase 2.3.1.1 130199

288806 2*i

NiR Nitrite Reductase 1.7.7.1 192085 6*i, 3’ UTR

NK NAD+ Kinase 2.7.1.23 123446 1*i

165793

196779

NP NADH-ubiquinone oxidoreductase 1.6.5.3 24195

54440

57090

58686

59411

77311

79362

127317

127639

131464

132151

132909

135635

139850

143441

continued on next page
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Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

NP NADH-ubiquinone oxidoreductase 1.6.5.3 145512

149240

164272

164424

174569 2*i

182226

182302

182980

184222

184606 1*i

185013

186185

186342

187994

188142

190543

190916

191146

193762

194458

195711 1*i

NR Nitrate Reductase 1.7.1.1 184661 2*i

NTH NAD(P)+ Transhydrogenase 1.6.1.2 139758 1*3’ UTR

OTA Ornithine Transaminase 2.6.1.13 195386

OTC Ornithine Transcarbamylase 2.1.3.3 188762

PAT Phosphate Acetyltransferase 2.3.1.8 11226 3*i

191051

PCK Phosphoenolpyruvate Carboxykinase 4.1.1.49 196612 1*i

PDC Pyruvate Dehydrogenase Complex 1.8.1.4 57890 1*i

205763

2.3.1.12 145395

149206

149709

187285

196500

continued on next page
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Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

PDC Pyruvate Dehydrogenase Complex 1.2.4.1 139515

193810 1*i

196469

206010 1*e/3’ UTR

190446 1*i

155587 1*i

PEPC Phosphoenolpyruvate Carboxylase 4.1.1.31 80312 2*i

182821

PFK Phosphofructokinase 2.7.1.11 411593 2*i

196310

196430 1*i

196624

PGD 6-Phosphogluconate Dehydrogenase 1.1.1.44 115511

120516

128576

158911

192597

PGK Phosphoglycerate Kinase 2.7.2.3 36313
132210
196383

PGL 6-Phosphogluconolactonase 3.1.1.31 146607

390565 1*i

PGM Phosphoglycerate Mutase 5.4.2.1 8761

21373 2*i

30383
325517
119977
161085
196305

PPDK Pyruvate-phosphate Dikinase 2.7.9.1 206694

196616

PRF Pyruvate-Ferredoxin Oxidoreductase 1.2.7.1 206677

PROB Glutamate-5-kinase 2.7.2.11 170370
189050

PYC Pyruvate carboxylase 6.4.1.1 402089 1*i

PyrD Pyruvate Decarboxylase 4.1.1.1 127786 1*i

PyrK Pyruvate Kinase 2.7.1.40 104490

continued on next page

6

SUPPLEMENTARY MATERIAL 164



Abbrevia-
tion

Name EC-
number

JGI–ID UG≥7-repeat

PyrK Pyruvate Kinase 2.7.1.40 107530

118203

119280

122254

136854

149896

196263

196261

196263

RPE Ribulose-5-phosphate 3-Epimerase 5.1.3.1 6964

135614

RPI Ribose-5-phosphate Isomerase 5.3.1.6 55838

205912

SCS Succinate CoA Synthetase 6.2.1.5 24101 1*i

56839

196569 1*i

196570

SDH Succinate Dehydrogenase 1.3.5.1 142231 1*i

183570

195641

394775 2*i

TAL Transaldolase 2.2.1.2 146574

176076 4*i

287436

TIM Triosephosphate Isomerase 5.3.1.1 26265

TRK1 / TRK2 Transketolase 2.2.1.1 141319
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Table S1: Overview of modeled metabolites and corresponding abbreviations.
Table S2: Overview of modeled enzymes and corresponding EC–numbers, abbre-
viations as well as JGI database IDs (cre v4.0; http://genome.jgi-psf.org/Chlre4/).
The code of the UG-repeats is as follows: i – intron, e – exon, 5′/3′UTR – the 5’ or 3’
untranslated region of an enzyme. For bold marked UG-repeat entries CHLAMY1
binding has been shown experimentally.
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Metabolic costs of amino acid and protein production in Escherichia
coli.

Kaleta C, Schäuble S, Rinas U, Schuster S. Biotechnol J, 8(9):
1105–1114, 2013.
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Supplementary Text 

S1 Metabolic network 

We assumed that ammonium is the nitrogen and sulfate the sulfur source. Additionally, we 
provided an inflow of oxygen, water, carbon dioxide as well as protons, and allowed for the 
outflow of every compound that can be exported into the extra-cellular space (see (Feist et al., 
2007) for details). We set the reaction glycine hydroxymethyltransferase (protein GlyA) to 
irreversible status in the direction of glycine production. Otherwise, the model can produce 
every amino acid from carbon dioxide, ammonium and sulfate alone in the ‘LP unlimited 
energy’ computations. 

S2 Computation of total synthesis cost of amino acids present in the cell 

For the computation of total amino acid synthesis cost, first the number of each amino acid 
present in one E. coli cell had to be determined. In ref. (Feist et al., 2007), the concentrations 
of all amino acids per gram dry-cell-mass in E. coli are documented. Multiplying this number 
with the dry-cell mass of an E. coli cell (  g) and the number of molecules in one 
millimole ( ), for each amino acid, we can determine the number of molecules of 
each amino acid in one E. coli cell. These numbers are (in molecules per cell): Ala, 9.3E+7; 
Arg, 5.3E+7; Asn, 4.4E+7; Asp, 4.4E+7; Cys, 1.7E+7; Glu, 4.8E+7; Gln, 4.8E+7; Gly, 
1.1E+8; His, 1.7E+7; Ile, 5.2E+7; Leu, 8.1E+7; Lys, 6.2E+7; Met, 2.8E+7; Phe, 3.2E+7; Pro, 
4.0E+7; Ser, 3.9E+7; Thr, 4.6E+7; Trp, 1.0E+7; Tyr, 2.5E+7 and Val, 7.6E+7. Subsequently, 
this number has been multiplied with the inverse of the yield of the amino acid produced from 
glucose (from the ‘manual’ computations) to obtain the number of glucose molecules required 
to produce the corresponding amount of amino acid molecules.  

13103 −⋅
2010022.6 ⋅

S3 Linear programming 

Given the stoichiometric matrix S of the metabolic network, in which rows correspond to 
metabolites and columns to reactions, we assumed in all cases that all intermediates are 
balanced (steady-state condition) and that reversible reactions are only used in 
thermodynamically feasible directions. For computational reasons we split reversible 
reactions into irreversible forward and backward steps. Hence, the steady-state and 
irreversibility conditions can be formulated as 

.0v
0Sv

≥
=

 

‘LP standard’ 

In order to determine the maximal yield of a particular amino acid aa from a given carbon 
source cs , the extra-cellular form of the carbon source was added as inflow of the form 

csincs →:  

to the network and an outflow of the amino acid in the form 

→aaoutaa :  

was added, yielding the modified stoichiometric matrix . Subsequently, flux through 
was constrained to a maximum of 1 and the flux through was maximized while 

leaving all other fluxes unconstrained: 

1S
csin aaout
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 The maximal yield of amino acid  was then calculated as   aa

cs

aa

in

out
aa v

v
Y =max . 

Maximal ATP co-production of yield optimal amino acid biosynthetic flux distributions, 
(used in Supplementary Material 1), was calculated by maximizing the flux through 

an artificial ATP hydrolysis reaction of the form 

ATP
aaY max

+++→+ HPiADPOHATPhydrATP 2:  

that was added to  to yield , while fixing the flux through the amino acid outflow 
reaction to its maximum: 

1S 2S

.

1

..

max

max

2

aaout

in

hydr

Yv

v

ts

v

aa

cs

ATP

=

≤
≥
=
0v

0vS
 

 

‘LP unlimited energy’ 

In order to simulate the unlimited availability of energy, we introduced a reaction that 
provides energy by reducing NAD. This reaction has the form  

NADHHNADredNAD →+ +
+ :  

and was added to the network to yield . After adding the reduction reaction, computations 
were performed as described for ‘LP standard’ by replacing  with . Note that besides the 
conversion of ADP and Pi to ATP through ATP synthase this reaction also allows for the 
unlimited reduction of NADP

3S
1S 3S

+ through a transhydrogenase. 
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Supplementary Tables 
 
Table S1 Metabolic investment for the production of amino acids from precursors. The 

number of moles of precursors, energy containing metabolites and other compounds that are 
consumed to produce one mole of each amino acid is indicated. Negative numbers indicate 
production. The last column (“ATP cons.”) indicates the overall ATP consumption when 
assuming 2 ATP = 2 FADH = 1 NADH = 1 NADPH and starting biosynthesis from the 
precursors. For a list of abbreviations of precursors see Table S6. Abbreviations: AA, amino 
acid. 

Precursors Energy Others 

AA 

R
u5

P 

E
4P

 

PE
P 

PG
 

Py
r 

A
cC

oA
 

A
K

G
 

O
A

A
 

A
T

P 

N
A

D
H

 

N
A

D
PH

 

N
H

3

M
lth

f 

C
O

2 ATP cons. 

Ala 0 0 0 0 1 0 0 0 0 0 1 1 0 0 2 
Arg 0 0 0 0 0 0 1 0 5 -1 3 4 0 1 9 
Asn 0 0 0 0 0 0 0 1 2 0 1 2 0 0 4 
Asp 0 0 0 0 0 0 0 1 0 0 1 1 0 0 2 
Cys 0 0 0 1 0 0 0 0 6 -1 3 1 0 0 10 
Glu 0 0 0 0 0 0 1 0 0 0 1 1 0 0 2 
Gln 0 0 0 0 0 0 1 0 1 0 1 2 0 0 3 
Gly 0 0 0 1 0 0 0 0 0 -1 1 1 -1 0 0 
His 1 0 0 0 0 0 0 0 6 -2 2 3 1 0 6 
Ile 0 0 0 0 1 0 0 1 2 0 5 1 0 -1 10 
Leu 0 0 0 0 2 1 0 0 0 -1 2 1 0 -2 2 
Lys 0 0 0 0 1 0 0 1 2 0 4 2 0 -1 10 
Met 0 0 0 0 0 0 0 1 10 -1 6 1 1 0 20 
Phe 0 1 2 0 0 0 0 0 1 0 2 1 0 -1 5 
Pro 0 0 0 0 0 0 1 0 1 0 3 1 0 0 7 
Ser 0 0 0 1 0 0 0 0 0 -1 1 1 0 0 0 
Thr 0 0 0 0 0 0 0 1 2 0 3 1 0 0 8 
Trp 1 1 1 0 0 0 0 0 5 -1 1 2 0 -1 5 
Tyr 0 1 2 0 0 0 0 0 1 -1 2 1 0 -1 3 
Val 0 0 0 0 2 0 0 0 0 0 2 1 0 -1 4 
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Table S2 Number of moles of carbon source required (CS req.) and moles of ATP 
produced (ATP prod.) (assuming 1 NADH = 1 NADPH = 2 FADH = 2 ATP) for the 
production of one mole of each amino acid precursor. 

Glucose Glycerol Acetate Precursor 
CS req. ATP prod. CS req. ATP prod. CS req. ATP prod.

Ribulose-5-P (Ru5P) 1 3 1.66 1.66 3.33 -1.67 
Erythrose-4-P (E4P) 0.75 1 1.33 1.33 2.67 -1.33 
Phosphoenolpyruvat (PEP) 0.5 2 1 4 2 2 
2-phospoglycerate (PG) 0.5 2 1 4 2 2 
Pyruvate (Pyr) 0.5 3 1 5 2 3 
Acetyl-CoA (AcCoA) 0.5 5 1 7 1 1 
α-Ketoglutarate (AKG) 1 9 2 13 3 4 
Oxaloacetate (OAA) 0.5 2 1 4 2 3 
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Table S3 Characteristics of the production of amino acids from glucose for different 
calculation schemes as described in the main document. “Yield” indicates the maximal 
number of moles of the respective amino acid that can be produced from one mole of glucose. 
“ATP Cons.” corresponds to the number of moles of ATP that are required to produce one 
mole of the amino acid (assuming that 2 mol ATP can be produced from 1 mole NADH). 
“Carb. Yield” indicates the fraction of carbon atoms from the carbon source that are retained 
in the amino acid using the respective pathway. A number >1 indicates that there is a net 
consumption of carbon dioxide. Otherwise, carbon dioxide is released. 

Glucose 
Manual LP standard LP unlimited energy AS Yield 

(mol/mol) 
ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol)

ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol) 

ATP 
Cons. 

Carb. 
Yield 

Ala 2.000 -1 1.000 2.000 -0.25 1.000 2.000 -0.25 1.000 
Arg 0.929 0 0.929 0.885 0 0.885 1.333 38.5 1.333 
Asn 1.733 2 1.156 1.742 0 1.161 2.000 2 1.333 
Asp 2.000 0 1.333 1.862 0 1.241 2.000 1 1.333 
Cys 1.130 8 0.565 1.032 0 0.516 2.000 12.5 1.000 
Glu 1.000 -7 0.833 1.152 0 0.960 1.333 30.25 1.111 
Gln 1.000 -6 0.833 1.190 0 0.992 1.333 29.25 1.111 
Gly 2.000 -2 0.667 2.731 0 0.910 4.000 4.125 1.333 
His 0.820 3 0.820 0.885 0 0.885 1.200 14 1.200 
Ile 0.839 7 0.839 0.750 0 0.750 1.000 9 1.000 
Leu 0.667 -9 0.667 0.752 0 0.752 0.800 26 0.800 
Lys 0.839 5 0.839 0.800 0 0.800 1.000 6.75 1.000 
Met 0.689 18 0.574 0.621 0 0.517 2.000 36.25 1.667 
Phe 0.571 0 0.857 0.560 0 0.839 0.600 3.25 0.900 
Pro 1.000 -2 0.833 1.014 0 0.845 1.333 34.5 1.111 
Ser 2.000 -2 1.000 2.000 -1 1.000 2.000 -1 1.000 
Thr 1.368 6 0.912 1.297 0 0.865 2.000 7.25 1.333 
Trp 0.444 -1 0.815 0.471 0 0.863 0.500 3.25 0.917 
Tyr 0.571 -2 0.857 0.581 0 0.871 0.600 1.5 0.900 
Val 1.000 -2 0.833 1.000 -0.75 0.833 1.000 -0.75 0.833 
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Table S4 Characteristics of the production of amino acids from glycerol for different 
calculation schemes. For a description see Table S. 

Glycerol 
Manual LP standard LP unlimited energy AS Yield 

(mol/mol) 
ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol)

ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol) 

ATP 
Cons. 

Carb. 
Yield 

Ala 1.000 -3 1.000 1.000 -2.5 1.000 1.000 -2.5 1.000 
Arg 0.500 -4 1.000 0.512 0 1.024 0.667 35.125 1.333 
Asn 1.000 0 1.333 1.000 -0.25 1.333 1.000 -0.25 1.333 
Asp 1.000 -2 1.333 1.000 -1.25 1.333 1.000 -1.25 1.333 
Cys 0.652 6 0.652 0.598 0 0.598 1.000 10.25 1.000 
Glu 0.500 -11 0.833 0.605 0 1.008 0.667 26.875 1.111 
Gln 0.500 -10 0.833 0.607 0 1.011 0.667 25.875 1.111 
Gly 1.000 -4 0.667 1.539 0 1.026 2.000 3 1.333 
His 0.483 4.33 0.966 0.489 0 0.978 0.600 10.5833 1.200 
Ile 0.484 3 0.968 0.436 0 0.871 0.500 4.5 1.000 
Leu 0.333 -15 0.667 0.381 0 0.762 0.400 20.375 0.800 
Lys 0.484 1 0.968 0.466 0 0.931 0.500 2.25 1.000 
Met 0.394 16 0.657 0.358 0 0.596 1.000 34 1.667 
Phe 0.300 -4.33 0.900 0.300 -3.5833 0.900 0.300 -3.5833 0.900 
Pro 0.500 -6 0.833 0.567 0 0.945 0.667 31.125 1.111 
Ser 1.000 -4 1.000 1.000 -3.25 1.000 1.000 -3.25 1.000 
Thr 0.778 4 1.037 0.753 0 1.004 1.000 5 1.333 
Trp 0.250 -2 0.917 0.250 -4.25 0.917 0.250 -4.25 0.917 
Tyr 0.300 -6.33 0.900 0.300 -5.3333 0.900 0.300 -5.3333 0.900 
Val 0.500 -6 0.833 0.500 -5.25 0.833 0.500 -5.25 0.833 
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Table S5 Characteristics of the production of amino acids from acetate for different 
calculation schemes. For a description see Table S. 

Acetate 
Manual LP standard LP unlimited energy AS Yield 

(mol/mol) 
ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol)

ATP 
Cons. 

Carb. 
Yield 

Yield 
(mol/mol) 

ATP 
Cons. 

Carb. 
Yield 

Ala 0.50 -1 0.75 0.50 1.00 0.75 0.50 1.00 0.75 
Arg 0.27 5 0.81 0.25 0.00 0.74 0.33 -7.50 1.00 
Asn 0.47 1 0.93 0.47 0.00 0.95 0.50 -0.75 1.00 
Asp 0.50 -1 1.00 0.50 0.25 1.00 0.50 0.25 1.00 
Cys 0.32 8 0.48 0.27 0.00 0.40 0.50 -12.25 0.75 
Glu 0.33 -2 0.83 0.33 0.75 0.83 0.33 0.75 0.83 
Gln 0.33 -1 0.83 0.33 1.75 0.83 0.33 1.75 0.83 
Gly 0.50 -2 0.50 0.71 0.00 0.71 1.00 -3.50 1.00 
His 0.19 7.67 0.57 0.22 0.00 0.66 0.30 -13.25 0.90 
Ile 0.21 6 0.62 0.20 0.00 0.60 0.25 -7.00 0.75 
Leu 0.20 -5 0.60 0.20 3.25 0.60 0.20 3.25 0.60 
Lys 0.22 4 0.66 0.21 0.00 0.64 0.25 -4.75 0.75 
Met 0.19 17 0.47 0.16 0.00 0.41 0.50 -35.00 1.25 
Phe 0.14 2.33 0.64 0.14 0.00 0.64 0.15 -2.75 0.68 
Pro 0.29 3 0.73 0.29 0.00 0.71 0.33 -3.50 0.83 
Ser 0.50 -2 0.75 0.50 1.25 0.75 0.50 1.25 0.75 
Thr 0.37 5 0.74 0.35 0.00 0.70 0.50 -6.00 1.00 
Trp 0.11 6 0.62 0.12 0.00 0.65 0.13 -3.25 0.69 
Tyr 0.15 0.33 0.67 0.15 0.00 0.66 0.15 -1.00 0.68 
Val 0.25 -2 0.63 0.25 2.25 0.63 0.25 2.25 0.63 

 

Table S6 Abbreviations. 

Abbr. Metabolite Abbr. Metabolite 
2PG 2-phosphoglycerate Glyc(ex) extra-cellular glycerol 
Ac(ex) extra-cellular acetate Icit Isocitrate 
AcCoA acetyl-Coenzym A Mal L-malate 
AKG 2-oxoglutarate OAA Oxaloacetate 
DHAP dihydroxyacetonephosphate PEP Phosphoenolpyruvate 
E4P D-Erythrose-4-phosphate Pyr Pyruvate 
F6P D-fructose-6-phosphate Ru5P ribulose-5-phosphate 
FDP D-Fructose-1,6-bisphosphate S7P sedoheptulose-7-phosphate 
G3P glyceraldehyde-3-phosphate Succ Succinate 
G6P glucose-6-phoshpate Xu5P xylulose-5-phosphate 
Glc(ex) extra-cellular D-glucose   
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One further supplementary table of metabolic costs with or without including
polymerization costs is available at the website of the article:
http://onlinelibrary.wiley.com/doi/10.1002/biot.201200267/suppinfo
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