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Zusammenfassung 

Altersforschung wird erschwert durch die lange Lebensspanne der verwendeten Modellorganismen 

und die damit verbundenen hohen Kosten beziehungsweise den großen Arbeitsaufwand. Der türkise 

Prachtgrundkärpfling Nothobranchius furzeri lebt in saisonal vorhandenen Gewässern in Südostafrika 

und hat die kürzeste Lebensspanne, die je für Wirbeltiere in Gefangenschaft ermittelt wurde. Die Tiere 

entwickeln sich sehr schnell und werden innerhalb weniger Wochen geschlechtsreif. Der 

Alterungsprozess des Fisches kann durch verschiedene Biomarker nachgewiesen und quantifiziert 

werden. Weiterhin zeigen N. furzeri Populationen aus Gebieten mit verschiedenen klimatischen 

Bedingungen große Unterschiede in der Lebensspanne. Diese Unterschiede lassen sich auch bei den 

daraus gezüchteten Laborstämmen zeigen. Nachkommen von Kreuzungen verschiedener Stämme 

zeigen eine intermediäre Lebensspanne. Es ist somit anzunehmen, dass die Lebensspanne von 

N. furzeri genetisch bestimmt wird. Aus diesen Gründen wurde N. furzeri über die letzten Jahre als ein 

neuer Modellorganismus für die Erforschung des Alterns und der Lebensdauer eingeführt. 

Das erste Ziel dieser Arbeit war, einen umfassenden Katalog aller Transkripte der Protein-kodierenden 

Gene von N. furzeri zu erstellen. Dieser erlaubt die Planung von Experimenten und Studien und ist 

eine Grundvoraussetzung für einen Modellorganismus. Dafür wurden 13 cDNA-Banken aus 

verschiedenen Transkriptomproben hergestellt und mit den Sequenziertechnologien Sanger, 

454/Roche und Solexa/Illumina sequenziert. Die Gesamtmenge an erzeugten Sequenzdaten betrug 47 

Gigabasen. Für die optimale Assemblierung und Annotation dieser umfangreichen Daten wurden 

verschiedene bioinformatische Programme und Systeme eingesetzt beziehungsweise verbessert. Der 

so erstellte Transkriptkatalog enthält Sequenzen für 19.875 Proteinkodierende Gene. Dabei gibt es für 

71% dieser Gene mindestens eine Transkriptsequenz, die den vollständigen Proteinkodierenden 

Bereich enthält. Außerdem wurde eine Internetplattform eingerichtet, um einen einfachen Zugang zu 

dem Transkriptkatalog zu ermöglichen. 

Der zweite Teil dieser Arbeit beschreibt Untersuchungen zu Veränderungen der Genexpression in 

alternden N. furzeri. Mittels der neuen RNA-seq-Methode war es möglich, die Transkripthäufigkeiten 

in jungen und alten N. furzeri des Laborstammes GRZ und des Laborstammes MZM-0403, welcher 

fast doppelt so alt wie GRZ wird, zu bestimmen. Dabei wurden in Gehirn und Haut 86 Gene 

nachgewiesen, welche in alternden N. furzeri signifikante Veränderungen in der Expressionshöhe 

zeigten. Diese differentiell exprimierten Gene spielen eine Rolle in biologischen Prozessen mit 

bekanntem Alternsbezug, wie zum Beispiel im Zellzyklus, in der Zellteilung und im Zellwachstum, in 

Entzündungsprozessen und bei der Erhaltung von Geweben. Zur Bestätigung der Ergebnisse wurde 

ein zweites RNA-seq-Experiment im Zebrafisch durchgeführt. Für eine große Anzahl (41%) der in 

N furzeri differentiell exprimierten Gene konnten ähnliche Veränderungen auch im alternden 

Zebrafisch nachgewiesen werden, was die alterns-relevante Funktion dieser Gene bestätigte. Der 
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Vergleich der Veränderungen in den Genexpression zwischen den beiden Stämmen legt nahe, dass der 

Alterungsprozess in GRZ schneller verläuft als in MZM-0403. 

Zusammengefasst habe ich in dieser Arbeit die Entwicklung eines umfassenden annotierten 

Transkriptkatalogs für N. furzeri beschrieben und erste Einblicke in die Veränderungen der 

Genexpression alternder N. furzeri gegeben. 
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Abstract 

Age research is hindered by the long lifespan of the current vertebrate model organisms and the 

associated costs and efforts. The turquoise killifish Nothobranchius furzeri inhabits seasonal ponds in 

South-East Africa and has the shortest lifespan recorded for vertebrates in captivity. The fish grows 

very fast, reaches sexual maturity in a few weeks and shows the expression of typical ageing-related 

biomarkers. Furthermore, N. furzeri populations living in regions with different climatic conditions 

show large differences in lifespan, and derived strains maintain these differences even in captivity. 

The progeny of crosses of different strains show an intermediate lifespan, indicating that lifespan is 

genetically determined in N. furzeri. For these reasons, N. furzeri has been established as a new model 

organism for the studies of ageing and lifespan determination during the recent years. 

The first aim of this thesis was to build a comprehensive transcript catalogue of protein-coding 

N. furzeri genes, which is one prerequisite for a model organism, for example to design experiments 

and studies. To this end, Sanger, 454/Roche and Solexa/Illumina sequencing was used to sequence 13 

cDNA libraries from different transcriptomes, yielding 46 Gb sequence data. Efficient assembly and 

annotation of large datasets was ensured by applying and developing specifically designed 

bioinformatics tools and pipelines. The resulting transcript catalogue contains transcript contigs for 

19,875 protein-coding genes. Of these, 71% are represented by at least one transcript contig with a 

complete coding sequence. Furthermore, a transcriptome browser was set up, to facilitate easy access 

to the transcript catalogue. 

The second aim was to study gene expression changes in ageing N. furzeri. A RNA-seq experiment 

was conducted to study transcript levels of young and old fish of the strains GRZ and MZM-0403, 

which differ in lifespan by 100%. Eighty-six differentially expressed genes were detected in the 

analysed tissues brain and skin. These genes play a role in ageing-relevant processes like cell cycle, 

division and proliferation, inflammation and tissue maintenance. A similar RNA-seq experiment was 

conducted in zebrafish. A significant fraction (41%) of the N. furzeri genes was also found to be 

differentially regulated in ageing zebrafish, thus confirming their relevance in ageing. Finally, 

comparisons of fold changes of the two strains suggested that ageing is accelerated in the short-lived 

N. furzeri strain GRZ, compared to the longer-lived strain MZM-0403. 

In summary, in this thesis, I describe the development of a comprehensive, annotated N. furzeri 

transcript catalogue and give first insights into transcriptome-wide changes during N. furzeri ageing. 

.  
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1 Introduction 

In the mid of the 19th century, the Industrial Revolution profoundly changed the social, economic and 

cultural conditions of human life in the Western civilisations. During this major turning point, 

scientific and technologic advances lead to large progress in food production, manufacturing, trans-

portation and medical care resulting in much improved living conditions. At the beginning of the 20th 

century, newly established methods in hygiene, disease prevention and medical treatment considerably 

reduced the mortality rate, especially of infants, and extended the lives of the elderly. As a result, life 

expectancy increased significantly, and more people reached ages that had been previously considered 

as exceptional. Today, the increase in life expectancy is on-going but accompanied by a decline in 

fertility. As a result, the fraction of old people is steadily rising and the populations as such begin to 

age (Christensen et al. 2009). This development brings new social and economic challenges for the 

functioning of entire societies. Consequently, age research, the studies of ageing processes and 

lifespan determination, is of growing importance and will help in dealing with the ramifications of an 

ageing society. 

1.1 Genes and pathways involved in ageing 

The Handbook of the Biology of Aging describes ageing as a degenerative process affecting virtually 

all known organisms that is characterised by progressive deterioration of cellular components and 

deregulation of cellular processes, resulting in mortality (Masoro & Austad 2011, p.215). The ageing 

process itself is affected by both environmental and genetic factors. Environmental factors are very 

diverse, hard to discern and therefore difficult to study. Genetic factors, however, have been analysed 

and resulted in a number of candidate genes relevant for ageing and lifespan determination 

(Christensen et al. 2006). These genes have a role in genomic maintenance and repair, metabolism, 

inflammation and mitochondrial oxidation; below, a short overview of the most important findings is 

given. 

1.1.1 Genomic maintenance and repair 

Maintenance and renewal of cells, tissues and organs is ensured by the process of cell division. In this 

process, the genetic material of the parent cell is duplicated and the copies are distributed between the 

two daughter cells. Therefore, any errors introduced into the genetic material of the parent cell will be 

passed on to the daughter cells. With further cell divisions, more errors accumulate until the cells are 

not viable anymore. Thus, fail-safe replication as well as repair and maintenance of the genetic 

material are of paramount importance for any organism. Malfunctioning of these processes leads to 

damages and, as a consequence, to accelerated ageing. A prominent example which illustrates this 

relationship comes from the Werner syndrome. It is a rare autosomal recessive disorder that is caused 

by a loss-of-function mutation in the Werner gene, encoding a DNA helicase (Yu et al. 1996). 
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Mutations in this gene cause premature ageing. Patients show typical signs such as wrinkled skin, grey 

hair and frailty, and develop typical ageing-related diseases such as cataracts, diabetes and osteoporo-

sis (Goto 1997). 

1.1.2 Metabolism 

In 1934, Mary F. Crowell and Clive M. McCay found that dietary restriction (DR, the restriction of 

nutrients without malnutrition) almost doubled the lifespan of rats (McCay & Crowell 1934). Later, 

DR has been shown to increase lifespan in a variety of species, including yeasts, worms, flies and 

rodents (Masoro 2003; Sinclair 2005). Accordingly, several pathways that play a role in metabolism 

have been found to be affected in longevity mutants. The most prominent is the insulin/insulin-like 

growth factor 1 signalling (IIS) pathway. It mediates cell growth, proliferation and cell death in 

response to environmental conditions and is regulated by both insulin and insulin-like growth factors. 

Its ageing-relevance was first found in nematodes, where worms with mutations in the gene age-1 

lived almost twice as long as normal (Friedman & Johnson 1988). Since then, IIS genes have been 

shown to affect lifespan in yeasts, worms, flies and rodents (Fabrizio et al. 2001; Henderson & 

Johnson 2001; Tatar et al. 2001; Blüher et al. 2003). 

A second major pathway connecting metabolism and ageing is the Target Of Rapamycin 

(TOR) pathway. Its main regulator is the serine/threonine kinase TOR complex 1, which acts as a 

sensor for nutrients, energy levels, growth factors and various stress-induced conditions (Hay & 

Sonenberg 2004). Deletion of the TOR complex 1 in yeast resulted in a significant extension of 

lifespan (Kaeberlein et al. 2005). In worms, flies and rodents, inhibition of the TOR complex 1 also 

extended lifespan (Vellai et al. 2003; Kapahi et al. 2004; Harrison et al. 2009). Due to its role as 

nutrient and energy sensor, the TOR pathway is assumed to be involved in lifespan extension via DR, 

and experimental support came from yeasts under DR, which did not show significant extension of 

lifespan after deletion of the TOR complex 1 (Kaeberlein et al. 2005). 

The third major candidate which may link metabolism and ageing is sirtuin-2 (Sir2). Sir2 is a 

NAD+-dependent histone deacetylase which acts as a transcriptional repressor and is responsible for 

the maintenance of the genome stability (Imai et al. 2000). Deletion and overexpression of Sir2 

shortened and extended lifespan in yeast, respectively (Kaeberlein et al. 1999). Similar findings were 

obtained for worms and flies (Tissenbaum & Guarente 2001; Rogina & Helfand 2004). The 

dependency of Sir2 on NAD+, an important regulator of metabolism, suggests that it is also involved 

in the cellular response to DR. Accordingly, it was shown that Sir2 is required for DR in yeast (Lin et 

al. 2000). Moreover, Sir2 has been implicated to act on the tumour suppressor p53, which plays a 

central role in determining the cell’s fate by regulating cell cycle, cell death and DNA repair (Vaziri et 

al. 2001). 
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1.1.3 Inflammation 

Inflammation is considered a core process of ageing. With age, the risk of developing a chronic 

condition increases, and older people are more likely to have some form of low-grade, persistent 

inflammation (Krabbe et al. 2004). It was shown that blood levels of the pro-inflammatory proteins 

such as interleukin 6, tumour necrosis factor α and C-reactive protein are expressed constitutively and 

mediate the acute-phase response to inflammation events, tend to increase with age (Ferrucci et al. 

2005). Permanently elevated levels of these proteins are known as a risk factor for cardiovascular 

problems in particular and therefore increase mortality in general (Danesh et al. 2008). However, the 

reasons for these elevated protein levels are unclear. Older people might simply show a higher 

vulnerability against diseases and thus the immune system is triggered more often. Additionally, 

inflammation also plays in the major degenerative diseases of the late life, for example in Alzheimer 

disease (Akiyama et al. 2000).  

1.1.4 ROS and mitochondrial oxidation 

In the course of the cellular metabolism, chemically reactive oxygen-containing by-products such as 

oxygen ions and hydrogen peroxide are produced; these molecules are called reactive oxygen species 

(ROS). Due to their high oxidising potential, they can cause significant oxidative damage to cell 

structures. Based on that observation, several theories linking oxidative stress to ageing have been 

introduced to the scientific community. The first of these theories, the free radical theory of ageing, 

was proposed by Harman in 1956 and states that ageing may be related to the deleterious effects of 

ROS on cell constituents and connective tissues (Harman 1956). An extension of this theory, the 

mitochondrial theory of ageing, suggests that the complex redox reactions in mitochondria can be 

considered as a major contributor of ROS and consequently determine the rate of ageing (Harman 

1972). Another very intriguing theory is commonly referred to as the mitochondrial “vicious cycle” 

theory of ageing. In brief, the basic idea of this theory is that ROS-induced mutations in the 

mitochondrial genome lead to a compromised respiration, which, in turn, leads to an increased ROS 

production and, ultimately, to ageing (Miquel et al. 1980). However, in addition, there are a large 

number of other theories, and the effect of oxidative stress on ageing is still only rudimentary 

understood. 

Consequently, this branch of age research is focused on mechanisms that, first, decrease ROS 

production and, second, provide defence against already generated ROS. The latter led to the 

discovery of antioxidants, which react with ROS and render them harmless. Antioxidants are for 

example vitamin E and C, coenzyme Q10, and resveratrol. However, the effects of antioxidants on 

lifespan are unclear. For example in case of vitamin E, some studies report a significant increase in 

lifespan (Navarro et al. 2005), while others report only a decrease in oxidative damage (Lipman et al. 

1998). Several antioxidant enzymes which catalyse the detoxification of ROS, such as superoxide 

dismutases, catalases, and glutathione peroxidase, were identified. Similar to the antioxidants, life-
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prolonging effects of these enzymes were found only in a few studies (Schriner et al. 2005; Hu et al. 

2007). Nonetheless, antioxidants and antioxidant enzymes are still regarded as key regulators of 

ageing. 

1.2 Nothobranchius furzeri as model organism for age research 

1.2.1 Established model organisms 

Age research in human is limited due to practical (long life expectancy) and ethical (no experiments 

possible) reasons. Moreover, since it is difficult to quantitatively measure ageing, research is often 

limited to alternative traits that correlate with health- and lifespan such as metabolic parameters, 

histological/anatomic markers or stress resistance. However, these can serve only as an approximation 

and do not necessarily reflect health- or lifespan. Consequently, besides studying ageing in human cell 

cultures, scientists have turned to other invertebrate and vertebrate species which have been introduced 

as model organisms for age research. 

Invertebrate species used as model organisms are the budding yeast Saccharomyces 

cerevisiae, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. They are 

small, easy to maintain in a laboratory, produce a large number of offspring and have a short lifespan 

(yeast: 26 generations with a generation time of one hour; worm and fly: three weeks and one month, 

respectively). They are amenable to experimental manipulation, and many established resources and 

protocols exist, which allows researchers to conduct experiments relatively fast and cheap. Due to 

their small size and short lifespan, they can be analysed in large-scale genetic screens and functional 

genomics, to quickly identify the function of single genes. Furthermore, their genomes are relatively 

small (12, 100 and 130 Mb) and simple, compared to those of vertebrates, and genome sequences are 

available for all three species (Goffeau et al. 1996; The C. elegans Sequencing Consortium 1998; 

Adams et al. 2000). 

Vertebrate species used as model organisms in age research are the zebrafish Danio rerio and 

the house mouse Mus musculus. They are larger than invertebrate models, live longer (in captivity, 

three years and 12 months year, respectively), produce less offspring, and require large expensive 

facilities and intensive care. Due to the higher organismal complexity of vertebrates, many of the 

invertebrate approaches for experimental manipulation are either more difficult or do not work at all in 

zebrafish and mouse. Furthermore, their genomes are large (2.7 and 1.4 Gb; Church et al. 2009; Howe 

et al. 2013) and complex, which complicates genetic analyses. Despite all these disadvantages, the 

main reason for using vertebrates as model organisms for biomedical age research is that they are 

evolutionary closer to and that their physiology is more alike humans. Thus, it is more likely that 

findings obtained in these species can be successfully transferred to human. Additionally, testing of 
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potentially life-extending drugs potentially suited for humans/medical applications is more realistic in 

vertebrate species. 

Many of the ageing-related genes and pathways described in 1.1 were first discovered in an 

invertebrate model organism. While the general nature of ageing suggests that the involved genes and 

pathways are conserved between all organisms, until now, only inhibition of the TOR pathway was 

found to extend lifespan in each of the four species yeast, worm, fly and mouse (Kaeberlein & 

Kennedy 2009). Moreover, other ageing-related processes like inflammation act completely different 

between invertebrate and vertebrate species. Consequently, for age research/gerontology, findings 

obtained in vertebrate model organisms are obviously preferred to those obtained in invertebrates. 

However, such findings are complicated by the long lifespan of current vertebrate model organisms. 

This illustrates the need to have a vertebrate model organism that shares many of the advantages of the 

invertebrate model organisms, especially the short lifespan. 

1.2.2 Nothobranchius furzeri 

Nothobranchius furzeri (Figure 3) is a small freshwater fish that inhabits small ponds in South-East 

Africa. It was named after R.E. Furzer who, together with W. Warne, first collected the fish in 

Zimbabwe in 1968 (Jubb 1971). In 2005, N. furzeri was proposed as a new model for studies of ageing 

and longevity (Genade et al. 2005). 

1.2.2.1 Life cycle 

The habitat of N. furzeri is characterised by distinct, seasonal changes in the amount of precipitation 

(rainfall), that is, the year is divided in a wet and a dry season (Figure 1). N. furzeri have adapted to 

the regular drying by a specialised, annual life cycle with a complete reproductive cycle during the wet 

season (Figure 2). Female fish spawn up to 50 eggs per day on the ground of the pond (Haas 1976). 

The fertilised eggs then survive the dry season in the dried mud by entering into diapause in which 

they remain dormant and are protected against desiccation by a hard shell. As soon as the next wet 

season begins and precipitation starts, the fish hatches and reaches sexual maturity within a few weeks 

(Wildekamp 1993; Wourms 1972). Moreover, the eggs can remain in diapause for several years. This 

strategy ensures the survival of the species and allows N. furzeri to compensate an occasional absence 

of the wet season (Jubb 1971; Markofsky & Matias 1977). 



Introduction Nothobranchius furzeri as model organism for age research 

[6] 

 

Figure 1: The habitat of N. furzeri. 
The left-hand picture shows a typical pond where N. furzeri can be found during wet season. The right-hand picture shows 

the same locality with the pond desiccated during dry season. 

 

 

Figure 2: The life cycle of N. furzeri. 
Female fish spawn fertilised eggs on the ground of the pond and die when the dry season starts. In contrast, the eggs are desiccation-

resistant and survive in the dried mud in a diapause state. Shortly after beginning of the wet season, the embryo hatch, grow very fast 
and start to reproduce in a few weeks, thus completing the life cycle of N. furzeri. [adapted by E. Terzibasi from Seegers, L., 1997. 

Aqualog. Killifishes of the world ; Old World killis 2. 8 8, Mörfelden-Walldorf: Verl. A.C.S.] 

 

1.2.2.2 Lifespan of N. furzeri populations 

The length of the wet season of only a few months sets a natural upper limit to the lifespan of 

N. furzeri. However, in its natural habitat, lifespan data is difficult to obtain and is therefore mostly 

inferred from observations on when and where certain ponds exist. Nonetheless, lifespan has been 

monitored for fish in captivity, where over the years several strains have been established. The strain 
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GRZ, collected in the Gona Re Zhou (GRZ) Game Reserve in 1968, has a maximum lifespan of only 

12-16 weeks in captivity, despite ideal conditions and unlimited water supply (Genade et al. 2005; 

Terzibasi et al. 2008; Hartmann et al. 2009). Thus, N. furzeri has the shortest maximum lifespan 

measured for vertebrates in captivity. 

Several N. furzeri isolates/strains, derived from populations living under different climatic 

conditions, exhibit longer lifespans (Terzibasi et al. 2008; Terzibasi et al. 2013). In its geographic 

range in South-East Africa, a north-south decline in altitude causes an increase in yearly precipitation. 

The Gona Re Zhou Game Reserve, the original location of the strain GRZ, is located in the north and 

receives very little precipitation. Additional strains were sampled from the Limpopo River which is 

located 300 km south in Mozambique (MZM) and receives more precipitation. These MZM-strains 

live significantly longer in captivity. For example, strain MZM-0403 has a maximum lifespan of 29-32 

weeks, which is twice as long as GRZ (Terzibasi et al. 2008). Furthermore, other Nothobranchius 

species from more humid areas live considerably longer, with a maximum lifespan of almost a year 

(Terzibasi et al. 2013). 

 

Figure 3: N. furzeri strains MZM-0403 and GRZ. 
The left-hand and the right-hand picture show a 25-weeks-old male and a 15-weeks-old female, respectively, of the strain MZM-0403. 

The middle picture shows a 11-weeks-old male GRZ. 

 

1.2.2.3 N. furzeri as model for age research 

Since the short-lived phenotype of N. furzeri is observed not only in the wild but also in captivity, it 

was assumed that the short lifespan is genetically determined. This assumption is supported by the 

emergence of strains with different lifespans as an adaption to the varying precipitation and by the 

finding that crosses between short- and long-lived strains show an intermediate lifespan (Kirschner et 

al. 2011). Several other characteristics additionally qualify N. furzeri as a model system for age 

research: captive maintenance and breeding, fast growth and maturity, a clearly visible and measurable 

ageing phenotype, the possibility of lifespan modulation, the existence of inbred strains and an evolu-

tionary favourable relationship to other fish model systems (summarised in Genade et al. 2005); 

below, some of these characteristics are explained in more detail. 

N. furzeri grows with a remarkable pace and shows symptoms of old age such as pale body 

colour, reduced body weight and fat, spine curvature and increasing frailty in general. At histological 

level, the fish develops degenerative lesions and neoplasia in different organs which may be the 
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primary cause of death but are not unusual for teleost fish (Di Cicco et al. 2011). At cellular level, 

ageing can be confirmed by a number of established biomarkers like lipofuscin, senescence-associated 

β-Galactosidase and Flouro-JadeB (Genade et al. 2005; Terzibasi et al. 2008; Di Cicco et al. 2011). 

Lifespan and ageing can be manipulated in N. furzeri. The largest effects were achieved by 

administering the antioxidant resveratrol, resulting in an increase of up to 59% in both median and 

maximum lifespan of GRZ (Valenzano & Cellerino 2006; Valenzano et al. 2006b). Treated fish 

showed delayed physical and cognitive decay and were longer fertile. Similar effects were observed 

under dietary restriction, which prolonged median and maximum lifespan of GRZ by 13% and 33%, 

respectively, improved cognitive performance and retarded the expression of the ageing-related 

biomarkers lipofuscin and Flouro-JadeB (Terzibasi et al. 2009). Lifespan extension was also achieved 

by temperature reduction; a decrease from 25 to 20°C increased the maximum lifespan by 10% and 

delayed many of the ageing-related phenotypic symptoms described above (Valenzano et al. 2006a). 

1.2.2.4 Genomic and genetic resources 

One of the main requirements for model organisms is the availability of comprehensive genetic and 

genomic resources which serve as prerequisite for many up-to-date experiment and study designs. 

These may include genome or transcriptome sequences, genetic markers and maps, sequence variants, 

and more. However, since N. furzeri is under active research only for some years and the respective 

scientific community is still small, such resources are yet limited to a number of initial studies. 

In 2009, our group provided an initial characterisation of the N. furzeri genome (Reichwald et 

al. 2009). The genome is diploid and contains 19 chromosomes (2n = 38). Furthermore, 5.4 Mb of the 

strain GRZ were sequenced at random and analysed. The genome size was estimated to be between 

1.6 and 1.9 Gb. Compared to the four other fish species with a sequenced genome, N. furzeri has the 

biggest genome (medaka: 1 Gb, stickleback: 0.7, tetraodon: 0.4, zebrafish: 1.4; Kasahara et al. 2007; 

Jones et al. 2012; Jaillon et al. 2004; Howe et al. 2013). Additionally, N. furzeri showed the highest 

repeat content of all, with 45% of the genome (a second analysis increased this value to 64%; Koch 

2010). The high repeat content included 21% tandem repeats, which is exceptional among fish as well 

as vertebrates in general. Importantly, the two most prominent tandem repeats localised preferentially 

to the centromeric regions where they contribute to large heterochromatic regions, also detected by 

chromosome staining. This pattern was only observed in N. furzeri and did not occur in other 

Nothobranchius species. Furthermore, the evolutionary relationship of N. furzeri to other known fish 

species was determined. Here, reconstruction of a phylogenetic tree based on protein-coding 

sequences revealed that medaka is the next relative with a sequenced genome. Finally, the genetic 

variation in the two different N. fuzeri strains was assessed. Genotyping of gene-associated single 

nucleotide variants and microsatellite markers showed that the long inbred GRZ strain is highly 

homozygous while the recently collected MZM-0403 strain still resembles the wild type. 
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Based on a cross between GRZ and MZM-0403, a first genome-wide genetic linkage map was 

constructed, which shows the positions of genetic markers relative to each other. In total, 413 

N. furzeri F2-individuals were genotyped for 152 microsatellites, and a linkage map with 25 linkage 

groups was constructed. Additionally recorded phenotypic data allowed identifying regions in the 

linkage map associated with sex determination and tail colour (Valenzano et al. 2009). In 2011, the 

cross was repeated in our group, and additional microsatellite marker plus gene-associated single 

nucleotide variants were included in the linkage map analysis. The resulting second-generation linkage 

map contained 22 linkage groups of which three likely represented fragments of the other linkage 

groups. The remaining 19 linkage groups agreed well with the number of chromosomes determined by 

karyotyping, and the total length of the map was similar to the estimated size of the genome 

(Kirschner et al. 2011). 

End of 2009, our group also started a N. furzeri genome project, which aims at a high-quality 

reference sequence of the genome. Until 2011, approximately 190 Gb of genomic data was generated, 

and since 2010, the sequencing data is being assembled. Different genome assemblies were produced; 

the latest version, produced in 2012, contains 944 Mb in 7,675 scaffolds, which covers 59% of the 

genome, assuming a size of 1.6 Gb. Finishing of the assembly and subsequent comprehensive 

annotation represents a substantial effort and greatly benefits from independent experimental 

resources. One of those essential components of a genome project is the acquisition of transcript data. 

Furthermore, transcriptome sequencing represents a much simpler and less costly alternative to obtain 

valuable sequence information for species without a known genome sequence (Vera et al. 2008). 

1.3 Transcriptome analysis 

The transcriptome is defined as the set of all transcripts and their quantity in a cell. Species of 

transcript include the protein-coding mRNA as well as non-protein-coding RNA such as ribosomal 

RNA (rRNA), transfer RNA (tRNA), microRNA (miRNA), and so on. This thesis concentrates 

primarily on the protein-coding mRNA, and, therefore, the term transcriptome will henceforth refer to 

the set of all mRNA transcripts. It should be noted that the transcriptome is not fixed and that there is 

no general set of transcripts found in all cells at all times. Transcriptomes vary between tissues and 

different conditions. Moreover, the transcriptome within a single cell is also highly dynamic, because 

it underlies simultaneous RNA transcription and degradation. Consequently, transcriptome analysis 

always grasps only a snapshot of the transcriptome within a certain tissue at a certain time. 

Understanding the transcriptome helps to identify the functional elements in the genome and 

to reveal the molecular constituents of cells and tissues. Therefore, transcriptome analysis aims at 

identifying all species of transcripts, their genic structure with exons, introns, 5’ and 3’ ends, and their 

splicing pattern as well as other posttranscriptional modifications. Moreover, transcriptome analysis 

also aims at quantifying the differences/changes of transcript levels between cells, tissues or organs 
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and under different conditions. For these purposes, various techniques and technologies have been 

developed deduce and measure transcriptomes. 

1.3.1 Classical approaches for transcriptome analysis 

Experimental detection of single transcripts was initially done with the northern blot technique that 

involves size separation by gel electrophoresis, followed by transfer to a membrane and detection by 

hybridisation with labelled probe (Alwine et al. 1977). However, the technique is sensitive to RNA 

degradation, and quantification is limited due to its small dynamic range. The current gold standard 

method is the quantitative PCR (qPCR; reviewed in Wong & Medrano 2005). At first, RNA is reverse-

transcribed into complementary DNA (cDNA). The targeted cDNA molecule is then PCR-amplified 

using specific primers, and the accumulation is measured in each cycle with a fluorescent probe. The 

initial start amount of transcript can then be extrapolated from the increase per cycle. The qPCR 

method is highly accurate and covers several log orders of magnitude of transcript levels. However, 

qPCR as well as northern blotting can only detect known transcripts, that is, the detection of novel 

transcripts is not possible. Moreover, they are both very labour-intensive and not suited for larger 

numbers of transcripts to be quantified. 

The development of automated sequencing methods enabled the direct read-out of the cDNA 

sequence, and a number of sequencing-based approaches were developed. Expressed sequence tag 

(EST) Sanger sequencing generates random, single-pass sequences of cDNA clones (National Center 

for Biotechnology 2004). These sequences allow the discovery of novel, unknown transcripts and 

greatly facilitate the discovery of new genes, for example in human (Adams et al. 1991). The main 

drawback is that the length of the EST is limited by the read length of the sequencing method, and 

many transcripts are only partially sequenced. Moreover, EST sequencing is not suited for transcript 

quantification because essentially only a single copy of a transcript is determined per sequencing 

reaction, and reaching statistically significant transcript counts is expensive and labour-intensive. Tag-

based methods (reviewed in Harbers & Carninci 2005) were developed to overcome these limitations, 

including serial analysis of gene expression, cap analysis of gene expression and massively parallel 

signature sequencing. Briefly, all methods isolate only a small chunk from each cDNA clone, called 

tag, and concatenate these tags into larger chains. These chains are then sequenced and the tags 

counted. Thus, multiple transcripts can be profiled in parallel, providing ‘digital’ transcript levels. 

However, these methods are also based on expensive Sanger sequencing, and the source of a 

significant portion of the short sequence tags cannot always be uniquely identified. 

In parallel, the development of DNA microarrays provided the means for relatively 

inexpensive large-scale quantifications of transcriptomes. A DNA microarray consists of thousands of 

DNA probes, which are specific for the targeted genes, attached on a glass surface (reviewed in 

Lockhart & Winzeler 2000). The sample, RNA or cDNA, is labelled with a fluorescent dye and 

hybridisation is detected by measuring the fluorescence signal. Effectively, DNA microarrays allow 
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the detection of thousands of transcripts in parallel. By co-hybridising a sample and a reference 

labelled with different fluorescent dyes and measuring the signal ratio, it is also possible to obtain an 

estimation of the transcript levels in the sample. Moreover, genomic tiling arrays with probes spanning 

exon junctions can be used to analyse spliced isoforms. However, DNA microarrays have also several 

limitations: reliance on sequence knowledge, cross-hybridisation between probes (Okoniewski & 

Miller 2006) and a limited dynamic range due to signal saturation (Dodd et al. 2004). 

1.3.2 Next-generation sequencing technologies 

Sanger sequencing is considered as a first-generation sequencing technology and has been widely used 

for over 30 years. However, in the past eight years, the technology has been gradually replaced by new 

high-throughput sequencing technologies, which are commonly summarised as next-generation 

sequencing (NGS) technologies and produce massive volumes of data at very low costs. NGS 

technologies are often divided into second-generation sequencing technologies, which employ PCR 

methods for signal amplification (454/Roche, Solexa/Illumina and ABI/SoLID), and third-generation 

sequencing technologies, which perform true single-molecule sequencing, thus avoiding the 

introduction of artefacts during the PCR amplification step (Pacific Biosciences, Oxford Nanopore). In 

this thesis, I used Sanger sequencing as well as the two NGS technologies 454/Roche and 

Solexa/Illumina; these three technologies are briefly summarised below. 

1.3.2.1 Sanger 

Sanger sequencing (Sanger et al. 1977, reviewed in Metzker 2005) involves the synthesis of a 

complementary DNA template by a DNA polymerase using both natural 2’-deoxynucleotides and 

modified 2’,3’-dideoxynucleotides, which cannot be elongated and therefore terminate the synthesis 

reaction. Depending on the ratio of synthesis and termination, a number of fragments are produced 

which differ in the number of incorporated nucleotides and can be size-separated by gel 

electrophoresis. The primers or terminating 2’,3’-dideoxynucleotides are radioactively or fluorescently 

labelled, which allows the identification the terminal nucleotide (A, C, G or T). By successively 

identifying these nucleotides of the length-sorted fragments, the DNA sequence of the template is 

determined. This sequence is commonly referred to as read and measured in base pairs (bp). 

In modern automated Sanger sequencing, these processes are largely automated, for example 

by the use of nucleotide-specific fluorescent dyes (for example, green for A). The templates are kept in 

96-well plates, which serve as reaction tubes for the sequencing. The average read length of Sanger 

sequencing is approximately 850 bp, and modern Sanger sequencer can process 96 templates in one 

run. However, for high-throughput, Sanger sequencing is quite expensive and labour-intensive, which 

is why it was only used to do an initial characterisation of the N. furzeri transcriptome. 
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1.3.2.2 454/Roche 

The first commercially available NGS technology was developed by the company 454 Life Sciences, 

acquired by Roche in 2007. The major improvement compared to Sanger sequencing is that the 

sequencing reaction takes place in very small wells with a pico-litre volume (10-12 l), which allows 

running more than a million reactions in parallel on one plate (Margulies et al. 2005). Single DNA 

fragments are bound to beads that are surrounded by water droplets coated in an oil-based emulsion 

and serve as reactor for the clonal amplification of the DNA fragments (emulsion PCR). Each DNA 

bead is then deposited within one pico-litre well. During pyrosequencing, only one kind of nucleotides 

is added at a time, and a pyrophosphate is released every time the DNA polymerase incorporates a 

molecule. This pyrophosphate is converted by enzymes, resulting in a light signal. The number of 

incorporated nucleotides is then directly proportional to the number of released pyrophosphates and 

the signal intensity. 

The first version of the 454/Roche sequencer, termed GS20, produced a total sequencing 

output of about 25 Mb per run, with an average read length of 100 bp (Margulies et al. 2005). 

Subsequent improvements in chemistry and signal detection increased average read length (FLX: 

250 bp, Titanium: 400 bp) and sequencing output (FLX: 100 Mb, Titanium: 500 Mb); these versions 

of the 454/Roche sequencer are used in this thesis. The most recent version of the technology allows 

read lengths up to 1 kb (http://454.com/products/gs-flx-system/). Regarding sequence accuracy, 

454/Roche sequencing errors occur predominantly in homopolymeric nucleotide stretches (Margulies 

et al. 2005). The exact number of incorporated nucleotides cannot be always reliably inferred from the 

signal intensity and is often over- or underestimated, resulting in insertion or deletion errors. 

Generally, 454/Roche sequencing is rather expensive, due to its low output compared to other NGS 

technologies.  

1.3.2.3 Solexa/Illumina 

The Solexa/Illumina technology uses reversible dye-terminator nucleotides for sequencing (Bentley et 

al. 2008). DNA fragments are hybridised to primers bound to the glass surface of so-called flow cells, 

which serve as reaction chamber for sequencing. The attached DNA fragments are then amplified 

using a ‘bridging’ PCR, in which the synthesised single-stranded DNA fragments bend over to form 

bridges with other primers, enabling the synthesis of the second strand. This step is repeated until 

cluster of clonal DNA fragments are formed. Sequencing is done by repeated cycles of polymerase-

directed single nucleotide incorporation. Each nucleotide has a reversible modification that prevents 

further extension and is labelled with specific fluorescent dye. In each cycle, the identity of the last 

incorporated nucleotide is determined by fluorescent imaging. Subsequently, the modification is 

removed, thus allowing the incorporation of another nucleotide in the next cycle. Importantly, the 

number of incorporation cycles and thus the read length is fixed which is in contrast to Sanger and 

454/Roche. 

http://454.com/products/gs-flx-system/
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The first version of the Solexa/Illumina sequencer, termed GA1, produced 30-60 million 35-

bp long reads, summarising to a total sequencing output of 1-2 Gb per run (Bentley et al. 2008). 

Improvements especially in the optics and the flow cell design rapidly lead to increased sequencing 

output. The GA2x, which is used in this thesis, produces reads with lengths up to 150 bp with a total 

sequencing output of 80 Gb. Solexa/Illumina also supports paired-end sequencing, that is, a longer 

DNA fragment is sequenced from both ends to obtain more sequence information. For example, 100-

bp long reads are generated from both ends of a 500-bp long fragment. Current versions of the 

technology allow read length and sequence output up to 250 bp and 600 Gb, respectively. In contrast 

to 454/Roche, Solexa/Illumina errors are mostly substitutions, which preferentially occur at the 3’ end 

of the reads (Dohm et al. 2008). During each sequencing cycle, exactly one nucleotide is incorporated, 

and all clonal DNA fragments of one cluster are supposed to give the same signal, indicating the 

incorporated nucleotide. However, it can happen that some DNA fragments are not elongated properly 

by exactly one nucleotide, that is, they are out of phase. As a result, the overall cluster signal suffers 

and the error rate increases. Moreover, AT- and GC-rich regions are underrepresented in the 

sequencing data, which is presumably due to a bias during the amplification step (Dohm et al. 2008). 

1.3.3 RNA-seq as new approach for transcriptome analysis 

The application of NGS technologies to sequence cDNA derived from cellular RNA enables to fully 

catalogue and quantify transcriptomes at low costs; this approach is termed RNA-seq (Nagalakshmi et 

al. 2008; Wilhelm et al. 2008). Main applications of RNA-seq are the development of transcript 

catalogues and the quantification of transcripts over wide ranges of transcript levels (reviewed in 

Wang et al. 2009). Furthermore, RNA-seq has been used to catalogue sense and antisense transcripts, 

to detect alternative splicing events and gene fusion transcripts, and to map transcription start sites 

(reviewed in Ozsolak & Milos 2011).  

There are several protocols for RNA-seq, which differ in RNA extraction, cDNA library 

construction, fragmentation and sequencing strategy (reviewed in Wang et al. 2009; Wilhelm & 

Landry 2009). The general procedure starts with the extraction of the total RNA from the sample. The 

RNA is then reverse-transcribed into cDNA for sequencing; the result is a cDNA library. There are 

two methods to build a cDNA library from RNA that depend on the type of primer used to initiate 

reverse transcription. Oligo(dT) primer bind to the poly(A)-tails at the 3’ end of the mRNA transcript. 

Random hexamer oligonucleotides bind to the entire mRNA transcript. When using random hexamer 

primer, cDNA library preparation is often preceded by a poly(A)-selection step for mRNA enrichment, 

which initially makes up only a small part of the total RNA. Furthermore, mRNA transcript levels 

vary considerably between genes, causing transcripts of highly-expressed genes to be overrepresented 

in the cDNA library and the sequencing results. Library normalisation attempts to equalise transcript 

levels in cases where the goal of the experiment is rather qualitative than quantitative. Alternatively, 

high sequencing depth can compensate for the differences in transcript levels. Prior to sequencing, the 
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cDNA is fragmented by sonication or DNase I treatment. However, several protocols involve 

fragmentation already before cDNA construction, by RNA hydrolysis or nebulisation. Finally, the 

cDNA fragments are sequenced with NGS. Which sequencing strategy is used depends on the goal of 

the RNA-seq experiment. For example, for the de novo development of a transcript catalogue without 

reference genome, longer reads, preferably from paired-end sequencing, are advantageous. For 

profiling of transcript levels, short reads are sufficient. Sequencing results in large RNA-seq datasets 

which provide the starting point for extensive computational analyses. 

Analysis of RNA-seq data largely relies on two different bioinformatics approaches, that is, 

mapping and assembly, which depend on the availability of a reference. The first approach, mapping, 

is usually applied for organisms, for which high-quality genome sequences are available, and involves 

the alignment of millions of short reads, to identify their genomic locations and to assign them to 

transcripts and genes. The second approach, assembly, applies when reference is not available or is of 

low quality and aims at reconstructing the transcript sequences de novo, meaning without any already 

known sequence information. Note that these two approaches are not mutually exclusive. Successful 

reconstruction of transcript sequences often provides a reference for the mapping of RNA-seq reads. 

Conversely, for some applications, the prior assembly of the short reads into longer contigs often im-

proves the mapping accuracy and reduces ambiguously mapped reads. 
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1.4 Thesis objectives 

Aim 1: In the last few years, Nothobranchius furzeri has been established as a model organism for the 

studies of vertebrate ageing, which is mainly based on its exceptionally short lifespan and the presence 

of typical ageing-related characteristics (Genade et al. 2005). One prerequisite for a model organism is 

the availability of comprehensive genetic and genomic resources, for example to design experiments 

and studies. However, sequences for N. furzeri are still limited, that is, only a few genes have been 

sequenced so far as part of initial studies. Consequently, the first aim of this thesis is the development 

of a transcript catalogue, which provides a comprehensive sequence resource to the scientific 

community and thereby facilitates the acceptance of N. furzeri as an alternative model organism for 

vertebrate ageing. 

Objectives: To this end, the N. furzeri transcriptome is sequenced using the Sanger technology as well 

the NGS technologies 454/Roche and Solexa/Illumina. Bioinformatics tools and approaches for the 

processing, assembly and annotation of transcriptome data are developed, which specifically account 

for the characteristic properties of NGS (high throughput, short read length). These are then applied to 

the N. furzeri datasets to develop a transcript catalogue that contains transcript sequences for the 

majority of protein-coding genes. 

Aim 2: In addition, several N. furzeri strains, derived from populations living under different climatic 

conditions, exhibit large differences in lifespan (Terzibasi et al. 2008). For example, the short-lived 

strain GRZ has a maximum lifespan of 12-16 weeks, whereas the longer-lived strain MZM-0403 has a 

maximum lifespan of 29-32 weeks. Crosses between the two strains showed an intermediate lifespan 

(Kirschner et al. 2011). These observations suggest that the differences in lifespan between the N. 

furzeri strains are genetically determined. Therefore, the second aim of this thesis is to characterise 

transcript level changes in ageing N. furzeri. 

Objectives: Transcriptomes of two tissues (brain, skin) and two time points (young, old) from two 

strains (GRZ, MZM-0403) are sequenced with Solexa/Illumina, and the transcript catalogue developed 

in (1) is employed to quantify transcript levels in these samples. The resulting transcriptome profiles 

are used to determine significant changes in transcript levels between young and old N. furzeri in 

general and to identify strain-specific differences between GRZ and MZM-0403. 
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2 Methods 

The development of a transcript catalogue is a complex process which involves the generation and 

analysis of large amounts of data in a series of different analysis steps. Manually running these steps 

and managing their results is challenging or almost impractical. Thus, I decided to use an already 

available pipeline for the automated analysis of transcriptome data, EST2uni.  

2.1 Analysis pipeline for transcriptome data 

2.1.1 EST2uni 

EST2uni (EST analysis software TO create an annotated UNIgene database ) was published in 2008 

and is an highly-configurable open-source pipeline for the pre-processing, assembly and annotation of 

expressed sequence tags Forment et al. 2008. The pipeline includes all major steps of EST pre-

processing and assembly. Annotation of the resulting contigs relies largely on the sequence similarity 

searches with the Basic Local Alignment Search Tool (BLAST) against known databases with known 

sequences. The results are provided on a user-friendly website, which allows complex queries and data 

mining operations for sequence retrieval. EST2uni is written in the programming language Perl, 

and associated data storage is managed by a central MySQL database. The different analyses can be 

run in parallel on a multicore computer system or on a computing cluster using a batch-queuing 

system. EST2uni has been used in a number of EST projects Sunagawa et al. 2009; Lee et al. 2010; 

Yoshida et al. 2010 and serves as basis and framework for the analysis of the N. furzeri transcriptome 

data. 

2.1.2 Installation and general modifications 

I installed the pipeline as well as all additionally required programs and set up the MySQL database. 

The EST2uni website was installed on a local server of the Genome Analysis group at the FLI. 

Subsequently, to run the EST2uni pipeline successfully on the large transcriptome datasets generated 

for N. furzeri, a number of modifications were made to the pipeline as well as the database. 

Most importantly, the tools for transcriptome assembly implemented in EST2uni work only 

with Sanger data but cannot process NGS data. Thus, I developed a separate pipeline to account for the 

different sequencing technologies (explained later). The resulting contigs were then fed into the 

EST2uni pipeline. Moreover, EST2uni annotation routines were extensively modified to speed up 

analysis of large transcript contig numbers. BLAST and HMMER were run in parallel on a computing 

cluster with up to 64 processes. For this purpose, I wrote the Perl script runSGE.pl, which splits a 

job into smaller sub-jobs that are then subsequently distributed across the cluster. Additionally, the 

BLAST parameters were optimised for speed with only slightly lowered sensitivity. Overall, these 
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modifications considerably reduced the time needed for a complete EST2uni analysis of the 

N. furzeri transcriptome data. Likewise, the database was modified to adequately deal with the large 

transcriptome datasets generated for N. furzeri (Supplementary File 1). Only Sanger and 454/Roche 

reads were stored in the database, and Solexa/Illumina reads were simply stored on the local file 

system. Several search indices were added to the database, which brought additional speed-up 

especially for large tables. Moreover, tables were modified to hold more detailed information about 

the results, and new tables were created for results of additional analyses run outside the EST2uni 

pipeline as part of the N. furzeri transcriptome annotation.  

2.2 Transcriptome sequencing 

2.2.1 Analysed fish species and strains 

The two N. furzeri strains GRZ and MZM-0403 are being actively maintained at the FLI. Up to 12 fish 

per strain were kept in 40 litre tanks at 26°C under a light regime of 12:12 h light:dark and fed on red 

mosquito larvae (Chironomidae) ad libitum once a day. Water was filtered using air-driven foam 

filters; the water was changed once a week. More information, descriptions and laboratory protocols 

on care and breeding of the two strains have been published online (Genade et al. 2005; Genade 2007; 

Terzibasi et al. 2008). The zebrafish strain TüAB (AB/Tübingen) is a wild-type line and is also being 

actively maintained at the FLI. The fish were kept in groups in an open circulating standard zebrafish 

system (Aqua Schwarz). 

2.2.2 RNA-isolation, cDNA library construction and sequencing 

For N. furzeri, total RNA was isolated from skin and brain using the RNeasy Mini kit (Qiagen) and 

from whole body using the RNeasy Midi kit (Qiagen). Males and females were used as given in 

Supplementary Table 1. For zebrafish, total RNA was isolated from skin of male specimens aged 

5 and 42 months, respectively, using Trizol (Invitrogen). 

For Sanger sequencing (library #1), a normalised cDNA library was built by Evrogen and 

cloned into a pAL17.3 plasmid using the SMART cDNA Library Construction kit (Clontech). 

Recombinant plasmids were then amplified in Escherichia coli, purified, sequenced from both ends 

with the BigDye Terminator v.2.1 Cycle Sequencing Kit (ABI) and separated on ABI 3730xl capillary 

sequencers. The resulting trace files were processed by the in-house pipeline Converge to generate 

Sanger reads (http://genome.fli-leibniz.de/). 

For 454/Roche sequencing, normalised and non-normalised cDNA libraries with ligated 

454/Roche adaptors were prepared by Evrogen (library #2 and #3) and library #4 by Vertis. The 

resulting cDNA libraries were diluted and subjected to emulsion PCR according to the manufacturer's 

instructions (454/Roche Diagnostics). Sequencing was performed on 70×75 picotiter plates resulting 

http://genome.fli-leibniz.de/
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in two and a half runs using the older GS LR70 (FLX) sequencing kit and two runs with the new 

XLR70t (Titanium) kit, respectively. 

For Solexa/Illumina sequencing, N. furzeri libraries #5-13 and zebrafish libraries were 

prepared using the mRNA-Seq sample prep kit 8 (Solexa/Illumina) according to the manufacturer's 

instructions. Clusters were generated using the Single Read Cluster Generation Kit v4 or the Paired 

End Cluster Generation Kit v4, respectively. Each library was loaded onto one lane of the flow cell at 

a concentration of seven Pico molar. Sequencing of N. furzeri and zebrafish libraries was performed 

on a Genome Analyzer IIx (Solexa/Illumina) for either 76, 101 or 150 cycles, using the 36 Cycle 

Sequencing Kit v4 following the manufacturer’s protocol. 

2.2.3 Read pre-processing and quality control 

In 454/Roche reads, specific primer sequences ligated during cDNA library preparation were removed 

with the in-house Perl script 454-Primer-Trim.pl. Subsequently, Sanger and 454/Roche reads 

were processed in a similar fashion. Low-quality reads were trimmed with LUCY (Chou & Holmes 

2001). Vector, adaptor and poly(A)-stretches were removed using SeqClean (TIGR 2008). For this 

purpose, all vector sequences used for cDNA library preparation, normalisation and sequencing were 

compiled in one database. Additionally, standard vector sequences from the UniVec database (Kitts et 

al. 2012) of the National Center for Biotechnological Information (NCBI) were included. Low 

complexity regions were lowercase-masked by SeqClean. Additionally, RepeatMasker (Smit et 

al. 1996) was run with a library of Nothobranchius-specific repeats (Reichwald et al. 2009) to 

lowercase-mask complex repetitive elements. Finally, processed Sanger and 454/Roche reads were 

filtered for a minimum length of 80 bp and loaded into the EST2uni database. Solexa/Illumina reads 

were processed with the String Graph Assembler (SGA; Simpson & Durbin 2010). Reads with 

more than 20 low-quality bases were discarded with the preprocess command of SGA. Moreover, 

errors were corrected with the correct command, and duplicate reads removed with rmdup 

command. 

2.3 Transcriptome assembly 

2.3.1 Assembly of Sanger and 454/Roche reads 

Sanger and 454/Roche reads were assembled with the classical overlap-layout-consensus strategy 

(Myers 1995). I tested three different programs specifically developed for the assembly of transcrip-

tome data: The Gene Indices Clustering tools (TGICL; Pertea et al. 2003), Newbler (454 Life Sciences 

2012) and Program for Assembling and Viewing ESTs (PAVE; Soderlund et al. 2009). TGICL was run 

with default parameters except for -c 8 -O ” -p 90”. Newbler and PAVE were run with default 

parameters. Resulting contigs were filtered for a minimum length of 300 bp. 
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For each assembly, the number and total length of contigs as well as average, median and 

maximum contig length were recorded. Additionally, to estimate the success at assembling larger 

transcripts, the number and the fraction of contigs larger than 1 kb were computed. According to these 

metrics, PAVE produced the best assembly of Sanger and 454/Roche reads. Therefore, I chose this 

assembly as backbone for the integration of the Solexa/Illumina reads in the second step. 

2.3.2 Integration of Solexa/Illumina data 

Solexa/Illumina reads were assembled onto the PAVE contigs using the CLC Assembly Cell (CLCbio 

2011), which is a de Bruijn graph-based assembly tool and was specifically developed for NGS reads. 

The Solexa/Illumina libraries were incrementally added to the assembly, that is, in each iteration, one 

single library was assembled onto the contigs of the recent assembly. Recent refers in the first iteration 

to the PAVE assembly and in all other iterations to the assembly of the previous iteration. The actual 

steps of the iterative assembly procedure were as follows (Figure 4): At first, Solexa/Illumina reads 

were mapped onto the contigs of the recent assembly using the Burrows-Wheeler Alignment tool 

(BWA; Li & Durbin 2009). Subsequently, unmapped reads served, together with the contigs, as input 

for the first assembly by the CLC Assembly Cell. Several assembly artefacts such as palindromic joins 

and N-stretches were fixed by custom Perl scripts. To further merge and extend the resulting contigs, 

they were re-assembled with TGICL, which can find and utilise weaker overlaps due to its classical 

overlap-layout-consensus approach. Since TGICL cannot use sequences larger than 2 kb as input, such 

contigs were split into 2 kb-fragments with a 300 bp overlap. Last, CD-HIT-EST (Li & Godzik 2006) 

was used to filter highly redundant contigs (99% alignment identity and 90% coverage of the smaller 

sequence), and contigs smaller than 300 bp were removed. The resulting contigs served as input for 

another assembly pass with relaxed parameters. After two assembly passes, the new assembly 

consisted of the previous one plus new sequence information introduced by the respective assembled 

Solexa/Illumina library. This assembly then served as input for the next iteration which integrated the 

reads of the next library. 

After integrating the Solexa/Illumina libraries, the resulting assembly was improved by map-

ping GRZ reads onto the contigs and correcting the respective sequence. Therefore, GRZ libraries 

were mapped with BWA onto the contigs of the assembly. The resulting alignments were processed 

with SAMtools (Li et al. 2009). Alignments were filtered for a minimum quality of 10, and 

duplicate read alignments, suggestive for PCR duplicates, were removed. Filtered alignments then 

served as input for the BCFtools (Li et al. 2009) to determine GRZ-specific sequence differences, 

which were then used to edit the contig sequence accordingly. The edited transcript contigs constituted 

the final assembly of Sanger, 454/Roche and Solexa/Illumina data.  
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Figure 4: Flow chart of the iterative assembly procedure used for the Solexa/Illumina data. 
Symbol legend: circle - labelled connector; parallelogram - input data; rectangle - processing step; rectangle with double-struck vertical 

edges: subroutine, external program; rectangle with wavy base - input file; rounded rectangle - start, end; rhombus - decision, iteration 
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2.3.3 Contamination analysis 

Contamination analysis, that is, the identification of accidentally introduced foreign DNA, was done 

with BLAST. Ensembl transcript sequences from the fish species medaka, stickleback, tetraodon and 

zebrafish (Flicek et al. 2011) were pooled together with RefSeq transcript sequences from various 

non-fish species (Pruitt et al. 2005) to build a BLAST contamination database. N. furzeri transcript 

contigs were compared against this database using the program tBLASTx of the WU-BLAST package 

(Gish 1996). Only transcript contigs with BLAST hits (e-value ≤ 10-20) were subjected to further 

analysis. A transcript contig was considered as putative contamination if the best BLAST hit referred 

to a non-fish species and the e-value of the next fish-specific hit was at least 10 magnitudes higher. 

These criteria reduced the probability that BLAST mistakenly identifies a N. furzeri transcript contig 

as contamination. The identified transcript contigs were tagged as putative contamination and 

excluded from further analyses. 

2.3.4 Post-processing and database import 

For the import into the EST2uni database, the transcript contigs were renamed according to the 

naming scheme Nofu_GRZ_cDNA_Y_XXXXXXX, where a name starts with the prefix 

Nofu_GRZ_cDNA to indicate that this sequence is a Nothobranchius furzeri GRZ transcript contig, 

followed by a single-digit number for the assembly version and a unique seven-digit number for the 

contig. As an example, Nofu_GRZ_cDNA_1_0000001, Nofu_GRZ_cDNA_2_0000001 and 

Nofu_GRZ_cDNA_3_0000001 are contig names from three different transcriptome assemblies. Note 

that the first and the second name indicate earlier, deprecated assembly versions. The current assembly 

described here is the version three. Renamed transcript contigs were loaded into the EST2uni data-

base. 

2.4 Transcript annotation pipeline 

2.4.1 BLAST searches 

For BLAST searches, the WU-BLAST package (Gish 1996) was used, instead of the preinstalled 

NCBI-BLAST package (Altschul et al. 1990), and the EST2uni pipeline was modified accordingly. 

BLAST databases were built from several sequence resources (Table 1). Protein and protein-coding 

transcript sequences of the four fish species medaka, stickleback, tetraodon and zebrafish were down-

loaded from Ensembl and human protein sequences from RefSeq. Two large protein databases, the 

non-redundant protein database nr (National Center for Biotechnological Information 2011) and the 

UniProt database (Boeckmann et al. 2003) were downloaded as well. Fish-specific ESTs from the 

NCBI UniGene database (Pontius et al. 2003) complemented the set of BLAST databases. BLAST 

program options were defined for each database individually based on recommendations found in the 
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book BLAST (Korf et al. 2003). An overview of all databases including BLAST program options and 

hit criteria for hits is given in Supplementary Table 2. 

Table 1: Protein and protein-coding transcript databases used for BLAST searches. 

Database Description Maintained by Entries Program Max. e-value 

Ensembl fish 
proteins 

Protein sequences from medaka, stickleback, 
tetraodon and zebrafish 

Ensembl 116,833 BLASTx 10-07 

Ensembl fish 

transcripts 

Transcript sequences from medaka, stickleback, 

tetraodon and zebrafish 
Ensembl 123,997 tBLASTx 10-07 

UniProt 
Large, partially curated, collection of protein 

sequences 
EBI 17,035,495 BLASTx 10-07 

NCBI nr proteins 
Collection of proteins from SwissProt, PIR, 

PDB; identical sequences merged 
NCBI 15,270,974 BLASTx 10-07 

Refseq human 
proteins 

Curated human protein sequences from the 
RefSeq database 

NCBI 33,950 BLASTx 10-07 

NCBI UniGene 

transcripts 

Clustered EST from catfish, cod, medaka, 
minnow, mummichog, pufferfish, salmon, 

stickleback, trout, zebrafish 

NCBI 243,046 BLASTn 10-20 

 

 

BLAST searches were run in parallel on the available computing cluster using the Sun Grid 

Engine batch-queuing system and the Perl script runSGE.pl. Resulting BLAST reports were 

parsed with BioPerl (Stajich et al. 2002). The original EST2uni pipeline extracts only hit name 

and description, alignment coordinates, identity, similarity and e-value. Additional details on protein 

or transcript function, gene, species and cross references to other databases were retrieved through 

local installations of the Ensembl Core MySQL databases and the NCBI gene repository. 

Alternatively, this information was parsed from the description lines of the BLAST hits. Finally, the 

three best BLAST hits of each transcript contig were stored in the EST2uni database. 

2.4.2 Transcript contig annotation 

The BLAST results served as input for the annotation step of EST2uni. Basically, for each transcript 

contig, the description of its best BLAST hit constituted the new annotation for the transcript contig. 

For an optimal annotation, this process was done in three major steps: (1) filtering of BLAST hits, (2) 

annotation based on the BLAST hits, and (3) validation and correction of annotations. 

Filter criteria for BLAST hits included maximum e-value, minimum overlap length and 

identity. These were defined for each database individually and are summarised in Supplementary 

Table 2. Furthermore, BLAST hits with descriptions that are inapplicable for annotation (for example 

whole genome shotgun) were excluded. 

The filtered BLAST results against the protein and transcript databases were used for the 

annotation of the transcript contigs. For this purpose, I defined an annotation order, in which the 

BLAST results against the different databases are examined. Because the four fish species medaka, 
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stickleback, tetraodon and zebrafish were the closest relatives of N. furzeri, annotation was 

preferentially based on BLAST hits against the Ensembl protein and protein-coding transcript 

sequences of those species. In case annotation of the transcript contig was not successful, hits against 

human protein sequences from the well-curated and reliable RefSeq database were examined next. The 

next two databases in the annotation order were the two large protein sequence collections NCBI nr 

and UniProt, which were supposed to identify all remaining transcript contigs not yet annotated. Fish-

specific ESTs were the last resort for annotation. BLAST hits against these sequences at least 

indicated that the transcript contig is indeed transcribed and not some sequencing artefact. 

BLAST hits with uninformative descriptions were replaced, if possible. The corresponding 

BLAST hit was put back, and another hit with a similar score but a more informative description was 

searched as replacement. In case, no such BLAST hit was found, annotation reverted back to the 

original hit. Descriptions containing the following words were considered as uninformative: novel, 

predicted, unknown, uncharacterized, unnamed and hypothetical. 

Assigned annotations were validated, and potential annotation errors were corrected, if 

possible. Potential annotation errors occurred primarily due to (i) obvious misannotations where other 

annotations with much higher scores exist and (ii) non-informative annotations which can be safely 

replaced by more informative annotations with comparable scores. These two issues could be 

relatively easily fixed by removing the problematic annotation followed by re-examining the remain-

ing available BLAST hits. The (iii) cause for annotation errors were paralogous genes which originate 

from duplication events and are frequent in fish genomes. Since the copies can retain a relatively high 

sequence homology, BLAST annotation cannot always reliably distinguish between them. 

Comprehensive information about potential paralogous genes in different species is collected in the 

Ensembl Compara database (Vilella et al. 2009). For annotations obtained from Ensembl databases, 

this information was used to check for misannotations. The corresponding Ensembl gene ID of the 

annotation was used to fetch all paralogous genes. If other Ensembl BLAST hits predominantly 

pointed to a paralog, then this indicated a misannotation and, the annotation was corrected 

accordingly. Overall, these measures reduced annotation errors by including additional information. 

2.4.3 Protein domain prediction 

Protein domain prediction supplemented the BLAST-based annotation. Transcript contigs without 

annotation were searched for domain motifs which allow at least an initial annotation based on the 

function of the protein domain. To do so, transcript contigs were translated into putative proteins, and 

the proteins were compared against a database containing motifs of known protein domains. 

Prediction of putative proteins was done with the external polypeptide prediction pipeline 

prot4EST (Wasmuth & Blaxter 2004), which utilises BLASTs against protein databases and 

ESTScan predictions (Iseli et al. 1999) to determine and translate the coding sequence (CDS). 
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Initially, the pipeline identified contigs derived from ribosomal transcripts, which are not translated, 

by running BLASTn searches against the SILVA ribosomal RNA gene database (Quast et al. 2013). 

The remaining transcript contigs were compared with BLASTx against Ensembl medaka proteins to 

identify nuclear proteins and against the GOBASE database (O’Brien et al. 2009), a collection of 

organelle sequences, to search for mitochondrial proteins. In order to use ESTScan, medaka protein 

sequences were reverse-translated following N. furzeri-specific codon usage frequencies, and an 

artificial N. furzeri transcriptome was built. Based on this artificial transcriptome, a N. furzeri-specific 

hidden Markov model was constructed that was used by ESTScan for predicting CDS. BLAST 

results and ESTScan predictions were fed into prot4EST to construct CDS. If neither BLAST 

results nor ESTScan predictions were available, the longest six-frame translation uninterrupted by a 

stop codon was used. Finally, predicted nuclear and mitochondrial CDS were translated into protein 

sequences using the standard and the vertebrate mitochondrial genetic code, respectively. 

Conserved protein domains were identified with HMMER (Eddy 2012) by comparing the 

predicted protein sequences against the Pfam database (Punta et al. 2011), which contains conserved 

protein families with shared domains. Only Pfam-A entries, which represent high-quality, manually 

curated protein families, were downloaded from the Pfam website at the Sanger Wellcome Trust 

Institute (http://pfam.sanger.ac.uk/). HMMER was run in parallel on the computing cluster using the 

batch-queuing system. The results were parsed with BioPerl, and the hits were filtered for a 

maximum e-value of 10-20. Last, the predicted protein domains were loaded into the EST2uni data-

base to be used for annotation. 

2.4.4 Gene ontology 

Gene Ontology (GO; Ashburner et al. 2000) terms were assigned to N. furzeri transcript contigs based 

on BLAST hit to proteins which are already associated with GO terms. GO ontology and definition 

files (OBO v1.2) as well as GO term associations for the UniProt protein database were downloaded 

from the Gene Ontology web site (http://www.geneontology.org/) and stored in a MySQL database for 

faster access. Subsequently, GO terms were retrieved for transcript contigs with UniProt annotations 

based on the UniProt - GO term associations. For transcript contigs with annotations from Ensembl 

protein databases, the corresponding GO terms were directly obtained from the Ensembl MySQL 

server. For a broader overview, GO terms were mapped to GO Slim terms, which represent only high-

level functional annotations, using the map2slim script (go-perl package, see Gene Ontology web 

site). Associated GO and GO Slim terms were stored in the EST2uni database. 

2.4.5 Gene family analysis 

Gene families were identified by taking advantage of the Ensembl Compara database, which contains 

gene family information for the four fish species medaka, stickleback, tetraodon and zebrafish. The 

longest N. furzeri transcript contig per gene was compared against Ensembl proteins of these four fish 

http://pfam.sanger.ac.uk/
http://www.geneontology.org/
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species using BLASTx (e-value ≤ 10-07). The Ensembl gene ID of the best BLAST hit was then used to 

retrieve the associated gene family. Thereby, N. furzeri transcript contigs, and genes, could be grouped 

into gene families. 

A similar approach was followed to identify genes which are duplicated in N. furzeri as result 

of the teleost-specific genome duplication. The longest transcript contig per gene was compared using 

BLASTx (e-value ≤ 10-07) against Ensembl protein sequences of medaka, stickleback, tetraodon and 

zebrafish. Subsequently, the corresponding Ensembl gene ID was used to fetch information about 

paralogous genes from the Ensembl Compara gene trees. In case, two different transcript contigs 

pointed to orthologous genes of two different species, the Ensembl gene ID of the first species was 

replaced with the corresponding ID of the orthologous gene in the second species. 

To identify genes which are exclusively duplicated in N. furzeri, all transcript contigs 

belonging to the same gene were retrieved and translated into putative protein sequences. Only protein 

sequences with a minimum length of 100 aa were considered for further analysis. The protein 

sequence of the longest (primary) transcript contig was then aligned to each of the other (secondary) 

transcript contigs using the local alignment tool water from the EMBOSS package (Rice et al. 2000). 

The generated pairwise protein alignments were filtered for a minimum length of 100 aa, and protein 

sequence identities were calculated. The transcript contigs were then clustered based on their protein 

sequence divergence to the longest transcript contig, with a minimum distance of 10% between each 

cluster. Two or more clusters indicated genes that are duplicated exclusively in N. furzeri. 

2.5 Transcriptome browser 

2.5.1 Changes in structure and design 

The EST2uni system includes a website which provides easy access to the generated results. To 

accommodate the website to the large amount of N. furzeri transcriptome data, a number of 

modifications were made. The original EST2uni website contained for each contig a graphical 

representation of the assembly which showed the individual reads that were used to build the contig. 

Because the large read numbers of the Solexa/Illumina datasets severely slowed down the website, this 

feature and several others which also involved the analysis of individual reads were removed from the 

website. Moreover, the website was adapted to the modified structure of the EST2uni database. For 

these reason, large sections of the PHP code were re-written. The changes allowed using the website 

for the N. furzeri transcript catalogue within good performance. 

Also, the design of the website was changed to improve the presentation of the N. furzeri 

transcript catalogue. The website is now presented in a green-coloured theme, which follows the 

colours of the FLI’s corporate design and distinguishes it from other transcriptome browsers available 

in the internet. The navigation bar was placed at the top of the web interface for a better overview, and 
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the individual result sections were re-arranged to separate them more clearly. Finally, a number of 

layout problems, such as inconsistent font usage or formatting errors, were fixed. 

2.5.2 New features 

Overall, the transcriptome browser now provides many more details regarding the transcript contigs 

and their annotation. Results of additional novel analyses were also integrated into the transcriptome 

browser. Several new panels provide the additional information gained from these analyses which 

include for example orthologous and paralogous genes, predicted miRNA locations and gene 

expression values from RNA-seq experiments. Furthermore, the transcriptome browser is now 

connected to the N. furzeri genome browser, which maintains the current build of the N. furzeri 

genome. The transcriptome browser reports for each transcript contig its putative genomic location, 

and a special hyperlink allows quickly changing to the genomic region in the genome browser. 

Moreover, the query interface for searching transcript contigs was extended by adding several 

new search options. These include several annotation-related criteria such as gene symbol, CDS 

coverage, protein domains or associated GO terms. Importantly, the user can restrict the query to the 

best transcript contig per protein or gene. This way, the user obtains only the best transcript contig but 

does not have to deal with smaller, unwanted transcript contigs. These features facilitate a faster and 

more efficient search for transcript contigs of interest. 

2.5.3 Security issues 

The original EST2uni website contained a number of serious security issues which had to be fixed 

before making the website publicly accessible. Most importantly, user input is now checked for 

malicious code fragments as well as important Unix commands and control characters. Such input is 

rejected from further analysis. Permissions were restricted as much as possible, to prevent 

unauthorised access to server and database. The database structure was changed so that only reading 

from the database is needed and writing to the database is deactivated, which effectively protects the 

database. Furthermore, the list of programs that can be run on the server is now explicitly limited to 

the few programs that are actually needed. Finally, minor changes were made to stop web robots, 

small automated web applications which systematically browse the web, typically to build web 

indices. In case of EST2uni, web robots constantly download all analysis results and cause massive 

data traffic for the EST2uni server. This behaviour was restricted by the use of the file 

robots.txt, which denies the access to the website for web robots. However, since these 

instructions are purely advisory and web robots can choose to ignore them, an additional JavaScript 

routine was implemented which identifies web robots and denies them. 
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2.6 Analysis of differential gene expression 

2.6.1 Mapping and quantification of transcript levels 

The libraries #6-13, sequenced by Solexa/Illumina, were used to quantify the transcript levels in 

N. furzeri. However, in contrast to their use during transcriptome assembly, the Solexa/Illumina reads 

were not subjected further error correction and duplicate removal since that would introduce a bias 

into transcript levels. Prior to read mapping, a reference sequence was constructed from the longest 

transcript contig per gene, to avoid multiple mappings to transcript fragments and isoforms. Read 

mapping was done with BWA. For this purpose, a Burrows-Wheeler Transform index was constructed 

from the N. furzeri reference sequence. Subsequently, BWA was run with default parameters to map the 

Solexa/Illumina reads against the indexed reference. Only unique mappings were accepted. The 

resulting alignments were filtered for a minimum alignment quality of 10 and then sorted by 

coordinate to serve as input for the following quantification. 

Read alignments were parsed and transcript levels determined by a custom Perl script. The 

transcript level of a gene was inferred from the number of reads mapping the corresponding transcript 

contig. Total read numbers were then normalised as reads per kilobase of exon model per million 

mapped reads (RPKM). All counts and RPKM values together with information about the 

corresponding samples were stored in the EST2uni database. 

2.6.2 Statistical analysis and identification of DEGs 

Statistical analysis was done within R, a software environment for statistical computing and graphics, 

and data plotting with the R package ggplot2 (Wickham 2009), if not stated otherwise. Counts and 

RPKM levels for transcripts were directly fetched from the EST2uni database using the RMySQL 

package (Horner 2012) and imported into R. Correlations between the samples were calculated with 

the standard function cor, Spearman method, and RPKM values as input. The graphical 

representation of these correlation values was produced with the heatmap.2 function of the 

gplots package (Warnes 2011). The principal component analysis (PCA,  was done with the R 

function prcomp and the RPKM values as input. 

Identification of differentially expressed genes (DEGs) was done with the DESeq package 

(Anders & Huber 2010). Raw read counts were used as input. Samples of the two different strains 

were treated as replicates, and transcript levels were compared between young and old N. furzeri. 

DEGs were called following the instructions in the DESeq package vignette and filtered for a 

maximal p-value (adjusted for multiple testing with the Benjamini-Hochberg procedure) of 0.01. 

DEGs were submitted to the Database for Annotation, Visualisation and Integrated Discovery 

Analysis (Dennis et al. 2003; Huang et al. 2009) to identify enriched biological functions. Input gene 
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lists were constructed from the respective gene symbols of the identified N. furzeri DEGs. Gene 

symbols which were not recognised were exchanged for synonymous symbols, listed in the NCBI 

Gene repository. Clusters of enriched biological functions were filtered for a minimum enrichment 

score ≥ 1. 

2.6.3 Confirmation by qPCR 

DEGs were confirmed by qPCR in MZM-0403. RNA was extracted from the same skin and brain 

samples analysed in the RNA-seq experiment. Subsequent cDNA synthesis was performed in a 20 µl 

volume using 500 ng total RNA, 10 pmol oligo(dT) primer and 200 U SuperScript II reverse 

transcriptase (Invitrogen). Real-time PCR was performed with the SYBR GreenER qPCR SuperMix 

(Invitrogen) using the iCycler iQ5 detection system (Bio-Rad). Primer sequences are given in 

Supplementary Table 5. Cycle threshold values were normalised to the gene INSR (insulin receptor) 

which already showed to be very stably expressed at different ages. Fold changes were determined 

with the relative expression software tool (Pfaffl et al. 2002). 

2.6.4 Confirmation of DEGs in zebrafish 

Sequenced skin samples of young and old zebrafish were used as confirmation of the ageing-related 

DEGs identified in N. furzeri. The reads were mapped with Bowtie (Langmead et al. 2009) against 

the zebrafish genome (danRer7) and a precompiled database of exon junction sequences. Zebrafish 

DEGs were called from raw read counts following the same procedure and maximal adjusted p-value 

applied for N. furzeri. 

Orthologous genes between N. furzeri and zebrafish were identified from best bidirectional 

hits between N. furzeri putative protein sequences (see 2.4.3) and zebrafish protein sequences from 

Ensembl. Only the longest protein sequence per gene was used for the comparison. N. furzeri protein 

sequences were compared with BLASTx against zebrafish protein sequences, and vice versa. A 

N. furzeri gene and a zebrafish gene were considered orthologous, if the corresponding protein 

sequences were identified as the best hits in the two reciprocal BLAST searches. 

2.7 Data access 

The N. furzeri transcriptome sequencing data was made publicly available in the following public 

databases: The Sanger reads were submitted to the NCBI dbEST database (Boguski et al. 1993) under 

accessions JZ200028-JZ330399. Since dbEST only accepts processed high-quality sequences but no 

raw data, not all Sanger reads could successfully deposited at dbEST. 454/Roche and Solexa/Illumina 

reads were submitted to the NCBI sequence read archive (SRA; Kodama et al. 2011) under submission 

accession SRA050046. Zebrafish Solexa/Illumina reads were submitted to the NCBI SRA under sub-

mission accession SRA054207. 
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The N. furzeri transcriptome assembly was submitted to the NCBI transcriptome shotgun 

assembly archive (TSA; Benson et al. 2012) under the project accession GAIB00000000. The 

accession for this assembly version is GAIB01000000. Future versions of the assembly will have 

different accessions, for example GAIB02000000, GAIB03000000 and so on. The individual 

transcript contigs can be retrieved with the accessions GAIB01000001-GAIB01210031. To comply 

with TSA requirements, contigs were modified as follows: Transcript contigs with stretches of 15 or 

more Ns into separate contigs, and the parts were numbered accordingly. Only contigs > 200 bp were 

submitted. 

The NCBI BioProject constitutes a collection of biological data associated with a biological 

project or imitative (Barrett et al. 2011). For the N. furzeri transcriptome project, a BioProject was set 

up under the accession PRJNA85613. The project website provides all relevant information about the 

N. furzeri transcriptome including reads, assemblies, publications and related projects 

(http://www.ncbi.nlm.nih.gov/bioproject/PRJNA85613). 

  

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA85613
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3 Results 

The results of my thesis are grouped in four main parts. The first part, described mainly in the methods 

section, covers the installation of a transcriptome analysis pipeline and of a transcriptome browser as 

well as all necessary modifications. The second part (results section, 3.1) describes the development of 

a comprehensive catalogue of transcripts, which greatly improves the availability of genetic resources 

and provides sequence information for most genes in N. furzeri. In the third part (3.2), the transcript 

catalogue is compared against the protein sequences of four model fish species to obtain more insights 

into general relation to other fish species. In the fourth part (3.3), I quantitatively analyse the transcript 

level in young and old N. furzeri from the short-lived strains GRZ and the longer-lived strain MZM-

0403 to characterise the age-dependent changes in these fish. 

3.1 Development of a N. furzeri transcript catalogue 

3.1.1 Transcriptome sequencing 

3.1.1.1 Sample preparation and cDNA library construction 

Initially, the short-lived N. furzeri strain GRZ was studied to construct a transcript catalogue. In total, 

28 male and female GRZ individuals of ages between one and 14 weeks were used for tissue 

collection. RNA was isolated from the whole body of the fish and, if the amount of collected material 

permitted, from the two tissues brain and skin. RNA samples then served as templates for reverse 

transcription into cDNA. Depending on library type and applied sequencing protocol, cDNA libraries 

were constructed by external service providers as well as in-house approaches. The companies 

Evrogen and Vertis prepared the libraries #1-4 for Sanger and 454/Roche sequencing. Except for 

library #2, these libraries were normalised, equalising the abundances of cDNA molecules that reflect 

the RNA proportion in the cell. The remaining four libraries (#5-9) were prepared in-house for 

Solexa/Illumina sequencing. Thus a total of nine GRZ cDNA libraries were subjected to sequencing 

analysis (Supplementary Table 1). 

For additional transcriptome sequencing in longer-lived N. furzeri, the MZM-0403 strain was 

selected. Of 17 individuals of ages between five and 31 weeks, brain and skin tissues were collected 

for RNA extraction. These RNA samples were used to construct four MZM-0403 cDNA libraries 

(#10-13) following the protocols for Solexa/Illumina cDNA library construction (Supplementary 

Table 1). 

3.1.1.2 Sequencing data 

First, the classical Sanger technology was applied for sequencing. For library #1, cDNA clones with 

lengths between 500-3,000 bp were picked and sequenced from both ends. After processing of the raw 
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sequencing signals, the resulting read dataset included 131,808 reads, representing 97 Mb of 

transcriptome data. The mean read length of 734 bp was typical for Sanger sequencing (Figure 5). 

The low throughput and the high price/bp of the Sanger sequencing technology were 

prohibitive to capture transcripts with low abundances. Therefore, the NGS technology 454/Roche, 

introduced in the Genome Analysis group at the FLI in 2008, was applied to obtain higher read 

numbers. The libraries #2 and #3 were sequenced with the FLX chemistry of the 454/Roche system 

and the library #4 with the Titanium chemistry. The Titanium chemistry represents a technological 

enhancement of the FLX, and facilitates longer read lengths and higher sequencing output. Overall, 

454/Roche yielded 1,131 Mb, thereof 262 Mb by FLX and 869 Mb by Titanium. Besides a higher 

sequencing output, the Titanium chemistry also produced longer reads (mean read length Titanium: 

369 bp vs. FLX: 224 bp). Figure 5 also shows the read length distributions of the libraries #2-4, 

compared to the Sanger reads of library #1. 

In 2010, N. furzeri transcriptome sequencing continued with the Solexa/Illumina technology, 

which produces several magnitudes more data. The hereby applied strategies included normal and 

paired-end sequencing, with differing read lengths (76, 101 and 150 bp). Thus, sequencing of the 

remaining libraries #5-13 resulted in 467 million reads with a total of 45,180 Mb, which represents by 

far largest portion of the primary N. furzeri transcriptome data. 

In summary, 46 Gb transcriptome data was obtained from two different N. furzeri strains using 

three sequencing technologies with varying read lengths and data output. All sequenced cDNA 

libraries together as well as their raw sequencing outputs are listed in Table 2. The generated transcrip-

tome data served as basis for both the assembly of a transcript catalogue as well as subsequent 

analyses of differential expression. 
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Figure 5: Read length distribution of Sanger and 454/Roche data. 
Sanger and 454/Roche reads from libraries #1-4 are sorted according to their length in bins of 50 bp (x-axis). Grey and ochre bars 

show raw and processed reads, respectively. 

 

3.1.1.3 Pre-processing of the generated datasets 

Work in wet laboratories is never unbiased, that is, it is always subjected to a number of confounding 

factors. Therefore, in raw sequencing data, a number of quality problems can occur which include bad 

sequence quality, as well as sequencing artefacts and contamination. These issues have to be resolved 

before any further analysis. Thus, the transcriptome data were first quality-curated and processed 

accordingly. However, the available datasets derived from three sequencing technologies that show 

considerable differences in read length and output, especially when comparing reads from Sanger and 

454/Roche with reads from Illumina/Solexa. Therefore, Sanger and 454/Roche datasets were 

processed similarly, but Solexa/Illumina datasets were processed differently. 

Because Sanger and 454/Roche datasets contained small to medium-sized read numbers, they 

could be processed by tools designed for the output of traditional sequencing projects. Read 

processing included clipping of low-quality regions with LUCY as well as removing of vector 

sequence as well as of poly(A)-tails, and masking of low-complexity/repeat regions with SeqClean. 

Low-quality regions in the Sanger data comprised 6.1 Mb data. Vector sequence made up 0.1 and 

2.9 Mb of the Sanger and 454/Roche data, respectively, and poly(A)-tails made up another 1.5 and 

8.1 Mb. All these sequences were removed. In addition, reads shorter than 80 bp were discarded. 

Furthermore, repeat analysis with RepeatMasker identified 25 Mb of low-complexity/dispersed 

repeats. These sequences can create problems in similarity searches and, therefore, they were masked 

from further analysis. In summary, 89 and 1,001 Mb (92 and 89%) remained as Sanger and 454/Roche 

assembly-ready data, respectively. 
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In contrast, the Illumina/Solexa datasets contained shorter reads but in very large numbers, 

which prohibited read processing steps like those applied for Sanger and 454/Roche data. Instead, the 

Solexa/Illumina datasets were processed with SGA. Reads were quality-filtered, discarding 11,906 Mb 

low-quality sequence, and putative-sequencing errors were corrected. To reduce the amount of data 

used for the assembly of the transcript catalogue, exact-match read duplicates were removed. Applying 

these three processing steps to the Solexa/Illumina datasets resulted in an additional reduction of 

13,996 Mb. In summary, 19,278 Mb (43%) high-quality Solexa/Illumina data remained after 

processing. 

As a result of the applied processing steps, 26 Gb transcriptome data were discarded during 

pre-processing. A comprehensive summary of the processed data is given in Table 2. The remaining 

20 Gb high-quality transcriptome data served as input for the subsequent transcriptome analyses. 
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Table 2: Transcriptome sequencing data. 

 

 

 



Results  Development of a N. furzeri transcript catalogue 

[36] 

3.1.2 Assembly of a transcript catalogue 

N. furzeri transcriptome sequencing produced large datasets from three different sequencing 

technologies, that is, Sanger, 454/Roche and Solexa/Illumina, which exhibited largely varying read 

lengths and output. To accommodate for these differences, I decided to assemble the transcriptome 

data in two steps. First, the Sanger and 454/Roche data was assembled with tools based on the 

traditional overlap-layout-consensus approach (Myers 1995) since these are well-suited for longer 

reads and small to medium-sized datasets. In the second step, the Solexa/Illumina libraries were 

successively integrated into the contigs generated from the Sanger and 454/Roche data. To deal with 

the large Solexa/Illumina datasets, an alternative assembly approach based on de Bruijn graphs 

(Pevzner et al. 2001) was used, which is particularly suited for NGS data. Ultimately, applying these 

two different approaches lead to an assembly which optimally combines the different sequencing 

technologies. 

During assembly, it was necessary to evaluate the different assembly results and to quantify 

their improvements. Usually, assembly success is described by number of contigs, total contig length, 

mean and maximum contig length. These metrics have been originally defined for genome assembly 

where the aim is to build a complete genome sequence, that is, few large contigs which cover the 

entirety of the genome. In transcriptome assembly, however, this is different. Here, one aims at 

reconstructing as many transcripts as possible. Moreover, these transcripts have differing lengths, from 

some hundred to several ten-thousand base pairs. Thus, the metrics mentioned above alone are 

insufficient to describe the success of an assembly. Therefore, I additionally recorded the number of 

large contigs, that is, the number of contigs with a minimum length of one kb. Since most transcripts 

usually are longer than one kb, this metric provides a good proxy to estimate the number of complete 

transcripts and to assess the quality of the assemblies. 

3.1.2.1 Assembly of the Sanger and 454/Roche data 

Since Sanger and 454/Roche datasets contained long reads but in small to medium-sized numbers, I 

decided to assemble these reads with the overlap-layout-consensus approach, which makes optimal 

use of the available sequence data. Three different tools which employ this approach were tested for 

the assembly of transcriptome data: TGICL, Newbler and PAVE (see methods, 2.3.1, for parameters 

and references). The metrics of the three assemblies are summarised in Table 3. 
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Table 3: Transcriptome assembly metrics. 

 First assembly* Second assembly† 

 TGICL Newbler PAVE Iterative assembly procedure 

Datasets 
Sanger, 

454/Roche 

Sanger, 

454/Roche 

Sanger, 

454/Roche 
PAVE contigs, Solexa/Illumina 

Number of contigs (≥ 300 bp) 134,225 141,973 118,795 213,621 (+80%) 

Total contig length 85.1 Mb 78.1 Mb 86.9 Mb 252.9 Mb (+192%) 

     

Median length 474 bp 434 bp 495 bp  

Mean length 634 bp 549 bp 731 bp 1,183 bp (+62%) 

Maximum length 9,221 bp 7,841 bp 9,241 bp 64,116 bp (+594%) 

     

Number of large contigs (≥ 1 kb) 15,516 11,756 23,534 79,035 (+235%) 

Total length/Fraction of large 

contigs 
24.9 Mb / 29% 19.1 Mb / 24% 38.3 Mb / 44% 183.0 Mb / 73% (+378%) 

     
 

*Results of the three assembly programs that were tested for the Sanger and 454/Roche data (‘First assembly’). †Subsequent assembly of 

the Solexa/Illumina data onto the PAVE contigs using the iterative assembly procedure outlined in methods, 2.3.2 (‘Second assembly’). 

 

Evaluation of the three assemblies gave the following results: The Newbler assembly was 

last in all metrics, and therefore it was considered inferior to the other two assemblies generated by 

TGICL and PAVE. The TGICL assembly was slightly better, especially in maximum length and 

number of large contigs. The best assembly was produced by PAVE. This program generated the few-

est contigs with the highest total contig length, and the largest mean, median and maximum contig 

length. In particular, the number and fraction of large contigs (≥1 kb) was much higher when 

compared with the Newbler and TGICL assemblies, and these contigs already made up a 

considerable fraction of the assembly. Furthermore, when comparing the contig length distributions of 

all three assemblies, PAVE provided the most contigs in almost each length bin; this was especially 

evident for larger contig lengths (Figure 6). To conclude, PAVE produced the best assembly of the 

available Sanger and Roche/454 data and, therefore, I chose this assembly as backbone for the second 

step, the integration of the Solexa/Illumina data. 
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Figure 6: Contig length 

distribution of the Sanger 

and 454/Roche assemblies. 
Contigs are sorted according to 

their length in bins of 500 bp. 

Three different tools were used 

for assembly: TGICL (black), 

Newbler (ochre) and PAVE 

(blue). 

 

3.1.2.2 Assembly of the Illumina/Solexa data 

The Solexa/Illumina sequencing output was magnitudes larger than that of Sanger and 454/Roche, 

and, assembly required a different strategy to efficiently handle these large datasets. First and 

foremost, switching to the CLC Assembly Cell, a tool based the new de Bruijn graph approach, 

enabled an effective assembly within reasonable run times. Moreover, rather than processing all data 

in one assembly, the individual datasets were iteratively assembled onto the contigs of the most recent 

assembly; starting with the PAVE assembly of the Sanger and 454/Roche data (the iterative assembly 

procedure is outlined in the methods, 2.3.2). Thus, the successive integration of the Solexa/Illumina 

libraries extended existing contigs, and added new contigs to the assembly. Overall, these measures 

allowed an efficient integration of the available Solexa/Illumina data. 

The iterative assembly procedure started with the Sanger and Roche/454 assembly generated 

by PAVE, which contained 118,795 contigs with a total length of 87 Mb. During integration of the 

individual Solexa/Illumina libraries, mean and maximum contig length as well as the number of large 

contigs improved continuously and considerably (Figure 8). After integration of all available 

Solexa/Illumina libraries, both number of contigs and total length were extensively increased, and the 

final assembly contained 213,621 contigs (+80%) with a total length of 253 Mb (+192%). The mean 

and maximum length of these contigs accounted for 1,183 and 64,116 bp, respectively, which 

represented a substantial improvement compared to the initial PAVE assembly. 
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Figure 7: Progress of the iterative assembly of Solexa/Illumina libraries. 
Assembly metrics were recorded for the starting PAVE assembly and all Solexa/Illumina 

library iterations. Mean and maximum contig length, and the number of large contigs 
(≥ 1kb) improve continuously and considerably. 

It should be noted that these metrics are already close to those recorded for transcriptomes of 

other fish species. For example, the mean and maximum length of the medaka transcripts available in 

Ensembl (Flicek et al. 2011) account for 1,550 and 78,426 bp, respectively. Generally, compared to 

the PAVE assembly, the new assembly contained more very large contigs, that is, with lengths from 10 

up to 64 kb (Figure 8).  

Furthermore, the assembly also contained a much higher number of contigs larger than 1 kb, 

which made up almost 72% (183 Mb) of the total assembly. Again, when relating to the mean 

transcript length of 1,550 bp in medaka, the high fraction of these contigs suggested that many 

N. furzeri transcripts were almost half or even fully represented by a contig. Thus, in summary, the 

Solexa/Illumina libraries largely contributed to the generation of the final N. furzeri transcriptome 

assembly (Table 3). 
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Figure 8: Contig length 

distribution before and 

after integration of the 

Solexa/Illumina data. 
Contigs are sorted according to 
their length in bins of 200 bp. 

Black bars show the Sanger and 

454/Roche assembly generated 

by PAVE. Ochre bars show the 

final transcriptome assembly 
after successive integration of 

the Solexa/Illumina data. 

 

3.1.2.3 Validation of the assembly 

The N. furzeri transcriptome assembly provides valuable sequence information for further analyses 

and experiments. However, this means that the assembled transcript contigs will have a major impact 

on future analyses. Therefore, it is essential to evaluate the quality of the assembly to avoid the intro-

duction of potential biases into present and/or future results. In the case of the N. furzeri transcriptome 

assembly, a first concrete example for a potential bias was observed in the contig length distribution 

which showed several unexpected peaks at different lengths. In the following, this artefact is discussed 

in more detail. Moreover, I analysed the contribution of each sequencing technology to the assembly 

and evaluated the contig quality by comparing them against a reference sequence. Last, contamination 

from different external sources, a common problem, is assessed. These analyses should give more 

insight into the quality of the N. furzeri transcriptome assembly. 

3.1.2.3.1 Analysis of an assembly artefact 

 Usually, transcriptome assembly produces many short and medium-sized contigs, and relatively few 

long contigs. For this reason, the contig length distribution of the assembly typically resembles a bell-

shaped curve that is skewed to the right side of the figure. This was also true for the N. furzeri 

transcriptome assembly, however, a closer examination of the rather smooth contig length distribution 

revealed an unexpected excess of contigs with lengths around 2 kb. Additionally, at least three other 

peaks could be observed at 3.7, 5.4 and 7.1 kb (Figure 9). These peaks indicated a potential assembly 

artefact which had to be examined in more detail before continuing with the annotation of the 

transcript contigs. 
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Figure 9: Unexpected peaks in the contig length distribution. 
The contig length distribution reveals four unexpected peaks at 2, 3.7, 5.4 

and 7.1 kb, which indicate putative assembly artefacts. 

 

Concerning the origin of these unexpected peaks, I noticed that the first peak at 2 kb coincided 

with the fragmentation step used in the iterative assembly procedure. In this step, contigs are split into 

2 kb-pieces with a 300 bp-overlap and then re-assembled with relaxed parameters to further join and 

extend contigs (see methods, 2.3.2). Contig pieces which were not re-assembled might have 

accumulated and thus contributed to the 2 kb peak. Respectively, the distance between the four peaks 

accounted for 1.7 kb, which equals to fragment length minus overlap. This observation suggested that 

the other three peaks also originate from the fragmentation procedure. The 3.7 kb-peak, for example, 

might contain contig fragments built from two 2 kb-pieces with a 300 bp-overlap. Thus, I hypothe-

sised that these peaks represent a decent fraction of the artificial 2 kb-pieces which could not be 

extended by the assembler due to repetitive motives at one (resulting in the 3.7, 5.4 and 7.1 kb peaks) 

or both ends (2 kb peak). 

To further investigate this question, all 2 kb-contigs (9,033; 7%) were compared against the 

remaining transcript contigs. If these contigs indeed originated from the fragmentation process, they 

would show at least partial overlaps to any of the other contigs. Almost all 2 kb-contigs (9,026; 99%) 

showed significant hits (BLASTn, e-value ≤ 10-60). The average overlap length and sequence identity 

of 379 bp and 97%, respectively, supported the assumption that these contigs originated from the 

fragmentation procedure in which a 300 bp-overlap was used. Moreover, of the contigs with hits, the 

large majority (8,793; 97%) also showed multiple hits, with an average of 18 hits per contig. These 

findings supported the assumption that the unusual peaks represent artificial 2 kb-pieces which could 

not or only partially be extended. 
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A number of possible explanations which might explain the failed extension of the split 

contigs can be thought of. Repeat-rich sequences, for example, are typically difficult to assemble and 

often result in contig fragmentation. However, the 2 kb-contigs did not show an elevated repeat 

content, compared to the overall transcriptome assembly (12% vs. 15%). Another explanation could be 

that these contigs originated from abundant transcripts. Higher read coverage, especially from 

Solexa/Illumina sequencing, causes more sequencing errors, which, in turn, can cause contig breaks 

during assembly. Indeed, when evaluating the Solexa/Illumina coverage (see below), the 2 kb-contigs 

were, on average, covered by more than twice as many reads, compared to the remaining transcript 

contigs (243 vs. 117 reads). Apparently, the majority of 2 kb-contigs represented transcripts with a 

high coverage, which might be problematic for transcriptome assembly. 

3.1.2.3.2 Contribution of the different sequencing technologies to the assembly 

The N. furzeri transcriptome assembly was built from a number of read datasets, which, depending on 

the applied sequencing technology, differed widely in read length and throughput and therefore, 

contributed to the assembly to different extents. However, these differences might lead to an assembly 

that is biased towards a single sequencing technology. For example, the longer reads of Sanger and 

454/Roche sequencing might result in more full-length transcripts, compared to transcripts assembled 

from short Solexa/Illumina reads. This may have consequences for further down-stream analyses. For 

example, during transcript quantification using RNA-seq, longer transcripts are covered by more 

reads, which, in turn, result in higher transcript levels. Consequently, transcript levels would be biased 

by the sequencing technology used for assembly. To quantify the impact of the three different 

sequencing technologies in more detail, I assessed the contribution of each technology to the total 

contig consensus of the assembly. 

For a thorough analysis of the sequencing coverage, transcriptome reads of all three 

technologies were mapped (Sanger and 454/Roche with Newbler; Solexa/Illumina with BWA (Li & 

Durbin 2009)) onto the contigs of the final transcriptome assembly. As a result, the vast majority of 

reads were mapped successfully (Sanger: 99%, 454/Roche: 92%, Solexa/Illumina: 97%), which 

suggested that the large majority of reads were actually used during assembly. Sanger, 454/Roche and 

Solexa/Illumina reads covered about 20, 56 and 237 Mb, respectively, of the 253 Mb total contig 

length. However, only 1 and 7 Mb was covered exclusively by Sanger and 454/Roche reads, 

respectively. In contrast, over 178 Mb of the total transcriptome assembly was covered solely by 

Solexa/Illumina reads, which shows the large contribution of the Solexa/Illumina technology to the 

assembly. 

3.1.2.3.3 Evaluation using a set of medaka proteins as reference 

While a number of metrics exist which evaluate the quality of a genome assembly, only a few have 

been proposed for transcriptome assembly, and only recently (Martin & Wang 2011). Moreover, these 

metrics rely on the availability of a reference, usually an already sequenced genome or a set of 
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transcripts, against which the assembled transcript contigs can be compared and evaluated. In the case 

of the N. furzeri transcriptome assembly, genome information was not available for most of the project 

duration, and only a few transcripts had already been fully sequenced. Therefore, medaka protein 

sequences served as substitute reference for an evaluation of the N. furzeri transcriptome assembly. 

Medaka is the closest relative with a sequenced genome, and protein sequence conservation between 

medaka and N. furzeri is on average high enough to allow for a meaningful comparison. 

Medaka protein sequences from Ensembl served as reference for a basic evaluation of the 

N. furzeri transcriptome assembly. To avoid misinterpretation due to annotation errors in medaka, the 

set of protein sequences was limited to 1,750 entries with experimental support (Ensembl category 

known). The remaining entries, which are derived from BLAST projection and computational gene 

prediction, were excluded from the analysis. Altogether, 13,451 N. furzeri transcript contigs showed 

significant overlaps (BLASTx, e-value ≤ 10-20) against 1,290 medaka protein sequences (74%). This 

result implied that the transcriptome assembly already contained transcript contigs for the large 

majority of the protein sequences. More importantly, 74% of the protein sequences with hits were 

nearly completely covered by transcript contigs, that is, more than 90% of their length was hit. More-

over, for 67%, a single transcript contig was sufficient to achieve this coverage. Thus, it is reasonable 

to assume that many N. furzeri transcripts are already fully recovered by the transcriptome assembly. 

The large number of transcript contigs indicated that a certain fraction of transcript contigs are 

actually fragments. The medaka protein sequences allowed assessing the degree of fragmentation of 

the N. furzeri transcriptome assembly in more detail. Fragmentation occurred at different regions of 

the medaka protein. In only 13% of all cases, the N. furzeri transcript contigs reached the N-terminus 

of the protein (within a tolerance of three amino acids). A similar fraction was found for the C-

terminus (16%). For most of the proteins, the respective transcript contigs did not reach the N- or the 

C-terminus at all (64%). In only 7%, a transcript contig spanned the complete protein and additionally 

included untranslated regions (UTR). 

Alternatively to fragmentation, transcript contigs can be redundant, meaning two or more 

contigs partially align to the same protein sequence. This was observed for the majority of the matched 

medaka protein entries. Over 92% of the total concatenated sequence was hit by at least two 

overlapping N. furzeri transcript contigs (nine contigs on average). Thus, it was reasoned that the 

N. furzeri transcriptome assembly contained multiple transcript contigs for the majority of genes. 

Finally, the medaka proteins also allowed assessing the rate of putative chimeric transcript 

contigs in the N. furzeri transcriptome assembly. Chimeric transcript contigs derive from two different 

transcripts and usually indicate potential assembly errors. A chimeric N. furzeri transcript contig was 

required to have two non-overlapping hits to different medaka proteins which meet the following 
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criteria: e-value ≤ 10-20, coverage of both protein hits ≥ 75% and identity ≥ 50%. According to this 

definition, 43 out of 13,451 (0.3%) transcript contigs were considered chimeric. 

3.1.2.3.4 Analysis of contamination 

Contamination can be inherent to the sequenced organism, such as undigested food or parasites, or is 

accidentally introduced during sample preparation in the laboratory. Unfortunately, during annotation, 

contigs derived from contamination may be mistaken for transcripts of the original sample and have to 

be excluded in advance. Therefore, tBLASTx (e-value ≤ 10-20) compared all transcript contigs against 

a special database which contained both fish-specific protein-coding transcripts from Ensembl as well 

as non-fish transcripts from RefSeq (Pruitt et al. 2005). A contig was considered as contamination if 

and only if the best tBLASTx hit identified a non-fish species and the e-value of the next fish-specific 

hit was at least 10 orders of magnitude higher. This definition ensured that the transcript contig indeed 

originated from contamination instead from N. furzeri. 

BLAST analysis marked 3, 961 of the 213,621 transcript contigs as putative contamination; 

these made up 2% (4 Mb) of the total transcriptome assembly. The contigs were rather small; the 

median length was 531 bp. The comparable median overlap length of 394 bp indicated that most 

contamination overlaps covered almost the complete transcript contig. However, mean overlap identity 

was only 64%. This might be explained by the limited representation of potential contamination 

species in the database which, naturally, cannot contain all contaminations common for N. furzeri. 

Consequently, the BLAST hits may not have identified the actual contaminating species but rather 

another, more distantly related species. 

BLAST analysis identified most contigs as mammalian origin (1,576 contigs), especially 

human and chimp (Pan troglodytes), which hinted at a certain degree of contamination in the 

laboratory. Another group of 1,493 contigs contained invertebrate species. These included the purple 

sea urchin (Strongylocentrotus purpuratus) and the fresh water polyp (Hydra magnipapillata), which 

are both common aquatic animals. The third largest group of contaminating contigs related to plant 

species (582 contigs). Here, the common grape vine (Vitis vinifera) and the castor oil plant 

(Ricinus communis) were among the most frequently hit species. 

To summarise, a specifically designed BLAST procedure tagged 3,961 contigs as putative 

contamination. These contigs most likely represented sequences from species which were introduced 

as by-products during sample and library preparation, and thus they were excluded from further 

analysis. The remaining 209,660 contigs (249 Mb) constituted the final N. furzeri transcript catalogue 

available for subsequent annotation. 
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3.1.3 Annotation of the transcript catalogue 

3.1.3.1 BLAST similarity searches 

Annotation of the N. furzeri transcript catalogue started with a series of BLAST similarity searches 

against known protein and nucleotide sequences collected from several databases (methods, Table 1 in 

2.4.1). Most importantly, these included (i) Ensembl protein and (ii) protein-coding transcript 

sequences of medaka, stickleback, tetraodon and zebrafish, which are the closest relatives of N. furzeri 

with a sequenced genome. Additional annotation databases contained (iii) human protein sequences 

from RefSeq and from two large multi-species protein collections, (iv) UniProt (Boeckmann et al. 

2003) and the (v) NCBI non-redundant protein database nr (National Center for Biotechnological 

Information 2011). Finally, (vi) fish-specific ESTs from the NCBI UniGene database (Pontius et al. 

2003) were also included, to complement annotation. Depending on the respective database, different 

BLAST searches with individual parameters and hit thresholds were conducted (Supplementary Table 

2). The resulting BLAST hits are summarised in Table 4. 

Table 4: BLAST results used for the annotation of the N. furzeri transcript contigs. 

Database Contigs hit Database entries hit Mean identity Database entries used Annotated contigs 

Ensembl fish proteins 98,941 38,355 73% 37,739 (81%) 92,857 (85%) 

Ensembl fish transcripts 98,099 39,301 77% 1,369 (3%) 3,690 (3%) 

Refseq human proteins 80,671 18,071 61% 305 (1%) 497 (1%) 

UniProt 98,053 42,361 71% 2,643 (6%) 3,425 (4%) 

NCBI nr proteins 96,548 41,500 71% 956 (2%) 1,450 (1%) 

NCBI UniGene 
transcripts 

107,901 36,593 77% 3,206 (7%) 7,113 (6%) 

Total 122,177   46,218 (100%) 109,032 (100%) 
 

 

In total, BLAST identified database hits for 122,177 (58%) of the 209,660 contigs in the 

N. furzeri transcript catalogue. These transcript contigs had a considerable higher mean length 

(1,604 bp), compared to contigs without hits (600 bp). Most hits were found for databases with fish-

specific sequences, that is, the NCBI UniGene database, and the Ensembl fish protein and protein-

coding transcript databases. The two large protein collections UniProt and NCBI nr did have slightly 

less hits, which confirmed the comprehensive fish-specific sequence resources of the NCBI UniGene 

and Ensembl databases. Expectedly, human protein sequences from RefSeq obtained the fewest hits. 

Generally, hit numbers were comparable between the databases. A set of 75,091 (36%) transcript 

contigs showed hits to all six databases. In contrast, only 16,256 (8%) transcript contigs had hits to just 

one single database. Overall, these findings indicated that the obtained BLAST results may serve for a 

reliable and comprehensive annotation of the N. furzeri transcript catalogue. 
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3.1.3.2 Transcript contig annotation based on BLAST results 

Prior to annotation, BLAST hits were filtered. Subsequently, for each N. furzeri transcript contig, the 

best BLAST hit constituted its annotation. That way, 109,032 (52%) of the 209,660 transcript contigs 

obtained protein-coding gene annotations from 46,218 different database entries of all six BLAST 

databases (Table 4). Fish-specific protein and protein-coding transcript sequences from Ensembl and 

NCBI UniGene, which presumably cover almost all known fish genes, contributed over 90% of all 

annotations. This was corroborated by the small percentage of transcripts which were additionally 

annotated by the large protein collections UniProt and NCBI nr as well as by the curated human 

protein sequences from RefSeq. To conclude, the N. furzeri transcript catalogue contained contigs 

annotated by 46,218 protein and protein-coding transcript entries (Figure 10). 

The difference between the annotated transcript contigs (109,032) and the database entries 

used for annotation (46,218) indicated that, in several cases, a single database entry annotated multiple 

contigs. Indeed, this was observed for about half of all database entries (21,728) which were hit by 

multiple transcript contigs (in total 87,304), with an average of four transcript contigs per database 

entry. These database entries presumably represented N. furzeri transcripts which, due to assembly 

problems, were represented by multiple contigs. As shown in the comparison against the set of 

medaka protein sequences (3.1.2.3.3), the likely cause was the high redundancy of the assembly. 

However, transcript fragmentation also contributed a decent fraction to the large number of multiple 

transcript contig per database entry. 

The BLAST approach assigns features to contigs by searching for sequence similarities to 

annotated sequence databases. The obtained hits, which are used for annotation, represent mostly 

protein or protein-coding transcripts entries, depending on the type of database. However, for the sake 

of convenience, protein and protein-coding transcript entries identified in the transcript catalogue are 

from now on both generally referred to as (protein-coding) transcripts. 

As already demonstrated, the N. furzeri transcript catalogue contained contigs representing 

46,218 protein-coding transcripts. Since there are approximately 20,000 protein-coding genes in 

common fish genomes, and presumably also in N. furzeri, it was reasonable to assume that a number 

of transcript contigs derived from the same gene. Thus, gene symbols were assigned to transcript 

contigs based on the available gene information of the database entry used for annotation. For 

example, when using an Ensembl protein sequence for the annotation of a transcript contig, the 

Ensembl database also provides a gene symbol, which can then be assigned to the transcript contig. 

Assigned gene symbols grouped the 46,218 transcripts of the N. furzeri transcript catalogue into 

19,875 protein-coding genes. 

Since the N. furzeri transcript catalogue covered 46,218 transcripts for 19,875 protein-coding 

genes, it can be assumed that several genes were represented by transcript isoforms. In total, for about 
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half of all N. furzeri genes (10,392/52%), transcript isoforms were found, with three isoforms per gene 

on average. Interestingly, this would suggest that almost 80% (46,218-(19,875+10,392)) of the 

transcripts found in the N. furzeri transcript catalogue are actually isoforms. 

 

Figure 10: Schematic representation of the annotation process. 
The annotation process of N. furzeri transcript contigs (TC) relied on BLAST hits to databases with protein (P) or protein-coding 

transcript sequences (T), followed by the assignment of gene symbols (G). In this example, TC1-TC5 and TC6-TC8 show BLAST 
hits to the database entries P1-P4 and T1-T2, respectively. Note that TC2 and TC3 share the same protein sequence (P2), and, 

therefore, they are derived from the same N. furzeri transcript. This also applies for TC7 and TC8. Subsequently, gene symbols are 

assigned to transcript contigs based on available gene information. Here, TC4 and TC5 share the same gene symbol (G3), and, 
therefore, they represent alternative transcripts of the same N. furzeri gene. Eventually, of the 209,660 contigs in the transcript 

catalogue, 109,032 contain sequence information for 46,218 N. furzeri transcripts coding for 19,875 protein-coding N. furzeri genes.  

 

3.1.3.3 Transcript contig annotation based on protein domain prediction 

So far, annotation relied completely on sequence similarity searches with BLAST against databases of 

protein and protein-coding transcript sequences known from other, related species. Of course, this 

strategy requires that these databases contain as many sequences as possible, and that they are also 

present in N. furzeri, having a sufficiently high conservation. However, transcripts that are very 

divergent or even exclusive to N. furzeri will be presumably missed by the BLAST annotation. 

BLAST based annotation identified only 109,032 (52%) of the 209,660 assembled transcript contigs. 

Thus, prediction of conserved protein domains was done to extend the annotation. Therefore, it was 

necessary to translate the transcript contigs into putative protein sequences. 

The identification of the particular protein sequence encoded by the transcript contig is not 

straightforward since the contig contains, besides the CDS, also UTR at its ends. Thus, the encoded 

protein does not necessarily start at the beginning of the transcript contig. Moreover, transcript contigs 

can contain assembly errors, for example small insertion or deletions, which may disrupt the reading 

frame or result in a premature stop codon. Therefore, the correct CDS has to be identified beforehand, 
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which is commonly done by searching for the open reading frame (ORF) which contains the encoded 

protein. 

Transcript contigs were translated with prot4EST (Wasmuth & Blaxter 2004), which 

integrated BLAST searches against medaka proteins and predictions with ESTScan (Iseli et al. 1999) 

to find the correct ORF and CDS. For 94,814 (45%) of the 209,660 analysed transcript contigs, a 

BLAST hit against a medaka protein identified the likely CDS. Subsequently, ESTScan predicted 

probable CDS for 69,118 (33%) of the remaining contigs without BLAST hits. Last, the pipeline 

simply searched for the longest transcript sequence uninterrupted by a stop codon, which suggested 

potential CDS for additional 45,617 (22%) transcript contigs. Translation into amino acids yielded in 

total 209,549 putative protein sequences, with an average length of 210 aa. Over 65% of these had a 

minimum length of at 100 aa. Interestingly, of the 109,032 transcript contigs without annotation, the 

large majority (98,252; 90%) had predictions for putative protein sequences. However, there was a 

considerable difference in the length of the predicted protein sequence between annotated and 

unannotated transcript contigs (307 vs. 119 aa).  

The putative protein sequences served as input for the identification of conserved protein 

domain motifs with the HMMER package (Eddy 2012). In total, 37,380 (18%) protein sequences 

showed significant (e-value ≤ 10-20) matches to 3,869 protein domains maintained in the Pfam 

database (Punta et al. 2011), which is a large collection of protein families with shared domains. 

Common domain motifs included protein kinase (Pkinase, 1,529 hits), tyrosine kinase (Pkinase_Tyr, 

1,378 hits) and rhodopsin-like receptors (7tm_1, 591 hits). Protein domain predictions were then used 

to extend the annotation of the transcript catalogue. However, only five additional transcript contigs 

were annotated by this approach. Based on the corresponding protein domains, they were identified as 

an alanine racemase (Ala_racemase_N), an alcohol dehydrogenase transcription factor 

(MADF_DNA_bdg), an ubiquitin-activating enzyme (UBA_e1_C), a gap junction protein 

(Neuromodulin_N) and a transmembrane ion channel protein (Ion_trans). 

3.1.3.4 Completeness of the transcript catalogue 

Naturally, assembly of a transcript catalogue aims at identifying and reconstructing transcripts from as 

many genes as possible. Ideally, this results in transcript sequences for every gene that is expressed at 

a specific level under defined conditions. Furthermore, the transcripts should be assembled as 

complete as possible, that is, for example they encode not only the complete protein but also contain 

both UTR. Depending on the success in these two criteria, it might be necessary to produce more 

sequencing data, preferably from different individuals or tissues, to identify additional and extend 

existing transcripts. For N. furzeri, the identification of transcripts and genes during annotation 

allowed for a thorough estimation of the completeness of the transcript catalogue. 
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Annotation identified 19,875 protein-coding genes represented in the N. furzeri transcript 

catalogue. Gene numbers in related fish species with a sequenced genome lie between 19,602 for 

tetraodon, the fish species with the smallest genome (Jaillon et al. 2004), and 26,206 genes for 

zebrafish, the fish species with the largest genome (Howe et al. 2013). Moreover, as will be 

extensively described in 3.2, comparisons against protein sequences of medaka, stickleback, tetraodon 

and zebrafish found homologous N. furzeri transcript contigs for the majority of sequences of the 

respective species. This suggested that the N. furzeri transcript catalogue contains the majority of 

genes commonly found in fish species. 

However, because the comparison of gene numbers relied on the sequences from the four 

model fish species, it could be biased towards the quality of the respective genome annotation. For 

example, several genes are only inferred from gene model prediction without any real sequence 

confirmation. Therefore, I additionally evaluated the number of gene families present in the transcript 

catalogue. Gene families are groups of genes which are evolved from common evolutionary ancestor 

by duplication and speciation (see also 3.2.2). The number of gene families per species does not 

change much between species and therefore it is better suited to estimate completeness. Gene family 

information was obtained from the Ensembl Compara database (Vilella et al. 2009), which describes 

such families and their evolution as phylogenetic gene trees. Here, zebrafish had the highest number of 

gene families (8,241), followed by stickleback (7,663), medaka (7,501) and tetraodon (7,261). Based 

on the BLASTx results against these species (see 3.2.1), I identified 7,489 gene families hit by at least 

one N. furzeri transcript contig. Moreover, for 85% (6,428 families), at least one of the four model fish 

species shared the same number of genes per family. These results further emphasised a completeness 

of the provided transcript catalogue comparable to that of model fish species for which an annotated 

genome is available. 

Besides gene representation, the completeness of the N. furzeri transcript catalogue was also 

evaluated by analysing the amount of CDS that is translated into the respective protein. However, in 

the case of the transcript catalogue, genes were represented by multiple redundant and fragmented 

transcript contigs, which shared parts of the CDS. This redundancy made estimating the CDS for a 

gene rather difficult. Therefore, only the longest transcript contig per gene was considered for the 

calculation of the CDS. Of the 19,875 identified N. furzeri genes, 14,164 (71%) were represented by a 

transcript contig with an almost complete CDS (Figure 11), that is, the contig covered >90% of the 

database entry used for its annotation. Moreover, when setting a minimum CDS coverage of 50%, the 

gene number increased to 16,961 (85%). The findings suggested that the transcript catalogue 

contained complete CDSs for the large majority of N. furzeri genes. 
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Figure 11: Fractions of putative 

CDS represented in the longest 

transcript contig per N. furzeri 

gene. 
For each gene, the CDS of the longest 
transcript contig was determined, and 

predicted CDS fractions were binned 

into deciles. The histogram bars show 
the number of respective transcript 

contigs (genes) per decile. The line 

shows the cumulative number. More 
than 70% of the protein-coding genes 

are represented by a transcript contig 

with a complete (> 90%) CDS. 

 

CDS lengths generally differ largely between genes. Consequently, the previous CDS 

estimation may be biased towards genes with smaller CDS because they are more likely to be 

complete. In other words, the 71% calculated above may be simply reflecting a high fraction of small 

N. furzeri genes. Therefore, I conducted a second analysis based on the total CDS length summed over 

all genes. As above, only the longest transcript contig was analysed for each gene. Altogether, the 

overall CDS of these contigs covered 29 Mb (83%) of the 35 Mb estimated from the database entries 

used for annotation. Furthermore, compared to the four model fish species, the N. furzeri transcript 

catalogue represents 74% of zebrafish and 99% of medaka annotated CDS. In summary, besides 

identifying the large majority of protein-coding genes and transcripts, the N. furzeri transcript 

catalogue also reconstructed most of the CDS in the transcripts. 

3.1.3.5 Functional annotation with Gene Ontology 

While transcriptome assembly and annotation identified the individual transcript contigs with 

associated gene symbols, GO terms gave a more general overview of the different biological functions 

encoded in the N. furzeri transcript catalogue. Since protein product descriptions may differ between 

databases and thereby inhibit effective grouping of similar biological functions, GO attempts to 

develop controlled vocabularies, also called ontologies, to describe gene products consistently across 

species. Thereby, GO characterises a gene by assigning GO terms in three different domains: the 

biological process (BP), the molecular function (MF) and the cellular component (CC). The resulting 

GO classification of the N. furzeri transcript catalogue allowed analysing complete groups of genes 

with shared biological functions instead of single selected genes. 

GO terms were copied from the database entries used for transcript contig annotation, that is, 

from Ensembl and UniProt entries. The current ontology (OBO v1.2, 27/07/10) contained 32,901 

different GO terms in all three domains. Of 109,032 annotated transcript contigs, 76,013 (72%) were 
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linked to 340,452 GO counts, that is, counting all occurrences of GO terms. MF represented the largest 

class of assignments (166,476 GO counts/70,305 contigs), followed by BP (108,336/49,972) and 

CC (65,640/40,551). After removing redundant counts, 6,796 unique GO terms were identified, which 

constituted the set of biological functions in the transcript catalogue. 

The identified GO terms provided descriptions of biological functions down to the smallest 

detail. To obtain a broader overview, observed GO terms were mapped to 131 GO-Slim terms which 

are a subset of GO terms and provide high-level functional annotation without the detailed specific 

fine grained terms. Furthermore, to avoid redundant counts due to multiple transcript contigs per 

genes, only the longest contig per gene was considered. In total, 137,683 GO-Slim hits were assigned 

to 15,040 (76%) transcript contigs representing 124 unique GO-Slim terms. Most frequent terms 

among the three GO domains were metabolic process (6,108 contigs, BP), binding (10,567 contigs, 

MF) and cell (7,668 contigs, CC). Figure 12 shows the distribution of the 56 GO-Slim terms present at 

the second level of the GO-Slim annotation tree; these provide the most general descriptions next to 

the three first-level GO-Slim terms biological process, molecular function and cellular component.  

 

Figure 12: Functional annotation of the longest N. furzeri transcript contigs per gene based on second-level GO Slim terms. 
A) Biological process, B) Molecular function and C) Cellular component. In total, for 15,040 (76%) N. furzeri genes, 60,201 second-level GO-Slim 
annotations were counted. These cover 54 of the 56 unique second-level GO Slim terms. The two missing second-level GO Slim terms are thylakoid 

and nutrient reservoir activity. 
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Taken together, GO-Slim terms provided a condensed overview of the Gene Ontology 

annotations assigned to transcript contigs. Moreover, almost all GO-Slim terms were covered by at 

least one N. furzeri transcript contig thereby showing that the transcript catalogue contained genes for 

almost all currently annotated biological functions. 

3.1.3.6 Analysis of the remaining transcript contigs without annotation 

Annotation could be assigned to only 52% of all assembled N. furzeri transcript contigs but another 

100,628 (63 Mb) contigs remained unannotated; of these, 12,890 (13%) were larger than 1 kb. 

Although library preparation and sequencing can produce sequence artefacts, which might be 

assembled as contigs, they cannot explain the large number of transcript contigs without annotation. 

Several possible explanations might provide deeper insights into the nature of these transcript contigs. 

First, a number of transcript contigs probably consist mostly of UTR. However, without a 

genome, this is difficult to validate. UTR are less conserved between species and therefore sequence 

comparison against distantly related species often fails. Also, there are no special UTR characteristics 

that can be searched for. Nevertheless, some indirect evidence could be found that supported this 

assumption. In a large number of unannotated transcript contigs (70,357; 70%), predicted CDS 

fragments were located near the ends of the contig, and the remaining sequence presumably 

represented either 5’ or 3’ UTR. Generally, the average CDS length of the unannotated transcript 

contigs was also much smaller, compared with the average CDS length of the annotated transcript 

contigs (356 vs. 883 bp). As a result, the contigs did not contain enough CDS to find BLAST hits in 

other sequence databases and remained unannotated. Additionally, 1,275 (1%) contigs had poly(A)-

stretches at one end, which are commonly added to the poly(A)-site of the 3’UTR. Moreover, for 

448 of these contigs, a polyadenylation signal (AAUAAA or one of ten related variants, Ulitsky et al. 

2012) was found within a 30 bp region upstream, suggesting that that these contigs might have derived 

from UTR. 

Second, several transcript contigs might have derived from dispersed repeats which can 

contain cryptic ORFs that are still being transcribed. A RepeatMasker (Smit et al. 1996) search 

with a library of N. furzeri-specific repeats identified in genomic sequence (Reichwald et al. 2009) 

found repetitive elements in 53,107 (53%) unannotated transcript contigs. Many hits were only partial, 

but in 21,341 (21%) contigs, repetitive elements made up at least half of the entire sequence. In 5,895 

(6%) transcript contigs, repetitive elements covered the complete sequence (over 90%). Common 

repeat elements in transcript contigs included DNA transposons (6,542 contigs), short and long 

interspersed nuclear elements (3,302 and 4,791) and long terminal repeat retrotransposons (1,028). 

However, for the majority of transcript contigs (47,419), the origin of the repetitive sequence could not 

be determined. 
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Third, some transcript contigs might have derived from other RNA species such as rRNA, 

tRNA or other non-protein-coding RNAs. Although library preparation involved a poly(A)-selection 

step, which enriches for mRNA, this step may not have completely removed other RNA species. 

However, BLASTn similarity searches against databases with representative rRNA and tRNA 

sequences (Quast et al. 2013; Chan & Lowe 2009) showed significant hits (e-value ≤ 10-10) for only 7 

and 24 transcript contigs, respectively. Additionally, some transcript contigs might represent precursor 

transcripts of miRNA. Similarly, a BLASTn search (e-value ≤ 10-10) against the database miRBase 

(Kozomara & Griffiths-Jones 2011) identified 984 transcript contigs as putative precursor sequences 

of annotated miRNA. 

Ultimately, definite identification of the unannotated transcript contigs requires a genome 

sequence. In 2012, a high-quality draft assembly of the N. furzeri genome was built by the Genome 

Analysis group at the FLI, which covers approximately 60% of the total sequence. Using BLASTn (e-

value ≤ 10-20), 95% of the 100,628 unannotated transcript contigs were successfully aligned to a 

genomic location. The very high average sequence identity of 98% indicates that these hits are true 

positives. Furthermore, over 54% of the contigs with hits were fully aligned, that is, the alignment 

covered at least 90% of the contig length.  

In summary, the large majority of the unannotated transcript contigs truly originate from 

transcribed regions of the N. furzeri genome. However, identifying the exact nature of these contigs is 

currently difficult and mostly speculative. Once the N. furzeri genome is fully assembled and 

comprehensively annotated, a more detailed analysis of these unannotated transcript contigs will be 

possible. 

3.1.4 Representation of the transcriptome data in a browser 

The N. furzeri transcript catalogue contains over 200,000 transcript contigs, for which, annotation 

produced large amounts of analysis data. Although the results are organised in a database, accessing 

them is almost impossible without programming skills. The EST2uni pipeline used for the annotation 

also provides a web interface which allows accessing the results within a normal internet browser. For 

the N. furzeri transcript catalogue, I installed and considerably improved the web interface, as 

described in the corresponding methods part. The resulting website, namely the Nothobranchius 

furzeri Information Network transcriptome browser (NFINtb, https://gen100.imb-

jena.de/EST2UNI/nfintb/), is publicly available and provides fast and easy access to the transcript 

catalogue (Figure 13). 

https://gen100.imb-jena.de/EST2UNI/nfintb/
https://gen100.imb-jena.de/EST2UNI/nfintb/
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Figure 13: The Nothobranchius furzeri Information Network transcriptome browser. 
  

 

3.2 Comparison to gene and transcript data of other fish species 

3.2.1 BLASTx against the protein sequences of other fish species 

Initially, I compared the N. furzeri transcript catalogue against the protein sequences annotated for the 

four fish species using BLASTx (Table 5). Of the 209,660 transcript contigs, 46% had significant 

BLAST hits (e-value ≤ 10-07) to at least one fish protein sequence. Interestingly, this number coincides 

well with the number of annotated transcript contigs in the transcript catalogue. Analysed by species, 

42% showed hits to zebrafish and medaka, 40% to stickleback and 38% to tetraodon. Regarding 

protein sequence conservation, average amino acid identities of BLAST hits ranged between 68% for 

zebrafish and 75% for stickleback, confirming values measured in previous species comparisons done 

for N. furzeri (Reichwald et al. 2009). 

Conversely, the fish protein sequences were generally well represented, that is, most were hit 

by at least one N. furzeri transcript contig. Only the results against zebrafish deviated slightly from this 

pattern since only half of the protein sequences were hit. Similarly, when counting the Ensembl gene 



Results Comparison to gene and transcript data of other fish species 

[55] 

entries that are associated with the protein sequences, over 80% of all medaka, stickleback and 

tetraodon genes were also found in N. furzeri. Again, for zebrafish, the number was slightly lower 

(71%). Nevertheless, these numbers suggested that N. furzeri shares the large majority of proteins and 

genes with the other four fish species. Moreover, they also supported the estimate of approximately 

20,000 genes present in N. furzeri transcript catalogue. 

A set of 73,238 (35%) transcript contigs showed hits to all four fish species (Figure 14), 

corresponding to approximately 16,000 genes. Most presumably, these genes are generally conserved 

between all four fish species and N. furzeri. Accordingly, average amino acid identities measured for 

this subset higher compared to overall values (medaka: 76% vs. 74%, stickleback: 77% vs. 75%, 

tetraodon: 75% vs. 74%, zebrafish: 70% vs. 67%). On the other hand, 8,175 transcript contigs (4%), 

corresponding to 2,902 genes, had hits exclusively in one species (Figure 14, Table 5). Average amino 

acid identities measured for these hits were lower compared to overall values (medaka: 56% vs. 74%, 

stickleback: 57% vs. 75%, tetraodon: 62% vs. 74%, zebrafish: 50% vs. 67%). These values suggested 

that the corresponding genes likely represent potential misannotations in this species. 

Table 5: BLASTx comparison of N. furzeri transcript contigs to the protein/gene annotations of four other fish 

genomes. 

 Medaka Stickleback Tetraodon Zebrafish 

Number of protein/gene 

entries annotated 
24,661 / 19,686 27,576 / 20,787 23,118 / 19,602 41,478 / 26,095 

     

Contigs with hits 87,378 84,761 79,594 87,219 

Protein/gene entries hit 
19,272 / 17,173 

78% / 87% 

20,534 / 17,795 

74% / 86% 

18,613 / 16,744 

81% / 85% 

22,669 / 18,620 

55% / 71% 

Average amino acid identity 73.5% 74.6% 73.7% 67.5% 

     

Contigs with hits exclusively 

in this species 
3,597 1,256 531 2,791 

Protein/gene entries hit 919 / 914 702 / 690 358 / 356 984 / 942 

Average amino acid identity 55.7% 57.0% 62.0% 49.5% 
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Figure 14: BLASTx comparison of N. furzeri 

transcript contigs to the protein/gene 

annotations of four other fish genomes. 
Venn diagram showing 96,106 (46%) N. furzeri 
transcript contigs with BLASTx hits to Ensembl protein 

annotations of the four fish genomes. A set of 73,238 

transcript contigs (35%) had hits in all four fish species, 
whereas 8,175 transcript contigs (4%) had hits 

exclusively in one species. 

 

3.2.2 Duplicated N. furzeri genes 

Gene duplication is considered as a major mechanism of evolution, and genes that originate from a 

duplication event are called paralogs. Genome duplication is a major source of gene duplication, and 

vertebrate genomes are believed to have undergone at least two rounds of whole genome duplication 

(Ohno 1970). Studies in teleost fish species showed that their genomes underwent an additional round 

of genome duplication (Amores et al. 1998; Taylor et al. 2003). Most of the original fish paralogs are 

lost during evolution. However, several genes which are found only once in vertebrates occur twice in 

fish species, that is, they are paralogs. For N. furzeri, the transcript catalogue provided the opportunity 

to assess the fraction of paralogous genes in more detail. This was done in two steps: Initially, I 

concentrated on genes which are also duplicated in other fish species, and then searched for genes 

which are duplicated exclusively in N. furzeri. 

First, identification of duplicated N. furzeri genes relied on sequence similarity searches 

against known paralogous genes of the four other model fish species medaka, stickleback, tetraodon 

and zebrafish. All relevant information was retrieved from the Ensembl Compara Database, which 

contains phylogenetic trees of genes across species (Figure 15A). To avoid redundant counts due to 

multiple transcript contigs per gene, only the longest transcript contig was selected and then compared 

against the Ensembl protein sequences of the four fish species. Of the 19,875 transcript contigs/genes, 

17,261 showed significant BLASTx hits (e-value ≤ 10-07) to a fish protein sequence. Subsequently, the 

Ensembl gene ID of the best hit was used to query the corresponding Ensembl Compara gene tree for 

paralogs of this gene. Thereby, analysis was limited to those genes which were duplicated as result of 

the teleost-specific genome duplication, that is, paralogs of the earlier genome duplications in 

vertebrates were not analysed. If any of the paralogs were hit by another N. furzeri gene, then the two 
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N. furzeri genes were considered as paralogs. Using this approach, I analysed 17,261 N. furzeri genes 

with BLASTx hits and identified 4,498 paralogous genes grouped in 2,148 paralog families (on 

average two paralogs per family, Supplementary File 2). Consequently, these families can be seen as 

representatives of the ancestral vertebrate genes, which remained duplicated since the teleost genome 

duplication. 

For further validation of the results, I selected the transcript contigs representing the putative 

N. furzeri paralogs annotated as SOX4A and SOX4B and constructed a phylogenetic tree based on 

protein sequence data from seven fish species; human, mouse and the Western clawed frog protein 

sequences were used as outgroup (Figure 15B). Indeed, the phylogeny resembles that of the 

corresponding Ensembl Compara gene tree of SOX4 (Figure 15A), and the fish-specific duplication 

node with its paralog sub trees is clearly visible. Thus, SOX4 is most likely also duplicated in 

N. furzeri. Moreover, this demonstrates the usability of the first approach to identify paralogous genes 

in the N. furzeri transcriptome. 

A 

 

B 

 

Figure 15: Analysis of putative N. furzeri paralogs using the Ensembl Compara gene trees. 
(A) shows the Ensembl Compara gene tree for the gene SOX4 in the currently sequenced fish species (light-blue shaded area). The tree 
contains a duplication node (in red) with the two sub trees for each copy of SOX4. (B) The SOX4 gene tree was independently reconstructed 

including the two paralogs found in N. furzeri. Again, the gene duplication node is clearly visible and each of the two sub trees contains one 

N. furzeri SOX4 paralog. Note that the notation for gene symbols of paralogs (for example 1 of 2) is officially used by Ensembl. 

 

Because the first approach relied on data about genes known to be duplicated in other fish 

species, it cannot find genes which are exclusively duplicated in N. furzeri. Moreover, sequence 

similarity searches like BLAST cannot discern between paralogs and will assign them a single gene 

symbol. Thus, some N. furzeri transcript contigs which, according to annotation, share the same gene 

symbol might represent in fact paralogous genes. Consequently, in the second approach, I searched 

those remaining non-duplicated genes which are represented by multiple transcript contigs for 
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indications of N. furzeri-specific paralogs. Therefore, I developed a clustering approach based on the 

protein sequence identities of the transcript contigs. For each gene, all transcript contigs were 

translated into putative protein sequences (see 3.1.3.3) and pairwise aligned. The protein sequence 

identities of these alignments were then clustered based on a minimum distance of 10% identity 

between each cluster. Different clusters then hinted at potential paralogs. For 1,249 genes, transcript 

contigs formed more than one cluster, corresponding to a total of 2,619 (on average two clusters per 

gene, Supplementary File 2). These clusters might represent paralogous genes which collapsed during 

BLAST annotation. They are exclusive to N. furzeri, at least when considering the four other fish 

species. 

Taken together, the results indicated that the current annotated N. furzeri transcript catalogue 

consists of 17,525 (19,875-4,498+2,148; see first approach) protein-coding genes when the paralogs 

are counted only once. This number most presumably reflects the set of protein-coding genes 

commonly found in all vertebrates. Consequently, of those genes, 19% (2,148+1,249, see first and 

second approach) showed evidences of multiplication, that is, they have fish-specific paralogs in 

N. furzeri. In other words, of the complete set of genes that resulted from the teleost genome 

duplication, about 19% can be still found in the N. furzeri transcript catalogue, whereas over 80% are 

either not transcribed anymore or even lost during evolution. Indeed, approximately, 90% 

(4,134+2,274) of the 7,117 (4,498+2,619) paralogs occurred as pairs. The remaining 709 (364+345) 

paralogs were grouped in 193 paralog families with 3 and more paralogs (average: 4 paralogs per 

family, maximum: 23). The higher paralog numbers in these families cannot be attributed to the teleost 

whole genome duplication but are presumably caused by subsequent segmental duplications or by 

assembly/annotation errors. 

3.3 Transcriptome changes in ageing N. furzeri 

3.3.1 Mapping of RNA-seq datasets 

RNA-seq experiments analyse transcript levels of genes by mapping transcriptome reads against a 

reference sequence, either an annotated genome or a reference set of transcript sequences. In the first 

case, the transcript level of a gene is then inferred from the number of reads mapping to the gene’s 

locus. Since for N. furzeri an annotated genome sequence was not available, the transcript catalogue 

served as reference for mapping. Consequently, the transcript levels were directly inferred from the 

reads mapping to the assembled transcript contigs of the individual genes. However, due to assembly 

fragmentation and redundancy, the transcript catalogue often contained multiple transcript contigs per 

gene. In such case, reads map equally well to multiple reference sequences, which complicates 

subsequent quantification. To avoid such problems, only the longest transcript contig per gene was 

considered as the representative reference sequence. Consequently, the transcriptome reference built 

for RNA-seq mapping comprised 19,875 transcript contigs with a total length of 53 Mb. 
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Subsequently, RNA-seq datasets (#6–13, Table 2) were used to obtain transcriptome-wide 

insights into transcript levels changes during ageing in N. furzeri. Therefore, analysis included two 

tissues, two time points as well as two strains - the short-lived strain GRZ vs. the longer-lived strain 

MZM-0403. More precisely, transcript levels were measured in skin and brain of young and old GRZ 

(5 and 14 weeks, respectively) and MZM-0403 (5 and 31 weeks, respectively). In contrast to 

assembly, the respective datasets were not quality-filtered because read mapping is less sensitive to 

sequencing errors. Moreover, the duplicate read removal done during quality processing was also not 

done since it would distort the transcript levels. Consequently, the raw datasets contained ~20 Gb of 

transcriptome data, or roughly 30 million reads per library (Table 6). 

Reads were mapped with BWA against the N. furzeri transcriptome reference. Between 41% 

and 65% reads per library were initially mapped. However, a number of read mapped ambiguously to 

multiple transcript contigs and therefore had to be excluded. Thus, mapping rates dropped, that is, 

between 36% and 53% uniquely mapped reads per library were available for quantification (Table 6). 

One possible explanation for this relatively low mapping success provided the design of the 

reference sequence, which contained only the longest transcript contig per N. furzeri gene. To validate 

whether inclusion of further transcript contigs would improve read mappability, two other references 

were compiled, one containing all transcript contigs with gene annotations (85,431 contigs, 155 Mb) 

and one containing the complete N. furzeri transcript catalogue (209,660 contigs, 249 Mb). Fractions 

of mapped reads increased up to 86% and 91%, respectively. Hence, a considerable fraction of the 

reads mapped to the additional, secondary transcript contigs which were not included in the first 

reference sequence. However, the corresponding fractions of reads with unique mappings dropped to 

21% and 19%, respectively. To avoid the aforementioned problems with the ambiguous mappings, I 

decided to use the transcript levels derived from the first reference sequence. Finally, to allow 

comparing different samples from different sequencing runs, count values were normalised to RPKM 

(Mortazavi et al. 2008). 
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Table 6: Summary of the RNA-seq analysis. 

Strain GRZ MZM-0403 

Library 6 7 8 9 10 11 12 13 

Age (weeks) 5 14 5 31 

Organ Skin Brain Skin Brain Skin Brain Skin Brain 

         

Reads 33,947,044 36,117,265 35,963,921 27,369,310 31,727,935 34,720,289 30,268,649 31,423,327 

Mapped / 

Unique (%) 
58 / 46 42 / 37 53 / 43 41 / 36 65 / 52 54 / 48 64 / 53 52 / 46 

         

Transcribed 

genes 
17,350 17,638 17,456 17,535 17,170 17,590 17,375 17,644 

Median 

transcript level 

(RPKM) 

2.3 4.7 2.6 5.7 2.5 5.4 3.5 5.8 

Range of 

transcript levels 

(RPKM) 

0.005 – 
13,043 

0.006 – 
40,801 

0.005 – 
39,533 

0.01 – 
5,587 

0.006 – 
10,409 

0.003 – 
5,288 

0.005 – 
3,878 

0.009 – 
3,946 

 

 

Nevertheless, although at most 50% of the reads were used for quantification, transcripts could 

be detected at a wide range of transcription intensity. In almost all samples, extreme transcript levels 

below a RPKM of 0.01 or above 1,000 RPKM (in some cases even over 10,000 RPKM) were 

detected. Interestingly, the number of transcripts (genes) with non-zero read counts was always 

roughly around 17,000, irrespective of tissue. When applying a minimum threshold of ten reads, the 

number of profiled transcripts dropped to approximately 15,000-16,500 per analysed sample. Notably, 

filtered transcript profiles still contained transcripts with very low expression levels; per analysed 

sample, between 1,500 and 3,000 profiled transcripts had RPKMs smaller than 1, respectively. These 

numbers suggested that, although effectively only half of the reads were used for quantification, they 

were still sufficient to determine transcript levels across a wide dynamic range. 

3.3.2 Correlation and principal component analyses 

Statistical analysis first concentrated on the comparison of the different samples to find similar 

transcript level signatures. Therefore, I first calculated the pairwise correlations between the samples 

based on the RPKM values of the genes. According to Spearman correlation (Figure 16), samples 

from the same tissue showed the highest correlation, ranging from 0.93 to 0.97. In contrast, samples 

from the same strain or age correlated much less, and the calculated values differed widely (0.62 to 

0.97). Interestingly, when considering only the tissue skin, sample of the same age clustered better 

than those of the same strain, whereas in brain, samples of the same strain seemed to cluster better 

than age. 
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Figure 16: Cluster heat map of N. furzeri RNA-Seq data. 
Correlation analysis of datasets, which were derived from skin and brain of young and old specimens of the short-lived strain 

GRZ and the longer-lived strain MZM-0403 (MZM). Young age represents 5 weeks (w) in both strains, whereas old age is 

reached at 14 w in GRZ and 31 w in MZM-0403. Analysis is based on Spearman correlation coefficients of log-transformed 
RPKM transcript levels. 

 

To analyse the underlying effects more closely, I conducted a principal component analysis 

(PCA). This type of analysis aims to reduce a highly complex dataset to a system of principal 

components (PC), which ideally explain the most variance found in the data. For N. furzeri, PCA on 

the RPKM values of the eight samples identified eight principal components. Only the top three 

components indicated a strong influence, that is, they explained over 96% of the total variation in all 

samples (PC1: 56%; PC2 22%; PC3: 18%). To get a better impression of the individual PC’s nature, 

they were visualised in so-called biplots, in which two of the components are plotted against each 

other. In the first biplot (PC1 vs. PC2; Figure 17A), samples were arranged along PC1 by their age, 

and a similar pattern could be also observed for the second biplot (PC1 vs. PC3; Figure 17B). 

Concerning the other two components, samples were arranged along PC2 and PC3 according to strain 

and tissue. Taken together, the PCA provided more detailed insights into the principal structure of the 

N. furzeri transcriptome data. 
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Figure 17: Principal component analysis of the N. furzeri RNA-Seq data. 
Biplots of the (A) first vs. the second and (B) first vs. third component. 

 

3.3.3 Identification of differentially expressed genes 

The main goal was to identify differentially expressed genes (DEGs) during ageing of N. furzeri. 

Therefore, I compared compare the transcript levels between young and old individuals and searched 

for genes with significant differences. Statistical tests for such tasks usually rely on the availability of 

replicates to discern real (biological) differences from statistical noise and technical errors. 

Unfortunately, the available RNA-seq datasets lacked biological replicates because the primary goal 

was the completion of the transcript catalogue. Instead, multiple individuals were pooled together, 

which might have been otherwise used as replicates, to obtain enough usable RNA material. To 

overcome this limitation, I decided to ignore strain-specific differences and to use GRZ and MZM-

0403 samples of the same tissue and age as replicates. Consequently, I compared young and old 

N. furzeri in two tissues, with two samples per data point. 

Subsequently, DEGs were called with the R package DESeq (Anders & Huber 2010). The tool 

identified 43 genes which showed differential expression with age in each of the two tissues, 

respectively (p ≤ 0.01; skin: Supplementary Table 3; brain: Supplementary Table 4; additional 

information: Supplementary File 3). In skin, the majority of genes were downregulated with age 

(11 upregulated vs. 32 downregulated). Interestingly, in brain, the opposite was observed, that is, more 

genes were up- than downregulated (24 vs. 19). Furthermore, changes in transcript levels were slightly 

more pronounced in skin, compared to brain, indicated by the stronger fold changes. Finally, the 

intersection of both DEG sets contained only one gene, namely VDRB (vitamin D receptor b), which 

was upregulated in both tissues. 

Next, to identify biological functions which may be affected by the detected transcript level 

changes, DEGs were submitted to the Database for Annotation, Visualization and Integrated 
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Discovery (Dennis et al. 2003; Huang et al. 2009), which is an online resource for the functional 

interpretation of large gene lists. DEGs were analysed for shared GO terms, pathways from the 

database and protein domains. Only gene groups with a minimum enrichment score ≥ 1 were 

considered as significant enriched annotation cluster. The 34 upregulated genes were grouped into the 

following three annotation clusters: activation of immune response, cell adhesion at the plasma 

membrane and positive regulation of apoptosis. The first cluster, activation of immune response, 

contained only genes which were exclusively upregulated in brain, whereas the other clusters 

contained genes from both tissues. The 51 downregulated genes seemed to affect mostly 

collagens/proteoglycans and were located in the extracellular region; these annotation clusters 

contained skin DEGs only. Additional annotation clusters of downregulated genes from both tissues 

described processes like cell cycle, cell division and cell proliferation as well as DNA replication 

(Supplementary File 4). 

To verify the DEGs identified by RNA-seq, three up- and downregulated genes were selected 

from each tissue and analysed in MZM-0403 using qPCR. The same skin and brain samples of young 

and old MZM-0403 analysed by RNA-seq were reverse-transcribed into cDNA, and the amount of 

cDNA was measured by qPCR to obtain transcript levels. Except for VDRB, qualitative changes in 

transcript levels were confirmed, with quantitative values being in good agreement (Figure 18). 

 

Figure 18: Validation of selected DEGs 

in MZM-0403 using qPCR. 
Three down- and upregulated genes detected 
by RNA-seq (blue) were selected from skin 

(A) and brain (B), respectively, and qPCR 

validation (red) was performed in MZM-0403 
on the same RNA samples. Positive values 

indicate overexpression in old age. Note that, 

for RNA-seq, error bars are meaningless, since 
only one measurement per gene was available. 

 

 

3.3.4 Confirmation of DEGs in zebrafish 

Next, I analysed whether the observed ageing-related DEGs are specific for N. furzeri and repeated 

this type of analysis in another fish species. I chose zebrafish, because it is well characterised and 

widely used as model organism for studying many aspects of biology, for example development and 

ageing. Because zebrafish brain samples were not available, identification of DEGs concentrated on 

the comparison of skin samples from young and old individuals. Since enough material was available 
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for the RNA-seq experiment, it was possible to consider biological replicates from the beginning. 

Consequently, RNA-seq data was generated from skin of 5 and 42 month old individual zebrafish (10 

and 5 specimens, respectively). In total, 1,191 zebrafish DEGs were found (p ≤ 0.01). This number is 

much higher than in N. furzeri, which is likely due to the presence of a more appropriate selection of 

biological replicates. Interestingly, like in N. furzeri, the majority of genes were downregulated with 

age (547 upregulated vs. 644 downregulated), although the difference was not that pronounced. 

Of the 43 DEGs identified in N. furzeri skin, 19 (43%) were also present in the zebrafish DEG 

set and also showed the same direction in fold change (Supplementary File 5). This overlap was 

significantly different from chance (p = 2.4x10-14, binomial test). Of the other 24 genes, additional 16 

(33%) showed the same direction, but did not reach significance in zebrafish. Of the remaining eight 

genes, only one (cytokine-like 1, CYTL1) was significant in both species but show a different direction 

in fold change (N. furzeri: downregulated, zebrafish: upregulated). In summary, a significant number 

of DEGs was similarly regulated in ageing of N. furzeri and zebrafish. Therefore, these DEGs are 

presumably involved in general processes of ageing. 

3.3.5 Analysis of strain-specific differences during ageing 

Before, I used samples of the same tissue and age from both N. furzeri strains as replicates for the 

identification of DEGs. However, this approach disregards any strain-specific differences in ageing 

that exist between the two strains. MZM-0403 live significantly longer than GRZ, and this difference 

in lifespan may be also reflected by the changes in transcript levels of the ageing-related DEGs. 

Consequently, I analysed the 43 DEGs identified in skin and brain, respectively, for significant 

strain-specific differences in transcript level fold changes. Initially, only a slight trend was observed 

which suggested that, in both tissues, fold changes are more extreme in the longer-lived strain MZM-

0403 (Figure 19A). However, these differences were not statistically significant (brain: p = 0.529, 

skin: p = 0.239; two-sample, paired Wilcoxon test). One reason for these results might be that the 

calculated fold changes occur over different periods of time. Baseline (“young”) for determining 

transcript levels was for both strains at an age of five weeks, that is, when they reach sexual maturity. 

However, because GRZ reaches an old age already at 14 weeks while MZM-0403 does so not before 

31 weeks, the second time point (“old”) differed between the two strains by 17 weeks. To account for 

this difference, I simplistically assumed that transcript levels change linearly over time and normalised 

the MZM-0403 fold changes accordingly. Thus, the fold changes originally determined at 31 weeks 

were scaled down to 14 weeks (Figure 19B). The normalised fold changes were significantly different 

between GRZ and MZM 0403 in skin (p = 0.039) and brain (p = 0.027). Moreover, when up- and 

downregulated genes were analysed separately, the difference was highly significant for brain 

(p = 9.1x10-05 and 3.8x10-06, respectively) and at least partly significant for skin (p = 0.067 and 2.3x10-

10). These results indicate that fold changes over chronological time were more pronounced in GRZ 

than in MZM 0403, which suggested that ageing is accelerated in GRZ. 
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Figure 19: Differences in DEG fold changes between GRZ and MZM-0403. 
(A) Fold changes are shown as determined over the time span of 9 and 26 weeks for GRZ and MZM-0403, respectively. (B) MZM-0403 fold 

changes were normalised to the GRZ time span of 9 weeks. P-values are calculated to test for differences in fold changes between GRZ and 

MZM-0403 using two-sample, paired Wilcoxon test. 
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4 Discussion 

In this thesis, I have described the development of a comprehensive transcript catalogue for the non-

model species N. furzeri (Petzold et al. 2013), the vertebrate species with the shortest lifespan recorded 

in captivity (Valdesalici & Cellerino 2003). Classical Sanger as well as NGS technologies were used 

to sequence the N. furzeri transcriptome in great depth across several tissues. To make optimal use of 

the produced datasets, I developed several new algorithmic approaches which outline general 

recommendations for the joined processing, assembly and annotation of EST and NGS transcriptome 

data. The resulting transcript catalogue contains sequences representing the vast majority of all 

N. furzeri protein-coding genes, of which many represent full-length transcripts. Furthermore, I have 

used the transcript catalogue as reference for the identification of differentially expressed genes during 

N. furzeri brain and skin ageing (Petzold et al. 2013). 

4.1 Strategies for the development of a transcript catalogue 

Until a few years ago, experimental determination of a transcript catalogue relied on high-throughput 

Sanger sequencing of random cDNA clones (Gerhard et al. 2004). The non-uniform distribution of 

transcripts and the number of sequences required made such an undertaking expensive and labour-

intensive. With the advent of the NGS technologies, it has been possible to sequence complete 

transcriptomes in short time and at reasonable costs (Wang et al. 2009). This approach is not limited to 

the availability of a reference sequence and allows analysing transcriptomes even in non-model 

species with complex genomes (Vera et al. 2008). However, NGS technologies introduce new 

challenges for transcriptome analysis, and several aspects concerning library preparation, sequencing, 

assembly and annotation have to be made, which are discussed below. 

Already beginning with RNA extraction, library preparation and sequencing, several issues 

that critically influence the success of the transcriptome assembly have to be considered. In case of 

multi-cellular organisms, RNA should be extracted from tissues instead of whole body. Animals are 

largely composed of muscle, which is one of the least complex transcriptomes; for example, in 

mammalian muscle tissues, the ten most highly expressed genes make roughly 20–40% thereof 

(Ramsköld et al. 2009). Consequently, transcripts of these genes are over-sequenced, thereby wasting 

sequencing power. Ideally, to maximise the number of identified transcripts, different tissues are 

analysed separately or in pools. For cDNA library synthesis, random hexamer primers should be 

considered, because oligo(dT) priming can bias the sequence coverage towards the 3’ end of the 

transcripts (Nam et al. 2002). The disadvantage of random hexamer primers is that the priming success 

is influenced by the nucleotide composition, which leads to an uneven sequence coverage (Hansen et 

al. 2010). This effect can be mitigated by fragmenting the RNA prior to reverse transcription 

(Mortazavi et al. 2008). Furthermore, cDNA library normalisation can be done to equalise transcript 
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levels and to identify more rare transcripts, but this step is not essential since the depth of most NGS 

technologies is often high enough. Ultimately, many of the described steps are also depending on the 

applied sequencing technology. For an initial characterisation of the transcriptome or for the analysis 

of a selected set of transcripts, 454/Roche with its current read lengths of up 1,000 bp may be a good 

choice. However, 454/Roche lacks the necessary sequencing coverage to identify the rarer transcripts, 

and other technologies like Solexa/Illumina are better suited. Generally, the applied sequencing 

strategy should include long reads (≥ 150 bp), which allow spanning multiple exon/intron boundaries. 

For the same reason, pair-end sequencing should also be considered, because it effectively increases 

for example Solexa/Illumina read length to approximately 300-500 bp. 

The raw sequence data should be pre-processed and quality-checked. Low-quality sequence 

can cause contig breaks during assembly, leading to transcript fragmentation. Unclipped primer or 

vector sequence can have even more detrimental effects, because transcript contigs sharing the same 

primer sequence may be assembled into one chimeric transcript contig; this kind of assembly error is 

much less obvious and hard to detect. Depending on the sequencing technology, different programs 

should be used for pre-processing. Sanger and 454/Roche are best processed with classical programs 

already developed for Sanger data (Bonfield et al. 1995; Chou & Holmes 2001; TIGR 2008). These 

programs employ sensitive search algorithms and are well-suited for that task. Other NGS 

technologies have to be processed with new, dedicated programs (several are listed in Patel & Jain 

2012). For example, Solexa/Illumina reads show a considerable drop in sequence quality towards the 

3’ end, which increases with read length (Dohm et al. 2008). Furthermore, reads containing primer are 

another (underestimated) problem, which occurs when sequencing over the 3’ end of the template 

(Kircher et al. 2011). Errors within reads can be corrected with methods based on k-mers (reviewed in 

Yang et al. 2013); however, such methods may also remove rare transcripts (Martin & Wang 2011). 

Finally, removing exact match duplicates should be definitely considered for de novo transcriptome 

assembly. Such duplicates can either originate from highly expressed genes or arise due to biases in 

the PCR amplification step (Dohm et al. 2008), and they form large read stacks, which are difficult to 

assemble. Removing duplicate reads equalises the coverage across the transcripts and also reduces the 

amount of data to be assembled, without losing transcript sequence information. It must be noted that, 

while duplicate removal is beneficial for de novo transcriptome assembly, it should not be applied 

when determining transcript levels. Ultimately, large amounts of sequence are usually discarded 

during pre-processing. This loss may seem a waste of resources, but it rather prevents problems caused 

by the large read numbers produced by NGS. 

The assembly of transcriptome data produced by NGS is still a challenging task. The classical 

programs for assembly were designed for only up to several ten thousand reads and cannot process the 

massive numbers of short reads due to high computational demands. Though several new programs 

have been introduced to solve this task (for example, Velvet; Zerbino & Birney 2008), they were 
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primarily designed for genomic data and, more importantly, are based on assumptions which do not 

hold for transcriptomes. The goal of genome assembly is to generate few large contiguous genome 

sequences, whereas transcriptome assembly aims at generating rather short sequence contigs for each 

expressed gene. Additionally, due to alternative splicing, multiple transcript sequences may be 

possible for an individual gene in variable tissues and under different conditions (Xu et al. 2002). 

Furthermore, genome assembly assumes that the read coverage of the sequences to be assembled is 

relatively homogenous. In contrast, transcript abundances are highly variable, thus leading to a very 

heterogeneous coverage (Birol et al. 2009). This situation causes two main problems. Reads derived 

from rare transcripts may be removed by error correction algorithms, which regard low coverage as an 

indication for putative sequencing errors (Martin & Wang 2011). Moreover, the high read coverage of 

very abundant transcripts may be misinterpreted by genome assembly programs as an indication for 

repeat structures (Butler et al. 2008; Zerbino et al. 2009); common strategies for resolving repeats may 

lead to the fragmentation of these abundant transcripts. Finally, additional problems arise when 

multiple sequencing technologies with different properties (read length, accuracy and more) have been 

applied. To summarise, genome and transcriptome assembly face different challenges which require 

algorithms specifically designed for the respective tasks. However, dedicated assembly programs for 

transcriptome data were introduced only recently and are still under development (the first program, 

Trans-ABySS, is described in Robertson et al. 2010). 

I have addressed these problems by developing a two-step strategy, which accounts for the 

differences between the sequencing technologies. In the first step, Sanger and 454/Roche reads were 

assembled using PAVE (Soderlund et al. 2009), a classical overlap-layout-consensus program which is 

ideally suited for long reads in small- to medium-sized numbers (Myers 1995). It compensates well for 

sequencing errors, is sensitive enough to find less perfect overlaps and generates long contigs within a 

reasonable runtime. Moreover, it was shown to be superior to already existing programs for 

transcriptome assembly (Soderlund et al. 2009). In the second step, the Solexa/Illumina datasets were 

iteratively assembled onto a backbone of PAVE contigs using an assembly program based on the de 

Bruijn graph approach (Pevzner et al. 2001). This approach is far better suited for the high read 

numbers, because it basically breaks reads into smaller words of a fixed length, which effectively 

reduces the computational complexity of the assembly (for instance, the number of possible overlaps 

decreases with sequence length). Three other measures additionally improve the assembly. The first is 

handling of individual Solexa/Illumina libraries in separate assembly iterations. This reduces the 

impact of eventual library biases introduced during library preparation. Second, the input complexity 

of a Solexa/Illumina library can be greatly reduced by mapping the reads onto the existing contigs and 

discarding those which align to a contig and hence do not contribute further to the assembly. Third, as 

de Bruijn graph-based assembly methods are susceptible to sequencing errors and tend to breaks 

contigs at such position, a subsequent assembly with overlap-layout-consensus programs can merge 

these fragmented contigs. 
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The massive sequencing output of the NGS technologies also indirectly affects the subsequent 

annotation process. Accordingly, transcriptome assembly often results in a very large number of 

fragmented and redundant transcript contigs (Robertson et al. 2010). However, existing pipelines for 

transcript annotation like EST2uni or Blast2GO (Conesa et al. 2005) were originally designed for 

the small to medium-sized sequence sets obtained by Sanger sequencing and need to be modified 

accordingly. Furthermore, many sequence analyses, especially similarity searches, are extremely time-

consuming with large contig numbers and require a powerful IT infrastructure, for example, large 

multicore systems or computing clusters. Furthermore, the increased rate of fragmented and redundant 

transcript contigs creates additional problems for the transcript annotation. Determining whether 

transcript contigs of the same gene are derived from one or from multiple transcript isoforms is 

computationally difficult. Furthermore, the need to consider multiple transcript contigs for a gene (for 

example, as mapping reference) complicates subsequent down-stream analyses. 

4.2 Assessment of the assembly quality 

Assembly algorithms rely on certain assumptions which try to reduce the complexity of sequence 

datasets into simple sets of rules that can be efficiently computed. However, because sequencing data 

is experimentally derived, it is error-prone and underlies stochastic fluctuations. Therefore, these 

assumptions are not always given. To control the impact of the assembled contigs on the down-stream 

analyses, a quality control of the obtained assembly is needed. 

While a number of criteria and protocols have been established for genome assemblies 

(Salzberg & Yorke 2005), there are only a few comparable criteria for assessing the quality of 

transcriptome assemblies (Martin et al. 2010; Martin & Wang 2011). Moreover, these criteria require a 

genomic reference with annotated gene structures, which is used to evaluate/score the transcript 

contigs; although, for a minimal quality control, a set of transcript sequences might also serve. 

Nevertheless, for many non-model species, neither genome nor transcript sequences are available, 

which makes the quality assessment of de novo transcriptome assemblies much more difficult. This 

was also the case for the N. furzeri transcriptome assembly. 

Therefore, I used protein sequences from medaka (the closest relative of N. furzeri with a 

sequenced genome, Reichwald et al. 2009) as reference sequences against which the transcript contigs 

were compared with BLASTx. I used only protein sequences with experimental support (1,750), to 

avoid problems due to misannotations in medaka. The majority of the medaka protein sequences 

(74%) were hit by at least one N. furzeri transcript contig. Of these, 74% were completely covered by 

multiple transcript contigs, and, notably, 67% were completely covered by a single transcript contig. 

The latter results indicate that the corresponding transcripts are also present in N. furzeri and that their 

CDSs were fully sequenced. Note that the sequence divergence between the two species might 
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interfere with the results. Thus, the results represent a rather conservative estimate, and it is likely that 

several other N. furzeri transcripts are also successfully reconstructed, at least to a certain degree. 

Hits to the remaining medaka protein sequences (26%) might be missed for several reasons. 

First of all, the protein sequence identity between N. furzeri and medaka may be too low, so that the 

protein sequences were not identified by the sequence similarity search. Alternatively, the expression 

of the respective genes might be restricted to tissues not analysed within the present effort. It should be 

mentioned that transcriptome sequencing included the whole body, which is essentially a mixture of 

tissues. Thus, besides brain and skin, other tissues may also have been sequenced, at least in smaller 

amounts. Furthermore, analysed individuals were aged between one week and 14 weeks, and some of 

the respective genes might be exclusively expressed in the earlier developmental stages. Moreover, 

genes might be also missed because they were expressed at very low levels. 

The protein sequences also allowed assessing the fragmentation and redundancy of the 

assembly. Transcript fragmentation means that the transcript sequence is assembled into multiple 

transcript contigs. The rate of fragmentation was rather low and occurred mainly close to the ends of 

the protein sequences. The main reasons for contig fragmentation are presumably low-quality 

sequence and shallow sequencing depth. However, alternative splicing events can also cause contig 

breaks. Many assembly programs assume that there is always only one, unambiguous, possibility to 

extend a contig. If they encounter a situation where there are two possibilities for a contig extension, 

they most likely break the contig at this position. 

In contrast, the transcriptome assembly exhibited a high degree of redundancy. This was 

observed for the vast majority of the medaka protein sequences. Over 92% of the total sequence was 

hit by at least two transcript contigs (nine contigs on average). One conclusion could be that, in 

N. furzeri, almost all corresponding genes are represented at least two transcript isoforms, which 

would indicate exhaustive alternative splicing and is very unlikely. Another more reasonable 

explanation is that, although the redundant transcript contigs differ only slightly (for example, in a few 

positions), assembly failed to merge them into a single contig. Assembly based on de Bruijn graphs is 

known to be susceptible to nucleotide variants and sequence errors (Pevzner et al. 2001). With 

increasing sequencing depth, errors accumulate, which, in turn, lead to more redundant contigs. This 

assumption is supported by the observation that the number of N. furzeri transcript contigs increases 

with every assembled Solexa/Illumina library; without errors, this number ought to reach a plateau. 

Nevertheless, this does not exclude that many redundant transcript contigs actually represent transcript 

isoforms. 

Chimeric transcript contigs may originate from gene or transcript fusions, but they can also 

indicate severe misassemblies which involve merging contigs of two unrelated transcripts. This type of 

error is normally hard to detect, but the medaka protein sequences provided the opportunity to at least 



Discussion  Completeness of the transcript catalogue 

[72] 

estimate the rate of chimeric transcript contigs in the N. furzeri transcriptome assembly. Only 0.3% of 

the transcript contigs with hits showed evidences for chimerism. This relatively low rate can be 

regarded as an indication for a negligible misassembly rate which does not require further 

computational or experimental efforts. 

4.3 Completeness of the transcript catalogue 

Ideally, a transcript catalogue contains transcript sequences for all protein-coding genes, and these 

transcript sequences are completely reconstructed, that is, they consist of the full CDS plus the UTR. 

However, this goal is unrealistic, mostly due to spatiotemporal expression (within specific tissues at 

specific times), library preparation biases, lack of sequencing depth, and problems during assembly 

and annotation. For these reasons, it is necessary to determine the completeness of a transcript 

catalogue. The results provide an estimate of the representativeness of the current transcript catalogue 

and serves as basis of decision-making for further transcriptome sequencing.  

The presented N. furzeri transcript catalogue contains transcript contigs for almost 20,000 

protein-coding genes. This number is typically observed for vertebrate genomes (Volff 2006), and also 

true for the currently known fish genomes. Nevertheless, without a high-quality N. furzeri genome 

sequence, the overall number of protein-coding genes is not known which complicates estimating the 

number of genes still missing from the transcript catalogue. Therefore, I first related the gene number 

to the respective overall numbers observed for medaka, stickleback, tetraodon and zebrafish. BLAST 

hits to annotated genes in the other fish species indicated that between 71% and 87% of the N. furzeri 

protein-coding genes are present in the transcript catalogue. However, this approach heavily depends 

on the quality of the gene annotations in the respective fish species. Gene families comprise all genes 

derived from a common ancestor and are much more stable among fish species. Consequently, gene 

families are much better suited as a proxy for completeness of transcript catalogues. Identification of 

gene families in the N. furzeri transcript catalogue showed that their number is comparable to those 

found in the other fish species (according to gene family assignments in the Ensembl Compara 

database (Vilella et al. 2009)). This result is supported by the observation that, for most gene families, 

the number of genes determined in N. furzeri does not deviate very much from those obtained in the 

other species. To summarise, the presented N. furzeri transcript catalogue is in terms of completeness 

comparable to gene catalogues of fish species for which genomes have been sequenced. 

A much more interesting question is which and how many genes are missing in the N. furzeri 

transcript catalogue. Transcriptome sequencing did not include embryonic tissue and the analysed 

specimens were at least one week old. Consequently, genes that are expressed in the early 

development of N. furzeri are most likely missing. For example, in zebrafish, between 1,400 and 2,400 

genes have been estimated to be involved in embryonic/early larval development (Haffter et al. 1996; 

Amsterdam et al. 2004). Generally, recent gene annotation in zebrafish identified roughly 26,000 
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protein-coding genes (Howe et al. 2013), which is far more comprehensive than in the other three fish 

species medaka, stickleback and tetraodon (all roughly 20,000 genes; Kasahara et al. 2007; Jones et al. 

2012; Jaillon et al. 2004). But the conclusion that some 6,000 genes are still missing in the N. furzeri 

transcript catalogue is misleading for several reasons. First of all, a large fraction of the additional 

genes presumably originates from the additional, teleost-specific, whole genome duplication. 

However, the fraction of retained gene copies (that are not lost shortly after the duplication event) 

varies between fish species (Brunet et al. 2006). Thus, it might be that the additional zebrafish genes 

do not have orthologs in N. furzeri or that the respective N. furzeri orthologs were turned into 

pseudogenes without measurable expression. On the other hand, the Ensembl zebrafish gene 

annotation may still contain errors, and the number of protein-coding genes may actually be an 

overestimation. The zebrafish genome was recently improved by incorporating RNA-seq expression 

data (Collins et al. 2012). About 46% of the original gene models obtained by traditional evidence 

(cDNA sequences and prediction of orthologs) were refined, suggesting that the zebrafish annotation 

accuracy can be still improved. 

Besides overall gene number, percentage of assembled CDS is the second important criterion 

for the completeness of transcript catalogue. More than 85% of the N. furzeri protein-coding genes 

were represented by a transcript contig which contained at least half of the CDS. More importantly, for 

more than 70% of the protein-coding genes, the transcript contig contained the complete (> 90%) 

CDS. This high degree of CDS coverage was not exclusively restricted to small- or normal-sized 

genes but also applied to those genes which code for the large structural proteins. For example, one 

N. furzeri transcript contig of the gene TTN was found to encode the complete ~30,000 aa large Titin 

protein. Furthermore, when I compared the sum of the non-redundant CDS identified in the transcript 

catalogue to the total CDS of all reference entries used for annotation, the completeness was estimated 

to be 83%. That means that, simply put, over 80% of the N. furzeri overall protein sequence is known. 

4.4 Transcript contigs without annotation 

Assembly of the N. furzeri transcriptome data resulted in 209,660 transcript contigs, of which, 

however, only 109,032 (52%) were annotated based on sequence similarity to known protein and 

protein-coding transcript sequences (Petzold et al. 2013). Thus, 100,628 (58%) transcript contigs 

remained for which annotation could not be obtained and whose source is currently unclear. 

Theoretically, these contigs might represent artefacts from library preparation or sequencing, or 

undetected contamination. Fortunately, the draft assembly of the N. furzeri genome allowed verifying 

the source of the unannotated transcript contigs. The large majority of contigs (95%) was successfully 

mapped to the draft assembly, thus showing that they indeed originate from transcribed regions of the 

N. furzeri genome. However, the draft assembly is not yet annotated, and, thus, the nature of the 

unannotated transcript contigs remains unclear. Several explanations for these unannotated contigs can 

be thought of. 
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Some transcript contigs might remain unannotated due to problems during the annotation 

process. The annotation process relied on sequence similarity searches against databases with known 

protein and protein-coding transcript sequences, mainly of four fish species with a sequenced genome 

- medaka, stickleback, tetraodon and zebrafish. Hence, successful annotation of a N. furzeri transcript 

contig depends on the availability of homologous sequences. This assumption might be problematic 

for three main reasons. First, the respective N. furzeri gene was not assembled or not annotated in the 

genome reference of the other fish species. Three of the four fish species’ genome assemblies 

available at Ensembl are older, and annotation of these genomes was largely based on similarity 

searches and gene prediction (Flicek et al. 2011). Only the zebrafish genome was recently 

comprehensively re-assembled and annotated with RNA-seq data (Collins et al. 2012; Howe et al. 

2013). Second, the N. furzeri transcript contigs and their orthologs were too divergent, and, thus, 

sequence similarity searches failed. This happens for genes which are not under negative evolutionary 

pressure and therefore may diverge very quickly. Third, the respective gene is species-specific, that is, 

it only exists in N. furzeri. However, all three discussed points presumably account only for a small 

part of the unannotated transcript contigs. To address these two issues, the annotation pipeline 

additionally included two large protein sequence collections NCBI nr and UniProt as well ESTs from 

several fish species, which should have compensated for the missing sequence information or should 

have provided sequences of other, more closely related fish species. And concerning the third point, 

although CDS were predicted for the majority of the unannotated transcript contigs, they were on 

average shorter by two thirds, compared to those of annotated transcript contigs (356 vs. 883 bp). 

Moreover, subsequent search for conserved protein family domains by HMMER found hits for only 

four additional contigs. Given that HMMER is based on profile hidden Markov models, which are 

more sensitive for remote sequence matches (Johnson et al. 2010), it is likely that there are only a few 

novel protein-coding transcripts hidden among the unannotated transcript contigs. 

A considerable part of the contigs might therefore derive from UTR fragments of already 

annotated protein-coding transcripts. UTR refers to the untranslated regions 5’ and 3’ to the CDS and 

can make up a considerable fraction of the transcript (Grillo et al. 2010). Generally, sequencing and 

assembly of UTR is problematic because UTR sequence coverage is strongly affected by the methods 

used for library construction and template fragmentation. For example, when using oligo(dT) primer 

for cDNA synthesis, internal priming can cause a high frequency of truncated cDNAs (Nam et al. 

2002), which, in turn, leads to a sequence coverage biased towards the 3’ end of the transcript (Hoque 

et al. 2013). Furthermore, methods for cDNA fragmentation such as DNase I treatment or sonication 

are also biased towards the 3’ ends of the transcript (Mortazavi et al. 2008). These methods were 

applied to some extent during library preparation and may have resulted in low or fluctuating 

sequencing coverage at the UTRs. However, many assemblies programs try to reconstruct contigs that 

show a balanced read coverage and will introduce contig breaks at positions with aberrant coverage. 

Some weak evidence for this assumption comes from the observation that the majority of unannotated 
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transcript contigs contained CDS predictions at one of its ends. However, these predicted CDS had no 

sequence similarity to any known protein or transcript sequence. Alternatively, they might encode for 

upstream ORFs, which can be found before the main start codon and play a role in the regulation of 

the gene expression (Mignone et al. 2002). Finally, the prediction methods applied for the unannotated 

transcript contigs were rather crude (for example, identifying the longest six-frame translation 

uninterrupted by a stop codon), and, therefore, many CDS predictions are presumably false positives. 

Part of the unannotated transcript contigs might originate from dispersed repeats. One class of 

dispersed repeats, the retrotransposons, employs reverse transcription of RNA intermediates for 

transposition. Likely, these RNA intermediates can be detected by the high depth of transcriptome 

sequencing with NGS technologies. Indeed, in 2009, a study analysed the contribution of repetitive 

elements to the transcriptomes of mouse and human and revealed an intensive transcriptional activity 

of retrotransposons (Faulkner et al. 2009). In N. furzeri, almost 41% of the genome consist of 

dispersed repeats (Koch 2010). Unfortunately, because many of these repeats are still unclassified, the 

percentage of retrotransposons is not known yet. Nevertheless, it is likely that a number of 

retrotransposons is still transcribed. Dispersed repeat elements were identified in 53% of the 

unannotated N. furzeri transcript contigs. Whether and to which part these contigs really originate 

from active retrotransposons is difficult to say. Retrotransposons also occur in the 3’ UTR of protein-

coding transcripts (Yulug et al. 1995). Consequently, the transcript contigs could have been derived 

from transcription of non-repetitive sequences or retrotransposons. Interestingly, retrotransposon 

insertions in 3’UTRs have been demonstrated to repress transcription (Chen et al. 2008). More 

importantly, retrotransposons in 3’UTR have also been proposed to truncate full-length transcripts by 

providing an alternative terminator or to facilitate transcript degradation by forming double-stranded 

RNA with other retrotransposon transcripts (Faulkner et al. 2009).  

Though functionally most important, protein-coding mRNA transcripts make up only a small 

part of the transcriptome (2-4%; Lindberg & Lundeberg 2010), and the larger part can be attributed to 

a number of non-protein-coding RNA species. Thereof, rRNA and tRNA transcripts make up the 

largest part. However, only few hits were found for the unannotated N. furzeri transcript contigs, 

which presumably is due to an efficient poly(A)-selection during library preparation. Small non-

protein-coding RNA species such as miRNAs or small nuclear RNAs may be theoretically sequenced 

as by-products or as part of their precursor transcripts. Long non-protein-coding RNA (≥ 200 nt), often 

referred to as the dark matter of the genome, have been proposed to play an important role as 

regulators of gene activity (Nagano & Fraser 2011). Unfortunately, so far, little is known about non-

protein-coding RNA species in N. furzeri. 

Several studies in mammalian genomes demonstrated that the vast majority of the genome is 

pervasively transcribed, including large parts of the intergenic regions (Carninci et al. 2005; Birney et 

al. 2007). One recent study reported that almost 74% of the human genome contains primary 
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transcripts and implied that the number of genes in human is actually twice as large as originally 

assumed (Djebali et al. 2012). Whether the additionally detected transcribed units represent functional 

entities/genes or are the product of technical/biological noise is currently subject of a hot debate 

(Graur et al. 2013; Eddy 2013). Nevertheless, these reports shed some light on the large number of 

unannotated N. furzeri transcript contigs. The finding that over 95% can be aligned to the draft 

assembly of the N. furzeri genome suggests that they are derived from pervasive transcription. 

However, similar to the situation in the mammalian genomes, the exact reasons for this phenomenon 

remain unclear. 

4.5 Duplicated genes 

Gene duplication is considered as an important mechanism of evolution, which facilitates the creation 

of new genes with novel functions (Ohno 1970). One major causative event for duplicated genes is the 

whole genome duplication, which is caused by improper chromosome pairing during meiosis and 

results in additional copies of the entire genome transferred to the offspring. Vertebrate genomes are 

believed to have undergone at least two rounds of whole genome duplication (Spring 1997); this 

hypothesis is best known as 2R hypothesis. Later, it was shown that the genomes of teleost fish 

species underwent a 3rd round of genome duplication (Amores et al. 1998; Taylor et al. 2003); this 

event is referred to as teleost-specific whole genome duplication or as 3R duplication. 

About 19% of the protein-coding N. furzeri genes show evidences for teleost-specific 

paralogs. Conversely, this indicates that, after whole genome duplication, >80% of the gene paralogs 

were lost from the N. furzeri genome. These numbers are roughly comparable to those calculated for 

other fish species (zebrafish: 22%, medaka: 23%, stickleback: 23% and tetraodon: 24%; Kassahn et al. 

2009, synteny results). The vast majority of the identified N. furzeri paralogs occur in pairs, 

concordant with the teleost-specific whole genome duplication. A number of genes are represented by 

more than two paralogs; however, it is likely that many were erroneously identified as result of 

methodological problems, for example misannotations, false-positive BLAST hits or errors in the gene 

phylogeny. Moreover, it has to be considered that not all of these duplications may date back to the 

teleost-specific genome duplication. Still, some of these multiple copies might represent novel species-

specific paralogs, which may originate for example from a subsequent gene duplication event. Finally, 

it should be noted that the transcriptome approach could only detect paralogs whose expression was 

sufficiently high in the analysed samples. 

4.6 Differentially expressed genes in ageing N. furzeri 

After completion of the transcript catalogue, I employed selected RNA-seq datasets to conduct an 

initial characterisation of ageing-related changes in gene expression in N. furzeri. The crucial 

requirement for analysing transcript levels with RNA-seq is the availability of a reference for read 
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mapping, which is commonly a sequenced genome. In case of N. furzeri, the transcript catalogue 

served as reference. This type of reference raises several important issues for read mapping and 

counting. In the simplest case, a gene is represented in the reference by exactly one transcript contig. 

The RNA-seq reads derived from that gene/transcripts can then be unambiguously mapped to the 

corresponding transcript contig, and the read count can be seen as a measure for the transcript level of 

the gene. Genes, however, are often represented by multiple transcript isoforms; between 17 and 43% 

of the genes in teleost fish species undergo alternative splicing (Lu et al. 2010). Consequently, the 

RNA-seq reads of a gene are essentially a mixture of its transcript isoforms. This situation complicates 

both read mapping and counting. First of all, many reads map to multiple transcript contigs and cannot 

be unambiguously assigned. Second, for genes with multiple transcript isoforms, integrating the read 

counts from the different transcripts is not straightforward. Several solutions to deal with such 

multiple mappings were described previously. The simplest approach discards them and uses only the 

uniquely mapping reads (Marioni et al. 2008). A first strategy to ‘rescue’ multiple mapping reads 

proposed to distribute fractions of them to genes in proportion to the coverage of the uniquely mapped 

reads (Morin et al. 2008). More sophisticated methods try to model the RNA-seq experiment using a 

maximum likelihood function which fits the expected transcript isoform abundances to the observed 

read coverage (Trapnell et al. 2010; Katz et al. 2010). However, these programs were designed for 

genomic mapping references and cannot be applied for transcript references. Moreover, even it were 

possible, such programs would presumably introduce additional bias which would have to be 

controlled for. 

To reduce the impact of these problems on the subsequent analyses of differential expression, 

I constructed a reference from the longest transcript contig of each gene (19,875 contigs; 53 Mb). Only 

53% of the Solexa/Illumina reads were mapped uniquely. This relatively low mapping efficiency 

could have been caused either by the incompleteness of the transcript catalogue or by the design of the 

reference. Therefore, I decided to include more transcript contigs and constructed another reference 

from all transcript contigs with gene annotations (85,431 contigs; 144 Mb). Accordingly, mapping 

efficiency increased to 91%, which indicated that the initial mapping results were not due to missing 

gene information but rather reflected the large amount of valuable sequence information removed as 

result of the design of the reference. However, the second reference caused a high fraction of multiple 

mappings (~80%), presumably as result of the additionally introduced redundant transcript contigs. 

These might represent transcript isoforms, but they might also indicate unrecognised gene paralogs or 

assembly problems due to sequencing errors or repetitive motifs. Interestingly, I observed a similar 

situation for the zebrafish data, for which a genome is available. Using the genome, mapping 

efficiency is usually between 75 and 80% (Marco Groth, personal communication). However, when I 

used transcript instead of genome sequences as reference, mapping efficiency dropped below 50% 

(data not shown). This result confirms that the low mapping rate is the result of the design of the 
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respective reference. Generally, it suggests that using a genome as reference is superior to using all 

known transcripts. 

In all samples, over 17,000 genes (Table 6) were profiled. At the first glance, this was 

surprising, because transcriptomes are highly specific for the analysed tissue or organ (Whitehead & 

Crawford 2005). However, many genes were covered only by a few reads, and their detection may 

indicate technical noise or very low expression levels. When a minimum threshold of ten reads was 

applied, the number of profiled genes dropped to roughly 15,000-16,500. However, of these, several 

(between 1,500 and 3,000 per respective sample) still showed very low transcript levels, that is, below 

1 RPKM. Considering that values of 1-4 RPKM roughly correspond to 1 copy per cell (Mortazavi et 

al. 2008), it can be assumed that approximately 12,000-15,000 genes are expressed in all samples. On 

the other hand, the relatively large number of genes with very low transcript levels still needs further 

clarifying. It could be that the high depth of RNA-seq has picked up some kind of spurious/pervasive 

transcription whose biological implications cannot be assessed by the available data. 

Transcriptome profiles of the same tissue showed the highest correlation, which was expected 

and demonstrates the tissue-specific gene expression in N. furzeri. Interestingly, other weaker trends 

were observed for the individual tissues. In skin, samples of the same age showed the second-best 

correlations, whereas in brain, this was the case for samples of the same strain. These weak but 

observable differences suggest that the ageing-related transcript level changes are specific for the 

respective tissues, which, in turn, would mean that tissues age by different ways. Furthermore, a PCA 

conducted on all samples indicated that the N. furzeri transcriptome data is composed of at three major 

and five minor components, which map to factors of gene expression in the respective analysed 

samples. The observation that the three main components were associated with tissues, ages and 

strains agrees well with the results of the correlation analysis. 

In total, I have identified 43 ageing-related DEGs in N. furzeri brain and skin, respectively. 

Interestingly, the two tissues differed in the predominant direction of the transcript level change. In 

skin, the majority of DEGs was downregulated with age, whereas in brain, the opposite was found. 

This observation agrees well with the results found by correlation analysis and PCA and further 

supports the general picture of an ageing process that differs between tissues. The biological functions 

of the DEGs reflected the generally expected changes in an ageing phenotype (Magalhães et al. 2009). 

DEGs involved in apoptosis were upregulated, whereas DEGs involved in cell cycle control, cell 

division and proliferation were downregulated. The pattern was more prominent in brain than in skin, 

indicating more dynamic changes of transcript levels over lifetime. Furthermore, transcript levels also 

showed an increase in inflammation in brain, which previously has been reported as a marker for 

ageing-related decline in brain (Schumacher et al. 2008; Park et al. 2009) and for general ageing (Lee 

et al. 1999). Notably, downregulated skin DEGs were mainly involved in the maintenance of 
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collagenous tissue and cartilage, indicative for a decline in tissue homeostasis typically for ageing 

(Fisher et al. 2002). 

The major drawback of the RNA-seq experiment was the lack of biological replicates. 

Initially, the N. furzeri RNA-seq was aimed at the completion of the transcript catalogue, and due to 

technical reasons (material availability, stage of technological development) multiple specimens were 

pooled instead of being analysed separately. On the other hand, one can assume that the pooling 

strategy efficiently reduces the relative abundance of biological noise derived from single individuals. 

Hence, those pooled datasets can be considered reliable. Nevertheless, to obtain an initial set of 

statistically significant DEGs, I decided to ignore strain-specific differences and treated samples of the 

same tissue and age as replicates. The validation of selected DEGs by qPCR showed that the rate of 

false positives was low (2 of 12). However, it is very likely that this approach missed DEGs which 

showed considerable strain-specific variation or were exclusive to one strain. A higher number of 

strain-specific replicates would presumably increase the sensitivity of the statistical tests, thus 

resulting in more candidate DEGs. 

It should be noted that, theoretically, the obtained DEGs might simply reflect transcript level 

changes that were caused by the laboratory handling of the fish; for example, they might be a response 

to certain changes in feeding or care conditions. However, I could confirm many DEGs by an 

independent RNA-seq experiment in zebrafish, that is, 43% of the N. furzeri DEGs were significantly 

regulated in the same manner in zebrafish and another 33% showed at least the same direction of fold 

change. This suggested that transcript level dynamics over lifetime are similar in both N. furzeri and 

zebrafish. Thus, N. furzeri, in spite of its exceptionally short lifespan of only few months, exhibits 

general characteristics of vertebrate ageing. 

4.7 Accelerated ageing in the N. furzeri strain GRZ 

The initial approach for identifying DEGs ignored potential strain-specific differences, that is, 

I essentially treated GRZ and MZM-0403 individuals as one N. furzeri strain. However, the two strains 

significantly differ in lifespan, and previous studies of ageing-related biomarkers suggested that 

ageing is accelerated in GRZ, compared to MZM-0403 (Terzibasi et al. 2008; Di Cicco et al. 2011). 

This difference might be also reflected by the transcript level changes of the identified ageing-related 

DEGs. However, a simple comparison of the fold changes may be misleading because it ignores the 

different periods of times in which the changes occurred. To obtain comparable fold changes, I 

assumed that gene expression changes linearly over time and normalised the fold changes to the same 

period of time. Indeed, time-normalised fold changes were stronger in GRZ, compared to MZM-0403, 

which supports the hypothesis that ageing is accelerated in the short-lived GRZ strain. Of course, the 

assumption of a linear change in gene expression is most likely in many cases an oversimplification. 

Nevertheless, this two-point analysis represents only a first approximation. On-going and future 
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studies include/will have to include additional time points to better dissect the chronological course of 

gene expression during ageing in the N. furzeri strains. 

4.8 Outlook 

Future work is aimed at completing the N. furzeri transcript catalogue, for example, by identification 

of genes which are primarily expressed during embryonic development. For this purpose, RNA was 

isolated from MZM-0403 embryos, 24 hours post fertilisation and during the somite stage, and 

sequenced with Solexa/Illumina (2 x 150 bp). To take optimal advantage of this additional dataset, I 

performed a complete new de novo assembly including the PAVE contigs and all available 

Solexa/Illumina datasets as input. The resulting transcriptome assembly is currently being annotated 

by the EST2uni pipeline. Preliminary results indicate that the transcript catalogue is complemented 

by roughly 500 new genes, which presumably represent those exclusively expressed during embryonic 

development. Moreover, the number of genes with complete transcript contigs seems to be moderately 

larger. Subsequent to successful annotation, this new version of the transcript catalogue will be made 

available in the transcriptome browser. 

In parallel, the N. furzeri genome is being assembled by the Genome Analysis group at the FLI 

and will be released in the very near future. After completion of this effort, the transcript catalogue 

will serve as a valuable resource for the genome annotation. The transcript contigs will be spliced-

aligned against the genome, which allows determining exonic and intronic regions as well as 

associated CDS and UTR. The resulting gene structures will be supported by and complemented with 

gene models obtained from gene prediction programs to reconstruct the complete set of genes in 

N. furzeri, including protein- and non-protein-coding genes. Moreover, the transcript contigs will also 

facilitate the identification and quantification of transcript isoforms in the genome. Conversely, a 

N. furzeri genome will help to improve the transcript catalogue. The transcript contigs can be safely 

assigned to genes, based on their genomic mapping position, which allows to merge fragmented 

transcript contigs and to distinguish multiple transcript isoforms. Furthermore, an annotated genome 

will also allow clarifying the source and potential function of many of the remaining unannotated 

transcript contigs. 

In future, further RNA-seq experiments have to be done to better understand ageing in 

N. furzeri. First of all, these should generally utilise biological replicates to identify more subtle 

ageing-related changes in gene expression. The design of the experiments should include additional 

time points, to monitor the changes over the complete lifespan of N. furzeri, and additional longer-

lived strains, to determine which gene expression changes are involved in the lifespan variation. 

Finally, transcriptome analysis should also be extended to other Nothobranchius species, other teleost 

fish and finally other vertebrate species. The goal of this interspecies analysis would be to identify a 

general shared signature of ageing in vertebrates. 
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Supplementary Table 1: N. furzeri cDNA libraries prepared for transcriptome sequencing. 
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Supplementary Table 2: Programs, parameter and filter criteria used for BLAST annotation. 

Database Program Parameter Max. e-value Min. overlap 
Min. identity 

(%) 

Ensembl fish 

proteins 
BLASTx wordmask=seg lcmask W=4 T=20 10-07 30 aa 40 

Ensembl fish 

transcripts 
tBLASTx wordmask=seg lcmask W=4 T=20 10-07 100 bp 

40 (on amino 

acid level) 

UniProt BLASTx 
wordmask=seg lcmask W=4 T=20 

hitdist=40 
10-07 30 aa 40 

NCBI nr 

proteins 
BLASTx 

wordmask=seg lcmask W=4 T=20 

hitdist=40 
10-07 30 aa 40 

Refseq human 
proteins 

BLASTx wordmask=seg lcmask W=4 T=20 10-07 30 aa 40 

NCBI UniGene 
transcripts 

BLASTn 
M=1 N=-1 Q=3 R=2 W=9 wordmask=seg 

lcmask 
10-20 100 bp 75 

 

BLAST options are based on recommendations from Korf et al. 2003. 

 

Supplementary Table 3: N. furzeri ageing-related genes in skin. 

Gene Annotation 
Fold change with 

age 
Adj. p-value 

AND2 Actinodin2 0.012247584 0.002029267 

ADAMTSL2 Adamts-Like 2 0.08382646 3.76E-05 

COL10A1 Collagen, Type X, Alpha 1 0.102937036 6.23E-07 

HSP90AA1 
Heat Shock Protein 90Kda Alpha (Cytosolic), Class A Member 
1 

0.110707245 2.21E-05 

PYROXD2 Pyridine Nucleotide-Disulphide Oxidoreductase Domain 2 0.112218693 0.001136298 

SGMS2 Sphingomyelin Synthase 2 0.117150579 4.60E-05 

IGF2BP3 Insulin-Like Growth Factor 2 Mrna Binding Protein 3 0.134382444 0.00094006 

TMEM119A Transmembrane Protein 119A 0.140915716 0.00023659 

AND1 Actinodin 1 0.143427451 0.008443258 

FKBP9 Fk506 Binding Protein 9, 63 Kda 0.147235125 7.04E-05 

GPX7 Glutathione Peroxidase 7 0.148329924 0.000185381 

ENPEP Glutamyl Aminopeptidase 0.161094687 0.002029267 

PHGDH Phosphoglycerate Dehydrogenase 0.164231298 0.001017207 

FMOD Fibromodulin 0.165056018 0.008465704 

ASPN Asporin 0.165087169 0.002029267 

APOEA Apolipoprotein E 0.175146154 0.005061209 

SMPD3 
Sphingomyelin Phosphodiesterase 3, Neutral Membrane 

(Neutral Sphingomyelinase Ii) 
0.176841241 0.001486907 

CYTL1 Cytokine-Like 1 0.182018695 0.00094006 

CKAP4 Cytoskeleton-Associated Protein 4 0.182353971 0.00094006 

IFITM5 Interferon Induced Transmembrane Protein 5 0.186727994 0.003879688 

RRBP1 Ribosome Binding Protein 1 Homolog 180Kda 0.191539958 0.001486907 

CREB3L1 Camp Responsive Element Binding Protein 3-Like 1 0.195713314 0.008153735 

CX43 Gap Junction Protein, Alpha 1, 43Kda 0.199205798 0.001486907 

TPO Thyroid Peroxidase 0.1999015 0.004117939 

BAMBIA Bmp And Activin Membrane-Bound Inhibitor Homolog 0.200413763 0.001915442 

LOXL4 Lysyl Oxidase-Like 4 0.203815982 0.004053163 
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COL11A1A Collagen, Type Xi, Alpha 1 0.205054701 0.002511042 

RCN3 Reticulocalbin 3, Ef-Hand Calcium Binding Domain 0.208484999 0.002029267 

SP7 Sp7 Transcription Factor 0.209215809 0.003755911 

LEPREL4 Leprecan-Like 4 0.211038397 0.006475011 

PECR Peroxisomal Trans-2-Enoyl-Coa Reductase 0.219936613 0.006475011 

PLEKHH1 
Pleckstrin Homology Domain Containing, Family H (With 

Myth4 Domain) Member 1 
0.219998218 0.006382469 

PRODHA Proline Dehydrogenase (Oxidase) 1 4.457928504 0.007135947 

VDRB Vitamin D (1,25- Dihydroxyvitamin D3) Receptor 4.865498711 0.006475011 

PCMTD1 
Protein-L-Isoaspartate (D-Aspartate) O-Methyltransferase 
Domain Containing 1 

5.274725969 0.004178069 

C19H1ORF51 Chromosome 1 Open Reading Frame 51 5.593602335 0.008621025 

MKNK2A Map Kinase Interacting Serine/Threonine Kinase 2 7.160644756 5.38E-05 

CABZ01039845 Uncharacterized Protein 8.030231074 2.95E-05 

BM1_33690 Cell Wall Protein Dan4, Putative 8.233943189 0.005061209 

CYP1B1 Cytochrome P450, Family 1, Subfamily B, Polypeptide 1 9.949835083 0.00094006 

MFAP4 Microfibrillar-Associated Protein 4 13.49906985 2.96E-07 

V1G57470 Uncharacterized Protein 13.69815852 0.006475011 

C5H9ORF25 Chromosome 9 Open Reading Frame 25 21.5846481 0.004981189 
 

Gene expression levels of young (GRZ, MZM-0403: 5 weeks) and old N. furzeri (GRZ: 14 weeks, MZM-0403: 31 weeks) in skin were 

tested for significant differences (p-value<=0.01). Fold changes below and above 1 indicate genes that are downregulated (coloured red) and 

upregulated (blue), respectively, with age. P-values are adjusted for multiple testing (Benjamini-Hochberg). 

 

Supplementary Table 4: N. furzeri ageing-related genes in brain. 

Gene Annotation Fold change with age Adj. p-value 

CYP1A Cytochrome P450 1A 0.07630841 8.77E-05 

SLC25A22 
Solute Carrier Family 25 (Mitochondrial Carrier, Glutamate), 

Member 22 
0.176896407 4.26E-08 

DBX1A Developing Brain Homeobox 1 0.210969982 0.009501616 

CCNB1 Cyclin B1 0.213035249 0.005688501 

ANLN Anillin, Actin Binding Protein 0.251717751 0.00053191 

CKAP2L Cytoskeleton Associated Protein 2-Like 0.251962853 0.003703754 

RACGAP1 Rac Gtpase Activating Protein 1 0.252429271 0.004424137 

MCM5 Mcm5 Minichromosome Maintenance Deficient 5 0.255938925 0.004770879 

MCM4 Minichromosome Maintenance Complex Component 4 0.260244037 0.000665594 

CDCA7 Cell Division Cycle Associated 7 0.260801976 0.000676268 

RRM2 Ribonucleotide Reductase M2 0.281686743 4.73E-05 

PLK1 Polo-Like Kinase 1 0.285462218 0.002462939 

ISYNA1 Inositol-3-Phosphate Synthase 1 0.296648058 0.002157374 

TUBB5 Tubulin, Beta 5 0.307853482 2.85E-05 

DLGAP5 Discs, Large Homolog-Associated Protein 5 0.312772559 0.005688501 

MCM6 Minichromosome Maintenance Complex Component 6 0.319305429 0.004770879 

BA1 Ba1 Globin 0.335343403 0.000512919 

H2AFV H2A Histone Family, Member V 0.378519563 0.004684264 

H3F3B H3 Histone, Family 3B (H3,3B) 0.380353373 0.004979366 

DEDD2 Death Effector Domain Containing 2 2.800589334 0.004770879 

SLC16A9A 
Solute Carrier Family 16, Member 9 (Monocarboxylic Acid 

Transporter 9) 
3.270483407 0.000676268 
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PTPRC Protein Tyrosine Phosphatase, Receptor Type, C 3.352443552 0.004979366 

CEBPB Ccaat/Enhancer Binding Protein (C/Ebp), Beta 3.395174241 0.002836483 

MPEG1 Macrophage Expressed 1 3.465945292 0.002229189 

APCS Amyloid P Component, Serum 3.524989277 0.001553384 

VDRB Vitamin D (1,25- Dihydroxyvitamin D3) Receptor 3.621157708 0.00021162 

ARRDC3 Arrestin Domain Containing 3 3.654158099 0.000717741 

AHNAK Ahnak Nucleoprotein 3.665358687 0.000619388 

RNF213 Ring Finger Protein 213 3.904100317 0.002157374 

BX470254 Uncharacterized Protein 4.035880514 0.00010831 

C21H5ORF41 Chromosome 5 Open Reading Frame 41 4.039721157 3.49E-05 

ITGAM Integrin, Alpha M 4.143194462 0.00096585 

ZNFX1 Zinc Finger, Nfx1-Type Containing 1 4.328657989 0.004979366 

ARRDC2 Arrestin Domain Containing 2 4.466725228 1.29E-06 

IRF1 Interferon Regulatory Factor 1 5.229031373 3.83E-06 

Q8UUL6_ORYL

A 
Mhc Class I A 5.498792629 2.39E-11 

CABZ01039845 Uncharacterized Protein 6.261570956 1.47E-11 

CTSS Cathepsin S 6.471474368 4.33E-09 

NCF1 Neutrophil Cytosolic Factor 1 6.640774427 0.000443124 

FKBP5 Fk506 Binding Protein 5 6.931212649 1.67E-07 

GPNMB Glycoprotein (Transmembrane) Nmb 6.964355619 0.004158807 

PRL Prolactin 9.405446397 1.27E-13 

GPR84 G Protein-Coupled Receptor 84 11.27671459 4.01E-06 
 

Gene expression levels of young (GRZ, MZM-0403: 5 weeks) and old N. furzeri (GRZ: 14 weeks, MZM-0403: 31 weeks) in brain were 

tested for significant differences (p-value<=0.01). Fold changes below and above 1 indicate genes that are downregulated (coloured red) and 

upregulated (blue), respectively, with age. P-values are adjusted for multiple testing (Benjamini-Hochberg). 
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Supplementary Table 5: Primers used for the qPCR validation of selected ageing-related N. furzeri genes. 

Gene Annotation Forward primer Reverse primer 

INSR Insulin receptor TGCCTCTTCAAACCCTGAGT AGGATGGCGATCTTATCACG 

ADAMTSL2 ADAMTS-like 2 GCAGGCCTTGCTGTAGTACC AAACCGGTGTCCAAACAGAC 

APOE Apolipoprotein E GCATAAGGACACCCAGGAGA GGAGCAGGTCATTCAGGGTA 

DBX1A Developing brain homeobox 1a CATCAGCAAGCCAGACAGAA GACATCCACCGGATGACAG 

CCNB1 Cyclin B1 CCGTCACATAGGCAAAGTCC CTGCTGCAGGAGACCATGTA 

PLK1 Polo-like kinase 1 TGTGTTTGTGGTCCTGGAGA TTGCCCAGTTTCAGGTCTCT 

PRODHA Proline dehydrogenase (oxidase) 1a GTGGATGCAGAGCAGACGTA CCAAAATACCAGCCTTCTCG 

VDRB Vitamin D receptor b CATGCAGACTCAAACGCTGT CGTGCTTCCTTTTCTGCTTC 

CYP1B1 
Cytochrome P450, family 1, subfamily B, 

polypeptide 1 
CGGACATATTTGGAGCCAGT AGCTGTTGCTGGTCTTCGAT 

MPEG1 Macrophage expressed gene 1 CAGAAAAGCACCACAGCTCA GGCCTTCGCTGTGTACATAAA 

APCS Amyloid P component, serum GAAGCTGGTCTGGTCCATGT TCTGGAGCAAACATCACAGG 

COL10A1 Collagen, type X, alpha 1 CCACTGGAAAGGGGTATGTG GGCAGACCAATTCCATTCTC 
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Supplementary Files 

Supplementary File 1 - Diagram of the EST2uni MySQL database. 

Schematic of the EST2uni MySQL database with modifications highlighted in red 

Supplementary File 2 - Genes duplicated in N. furzeri 

List of duplicated genes identified in the N. furzeri transcript catalogue 

Supplementary File 3 - N. furzeri ageing-related genes in skin and brain 

Lists of differentially expressed genes in skin and brain of N. furzeri detected by RNA-seq 

Supplementary File 4 - Enriched functional annotation terms obtained for N. furzeri ageing-

related genes 

Enriched functional annotation terms obtained by DAVID for up- and downregulated genes as well as 
for skin- and brain-specific genes that were differentially expressed in N. furzeri with age 

Supplementary File 5 – N. furzeri ageing-related genes in skin and their confirmation in 

zebrafish 

Lists of N. furzeri differentially expressed genes in skin and their confirmation skin of old vs. young 
zebrafish 
 

The Supplementary Files as well as electronic versions of this thesis in Word and PDF format are 

available on the enclosed CD. 
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