
Friedrich-Schiller-Universität Jena

Fakultät für Mathematik und Informatik

Numerical bifurcation analysis
of the asymmetric spring-mass model

Dissertation

zur Erlangung des Akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Dipl.-Math. Andreas Merker,

geboren am 25.11.1975 in Kustanai



1. Gutachter: Prof. Dr. Martin Hermann (FSU Jena)

2. Gutachter: Prof. Dr. Andre Seyfarth (TU Darmstadt)

3. Gutachter: Prof. Dr. Gerhard Zumbusch (FSU Jena)

Tag der Disputation: 03.07.2014



Contents

Zusammenfassung vi

Abstract vii

1. General introduction 1

2. Stable walking with asymmetric legs 5

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1. Robot experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2. Prosthetic walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.3. Aims of this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1. Symmetric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2. Asymmetric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3. System analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1. Period-one gaits with symmetric legs . . . . . . . . . . . . . . . . . . . . . 13

2.4.2. Period doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3. Asymmetry of angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.4. Asymmetry of leg sti�ness . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.5. Asymmetry of rest length and dimensionless energy . . . . . . . . . . . . . 16

2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Spring-mass model 22

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2. The model as a hybrid dynamical system . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1. Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2. Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3. Periodic solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1. Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



3.3.2. Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4. Transformation into a boundary value problem . . . . . . . . . . . . . . . . . . . . 29

3.4.1. Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.4.2. Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4.3. Period-2 solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1. Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.2. Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4. Numerical bifurcation analysis of the spring-mass model 41

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Some topics of the analytical bifurcation theory . . . . . . . . . . . . . . . . . . . 42

4.2.1. De�nitions and important theorems . . . . . . . . . . . . . . . . . . . . . . 43

4.2.2. Lyapunov-Schmidt reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3. Simple turning points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.4. Double turning points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.5. Secondary bifurcation points . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.6. Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3. Bifurcations in the spring-mass model . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1. Simple turning point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.2. Transcritical bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3. Period-doubling bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.4. Hopf bifurcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.5. Double turning point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.6. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.1. Running . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4.2. Walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5. Stable running with asymmetric legs 60

5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2. The asymmetric spring-mass model for running . . . . . . . . . . . . . . . . . . . 61

5.3. Transformation into a boundary value problem . . . . . . . . . . . . . . . . . . . . 62

5.4. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1. Asymmetry of angle of attack . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2. Asymmetry of leg sti�ness . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.3. Asymmetry of rest length . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6. General conclusions 70

6.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A. Computation of adjoined matrices 72

Danksagung 87

Ehrenwörtliche Erklärung 88



Zusammenfassung

Das Feder-Masse-Modell und deren zahlreichen Erweiterungen gehören derzeit zu den besten

Kandidaten für das Template der menschlichen Fortbewegung. Mit der steigenden Komplexität

wird jedoch deren Anwendung sehr aufwendig. Da Bifurkationen die Gebiete der stabilen Be-

wegung begrenzen, kann das Studium des Stabilitätsverhaltens auf die Berechnung entsprechen-

der Grenzpunkte zurückgeführt werden. In dieser Dissertation wird ein Verfahren präsentiert,

das auf der Berechnung von Bifurkationspunkten im Feder-Masse-Model beruht. Im Original

basiert das Model auf einem hybriden dynamischen System. Das hier vorgeschlagene Verfahren

besteht aus der Transformation der Folge von Anfangswertproblemen in ein einziges Randwert-

problem. Mit der neuen Methode lassen sich Unstetigkeiten vermeiden. Weiterhin ist die An-

wendung fortgeschrittener numerischer Verfahren zur Lösung parameterabhängiger Zwei-Punkt-

Randwertprobleme möglich. Auÿerdem können sachgemäÿe erweiterte Systeme benutzt werden,

um Umkehrpunkte, sowie transkritische und Periode-verdoppelnde-Bifurkationspunkte zu bestim-

men. Es wird gezeigt, dass die entstehenden Randwertprobleme mit dem Einfachschieÿverfahren

gelöst werden können, was die Anwendung des aufwendigeren Mehrfachschieÿverfahrens über�üs-

sig macht. Das vorgestellte Verfahren ist schnell, robust gegenüber numerischen Störungen und

erlaubt die Berechnung hochgradig instabiler periodischer Lösungen des Originalproblems.

Die asymmetrische Beinfunktion ist oft ein unerwünschter Seitene�ekt in künstlichen Beinsyste-

men und kann funktionale De�zite und Variationen der mechanischen Konstruktion widerspiegeln.

Sie �ndet sich ebenfalls in der Fortbewegung von Menschen und Tieren nach einem Unfall oder in

spezi�schen Gangmustern. Bis jetzt ist nicht klar, inwiefern die Unterschiede in der Beinfunktion

der gegenüberliegenden Gliedmaÿe während des Rennens oder Gehens toleriert werden können.

In dieser Dissertation wird diese Fragestellung unter Verwendung des Feder-Masse-Modells für die

Simulation von Rennen und Gehen mit nachgiebigen Beinen untersucht. Wir zeigen mit Hilfe

der ursprünglichen Realisierung des Modells und des neuen Randwertproblem-Verfahrens, dass

beträchtliche Unterschiede zwischen den gegenüberliegenden Beinen toleriert werden können und

dass sie sogar von Vorteil für die Robustheit der Systemdynamik sein können. Ein besseres Ver-

ständnis der Mechanismen und der potenziellen Vorteile einer asymmetrischen Beinfunktion kann

helfen, die Entwicklung von künstlichen Gliedmaÿen und neuartiger therapeutischer Konzepte und

Rehabilitationstrategien voranzutreiben.



Abstract

The spring-mass model and its numerous extensions are currently some of the best candidates

for templates of human locomotion. However, with increasing complexity, their applications can

become very computationally costly. Since the bifurcations limit the region of stable locomotion,

the study of stability can be reduced to the computation of the corresponding boundaries. In this

thesis, an approach is presented that is based on the calculation of bifurcations in the spring-mass

model. Originally, the realization of the model was based on a hybrid dynamical system. The new

approach consists of the transformation of the series of initial value problems on di�erent intervals

into a single boundary value problem. Using this technique, discontinuities can be avoided and

sophisticated numerical methods for studying parameterized nonlinear boundary value problems

can be applied. Thus, appropriate extended systems are used to compute transcritical and period-

doubling bifurcation points as well as turning points. We show that the resulting boundary

value problems can be solved by the simple shooting method with su�cient accuracy, making the

application of the more extensive multiple shooting super�uous. The proposed approach is fast,

robust to numerical perturbations and allows to determine highly unstable periodic solutions of

the original problem.

Asymmetric leg function is often an undesired side-e�ect in arti�cial legged systems and may

re�ect functional de�cits or variations in the mechanical construction. It can also be found in

legged locomotion in humans and animals, for example after an accident or in speci�c gait patterns.

So far, it is not clear to what extent di�erences in the leg function of contralateral limbs can be

tolerated during walking or running. Here, we address this issue using the spring-mass model for

simulating walking and running with compliant legs. With the help of the original realization

of the model and the boundary value problem approach, we show that considerable di�erences

between contralateral legs can be tolerated and may even provide advantages to the robustness

of the system dynamics. A better understanding of the mechanisms and potential bene�ts of

asymmetric leg operation may help to guide the development of arti�cial limbs or the design novel

therapeutic concepts and rehabilitation strategies.



1. General introduction

In natural sciences, mathematical models are tools, which provide a simplistic description of

complex processes. The greatest challenge is to create a simple model, which is nonetheless

powerful enough to describe sophisticated relationships. One of the most successful templates for

the simulation of human walking, running and hopping is the spring-mass model. Here, the utterly

complex human locomotion [Maus, 2012] is reduced to three control parameters. The model for

running and hopping consists of a mass point representing a center of mass of the human body

riding on a linear leg spring [Blickhan, 1989; McMahon & Cheng, 1990]. For the study of walking

gaits, a second leg spring was introduced [Geyer et al., 2006]. While the simplicity of the model

allows e�cient study of a general locomotive behaviour, its great strength is also the possibility

of extensions [Seyfarth et al., 2012, 2013]. For instance, the in�uence of di�erent parts of a leg on

locomotion can be simulated by a suitable segmentation of the leg spring [Maykranz et al., 2009;

Rummel & Seyfarth, 2008].

Human locomotion is a complex process characterized by immense variability, e.g. Maurer et al.

[2013]. The external variability provides the necessary adaptation of the locomotor system to

the environment like rough terrain, stairs etc [Grimmer et al., 2008]. The human locomotor

system has also a natural internal variability, which can be roughly separated in three parts:

stochastical �uctuations (noise), change of leg properties during ground contact (drift) and leg

asymmetry (o�set) [Riese, 2013]. Drift occurs because the human leg is not a perfect linear

spring. For instance, the leg sti�ness changes during ground contact [Lipfert, 2010]. Stochastic

�uctuations may have certain in�uence on the neural control of locomotion [Dingwell & Cusumano,

2010; Hausdor�, 2007]. The left-right leg asymmetry, which is one of the main subjects of this

thesis, is not only observed in locomotion gaits of people with prosthetic limbs or unilateral

injuries [Schaarschmidt et al., 2012] but also in legged robots with construction limitations [Merker

et al., 2011b]. Gait asymmetry also occurs in healthy humans [Sadeghi et al., 2000]. A better

understanding of the mechanisms and potential bene�ts of asymmetric leg operation may help

to guide the development of arti�cial limbs [Grimmer & Seyfarth, 2011a,b] or the design of novel

therapeutic concepts and rehabilitation strategies [Hreljac, 2004]. Most investigations do not

address whether leg asymmetry must be handled as a limiting constraint, or instead should be

exploited to help maximize task performance, e.g. Valderrabano et al. [2007]. The aim of this
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study is to determine, whether the growing discrepancy between two contralateral legs has any

positive e�ect on the stability of running or walking. Thus, leg asymmetry is considered as a

fundamental system property.

The original spring-mass model containes three control parameters: the leg angle, the leg sti�ness

and the leg length. Leg asymmetry is simulated by an additional set of asymmetric parameters.

Running is de�ned as the gait pattern with a �ight phase and a single-support phase, i.e. when

only one leg spring has a ground contact, e.g. Seyfarth et al. [2002]. Walking is a combination

of a single- and a double-support phase, e.g. Rummel et al. [2010b]. Periodic solutions of the

model often correspond to continuous locomotion patterns. The investigations of stable periodic

solutions is of particular interest. While there are many ways to measure stability of human lo-

comotion experimentally, e.g. Bruijn [2010], the mathematical de�nition of stability is considered

as the property of the system to absorb small perturbations [Marx & Vogt, 2011]. The increased

complexity makes the stability analysis of the asymmetric model to a challenging mathematical

problem. The combination of the leg asymmetry with any other type of variability would addi-

tionally raise the computational e�ort. Therefore, for further e�cient studies it is necessary to

develop an approach, which reduces the complexity of the computation and still preserves the

signi�cance of the model.

The general idea is to reduce the computation of stable solutions to the study of the boundaries

of the stability regions. This concept leads to a non-trivial mathematical problem, since the areas

of stability are mostly con�ned between bifurcation points. Bifurcations often denote important

qualitative changes (like gain and loss of stability) in the dynamics of physical systems. Thus, their

study is important for many research �elds like �uid sloshing [Hermann & Timokha, 2005, 2008],

structural mechanics [Ikeda & Murota, 2002] or synthetic biology [Strelkowa, 2014]. Bifurcation

points are parameter values, where these changes happen. In particular, they are singularities in

the given problems and can only be determined using special numerical methods. In this thesis, we

use a method of extended systems, which is based on the Lyapunov-Schmidt reduction [Lyapunov,

1906; Schmidt, 1908]. Here, the strategy is to embed the problem into a higher dimensional

boundary value problem, which still can be solved using standard numerical techniques [Wallisch

& Hermann, 1987]. To apply this approach for the study of asymmetric locomotion, an appropriate

implementation of the spring-mass model is required.

The original realization of the model is based on a sequence of initial value problems (also called

hybrid dynamical systems). There exist numerical methods for the computation of bifurcation

points in hybrid systems. However, they often require the application of a speci�c software package,

e.g. Thota & Dankowicz [2008]. In this thesis, we purpose a more general approach, which is

based on boundary value problems [Hermann, 2004; Hermann & Saravi, 2014; Stoer & Bulirsch,

1993]. The implementation of the model as a parametrized two-point boundary value problem



3 1. General introduction

can be extended for computation of bifurcation points as it described in Wallisch & Hermann

[1987]. There exist a number of e�cient boundary value problem solvers for di�erent platforms

like AUTO [Doedel et al., 2005] or theMatLab solver bvp4c [Shampine et al., 2000]. In this thesis,

we propose the well-approved software package RWPM [Hermann & Kaiser, 1993; Hermann et al.,

1999; Hermann & Timokha, 2005]. This package uses the fast and e�cient shooting method for

solving boundary value problems and provides a routine for the numerical continuation [Hermann

& Ullrich, 1992]. Compared to the di�erence methods, e.g. Hermann [2004], and the variational

methods, e.g. Gottlieb & Orszag [1977], the multiple shooting method and its modi�cations are

the only feasible methods for the treatment of nonlinear boundary-value problems for ordinary

di�erential equations [Stoer & Bulirsch, 1993].

Investigation of human locomotion is an interdisciplinary research �eld. Scientists from di�erent

areas of science, who are not familiar with advanced mathematical theory, may be interested in the

predictions of mathematical modeling. Thus, our �rst aim was to develop an approach, that can be

general enough to be understood by people, whose mathematical training does not extend beyond

the classical methods of applied mathematics. Some basics of functional analysis and topology

can nevertheless be helpful to get a better view on the problematic. Additionally, we intended

to solve the resulting problem without the application of any speci�c software. For the systems

presented in this work, any boundary value problem solver can be used without restriction by

platform. Finally, a clear visual presentation of results is crucial for their intuitive understanding.

Therefore, we present our most important outcomes in detailed bifurcation diagrams.

During the work on this thesis, three publications were submitted to scienti�c journals. The

paper Merker et al. [2011b] was written in collaboration with Jurgen Rummel and Prof. Dr.

Andre Seyfarth. The PogoWalker experiments were conducted by Dr. Horst-Moritz Maus. The

numerical bifurcation analysis of the bipedal model Merker et al. [2013] was developed together

with Dr. Dieter Kaiser and Prof. Dr. Martin Hermann. The study of the asymmetric model

Merker et al. [2014] was done with the additional support by Prof. Dr. Andre Seyfarth. Last

but not least, the poster Merker et al. [2011a] from the Dynamic Walking conference (Jena, 2011)

arose in cooperation with Dr. Sebastian Riese and Prof. Dr. Andre Seyfarth.

This thesis is organized as follows. In the next chapter, the paper Merker et al. [2011b] is

presented. The chapter describes in detail the importance of the study of asymmetric locomotion

and provides strong biomechanical background for the asymmetric model. Using the asymmetric

model, we investigated to what extent the left-right leg asymmetry can be tolerated during walking.

The model was implemented as a sequence of initial value problems. Bifurcation points were

found in a heuristic way. First, the neighbouring points of the desired bifurcation point were

calculated as precisely as possible. Then, the bifurcation point was found as the intersection point
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of corresponding solution branches. In particular, all required stable solutions had to be computed

explicitly. During the work on this paper, we noticed that the applied heuristic approach is slow

and expensive. This observation led to the development of a new method based on boundary

value problems.

In Chapter 3, we give a detailed mathematical description of the spring-mass model and present

its transformation into a boundary value problem. Although the new implementation of the model

is a necessary intermediate step for the computation of bifurcation points, it has useful properties

on its own.

Chapter 4 starts with some basic topics of the numerical bifurcation theory. In particular, the

techniques of extended systems for the numerical determination of various types of bifurcation

points are presented. Then, the extended systems are applied to the boundary value problem

implementation of the spring-mass model. Finally, we show how the new approach can be used

to compute the manifolds of stable solutions of the symmetric spring-mass model.

In Chapter 5, we apply the boundary value problem approach from Chapter 3 to the asymmetric

spring-mass model. Using the extended systems from Chapter 4, we compute bifurcation points

and thus the regions of stability of the asymmetric model. With results of Chapter 3 as a reference,

we investigate the in�uence of the asymmetric parameters on the stability of running. Moreover,

we demonstrate the superiority of the boundary value problem approach to the heuristic method

from Chapter 2.

In the last chapter, the main results of this thesis are summarized and discussed.

The aims of this thesis are:

• Development of a new boundary value problem approach for the spring-mass model.

• Extension of the boundary value problem for the computation of di�erent types of bifurcation

points.

• Application of the bifurcation analysis to the investigation of the stability behaviour of the

asymmetric spring-mass model.



2. Stable walking with asymmetric legs

2.1. Introduction

For locomotion humans usually select the most e�cient bipedal gait, namely walking [Cavagna

& Kaneko, 1977]. Beside e�ciency, an equally important property of the chosen gait is stability.

Human walking has inspired engineers to build bipedal robots, which should walk as stable as

humans. Humans stabilize walking in a rather unconscious and intuitive way. In arti�cial legged

systems, it is still a challenge to achieve stability during the highly dynamic gait.

The symmetry between contralateral legs is considered an appropriate condition for achieving

stable locomotion. However, human legs are adaptable and o�er much more possibilities than

used during walking like when moving over slightly uneven terrain or walking up- and downstairs.

Additionally, human legs have to deal with unexpected situations, for example if an unexpected

step down arises. However, in most cases leg mechanics and neural system are able to master such

critical situations.

The human locomotor system is not only able to deal with external disturbances, it may also

need to manage internal challenges. One such issue is the asymmetry between the left and right

leg, which is found prominently in people with prostheses or orthoses. Here, it is obvious that

the dynamics of both legs are di�erent. One reason could be the di�erences in leg masses, which

results in gaits of periods greater than two, as predicted in a compass-gait model [Moon & Spong,

2010]. Interestingly, a left-right asymmetry during locomotion is observed also in able-bodied hu-

man subjects, even with equal leg masses [Sadeghi et al., 2000]. Herzog et. al. have reported that

asymmetries of ground reaction force (GRF) of about 4% are observable in normal walking [Her-

zog et al., 1989]. Another common issue found in humans is leg length inequality [Gurney, 2002].

The left-right di�erences in gait patterns are most visible for slower speeds [Goble et al., 2003;

Nolan et al., 2003]. Beside left-right asymmetries, small stochastic stride-to-stride �uctuations are

reported [Dingwell et al., 2010], which could also contribute to dynamical asymmetries of the gait.

Stride-to-stride �uctuations might even be important to increase robustness of walking while min-

imizing energetic costs. In arti�cial walking devices, they can also be used for learning algorithms

that improve robustness and top speed [Faber & Behnke, 2007; Kohl & Stone, 2004].
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These observations indicate that gait asymmetries are a key feature of human motion. Neverthe-

less, during the design process of a bipedal robot, engineers take care of identical leg properties and

joint control on both sides. But in practice, dynamic properties of the legs are often not exactly

equal, for instance the wear at the joints could be di�erent. Such imperfections in the hardware

(mechanics, actuators) could lead to a left-right asymmetry of leg dynamics. In this chapter,

we investigate to what extent asymmetric leg function may challenge walking stability. For this,

we use a simulation model, i.e the bipedal spring-mass model, that resembles the dynamics, and

therefore the resulting center of mass (CoM) kinematics of human walking [Geyer et al., 2006].

Following the concept of Full & Koditschek [1999] and Jordan [1990], we aim at subsequentially

increasing the complexity of a gait template such that the scienti�c question can be addressed

while features of the underlying body dynamics are preserved. Here, the additional complexity is

achieved by introducing asymmetry parameters into the model.

Human walking is characterized by single- and double-support phases, while the body is lifted

during single-support around midstance. It is further distinguished from other gaits by the pattern

of ground reaction force, where a double humped pattern with two force maxima is observed

[Lipfert, 2010]. Although human and arti�cial legs are very complex in their structure, their

function during walking can be described mechanically in a surprisingly simple way. At preferred

walking speed, a fairly linear force-length relationship is found [Lipfert, 2010]. Thus, the human

leg can be understood as a simple prismatic leg spring supporting the body.

This chapter is organized as follows. To motivate our study, we give two examples of asymmetric

walking in the next section. In Section 2.3 the methods used in our investigations are presented. In

Section 2.4 the results of simulations are described followed by their discussion in Section 2.5.

2.2. Motivation

2.2.1. Robot experiment

One motivation for this study is the customized conceptual bipedal walking robot, PogoWalker

(Figure 2.1(a)), which was developed at the Lau�abor Locomotion Laboratory, Friedrich-Schiller-

Universtät Jena. The legs of PogoWalker have the same sti�ness and length. Each leg is moved

by two motors: the �rst one actuates the hip and the second one shortens the leg during the

swing phase (Figure 2.1(b)). The motors for the leg rotation are arranged in the front and the

back of the upper body to align the center of mass in the geometric center. As there was a

slight mechanical coupling between leg rotation (�rst motor) and leg shortening (second motor),

this construction approach led to di�erent leg angles of left and right leg. Due to the shifted leg
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Figure 2.1. The bipedal PogoWalker in (a) with compliant

telescoping legs walking on the instrumented treadmill. The

schematic in (b) illustrates the motor con�guration for one

leg.
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Figure 2.2. Vertical ground reaction forces

(GRF) of PogoWalker measured with tread-

mill sensors. The forces are separated for both

legs and were recorded with 200 Hz. Here,

only the �rst ten strides are shown.

placements, the leg compressions vary, which results in di�erent maxima of the ground reaction

forces (Figure 2.2).

The robot has two equal prismatic legs with �xed rest length of L0 = 0.58 m and �xed average

normalized leg sti�ness of k0 = 20. The leg angle α0 was adjusted at about 70◦. The mass of

PogoWalker is 4.1 kg, which is concentrated in the upper body. During the experiments, about

10% of the robot weight was suspended by elastic cords as a prevention from falling. PogoWalker

walked on an instrumented treadmill (Tecmachine, Andrezieux Boutheon, France) with integrated

3D force sensors (Kistler, Winterthur, Switzerland). In this study, a treadmill speed of 0.46 m/s

was used. Thus, average dimensionless energy in this experiment with PogoWalker was about

1.017.

The control consists of three phases. In the stance phase, the leg is retracted with a speed matching

the treadmill speed. After take-o�, the leg is actively shortened and protracted until α0 = 70◦ is

reached. In the last phase, the leg remains in this position until touch-down. Ground contact of

the leg is detected by foot force sensors. Since the gait pattern is not prede�ned, PogoWalker needs

some steps to develop a continuous gait pattern. After some introducing steps the robot adapts

to the motion and shows asymmetrical vertical GRF patterns (Figure 2.2). Even so, PogoWalker

is able to walk over a considerable number of steps (>100) without stumbling.
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Figure 2.3. The symmetric bipedal spring-mass model

for walking (i.e. with α1 = α2 = α0, k1 = k2 = k0

and L1 = L2 = L0). The points on the center of

mass (CoM) trajectory show events vertical leg orienta-

tion (VLO), touch-down (TD) and take-o� (TO). Black

and blue parts of the CoM trajectory represent single- and

double-support phases, respectively.

2.2.2. Prosthetic walking

In human walking, asymmetric gaits are typically found when the leg function is restricted due to

amputation of a limb. In Schaarschmidt et al. [2012], �ve subjects with unilateral transfemoral

amputations were analyzed when walking at 1.1 m/s on an instrumented treadmill (ADAL-WR,

HEF Tecmachine, Andrezieux, Boutheon, France) with integrated 3D force sensors (Kistler, Win-

terthur, Switzerland). For each subject, two trials were obtained, starting with the computerized

arti�cial knee joint C-Leg, followed by the non-computerized 3R80 (both Otto Bock HealthCare).

The asymmetry between both limbs was observed in the pattern of the vertical and horizontal

GRFs with longer contacts on the intact side. All subjects were able to walk by selecting an

asymmetric gait pattern.

2.2.3. Aims of this study

As demonstrated by the examples described above, asymmetric walking is a commonly observed

gait pattern in both humans or arti�cial legged systems. So far, it is not clear to what extent

asymmetry should be avoided or whether for certain conditions gait asymmetry could be accepted.

For instance, Hof et. al. suggested that symmetric leg function is not necessarily required to be

an aim of gait rehabilitation [Hof et al., 2007].

In order to approach this question, we will use a conceptual model for bipedal locomotion based

on spring-like leg function [Geyer et al., 2006] to investigate e�ects of asymmetric leg parameters

on stability of walking patterns. In order to facilitate the comparison of the model with robot

data we used similar leg parameters in the model as in the PogoWalker. We expect, that within

certain ranges asymmetric leg con�gurations are tolerated in the walking model, while stability is

expected to decrease with increasing gait asymmetry.
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Figure 2.4. The asymmetric bipedal spring-mass

model for walking with asymmetry of (a) angle of at-

tack (α1 < α2), (b) leg sti�ness (k1 < k2), and (c) leg

length (L1 < L2).
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2.3. Methods

Since walking with symmetric legs is a reference for our study, we �rst introduce the symmetric

spring-mass model.

2.3.1. Symmetric model

The bipedal spring-mass model (Figure 2.3) consists of two linear massless leg springs and a point

mass m representing the center of mass of the body. In the symmetric model, both leg springs

are assumed to have the same properties: the rest length L0 and the sti�ness k0 (Figure 2.3).

During the step the system energy E0 remains constant. Location and velocity of the center of

mass are given by r = (x, y)T and ṙ = (ẋ, ẏ)T , respectively. We set the initial state of the system

to r0 = (x0, ẋ0, y0, ẏ0)
T . The motion of the center of mass is then described by equation

mr̈ = F1 + F2 +mg, (2.1)
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Figure 2.6. Initial VLO conditions y0 (a), (b) and

θ0 (c) of periodic walking patterns of the symmetric

bipedal spring-mass model depending on the angle of

attack α0. The thick lines indicate stable solutions.

The diamonds � at α0 = 63.0◦, 63.4◦ and 71.8◦ rep-

resent bifurcation points p1, p2 and p3, respectively,

connecting branches of periodic solutions. Examples

of CoM trajectories and vertical ground reaction forces

corresponding to the points a1, b1, b2, d1 and d2 are
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with the gravitational acceleration g = (0,−9.81)T and the force Fi generated by leg i during

stance. The force Fi is given by

Fi = k0


L0

|r − rFPi
|
− 1


(r − rFPi

). (2.2)

Here, rFPi
is the position of the foot point FPi of leg i. In the swing phase of leg i, the force

Fi is zero. The transition from swing phase to stance phase (touch-down) happens when the

landing condition y = L0 sin(α0) is ful�lled, where α0 is the angle of attack (Figure 2.3). The

transition from stance phase to swing phase (take-o�) of leg i occurs, when the extending leg

length reaches L0.

Any gait of the spring-mass model is completely characterized by three fundamental system pa-

rameters (i.e. the dimensionless leg sti�ness k0 = (k0L0)/(mg), the angle of attack α0 and the

dimensionless system energy E0 = E0/(mgL0)) and the four-dimensional vector r0 of initial con-

ditions [Geyer et al., 2006]. We start the simulations at the instant of the vertical leg orientation

(VLO, [Rummel et al., 2010a]) during single support. Here, the number of independent initial
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Figure 2.8. Examples of CoM trajectories (upper row) and vertical ground reaction forces (vGRF) of both legs

(lower row) corresponding to the points a1, b1, b2, d1 and d2 in Figure 2.6. The points in the upper row indicate

events vertical leg orientation (VLO), touch-down (TD) and take-o� (TO) (Figure 2.3).

conditions can be reduced to two, i.e. the height y0 and the velocity angle

θ0 = arctan


ẏ0
ẋ0


. (2.3)

The model parameters L0 and m are chosen according to human data (L0 = 1 m, m = 80 kg). The

average dimensionless sti�ness of PogoWalker legs is k0 = 20. Using dimensional analysis [Geyer

et al., 2006], we convert k0 to the dimensional sti�ness k0 with respect to the model parameters

m and L0 and round it to 16 kN/m.

The average dimensionless energy E0 in the PogoWalker experiments is about 1.017. However, for

this energy the bipedal symmetric model has no stable periodic solutions [Rummel et al., 2010b].

Thus, we did all calculations in our investigation with constant dimensional energy E0 = 820 J

corresponding to the dimensionless energy E0 of 1.045. The di�erence between the system energy

in experiment and simulations is less than 3%, which is still within an acceptable tolerance.

The model is implemented inMatLab (The MathWorks Inc., Natick, MA, USA). The di�erential

equations are solved using Runge-Kutta method (ode45) with absolute and relative tolerance of

10−13. Unless otherwise mentioned, the steps of α0 of 0.1
◦ were used in all our calculations.
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2.3.2. Asymmetric model

To investigate the asymmetric behaviour, each leg is described by a di�erent parameter set. There-

fore, we introduce the asymmetry parameters εα, εk, εL and ε E of α0, k0, L0 and E0, respectively.

εα, εk, εL and ε E are also called imperfection or perturbation parameters [Strogatz, 1994]. For leg 1

the perturbations are subtracted from the corresponding control parameters (Figure 2.4):

α1 = α0 − εα, k1 = k0 − εk, L1 = L0 − εL, E1 = E0 − ε E. (2.4)

For leg 2 the perturbations are added (Figure 2.4):

α2 = α0 + εα, k2 = k0 + εk, L2 = L0 + εL, E2 = E0 + ε E. (2.5)

We call εα the α-asymmetry, εk the k-asymmetry, εL the L-asymmetry and ε E consequently theE-asymmetry.

The E-asymmetry ε E a�ects dimensional sti�ness k0 and leg length L0. However, the values of ε E
were chosen in such way that the dimensionless sti�ness k0 remains equal for both legs. For each

ε E, the corresponding value of εL was calculated using E0 = E0/(mgL0) with constant dimensional

energy E0 = 820 J. Next, the sti�ness asymmetry εk was calculated using k0 = (k0L0)/(mg) withk0 = 20. Notice, that although the dimensionless system energy E0 is di�erent for left and right

leg, the dimensional energy E0 remains the same for both legs.

We consider positive perturbations of leg asymmetry only (εα > 0, εk > 0, εL > 0 and ε E > 0).

Switching the order of the steps, i.e. beginning with the step 2 and following by the step 1, we

achieve the case of negative perturbation with exactly the same stability behaviour.

In this study we used steps of εα, εk, εL and ε E of 0.1◦, 0.1 kN/m, 10−4 m and 10−4, respec-

tively.

2.3.3. System analysis

Stability is one of the most important properties of bipedal walking. Here, we give a short

description of the stability analysis used in our investigations.

The system analysis of a single step is described in detail in Section 3.3.2. However, the inves-

tigation of walking in the asymmetric model requires the observation of a complete gait cycle,

comprising two subsequent steps. For this, slight modi�cations of the system analysis had to be

done. Since each gait pattern with single-step periodicity is also a double-step periodic pattern,

these modi�cations do not a�ect the analysis of single-step periodic gaits.
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The step 1 starts in VLO1 de�ned by the initial conditions. It lasts until VLO2 is reached. The

gait cycle is completed when VLO3 is reached (Figure 2.3).

With VLO as Poincaré section we apply the Poincaré return map F. If si = (yi, θi) is the state of

the system in VLOi then after the complete gait cycle the state in VLOi+2 is si+2 = F(si). Using

the Poincaré map we identify periodic walking solutions, which are represented as �xed points s⋆

in the map s⋆ = F(s⋆). We calculate the �xed points as zeros of the function

G(s) = s− F(s) (2.6)

applying a Gauss-Newton algorithm using the Matlab function fsolve with relative and absolute

tolerance of 10−8.

To determine the stability of a �xed point we calculate the Jacobi matrix JF(s
⋆) of F in s⋆. The

gait pattern corresponding to s⋆ is stable if the magnitude of both eigenvalues of JF(s
⋆) is less

than one [Guckenheimer & Holmes, 1983].

2.4. Results

2.4.1. Period-one gaits with symmetric legs

Periodic solutions of the symmetric model are shown in Figure 2.6. We consider two kinds of single-

step periodic walking patterns, branches A and B, which were already presented in Rummel et al.

[2010b]. The vertical ground reaction forces and center of mass trajectories of patterns on A

are mirrored at VLO (example a1 in Figure 2.8 corresponding to the point a1 in Figure 2.6), in

contrast to solutions of branch B (b1 and b2 in Figure 2.6 and Figure 2.8).

The branches A and B are connected by the transcritical bifurcation point p3 at α0 = 71.8◦.

On branch A the stable solutions are found between αmin = 69.4◦ and the bifurcation point p3.

The stable solutions are continued by branch B starting at the bifurcation point p3 and ending

at αmax = 74.7◦. For parameter values αmin and αmax, the eigenvalues of the Jacobi matrix are

complex-conjugate with magnitude equal to one. Together with change of stability this indicates

that in αmin and αmax Hopf bifurcations occur [Marsden & McCracken, 1976].

In the following, we investigate the size of the region where locomotion is stable. Therefore, we

de�ne the continuous range of stable solutions ∆α = αmax − αmin and call it the α-range. The

symmetric model exhibits an α-range of ∆α = 5.3◦, which provides a reference for investigations

on the asymmetric model (Sections 2.4.3, 2.4.4 and 2.4.5).



14 2. Stable walking with asymmetric legs

2.4.2. Period doubling

Additionally, we present two kinds of double-step periodic patterns lying on branches D1 and D2

in Figure 2.7(b). D1 and D2 are connected to branch A by the bifurcation points p1 and p2.

Periodic solutions lying on branches D1 and D2 were calculated using steps of α0 of 0.01
◦.

Starting at VLOi, after the �rst step a �xed point lying on D1 reaches in VLOi+1 the corresponding

point on the contrary part of D1 (example d1 in Figure 2.6 and Figure 2.8). E.g. the trajectory

of d1 = (0.978 m, 11.033◦) has in VLOi+1 a di�erent center of mass height yi+1 = 0.987 m and

velocity angle θi+1 = −11.943◦ (Figure 2.7(c)). After the second step the starting point on D1 is

reached again and periodicity is ful�lled.

The patterns on D2 are characterized by (yi, θi) = (yi+1,−θi+1). After one step these gaits have

the same VLO height y0 and exactly the opposite sign of the velocity angle θ0 (Figure 2.7(c)).

All double-step periodic patterns on D1 and D2 are unstable. Moreover, the magnitude of the

velocity angle θ0 increases rapidly (Figure 2.7(c)), which makes this pattern very sensitive to

all kinds of asymmetric perturbations. In most cases, leg asymmetry causes the take-o� of the

supporting leg in a single-support phase. Since our de�nition of walking requires at least one leg

always having ground contact this locomotion patterns cannot be treated as walking any more.

Therefore, the further discussion of the in�uence of leg asymmetry on the walking patterns lying

on D1 and D2 is omitted.

2.4.3. Asymmetry of angle of attack

As can be seen in the Figure 2.11, moderate perturbations of α0 do not a�ect the bifurcation. In

this case, εα is a bifurcation preserving imperfection [Shearer, 1980]. As long as this bifurcation

exists, stable solutions can be found on both branches, A and B.

The branch B diminishes with increasing asymmetry. For εα > 5◦ no bifurcation and no second

branch could be found. For perturbations larger than 9.9◦ no periodic solutions at all were

determined. Compared to the symmetric case, we observed an increase of the α-range for values

of εα less than 4.5◦. The maximum value of ∆α = 6.9◦ was found at εα = 2.8◦ (Figure 2.9(a)).

Here, the left limit of the region of stable solutions is αmin = 68.8◦ and the right one is αmax = 75.7◦

(Figure 2.9(b)). For εα > 3◦ the α-range is monotonically decreasing due to the reduction of the

branch B.

For a small range of α0 around 70.3◦ and an α-asymmetry of 7.8◦ the walking gait not only remains

stable (Figure 2.9(b)), but stability, i.e. the magnitude of both eigenvalues, is also improved
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(Figure 2.10). For this value of α0, stable walking is still possible with the total left-right deviation

of angle of attack of 15.6◦.

One interesting result is that α-asymmetry can stabilize previously unstable symmetric walking

patterns. For example, the unstable symmetric gait for α0 = 69◦ becomes stable for values of εα

greater than 2.2◦ and less than 5◦ (Figure 2.9(b)).
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The main reason for vanishing periodic solutions at higher values of α0 is that the length of the

supporting leg spring in a single-support phase reaches the rest length L0. Like in the case of

double-step periodic patterns, we observe a rapid increase of magnitude of the velocity angle θ0

(Figure 2.11) and an appearance of a �ight phase during the step.

2.4.4. Asymmetry of leg sti�ness

Adding leg sti�ness asymmetry εk to the system results in two branches of periodic solutions

without any bifurcations (Figure 2.12), i.e. εk is a bifurcation destroying imperfection [Shearer,

1980]. Here, all stable solutions of the asymmetric system lie on one branch between two Hopf

bifurcations.

Unlike the α-asymmetry (Section 2.4.3), no gain of the α-range was observed with k-asymmetry.

As shown in Figure 2.13(a), under the e�ect of k-asymmetry the α-range ∆α diminishes continu-

ously. Increase of εk resulted �rst in loss of stable solutions at about εk = 2.6 kN/m and �nally

in loss of any periodic solutions at about εk = 9.2 kN/m (Figure 2.13(b)). Hence, stable walking

is possible with a sti�ness deviation between the contralateral legs less than 5.2 kN/m, which is

32.5% of the reference sti�ness k0 = 16 kN/m of the symmetric system.

2.4.5. Asymmetry of rest length and dimensionless energy

The rest length asymmetry εL a�ects the system in the similar way as leg sti�ness asymmetry εk

(Section 2.4.4). All stable solutions of the asymmetric system lie also on one branch between two

Hopf bifurcations (Figure 2.14). We observe no increase of α-range (Figure 2.15(a)). The stable

solutions are lost at εL = 9 mm and periodic solutions are lost at εL = 21 mm (Figure 2.15(b)).

Hence, considering the reference leg length L0 of 1 m, stable walking exists for the total di�erence

in the length of contralateral legs of up to 1.8%.

A similar tolerance of 2% is predicted for asymmetries in dimensionless energy ε E. Here, stable

solutions exist for the values of ε E up to 0.01. Periodic solutions are lost at ε E = 0.023.

2.5. Discussion

In this study we investigated the e�ect of asymmetries in angle of attack εα, leg sti�ness εk, leg

length εL and dimensionless energy ε E between both legs on the dynamics and stability of spring-

mass walking. We could demonstrate that asymmetric leg function does not necessarily reduce the
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Figure 2.11. Initial VLO conditions depending on the reference angle of attack α0 for εα = 2◦, 4◦, and 6◦. The

upper row shows the height y0 of CoM at VLO. In the lower row the velocity angle θ0 at VLO is represented. The

grey curves are the initial conditions of the reference periodic gait patterns (see Figure 2.6). The thick lines indicate

stable solutions. The diamonds � are bifurcation points connecting each two branches of periodic solutions.

region of stable walking. The α-asymmetry cannot only be tolerated during walking but may also

result in advantages as demonstrated by the increased α-range (Figure 2.9). For a small range of

values of α0 the α-asymmetry can even stabilize symmetric walking gaits. Surprisingly, for values

of α0 around 70◦, after applying α-asymmetry to the symmetric system the gait not only remains

stable, but stability also is improved (Figure 2.10). This indicates that asymmetric gaits could be

a better solution for asymmetric leg con�guration as was already suggested for amputees by Hof

et al. [2007].

There are speci�c e�ects of asymmetries in α0, k0, L0 and E0 on the region of stable walking.

With increasing asymmetry of leg sti�ness εk, of leg length εL and of dimensionless energy ε E
the α-range ∆α diminishes continuously. Moreover, for εα stable solutions were found as long

as periodic solutions existed, while with εk, εL and ε E stability was lost even though periodic

solutions were still present.

Experimental data on human walking [Bhave et al., 1999; Kaufman et al., 1996; Perttunen et al.,
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Figure 2.13. (a) Development of the α-range ∆α with increasing

asymmetry εk.

(b) Development of periodic solutions of branches A (left) and B

(right) (Figure 2.7(a)) with increasing k-asymmetry. Gray and black

regions show unstable and stable asymmetric patterns, respectively.

2004] show that vertical GRFs of the longer leg are larger than the GRFs of the shorter leg. This

is in agreement with our model predictions (Figure 2.16). However, the analyzed walking model

is very sensitive to the L-asymmetry. In the spring-mass model, the leg length L0 has not only

in�uence on the leg dynamics during the stance. It a�ects also the instances of touch-down and

of take-o�.

The e�ects of E-asymmetry are similar. This could be due to the fact that E0 is directly a�ected

by L0. Additionally, E0 is also a�ected by k0. Hence, the e�ects of E-asymmetry could further

depend on the selected leg sti�ness k0 or system energy E0. This needs to be investigated in more

detail.

In humans, even small deviations of the leg length can cause stress fractures, back pain and
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osteoarthritis [McCaw & Bates, 1991]. However, because of the �exibility of human legs small

leg length discrepancies are not expected to a�ect stability of walking in such a crucial way.

We suppose the missing leg segmentation in the spring-mass model as one of the reasons for

the high sensitivity with respect to L-asymmetry. Extending the spring-mass model by a knee

joint [Rummel & Seyfarth, 2008] or by foot segment [Maykranz et al., 2009] could increase the

range of stable solutions. Other possible ways to improve the stability behaviour of the system

under in�uence of εL could be swing leg control as described by Herr et al. [2002]; Seyfarth et al.

[2003] and Blum et al. [2010] or suitable combinations of L-asymmetry with asymmetry of α0 or

asymmetry of k0.

Humans with asymmetric leg mechanics often walk shifting their body weight from one leg to
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another in the lateral plane. For instance, the medial-lateral acceleration of the center of mass

at touch-down is greater for the short leg, indicating a faster transfer of the mass to the shorter

extremity [Song et al., 1997]. For this, an extension of the spring-mass model into the lateral

plane could predict appropriate methods to manage the disadvantages of asymmetric walking.

Since humans avoid narrow step widths, because they are less stable [Donelan et al., 2004], a suit-

able lateral foot placement could additionally stabilize asymmetric gaits. First three-dimensional

symmetrical models for running [Peuker & Seyfarth, 2010; Seipel & Holmes, 2005] and walking

[Adolfsson et al., 2001] already exist.

Except for the α-asymmetry εα, all stable solutions of the asymmetric system for one set of

parameters lie between two Hopf bifurcation points (Figures 2.12 and 2.14). In case of εα, a part

of the region of stable solutions is cut o� (Figure 2.11). Here, larger left-right deviations of εα lead

to the �ight phases caused by take-o�s during single support. The resulting gaits are skipping,

i.e. gaits which contain double-support phases along with �ight phases [Farley, 1998; Minetti,

1998]. Hence, allowing short �ight phases in walking patterns of a robot with asymmetric leg

con�guration could enlarge its range of stable gaits.

Despite the tolerance and increasing stability of the system towards α-asymmetry, there is one

important disadvantage of asymmetric gaits. As it shown in Srinivasan [2010], asymmetric walking

is more energy consuming than the symmetric gait. However, it is still not clear, in which way

asymmetries of α0, k0, L0 and E0 a�ect the energetic costs of periodic walking patterns. Although

the model is conservative, the mechanical work of the legs during contact can be calculated and

used as an estimation of energetic e�ciency [Rummel et al., 2010b]. This re�ects the situation

that legs are not just passive springs but need to be actuated with muscles or motors. Hence,

only part of the work predicted by the spring-mass model can be done completely passively by

springs. The actual percentage of passive vs. active work during walking will depend on the

way how actuators and springs are arranged and operated during locomotion. This would require

to extend the model, which was not envisioned in this study. Additionally, by changes either of

the leg sti�ness [Kalveram & Seyfarth, 2009] or of the leg length [Schmitt & Clark, 2009] during

ground contact an additional energy input can be simulated. Such an actuated asymmetric model

could be an important tool for investigations of asymmetric energy supply in the contralateral

legs. For example, the exact point of actuation short before take-o� could signi�cantly improve

performance of active prostheses [Eilenberg et al., 2010; Hitt et al., 2010; Sup et al., 2009].
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In our study the model is assumed to be deterministic, i.e. all parameters and states are precisely

de�ned. However, this contradicts the nature of human gait where leg parameters and system

states do change over time. In order to estimate the "global" stability, like indicated by a risk of

falling, it would be required to take the uncertainties of the system into account. This could be

done based on stochastic models, e.g. by introducing metastability as suggested by Byl & Tedrake

[2009].

The walking model used in our study is currently the best candidate for a template of human

walking [Biewener & Daley, 2007; Blickhan et al., 2007; Geyer et al., 2006]. It is able to predict

walking patterns which are periodic even with asymmetric leg con�gurations. Hence, humans

could bene�t from such solutions by appropriately adjusting leg parameters. However, the model

is much to simple to indicate, how these patterns can be achieved in a neuro-muscular system.

Even though the model predicts stable walking solutions based on asymmetric compliant leg con-

�gurations, it needs to be proven in future studies whether such mechanically attractive behavior

indicated by the template model has any practical advantage. In order to address these issues,

experimental studies on asymmetric gait are required and need to be compared to biomechanical

model of increased complexity taking neuronal and muscular mechanisms into account.

Gait asymmetries naturally occur in both, human walking and in technical walking systems (e.g.

legged robots, prosthetic legs). The predictions of the model may help to estimate the tolerated

range of asymmetries depending on the overall leg properties (e.g. leg sti�ness, leg length) and

the gait characteristics (e.g. walking speed, angle of attack). This could help to derive procedures

to indicate when di�erences in leg function may threaten the overall gait stability.

As the leg angle is a leg parameter which is adjustable in the PogoWalker, we focused on analyz-

ing the e�ects of di�erent leg angles on walking stability with asymmetric legs. In future, similar

considerations should also include changes in leg sti�ness and leg length in order to calculate the

corresponding k-range and L-range, representing the range of parameters resulting in stable walk-

ing. Future studies need to show how asymmetries a�ect stable k-range and L-range. Moreover,

suitable combinations of leg asymmetries (e.g. εα, εk, εL and ε E) could allow additional e�ects

in�uencing the range of stable walking. Also, the proper selection of the control parameters (α0,

k0, L0, E0) could further enhance the tolerated range of asymmetries εα, εk, εL and ε E. These

e�ects need to be studied in more detail.



3. Spring-mass model

3.1. Introduction

In this chapter, we give a detailed mathematical description of the planar spring-mass model, which

is also called spring loaded inverted pendulum (SLIP, [Schwind, 1998]). Due to the complexity of

the mechanics of human locomotion, its investigation often requires an extension of the model.

Examples of its numerous modi�cations are: segmented leg [Rummel & Seyfarth, 2008], foot

extension [Maykranz et al., 2009], swing leg control [Blum et al., 2011, 2010], trunk extension [Maus

et al., 2010; Rummel & Seyfarth, 2010], asymmetric legs [Merker et al., 2011b], lateral extension

[Peuker et al., 2012], non-conservative extension [Riese et al., 2013]. All these publications have

one thing in common, namely improvement of stability of the locomotor system. Stable periodic

solutions are robust against small perturbations, which reduces the risk to fall [Geyer et al., 2006;

Seyfarth et al., 2002].

The growing complexity of the model often results in considerably increased computational e�ort.

Therefore, a new approach is required to work e�ciently with the model in future. One way to

avoid expensive calculations is to reduce the computation of stability regions to the computation of

their boundaries, i.e. bifurcations (see Chapter 4 for more details). For this, transformation of the

model from a hybrid dynamical system [Alur et al., 1995], i.e. a sequence of initial value problems,

into a two-point boundary value problem is necessary. However, this new implementation of the

model has some useful properties on its own. For instance, a boundary value problem is then

more numerically stable, i.e. a less accurate initial guess is often su�cient for its computation.

Sensitive dependence on initial conditions may leave parts of the solution manifolds unexplored,

unless very high accuracy is used.

We explain the idea of transition using the �rst single-support phase of the bipedal model as

example (Section 2.3.1). A more detailed description can be found e.g. in Stoer & Bulirsch [1993].

First, we rewrite (2.1) as a system of four one-dimensional ordinary di�erential equations

ẏ(t) = f(t, y;α0), y(t0) = r0, (3.1)

where r0 is a vector of initial conditions. The phase starts at time t0 and ends at time t1, when
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Figure 3.1. The spring-mass model for running. The green dots on the center of mass (CoM) trajectory show

events of touch-down (TD), vertical leg orientation (VLO) and take-o� (TO). The blue dots are events of apex

(APEX). Black and blue parts of the CoM trajectory represent �ight and stance phases, respectively. FPi is the

position of the ith foot point.

the touch-down condition y3(t1) = L0 sin(α0) is ful�lled. Since the transfer to the next phase is

determined by an event, i.e. touch-down of the second leg, t1 is not known in advance. Thus,

only one boundary abscissa t0 of the boundary value problem is prescribed. To determine t1, the

system has to be extended by an additional variable z5 := (t1 − t0)/(τ1 − τ0), which can also be

considered as scaling parameter. Here, τ0 and τ1 denote the new boundary abscissas, which can be

de�ned according to the requirements. The additional boundary condition re�ects the touch-down

condition. The resulting parametrized boundary value problem is

ż(τ) = z5f(τ, z;α0) z(τ0) = r0,

ż5(τ) = 0 z3(τ1) = L0 sin(α0).
(3.2)

In this thesis, we set τ0 := 0 and τ1 := 1.

The bipedal spring-mass model has a manifold of solutions (Chapter 2, see also Geyer et al. [2006];

Rummel et al. [2010b]). However, only some of them are biologically relevant. A human walking

gait is usually characterized by single- and double-support phases as well as by double-humped

patterns of the vertical ground reaction force [Alexander & Jayes, 1978; Lipfert, 2010]. For this,

we consider solutions of the bipedal spring-mass model with double-humped force patterns only,

and de�ne walking as the locomotion gait with at least one leg always having ground contact.

Furthermore, we do not consider walking patterns with appearance of negative horizontal velocity,

i.e. the model is not allowed to walk backwards.
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3.2. The model as a hybrid dynamical system

In this section, the general description of the spring-mass model is presented. The original im-

plementation was realized in planar Cartesian coordinates. The description of the model in polar

coordinates is given in Martinez Salazar & Carbajal [2011].

3.2.1. Running

The monopedal spring-mass model consists of the point mass m representing the center of mass

of the human body and one massless leg spring with sti�ness k0 and rest length L0 (Figure 3.1,

[Blickhan, 1989]). Location and velocity of the center of mass in the real plane R2 are given

by (x, y)T and (ẋ, ẏ)T , respectively. Any gait of the model is completely characterized by four

fundamental system parameters (leg sti�ness k0, angle of attack α0, rest length L0, system energy

E0) and the four-dimensional vector of initial conditions r0 = (x0, ẋ0, y0, ẏ0)
T .

One running step comprises a �ight phase and a stance phase (also called the single-support

phase, Figure 3.1), which can be split and arranged in a certain order according to the goal of

the investigation. Events of touch-down and take-o� are transitions between the phases. The

trajectory of the center of mass in each phase is the solution of an initial value problem. The

equations of the motion during �ight are

mẍ(t) = 0,

mÿ(t) = −mg.
(3.3)

The transition (touch-down) from the �ight phase to the single-support phase happens, when the

landing condition

y(t1) = L0 sin(α0)

is ful�lled (Figure 3.1). The motion of center of mass during stance is then given by equations

mẍ(t) = k0 (L0 − L1(t))
x(t)− xFP1

L1(t)
,

mÿ(t) = k0 (L0 − L1(t))
y(t)

L1(t)
−mg,

(3.4)

where L1(t) :=


(x(t)− xFP1)
2 + y2(t) is the length of the compressed leg spring during stance.

The position of the footpoint FP1 is given by (xFP1 , 0). The transition (take-o�) from the single-

support phase to the �ight phase occurs when the extending length L1 of the leg spring reaches

the rest length L0, i.e. when the take-o� condition (x(t2)− xFP1)
2 + y2(t2) = L2

0 is ful�lled.
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Figure 3.2. The bipedal spring-mass model for walking. The green dots on the center of mass (CoM) trajectory

show events of touch-down (TD) and take-o� (TO). The blue dots are events of vertical leg orientation (VLO).

Black and blue parts of the CoM trajectory represent single- and double-support phases, respectively. FPi is the

position of the ith foot point.

In this thesis, the apex of the �ight curve is usually selected as the beginning of the step. Here, the

vertical velocity ẏ0 is zero (Figure 3.1). This choice allows to reduce the dimension of the return

map (Section 3.3). The step is continued by the stance phase and the second �ight phase. The

step ends in the next apex, i.e. when ẏ(t3) = 0 is ful�lled. The initial values for the �rst initial

value problem are (x0, ẋ0, y0, ẏ0)
T . The initial values of all subsequent phases are the last points

of the corresponding previous phases. Times t1, t2 and t3 mark the ends of the corresponding

phases, i.e. the times, when the events of touch-down, take-o� and the second apex occur.

The system is energy-conservative, i.e. the system energy E0 remains constant during the whole

step. During �ight, the system energy is given by

E0 = mgy +
m (ẋ2 + ẏ2)

2
. (3.5)

During stance, the additional energy of the compressed leg spring must be considered:

E0 = mgy +
m (ẋ2 + ẏ2)

2
+
k0
2
(L0 − L1)

2 , (3.6)

where L1 is de�ned as above.

All calculations for running in this chapter are done with constant dimensional energy E0 = 1800 J

corresponding to the average horizontal velocity vx ≈ 5 m/s. The leg sti�ness k0 = 20 kN/m and

the leg length L0 = 1 m were derived from experimental data in Seyfarth et al. [2002]. Moreover,

we set m = 80 kg and g = 9.81 m/s2.
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3.2.2. Walking

The planar bipedal spring-mass model consists of two massless leg springs supporting the point

mass m, which represents the center of mass of the human body (Figure 3.2, [Geyer et al., 2006]).

Both leg springs have the same sti�ness k0 and rest length L0. Again, location and velocity of the

center of mass in the real plane R2 are given by (x, y)T and (ẋ, ẏ)T , respectively. Like in the case

of running, any bipedal gait is completely characterized by four fundamental system parameters

(leg sti�ness k0, angle of attack α0, rest length L0, system energy E0) and the four-dimensional

vector of initial conditions (x0, ẋ0, y0, ẏ0)
T .

A walking step comprises a single-support phase and a double-support phase (Figure 3.2). Events

of touch-down and take-o� are transitions between the phases. Like in the case of running, the

trajectory of the center of mass in each phase is the solution of an initial value problem. The initial

values for the �rst initial value problem are (x0, ẋ0, y0, ẏ0)
T . The initial values of each subsequent

phase is the last point of the corresponding previous phase. The motion of the center of mass

during the single-support phase is described by the equations (3.4). The transition (touch-down)

from single-support phase to double-support phase happens, when the landing condition

y(t1) = L0 sin(α0)

is ful�lled (Figure 3.2). Here, t = t1 marks the time, when the touch-down occurs. The equations

of the motion during the double-support phase are given by

mẍ(t) = k0 (L0 − L1(t))
x(t)− xFP1

L1(t)
+ k0 (L0 − L2(t))

x(t)− xFP2

L2(t)
,

mÿ(t) = k0 (L0 − L1(t))
y(t)

L1(t)
+ k0 (L0 − L2(t))

y(t)

L2(t)
−mg,

(3.7)

where L2(t) :=


(x(t)− xFP2)
2 + y2(t) is the length of the second compressed leg spring (see blue

parts of the center of mass trajectory in Figure 3.2). The positions of both footpoints FP1 and

FP2 are given by (xFP1 , 0) and (xFP2 , 0), respectively. The transition (take-o�) from the double-

support phase to the single-support phase occurs when the extending length L1 of the �rst leg

spring reaches the rest length L0, i.e. when the take-o� condition

(x(t2)− xFP1)
2 + y2(t2) = L2

0

is ful�lled. Here, t = t2 marks the time, when the take-o� occurs.

Here, the trajectory of the center of mass is computed by three initial value problems. The cal-

culation of a walking step starts at time t = t0 during the single-support phase at the instant

of the vertical leg orientation (VLO, [Rummel et al., 2010a,b], Figure 3.2). Using VLO as the

initial point of a step (i.e. as Poincaré section), allows to reduce the dimension of the return map
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(Section 3.3). Here, the center of mass is located exactly over the foot point of the support-

ing leg spring. The �rst single-support phase is calculated using equations (3.4) and the vector

(x0, ẋ0, y0, ẏ0)
T as initial values, followed by the double-support phase (system (3.7)) and by the

second single-support phase (again (3.4)). The initial values of the latter two phases are the last

points of the previous phases at t = t1 and t = t2, respectively. The walking step ends at the next

VLO at time t = t3, when the condition x(t3) = xFP2 is ful�lled.

The system is energy-conservative, i.e. the system energy E0 remains constant during the whole

step. During single-support phase, the system energy is given by relation (3.6). During double-

support phase, the additional energy of the second leg spring must be considered:

E0 = mgy +
m (ẋ2 + ẏ2)

2
+
k0
2
(L0 − L1)

2 +
k0
2
(L0 − L2)

2 , (3.8)

with L1 and L2 de�ned as above.

Unless otherwise mentioned, all calculations for walking in this chapter are done with constant

dimensional energy E0 = 820 J corresponding to the average horizontal velocity vx ≈ 1.1 m/s.

Since the bipedal model is used for investigations of asymmetric locomotion (Chapter 2), the leg

sti�ness k0 is set to 16 kN/m corresponding to experimental data of PogoWalker (Section 2.3.1).

Like in case of running, we set m = 80 kg and g = 9.81 m/s2.

3.3. Periodic solutions

Periodic running and walking solutions are found and analyzed using the well-known Poincaré

return map F [Poincaré, 1890]. Their stability is determined by the value of the corresponding

Floquet multipliers [Floquet, 1883]. The detailed mathematical description can be found e.g. in

Guckenheimer & Holmes [1983] or Marx & Vogt [2011]. Here, we give only its basic idea, which is

simple and intuitive. First, select an event as Poincaré section. Here, a single (running or walking)

step starts at the system state s1 := (x1, ẋ1, y1, ẏ1)
T . After one full step, the next state of the

system is s2 := F(s1) = (x2, ẋ2, y2, ẏ2)
T . The length of the step is determined as x2−x1. The step

is periodic, if the conditions ẋ1 = ẋ2, y1 = y2 and ẏ1 = ẏ2 are ful�lled. In general, the dimension

of the Poincaré return map is three. However, with appropriate choice of the Poincaré section the

dimension of F can be reduced. Periodic solutions are computed as �xed points s⋆ of the Poincaré

map F, i.e. as zeros of the function

G(s) = s− F(s). (3.9)

A periodic solution s⋆ is stable if the magnitude of all eigenvalues of the derivative ∂F
∂s
(s⋆), i.e.

the Floquet multipliers, are less than one [Guckenheimer & Holmes, 1983; Strogatz, 1994]. Since

there are some signi�cant di�erences between the implementations of the return map for running

and walking, both cases are described in separate sections.
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3.3.1. Running

In case of running, the apex of the �ight curve is usually chosen as Poincaré section. Here, vertical

velocity ẏ is zero and system energy E0 is given by

E0 = mgy0 +
mẋ20
2
. (3.10)

For this, the vector of initial conditions (x0, ẋ0, y0, ẏ0)
T depends on the initial apex height y0, only.

Hence, dimension of the return map is one and the state of the system at the beginning of the

step is s1 = y1.

For a given set of parameters, the unstable periodic solution lies on the unstable manifold, which

is the border of the basin of attraction of the corresponding stable solution [Guckenheimer &

Holmes, 1983]. Since the dimension of the return map is one, the basin of attraction of a stable

periodic running solution is also one-dimensional. In most cases, it is limited by the unstable

periodic solution and the touch-down line yTD = L0 sin(α0) (Figure 3.3).

To compare running to walking, the phases of the running step must be arranged di�erently. The

calculation starts during stance phase at the instant of VLO, followed by the �ight phase and

the second stance phase. That means, the running step looks like the walking one with the �ight

phase replacing the double-support phase (compare Figure 3.1 and Figure 3.2). Since all period-1

running solutions are symmetric with respect to VLO, the vertical velocity ẏ0 in VLO is zero

as well. Therefore, the return map with VLO as Poincaré section is also one-dimensional, i.e. a

similar system analysis may be applied with slight changes only.
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3.3.2. Walking

The system analysis of the bipedal model is more complex. In this case, the instant of VLO is

chosen as Poincaré section. Here, system energy E0 is given by

E0 = mgy0 +
m (ẋ20 + ẏ20)

2
+
k0
2
(L0 − y0)

2 . (3.11)

For this, the vector of initial conditions (x0, ẋ0, y0, ẏ0)
T depends only on the initial height y0 and

the velocity angle

θ0 := arctan


ẏ0
ẋ0


with

ẋ0 =


2

m


E0 −mgy0 −

k0
2
(L0 − y0)2


cos(θ0)

and

ẏ0 =


2

m


E0 −mgy0 −

k0
2
(L0 − y0)2


sin(θ0)

(see inset in Figure 3.4). Therefore, the dimension of the Poincaré map is reduced to two.

Now, let si =

y
(i)
0 , θ

(i)
0


be the state of the system in VLOi (Figure 3.2). Then after one step,

the state in VLOi+1 is si+1 = F(si), where F is the corresponding Poincaré map.

The basin of attraction of a stable periodic walking solution is also a two-dimensional set (Fig-

ure 3.4). If there exist an unstable �xpoint for the same set of parameters, then the basin can

be determined by calculation of the unstable manifold through this unstable �xpoint. Otherwise,

the common steps-to-fall method can be applied. The details of its computation can be found in

Rummel et al. [2010b].

3.4. Transformation into a boundary value problem

To apply appropriate techniques for the calculation of bifurcations, it is bene�cial to transform

the model into a two-point boundary value problem

ż(τ) = f(z(τ)), τ ∈ [0, 1],

r(z(0), z(1);α0) = 0.
(3.12)

The functions f : Rn → Rn and r : Rn × Rn × R → Rn are di�erent for running and walking. To

avoid discontinuities at the transition events touch-down (TD) and take-o� (TO), we re-arrange

the three phases of the step. Since the end of each phase of a running or walking step is de�ned
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Figure 3.4. Example of the discrete two-dimensional Poincaré return map (blue line) of the stable periodic

solution at (y0, θ0) = (0.974, 0) (red dot) for the parameters α0 = 70◦, k0 = 16 kN/m, E0 = 820 J and the initial

state s1 = (0.97,−5). The green dots show the �rst four steps of the return map. The blue dot indicates the

unstable �xpoint at (y0, θ0) = (14.174, 0.970).

by an event, the times t1, t2, and t3 are not known in advance. Instead of solving the initial value

problems consecutively, we scale each phase to the unit interval [0, 1], e.g. Doedel et al. [2005];

Hermann [2004], and solve all three phases at once.

3.4.1. Running

The functions f : Rn → Rn and r : Rn × Rn × R → Rn for running are listed in Table 3.1. In

the new system, the durations t1 − t0, t2 − t1 and t3 − t2 of the three phases are transformed

into the scaling parameters z5, z10 and z16. Equations f1 to f4, f6 to f9 and f12 to f15 describe

the motion of the center of mass during the �rst �ight phase (equations (3.3)), the stance phase

(equations (3.4)) and the second �ight phase (again (3.3)), respectively. Equation f11 together

with the boundary condition r11 = 0 determine the horizontal position xFP1 = L0 cos(α0) of the

foot point FP1 (Figure 3.1).

The boundary functions r1 . . . r4 de�ne initial location and velocity of the center of mass. The

switches between the phases of the step are described by r6 . . . r9 and r12 . . . r15. Finally, r5, r10, r16

determine the events of touch-down, take-o� and second apex.
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To �nd a periodic running solution for a given set of parameters, the functions r2 and r3 have to

be replaced by r2 = E0 −mgz3(0)−
mz2(0)

2

2
,

r3 = z3(0)− z14(1).

(3.13)

The new boundary condition r2 = 0 describes the relationship (3.10) between the initial apex

height z3(0) = y0 and the initial horizontal velocity z2(0) = ẋ0 with respect to the system energy

E0. The function r3 corresponds to the Poincaré return map (3.9) of the original model, i.e. it

describes the periodic condition for the initial apex height y0 of the center of mass.

3.4.2. Walking

The functions f : Rn → Rn and r : Rn × Rn × R → Rn for walking are listed in Table 3.2. Like

in case of running, the durations t1 − t0, t2 − t1 and t3 − t2 of the three phases are transformed

into the scaling parameters y5, y10 and y16. Equations f1 to f4, f6 to f9 and f12 to f15 describe the

motion of the center of mass during the �rst single-support phase (equations (3.4)), the double-

f1 = z5z2 r1 = z1(0)− x0

f2 = 0 r2 = z2(0)−


2
m
(E0 −mgy0)

f3 = z5z4 r3 = z3(0)− y0

f4 = −z5g r4 = z4(0)

f5 = 0 r5 = z3(1)− L0 sin(α0)

f6 = z10z7 r6 = z6(0)− z1(1)

f7 = 1
m
z10k0(L0 − L1)

z6−z11
L1

r7 = z7(0)− z2(1)

f8 = z10z9 r8 = z8(0)− z3(1)

f9 = 1
m
z10k0(L0 − L1)

z8
L12

−mg r9 = z9(0)− z4(1)

f10 = 0 r10 = (z6(1)− z11(0))
2 + z8(1)

2 − L2
0

f11 = 0 r11 = z11(0)− z6(0)− L0 cos(α0)

f12 = z16z13 r12 = z12(0)− z6(1)

f13 = 0 r13 = z13(0)− z7(1)

f14 = z16z15 r14 = z14(0)− z8(1)

f15 = −z16g r15 = z15(0)− z9(1)

f16 = 0 r16 = z15(1)

Table 3.1. The functions f and r for the boundary value problem (3.12) computing a single running step. Here,

L1 :=

(z6 − z11)2 + z23 is the length of the compressed leg spring during stance phase.
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support phase (equations (3.7)) and the second single-support phase (again (3.4)), respectively.

Equation f11 together with the boundary condition r11 = 0 determine the horizontal position

xFP2 = L0 cos(α0) of the second foot point FP2 (Figure 3.2).

The boundary functions r1 . . . r4 de�ne initial location and velocity of the center of mass. The

switches between the phases of the step are described by r6 . . . r9 and r12 . . . r15. Finally, r5, r10, r16

determine the events of touch-down, take-o� and second VLO.

To �nd a periodic solution for the given parameters α0, k0, L0 and E0, the functions r2, r3, r4 have

f1 = y5z2 r1 = z1(0)− x0

f2 = 1
m
z5k0(L0 − L11)

z1−x0

L11
r2 = z2(0)− v0 cos(θ0)

f3 = z5z4 r3 = z3(0)− y0

f4 = 1
m
z5


k0(L0 − L11)

z3
L11

−mg


r4 = z4(0)− v0 sin(θ0)

f5 = 0 r5 = z3(1)− L0 sin(α0)

f6 = z10z7 r6 = z6(0)− z1(1)

f7 = 1
m
z10


k0(L0 − L12)

z6−x0

L12
+ k0(L0 − L21)

z6−z11
L21


r7 = z7(0)− z2(1)

f8 = z10z9 r8 = z8(0)− z3(1)

f9 = 1
m
z10


k0(L0 − L12)

z8
L12

+ k0(L0 − L21)
z8
L21

−mg


r9 = z9(0)− z4(1)

f10 = 0 r10 = (z6(1)− x0)
2 + z8(1)

2 − L2
0

f11 = 0 r11 = z11(0)− z6(0)− L0 cos(α0)

f12 = z16z13 r12 = z12(0)− z6(1)

f13 = 1
m
z16k0(L0 − L22)

z12−z11
L22

r13 = z13(0)− z7(1)

f14 = z16z15 r14 = z14(0)− z8(1)

f15 = 1
m
z16


k0(L0 − L22)

z14
L22

−mg


r15 = z15(0)− z9(1)

f16 = 0 r16 = z12(1)− z11(1)

Table 3.2. The functions f and r for the boundary value problem (3.12) computing a single walking step. Here,

L11 :=


(z1 − x0)2 + z23 and L12 :=

(z6 − x0)2 + z28 are the lengths of the �rst compressed leg spring during

di�erent phases of the step. The lengths of the second compressed leg spring are given by L21 :=


(z6 − z11)2 + z28
and L22 :=


(z12 − z11)2 + z213. The general velocity of the system at the instant of VLO is given by

v0 :=


2
m (E0 −mgy0 − k0

2 (L0 − y0)2).
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to be replaced by

r2 = E0 −mgz3(0)−
m (z2(0)

2 + z4(0)
2)

2
− k0

2
(L0 − z3(0))

2 ,

r3 = z3(0)− z14(1),

r4 = arctan


z4(0)

z2(0)


− arctan


z15(1)

z13(1)


.

(3.14)

The new boundary condition r2 = 0 describes the relationship (3.11) between initial VLO height

z3(0) = y0, initial horizontal velocity z2(0) = ẋ0 and initial vertical velocity z4(0) = ẏ0 of the

center of mass with respect to the system energy E0 in the instant of VLO. The functions r3
and r4 correspond to the Poincaré return map (3.9) of the bipedal model, i.e. they describe the

periodic conditions for VLO height y0 and VLO velocity angle θ0 = arctan


z4(0)
z2(0)


of the center of

mass.

3.4.3. Period-2 solutions

Period-2 solutions deserve special attention, since they are required for the study of the asymmetric

spring-mass model (Chapters 2 and 5). Period-2 solutions of the symmetric model are often very

unstable and thus di�cult to compute. However, the numerical stability of the boundary value

problem allows the computation of the complete manifold of period-2 solutions. The extension of

the boundary value problem for the computation of a double step is intuitive. The functions f and

r for (3.12) computing a double walking step are constructed in the following way (the boundary

value problem for running looks similar).

The step starts with leg 1 on the ground (functions f1 to f4 and r1 to r4). The boundary condition

r5 = 0 describes the touch-down of leg 2 and r11 = 0 marks the horizontal position of the second

foot point. The step continues with the double-support phase (f6 to f9), which ends with the take-

o� of the �rst leg (r10 = 0). The second single-support phase lasts from take-o� until touch-down

of leg 1. It is described by functions f12 to f15, followed by touch-down of the �rst leg (r16 = 0).

single SP double SP FP2 single SP double SP FP3 single SP

x z1 z6 z12 z17 z23

ẋ z2 z7 z13 z18 z24

y z3
z5 z8

z10 z11 z14
z16 z19

z21 z22 z25
z27

ẏ z4 z9 z15 z20 z26

Table 3.3. Relationship of variables x, ẋ, y, ẏ of the original model to variables zi of the transformed model for

di�erent phases of a double walking step (Figure 3.2). SP are scaling parameters of the corresponding phase. FPi

is the x-position of the footpoint i.
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Figure 3.5. Initial apex height y0 of periodic running patterns dependent on the angle of attack α0. The green

dots represent bifurcations: TP = simple turning point, PD = period-doubling bifurcation (Chapter 4). The blue

dots are solutions on the touch-down line yTD = L0 sin(α0). Thick lines indicate stable solutions. The examples of

the center of mass trajectories and ground-reaction forces corresponding to the white dots are shown in Figure 3.6.

The last two phases are again double-support and another single-support. The step ends in the

VLO of leg 1. Hence, the dimension of the boundary value problem is n = 27.

There is a small di�erence in case of the monopedal model. Here, the middle �ight phase is

separated in two �ight phases with the event of apex between them. This modi�cation increases

the dimension of the boundary value problem to n = 32. However, the strict separation of two

steps is often required for computation of stability limits of asymmetric model (see the de�nition

of touch-down and take-o� points in Section 5.3).

3.5. Results

The new implementation of the model is a necessary intermediate step to calculate bifurcations.

However, it has one useful property on its own, namely it can be used to compute even highly

unstable periodic solutions of the spring-mass model. The details, which are di�erent for walking

and running, are given below.

3.5.1. Running

Stable running solutions are located between a simple turning point (TP) and a period-doubling

bifurcation point (PD, Figure 3.5(a)). Periodic solutions exist between the touch-down line
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Figure 3.6. Examples of CoM trajectories (upper row) and vertical ground reaction forces (vGRF) of both legs

(lower row) corresponding to the points in Figure 3.5. The blue points indicate events of apex, the green ones are

events of touch-down (TD) and take-o� (TO)

yTD = L0 sin(α0) and maximal hopping height ymax = E0/mg. The branch of period-2 solu-

tions is short, because the lower part is limited by the touch-down line (Figure 3.5(b)). Examples

of periodic solutions for running are presented in Figure 3.6. In particular, example 3 shows that

the branch of period-2 solutions exhibits a typical bilateral symmetry of a pitchfork bifurcation,

namely both parts of the branch consist of the same periodic solutions with alternating apex

heights.

The return map of the monopedal model is one-dimensional. The solutions around the turning

point and the bifurcation point are either stable or just slightly unstable. For this, there are

no di�culties computing period-1 solutions by the original implementation based on initial value

problems. However, instability of the period-2 solutions grows rapidly. For instance, the Floquet

multiplier of example 3 in Figure 3.6 is 3.6. Here, the angle of attack is α0 = 68.7◦. The Floquet

multiplier of the periodic solution at α0 = 68.69◦ is already 6.7. Thus, computation of these

solutions with the original model requires very precise initial conditions. In order to compute

them using the boundary value problem (3.12), it is su�cient to use any other point from this

branch as initial guess.

Another problematic case could be the computation of periodic solutions around the transition

point between walking and running for lower energies (Figure 3.7). Here, the running patterns

are also highly unstable and almost impossible to compute with the original model. Again, the

boundary value problem does not have any signi�cant problems computing them. In particular,

to compute all periodic solutions, it is su�cient to use the simple shooting method.
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Figure 3.7. Initial VLO height y0 of periodic walking patterns dependent on the angle of attack α0. The

dots represent bifurcations: TP = simple turning point, TB = transcritical bifurcation, HB = Hopf bifurcation,

PD = period-doubling bifurcation (Chapter 4). Blue lines show periodic solutions computed with the original

implementation of the model. The red ones are computed with the boundary value problem (3.12). Thick lines

indicate stable solutions. For the examples of CoM trajectories and ground-reaction forces see Figures 2.6 and 2.8.

3.5.2. Walking

For E0 = 820 J, there are two regions of stable solutions (Figure 3.7). Stable walking solutions are

located between two Hopf bifurcations on two branches connected by a transcritical bifurcation.

Stable grounded running solutions are con�ned either between two period-doubling bifurcations

(E0 = 820 J) or between a PD-bifurcation and a Hopf bifurcation (E0 = 810 J) (Figure 3.9).

Grounded running is a type of bipedal locomotion, where the center of mass crosses the touch-

down line yTD = L0 sin(α0) from below (Figure 3.8, [Andrada et al., 2012; Martinez & Carbajal,

2011; Rummel et al., 2009]).

Examples of periodic solutions for walking are shown in Figure 2.8 and 3.10. The center of mass

trajectory and the ground-reaction force of the patterns from branch B (examples b1 and b2)

cannot be mirrored around VLO.1 In this case, the velocity angle θ0 at VLO is non-zero. All other

branches in Figure 3.7 consist of walking patterns with θ0 = 0.2 Examples of stable grounded

1These periodic solutions are often called asymmetric [Rummel et al., 2010b]. Since a great part of this thesis

deals with the asymmetric spring-mass model, this notation would cause confusion. Thus, we only refer to

solutions of the asymmetric model as asymmetric (Chapter 2).
2For obvious reasons, these patterns are also called symmetric [Rummel et al., 2010b].
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walking gr

y LTD 0 0= sin( )α Figure 3.8. Motion of the center of mass in a walking (left) and a

grounded running (right) pattern.

running patterns are shown in Figure 3.10.

Two branches of period-2 walking gaits are located around α0 = 70◦. Another two branches consist

of period-2 grounded running patterns.

Periodic solutions in the area of the simple turning points (TP in Figure 3.7) are highly unsta-

ble. Moreover, the locomotion gaits around the transition from walking to running (diamond in

Figure 3.7) are also hard to �nd. In contrast, the implementation of the model as a boundary

value problem together with the simple shooting method does not have any signi�cant di�culties

to compute these solutions.

Since we consider biologically relevant walking patterns only, a part of periodic solutions calculated

by the new model is omitted. In particular, no solutions above the take-o� line at yTO = L0 are

shown, since all of them contain a �ight phase (Figure 3.7). Similarly, we neglect part of the

solutions below the touch-down line yTD = L0 sin(α0). Here, several patterns contain backward

walking, jump-o�s, or some other actions, which contradict our de�nition of walking.

To compute all periodic solutions, it is su�cient to use the simple shooting method to solve the

boundary value problem (3.12). Even in the nearest neighborhood of the turning points or around

the transition to running (diamond in Figure 3.7), where the periodic solutions are highly unstable,

the application of multiple shooting is not necessary to reach the desired precision. However it

was observed, that for fast convergence the initial guess of the scaling parameters z5, z10 and z16

should be as precise as possible.

3.6. Discussion

The most important result of this chapter is the new implementation of the model as a two-point

boundary value problem. Now, it is possible to calculate even highly unstable solutions in the

neighborhood of simple turning points and around the transition point from walking to running.

This is due to the high numerical stability of the shooting method compared to the classical

approaches (like various Runge-Kutta methods) for solving initial value problems [Hermann, 2004;

Stoer & Bulirsch, 1993].

The application of the simple shooting method is su�cient for the computation of periodic solu-

tions. The hybrid dynamical system described in Section 3.2 consists of three initial value problems
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with 12 di�erential equations. Additionally, three event functions for touch-down, take-o� and

the second VLO must be evaluated. The boundary value problem (3.12) for a single walking or

running step has the dimension 16. Some additional time may be needed for the scaling of the

original equations to the unit interval [0, 1]. Both cases require the computation of zeros of a

non-linear function. Thus, the computation time of both approaches is comparable, while the

second one provides the advantage to be more robust against numerical perturbations.

With the new model, it is possible to �nd periodic solutions at the touch-down line. The touch-

down line yTD = L0 sin(α0) occurs in the original model as an event of the hybrid dynamical

system. To trigger the event of touch-down, the hyper plane must be hit by the �ow transversely,

which means, that solutions on this line and in the nearest neighborhood are almost impossible to

compute. In the boundary value problem, the events of touch-down and take-o� are described by

the boundary functions. Hence, there are no restrictions for calculations anymore and the desired

accuracy of these periodic solutions can be achieved with no signi�cant problems (Figure 3.7).

Moreover, it is possible to �nd the exact value of the angle of attack α0, where an event occurs.

Since it is required for computation of the stability boundaries of the asymmetric running model,

a detailed description of this technique is given in Chapter 5.

Sometimes it is not su�cient to know the position of a periodic solution. It may be necessary to

study the shape of the center of mass trajectory or the ground reaction force corresponding to

this solution. In this case, the multiple shooting method could be applied to solve the boundary

value problem (3.12). However, with the growing number of shooting points, the complexity of the

calculation - and therefore the computation time - increases considerably. Moreover, the choice

of the appropriate initial guess may be troublesome. Here, the more e�cient strategy is to solve

the boundary value problem using the simple shooting method. Afterwards, one could use this

periodic solution as the initial condition for the original model, which could be solved with the

required precision.
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Figure 3.10. Examples of CoM trajectories (upper row) and vertical ground reaction forces (vGRF) of both legs

(lower row) corresponding to the points g1, g2 (stable grounded running), w1 and w2 (walking) in Figure 3.9. The

blue points indicate events of vertical leg orientation (VLO), the green ones are events of touch-down (TD) and

take-o� (TO) (Figure 3.2).

The spring-mass model is a useful tool for the development of arti�cial locomotion systems like

legged robots or rehabilitation devices [Renjewski et al., 2008; Renjewski & Seyfarth, 2012; Sey-

farth et al., 2012]. With the approach presented in this work, suitable robot leg parameters can

be checked for feasibility and implemented in a technical device much faster and e�ciently than

before. On the other hand, robot and human locomotion data are often used to validate and verify

predictions made by models. To compare measured data to the results of the basic spring-mass

model with only three leg parameters α0, k0 and L0, common optimization approaches like the

least squares method may be completely su�cient [Lipfert et al., 2012]. However, even such a

simple extension of the model like leg asymmetry already doubles the number of leg parameters

(Chapter 2). Enhancing the model by a leg segmentation [Maykranz et al., 2009; Rummel &

Seyfarth, 2008] or by a trunk [Maus et al., 2010], considerably increases the number of degrees

of freedom. One possible way to deal with the growing complexity is to de�ne the optimization

problem as a boundary value problem as described in this work, transform it into a �nite dimen-

sional non-linear programming problem, and solve it using an appropriate optimization method

[Betts, 2010; Bock & Plitt, 1984; Diehl et al., 2006].

Gait transitions from walking to running and from running to walking are an important research

�eld in biomechanics, e.g. Martinez & Carbajal [2011]; Minetti et al. [1994]; Segers et al. [2007b].

For instance, it is still not fully clear, how the transition is triggered mechanically. This is one

reason, why most legged robots are built either for walking or for running. In the spring-mass

model, these both locomotion gaits exist side-by-side (Figure 3.7). However, applications of the
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model for the investigation of gait transitions were limited so far, since it is di�cult to �nd periodic

solutions around the transition point. Here, the return map of the walking model becomes one-

dimensional. Therefore, its Jacobian matrix is nearly singular. Furthermore, periodic running

solutions near the transition point are highly unstable. In both cases, any precise computation

around the transition point is nearly impossible. Hence, there is a gap between walking and

running solutions, as shown in Rummel et al. [2009] for all values of system energy E0. The

boundary value problem presented in this work closes this gap and allows more e�ective usage of

the spring-mass model for studies of this biomechanical issue.



4. Numerical bifurcation analysis of the

spring-mass model

4.1. Introduction

In the previous chapter, we presented the transformation of the spring-mass model into a para-

metrized two-point boundary value problem of the form

ẏ(t) = f(t, y;λ), r(y(0), y(1);λ) = 0. (4.1)

In the neighbourhood of an isolated solution (ȳ, λ̄) of this problem, i.e. where the Fréchet-derivative

of the corresponding operator is invertible, the implicit function theorem guaranties the existence

of a unique solution curve {(y(λ), λ)}. Thus, an appropriate numerical continuation can now be

used to compute the branch of solutions around this point, e.g. Hermann & Ullrich [1992]; Keller

[1978]; Seydel [1984]. However, there often exist nonisolated solutions (y0, λ0) of the boundary

value problem, where the Fréchet-derivative is not invertible. If the solution curve {(y(λ), λ)}
is not unique in the neighbourhood of the nonisolated solution, then (y0, λ0) is a singular point

(turning point or bifurcation point). Bifurcations are events, where qualitative and topological

changes in the dynamics of the system occur, like vanishing stability or changing shape of the

phase portrait. Singular points are determined by parameter values λ0, at which these events

happen [Marx & Vogt, 2011; Strogatz, 1994].

As mentioned above, bifurcation points are singularities in a given system, and thus they cannot

be found by standard numerical techniques. Therefore, the computation of bifurcation points

requires a special approach. One popular method to treat bifurcation problems arising from (4.1)

is to transform them into a system of parametrized nonlinear algebraic equations [Gavrilyuk et al.,

2010; Hermann, 2004; Makarov et al., 2004]. However, with the discretization an approximation

error is introduced into the system. The consequence is that so-called ghost solutions of the �nite

dimensional problem often occur, which have nothing to do with the solutions of the original

in�nite dimensional problem [Brezzi et al., 1984; Seydel, 2010]. Moreover, to achieve the pre-

scribed accuracy, the interval [0, 1] has to be subdivided into very small segments resulting in a

high-dimensional nonlinear algebraic problem [Stoer & Bulirsch, 1993]. Therefore, we avoid this
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discretization and work with functions in in�nite dimensional Banach spaces, which are adjusted

to the given problem.

Here, we use an approach based on the so-called Lyapunov-Schmidt reduction [Lyapunov, 1906;

Schmidt, 1908]. Here, the original problem is embedded into a higher dimensional boundary

value problem. Then, the isolated solutions of this modi�ed problem can be determined with

numerical standard techniques like shooting methods. Some of the computed isolated solutions

represent the nonisolated of the given problem (4.1). This approach can further be modi�ed e.g.

for the computation of simple turning points [Keener & Keller, 1973; Moore & Spence, 1980]

and transcritical bifurcation points [Moore, 1980; Weber, 1979, 1981]. The required starting

values can e�ciently be obtained using the appropriate numerical continuation [Hermann & Milde,

2009].

The type of a bifurcation point can be determined by the so-called bifurcations coe�cients. How-

ever, their calculation requires a symbolic computation of the second and third partial derivatives

of the corresponding operator. For a boundary value problem with non-linear boundary conditions,

this means that also the partial derivatives of the boundary function r have to be determined.

Thus, their computation can become a time-consuming task, especially for the high-dimensional

problems, which occur in our study. Therefore, in this thesis the type of bifurcation points are

be determined by the shape of the generated bifurcation diagram and the stability behaviour of

periodic solutions in the neighbourhood [Ikeda & Murota, 2002].

In our spring-mass model, bifurcation points connect curves of periodic solutions and also con�ne

the regions of stable locomotion (Chapter 2 and 3, see also Rummel et al. [2010b]). In the bipedal

model, all common kinds of bifurcations like simple turning points, secondary bifurcation points or

Hopf bifurcations occur. In the monopedal model, only simple turning points and period-doubling

bifurcation points have been observed.

4.2. Some topics of the analytical bifurcation theory

In this section, a short introduction to bifurcation theory is presented. Using the boundary value

problem from the previous chapter, it is not di�cult to build extended systems for computation

of di�erent kinds of singular points. A more detailed description of the bifurcation theory can be

found e.g. in Wallisch & Hermann [1987] or Zeidler [1998].
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4.2.1. De�nitions and important theorems

Let
ẏ(t) = f(t, y;λ), a ≤ t ≤ b,

r(y(a), y(b);λ) = 0
(4.2)

be a parameter dependent two-point boundary value problem with

y ∈ C1([a, b],Rn), λ ∈ R,

f : Df → Rn, Df ⊂ [a, b]× Rn × R,

r : Dr → Rn, Dr ⊂ Rn × Rn × R.

Consider the equation

T (y, λ) = 0 (4.3)

with T : X× R → Y given by

T (y, λ) :=


ẏ − f(·, y;λ)
r(y(a), y(b);λ)


. (4.4)

The Banach spaces X := C1([a, b],Rn) and Y := C([a, b],Rn) × Rn are given with corresponding

norms

∥x∥X := sup
[a,b]

{|x(t)|+ |ẋ(t)|}, (4.5)

∥y∥Y := sup
[a,b]

{|g(t)|}+ ∥v∥, (4.6)

where y := (g, v) ∈ Y, |x| := (xTx)
1
2 and ∥ · ∥ is any norm of Rn. In the following, we set

Z := X× R.

The Fréchet-derivative Ty of the operator T with respect to y is given by

Ty(y, λ)v :=


v̇ − fy(·, y;λ)v
Bav(a) +Bbv(b)


(4.7)

with Ba := ry(a)(y(a), y(b);λ) and Bb := ry(b)(y(a), y(b);λ).

De�nition 4.1: Let X and Y be Banach spaces. An operator T ∈ L(X, Y ) is a Fredholm operator

i� the dimension of the null space N (T ) of T and the codimension of the range R(T ) of T are

�nite numbers and the range R(T ) is closed in Y . The number

ind(T ) := dim(N (T ))− codim(R(T ))

is called index of T .
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De�nition 4.2: For an operator T ∈ L(X, Y ), the dual operator T ∗ : Y ∗ → X∗ is given by

(T ∗y∗)(x) := y∗(Tx) (4.8)

for all y∗ ∈ Y ∗ and x ∈ X.

For further discussion on the operator T ∗
y , which is dual to the operator Ty from (4.7), see Mid-

delmann [1998].

De�nition 4.3: Let X be a Banach space. Let ∅ ̸= M ⊂ X and ∅ ̸= N ⊂ X∗ be two subsets.

Then, the annihilators of M und N are de�ned by

M⊥ := {x∗ ∈ X∗ | ∀x ∈M : x∗(x) = 0}

and

N⊥ := {x ∈ X | ∀x∗ ∈ N : x∗(x) = 0} .

Theorem 4.4 (Banach's closed range theorem [Banach, 1932]): Let X and Y be Banach spaces

and T ∈ L(X, Y ). Then, the following statements are equivalent:

1. R(T ) is closed in Y .

2. R(T ) = N (T ∗)⊥.

3. R(T ∗) is closed in X∗.

4. R(T ∗) = N (T )⊥.

Proof. See Yosida [1980].

Theorem 4.5: Ty as it given in (4.7) is a Fredholm operator with ind(T ) = 0.

Proof. See Hermann et al. [1998].

Theorem 4.6 (Implicit Function Theorem): Let X, Y , Z be Banach spaces, U ⊂ X, V ⊂ Y

be open subsets and T ∈ Cp(U × V, Z), p ≥ 1. Moreover, let z0 := (x0, y0) ∈ U × V be such

that T (z0) = 0 and let Tx(z0) be a linear homeomorphism from X to Z. Then, there exist

a neighborhood U1 × V1 ⊂ U × V of z0 and a function g ∈ Cp(V1, X) with g(y0) = x0 and

T (x, y) = 0 for (x, y) ∈ U1 × V1 i� x = g(y).

Proof. See Zeidler [1998].
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4.2.2. Lyapunov-Schmidt reduction

The Lyapunov-Schmidt reduction transforms the problem from the in�nite-dimensional Banach

space to the �nite many solutions with real variables.

De�nition 4.7: A solution (y0, λ0) ∈ X × R of (4.3) is simple, if the derivative T ′(y0, λ0) :=
T 0
y T

0
λ


∈ L(Z,Y) ful�lls the conditions

dim (N (T ′(y0, λ0))) = 1 and R (T ′(y0, λ0)) = Y. (4.9)

Consider the following


T 0
y T 0

λ

w
µ


= 0 =⇒ T 0

yw + T 0
λµ = 0

=⇒ T 0
yw = −T 0

λµ.

Thus, (y0, λ0) ∈ X×R is a simple solution of (4.3) i� one of two possible situations, that exclude

each other, occur:

1. T 0
λ ∈ R(T 0

y ) �isolated solutions�

=⇒ T 0
yw1 = −T 0

λ with


w1

1


:=


w

µ


=⇒ N (T 0

y ) = {0}.

2. T 0
λ /∈ R(T 0

y ) �nonisolated solutions�

=⇒ µ = 0

=⇒


w

µ


=


w2

0


with T 0

yw2 = 0

=⇒ N (T 0
y ) = span{ϕ}, 0 ̸= ϕ ∈ X.

In the �rst case, the Implicit Function Theorem 4.6 guarantees the existence of a unique solution

curve {y(λ), λ} in the neighborhood of the isolated solutions.

A similar statement is true for nonisolated solutions. Let the null space N (T 0
y ) be spanned by a

normalized function ϕ0 ∈ X1, ∥ϕ0∥ = 1:

N (T 0
y ) = span{ϕ0}. (4.10)
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Since ind(T 0
y ) = 0, the dimension of the null space of the dual operator T 0

y
∗
: Y∗ → X∗ is also

one:

N (T 0
y
∗
) = span(ψ∗

0), (4.11)

where ψ∗
0 ∈ Y∗, ∥ψ∗

0∥ = 1. From a corollary of the Hahn-Banach Theorem [Zeidler, 1998], we

obtain

∃ϕ∗
0 ∈ X∗, ψ0 ∈ Y with ϕ∗

0ϕ0 = 1 and ψ∗
0ψ0 = 1. (4.12)

There exist the following decompositions of the spaces X and Y:

X = span{ϕ0} ⊕ X1

with X1 := {y ∈ X | ϕ∗
0y = 0}.

Y = span{ψ0} ⊕ Y1

with Y1 := {z ∈ Y | ψ∗
0z = 0}.

(4.13)

Additionally, the Fredholms Alternative applies:

Y1 = R(T 0
y ).

With this decomposition of the Banach spaces X and Y, the well-known Lyapunov-Schmidt reduc-

tion can be applied to the operator equation (4.3). The result can be used in the so called extended

systems for computing turning points and bifurcation points. These techniques are described in

the following sections.

Another important result of the Lyapunov-Schmidt reduction are certain coe�cients, which char-

acterize the type of bifurcations. The �rst one, c := ψ∗
0T

0
λ , is called the characteristic coe�cient.

It determines, whether the singularity is a turning point or a bifurcation point. In this thesis, the

following bifurcations occur:

De�nition 4.8: Let c ̸= 0.

• A non-isolated solution (y0, λ0) ∈ X×R of (4.3) is a simple turning point i� a2 := ψ∗
0T

0
yyϕ

2
0 ̸=

0.

• A non-isolated solution (y0, λ0) ∈ X × R of (4.3) is a double turning point i� a2 = 0 and

a3 := ψ∗
0


6T 0

yyϕ0w0 + T 0
yyyϕ

3
0


̸= 0, where w0 ∈ X1 such that T 0

yw0 = −1
2
T 0
yyϕ

2
0.



47 4. Numerical bifurcation analysis of the spring-mass model

De�nition 4.9: Let c = 0.

• A non-isolated solution (y0, λ0) ∈ X × R of (4.3) is transcritical (asymmetric) bifurcation

point i� a2 ̸= 0.

• A non-isolated solution (y0, λ0) ∈ X × R of (4.3) is pitchfork (symmetric) bifurcation point

i� a2 = 0 and a3 ̸= 0.

A general classi�cation of singular points can be found e.g. in Ikeda & Murota [2002].

4.2.3. Simple turning points

The computation of simple turning points is based on the following extension T of the operator

T : X× R → Y:

T :


Z := X× R× X → Y := Y× Y× R

z := (z, ϕ0) := (y, λ, ϕ0) →→

 T (y, λ)

Ty(y, λ) · ϕ0

ϕ∗
0ϕ0 − 1

 (4.14)

This extended operator can be transformed into a boundary value problem in several ways. The

classical approach has the dimension of 2n + 1, e.g. Keener & Keller [1973]; Moore & Spence

[1980]; Wallisch & Hermann [1987]:

ẏ = f(t, y;λ) r(y(a), y(b);λ) = 0,

ϕ̇0 = fy(t, y;λ)ϕ0 Baϕ0(a) + Bbϕ0(b) = 0,

λ̇ = 0 ϕ0(a)
Tϕ0(a) = 1,

(4.15)

where Ba := ry(a)(y(a), y(b);λ) and Bb := ry(b)(y(a), y(b);λ) are the derivatives of the boundary

condition vector r.

4.2.4. Double turning points

Double turning points can only occur in the two-parameter systems:

T (y, λ, τ) = 0,T : X× R× R → Y.
(4.16)
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For the computation of double turning points, the operator T must be extended in the following

way [Roose & Piessens, 1985]:

T :



Z := X× R× R× R× X× Y∗ → Y := Y× Y× X∗ × R× R× R

z := (y, λ, τ, µ, ϕ0, ψ
∗
0) →→



T (y, λ, τ)Ty(y, λ, τ)ϕ0T ∗
y (y, µ, τ)ψ

∗
0

ϕ∗
0ϕ0 − 1

ψ∗
0ψ0 − 1

ψ∗
0
Tyy(y, λ, τ)ϕ2

0


(4.17)

The resulting boundary value problem has dimension 3n+ 4:

ẏ = f(t, y;λ, τ) r(y(a), y(b);λ, τ) = 0,

ϕ̇0 = fy(t, y;λ, τ)ϕ0 Ba(λ)ϕ0(a) + Bb(λ)ϕ0(b) = 0,

ψ̇0 = − (fy(t, y;µ, τ))
T ψ0 B⋆

a(µ)ψ0(a) + B⋆
b (µ)ψ0(b) = 0,

ξ̇0 = ψT
0


fyy(t, y;λ, τ)ϕ

2
0


ψ0(a)

T

Baa(λ)ϕ

2
0(a) + 2Bab(λ)ϕ0(a)ϕ0(b) + Bbb(λ)ϕ

2
0(b)

= 0,

λ̇ = 0 ξ0(a)
T ξ0(a) = 0,

µ̇ = 0 ϕ0(a)
Tϕ0(a) = 1,

τ̇ = 0 ψ0(a)
Tψ0(a) = 1.

(4.18)

The matrices Ba(λ) := ry(a)(y(a), y(b);λ) and Bb(λ) := ry(b)(y(a), y(b);λ) are derivatives of the

boundary function r. The matrices B⋆
a(µ) and B⋆

b (µ) are adjoint to the derivatives Ba(µ) :=

ry(a)(y(a), y(b);µ), Bb(µ) := ry(b)(y(a), y(b);µ), i.e. they must ful�ll relation (4.25). The matrices

Baa, Bab and Bbb are the corresponding second derivatives of r.

4.2.5. Secondary bifurcation points

In this thesis, we describe two general approaches for the computation of secondary bifurcation

points. Both are based on the theorem of Crandall & Rabinowitz [1971]. The approach of Weber

[1979, 1981] has larger dimension, whereas the approach of Moore [1980] requires the computation

of adjoined matrices.

De�nition 4.10: [Beyn, 1980] (y0, λ0) ∈ X× R is a hyperbolic point of the operator T i�:

(i) T (y0, λ0) = 0,

(ii) dim(N (T ′(y0, λ0))) = 2, codim(R(T ′(y0, λ0))) = 1,

(iii) τ := αγ − β2 < 0.



49 4. Numerical bifurcation analysis of the spring-mass model

Here, α, β, γ ∈ R are de�ned by

α := ψ∗
0T

′′(y0, λ0)p
2,

β := ψ∗
0T

′′(y0, λ0)pq,

γ := ψ∗
0T

′′(y0, λ0)q
2

with p, q ∈ X such that

span{p, q} = N (T ′(y0, λ0))

and ψ∗
0 ∈ Y∗ such that

N (ψ∗
0) = R(T ′(y0, λ0)).

Approach of Weber

Let (y0, λ0) ∈ X× R be a hyperbolic point. Additionally, let

Tλ(y0, λ0) ∈ R(Ty(y0, λ0)). (4.19)

For the null space of T ′(y0, λ0), the following is true

N (T ′(y0, λ0)) = span{p, q}, p, q ∈ Z,

with p = (p1, p2)
T , q = (q1, q2)

T , such that p1, q1 ∈ X, p2, q2 ∈ R. If ϕ∗
0 ∈ X∗ is a suitable

linear functional, then p und q are unique (up to the sign) with p = (ϕ0, 0), q = (s0, 1) such that

ϕ0, s0 ∈ X, ϕ∗
0ϕ0 = 1 and ϕ∗

0s0 = 0. Moreover, let 0 ̸= ψ0 ∈ Y be such that

ψ∗
0ψ0 ̸= 0. (4.20)

The operator T can now be extended in the following way:

T :



Z := X× R× X× X× R → Y := Y× Y× Y× R× R

z := (y, λ, ϕ0, s, µ) →→


T (y, λ) + µψ0

Ty(y, λ)ϕ0

Ty(y, λ)s+ Tλ(y, λ)

ϕ∗
0ϕ0 − 1

ϕ∗
0s


(4.21)

with the functional ϕ∗
0 ∈ X∗ such that ϕ∗

0ϕ0 = 1. The corresponding boundary value problem has

dimension 3n+ 2:

ẏ = f(t, y;λ)− µψ0 Bay(a) + Bby(b) = 0,

ϕ̇0 = fy(t, y;λ)ϕ0 Baϕ0(a) + Bbϕ0(b) = 0,

ṡ = fy(t, y;µ)s+ fλ(t, y;λ) Bas(a) + Bbs(b) + Bλ = 0,

λ̇ = 0 ϕ0(0)
Tϕ0(0) = 1,

µ̇ = 0 ϕ0(0)
T s(0) = 0,

(4.22)
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where Bλ is the derivative rλ(a)(y(a), y(b);λ). Since the boundary value problem (4.22) is self-

adjoint, the functional ψ0 can be chosen as ψ0 := ϕ0 as suggested in Wallisch & Hermann

[1987].

Approach of Moore

This technique is a modi�cation of the approach of Weber. It has dimension 2n + 2, which

is smaller, but it requires the computation of adjoined matrices, which could be expensive for

high-dimensional systems. The extended operator T of T is then

T :



Z := X× R× Y∗ × R → Y := Y× X∗ × R× R

z := (y, λ, ψ∗
0, µ) →→


T (y, λ) + µψ0

T ∗
y (y, λ)ψ

∗
0

ψ∗
0Tλ(y, λ)

ψ∗
0ψ0 − 1

 (4.23)

The corresponding boundary value problem is then:

ẏ = f(t, y;λ)− µψ0 Bay(a) + Bby(b) = 0,

ψ̇∗
0 = −fT

y (t, y;λ)ψ
∗
0 B⋆

aψ
∗
0(a) + B⋆

bψ
∗
0(b) = 0,

ξ0 = −ψ∗
0fλ(t, y;λ) ξT0 (a)ξ0(b) = 1

λ̇ = 0 ψ∗
0(a)

TBλ = 0,

µ̇ = 0 ψ∗
0(a)

Tψ∗
0(a) = 1.

(4.24)

The matrices B⋆
a and B⋆

b are adjoint to the derivatives Ba and Bb, i.e. they must ful�ll the rela-

tion

B⋆
aBT

a − B⋆
bBT

b = 0, rank[B⋆
a B⋆

b ] = n. (4.25)

4.2.6. Continuation

Numerical continuation (or path following) is a technique to trace solution curves of parametrized

systems of equations. Combined with a boundary value problem solver, the path following is a

powerful tool for investigation of dynamical systems from di�erent �elds of science. The probably

most prominent example is the pseudo-arclength continuation by Keller [1978], which also allows

the path following past a turning point. In this thesis, the simple and e�cient predictor-corrector

continuation from Seydel [1984] is used, which is implemented in the RWPM package [Hermann

& Ullrich, 1992]. The predictor step is realized as the secant to the solution branch. The corrector

consists of the application of the shooting method to a transformed boundary value problem as

described in Hermann & Ullrich [1992].
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4.3. Bifurcations in the spring-mass model

The following techniques of handling bifurcations are based on the well-known Lyapunov-Schmidt

reduction [Marx & Vogt, 2011; Wallisch & Hermann, 1987; Zeidler, 1998]. Consider the equa-

tion

T (z, λ) =


ż − f(z(τ))

r(z(0), z(1);λ)


= 0,

where T : Rn × R → Rn × Rn is a twice continuously di�erentiable operator and τ ∈ [0, 1]. The

functions f : Rn → Rn and r : Rn × Rn × R → Rn are de�ned in Table 3.1 for running and in

Table 3.2 for walking. The Fréchet derivative Tz(z, λ) of the operator T is a Fredholm operator

of index zero. Furthermore, let us assume that the one-dimensional null space N (Tz) of Tz is

spanned by the function ϕ0 with ∥ϕ0∥ = 1 and let the null space N (T ⋆
z ) of the adjoined operator

T ⋆
z be spanned by ψ0 with ∥ψ0∥ = 1.

In the following, the angle of attack α0 is considered as the control (or bifurcation) parameter, i.e

we set λ := α0. Note that α0 does not appear in the de�nition of the function f .

4.3.1. Simple turning point

To �nd a simple turning point, we use the classical approach, as described by several authors,

e.g. Keener & Keller [1973]; Moore & Spence [1980]; Wallisch & Hermann [1987]. It requires the

extension of the original system by linearization of the function f . Keeping in mind, that the

bifurcation parameter α0 does not occur in f , the extended system (4.15) then is

ż = f(z) r(z(0), z(1);α0) = 0,

ϕ̇0 = fz(z)ϕ0 B0ϕ0(0) +B1ϕ0(1) = 0,

α̇0 = 0 ϕ0(0)
Tϕ0(0) = 1,

(4.26)

where B0 := rz(0)(z(0), z(1);α0) and B1 := rz(1)(z(0), z(1);α0) are the derivatives of the vector r.

The resulting extended boundary value problem has dimension 2n+ 1.



52 4. Numerical bifurcation analysis of the spring-mass model

4.3.2. Transcritical bifurcation

Using the approach of Weber (Section 4.2.5), we obtain the following boundary value problem

with dimension 3n+ 4:

ż = f(z) + µψ0 r(z(0), z(1);α0) + µϕ0(0) = 0,

ϕ̇0 = fz(z)ϕ0 B0ϕ0(0) +B1ϕ0(1) = 0,

ṡ = fz(z)s B0s(0) +B1s(1) +Bα = 0,

µ̇ = 0 ϕ0(0)
Tϕ0(0) = 1,

α̇0 = 0 ϕ0(0)
T s(0) = 0.

(4.27)

Again, B0 := rz(0)(z(0), z(1);α0), B1 := rz(1)(z(0), z(1);α0) and Bα := rα0(z(0), z(1);α0) are the

derivatives of the vector r.

Using the approach of Moore (Section 4.2.5), the dimension of the extended boundary value

problem is reduced to 2n + 2, but additionally the adjoined matrices B⋆
0 and B⋆

1 have to be

computed. This can be very time-consuming for high-dimensional systems. As mentioned above,

the parameter α0 only occurs in the boundary function r (Tables 3.1 and 3.2). The extended

system in this case is

ż = f(z) + µψ r(z(0), z(1);α0) + µψ(0) = 0,

ψ̇ = −fT
z (z)ψ B⋆

0ψ(0) +B⋆
1ψ(1) = 0,

µ̇ = 0 ψ(0)TBα = 0,

α̇0 = 0 ψ(0)Tψ(0) = 1,

(4.28)

where Bα is the derivative rα0(0)(z(0), z(1);α0). The matrices B⋆
0 and B⋆

1 are adjoint to the

derivatives B0 and B1, i.e. they must ful�ll the relation

B⋆
0B

T
0 −B⋆

1B
T
1 = 0, rank[B⋆

0 B
⋆
1 ] = n. (4.29)

The matrices B⋆
0 and B⋆

1 are determined using the symbolic QR decomposition of the matrix

[B0 B1]
T via Givens transformations [Hermann, 2011; Stoer & Bulirsch, 1993] and then inserted

into the boundary value problem (4.28) (see Appendix A).

4.3.3. Period-doubling bifurcation

Period-doubling bifurcation points can be calculated indirectly, since they are invisible for period-

one solutions. Here, exactly one of the two Floquet multipliers must be equal to -1. Therefore, the

calculation of the bifurcation point can be reduced to the search of the point, where exactly one



53 4. Numerical bifurcation analysis of the spring-mass model

Floquet multiplier equals -1. This approach can also be applied for investigation of the asymmetric

model (see Discussion and Chapter 2). For example, one asymmetric double step may comprise

two subsequent single steps with two di�erent angles of attack α1 ̸= α2 (Chapter 2).

First, we have to modify the functions f and r in Section 3.4.3. The additional equations can

easily be understood using Table 3.2 and Figure 3.7. To �nd periodic solutions, the boundary

functions r2, r3 and r4 have to be changed similar to equation (3.14):

r2 = m

z2(0)

2 + z4(0)
2

− 2E0 + 2mgz3(0) + k0 (L0 − z3(0))

2 ,r3 = z3(0)− z25(1),

r4 = arctan


z4(0)

z2(0)


− arctan


z26(1)

z24(1)


.

(4.30)

In this case, the dimension of the boundary value problem (3.12) is n = 27, and by using

the method of Moore (Section 4.2.5, [Moore & Spence, 1980]), we get the desired bifurcation

point.

4.3.4. Hopf bifurcation

Hopf bifurcations [Hopf, 1942; Marsden & McCracken, 1976] can be found using the appropriate

numerical continuation, e.g. Gross & Feudel [2004]. Here, we compute them indirectly, since they

are not visible in the real plane. We use the original model (Section 3.2) and search for points with

two complex-conjugate Floquet multipliers of magnitude one. Perturbations, like leg asymmetry,

have no destroying e�ect on Hopf bifurcations (Chapter 2).

4.3.5. Double turning point

In this thesis, double turning points are computed using the secant-predictor continuation (Sec-

tion 4.2.6, [Jepson & Spence, 1985]). However, it is also possible to �nd these points directly

using the modi�ed extended system (4.18). The resulting boundary value problem has the dimen-
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sion 3n+ 4:

ż = f(z; τ) r(z(0), z(1);α0, τ) = 0,

ϕ̇0 = fz(z; τ)ϕ0 B0(α0)ϕ0(0) +B1(α0)ϕ0(1) = 0,

ψ̇0 = −fT
z (z; τ)ψ0 B⋆

0(µ)ψ0(0) +B⋆
1(µ)ψ0(1) = 0,

ξ̇0 = ψT
0


fzz(z; τ)ϕ

2
0


ψ0(0)

T

B00(α0)ϕ

2
0(0) + 2B01(α0)ϕ0(0)ϕ0(1) +B11(α0)ϕ

2
0(1)


= 0,

α̇0 = 0 ξ0(0)
T ξ0(1) = 0,

µ̇ = 0 ϕ0(0)
Tϕ0(0) = 1,

τ̇ = 0 ψ0(0)
Tψ0(0) = 1.

(4.31)

Like in previous cases, the �rst bifurcation parameter is the angle of attack α0. Depending on the

bifurcation problem, the second bifurcation parameter τ is either system energy E0 (Figure 4.2)

or an asymmetry parameter (�gures 5.6 and 5.7). The matrices B0(α0) := rz(0)(z(0), z(1);α0)

and B1(α0) := rz(1)(z(0), z(1);α0) are de�ned as above. The matrices B⋆
0 and B⋆

1 are adjoint

to the derivatives B0(µ) := rz(0)(z(0), z(1);µ), B1(µ) := rz(1)(z(0), z(1);µ), i.e. they must ful�ll

relation (4.29).

4.3.6. Implementation

Both, the original and transformed spring-mass model are implemented in MatLab (version

R2011a, The MathWorks Inc., Natick, MA, USA). All boundary value problems in this study are

solved using the latest version of the boundary value problem solver RWPM [Hermann & Kaiser,

1993]. This package uses standard simple and multiple shooting methods for the computation of

boundary value problems [Hermann, 2004; Stoer & Bulirsch, 1993]. The associated initial value

problems are solved using the MatLab solver ode45 [Shampine & Reichelt, 1997]. The MatLab

function fsolve from the Optimization Toolbox is then applied to �nd the zeros of the system

of non-linear equations. All these calculations are done with an absolute and relative tolerance

of 10−8. All periodic solutions and extended systems are calculated using the simple shooting

method. All required derivatives of the functions f and r, as well as the QR decomposition to

compute the adjoined matrices (Appendix A) are calculated using the Symbolic Math Toolbox of

MatLab.
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Figure 4.1. Manifold of stable solutions of the spring-mass model for running

4.4. Results

4.4.1. Running

As shown in the previous chapter, the region of symmetric stable solutions is located between a

simple turning point and a period-doubling bifurcation point (Figure 3.5). Using the extended

systems (4.26) and (4.30), it is now possible to compute the complete manifold of stable periodic

solutions of the spring-mass model (Figure 4.1(a)). It is con�ned between the curve of the turning

points and the curve of the period-doubling bifurcations. Periodic stable solutions exist for the

system energy between E0 = 1100 J and 9900 J (Figure 4.1(b)). Both curves are computed using

the secant-predictor continuation [Hermann & Ullrich, 1992; Seydel, 1984] with system energy E0

as the second bifurcation parameter.

In Chapter 5, we investigate the size of the region where locomotion is stable. Like in Chapter 2,

we de�ne the continuous range of stable solutions ∆α = αmax − αmin and call it the α-range. The

symmetric model exhibits an α-range of ∆α = 2.7◦, which provides a reference for investigations

of the asymmetric model in Chapter 5.
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are omitted. The solid black curves represent periodic solutions for E0 = 816.018 J, i.e. for the value of the system

energy where a unique two-parameter bifurcation occurs (diamond). The green line is the curve of Hopf bifurcations,

the blue one is the curve of transcritical bifurcations, and the red one is the curve of simple turning points. The

intersection of the curves of transcritical and Hopf bifurcations at E0 = 815.963 J and α0 = 71.824◦ is marked by

the square. The circle at E0 = 804.295 J and α0 = 76.397◦ is the double turning point. The grey areas indicate

regions of stable periodic solutions. See also Figure 4.3.

4.4.2. Walking

Simple turning points and transcritical bifurcations

Figure 4.2 shows curves of simple turning points and transcritical bifurcations computed for dif-

ferent values of system energy E0 using the extended systems (4.26) and (4.28). For reasons of

clarity, the curves of walking patterns with non-zero velocity angle θ0 at VLO, e.g. branch B in

Figure 3.7, are not displayed. These branches are extensively described and discussed in Rummel

et al. [2010b]. We also refer to Section 2.4.1 and Figure 2.6.

Simple turning points are common in the bipedal spring-mass model (Figure 3.7). For values of

E0 between 804.295 J and 816.018 J, they enclose the area of stable solutions (Figure 4.2).

Transcritical bifurcation points connect branches with two di�erent kinds of periodic patterns

(Figure 3.7). Moreover, for the system energy E0 larger than 815.983 J, the regions of stable

walking gaits are located between the curve of Hopf bifurcations and the curve of transcritical
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bifurcations (grey areas in Figure 4.2).

Additionally to the angle of attack α0, we consider the system energy E0 as the second bifurcation

parameter. Using the secant-predictor continuation [Hermann & Ullrich, 1992; Seydel, 1984]

for the system of equations (4.26), we obtain the curve of simple turning points and two two-

parameter bifurcation points: a unique transcritical bifurcation at E0 = 816.018 J and α0 =

72.520◦ (diamonds in Figure 4.2 and Figure 4.3) and the double turning point at E0 = 804.295 J

and α0 = 76.397◦ (circles in Figure 4.2 and Figure 4.3).

Period-doubling bifurcations

The �rst group of two period-doubling bifurcation points is located between α0 = 60◦ and 63◦

(Figure 3.7). Since they are located away from the region of stable solutions, any further discussion

of these points is omitted.

The solution diagram under the touch-down line yTD = L0 sin(α0), where another two period-

doubling bifurcation points are found, is very complex. As shown above, the curvature at turning

points is changed at E0 = 816.018 J (Figure 4.2). Moreover, the continuous curve of periodic

solutions splits in two distinct curves for E0 < 819.2 J. To avoid confusion, we present only two

examples with period-doubling bifurcation points limiting the region of stable periodic solutions

(Figure 3.9) and the curve of period-doubling bifurcations (Figure 4.4).

For the system energy E0 = 820 J, the stable region is con�ned between the period-doubling

bifurcations at α0 = 72.081◦ and α0 = 74.595◦ (Figure 4.4(a)). For E0 = 810 J, there exist two

distinct curves of periodic solutions. In this case, stable solutions lie between the period-doubling

bifurcation at α0 = 71.454◦ and the Hopf bifurcation at α0 = 68.209◦. Stable solutions exist until

two period-doubling bifurcations merge (Figure 4.4(b)). Using the continuation, we obtain the

unique transcritical bifurcation point at E0 = 822.483 J and α0 = 73.091◦.
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Figure 4.4. Grounded running

4.5. Discussion

In this chapter, we have presented a new computational approach for studying bifurcations in the

bipedal spring-mass model. We used the technique of extended systems to �nd simple turning

points and secondary bifurcation points. We have demonstrated that the investigation of the

region of the stable solutions can be reduced to the calculation of its boundaries. Omitting the

calculation of the periodic solutions between the bifurcations results in considerable bene�ts for

computation time.

Using the technique of extended systems, it was possible to compute the complete manifold of

periodic running solutions (Figure 4.1). Here, all stable solutions are located between the curve of

simple turning points and the curve of period-doubling bifurcations. In Chapter 5, this approach

will be extended for the analysis of the stability regions of the asymmetric spring-mass model.

The diagram of stable solutions of the bipedal model is much more complex. Here, we have

presented only part of the solution manifold, which has some biological relevance (Figure 4.2). In

this chapter, we have also presented stable grounded running solutions limited by period-doubling

bifurcations (Figure 4.4). Grounded running may be considered as running without �ight phases
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[Andrada et al., 2012]. It is often observed in avian locomotion and may also correspond to

human jogging. Since grounded running also serves as an intermediate step between walking and

running [Martinez & Carbajal, 2011; Rummel et al., 2009], the calculation of these period-doubling

bifurcations is helpful for investigations of gait transitions.

Like in case of periodic solutions, the simple shooting method is su�cient for the computation of

all bifurcations. We use the periodic solution next to the bifurcation as the initial guess for the

�rst n equations of an extended system and a suitable approximation of the desires parameter

value. For all remaining equations in these three systems, it is adequate to use some trivial initial

values like a vector �lled with ones.

The approaches for calculation of bifurcations in the asymmetric model or period-doubling bi-

furcations in the symmetric one may lead to large systems of equations. For instance, 2n + 2

equations are required for the computation of a secondary bifurcation point by the boundary

value problem (4.28), where n is the dimension of the vector-function f . Using the functions f

and r for the period-2 solutions with asymmetric leg parameters, we would obtain an extended

system of dimension 56, similar to the case of period-doubling bifurcations. To reduce the number

of equations, the techniques of minimal systems may be applied [Allgower & Schwetlick, 1997].

Using minimal systems, the number of equations can be reduced to n + 2, which would provide

a signi�cant bene�t regarding computation time. A similar approach also exists for the calcula-

tion of simple turning points [Pönisch & Schwetlick, 1981]. Here, the dimension of the extended

boundary value problem is n+ 1.



5. Stable running with asymmetric legs

5.1. Introduction

An approach towards describing asymmetric walking based on a minimalistic gait model was

presented in Chapter 2. In particular, it is shown that considerable discrepancies between con-

tralateral leg angles can be tolerated and may even stabilize unstable solutions of the symmetric

model. While some general descriptions and features can be directly transferred to running, there

are also some di�erences. During walking, unilateral amputees use the intact leg more extensively

[Schaarschmidt et al., 2012]. Thus, the contact phases of the prosthetic limb are shorter. This

happens because the amputees do not fully trust in the leg functionality of the arti�cial legs.

During running, the existence of �ight phases requires a greater reliability of the prosthesis, which

must endure the full load of impact, when the touch-down happens. While the asymmetry in

walking gaits is most visible for lower speeds [Goble et al., 2003; Nolan et al., 2003], there are

reports that the gait asymmetry in running gaits increases with the growing speed [Burkett et al.,

2003; Prince et al., 1992]. However, the development of new technologies and materials supports

the design of new prostheses (e.g. carbon �bre prostheses) with improved running capabilities

[Scholz et al., 2011].

Most of the scienti�c publications about the modeling of asymmetric gaits are about the so called

limb dominance [Gregg et al., 2012, 2011; Moon & Spong, 2011]. It is developed by humans with

a preferred leg, which executes a manipulative or mobilizing action while the other one provides

stabilizing support [Gabbard & Hart, 1996]. Moreover, Martinez Salazar & Carbajal [2011] de-

scribe the importance of asymmetric patterns for the simulation of gait transitions. In particular,

they con�rm the role of skipping gait patterns [Farley, 1998] as the intermediate locomotion gait

between walking and running.

Here, we investigate, to what extent contralateral leg asymmetry may challenge or even support

stability of running. Therefore, we transform the model into a boundary value problem (BVP) as

it shown in Merker et al. [2013], compute the stability region of the symmetric model and use it as

reference for the analysis of the asymmetric model. Afterwards, we introduce the leg asymmetry

parameters into the model and study their e�ects on the stability of running.
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Figure 5.1. The asymmetric spring-mass model for running: (a) α1 ̸= α2, (b) k1 ̸= k2, (c) L1 ̸= L2. The dots

on the center of mass (CoM) trajectory show events of apex, touch-down, vertical leg orientation, and take-o�.

Like in Chapter 2, to what extent contralateral leg asymmetry may challenge or even support

stability of running. We use the transformed symmetric model and the results from Chapter 3

as references for our study. Therefore, we modify the functions f and r from Table 3.1 for the

computation of two subsequent steps and introduce asymmetry parameters εα, εk and εL from

(2.4) and (2.5) into the symmetric model. The in�uence of the asymmetry of the dimensionless

energy ε E on the stability of running is not discussed, since it exhibits the same behaviour as in

case of the L-asymmetry (see Section 2.4.5). The resulting boundary value problem can now be

applied to compute solutions of the asymmetric model. It can also be extended for the computation

of singular points, which limit regions of stable asymmetric running. One type of boundaries of

the region of stable symmetric solutions are simple turning points (Chapter 3). Another limit

of stability are period-doubling bifurcation points. Hence, the goals of this chapter result in the

following questions. Do the bifurcations of the asymmetric model still limit the regions of stable

running? If it is correct, then how do the asymmetry parameters a�ect the bifurcations of the

symmetric model? If it is not applicable, what are the new boundaries?

5.2. The asymmetric spring-mass model for running

The symmetric spring-mass model is described in Section 3.2.1. Again, we consider the full stride

comprising two subsequent steps. Like for the bipedal model (Chapter 2), we de�ne three positive

asymmetry parameters εα, εk and εL of the angle of attack α0 (Figure 5.1(a)), the leg sti�ness k0

(Figure 5.1(b)) and the rest length L0 (Figure 5.1(c)), respectively. During the �rst step of a stride,

these asymmetry parameters are subtracted from the corresponding reference parameters:

α1 = α0 − εα, k1 = k0 − εk, L1 = L0 − εL. (5.1)
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During the subsequent step, they are added:

α2 = α0 + εα, k2 = k0 + εk, L2 = L0 + εL. (5.2)

All calculations in this investigation are done with constant dimensional energy E0 = 1800 J

corresponding to the average initial horizontal velocity ẋ0 = 5 m/s (see relation (3.5)). The

reference leg sti�ness k0 = 20 kN/m is taken from Seyfarth et al. [2002] and [Lipfert et al., 2012].

Moreover, we set L0 = 1 m and m = 80 kg.

5.3. Transformation into a boundary value problem

To compute a single step of the asymmetric spring-mass model for running, we use the modi�ed

boundary value for computation of a period-2 solution (Section 3.4.3). The modi�ed functions f

and r computing a periodic solution of the asymmetric model are listed in Table 5.1. In case of

α-asymmetry, we set α1 ̸= α2. Similarly, for the asymmetry of sti�ness and the leg length, we

set k1 ̸= k2 and L1 ̸= L2. The dimension n of the boundary value problem is 32. The modi�ed

problem (3.12) can now be used to �nd singular points as described in Chapter 4.

The computation of the points on the touch-down line yTD = Li sin(αi) (left inset in Figure 5.3) or

on the take-o� line Li = L0 (right inset in Figure 5.3) is required, since they occur as boundaries of

stability regions in the asymmetric model. To �nd these points, we replace all αi's in the modi�ed

functions f and r by the new variable z33. Then, we add one more equation and, consequently,

one more boundary condition to the boundary value problem (3.12):

f33 = 0 r33 = z5(0)z16(0)z21(0)z32(0). (5.3)

In case of z5 = 0 or z16 = 0, the �rst or the second step of the stride begins right with stance phase

(touch-down point), i.e. the �rst apex and the �rst touch-down of the stride occur at the same

time. In case of z21 = 0 or z32 = 0, the corresponding step has no second �ight phase (take-o�

point).

5.4. Results

5.4.1. Asymmetry of angle of attack

Examples of stable periodic solutions with α-asymmetry are shown in Figure 5.2. They exist for

εα < 18.2◦, i.e. as long as the simple turning points exist (Figure 5.3). For εα < 1.1◦, they are
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f1 = z5z2 r1 = z1(0)− x0

f2 = 0 r2 = z2(0)−


2
m
(E0 −mgy0)

f3 = z5z4 r3 = z3(0)− z30(1)

f4 = −z5g r4 = z4(0)

f5 = 0 r5 = z3(1)− L1 sin(α1)

f6 = z10z7 r6 = z6(0)− z1(1)

f7 = 1
m
z10k1(L1 − L11)

z6−z11
L11

r7 = z7(0)− z2(1)

f8 = z10z9 r8 = z8(0)− z3(1)

f9 = 1
m
z10k1(L1 − L11)

z8
L12

−mg r9 = z9(0)− z4(1)

f10 = 0 r10 = (z6(1)− z11(0))
2 + z8(1)

2 − L2
1

f11 = 0 r11 = z11(0)− z6(0)− L1 cos(α1)

f12 = z16z13 r12 = z12(0)− z6(1)

f13 = 0 r13 = z13(0)− z7(1)

f14 = z16z15 r14 = z14(0)− z8(1)

f15 = −z16g r15 = z15(0)− z9(1)

f16 = 0 r16 = z15(1)

f17 = z21z18 r17 = z17(0)− z12(1)

f18 = 0 r18 = z18(0)− z13(1)

f19 = z21z20 r19 = z19(0)− z14(1)

f20 = −z21g r20 = z20(0)− z15(1)

f21 = 0 r21 = z19(1)− L2 sin(α2)

f22 = z26z23 r22 = z22(0)− z17(1)

f23 = 1
m
z26k2(L2 − L22)

z22−z27
L22

r23 = z23(0)− z18(1)

f24 = z26z25 r24 = z24(0)− z19(1)

f25 = 1
m
z26k2(L2 − L22)

z24
L22

−mg r25 = z25(0)− z20(1)

f26 = 0 r26 = (z22(1)− z27(0))
2 + z24(1)

2 − L2
2

f27 = 0 r27 = z27(0)− z22(0)− L2 cos(α2)

f28 = z32z29 r28 = z28(0)− z22(1)

f29 = 0 r29 = z29(0)− z23(1)

f30 = z32z31 r30 = z30(0)− z24(1)

f31 = −z32g r31 = z31(0)− z25(1)

f32 = 0 r32 = z31(1)

Table 5.1. The functions f and r for the boundary value problem (3.12) computing a periodic solution of the

asymmetric spring-mass model for running. Here, the lengths of both compressed leg springs during the �rst and

the second stance phase are given by L11 :=


(z6 − z11)2 + z28 and L22 :=

(z22 − z27)2 + z224, respectively.
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Figure 5.2. Development of the CoM-trajectory of a periodic stable solution for α0 = 66.2◦ under the in�uence

of di�erent values of the asymmetry parameter εα.

located between two turning points (Figure 5.4(a)). For 1.2◦ < εα < 4.2◦, the right boundary of

the stability area is a take-o� point. At about εα = 4.2◦, the transcritical bifurcation vanishes.

From here until εα = 18.2◦, the right limit of the stability area is the corresponding point on the

touch-down line yTD = L0 sin(α0).

The maximum value of the α-range ∆α = 3◦ was found at εα = 1.7◦ (Figure 5.4(b)). Here, the left

boundary of the region of stable solutions is the turning point at αmin = 66.2◦. The right one is

the take-o� point at αmax = 69.2◦. For εα > 1.7◦, the α-range monotonically decreases. Compared

to the symmetric case with ∆α = 2.7◦, we observe an increase of the α-range by 8%.

5.4.2. Asymmetry of leg sti�ness

The asymmetry of leg sti�ness εk is a bifurcation destroying perturbation (Figure 5.5, [Shearer,

1980]). Similar to the results of Chapter 2, no gain of the α-range was observed in this case.

However, stable solutions exist for values of εk < 6.3 kN/m, where the double turning point

occurs. Hence, the di�erence of 12.5 kN/m between the contralateral legs, which is 63% of the

reference symmetric sti�ness k0 = 20 kN/m, allows stable running. Stable solutions are located

either between the simple turning point and a touch-down point (εk < 3.6) or between two simple

turning points (3.7 < εk < 6.3).

5.4.3. Asymmetry of rest length

Like above, the asymmetry parameter εL is a bifurcation destroying perturbation. Similar to the

bipedal model, the monopedal model is very sensitive to εL. Again, with increasing εL the α-range

decreases rapidly (Figure 5.6). Stable solutions are located either between a simple turning point

and a touch-down point (εL < 0.0063) or between two simple turning points. Stable solutions

exist up to εL = 0.0074 m, where the double turning point occurs. For εL = 0.008 m no stable

solutions were found anymore. That means, stable running is possible with the total deviation
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Figure 5.3. Initial apex height y0 of asymmetric periodic patterns dependent on the reference angle of attack

α0 for εα = 1◦, 3◦ and 5◦. The grey curves are the initial apex height of the reference periodic gait patterns

(Figure 3.5). Thick parts indicate stable solutions. Blue dots are touch-down points, red dot is a take-o� point.

The green dots are bifurcations: TP = simple turning point, TB = transcritical bifurcation. Insets in (a) show

the CoM trajectory of a touch-down point (left) and a take-o� point (right). Plots (b) and (c) are the enlarged

grey areas from (a) for εα = 1◦ and εα = 3◦, respectively.
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Figure 5.4. Asymmetry of angle of attack εα.

between the two leg lengths of 0.016 m, which is 1.6% of the symmetric leg length L0 = 1 m.

5.5. Discussion

In this chapter, we have shown that the boundary value problem approach from Chapter 4 can be

extended for the study of the asymmetric spring-mass model. Moreover, a simple extension of the

boundary value problem allows the computation of the points on the event hyperplanes, i.e the

touch-down and the take-o� lines. Like for the symmetric model, the approach described in this

chapter is stable to numerical perturbations. The single shooting method is su�cient for solving of

the occurring boundary value problems. The maximal value of εα, where stable solutions exist, is

given by the intersection of a curve of simple turning points and a curve of the touch-down points

(Figure 5.4(a)). For the k- and L-asymmetry, these values can be determined by computation of

double turning points (Figures 5.6 and 5.7).

Using the new technique, we have demonstrated that, like in walking, the asymmetric leg function

does not necessarily reduce the region of stable running. The α-asymmetry is not only tolerated

during running but it may also provide some advantages, as demonstrated by the increased α-

range. With increasing asymmetry of leg sti�ness εk and of leg length εl the α-range∆α diminishes

continuously. Both, running and walking asymmetric models are very sensitive to the asymmetry

of the leg length εL. We explain this sensitivity by the importance of the parameter L0 for the

control of the motion of the center of mass. Like in the bipedal model, it in�uences not only the
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leg dynamics during stance but also a�ects the instances of touch-down and take-o�. Hence, a

suitable leg retraction, e.g. Blum et al. [2010], or a suitable control of leg dynamics during stance,

e.g. Riese & Seyfarth [2012], may help to increase the range of tolerated εL values.

Both asymmetric spring-mass models can stabilize symmetric gaits. In the bipedal model, the

gain is achieved by the shift of both Hopf bifurcations, which serve as boundaries of stable patterns

(Figure 2.12). In case of running, the asymmetry of angle of attack stabilizes a part of period-2

solutions. In the symmetric monopedal model, the right boundary of the stability region is a

pitchfork bifurcation, which has the property to be a limit of stable solutions [Ikeda & Murota,

2002]. The introduction of εα into the model changes the type of this bifurcation into a transcritical

one making possible the increase of the α-range (Figure 5.3).

The asymmetry parameters εα, εk and εL may be treated as perturbations parameters [Keener

& Keller, 1973]. Thereby, the asymmetries of leg sti�ness εk and leg length εL are bifurcation

destroying perturbations [Shearer, 1980]. The in�uence of the asymmetry of angle of attack εα

is di�erent, namely it only changes the type of bifurcation. The perturbed bifurcation problems

can be solved using the so-called transformation technique [Wallisch & Hermann, 1987]. However,

to reach acceptable precision, it is usually required to compute higher order derivatives of the

functions f and r for the boundary value problem (3.12), which would cause a much higher

computational e�ort.

During walking, amputees usually use the intact leg more often than the prosthetic one, since they

trust more in the reliability of the natural limb than of the arti�cial one. Moreover, always having

at least one leg on the ground provides them with more security [Schaarschmidt et al., 2012]. The

existence of �ight phases during running makes it di�cult to run, because people are afraid to

land on the prosthetic limb. The results of this study show similar behaviour: the walking model

(maximal α-range ∆α = 6.9◦) provides more �exibility than the running model (maximal α-range

∆α = 3◦).
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Human locomotion is a result of complex interaction of bones, muscles and tendons. Thus, an

asymmetric gait cannot be described by one single asymmetry parameter. Therefore, the further

investigations should be extended on the e�ect of combinations of asymmetry parameters εα, εk

and εL on the stability regions of walking and running. The reduction of the analysis of the

region of stable solutions to the calculation of its boundaries provides a considerable bene�t of

computation time. For instance, this would allow a more realistic comparison of measured data

to the results of the asymmetric spring-mass model.

Asymmetry is identi�ed as one of the characteristics of gait transitions from walking to running

and from running to walking [Segers et al., 2007b]. It disappeared from the locomotor system

when the transition was completed. These experimental results were con�rmed in a recent study

[Martinez Salazar & Carbajal, 2011]. Using the spring-mass model, sequences of α-asymmetric

steps, which lead from walking to running, were investigated. Thereby, it was allowed, that

a sequence contains an unstable intermediate step, as long as the sequence itself remains stable.

The results show e.g. the appearance of skipping gaits (called hopping gaits in that paper) between

walking and running, which is consistent with our results from Chapter 2. Moreover, this suggests
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that the system tries to avoid the highly unstable solutions around the transition point and

uses instead more stable asymmetric patterns. Since we are now able to �nd highly unstable

patterns and the transition point itself, the next task could be to �nd out, how much asymmetry

is absolutely necessary for a transition at a constant energy level.

The concept presented here can be easily applied to the asymmetric bipedal model. All compu-

tations in Chapter 2 were done with the implementation based on the sequence of initial value

problems, i.e. using the heuristic approach. The bifurcation diagram of the bipedal symmetric

model is much more complex than the diagram of the spring-mass model for running (compare

Figures 4.1 and 4.2). Therefore, the calculations for Chapter 2 took a lot of computational e�ort.

Using the proposed techniques, the comparable calculations for Chapter 5 could be done much

faster. Thus, the boundary value problem approach provides a great bene�t for the computational

time, when we extend our study to the combination of asymmetry parameters. It promises fast

and e�ective research in future.



6. General conclusions

6.1. Summary

In Chapter 2, we developed the asymmetric spring-mass model for walking. With its help, we

investigated the behaviour of stable periodic solutions under the in�uence of increasing leg asym-

metry. For the �rst time, we showed that the asymmetry of angle of attack does not necessarily

reduce the region of stable walking. The leg asymmetry may also stabilize unstable symmetric

solutions. However, we also showed that the asymmetric spring-mass model is unsuitable for the

investigations of the asymmetry of the leg length. The model is very sensitive to this kind of

deviations, which contradicts experimental observations. Thus, some modi�cation of this model

is required in future.

In Chapter 3, we successfully transformed the spring-mass model into a boundary value problem.

It is robust to numerical perturbations and therefore can be applied for the computation of highly

unstable periodic solutions. The resulting boundary value problem could be solved using the single

shooting method. Thus, the new approach does not require more computational e�ort than the

realization based on the sequence of initial value problems. Moreover, we showed for the �rst time

that there exist stable grounded running solutions.

In Chapter 4, for the boundary value problem from the previous chapter we have developed ap-

propriate extended systems for the computation of di�erent types of bifurcation points. Using the

extended systems for simple turning points and period-doubling bifurcation points, we computed

the complete stable manifold of the spring-mass model for running. Moreover, we computed the

biologically relevant parts of the stable manifold of the bipedal model.

In Chapter 5, we showed that the boundary value problem from Chapter 3 can be modi�ed

for the study of the asymmetric spring-mass model for running. We calculated the boundaries

of the stability regions, which consist of bifurcation points and event points. We showed that

the spring-mass model for running has a similar behaviour under the in�uence of asymmetric

parameters, namely we achieved a gain of stability for the α-asymmetry and a high sensitivity to

the L-asymmetry. We also demonstrated that the numerical calculation of bifurcation points is
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more e�cient than the heuristic approach from Chapter 2.

6.2. Outlook

The asymmetric model is only one of many di�erent extensions of the spring-mass model. For

instance, the boundary value problem approach can also be applied to the other types of variability.

Since all of this extensions lead to similar dynamical systems, the role of bifurcations is the same,

namely they indicate a switch of stability or a change of the shape of patterns.

The �rst example is the non-conservative extension of the model. In our study, we considered

leg sti�ness and rest length as constant parameters during the whole stance phase. However, the

human leg is not a perfect linear spring. Thus, in simulations the constant leg sti�ness k0 and leg

length L0 may be replaced by the time-dependent functions k0(t) and L0(t). As it shown in Riese

& Seyfarth [2012], the application of the appropriate functions k0(t) and L0(t) provides a further

improvement of the stability behaviour of the spring-mass model. Furthermore, this concept can be

extended to the asymmetric parameters εk and εL. That means, that the asymmetric parameters

k1 ̸= k2 and L1 ̸= L2 from Tab. 5.1 are replaced by the asymmetric functions ki(t) = k0 ± εk(t)

and Li(t) = L0 ± εL(t). Using techniques from this thesis, the stability behaviour of the modi�ed

model can be determined fast and e�ectively. For instance, the modi�ed boundary value problem

can be used for investigations of gait transitions at increasing speed [Segers et al., 2007a,b].

Another prominent example is the swing leg control for running, e.g. Blum et al. [2010]; Vejdani

et al. [2013]. Here, all three constant parameters α0, k0 and L0 are considered as time-dependent

functions α0(t), k0(t) and L0(t) during �ight phase. For stance phase, the parameters are constant.

In this case, the functions f and r for the boundary value problem may be modi�ed as above. The

combination of an appropriate asymmetric swing leg control with suitable asymmetric functions

εα(t), εk(t) and εL(t) during stance may help to increase the range of tolerated εL values.

In the last example the concept of periodicity, which is common for many studies of human loco-

motion, is not used. In Ludwig et al. [2012], the apex heights were extracted from experimental

data. Afterwards, the control parameters α0, k0 and L0 were calculated to reproduce the exact

sequence of steps, using the energy conservative and a non-conservative spring-mass model, respec-

tively. This approach is predestined for the application of a boundary value problem: the initial

and the �nal apex heights are parts of the boundary conditions and the trajectory of the center of

mass between them is the solution of the corresponding boundary value problem. To improve the

outcome, the measured data could be distinguished between the left and right leg. Additionally,

the simulation may be repeated using the boundary value problem for the asymmetric spring-mass

model.



A. Computation of adjoined matrices

The adjoined matrices B⋆
0 and B⋆

1 , which are required in the equations (4.28) and (4.31), must

ful�ll the relations (4.29). For their computation, we determine the symbolic QR decomposition

of the rectangular matrix [B0 B1]
T via Givens transformation [Hermann, 2011; Stoer & Bulirsch,

1993]: 
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Since Q is a quadratic orthonormal matrix, i.e. Q−1 = QT , we get
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The desired adjoined matrices B⋆
0 := QT

12 and B
⋆
1 := −QT

22 can now be inserted into the boundary

value problem (4.28) and (4.31).
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