

The k-Server problem with parallel
requests and the compound
Harmonic algorithm

Preprint No. M 14/06

Regina Hildenbrandt

2014

Impressum:
Hrsg.: Leiter des Instituts für Mathematik

Weimarer Straße 25
98693 Ilmenau

Tel.: +49 3677 69-3621
Fax: +49 3677 69-3270
http://www.tu-ilmenau.de/math/

Technische Universität Ilmenau
Institut für Mathematik

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224752155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Preprint No. 14/6

The k-Server Problem with Parallel Requests
and the Compound Harmonic Algorithm

R. Hildenbrandt, Department of Mathematics,
Ilmenau Technical University

1 Introduction

In [4] we have introduced a generalized k-server problem 1 with parallel
requests where several servers can also be located on one point (which was
initiated by an operations research problem). It is sensible in the case of par-
allel requests to distinguish the surplus-situation where the request can be
completely fulfilled by means of the k servers and and the scarcity-situation
where the request cannot be completely met.

By using a potential function we have shown that a corresponding Har-
monic algorithm is competitive for this more general k-server problem against
an adaptive online adversary in the case of unit distances. In this paper we
investigate generalized k-server problems for general distances.

In the case of the scarcity-situation we will give an example for which the
corresponding Harmonic algorithm is not competitive. In the other case, the
surplus-situation, we will verify by an example that the potential function
which was introduced by Y. Bartal and E. Grove (see [1], p. 6) is not helpful
in order to prove competitiveness.

In Section 4 we will present the ”compound Harmonic algorithm” for
the generalized k-server problem in the case of the surplus-situation. Cer-
tain multi-step transition probabilities and absorbing probabilities are used
by the compound Harmonic algorithm. For their computation one step of
the generalized k-server problem is replaced by a number of steps of other

1The (usual) k-server problem was introduced by Manasse, McGeoch and Sleator [8].
Meanwhile it is the most studied problem in the area of competitve online problems.
Historical notes on k-server problems can be found in the book by A. Borodin and R.
El-Yaniv [2] (sections 10.9 and 11.7)2 or also in the paper by Y. Bartal and E. Grove
[1]. There the two important results are the competitiveness of the deterministic work-
function algorithm (see E. Koutsoupias and C. Papadimitriou [5]) and of the randomized
Harmonic k-server algorithm against an adaptive online adversary (see Y. Bartal and E.
Grove [1]).

The work-function algorithm is an inefficient algorithm (with a good competitive ratio).
In contrast the Harmonic k-server algorithm is memoryless and time-efficient. For this
reason we first want to focus on a corresponding Harmonic k-server algorithm for the
generalized k-server problem.

1

(generalized) specific k-server problems. We will show that this algorithm
is competitive against an adaptive online adversary. The same bound of the
competitive ratio as by Y. Bartal and E. Grove will be proved.

In the case of unit distances the Harmonic algorithm and the compound
Harmonic algorithm are identical.

2 The formulation of the model 3

4 Let k ≥ 1 be an integer, and M = (M,d) be a finite metric space where
M is a set of points with |M | = N . An algorithm controls k mobile servers,
which are located on points of M . Several servers can be located on one
point. The algorithm is presented with a sequence σ = r1, r2, · · · , rn of
requests where a request r is defined as an N -ary vector of integers with
ri ∈ {0, 1, · · · , k} (”parallel requests”). The request means that ri servers
are needed on point i (i = 1, 2, · · · , N). We say a request r is served if{

at least
at most

}
ri servers lie on i (i = 1, 2, · · · , N) in case

{
C[r, k]
C[k, r]

}
. C[r, k]

denotes the case
N∑
i=1

ri ≤ k (surplus-situation, the request can be completely

fulfilled) and C[k, r] denotes the case
N∑
i=1

ri ≥ k (scarcity-situation, the re-

quest cannot be completely met, however it should be met as much as possi-
ble). By moving servers, the algorithm must serve the requests r1, r2, · · · , rn
sequentially. For any request sequence σ and any generalized k-server algo-
rithm ALGp(arallel), ALGp(σ) is defined as the total distance (measured by
the metric d) moved by the ALGp’s servers in servicing σ.

In this paper we will show that the corresponding compound Harmonic
k-server algorithm is competitive (see Theorem 4.4) against an adaptive
online adversary in the case of the scarcity-situation (for the definitions of
competitive ratio and adaptive online adversary see [1] or [2], sections 4.1
and 7.1). Analogous to [2], p. 152 working with lazy algorithms ALGp is
sufficient. For that reason we define the set of feasible servers’ positions with
respect to the previous servers’ positions s and the request r in the following
way

ÂN ;k(s, r)

=

{
s′ ∈ SN (k)

∣∣∣∣∣ ri ≤ s′i ≤ max{si, ri}, i = 1, · · · , N, in C[r, k]

min{si, ri} ≤ s′i ≤ ri, i = 1, · · · , N, in C[k, r]

}
(1)

3See [4].
4For basic knowledge of (usual) k-server problems see also [2], chapters 10 and 11 for

example.

2

where SN (k) :=

{
s ∈ ZN

+ |
N∑
i=1

si = k

}
. (2)

The metric d implies that (SN (k), d̂) is also a finite metric space where d̂
are the optimal values of the classical transportation problems with avail-

abilities s and requirements s′ of SN (k):
N∑
i=1

N∑
j=N

d(i, j) xij → min

subject to
N∑
j=1

xij = si ∀i,
N∑
i=1

xij = s′j ∀j, x ∈ ZN
+×ZN

+ (see [3], Lemma 3.6).

The corresponding Harmonicp k-server algorithm 5 operates as follows:
Serves a (not completely covered) request r with randomly chosen servers
so that for the (new) servers’ positions s′ ∈ ÂN ;k(s, r) is valid with re-
spect to the previous servers’ positions s and the request r. More precisely,
Harmonicp leads to s′ ∈ ÂN ;k(s, r) with probability

PH(s′|s, r) =
1

d̂(s,s′)∑
s′′:s′′∈ÂN ;k(s,r)

1

d̂(s,s′′)
. (3)

3 Considerations concerning the Harmonicp algo-
rithm

At first we give an example that the Harmonicp algorithm is not competitive
in general (if the case C[k, rt] is allowed).

Example 1 .
Let k = 1 and M be the set of integers with the usual metric.
If the server of the adversary is located on point s̄ ∈ Z and the server of the
algorithm on point s ∈ Z then the adversary produces the requests r with

ri =

{

1 if i = s− 1 or i = s+ 1
0 otherwise

if s̄ = s{
1 if i = s̄ or i = s+ 1
0 otherwise

if s̄ ̸= s.

The adversary moves his server to another point (more precisely to s−1)
if and only if the servers of the adversary and of the algorithm are located
on the same point.

We assume that s̄ ≤ s at the beginning. Then

s̄ ≤ s (4)

5The Harmonic k-server algorithm has been introduced by P. Raghavan and M. Snir,
see [8].

3

is valid in every step. Furthermore we will use the following symbols

δ =

{
s− s̄ if s ̸= s̄
1 if s = s̄

and
hlδ = E[cost(Harmonicp algorithm)]

with regard to l steps and δ at the beginning

alδ = E[cost(adversary)]
with regard to l steps and δ at the beginning

for the the expected costs. Then

lim
l→∞

hl1
al1

= ∞ (5)

can be proved (see Appendix A). Thus the Harmonicp algorithm is not
competitive for such examples (with the severs’ start position s = s̄ and
where the lengths l of the request sequences tends to infinity.)

For Example 2 and Section 4 we need the following definitions and state-
ments. Y. Bartal and E. Grove have used a potential function Φ (for more
information on this topic, see [1], Section 3) in order to show that the Har-
monic k-server algorithm against an adaptive online adversary is competitive
for the (usual) k-server problem. For further considerations let Φt denote
the value of Φ at the end of the t-th step (corresponding to the t-th request
rt in the request sequence) and let Φ∼

t denote the value of Φ after the first
stage of the t-th step (i.e., after the adversary’s move and before the al-
gorithm’s move). If the potential function satisfies the following properties
with regard to a randomized online algorithm Alg:

Φ ≥ 0 (6)

Φ∼
t − Φt−1 ≤ C(k)Dt, (7)

where Dt denotes the distance moved by the offline servers (controlled
by the adversary) to serve the request in the t-th step,

E(Φ∼
t − Φt) ≥ E(Zt), (8)

where Zt represents the cost which incurred by the online algorithm
to serve the request in the t-th step,

then algorithm Alg is C(k)-competitive (see [1], Lemma 1 and see also the
following Lemma 4.2).

4

With regard to the Harmonic k-server algorithm Y. Bartal and E. Grove
have constructed the following potential function: Let OFF be the set of
offline servers, and ON the set of online servers. Y. Bartal and E. Grove
have defined a weighted bipartite graph G on the online and offline servers
in the following way (see [1], p. 6). Given an online server x and an offline
server Y , then all paths from x to Y in {x} ∪ OFF are considered. The
length of the j-th step of a path is weighted by a scaling function f̂j

6 that is
very large for small j and decreases monotonically. The weight of the edge
from x to Y in G is the minimum scaled length of a simple path from x to
Y in {x} ∪OFF . Let p be an assignment of servers to points in the metric
space then

w(x, Y) = min
{Y1,··· ,Yl=Y }⊂OFF

{
f̂1 · d (p(x), p(Y1)) +

∑
2≤j≤l

f̂j · d (p(Yj−1), p(Yj))

}
,

(9)
where f̂j are weights with f̂1 > f̂2 > · · · > f̂N .

The potential function is:

Φ = min
M̄ : ON↔OFF

∑
x∈ON

w(x, M̄(x)). (10)

(This potential function is a function of the current locations of the on-
line and offline servers. The weights f̂j are computed in such a way that (8)
is valid.)

Additionally, let
s̄ (∈ SN (k)) denote the (offline) servers’ positions controlled by the

adversary at the end of the (t-1)-th step (i.e., at the
beginning of the t-th step)

s (∈ SN (k)) denote the (online) servers’ positions controlled by the
algorithm at the beginning of the t-th step

s′ (∈ ÂN ;k(s, r
t)) denote the (online) servers’ positions at the end of
the t-th step and

s̄′ (∈ SN (k)) denote the (offline) servers’ positions controlled by the
adversary after the first stage of the t-th step.

The following example will show that the above-mentioned potential
function is not helpful to to check wether the Harmonicp algorithm is com-
petitive.

Example 2 .
Let k = 4 and let a metric space M consist of 3 points p1, p2, p3 with the pair-
wise distance of 1 and points p ∈ [2,∞) on the line. The distance of two

6Y. Bartal and E. Grove have used the symbol f(j).

5

points pi, pj (i, j /∈ {1, 2, 3}) on the line is d(pi, pj) = |pi− pj | as usual. The
distance d(pi, p) for i ∈ {1, 2, 3} and p ∈ [2,∞) is defined as d(pi, p) := p.

At the beginning let the online and offline servers be located on p1, p2, 2, 5.

Additionally, we set:

d0 = (d0(l) =) 1 + l , d1 = (d1(l) =)

3 if l = 1

3 + 3
2

l+1∑
q=3

√
q if l = 2, 3, · · ·

,

d2 = (d2(l) =) 3
2

√
l + 2 and d3 = (d3(l) =) 3

2

√
l + 1 for l = 1, 2, · · · .

Possible server configurations Ca(l), · · · , Ci(l), corresponding requests r
and answers by the adversary can be found in Appendix B.

Here we focus on the configuration Cc(l):

Cc(l) : ON is located on p1, p2, p3, d0 + d1.

OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r : one server on d0 + 1 and one server on d0 + d1 + d2

answer by the adversary: the offline servers on d0, d0 + d1 are moved.

We will show that property (8) of the potential function for sufficiently
large l cannot be fulfilled.

According to (9) and (10)
Φ∼
t (s, s̄

′) = f̂1 d2 + f̂1 + f̂2 + f̂3 (d0 + 1) for sufficiently large l.

ÂN ;k(s, r) includes the following 6 elements:

s′(1) : servers on pi, pj , d0 + 1, d0 + d1 + d2 (that means s′(1) = s̄′)
(where Zt(s, s

′(1)) = d0 + 1 + d2)

s′(2) : servers on pi, pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1 + d2
(where Zt(s, s

′(2)) = d0 + 1 + d2)

s′(3) : servers on pj , pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1 + d2
(where Zt(s, s

′(3)) = d0 + 1 + d2)

s′(4) : servers on pi, d0 + 1, d0 + d1, d0 + d1 + d2
(where Zt(s, s

′(4)) = 2 d0 + 1 + d1 + d2)

s′(5) : servers on pj , d0 + 1, d0 + d1, d0 + d1 + d2
(where Zt(s, s

′(5)) = 2 d0 + 1 + d1 + d2)

s′(6) : servers on pq, q ∈ {1, 2, 3} \ {i, j}, d0 + 1, d0 + d1, d0 + d1 + d2
(where Zt(s, s

′(6)) = 2 d0 + 1 + d1 + d2).

6

The Harmonicp algorithm realizes s′(i) with probability:

PH(s′(i)|s, r) =
1

Zt(s,s
′(i))

Nf
for i = 1, 2, · · · 6, where Nf = 3

d0+1+d2
+ 3

2 d0+1+d1+d2

is referred to as the normalization factor.

Using (9) and (10) computations yield

Φt(s̄
′, s′(1)) PH(s′(1)|s, r) Nf = 0

Φt(s̄
′, s′(i)) PH(s′(i)|s, r) Nf = f̂1

d0+1+d2
(i = 2, 3)

Φt(s̄
′, s′(i)) PH(s′(i)|s, r) Nf = f̂1 d2+f̂2 (d1+d2−1)+f̂3 (d0+1)

2 d0+1+d1+d2
(i = 4, 5)

Φt(s̄
′, s′(6)) PH(s′(6)|s, r) Nf = f̂1+f̂1 d2+f̂2 (d1+d2−1)+f̂3 (d0+1)

2 d0+1+d1+d2

for sufficiently large l.

Condition (8) is equivalent to Nf Φ∼
t − Nf E(Φt) ≥ 6. This inequality

can be written in the following representation:

f̂1 d2+f̂1+f̂2+f̂3 (d0+1)
d0+1+d2

+ 2 f̂1 d2+f̂2+f̂3 (d0+1)
d0+1+d2

+ 2 f̂1−f̂2 (d1+d2−2)
2 d0+1+d1+d2

+ −f̂2 (d1+d2−2)
2 d0+1+d1+d2

= 3 f̂1 d2+f̂1+3 f̂2+3f̂3 (d0+1)
d0+1+d2

+ 2 f̂1−3 f̂2 (d1+d2−2)
2 d0+1+d1+d2

≥ 6

If l tends to infinity then 3 f̂3 − 3 f̂2 ≥ 6 follows. This inequality is false
since f̂2 > f̂3 is assumed.

Until now we do not have found a potential function in order to proof
competitiveness and we do not know wether the Harmonicp algorithm in the
case of the surplus-situation is competitive or not. 7 However, we will in-
troduce the new ”compound Harmonicp algorithm” in the following section
and will prove the same bound of the competitive ratio as by Y. Bartal and
E. Grove in the case of the surplus-situation.

4 The compound Harmonicp algorithm

In this section more than one server can be located on a point. For certain
considerations we will also use the same potential function as by Y. Bartal
and E. Grove (see (9) and (10)).

(Example: If we have three points p1, p2 and p3 with the distances

7At least the Harmonicp algorithm is competitive if the number of points of the metric
space is fixed.

7

d(p1, p2) = 1, d(p1, p3) = d(p2, p3) = 5 and the online servers’ positions are
given by s = (3, 0, 0), the offline servers’ positions by s̄ = (0, 2, 1) then
Φ(s, s̄) = f̂1 + f̂1 + (f̂1 + 0 ∗ f̂2 + 5 ∗ f̂3) if f̂3 < 4

5 f̂1.)

It is simple to prove the following property of this potential function:

Lemma 4.1 .
If si (> 0) online severs and s̄i (> 0) offline severs are located on point
i then the number of min{si, s̄i} online servers on point i are assigned to
this number of offline severs on point i for the computation of the potential
function Φt(s, s̄) by means of the minimum weight matching (see (9) and
(10)).

At first we introduce following more specific

k-server problems where more than one server can be located on
a point with a request where at most one server must be moved
in servicing this request in a step and with additional blocking

(briefly speaking, k-server problems with blocking):

Besides creating the request the adversary can additionally block the same
number of online and offline servers on points in a step (which are then not
to be used in order to serve the request in this step). A request r with one
ri > 0 and ri = bi + 1, where bi is the number of blocked online and offline
servers, is allowed. Possibly that more than one server are located on a point.

(This also means that the probabilities which are implied by the HARMONICp

algorithm are different to those for models without blocking.)

Corresponding potential functions must be independent of blocking. Oth-
erwise Φt ̸= Φ(t+1)−1 in general, where Φt is the potential function at the
end of step t and Φ(t+1)−1 is the potential function at the beginning of step
t+ 1 (where some servers could be blocked).

A statement which is analogous with Lemma 1 by Y. Bartal and E.
Grove (see [1]) is also valid:

Lemma 4.2 .
If there exists a potential function Φ, satisfying the properties (6), (7) and
(8) with respect to some randomized online algorithm for the correspond-
ing k-server problem with blocking (as above), then this algorithm is C(k)-
competitive.

The proof is similar to the proof in [1]. Merely the random choices by

8

the algorithm must also satisfy the conditions of blocking. 8

Now we consider k-server problems with blocking (of the same number
of online and offline servers) only on the point where the current request is
placed by the adversary, (briefly speaking k-server problems with block-
ing on the request point).

Lemma 4.3 .
The Harmonic k-server algorithm related to the k-server problem with block-
ing on the request point is ((k+1)(2k − 1)− k)-competitive against an adap-
tive online adversary.

The proof is similar to the proof in [1]. We use a corresponding po-
tential function (see also the beginning of this section). If bi online and
offline servers are blocked on a point then these online and offline severs are
assigned to each other for computation of the potential function by means
of the minimum weight matching (which corresponds to Lemma 4.1). The
values of the scaling function f̂ and C(k) can be computed analogous to the
proof by Y. Bartal and E. Grove.

Lemma 4.4 .
The Harmonic k-server algorithm related to the k-server problem with block-
ing is competitive against an adaptive online adversary.

The proof of property (8) implies other inequalities for the computation
of the values of the scaling function and yields another bound of the com-
petitive ratio:

In Case 1 (see [1], 5. Analysis of the Step-Change in the Potential Function,
p. 6 - 8) a path P (x) = {X1, · · · , Xl(x)} is considered. In relation to k-server
problems with blocking it could be that several offline servers from the set
{X1, · · · , Xl(x)−1} lie on the same point.

Let l′ be the number of blocked offline servers from the set {X1, · · · , Xl(x)−1}
(l′ ≤ l(x)−1) and l′′ be the number of the remaining blocked offline servers
then k′ = k− l′− l′′ is the number of non-blocked offline (and online) servers.

By reason of blocked servers we must replace the last inequality
j f(j) ≥ (k − j) f(j + 1) + k on page 10 in [1] (which corresponds to
j f̂j ≥ (k − j) f̂j+1 + k using our symbols) by

(j − l′) f̂j ≥ (k′ + l′ − j) f̂j+1 + k′ = (k − l′′ − j) f̂j+1 + k − l′ − l′′.

8Also in case of parallel requests such a lemma would be valid. However in order to
use the lemma a corresponding potential function must be found.

9

Since f̂j is increasing if l′′ is decreasing we must consider the above in-
equality for l′′ = 0 in order to compute a bound of the competitive ra-
tio. (j − l′) f̂j ≥ (k − j) f̂j+1 + k − l′ (l′ ≤ j − 1) is equivalent to

f̂j ≥ k−l′

j−l′ (f̂j+1 + 1) − f̂j+1. If l′ = j − 1 then k−l′

j−l′ = k − j + 1 is the
largest possible factor.

We set f̂k = 1 and then the other values of the scaling function can be suc-
cessively calculated by means of the inequalities f̂j ≥ (k − j)(f̂j+1 + 1) + 1,
j = k − 1, · · · , 1. (Obviously, the values are greater than those in [1].) Fi-
nally, C(k) = k f̂1 + (k − 1) f̂2 follows as in [1] (see p. 9 and 10) by means
of property (7).

Now we will consider a first subset of generalized k-server problems with
parallel requests:

Generalized k-server problems where a multiple request on one
point is allowed

The probabilities PC which are implied by the compound Harmonicp
algorithm and the proof of its competitiveness are derived from k-server
problems with blocking on the request point.

Let s be the online servers’ positions at the beginning of the t-th step and
let k > ri > min{1, si} be a (multiple) request on point i (that also means
rj = 0 for j ̸= i) in the t-th step.

Then we replace this t-th step of the generalized k-server problem by ri −
si =: j̄ steps t1, t2, · · · , tj̄ of a corresponding k-server problem with blocking
on the request point i. More detailed that means the request rj of the tj-th
step is si + j on point i (j ∈ {1, 2, · · · , j̄}) and si + j − 1 online and offline
servers on point i are blocked in this step.

If s′ denotes the online servers’ positions at the end of step t in relation
to the generalized k-server problem then several sequences (s′1, s′2, · · · , s′j̄)
with s′j ∈ ÂN ;k(s

′j−1, rj) (where s′0 = s) and s′j̄ = s′ exist (in general) in
relation to the corresponding k-server problem with blocking on the request
point (where s′j denotes the online servers’ positions at the end of step tj).

Now, the probabilities PC(s
′|s, r) which will be defined for a multiple request

on one point are j̄-step transition probabilities. More detailed

PC(s
′|s, r) :=

∑
{(s′1,s′2,··· ,s′j̄−1,s′)}

PH(s′1|s, r1) · PH(s′2|s′1, r2) · · · · PH(s′|s′j̄−1, rj̄)

(11)
where PH(s′j |s′j−1, rj) (j = 1, · · · , j̄, s′0 = s, s′j = s′) are be computed

according to the Harmonic algorithm with the blocked servers in mind: If
s′jl0 = s′j−1

l0
− 1 then

10

PH(s′j |s′j−1, rj) =
1

d(l0,i)∑
l:s

′j−1
l

>0,l̸=i

1
d(l,i)

. (12)

Lemma 4.5 .
The compound Harmonicp algorithm related to the generalized k-server prob-
lem where a multiple request on one point is allowed is ((k+1)(2k − 1)− k)-
competitive against an adaptive online adversary.

Proof. We consider on the on hand the generalized k-server problem
where a multiple request on one point is allowed and on the other hand a
corresponding k-server problems with blocking on the request point as sur-
rogate problem.

If the adversary moves the same servers in order to serve the requests in the
j̄ steps in relation to the surrogate problem (sp) as in servicing the multiple
request in relation to the original problem (op) then the expected values
Eop[cost(adversary)(σ)] and Esp[cost(adversary)(σ

′)] are equal, where the
request sequences σ′ are constructed in relation to the original sequences σ
as above.

Eop[cost(compound Harmonicp algorithm)(σ)] and
Esp[cost(compound Harmonicp algorithm)(σ′)] are also equal because of
(11).

Then the statement follows by means of Lemma 4.3. �

k-server problems with parallel requests

k-server problems where a multiple request on one point is allowed are used
for computation of the probabilities PC which are implied by the com-
pound Harmonicp algorithm related to k-server problems with (proper)
parallel requests.

Let s denote the online servers’ positions at the beginning of the t-th step
and let r be the request in the t-th step with (w.l.o.g.){

ri > 0 for i = 1, · · · , N̄
ri = 0 for i = N̄ + 1, N̄ + 2, · · · , N , N̄ ≤ N and

N∑
i=1

ri < k.

Then we replace this t-th step of the generalized k-server problem with
(proper) parallel requests by a number of steps of a corresponding k-server
problem where a multiple request on one point is allowed. More detailed
the following request sequence (r̄j)j=1,2,··· (with a multiple request on one
point per step) for the surrogate steps should be created by the adversary:

r̄ji =

{
ri if j ≡ i mod(N̄)
0 otherwise

.

If s′ denotes the online servers’ positions at the end of step t in relation

11

to the generalized k-server problem then several sequences (s′1, s′2, · · · , s′j̄)
with several length j̄, s′j ∈ ÂN ;k(s

′j−1, r̄j) (where s′0 = s) and s′j̄ = s′ exist
(in general) in relation to the corresponding k-server problem where a mul-
tiple request on one point is allowed (where s′j denotes the online servers’
positions at the end of step tj). If s′j ≥ r̄j+1

i > 0 then the corresponding
surrogate step could be also omitted.

Such sequences represent realizations of a time-homogeneous Markov chain
(see [6] for example) with the absorbing state s′ and transition probabilities
PC(s

′j |s′j−1, r̄j) related to a multiple request on one point as above.

The probabilities PC(s
′|s, r), s′ ∈ ÂN ;k(s, r) for (proper) parallel requests,

which are used by the compound Harmonicp algorithm, are defined as ab-
sorbing probabilities. Absorbing probabilities can be computed by means of
linear systems (see [6], Theorem 6.6 and the following Example 3). For this
purpose all states of the above mentioned Markov chains must be known
and the corresponding transition probabilities are the coefficients of these
linear systems. The number of these states is finite.

Furthermore ∑
s′∈ÂN ;k(s,r)

PC(s
′|s, r) = 1

(13)

is valid and the solutions of the linear systems are unique.

Theorem 4.6 .
The compound Harmonicp algorithm related to the generalized k-server prob-
lems with parallel requests is ((k + 1)(2k − 1)− k)-competitive against an
adaptive online adversary in the case of the surplus-situation.

Proof. We consider on the on hand the generalized k-server problems
with parallel requests and on the other hand corresponding k-server prob-
lems where a multiple request on one point is allowed.

If the adversary moves the same servers in order to serve the requests in the
first N̄ steps in relation to the surrogate problem (sp) as in servicing the par-
allel request in relation to the original problem (op) then the expected values
Eop[cost(adversary)(σ)] and Esp[cost(adversary)(σ

′)] are equal, where the
request sequences σ′ are constructed in relation to the original sequences σ
as above. We can use such surrogate sequences since (13) is valid.

By means of the triangle-inequality
Eop[cost(compound Harmonicp algorithm)(σ)] ≤
Esp[cost(compound Harmonicp algorithm)(σ′)] follows.

Then the application of Lemma 4.5 leads to the bound of the competitive
ratio. �

12

Corollary 4.7 .
The compound Harmonicp algorithm related to the generalized k-server prob-

lems with parallel requests (r1, r2, · · ·), where rji ≤ 1 for any i and j and
N∑
i=1

rji ≤ k for any j, have the same competitive ratio as the Harmonic al-

gorithm related to the (usual) k-server problems against an adaptive online
adversary.

Proof. Because of rji ≤ 1 for any i and j, sequences σ′ present request
sequences for usual k-server problems and

Esp[cost(compound Harmonicp algorithm)(σ′)]
= Esp[cost(Harmonic algorithm)(σ′)]. �

Example 3 .
Let k = 4 and let the metric space M consist of 6 points p1, p2, · · · , p6

of the two-dimensional Euclidean space with the distances d(p3, p1) = 5,
d(p4, p1) = 3, 85, d(p5, p1) = 1, 6, d(p6, p1) = 4, 5, d(p2, p1) = 2, 4 and
d(p3, p2) = 4, d(p4, p2) = 5, d(p5, p2) = 2, 1, d(p6, p2) = 4, 55.

The current online servers’ positions are given by s = (0, 0, 1, 1, 1, 1)T

and the current requests by r = (1, 1, 0, 0, 0, 0)T .

Then we have 6 feasible online servers’ positions with respect to s and r:

s′(1) = (1, 1, 0, 0, 1, 1)T , s′(2) = (1, 1, 0, 1, 0, 1)T , s′(3) = (1, 1, 0, 1, 1, 0)T ,
s′(4) = (1, 1, 1, 0, 0, 1)T , s′(5) = (1, 1, 1, 0, 1, 0)T , s′(6) = (1, 1, 1, 1, 0, 0)T .

Corresponding distances d̂(s, s′(i)), probabilities PH(s′(i)|s, r) (according to
the Harmonicp algorithm) and PC(s

′(i)|s, r) (according to the compound Harmonicp
algorithm) can be found in the following table

i 1 2 3 4 5 6

d̂(s, s′(i)) 7, 85 5, 60 8, 50 2, 95 8, 40 6, 15

PH(s′(i)|s, r) 0, 1459 0, 2045 0, 1347 0, 1924 0, 1363 0, 1862

PC(s
′(i)|s, r) 0, 0836 0, 2504 0, 0781 0, 2582 0, 0829 0, 2466

.

PH(s′(i)|s, r) can be calculated according to (3) and d̂(s, s′(i)) by means of
the classical transportation problem, see Section 2. For the computation of
PC(s

′(i)|s, r) see Appendix C.
(We can observe that PC(s

′(i)|s, r) < PH(s′(i)|s, r) for greater distances
d̂(s, s′(i)) and PC(s

′(i)|s, r) > PH(s′(i)|s, r) for smaller d̂(s, s′(i)).)

Remarks 1 .

(i) In the case of unit distances (that means d(i, j) = 1 ∀ i ̸= j) all
probabilities PC(s

′|s, r) are the same for s′ ∈ ÂN ;k(s, r).
Hence PC(s

′|s, r) = PH(s′|s, r) and the compound Harmonicp
algorithm and the Harmonicp algorithm are identical.

13

(ii) For k-server problems with (proper) parallel requests we could also in-

troduce another compound Harmonicp algorithm, where
N̄∑
i=1

(ri−si)-step

transition probabilities would be used instead of the absorbing probabil-
ities and where several servers on several points must be blocked. Then
Lemma 4.4 would imply the competitiveness of such an algorithm, how-
ever with a weaker bound of the competitive ratio.

References

[1] Y. Bartal and E. Grove, The Harmonic k-Server Algorithm Is Com-
petitive. Journal of the ACM, Vol. 47, No. 1 (2000) pp. 1 - 15.

[2] A. Borodin and R. El-Yaniv, Online computation and competitive
analysis, University Press, Cambrigde 1998.

[3] R. Hildenbrandt, Methoden aus ganzzahliger Optimierung und Ver-
bandstheorie zur Behandlung eines stochastischen dynamischen Trans-
portproblems, Habilitationsschrift, TU Ilmenau 1995, (Libri BoD
2000).

[4] R. Hildenbrandt, A k-server problem with parallel requests and unit
distances Information Processing Letters 114/5 (2014) pp. 239-246
DOI information: 10.1016/j.ipl.2013.12.011

[5] E. Koutsoupias and C. Papadimitriou, On the k-server conjecture,
Journal of the ACM, 42(5) (1995) pp. 971-983.

[6] P. Langrock and W. Jahn, Einführung in die Theorie der Markovschen
Ketten und ihre Anwendungen, Teubner, Leipzig 1979.

[7] M.S. Manasse, L.A. McGeoch and D.D. Sleator, Competitive algo-
rithms for on-line problems, In Proceeding of the 20th Annual ACM
Symposium on Theory of Computing (1988) pp. 322 - 333 (Journal
version).

[8] P. Raghavan and M. Snir, Memory versus randomization in on-line
algorithms, In Proceeding of the 16th ICALB. Vol. 372 of Lecture
Notes in Computer Sciences (1989) pp. 687 - 703.

[9] D. D. Sleator and R. E. Tarjan, Amortized efficiency of list update
and paging rules, Communications of the ACM 28, No. 2 (1985) pp.
202 - 208.

14

Appendix

A Proof of (5) concerning Example 1

According to the Harmonicp algorithm

h1δ =
1

δ + 1
· δ + δ

δ + 1
· 1 = 2 · δ

δ + 1
for δ = 1, 2, ... (14)

and a11 = 1, a1δ = 0 for δ = 2, 3, ... (15)

follow. Using (14) and (15) recursion computations lead to

hl+1
δ = 1

δ+1(δ + hl1) +
δ

δ+1(1 + hlδ+1) =
1

δ+1(h
l
1 + δhlδ+1) + h1δ (16)

al+1
δ = 1

δ+1(a
l
1 + δalδ+1) + a1δ (17)

for δ = 1, 2, ...

At first we consider more general sequences (glδ)l=1,2,... with

gl+1
δ = 1

δ+1(g
l
1 + δglδ+1) + g1δ and any given g1δ for δ = 1, 2,

We will show by mathematical induction that

glδ = g11

[
1

δ+1a
l−1
1 + δ

(δ+1)(δ+2) · a
l−2
1 + δ

(δ+2)(δ+3) · a
l−3
1 + · · ·+ δ

(δ+l−2)(δ+l−1)a
1
1

]
+ g12 · 1

2

[
1

δ+1a
l−2
1 + δ

(δ+1)(δ+2)a
l−3
1 + δ

(δ+2)(δ+3)a
l−4
1 + · · ·+ δ

(δ+l−3)(δ+l−2)a
1
1

]
+ g13 · 1

3

[
1

δ+1a
l−3
1 + δ

(δ+1)(δ+2)a
l−4
1 + · · ·+ δ

(δ+l−4)(δ+l−3)a
1
1

]
+
...

+ g1l−2 ·
1

l−2

[
1

δ+1a
2
1 +

δ
(δ+1)(δ+2)a

1
1

]
+ g1l−1 ·

1
l−1

1
δ+1 · a11

+ g1δ
+ δ

δ+1g
1
δ+1 +

δ
δ+2g

1
δ+2 + · · ·+ δ

δ+l−2g
1
δ+l−2 +

δ
δ+l−1g

1
δ+l−1.

(18)
Using (14) and (15) formula (18) implies the specific equations

al1 =
1
2a

l−1
1 + 1

2·3 · al−2
1 + 1

3·4 · al−3
1 + · · ·+ 1

(l−1)la
1
1 + 1 (19)

and

15

hl1 =
1
2a

l−1
1 + 1

2·3 · al−2
1 + 1

3·4 · al−3
1 + · · ·+ 1

(l−1)la
1
1 + h11

+ h12 · 1
2

[
1
2a

l−2
1 + 1

2·3a
l−3
1 + 1

3·4a
l−4
1 + · · ·+ 1

(l−2)(l−1)a
1
1

]
+ 1

2h
1
2

+

...

+ h1l−2 ·
1

l−2

[
1
2a

2
1 +

1
2·3a

1
1

]
+ h1l−2 ·

1
l−2

+ h1l−1 ·
1

l−1
1
2 · a11 + h1l−1 ·

1
l−1

+ 1
l h

1
l

= al1 + 2 · 2
2·3 · al−1

1 + 2 · 3
3·4 · al−2

1 + · · ·+ 2 · l−1
(l−1)la

2
1 + 2 · l

l(l+1)a
1
1.

Thus

hl1 = al1 + 2 · 1
3 · al−1

1 + 2 · 1
4 · al−2

1 + · · ·+ 2 · 1
l a

2
1 + 2 · 1

l+1a
1
1. (20)

Proof of (18) by mathematical induction on l:

Induction basic: g2δ = 1
δ+1(g

1
1 + δg1δ+1) + g1δ = 1

δ+1g
1
1 + g1δ +

δ
δ+1g

1
δ+1

corresponds to (18) for l = 2.

Induction step: If we replace gl1 and glδ+1 in gl+1
δ = 1

δ+1g
l
1+ g1δ +

δ
δ+1g

l
δ+1 by

means of (18) then the following equation follows

gl+1
δ = 1

δ+1g
1
1

[
1
2a

l−1
1 + 1

2 · 1
3a

l−2
1 + · · ·+ 1

l−1
1
l a

1
1

]
+ 1

δ+1g
1
2
1
2

[
1
2a

l−2
1 + 1

2 · 1
3a

l−3
1 + · · ·+ 1

l−2
1

l−1a
1
1

]
+

...

+ 1
δ+1g

1
l−2

1
l−2

[
1
2a

2
1 +

1
2·3a

1
1

]
+ 1

δ+1g
1
l−1 ·

1
2 · a11

+ 1
δ+1

[
g11 +

1
2g

1
2 +

1
3g

1
3 + · · ·+ 1

l g
1
l

]
+ g1δ

+ δ
δ+1g

1
1

[
1

δ+2a
l−1
1 + δ+1

(δ+2)(δ+3)a
l−2
1 + · · ·+ δ+1

(δ+l−1)(δ+l)a
1
1

]
+ δ

δ+1g
1
2 · 1

2

[
1

δ+2a
l−2
1 + δ+1

(δ+2)(δ+3)a
l−3
1 + · · ·+ δ+1

(δ+l−2)(δ+l−1)a
1
1

]

16

+

...

+ δ
δ+1

1
g1l−2

1
l−2

[
1

δ+2a
2
1 +

δ+1
(δ+2)(δ+3)a

1
1

]
+ δ

δ+1g
1
l−1

1
l−1 · 1

δ+2 · a11

+ δ
δ+1g

1
δ+1

+ δ
δ+1(

δ+1
δ+2g

1
δ+2 +

δ+1
δ+3g

1
δ+3 + · · ·+ δ+1

δ+l g
1
δ+l).

If we reorganize the sum and use such partial sums as

(1
δ+1g

1
1

[
1
2a

l−1
1 + 1

2 · 1
3a

l−2
1 + · · ·+ 1

l−1
1
l a

1
1

]
) + (1

δ+1g
1
1) =

1
δ+1g

1
1a

l
1

(1
δ+1g

1
2
1
2

[
1
2a

l−2
1 + 1

2 · 1
3a

l−3
1 + · · ·+ 1

l−2
1

l−1a
1
1

]
) + (1

δ+1
1
2g

1
2) =

1
δ+1g

1
2
1
2a

l−1
1

(and so on) then it follows that (18) is valid for l + 1.

Now, we will show the following properties of the sequence (al)l=1,2,...

(where al := al1 for l = 1, 2, · · ·):

(i) (al)l=1,2,... is strictly increasing. (21)

This property can be proved by a simple mathematical induction.
Clearly a1 = 1 < a2 = 3

2 according to (19).

al = 1
2a

l−1 + 1
2 · 1

3a
l−2 + · · ·+ 1

l−1
1
l a

1 + 1 <

al+1 = 1
2a

l + 1
2 · 1

3a
l−1 + · · ·+ 1

l−1
1
l a

2 + 1
l

1
l+1a

1 + 1

follows from al−1 < al, · · · , a2 < a3, a1 < a2.

(ii) The sequence (al − al−1)l=1,2,... is bounded. (22)

Firstly al+1 = 1
2a

l + 1
2 · 1

3a
l−1 + 1

3 · 1
4a

l−2 + · · ·+ 1
l−1

1
l a

2 + 1
l

1
l+1a

1 + 1

= 1
2a

l + 1
2a

l−1 − 1
3(a

l−1 − al−2)− · · · − 1
l (a

2 − a1)− 1
l+1a

1 + 1.

Since al+1 > al it is necessary that 1
3(a

l−1 − al−2) < 1 and thus
al−1 − al−2 < 3.

For l + 1 = 3, 4, 5, · · · we get a2 − a1 < 3, a3 − a2 < 3, a4 − a3 < 3, · · · .

(iii) lim
l→∞

al

al−1 = 1 (23)

follows from (21) and (22) in both cases that lim
l→∞

al exists or that

lim
l→∞

al = ∞.

17

Finally we will show that lim
l→∞

hl

al
= ∞.

According to (20) hl+1 = al+1 + 2
3a

l + 2
4a

l−1 + · · ·+ 2
l+2a

1.

Thus, hl+1

al+1 = 1 + 2
3

al

al+1 + 2
4
al−1

al+1 + · · ·+ 2
l+2

a1

al+1

where
aj

al+1 = aj

aj+1 · aj+1

aj+2 · · · · · al

al+1 (for j < l). (24)

Let l+1−L be the number of terms aj

al+1 ≥ 1
3 (l ≥ j ≥ L). We will show

that l + 1− L tends to infinity if l tends to infinity.

Then hl+1

al+1 → ∞ follows since these quotients are related to Harmonic series.

The properties (21) and (23) imply that

∀ ε > 0 ∃ L(ε) : 1 ≥ ai

ai+1 ≥ 1− ε ∀ i ≥ L(ε).

Using (24) we obtain that aj

al+1 ≥ (1− ε)l+1−j ∀ l ≥ j ≥ L(ε).

aj

al+1 ≥ aL(ε)

al+1 ≥ (1− ε)l+1−L(ε) ≥ 1
3 is valid if and only if

l + 1− L(ε) ≤ −ln3
ln(1−ε) .

If ε tends to 0 then −ln3
ln(1−ε) tends to infinity

and also the number of terms aj

al+1 ≥ 1
3 (l ≥ j ≥ L(ε)). �

B Completion of Example 2

Following configurations Ca(l), · · · , Ci(l) of the online and offline servers
can occur if the corresponding requests r given by the adversary and the
answers by the adversary are as below:

Ca(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

OFF is located on pi, pj , d0, d0 + d1.

r : one server on pq, q ∈ {1, 2, 3} \ {i, j}

answer by the adversary: the offline server on

{
pq−1 if q ∈ {2, 3}
p3 if q = 1

is

moved.

(Ca(l) represents the initial configuration for l = 1, i = 1 and j = 2.)

Cb(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

OFF is located on pi, pq, q ∈ {1, 2, 3} \ {i, j}, d0, d0 + d1.

r : one server on pq; no server is moved by the adversary.

Cc(l) : ON is located on p1, p2, p3, d0 + d1.

18

OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r : one server on d0 + 1 and one server on d0 + d1 + d2

answer by the adversary: the offline servers on d0, d0 + d1 are moved.

Cd(l) : ON is located on p1, p2, p3, d0.

OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r : one server on d0 + d1; no server is moved by the adversary.

Ce(l) : ON is located on pi, i ∈ {1, 2, 3}, d0, d0 + d1, d0 + d1 − d3.

OFF is located on pj , pq, j, q ∈ {1, 2, 3} \ {i}, d0, d0 + d1.

r : one server on pj and one server on pq; no server is moved by the
adversary.

Cf (l) : ON is located on pi, i ∈ {1, 2, 3}, d0, d0 + d1, d0 + d1 − d3.

OFF is located on pi, pj , j ∈ {1, 2, 3} \ {i}, d0, d0 + d1.

r : one server on pj ; no server is moved by the adversary.

Cg(l) : ON : is located on pi, pj , i, j ∈ {1, 2, 3}, d0 + d1, d0 + d1 − d3

OFF : is located on pi, pj , d0, d0 + d1

r : one server on d0; no server is moved by the adversary.

Ch(l) : ON is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1 − d3.

OFF is located on pi, pj , d0, d0 + d1.

r : one server on d0 + d1; no server is moved by the adversary.

Ci(l) : ON is located on p1, p2, p3, d0 + d1 − d3.

OFF is located on pi, pj , i, j ∈ {1, 2, 3}, d0, d0 + d1.

r: one server on d0 and one server on d0 + d1; no server is moved by
the adversary.

C Computations relating to Example 3

If we want to compute absorbing probabilities PC(s
′(i)|s, r) we need for

the corresponding Markov chains besides the states s =: s(0) and the ab-
sorbing states s′(1), s′(2), · · · , s′(6) also the states

s(1) = (1, 0, 1, 1, 1, 0)T , s(2) = (1, 0, 1, 1, 0, 1)T , s(3) = (1, 0, 1, 0, 1, 1)T ,

s(4) = (1, 0, 0, 1, 1, 1)T , s(5) = (0, 1, 1, 1, 1, 0)T , s(6) = (0, 1, 1, 1, 0, 1)T ,

19

s(7) = (0, 1, 1, 0, 1, 1)T , s(8) = (0, 1, 0, 1, 1, 1)T

(which are transient states).

For example (s(0), s(2), s(6), s(2), s(6), s′4) is a realization of a time-homogeneous
Markov chain with the absorbing state s′4, where the corresponding surro-
gate request sequence (r̄j)j=1,2,··· is
((1, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0)T , (1, 0, 0, 0, 0, 0)T , (0, 1, 0, 0, 0, 0)T , (1, 0, 0, 0, 0, 0)T)
as described in Section 4.

If we want to compute the absorbing probabilities PC(s
′(i)|s, r) we need

the (one-step) transition probabilities.

At first we give the matrix of transition probabilities from the transient
states s(0), s(1), · · · , s(8) into these transient states:

B =

0
1

d61
Nf

1
d51
Nf

1
d41
Nf

1
d31
Nf

0 0 0 0

0 0 0 0 0
1

d12

N4
f

0 0 0

0 0 0 0 0 0
1

d12

N3
f

0 0

0 0 0 0 0 0 0
1

d12

N2
f

0

0 0 0 0 0 0 0 0
1

d12

N1
f

0
1

d12

N8
f

0 0 0 0 0 0 0

0 0
1

d12

N7
f

0 0 0 0 0 0

0 0 0
1

d12

N6
f

0 0 0 0 0

0 0 0 0
1

d12

N5
f

0 0 0 0

where dij := d(pi, pj), Nf = 1

d61
+ 1

d51
+ 1

d41
+ 1

d31

N1
f = 1

d12
+ 1

d62
+ 1

d52
+ 1

d42
, N5

f = 1
d21

+ 1
d61

+ 1
d51

+ 1
d41

N2
f = 1

d12
+ 1

d62
+ 1

d52
+ 1

d32
, N6

f = 1
d21

+ 1
d61

+ 1
d51

+ 1
d31

N3
f = 1

d12
+ 1

d62
+ 1

d42
+ 1

d32
, N7

f = 1
d21

+ 1
d61

+ 1
d41

+ 1
d31

.

N4
f = 1

d12
+ 1

d52
+ 1

d42
+ 1

d32
, N8

f = 1
d21

+ 1
d51

+ 1
d41

+ 1
d31

.

B̄ is the matrix of transition probabilities from the transient states into
the absorbing states:

20

B̄ =

0 0 0 0 0 0
1

d52

N4
f

1
d42

N4
f

1
d32

N4
f

0 0 0
1

d62

N3
f

0 0
1

d42

N3
f

1
d32

N3
f

0

0
1

d62

N2
f

0
1

d52

N2
f

0
1

d32

N2
f

0 0
1

d62

N1
f

0
1

d52

N1
f

1
d42

N1
f

1
d51

N8
f

1
d41

N8
f

1
d31

N8
f

0 0 0
1

d61

N7
f

0 0
1

d41

N7
f

1
d31

N7
f

0

0
1

d61

N6
f

0
1

d51

N6
f

0
1

d31

N6
f

0 0
1

d61

N5
f

0
1

d51

N5
f

1
d41

N5
f

.

Finally, the absorbing probabilities can be computed by the following linear
systems (see [6], Theorem 6.6 for example)

u(j) = B u(j) + B̄(j)

with variables u
(j)
i (i = 0, · · · , 8) and where B̄(j) is the j-th column of

matrix B̄. The solution value of u
(j)
i is the absorbing probability of state

s′(j) (j ∈ {1, · · · , 6}), if the initial state of the corresponding Markov chain

is s(i) (i ∈ {0, 1, · · · , 8}). Thus u(j)0 = PC(s
′(j)|s, r).

21

