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Abstract

Music recordings most often consist of multiple instrument signals, which overlap in time and
frequency. In the field of Music Information Retrieval (MIR), existing algorithms for the automatic
transcription and analysis of music recordings aim to extract semantic information from mixed
audio signals. In the last years, it was frequently observed that the algorithm performance is
limited due to the signal interference and the resulting loss of information. One common approach
to solve this problem is to first apply source separation algorithms to isolate the present musical
instrument signals before analyzing them individually. The performance of source separation
algorithms strongly depends on the number of instruments as well as on the amount of spectral
overlap.
In this thesis, isolated instrumental tracks are analyzed in order to circumvent the challenges

of source separation. Instead, the focus is on the development of instrument-centered signal
processing algorithms for music transcription, musical analysis, as well as sound synthesis. The
electric bass guitar is chosen as an example instrument. Its sound production principles are closely
investigated and considered in the algorithmic design.
In the first part of this thesis, an automatic music transcription algorithm for electric bass

guitar recordings will be presented. The audio signal is interpreted as a sequence of sound events,
which are described by various parameters. In addition to the conventionally used score-level
parameters note onset, duration, loudness, and pitch, instrument-specific parameters such as the
applied instrument playing techniques and the geometric position on the instrument fretboard
will be extracted. Different evaluation experiments confirmed that the proposed transcription
algorithm outperformed three state-of-the-art bass transcription algorithms for the transcription
of realistic bass guitar recordings. The estimation of the instrument-level parameters works with
high accuracy, in particular for isolated note samples.

In the second part of the thesis, it will be investigated, whether the sole analysis of the bassline
of a music piece allows to automatically classify its music genre. Different score-based audio
features will be proposed that allow to quantify tonal, rhythmic, and structural properties of
basslines. Based on a novel data set of 520 bassline transcriptions from 13 different music genres,
three approaches for music genre classification were compared. A rule-based classification system
could achieve a mean class accuracy of 64.8 % by only taking features into account that were
extracted from the bassline of a music piece.

The re-synthesis of a bass guitar recordings using the previously extracted note parameters will
be studied in the third part of this thesis. Based on the physical modeling of string instruments,
a novel sound synthesis algorithm tailored to the electric bass guitar will be presented. The
algorithm mimics different aspects of the instrument’s sound production mechanism such as
string excitement, string damping, string-fret collision, and the influence of the electro-magnetic
pickup. Furthermore, a parametric audio coding approach will be discussed that allows to encode
and transmit bass guitar tracks with a significantly smaller bit rate than conventional audio
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coding algorithms do. The results of different listening tests confirmed that a higher perceptual
quality can be achieved if the original bass guitar recordings are encoded and re-synthesized using
the proposed parametric audio codec instead of being encoded using conventional audio codecs
at very low bit rate settings.



Zusammenfassung

Musiksignale bestehen in der Regel aus einer Überlagerung mehrerer Einzelinstrumente. Die
meisten existierenden Algorithmen zur automatischen Transkription und Analyse von Musikauf-
nahmen im Forschungsfeld des Music Information Retrieval (MIR) versuchen, semantische Infor-
mation direkt aus diesen gemischten Signalen zu extrahieren. In den letzten Jahren wurde häufig
beobachtet, dass die Leistungsfähigkeit dieser Algorithmen durch die Signalüberlagerungen und
den daraus resultierenden Informationsverlust generell limitiert ist. Ein möglicher Lösungsansatz
besteht darin, mittels Verfahren der Quellentrennung die beteiligten Instrumente vor der Anal-
yse klanglich zu isolieren. Die Leistungsfähigkeit dieser Algorithmen ist zum aktuellen Stand
der Technik jedoch nicht immer ausreichend, um eine sehr gute Trennung der Einzelquellen zu
ermöglichen. In dieser Arbeit werden daher ausschließlich isolierte Instrumentalaufnahmen un-
tersucht, die klanglich nicht von anderen Instrumenten überlagert sind. Exemplarisch werden
anhand der elektrischen Bassgitarre auf die Klangerzeugung dieses Instrumentes hin spezialisierte
Analyse- und Klangsynthesealgorithmen entwickelt und evaluiert.

Im ersten Teil der vorliegenden Arbeit wird ein Algorithmus vorgestellt, der eine automa-
tische Transkription von Bassgitarrenaufnahmen durchführt. Dabei wird das Audiosignal durch
verschiedene Klangereignisse beschrieben, welche den gespielten Noten auf dem Instrument
entsprechen. Neben den üblichen Notenparametern Anfang, Dauer, Lautstärke und Tonhöhe
werden dabei auch instrumentenspezifische Parameter wie die verwendeten Spieltechniken sowie
die Saiten- und Bundlage auf dem Instrument automatisch extrahiert. Evaluationsexperimente
anhand zweier neu erstellter Audiodatensätze belegen, dass der vorgestellte Transkriptionsalgo-
rithmus auf einem Datensatz von realistischen Bassgitarrenaufnahmen eine höhere Erkennungs-
genauigkeit erreichen kann als drei existierende Algorithmen aus dem Stand der Technik. Die
Schätzung der instrumentenspezifischen Parameter kann insbesondere für isolierte Einzelnoten
mit einer hohen Güte durchgeführt werden.

Im zweiten Teil der Arbeit wird untersucht, wie aus einer Notendarstellung typischer sich wieder-
holender Basslinien auf das Musikgenre geschlossen werden kann. Dabei werden Audiomerkmale
extrahiert, welche verschiedene tonale, rhythmische, und strukturelle Eigenschaften von Basslinien
quantitativ beschreiben. Mit Hilfe eines neu erstellten Datensatzes von 520 typischen Basslin-
ien aus 13 verschiedenen Musikgenres wurden drei verschiedene Ansätze für die automatische
Genreklassifikation verglichen. Dabei zeigte sich, dass mit Hilfe eines regelbasierten Klassifika-
tionsverfahrens nur Anhand der Analyse der Basslinie eines Musikstückes bereits eine mittlere
Erkennungsrate von 64,8 % erreicht werden konnte.
Die Re-synthese der originalen Bassspuren basierend auf den extrahierten Notenparametern

wird im dritten Teil der Arbeit untersucht. Dabei wird ein neuer Audiosynthesealgorithmus
vorgestellt, der basierend auf dem Prinzip des Physical Modeling verschiedene Aspekte der für die
Bassgitarre charakteristische Klangerzeugung wie Saitenanregung, Dämpfung, Kollision zwischen
Saite und Bund sowie dem Tonabnehmerverhalten nachbildet. Weiterhin wird ein parametrischer
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Audiokodierungsansatz diskutiert, der es erlaubt, Bassgitarrenspuren nur anhand der ermittel-
ten notenweisen Parameter zu übertragen um sie auf Dekoderseite wieder zu resynthetisieren.
Die Ergebnisse mehrerer Hötest belegen, dass der vorgeschlagene Synthesealgorithmus eine Re-
Synthese von Bassgitarrenaufnahmen mit einer besseren Klangqualität ermöglicht als die Übertra-
gung der Audiodaten mit existierenden Audiokodierungsverfahren, die auf sehr geringe Bitraten
ein gestellt sind.
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1 Introduction

1.1 Motivation

In the field of Music Information Retrieval (MIR), different tasks such as automatic music tran-
scription, music genre classification, music similarity computation, or music recommendation
require to automatically extract semantic properties from given music recordings. These prop-
erties range from a song’s instrumentation to its underlying harmonic and rhythmic structure.
Humans require years of musical training in order to successfully perform these tasks by ear.
Therefore, the attempt to develop algorithms to automatically solve these tasks for arbitrary
music pieces seems fairly ambitious.

In most music recordings, multiple instruments are played simultaneously. In order to extract
semantic information, analyzing the individual instrument tracks appears to be more promising
than analyzing the mixed audio signal. Since the signals of the sound sources overlap both in time
and frequency, the task of source separation is very demanding and subject to various scientific
publications. So far, sound separation algorithms can mimic the human auditory ability to isolate
particular sound sources only to a limited extent. Ideally, the analysis of individual instruments
can be performed using perfectly isolated audio tracks that were extracted from an audio mixture.
In this thesis, the error-prone step of source separation will be omitted by solely analyzing bass
guitar tracks taken from multi-track recordings. The multi-track recording technique is common
practice nowadays in music studios.
The bass guitar was established in modern rock and pop music in the early 1950s. Since the

instrument has electro-magnetic pickups, its output signal could be amplified on stage. This was
a significant advantage compared to the acoustic double bass, which—at that time—still was the
most popular bass instrument. The bass guitar allowed the bass player to cope with the increasing
overall loudness of other instruments such as the drums or the electric guitar. Within the last
decades, a wide range of playing techniques were adopted from the electric guitar and transferred
to the bass guitar. The instrument itself is nowadays widely used in many music genres, both as
accompaniment and solo instrument.
This thesis is structured into three parts that deal with the automatic transcription of bass

guitar tracks as well its application for music analysis and sound synthesis. First, bass guitar
tracks will be transcribed in order to describe each note by a suitable set of parameters. Then, the
obtained parameters will be used in two application scenarios: First, a musical analysis algorithm
will be presented that allows to automatically classify the musical genre of a piece of music solely
based on the repeating bass pattern. Second, a sound synthesis algorithm will be introduced that
allows to re-synthesize the original bass guitar track based on the extracted note parameters.
The topic of this thesis is of strong interdisciplinary nature between audio signal processing,

music information retrieval, machine learning, and musicology. However, the focus of this thesis
is mainly on the first two fields, the other two fields will be discussed only where necessary.

1



2 1 Introduction

1.2 Research Objectives

Figure 1.1 illustrates the structure of this thesis. The research objectives followed in the three
parts music transcription, music analysis, and audio coding & sound synthesis will be detailed in
the next sections.

Figure 1.1: Flowchart illustrating the structure of this thesis. After a given bass guitar track is tran-
scribed, the extracted notes parameters are used in two application scenarios. First, the
music genre is automatically classified. Second, the note parameters are transmitted to a
sound synthesis algorithm that allows to re-synthesize the original bass guitar track.

Music Transcription

Musical instruments such as the bass guitar provide a large vocabulary of expressive gestures or
playing techniques, which can be used for creating different sounds. The main research question of
the first part of this thesis is: How can the note events in bass guitar recordings be best described
by a limited set of parameters? Playing the bass guitar with different playing techniques at
different geometric positions on the instrument neck leads to very diverse sound characteristics.
Therefore, methods for automatic transcription of bass guitar tracks must be well-adjusted to
the instrument’s sound production mechanisms.
In the last years, automatic music transcription algorithms seem to have reached an upper

performance limit, a so called “glass ceiling” [156]. In this thesis, it will be investigated, whether
instrument-centered music transcription algorithms allow to outperform general purpose tran-
scription algorithms, which are not tailored to a specific instrument.
The bass guitar transcription algorithm that will be proposed in Chapter 4 first extracts a

piano-roll representation of the recorded audio signal, where each note event is described by the
parameters note onset, offset, and pitch. In contrast to a musical score, the onset and offset times
are measured in absolute time and not mapped to the underlying metric structure (beat times)
of a musical piece. These score-level parameters will be extended by a set of instrument-level
parameters including the applied playing techniques and the fretboard position on the instrument.
Table 1.1 illustrates, which type of audio data is analyzed in the three parts of this thesis. In

the first and third part, isolated bass guitar tracks (audio signals) will be analyzed. The musical
analysis explained in the second part will be based on symbolic MIDI files.
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Table 1.1: Type of audio data used in the three parts of this thesis. The transcription and sound
synthesis discussed in Part I and Part III are based on isolated bass guitar recordings. The
genre classification experiments presented in Part II are performed on symbolic MIDI files.

Data type Part I Part II Part III
(Bass Guitar
Transcription)

(Genre
Classification)

(Sound Synthesis &
Audio Coding)

Mixed audio tracks - - -
Isolated audio tracks x - x
Symbolic (MIDI) - x -

Musical Genre Classification

In the second part of the thesis, the score-level parameters will be analyzed to estimate the
music genre of a song. The main hypothesis to be investigated is that the bassline itself contains
important stylistic information that can be used for genre classification. Following the semantics
of MIR, the automatic transcription discussed in Part I can be thought of as a low-level analysis,
whereas the musical analysis performed in Part II constitutes a high-level analysis. Part I focuses
on low-level representations, namely the time signal and the spectrogram of the recorded audio
signal. In Part II, semantic properties closely related to music theory are extracted from a bassline.

In the first step of the musical analysis, a set of transcription-based audio features are computed.
These numerical descriptors quantify different tonal and rhythmic properties of a given bassline.
All experiments towards genre classification will be performed using basslines encoded as MIDI
files as shown in Table 1.1. Hence, the rhythmic context—given by the time signature and the
tempo—and the harmonic context—given by the key and the chords—are considered to be known
in advance.1 In the second step of the musical analysis, three different approaches to classify the
music genre based on the extracted features will be compared. For instance, the extracted audio
features will be used to train and test statistical classification models for the tasks of music genre
classification.

Sound Synthesis & Parametric Audio Coding

In Part III, an instrument-based audio coding scheme will be described, which is tailored towards
the bass guitar. The scheme consists of an analysis step and a synthesis step. The analysis step
includes the bass guitar transcription algorithm described in Section 1.2. The synthesis step
includes a physical modeling algorithm that mimics the sound production of the bass guitar. In
comparison to conventional audio coding approaches, the presented system allows to substantially
reduce the amount of data to be transmitted. The continuous audio signal is represented as a
sequence of note events and each event is characterized by a set of parameters. While reducing
the complexity of a piece of music to a fractional part, the extracted parameters also allow to
manipulate recordings by changing individual parameters such as the applied playing techniques.

1The automatic estimation of the tempo, time signature, and key are MIR research tasks of their own and will
not be tackled in this thesis.



4 1 Introduction

1.3 Contributions

The main contributions of this thesis can be summarized as follows.

• An instrument-centered transcription algorithm for isolated bass guitar record-
ings that includes the estimation of the applied playing techniques and fret-
board positions.

Section 4.1

• Two novel datasets with bass guitar recordings and annotations that were pub-
lished as evaluation benchmark for various MIR analysis tasks.

Section 4.2

• Various score-based (high-level) features for characterizing basslines w.r.t. tonal-
ity, rhythm, and structure.

Section 8.1

• A novel dataset that consists of 520 basslines from 13 music genres for the task
of music genre classification.

Section 8.2

• Comparison of three classification paradigms for music genre classification based
on repetitive bass patterns.

Section 9.1

• A novel physical modeling algorithm for electric bass guitar sound synthesis
that includes 11 different playing techniques and its application for a parametric
audio coding scheme.

Chapter 12

• Investigation of different influence factors on the perceived quality of sound
synthesis based on listening tests.

Chapter 13

1.4 Thesis Outline & Summary

This thesis is structured into 3 main parts as described in Section 1.2. The following topics are
covered in the individual chapters.

• Chapter 2 provides several foundations for this thesis. First, the construction of the electric
bass guitar as well as typical playing techniques are described. Also, models for the sound
production of string instruments are discussed in general. Then, a brief comparison between
the score and the tablature as the most important written music representations for notating
basslines is provided. Finally, the machine learning algorithms for feature selection, feature
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space transformation, and classification, which are used throughout this thesis, are briefly
introduced.

Part I - Automatic Transcription of Bass Guitar Tracks

• Chapter 3 reviews state-of-the-art publications on bass transcription as well as on the
estimation of playing techniques and fretboard positions from string instrument recordings.

• Chapter 4 describes the proposed bass guitar transcription algorithm in detail. Further-
more, two novel audio datasets are presented, which were published as evaluation benchmark.

• Chapter 5 presents five experiments that were performed to evaluate the performance of
the proposed transcription algorithm in different scenarios.

• Chapter 6 summarizes the first part.

Part II - Application for Music Genre Classification

• Chapter 7 reviews existing publications on automatic music genre classification using
score-based audio features.

• Chapter 8 gives an overview over all score-based (high-level) features, which are used to
describe basslines with respect to tonality, rhythm, and structure. Also, a novel dataset of
520 basslines from 13 music genres is introduced, which is used in the genre classification
experiment.

• Chapter 9 compares three different approaches for music genre classification based on
repetitive bass patterns. An evaluation experiment is described and the results are discussed.

• Chapter 10 summarizes the second part.

Part III - Application for Audio Synthesis & Parametric Audio Coding

• Chapter 11 provides an overview over publications on physical modeling sound synthesis
of string instruments. Special focus is put on the synthesis of string instruments as well
as their characteristic playing techniques. Furthermore, existing parametric audio coding
schemes are briefly reviewed.

• Chapter 12 first details the proposed physical modeling algorithm for bass guitar synthesis.
Second, a parametric audio coding scheme is discussed, where the proposed bass guitar
transcription algorithm, which was presented in the first part, is combined with the synthesis
algorithm.

• Chapter 13 summarizes the results of three listening tests that were performed in order to
evaluate the perceptual quality of the proposed synthesis algorithm. In addition, different
influence factors on the perceived audio quality were investigated in detail.

• Chapter 14 summarizes the third part.
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1.5 Own Publications

In this section, the main own publications related to each of the three parts of this thesis are
listed. Additional publications are given in the main bibliography.

Part I - Automatic Transcription of Bass Guitar Tracks

• Jakob Abeßer, Hanna Lukashevich, and Gerald Schuller, “Feature-based Extraction of Pluck-
ing and Expression Styles of the Electric Bass Guitar”, in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2290-2293,
Dallas, USA, 2010.

• Jakob Abeßer, Christian Dittmar, and Gerald Schuller, “Automatic Recognition and
Parametrization of Frequency Modulation Techniques in Bass Guitar Recordings”, in Pro-
ceedings of the 42nd Audio Engineering Society (AES) International Conference on Semantic
Audio, pp. 1-8, Ilmenau, Germany, 2011.

• Christian Dittmar, Estefanía Cano, Jakob Abeßer, and Sascha Grollmisch, “Music Infor-
mation Retrieval Meets Music Education”, in Multimodal Music Processing. Dagstuhl
Follow-Ups, Meinard Müller, Masataka Goto, and Markus Schedl, Eds., vol. 3, pp. 95-120.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2012.

• Jakob Abeßer, “Automatic String Detection for Bass Guitar and Electric Guitar”, in From
Sounds to Music and Emotions - 9th International Symposium, CMMR 2012, London, UK,
June 19-22, 2012, Revised Selected Papers, Mitsuko Aramaki, Mathieu Barthet, Richard
Kronland-Martinet, and Sólvi Ystad, Eds., vol. 7900, pp. 333-352, London,UK, 2013. Springer.

• Jakob Abeßer and Gerald Schuller, “Instrument-centered Music Transcription of Bass Guitar
Tracks”, Proceedings of the AES 53rd Conference on Semantic Audio, pp. 166-175, London,
UK, 2014.

Part II - Application for Music Genre Classification

• Jakob Abeßer, Hanna Lukashevich, Christian Dittmar, and Gerald Schuller, “Genre Clas-
sification using Bass-Related High-Level Features and Playing Styles”, in Proceedings of
the 10th International Society for Music Information Retrieval Conference (ISMIR), pp.
453-458, Kobe, Japan, 2009.

• Jakob Abeßer, Paul Bräuer, Hanna Lukashevich, and Gerald Schuller, “Bass Playing Style
Detection Based on High-level Features and Pattern Similarity”, in Proceedings of the
11th International Society of Music Information Retrieval (ISMIR), pp. 93-98, Utrecht,
Netherlands, 2010.

• Jakob Abeßer, Hanna Lukashevich, and Paul Bräuer, “Classification of Music Genres based
on Repetitive Basslines”, Journal of New Music Research, vol. 41, no. 3, pp. 239-257, 2012.

Part III - Application for Audio Synthesis & Parametric Audio Coding
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• Patrick Kramer, Jakob Abeßer, Christian Dittmar, and Gerald Schuller, “A Digital Waveg-
uide Model of the Electric Bass Guitar Including Different Playing Techniques”, in Pro-
ceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 353-356, Kyoto, Japan, 2012.

• Jakob Abeßer, Patrick Kramer, Christian Dittmar, and Gerald Schuller, “Parametric Audio
Coding of Bass Guitar Recordings using a Tuned Physical Modeling Algorithm”, in Proceed-
ings of the 16th International Conference on Digital Audio Effects (DAFx-13), Maynooth,
Ireland, 2013.

1.6 Notation

1.6.1 Auxiliary Functions

Let x be a vector of length Nx = dim(x) with discrete-valued elements. The set of all unique
values of the elements of x is stored in the vector u[x] of length Nu = dim(u[x]). The number of
appearances of each unique value in x is stored in the histogram count vector n[x] ∈ NNu :

n[x](i) =

Nx∑
k=1

δk with δk =

{
1 , if x(k) ≡ u[x](i),

0 , otherwise.
(1.1)

By normalizing the histogram count vector, a probability density p[x] ∈ RNu is derived as

p[x](i) =
n[x](i)

Nu
. (1.2)

In this thesis, N denotes the number of notes in a bassline.

1.6.2 Note Parameters & Features

The bass guitar track is represented by a set of note parameters. On a score-level, each note event
is represented by its pitch P, which corresponds to its fundamental frequency as

P = b12 log2

(
f0

440

)
+ 69 +

1

2
c (1.3)

The beginning time of a note event (onset) is denoted as O, its duration as D. Both parameters
are conventionally measured in seconds based on a physical time representation. The loudness L
is measured in dB.

Additionally, the instrument-level parameters plucking style SP, expression style SE (compare
Section 2.1.2), string number NS, and fret number NF (compare Section 4.1.10) will be extracted
for each note event.
All features, which will be used for classification tasks in Part I and Part II of this thesis are

denoted by χ with a corresponding subscript.
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1.6.3 Indices & Formula Signs

Table 1.2 gives an overview over the most important indices used in this thesis. A complete list
of the formula signs used in this thesis is given in Table 1.3.

Table 1.2: Indexing symbols used in this thesis.

Variable Description Unit

a Magnitude - / dB
f Frequency Hz
h Harmonic number (h = 0 refers to the fundamental frequency) -
i Note / pattern number -
k Frequency index -
m Mode number (m = 1 refers to the fundamental frequency) -
n Time frame number -
t Time s

Table 1.3: Symbols used in this thesis.
Formula Sign Description Unit
ah Harmonic magnitude - / dB
al(n) Aggregated magnitude envelope of l-th note - / dB
A Accuracy (%)
αOn(n) Onset detection function -
β Inharmonicity coefficient -
c Wave propagation speed m/s
C Cost factor (SVM) m/s
dNB Spatial distance between the nut and the bridge of the bass guitar m
dFB Spatial distance between a fret and the bridge of the bass guitar m
dS String diameter m
E Young’s Modulus Pa
f̂(k, n) Instantaneous frequency Hz
fcut Low-pass filter cut-off frequency Hz
fh Harmonic frequency Hz
fMode,m Mode frequency Hz
fs Sampling frequency Hz
f+ Wave function m
f− Wave function traveling in opposite direction m
F F-Measure (%)
γ Parameter of RBF kernel (SVM) -
g Damping factor -
HF(z) Fractional delay filter -
HL(z) Loop filter -
kh Frequency index of h-th harmonic -
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Table 1.3: Symbols used in this thesis.
Formula Sign Description Unit
nmax Number of frequency bins -
l (Vibrating) string length m
L Likelihood function -
M(k, n) Magnitude of Short-time Fourier Transform - / dB
MIF(k, n) Reassigned magnitude spectrogram - / dB
MIF,acc(k) Accumulated magnitude spectrogram - / dB
MO(k, n) Kernel matrix used for onset detection - / dB
nmax Number of frames -
nlOn Onset (time) frame -
nlOff Offset (time) frame -
nlPeak Magnitude peak (time) frame -
N Number of notes -
ND Number of feature space dimensions -
NFFT FFT length -
NH Number of harmonics -
NI Number of items -
NS Number of samples -
p Probability -
P Precision (%)
PString String tunings -
NS String number -
NF Fret number -
Sc Scattering matrix -
ρ Mass density kg/m
ρi Resistors damping factors -
rG Radius of Gyration m
R Recall (%)
SE Expression style class -
SP Plucking style class -
SS Cross-sectional area of a string m2

t Time s
T Tension N
x Spatial location m
X(k, n) Short-time Fourier Transform -
χ Feature -
y String displacement m
ẏ String velocity m/s



10 1 Introduction



2 Foundations

2.1 The Electric Bass Guitar

The bass guitar is a plucked string instrument, which was first developed in the 1930s. Up until
the middle of the 20th century, the acoustic double bass was the most commonly used bass
instrument in music ensembles in Western Europe and North America. In the 1950s, new musical
instruments such as the electric guitar became more popular and led to an increase in loudness
on stage. At that time, the double bass could not be amplified accordingly. Hence, the bass guitar
became popular since it allowed the bass players to be louder [90]. Electro-magnetic pickups
were used capture the string vibrations and to convert them into electric signals, which could be
transmitted to an external bass amplifier. The bass guitar was strongly influenced by the electric
guitar in terms of instrument construction, sound production, and playing techniques. Nowadays,
the electric bass guitar is the most widely used bass instrument in various music genres.

In Section 2.1.1, the construction of the bass guitar will be detailed. Section 2.1.2 will explain
all bass guitar playing techniques that are investigated in this thesis. Finally, Section 2.1.3 will
discuss how the instrument sound production can be modeled.

2.1.1 Instrument Construction

Figure 2.1: Electric bass guitar (model: Fame Baphomet IV) with instrument parts.

French stated in [56] that “[...] from a strictly mechanical point of view, a guitar is a device
that connects strings under tension to a resonator with flexible walls and offers a convenient way
to shorten the strings to raise their frequencies." This statement also hold true for the electric
bass guitar due to its similar construction. The instrument consists of two parts, a solid wooden

11
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instrument body and an instrument neck, which is connected to the body by screws or glue.
Figure 2.1 illustrates the instrument’s construction. Bass guitars commonly have four to six
strings, which are attached to the body on the bridge and wired to the tuning knobs on the
instrument head.

Fretboard & Frets

Two different types of bass guitars exist—fretted and fretless bass guitars. Similar to guitars,
fretted bass guitars have metal frets mounted on the instrument fretboard. The geometric distances
between the frets follow the logarithmic relationship between the fundamental frequencies of
musical notes in the equal temperament tuning as shown in Figure 2.2.

Figure 2.2: Logarithmic spacing of frets on the instrument neck between the bridge and the nut [36].
The 12-th fret is located in the middle of the string.

With dNB being the distance between the nut and the bridge, the distance between the i-th
fret and the bridge can be computed as dFB(i) = 2−i/12dNB. If the playing hand is moved by one
fret closer towards the bridge, the emerging note pitch is raised by one semitone. Consequently,
if a note is played at the 12-th fret, the note pitch is one octave higher than the note pitch
of the open string. The fixed fret positions allow the musician to play musical notes with the
correct fundamental frequency. However, smaller pitch deviations (lower than one semitone) can
be achieved by bending the vibrating string vertically using the vibrato or bending techniques,
which will be explained in Section 2.1.2. Bass guitars have between 21 and 24 frets. Hence, the
notes that are playable on each string cover a pitch range of up to two octaves.
In contrast to fretted bass guitars, fretless bass guitars have no frets on the instrument neck.

The absence of frets on the fretboard allows for continuous pitch modulation by horizontal hand
movement, i.e., the slide technique (see Section 2.1.2 for details).

Tuning & Strings

The most common tuning for four-string bass guitars is from the lowest to the highest string:
E1 (f0 = 41.2Hz), A1 (55.0Hz), D2 (73.4Hz), and G2 (98.0Hz). Hence, if the bass guitar has 24
frets, its fundamental frequency range is between 41.2Hz and 382.0Hz. In this thesis, the focus
is on four-string bass guitars since they are most commonly used. Most bass guitar strings have a
flexible core that is wrapped with steel wire. The geometry of bass guitar strings clearly deviates
from the theoretical model of an infinitely thin string as will be discussed in Section 2.1.3.

Pickups, Audio Effects, and Amplification

In contrast to acoustic instruments such as the acoustic guitar or the double bass, the solid
instrument body of the electric bass guitar barely vibrates or radiates acoustic waves. Instead,
the string vibration is captured by electro-magnetic pickups, which are attached to the instrument
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body close to the strings. These pickups transform the kinetic energy of the vibrating string
into an electric signal, which is then transmitted by cable from the instrument output jack to an
electric amplification system. External amplification allows the bass guitar player to adjust the
instrument loudness to the overall loudness of the performing band. Most bass guitars include an
on-board equalization system that allow the musician to adjust the timbre of instrument sound
by changing the spectral envelope. Since most bass guitars have two pickups at different relative
positions on the instrument, each individual pickup signal has a different acoustic characteristic.
The interested reader is referred to [113] for more details on pickup simulations used in sound
synthesis models.
Often, audio effect pedals are inserted in the signal chain between the bass guitar and the

amplification system. Audio effects such as distortion, chorus, or delay can alter the instrument
sound in various ways. The corresponding sound characteristics can be used to automatically
detect the applied audio effects in a recording as for instance shown in [161] and [160]. However,
the analyzed bass guitar tracks in this thesis are not further processed with audio effects.

Instrument Timbre

The timbre of recorded bass guitar notes and their acoustic properties are affected amongst others
by the following factors:

• The plucking point denotes the relative position of the plucking position on the string related
to the overall string length. If the string is plucked close to the bridge, higher harmonics
are stronger. If the string is plucked closer to the fretboard, the instrument sound is often
described to be “warmer” since the lower harmonics are more present in the signal. In this
thesis, the plucking point will be considered as constant.

• The fretboad position denotes the string and the fret number where a note is played on the
instrument neck. The bass guitar allows to play certain note pitches at different fretboard
positions, which—due to the different string diameters—result in different note timbres.
Algorithms for the automatic estimation of the fretboard position from audio recordings
will be reviewed in Section 3.2.2.

• The playing technique describes how the string vibration is excited by the musician. This
affects the initial string displacement function y(x, 0), the initial string velocity function
ẏ(x, 0) as well as the amount of string damping as will be detailed in Section 2.1.2. In Section
3.2.1, existing methods to automatically estimate string instrument playing techniques from
audio recordings will be reviewed.

2.1.2 Playing Techniques

Excerpts from this section were previously presented in [13] and [9]. As pointed out by Cuzzucoli
and Lombardo in [37], it is crucial to understand the “relationship between performance technique
and sound quality”. The authors emphasize that the finger-string interaction is the most important
part in the process of playing a plucked string instrument. In this thesis, the process of playing
the bass guitar is modeled by two consecutive performance gestures of the musician:
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Table 2.1: Proposed taxonomy of bass guitar playing techniques. 5 plucking style classes and 6 expression
styles classes are listed as well as their abbreviations. The expression styles vibrato, bending,
and slide are furthermore split into two sub-classes.

Plucking Styles Expression Styles

Classes Classes Sub-classes

Finger-Style (FS) Normal (NO)
Picked (PK) Harmonics (HA)
Muted (MU) Dead-notes (DN)
Slap-Thumb (ST) Vibrato (VI) Slow Vibrato (VIS)

Fast Vibrato (VIF)
Slap-Pluck (SP) Bending (BE) Quarter-tone

Bending
(BEQ)

Half-tone
Bending

(BEH)

Slide (SL) Slide-up (SLU)
Slide-down (SLD)

• The first performance gesture describes the initial plucking of a string using the plucking
hand, which will be referred to as the plucking style. Examples of different plucking styles
are shown in Figure 2.3, Figure 2.4, Figure 2.5, and Figure 2.6.

• The second gesture describes the way in which the playing hand is used to manipulate the
string vibration, which will be referred to as the expression style. Figure 2.7 and Figure 2.8
illustrate different expression styles.

Table 2.1 illustrates a taxonomy of all bass guitar plucking styles and expression styles investigated
in this thesis. Five different plucking styles and six expression styles are considered. The three
expression styles bending, vibrato, and slide, which involve a modulation of the fundamental
frequency of the note, are further subdivided into two sub-classes each. In Section 4.2.1, a novel
dataset of recorded bass guitar notes will be described in detail that was used to evaluate the
automatic recognition of playing techniques. All shown photographs in this section were made
by Patrick Kramer.

Plucking Styles

The plucking style describes the initial hand gesture of the musician used to excite the string
vibration. This gesture mainly affects the acoustic properties of the bass guitar note during the
attack part. Jannson [84] has shown that the plucking direction—being either orthogonal or
parallel to the instrument body surface—also affects the decay rate of the string during the decay
part as shown in [55]. In the following sub-sections, all bass guitar plucking styles discussed in
this thesis will be explained in detail.
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Finger-style The finger-style (FS) technique was originally adopted from playing the double
bass. The strings are plucked by the index and the middle finger in an altering way as shown in
Figure 2.3.

(a) Plucking hand positioning
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(c) Magnitude spectrogram

Figure 2.3: Plucking hand positioning for the finger-style (FS) plucking style. An example note is given
as time signal (left figure) and magnitude spectrogram (right figure).

Picked Alternatively, the string can be plucked using a plastic pick instead of using the fingers
as illustrated in Figure 2.4. This plucking style is denoted as picked (PK) and is frequently used
in genres related to rock and heavy metal. The emerging bass guitar sound is brighter compared
to the finger-style technique.

Slap The two techniques slap-thumb (ST) and slap-pluck (SP) are characterized by striking
the string using the thumb and picking the string using either the index or the middle finger
(see Figure 2.5). Both plucking techniques cause the string to collide with the higher frets on
the instrument neck due to the high deflection of the string. The two slap techniques result in a
typical metal-like sound.

Muted While playing the bass guitar, both hands can be used to damp the vibrating string. If
the plucking style muted (MU) is used, the string is plucked using the thumb of the playing hand
and simultaneously damped by using the inner hand side as shown in Figure 2.6. The amount
of damping effectively shortens the harmonic decay part. Originally, this technique was used to
imitate the typical muffled double bass sound in jazz-related music genres.
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(a) Plucking hand positioning
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Figure 2.4: Plucking hand positioning for the picked (PK) plucking style. An example note is given as
time signal (left figure) and magnitude spectrogram (right figure).

Expression Styles

The expression style is executed by the playing hand and mainly affects the signal properties in
the note decay part.

Normal The most common way to play the bass guitar is without any expression style, which
will be hereafter referred to as normal (NO). Here, one of the fingers of the playing hand is first
located at a defined fret-string position that corresponds to the desired note pitch. Then, the
string is pushed down on the instrument neck at this fretboard position as shown in Figure 2.3
before the string is plucked.

Dead-notes As mentioned before, the string damping affects the decay time of the harmonic
note components and therefore affects the timbre of a bass guitar note. Strong damping can lead
to a percussively sounding note with rarely any harmonic components, which will be referred to
as the dead-note (DN) technique.

Harmonics Similar to the dead-note technique, the playing hand can be used to softly dampen
the string vibration at specific geometric positions across the string. If the damping point is at
an integer fraction of the string length, a standing wave with a node at the damping point is
excited on the string. At the same time, all vibration modes with an anti-node at the damping
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(a) Slap-thumb (ST) (b) Slap-pluck (SP)
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(f) Magnitude spectrogram (slap-pluck)

Figure 2.5: Plucking hand positioning for the plucking styles slap-pluck (SP) and slap-thumb (ST). Two
example notes are given as time signals (middle row) and magnitude spectrograms (bottom
row).

point are not excited. As a result, the harmonic spectrum differs from the spectrum of the freely
vibrating string and perceived fundamental frequency of the played note is often much higher
than the regular pitch range of the bass guitar. This technique is referred to as harmonics (HA)
in this thesis.

Vibrato & Bending Frequency modulation techniques such as vibrato (VI) and bending (BE)
are very commonly used on string instruments. If the fret-string position is changed, the smallest
pitch difference that can be achieved is one semitone. In contrast, modulation techniques allow
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(a) Plucking hand positioning
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Figure 2.6: Plucking hand positioning for the muted (MU) plucking style. An example note is given as
time signal (left figure) and magnitude spectrogram (right figure).

for arbitrary (continuous) pitch alterations. After plucking the string with the plucking hand, the
playing hand can be used to bend the string up- and downwards once (bending) or periodically
(vibrato). Typical modulation frequencies are up to 2.5Hz for bending and up to 4Hz for vibrato
[7].

In this thesis, two sub-classes fast vibrato (VIF) and slow vibrato (VIS) according to the
modulation frequency of the vibrato technique as well as quarter-tone bending (BEW) and
semi-tone bending (BES) according to the modulation range of the bending technique are closer
investigated. These sub-classes allow for a better parametrization of a given musical performance
on the bass guitar. Frequency modulation techniques go along with amplitude modulations of
the partial envelopes. This effect was shown to be important for the perception of frequency
modulations [85].

Slide Instead of playing two consecutive notes with two plucking gestures, the musician often
plays the first note and slides (SL) upwards or downwards to the next note without a second note
pluck. Again, as for the vibrato and bending technique, two sub-classes were defined depending
on the direction of the slide, slide up (SLU) and slide-down (SLD).
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(a) Playing hand positioning for the normal (NO),
dead-note (DN), and harmonics (HA) expression
styles.
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Figure 2.7: Playing hand positioning for the dead-note (DN) and harmonics (HA) expression styles. Two
example notes are given as time signals (middle row) and magnitude spectrograms (bottom
row).

2.1.3 Modelling the Sound Production

The bass guitar shares a similar sound production with other plucked string instruments such
as the guitar or struck string instruments like the piano. As mentioned by Traube and Smith
in [167], the sound production on a string instrument is characterized by a non-linear time-varying
interaction between the finger and the string. In the following subsections, the basic string motion
model will be explained and different aspects of the instrument timbre such as inharmonicity will
be discussed.



20 2 Foundations

(a) String bending used in the expression styles bend-
ing (BE) and vibrato (VI).
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Figure 2.8: String bending using the playing hand applied for the vibrato (VI) and bending (BE) expres-
sion styles. Two example notes are given as time signals and magnitude spectrograms.

String Motion

The motion of an infinitely thin vibrating string is expressed by the differential equation

∂2y

∂t2
= c2 ∂

2y

∂x2
, (2.1)

which describes the transversal string displacement y as a function of time t and geometric
position x along the string. The propagation speed of the wave is denoted as c and depends on
the mass density ρ (in kg/m) and the linear tension T (in N) of the string:

c =

√
ρ

T
(2.2)



2.1 The Electric Bass Guitar 21

D’Alembert (1717-1783) proposed the following general solution to (2.1):

y(t, x) = f+(ct− x) + f−(ct+ x) (2.3)

The string displacement can be modeled as a superposition of two waves that propagate in
opposite directions along the string. The traveling waves are reflected on the string ends. Since
the ends are fixed, the wave displacement is inverted after the reflection as shown in Figure 2.9.
For the bass guitar, the reflection points are at the nut and the bridge as shown in Figure 2.1.

Figure 2.9: Reflection of a traveling wave (solid line) at a fixed end. The dotted line depicts an imaginary
wave with opposite phase and traveling direction [55].

Equation (2.3) is the foundation of the physical modeling synthesis based on digital waveguide
models as will be discussed in Section 11.2.

The functions f− and f+ generally can be of arbitrary nature. Based on (2.3), their initial sum
at t = 0 has to be equal the initial string displacement when the string is plucked. The most
common approach is to model both functions as a superposition of sinosoidal functions (modes)
with the vibration mode frequencies

fMode,m =
m

2l

√
T

ρ
=

m

2lc
(2.4)

with m being the mode number and l being the string length. The first mode (m = 1) is
denoted fundamental frequency and the higher modes (m ≥ 2) are denoted harmonics. Figure
2.10 illustrates the vibrating modes of a string that is plucked in its center. All even-numbered
modes are not excited here.
In this thesis, the harmonic index h is used to index the harmonic components instead. The

fundamental frequency (m = 1) is indexed as f0 with h = 0, hence

fh ≡ fMode,(h+1). (2.5)

The string vibration model discussed above depends on the following (idealized) conditions [55]:

1. uniform string with linear density ρ (this assumption is not fulfilled by the bass guitar
string since it consists of a flexible core wrapped with a metal wire as discussed in Section
2.1.1),
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Figure 2.10: The upper graphic illustrates the initial string displacement if the string is plucked in the
middle. Below, the resulting odd-numbered vibration modes (m = 1, 3, 5...) are shown [55].

2. small string displacement y (this assumption is violated for the slap techniques since this
playing technique cause the string to collide with the upper frets as explained in Section
2.1.2), and

3. no string damping.

String Damping

In contrast to the simple string vibration model discussed before, different factors cause string
damping when the electric bass guitar is played:

• finger damping of the plucking hand (for instance using the muted plucking style as shown
in Section 2.1.2),

• finger damping by the playing hand (for instance using the dead-note plucking style as
shown in Section 2.1.2),

• sympathetic coupling of the string vibration through the soundboard through the bridge
(which can be omitted for solid-body instruments [91]),

• the internal friction due to the stiffness of the string,

• air friction (viscous dissipation), and

• direct sound radiation of the string.

String damping allows the performing musician to control the note duration. The string displace-
ment decays approximately exponentially over time.
As shown for instance by Dayan and Behar in [39], the differential equation (2.1) can be

extended by a “frictional resistance to motion proportional to the speed of the string elements”
R∂y
∂t to cope for the internal friction of the string. The authors showed that first, the resulting

string vibration function y(x, t) is multiplied by an decreasing exponential function and second,
higher harmonics decay faster than lower harmonics since the damping is proportional to the
harmonic index h.
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Inharmonicity

As detailed in [55], (2.1) must be extended for real strings (i.e., for piano, guitar, or bass guitar)
by a restoring force caused by the string stiffness as

µ
∂2y

∂t2
= T

∂2y

∂x2
− ESSr2

G

∂4y

∂x4
(2.6)

with

• E denoting Young’s Modulus—a material property used to measure the stiffness of elastic
materials,

• SS denoting the cross-sectional area, which is proportional to the square of the string
diameter dS as SS = πd2

S/4), and

• rG denoting the radius of gyration.

On an ideal vibrating string, waves travel without dispersion, i.e., the wave velocity is independent
of the frequency. For the case of a stiff string however, the wave propagation is dispersive and
the purely harmonic frequency relationship of an ideal string (fh = (h+ 1)f0) is distorted. The
harmonic frequencies are stretched towards higher harmonic indices as

fh = (h+ 1)f0

√
1 + β(h+ 1)2; h ≥ 0. (2.7)

The inharmonicity coefficient β depends on different properties of the vibrating string:

β = π2ESK2/T l2. (2.8)

The string length l is approximately constant for all strings, the string diameter usually varies
from 0.45mm (G string) to 1.05mm (E string) for an electric bass guitar.
In order to estimate the inharmonicity coefficient from instrument recordings, different meth-

ods such as cepstrum analysis, the harmonic product spectrum [60], the filter output of inhar-
monic comb-filters [61], and harmonic frequency deviations [147] were proposed in the literature.
Hodgekinson et al. analyzed steel-string guitar tones in [79] and found that the inharmonicity fac-
tor β is time-dependent if the guitar strings are plucked hard. In this thesis, the time-dependency
of the inharmonicity coefficient will not be considered.
Järveläinen et al. performed different listening tests about the audibility of inharmonicity

towards humans [86]. The authors found that human listeners detect inharmonicity easier for
lower notes compared to higher notes since auditory cues such as beating are better audible.
In [87], the authors showed that the perception of inharmonicity is affected by different harmonics
of the signal. In the field of MIR, algorithms for source separation, music transcription, and
instrument recognition also analyze the inharmonicity to achieve better performance (see for
instance [100], [181], or [23]).
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String Beating & Two-stage decay

The plucked string vibrates in three modes, a transversal mode, a longitudinal mode, and a
torsional mode. Generally, the latter two modes only have a minor affect on the string vibration
and can be neglected [55]. The transversal mode can be separated into a horizontal and a
vertical component that have slightly different vibration frequencies and different decay rates [85].
The superposition of both components can lead to an amplitude modulation of the harmonic
envelopes with a very low modulation frequency. This non-linear effect called string beating is
often incorporated into sound synthesis models of the guitar, e.g., by using the dual-polarization
model proposed by Karjalainen et al. in [91]. As a result of the beating, a two-stage decay of
the harmonics can sometimes be observed. However, in this thesis, the simplified assumption of
a one-stage exponential decay is used as detailed in the next section. The interested reader is
referred to [55] and [82] for more details about the instrument construction and sound production
model of string instruments.

Two-stage Envelope Model

Throughout this thesis, a two-stage envelope model is used. The magnitude envelopes of all
harmonics are segmented into an attack part and a decay part. During the attack part, the
envelope is approximated using a linear increasing function. During the decay part, a decaying
exponential function is used as approximation. Figure 2.11 illustrates the applied model for the
fundamental frequency and the lowest three harmonics.

Non-linear effects that were discussed in the previous section are not considered in this model.
As will be shown in Section 5.1, the experiments towards automatic classification of plucking and
expression styles revealed that this simple model is sufficient for the goals of this thesis.
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Figure 2.11: Two-stage envelope model used to approximate the magnitude envelopes of all harmonic
components. The normalized linear magnitudes ah/a0 are shown over time frames n and
harmonic indices h. The attack part (A) is approximated by a increasing linear function
and the decay part (D) is approximated by a decaying exponential function.



2.2 Score & Tablature Representation of Music 25

2.2 Score & Tablature Representation of Music

Music pieces can be described as a mixture of multiple instrument tracks. Musicians need to
be able to describe and notate these tracks in a written form in order to learn music, teach
music, and communicate musical ideas. As will be discussed in Section 3.1, the process of music
transcription extracts a symbolic representation that allows to describe musical recordings in
an efficient and compact way. Each musical note is understood as a temporal event that can be
characterized by a set of distinct parameters such as its pitch or its duration.
Conventional written notation can only represent musical expressiveness to a certain extend

[91]. Symbolic music representations often fails to capture “non-symbolic properties such as
expressiveness of a musical performance” [66]. Expressiveness can for instance be found in playing
gestures of the musicians such vibrato or glissando that allow to modulate the fundamental
frequency of a note (compare also Section 2.1.2 and Section 3.2.1).
In this section, the score and the tablature will be reviewed briefly as the two most popular

written representation to notate basslines. Both will be compared based on their accessibility and
popularity as well as their common fields of application. Figure 2.12 illustrates an example of a
bassline shown as score and as tablature.
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Figure 2.12: Score and tablature representation of a bassline [45]. While the score mainly encodes the
note’s pitch, onset, and duration, the tablature encodes the corresponding string number
and fret number on the instrument neck.

Score

The score-notation is the oldest and most popular form of music notation [69]. Scores offer a
unified and well-established vocabulary for musicians to notate music pieces of different complexity
for different musical instruments. Scores are widely available for many music genres although
they usually need to be purchased.

As it can be seen in the upper subplot of Figure 2.12, the score encodes the note pitch as well
as the note onset and offset time. The score can only provide a tempo-independent rhythmic
representation. Hence, without the additional information of a global tempo, the note onset and
offset times can not be represented in absolute time.

Tablature

The tablature representation is specialized on the geometry of fretted string instruments such as
the guitar or the bass guitar. Notes are not visualized based on their pitch, onset, and duration
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but based on their geometric position (string number and fret number) on the instrument neck.
Therefore, additional information about the instrument’s string tunings is crucial to determine the
note pitch values. Tablatures often include additional performance instructions such as playing
techniques. For instance, in the lower subplot of Figure 2.12, two notes with vibrato are indicated
waved lines in the first and third bar; one note with a whole-tone bending is indicated in the end
of the third bar.
The main advantage of the tablature representation is that it resolves the ambiguity between

note pitch and fretboard position as discussed in Section 3.2.2. Also, tablatures are very popular
and freely accessible over the internet. As pointed out by Macrae and Dixon in [115], they “require
no formal training to understand nor specific software to read or write”.

This benefit comes along with several problems. Tablatures are hard to read for musicians who
play other instruments such as piano, trumpet, or saxophone since the geometry of those instru-
ments is not comparable to the geometry of fretted string instruments. Furthermore, tablatures
most often lack information about the duration of notes. The biggest problem is that tablatures
are not standardized. Therefore, they are often incomplete or erroneous because they are mostly
created by semi-professional musicians.

2.3 Machine Learning Methods

In this section, machine learning concepts as used in this thesis will be briefly introduced. All
classification experiments described in Part I and Part II are based on cross-validation, which will
be detailed in the next section. Section 2.3.2 will discuss different techniques for feature selection
and feature space transformation and Section 2.3.3 reviews various classification algorithms.

2.3.1 Evaluation using Cross-validation

In classification experiments, a set of NI items is represented vectors of NF feature values in a
feature matrix χ ∈ RNI×NF and the corresponding class labels c ∈ ZNI . For example, in Part I,
classified items are individual note events in a bassline and the class labels are the corresponding
plucking style, expression style, and string number. In Part II, items are complete basslines and
the class labels are the corresponding music genres. Statistical models are commonly trained
using a subset of the data denoted as training set. The trained model is used to predict the class
labels of items from another (unseen) subset, which is denoted as test set.
In order to evaluate the performance of a given set of features in combination with a given

classification model, cross-validation is performed. The complete data set is split into NFold
sub-sets. The classification experiment that includes a training step and a prediction step is
performed NFold times. In each cross-validation fold, another one of the sub-sets is used as test set
and the remaining NFold − 1 sub-sets are used to train the classification model. Before applying
feature selection, feature space transformation, and classification algorithms, the training set
feature matrix is normalized to zero mean and unit variance along the feature dimensions. Using
the mean and variance values obtained from the training set, the test set feature matrix is also
normalized in each fold. If the percentage of class items varies over different classes, stratified
cross-validation is performed, i.e., in each fold, it is ensured, that the relative number of class
items in the training and test set is the same as in the original data set. The overall performance
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of the experimental configuration is obtained by averaging for instance the classification accuracy,
i.e., the portion of correctly classified items, over all folds.

2.3.2 Feature Selection & Feature Space Transformation

As discussed for instance in [154], the number of feature dimensions NF should be significantly
smaller than the number of items NI in order to avoid an overfitting of the model to the given
data. Overfitting occurs, when the predictive model is too complex, i.e., the number of model
parameters is too high for a given number of observations. In case of overfitting, the model fails
to learn the underlying relationship of a given training data set and cannot properly generalize in
order to make correct predictions on unseen data. In order to reduce the number of features of a
given data set, feature space transformation (FST) can be applied by mapping the original feature
dimensions as linear combinations to a reduced number of feature dimension. Alternatively, feature
selection (FS) can be used by keeping only those feature dimensions that best separate the items
of different classes in the feature space. In the following sections, the feature space transformation
methods Linear Discriminant Analysis (LDA) and Generalized Discriminant Analysis (GDA) as
well as the feature selection method Inertia Ratio Maximization using Feature Space Projection
(IRMFSP) will be briefly reviewed.

Linear Discriminant Analysis (LDA)

LDA is one of the most often used supervised FST methods [59]. The original feature dimensions
are linearly mapped to a reduced feature space while guaranteeing a maximal linear separability
between the classes. Here, the ratio of the between-class variance, i.e., the variance between the
class centroids in the feature space, and the within-class variance, i.e., the variance among the
items within each class, is maximized.

Generalized Discriminant Analysis (GDA)

If the classification problem is non-linear, a linear discrimination between different classes in the
feature space is not possible. In order to overcome this problem, GDA first maps the original
feature space into a higher dimensional feature space where a linear discrimination is possible [22].
A similar approach is used for the Support Vector Machines (SVM) classifier as will be shown in
Section 2.3.3. The dot product in a high-dimensional space is replaced by a kernel function in the
original space. This procedure is called kernel trick and allows to reduce the higher computational
effort.

Inertia Ratio Maximization using Feature Space Projection (IRMFSP)

The IRMFSP algorithm was proposed by Peeters and Rodet in [137]. Similarly to LDA, the
ratio of between-class variance and the total-class variance is used as optimization criterion. The
IRMFSP algorithm iteratively selects a chosen number of features that maximize this criterion.
After each iteration, the remaining feature dimensions are orthogonalized to the selected one.
This ensures that no features are selected that provide similar information as the previously ones.
In this thesis, the IRMFSP algorithms with the modifications proposed in [51] is used.
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2.3.3 Classification

A classifier predicts a discrete valued target variable such as a class label from a set of observed
feature values. The classifiers described in this section can be categorized as generative and
discriminative classifiers. Generative classifiers learn the density distributions that underly each
class in the feature space based on the corresponding observations (items) in the training set.
Discriminative classifies retrieve optimal boundaries between the classes in the feature space.

Support Vector Machies (SVM)

The SVM algorithm is a binary discriminative classifier that aims to find an optimal decision place
between the feature vectors of two different classes [180]. The kernel trick explained in Section
2.3.2 is applied to make the classification problem linearly solvable. Different kernel functions
exist for the SVM classifier. In this thesis, the Radial Basis Function (RBF) kernel is used.

This kernel function only requires two parameters—a regularization parameter C and a kernel
parameter γ. During the classifier training, the two parameters are optimized based on a three-fold
grid search. The search grid that is used for finding the optimal parameter values is refined in each
fold. Finally, the kernel parameter configuration leading to the best classification performance on
the training set is used.
Since multi-class problems are investigated in this thesis and the SVM only allows for binary

class decisions, the “one-against-one” multi-class SVM approach is used as detailed in [34]. For
each pair of classes in the training set, a binary SVM classifier is trained using the corresponding
samples from the training set. In order to predict the class of an unseen observation, the results
of the binary classifiers are collected as votes and the class having the highest number of votes is
assigned.

Gaussian Mixture Models (GMM)

Gaussian Mixture Models (GMM) are generative classifiers. The probability density function
(PDF) underlying the distribution of each class in the feature space is modeled as a weighted
sum of single Gaussian densities. The classifier parameters, i.e., the mean and covariance matrix,
are commonly estimated using the Expectation-Maximization (EM) algorithm [44] as will be
explained in Section 4.1.6.

Naive Bayes (NB) Classifier

Naive Bayes classifiers (NB) are simple probabilistic classifiers. The classification decision is
only based on the means and variances of the classes for different feature dimensions. NB rely
on the assumption that all feature dimensions are statistically independent. Despite this strong
simplifying assumption, NB classifiers have been shown to perform well for different real-world
tasks [185].

k-Nearest Neighbors (kNN) Classifier

The k-Nearest Neighbors (kNN) classifier assigns unseen samples to a class based on the sample’s
proximity to the closest training examples in the feature space [47]. Here, the Euclidean distance
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measure is used. The number of nearest neighbors k has influence on the level of generalization.

Classification and Regression Tree (CART)

The Classification and Regression Tree (CART) algorithm [26] is a non-parametric data mining
algorithm to generate decision trees. No assumption towards the distribution of the feature
vectors is made. A decision tree consists of consecutive binary decisions based on thresholding a
particular feature dimension. Each tree node is split into two child nodes. The features having
the best discriminative power with respect to the classes are selected first.

The number of decision levels is determined based on a stopping criterion, such as for instance
a minimum number of items per node to be still considered for splitting. The generalization
properties of the decision tree are controlled in a cross validation scenario, where the tree is
pruned to a certain level in order to prevent overfitting the training data.
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Preface

In the first part of the thesis, the automatic transcription of bass guitar tracks will be discussed.
The electric bass guitar was chosen as the most commonly used bass instrument in various music
genres.
Music transcription denotes the process of estimating parameters that are suitable to char-

acterize a music recording [102]. Commonly, these parameters characterize each played note on
the abstract level of a musical score, which does not take the acoustic properties of the applied
musical instrument into account. In this thesis, the conventionally used set of note parameters,
i.e., the note pitch, onset, duration, and loudness, will be extended by a set of instrument-specific
note parameters, i.e., the applied playing techniques (plucking style and expression style) and
the applied geometric position on the instrument neck (fret number and string number), which
describe how and where the musician plays certain notes on the instrument neck.

These additional parameters are especially relevant for string instruments, which allow to play
notes of the same pitch at different positions on the instrument fretboard (see Section 3.2.2 and
Section 4.1.10). Also, the use of different playing techniques is an important part of the “expressive
repertoire” of each performing musician and has a major impact on the sound of a bass guitar
recording [182].

Nowadays, music pieces are most often recorded as multi-track recordings with each instrument
being recorded as an individual audio track. For the automatic transcription, the availability
of isolated instrument tracks facilitates the analysis step since no or only minor overlap exists
between different sound sources. In order to transcribe mixed audio recordings, source separation
algorithms first need to be applied in order to isolate individual instruments from the mixed
audio signal. In this thesis, only isolated bass guitar tracks will be analyzed in order to fully focus
on the improvement of their parametric description.
The first part of the thesis is structured as follows. The related work on automatic bass

transcription as well as on the estimation of playing techniques and fretboard position from string
instrument recordings will be reviewed in Section 3.1 and Section 3.2. A novel algorithm for bass
guitar transcription will be presented in Section 4.1. Furthermore, Section 4.2 introduces two
novel audio datasets, which were published as evaluation benchmarks for the discussed signal
processing tasks.
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3.1 Bass Transcription

Definition Automatic music transcription aims at describing a time-continuous audio signal
as a sequence of acoustic events that correspond to musical notes. Note events are commonly
described using the parameters pitch (corresponding to the fundamental frequency), onset (note
begin), duration (note length), and loudness. In this thesis, these parameters will be referred
to as score parameters since they represent the main information given in a musical score. The
automatic transcription of a complex music piece is a very demanding task that includes multiple
analysis steps such as instrument recognition, source separation, rhythmic analysis, and multi-
pitch estimation [102].

Categorization Most automatic music transcription algorithms are designed “from an instrument-
free perspective” [114] and can be categorized into the following transcription tasks:

• Drum transcription—transcription of percussion instruments

• Melody transcription—transcription of the singing voice or the most salient instrument
voice (this task is usually considered as single-pitch estimation problem)

• Bass transcription—transcription of the bass instrument (also considered as single-pitch
estimation problem)

• Polyphonic transcription—considered as multi-pitch estimation problem and therefore as
the most challenging task

Other authors propose algorithms that are tailored to the transcription of specific instruments
such as the violin [183], the cello [35], the guitar [54], or the piano [49]. All publications discussed
in this section focus on a purely symbolic signal representation of the bass instrument track. None
of the publications take specific instrument properties of the electric bass guitar into account.
The interested reader is referred to [143] and [102] for a detailed review of other existing music
transcription algorithms.

Challenges Several challenges need to be faced along with the automatic transcription of a music
recording. First, the transcription of complex music recordings is error-prone and often ambiguous,
regardless of whether it is performed by human experts or by automatic algorithms. Most pitch
estimation errors result from overlapping harmonic signal components in the spectrum. The
overlap is caused by the fundamental frequency relationships of musical notes for various intervals.
Therefore, particularly in polyphonic audio signals with multiple notes sounding simultaneously,
the estimation of the fundamental frequency often leads to ambiguous results.

35
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Second, depending on the type of instrument, the harmonic frequencies can deviate from a
pure harmonic relationship [55]. As discussed in Section 2.1.3, notes played on string instruments
such as the bass guitar exhibit an inharmonic relationship between the harmonic frequencies,
which has to be taken into account in the music transcription process.

In [66], Goto lists three general challenges in transcribing music recordings. First, the num-
ber of instruments is generally unknown. Second, the instrument characteristics of the present
instruments such as being harmonic or percussive are generally unknown. Finally, the assign-
ment between detected harmonic frequency components and the present instruments is generally
unknown. Goto also discusses the problem of the “missing fundamental”, i.e., some musical instru-
ments show a harmonic structure with barely no spectral energy at the fundamental frequency,
which complicates the precise detection of the fundamental frequency course over time. However,
in the experiments performed in this thesis, this problem was never observed for bass guitar
recordings.

Applications Music transcription algorithms have many potential applications. Commonly, mu-
sic students can either purchase commercially available transcriptions or transcribe songs by
ear, which is both time consuming and error-prone. In music education applications such as
Songs2See [45], the automatic transcription of single instrument tracks allow to generate scores
or tablatures from arbitrary music pieces. At the same time, the transcription results can be
exploited in source separation algorithms in order to generate playback tracks [30] by removing
the transcribed instrument from the mixed signal.

The automatic extraction of musical notation can facilitate the musicological analysis of large
music collections. Even if the transcription results are partially erroneous, they still can provide a
valuable basis for a semi-automatic transcription procedure that includes a manual proof-reading
and correction stage in the end [8].

3.1.1 Common Presumptions

Bass transcription algorithms are commonly premised on two presumptions [77]. First, the bass
instrument is the lowest pitched harmonic instrument in a music ensemble and plays the dominant
melodic line in the lower pitch register. The common fundamental frequency range of the bass
instrument is between around 40Hz and 400Hz. Second, the bass instrument plays monophonic
melodies, i.e., note sequences with no temporal overlap between consecutive notes. In music
practice, this assumption holds true for most of the music genres [182]. In some music styles such
as funk or jazz however, basslines can contains polyphonic elements such as double-stops or even
three-voiced and four-voiced chords. These presumptions are exploited in different steps in the
transcription process as will be discussed in the following sections.

3.1.2 Algorithmic Steps

The most important processing steps of bass transcription algorithms are shown in Figure 3.1
and will be detailed in the following sections. State-of-the-art bass transcription algorithms will
be discussed and classified accordingly.
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Figure 3.1: Algorithmic steps of bass transcription algorithms.

Pre-processing

Filtering Due to the low fundamental frequency range of bass notes, down-sampling can be
applied to the analyzed audio-signal. Considering for instance a down-sampling to a sampling
frequency of fs = 11.025 kHz, the first 10 harmonics of a high bass note with a fundamental
frequency of f0 = 382Hz (highest note on a four-string bass guitar with 24 frets) are still below
the Nyquist frequency and can be detected as peaks in the magnitude spectrum. Using down-
sampling has two advantages. First, it increases the computational efficiency of the transcription
algorithms and second, harmonic signal components from other instruments at higher frequencies
are filtered out. However, down-sampling decreases the temporal resolution that can be achieved.

Dittmar et al. apply a strong down-sampling by factor 32 in [46]. They only consider harmonic
components up to around 690Hz as fundamental frequency candidates. Other authors similarly
perform an initial low-pass or band-pass filtering to limit the analyzed frequency range [66, 155].
Instead of assuming a fixed upper frequency limit for potential fundamental frequency values
of the bass notes, Ryynänen and Klapuri estimate a variable upper f0-limit in each time frame,
which depends on the given musical context, i.e., the notes played by other instruments [152].

Source Separation Source separation algorithms can be applied to mixed audio signals to em-
phasize the instrument track signal that is targeted for automatic transcription. The low-pass
filtering discussed in the previous section can be interpreted as a first approach for source separa-
tion. Often, other instruments are suppressed in the spectral representation of the mixture signal
before the bassline is transcribed. Uchida and Wada initially transcribe the melody instrument
track and remove its harmonic components from the mixture signal via spectral subtraction [175].
In [170], Tsunoo et al. initially remove signal components from percussive instruments using the
harmonic/percussion sound separation (HPSS) algorithm proposed in [130]. The basic idea is to
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remove transient spectral components with a wide-band energy distribution. These components
can be usually associated to percussive instruments or typical signal transients during the attack
phase of harmonic instruments.

Spectral Whitening The harmonic magnitudes of bass notes are time-dependent and their
relationship strongly depends on the bass instrument itself. To cope with that problem, Ryynänen
and Klapuri propose to initially apply spectral whitening to suppress timbral characteristics of the
applied bass instrument. Spectral whitening flattens the spectral energy distribution over different
frequency bands and makes the transcription algorithm more robust to different instrumentations
of music pieces [101].

Time-domain Windowing & Note Event Detection

The choice of the window size has a strong influence on the overall performance of the tran-
scription system. A large window size results in a higher achievable frequency resolution and
noise-robustness, whereas a small window size allows to better capture short-time fluctuations
such as note vibrato in the signal [155]. Note detection is often performed in the time domain
by envelope detection methods. Dittmar et al. propose to apply half-wave rectification, low-pass
smoothing, envelope differentiation, and detection of rising slopes with a dynamic threshold crite-
rion to detect note events [46]. Hainsworth and Macleod apply low-pass filtering at 200Hz, signal
smoothing using a Gaussian kernel, and a subsequent peak picking using a dynamic threshold
criterion [77]. Other authors perform note detection in the spectral domain, usually after several
frame-wise f0-estimates are grouped to note events [66,152,153]. This approach can be considered
to be more robust for multi-timbral music, where note events from percussion instruments can
be mistaken as note onsets of the bass instrument.

Spectral Estimation

Due to its computational efficiency, the short-time Fourier transformation (STFT) is most of-
ten used for spectral estimation [46, 77,152,153,175]. However, the spectral leakage effect limits
the achievable frequency resolution especially in lower frequency bands. Other spectral estima-
tion techniques such as the instantaneous frequency (IF) spectrogram are applied to improve
the achievable frequency resolution in the lower frequency bands [46, 66]. Tsunoo et al. use a
wavelet-based constant-Q transform in [171] to obtain a time-frequency representation with a
logarithmically spaced frequency axis. Using a linearly spaced frequency axis, the harmonic peak
frequencies in the magnitude spectrum are stretched towards higher frequencies. The main ad-
vantage of a logarithmically spaced frequency axis is that the harmonic peak structure remains
almost constant and is just shifted to higher frequencies.

Spectral Decomposition

Spectral decomposition algorithms try to group multiple frequency components to a common
fundamental frequency f0 based on a shared harmonic frequency relationship. Frame-wise f0

estimates can be grouped to note events based on different criteria. The f0 progression of a note
is assumed to have a continuous shape over time. In most transcription algorithms, the detected
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notes are not represented by the estimated f0 progression but instead by a distinct f0 value,
which represents the note pitch.

Instead of performing spectral decomposition in each spectral frame, Hainsworth and Macleod
propose to align the start times of the analysed frames for f0 estimation to the previously
estimated note onset times [77]. Similarly, Dittmar et al. propose to initially classify the spectral
frames into harmonic and percussive frames and only consider the harmonic frames for the f0

estimation process [46]. This way, potential misclassification between bass notes and percussive
bass-drum notes are avoided.

In order to estimate the fundamental frequency in a given time frame, different authors propose
to extract a harmonic saliency function, which provides a likelihood-measure for a given funda-
mental frequency value at a given time. Klapuri and Ryynänen compute the harmonic salience
of a f0 candidate by summing up the spectral energy at the frequency bins of the corresponding
harmonic frequencies [101, 152]. Salamon and Goméz extract a saliency function from the mid-
level chromagram-based Harmonic Pitch Class Profile (HPCP) in [155]. The authors emphasize
that the chosen representation is robust against variation in tuning, timbre, and dynamics. The
HPCP is computed in the bass frequency band between 32.7Hz and 261.6Hz (as initially pro-
posed by Goto in [66]), using a rather high resolution of 120 bins per octave1 in order to capture
modulations techniques of the fundamental frequency such as vibrato and glissando. Since the
HPCP is interpreted as a harmonic saliency function, the f0 estimate is obtained by locating
the highest peak in the HPCP in each frame. Salamon and Goméz only aim at extracting the
fundamental frequency course and no note events. Hence, no further processing steps such as
note grouping are performed.

Especially for multi-pitch estimation, i.e. the transcription of polyphonic instrument tracks, the
matrix factorization techniques Non-Negative Matrix Factorization (NMF) and Probabilistic La-
tent Component Analysis (PLCA) are successfully applied to decompose spectral representations
of an audio signal into various components, which are commonly the notes and their harmonic
structure [58, 144,181]. However, these methods are not used in bass transcription algorithms so
far.

Estimation, Tracking, and Grouping of the Note Fundamental Frequencies

Ryynänen and Klapuri presented a hybrid transcription framework for bass and melody transcrip-
tion in polyphonic music in [152,153]. The authors propose to combine two modeling approaches
for music transcription. First, note events are modeled by the temporal progression of two acoustic
features, the pitch saliency functions as explained in the previous section and an accent signal
that captures the amount of “spectral novelty” in a given time frame. Second, the authors train
a musicological model to use musical context knowledge. In particular, transition probabilities
between different note pitch values are derived from the estimated key of a song. Viterbi decoding
is applied to retrieve the bassline transcription, which here is the optimal sequence of bass notes
and intermediate rests. To model the temporal progression of single notes, three-state left-to-right
Hidden Markov Models (HMM) are trained. The three states relate to the attack, sustain, and
release part of the note envelope.

1Commonly used chromagram resolutions in MIR tasks such as audio-to-MIDI alignment, music synchronization,
or chord estimation are 12 or 36 bins per octave [126].
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In the bass transcription algorithm proposed by Hainsworth and Macleod in [77], an amplitude
confidence value is computed for each frame-wise fundamental frequency candidate. Therefore, a
comb filter is tuned to the fundamental frequency value and then used as filter on the magnitude
spectrum at a given frame. A weighted sum of the harmonic magnitude values ah is computed
whereas the magnitude of the fundamental frequency a0 is emphasized and odd harmonics are
slightly higher rated than even harmonics. Then, different note hypotheses are generated by
tracking f0 candidates over time. Two algorithmic steps for tracking and trimming of f0 hypotheses
are applied to derive the final note estimates. A likelihood measure is computed for each hypothesis
from the amplitude confidence measure and the duration of a hypothesis related to the distance
between the note onset candidate to its successor. Since the bassline is assumed to be monophonic,
the hypothesis with the highest likelihood is selected for each onset candidate.
Goto proposed the “PreFEst” (predominant-F0 estimation) algorithm in [66], which is used

for a combined transcription of the main melody and the bassline. First, frequency components
are extracted by using an STFT-based multi-rate filter bank and computing the instantaneous-
frequency (IF). The overall spectrogram is modeled as a weighted sum of different tone models,
which are combined probability density functions (PDFs) of fundamental frequency components
and the corresponding harmonics. The spectral decomposition is based on the Expectation-
Maximization (EM) algorithm. The tone models are adapted to the actual harmonic structure
in the spectrogram. Based on the extracted harmonic saliency function, the most salient peaks
are tracked over time and grouped to note events. Goto refers to this step as “multiple-agent
structure”.

Post-processing

After the transcription steps are performed as detailed in the previous sections, most algorithms
contain a final note-selection step in order to reduce the number of erroneous note events. For
instance, Hainsworth and Macleod filter out notes that likely result from spurious onsets or from
reverberation [77] in the end of their proposed bass transcription algorithm.

Evaluation

The evaluation of automatic music transcription algorithms requires a dataset of music recordings
and corresponding reference transcriptions, i.e., the ground truth annotation. Moreover, a suitable
evaluation metric must be defined that measures the performance of the transcription algorithms
by comparing the automatic transcription results with the ground-truth annotations.
The annual MIREX competition poses several tasks related to the field of MIR, among oth-

ers a melody transcription task (“Audio Melody Extraction”) [141] and multi-pitch estimation
task (“Multiple Fundamental Frequency Estimation & Tracking”). A particular task for bass
transcription was not posed so far.

Publications on bass transcription (as discussed in the previous sections) mostly use individual
audio datasets that were not made publicly available [46, 66, 77]. These datasets vary in size
and music genres but cannot be used to compare the performance of different bass transcription
algorithms.
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Uchida and Wada artificially generated their audio data for evaluation by re-synthesizing bass-
lines from MIDI files [175]. This approach allows to use the given MIDI parameters as ground
truth data for the score parameters to be transcribed. However, the (synthetic) audio data is not
as realistic as real music recordings.

The only dataset used by multiple authors is the RWC Music Database [67,68], in particular the
“Popular Music Database” and the “Music Genre Database”. The dataset was introduced by Goto
et al. in 2004 and has become the first widely used large-scale database that was used as benchmark
in MIR tasks such as genre classification, instrument recognition, and music transcription. The
database contains around 350 songs with both the audio signal and a corresponding MIDI file
with ground truth transcription annotations made available. This dataset was used for evaluation
purpose in [152,153,155]. Chapter 5 will give details on the applied evaluation measures in the
performed experiments in this thesis.

3.2 Instrument-level Parametrization of String Instrument
Recordings

The score-related parameters discussed in Section 3.1 only provide an abstract representation of an
audio recording. Additional instrument-related parameters are necessary for a better description
of the musical performance on the instrument. Figure 3.2 summarizes different criteria that
are used to categorize publications in this section towards estimation of playing techniques and
fretboard position from string instruments.

Figure 3.2: Categorization criteria of related work towards the estimation of the playing technique and
fretboard position from string instrument recordings.

Instrument

Only a few publications focus on the extraction of instrument-related parameters from bass guitar
recordings so far. In contrast, related string instruments such as the guitar and the violin are
often analyzed in the literature. Both instruments share a similar sound production process and
many playing techniques with the bass guitar [55]. Therefore, publications with focus on violin
and guitar analysis are included in the literature review.
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Estimated Parameter

The related work towards the estimation of playing techniques and the fretboard position will be
discussed separately in Section 3.2.1 and Section 3.2.2.

Sensory Modality

Different sensory modalities are used in the literature for the purpose of data acquisition. As
discussed in [32], the acquisition of physical and perceptual parameters from musical instruments
can be categorized into direct acquisition methods, which are based on sensors that are attached to
the instrument, and indirect acquisition methods, which are based on audio and visual analysis of
recorded musical performances on the instrument. In addition, some authors propose multi-modal
approaches that are based on a data fusion of different sensory modalities in a complementary
way. The focus in this thesis will be on audio-based methods. Vision-based and sensor-based
analysis methods will be discussed only briefly for comparison.
The three sensory modalities audio, vision, and sensors have different advantages and disad-

vantages. Audio analysis methods only require an instrument pickup or a microphone for data
acquisition. Most musicians are familiar to this recording setup. However, audio-based analysis
can only be used to analyze perceptual parameters that are related to the sound production mech-
anism of the musical instruments. In order to analyze gestural parameters, which characterize the
movement of the musician during the musical performance, visual or sensory analysis is required.

Visual analysis often relies on cameras that are attached to the instrument or positioned close to
the performing musician. If the fretboard is recorded, the detection performance can be impaired
by bad lighting, masking of the fretboard by the playing hand, or the musician’s movement itself.
Sensory analysis provides very accurate time-continuous measurements. Also, the movement

data measured by motion capturing is closely related to the musicians playing gestures. Neverthe-
less, motion capture analysis often requires complex measurement setups that cannot be installed
in every environment. Signals from capacitive sensors that are used to measure the hand pressure
on the instrument fretboard are often noisy and exhibit crosstalk between spatially adjacent
sensors. Both cameras and sensors, which are mounted to the instrument, can be intrusive to the
musicians and hinder their performance.

Evaluation

For the estimation of playing techniques as well as for the estimation of the fretboard position,
the applied data sets used for the evaluation experiments and the obtained results are discussed.

3.2.1 Estimation of Playing Techniques

A rich repertoire of playing techniques exists for the bass guitar, the guitar, and the violin. The
publications discussed in this section analyze different string instruments. The sound production
of these instruments can be separated into two physical gestures—a plucking gesture and an
expressive gesture as discussed in Section 2.1.2. These gestures affect the sonic properties of
the recorded instrument notes in a unique way, which allows human listeners to recognize and
distinguish different playing techniques.
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In the following sections, methods for estimation of playing techniques from bass guitar, guitar,
and violin recordings will be reviewed. Special focus will be put on the investigated playing
techniques and the applied parameter estimation methods. Finally, the datasets use for evaluation
and the obtained results will be compared briefly.

Bass Guitar

To the best knowledge of the author, no other publication than [13] and [7] focused on the auto-
matic recognition of bass guitar playing techniques so far. The contribution of these publications
will be discussed in Chapter 4.

Guitar

The guitar is the most similar musical instrument to the bass guitar and shares most of its playing
techniques [128].

Data Acquisition For audio analysis, acoustic guitar signals are usually captured with a micro-
phone or a piezo pickup system.2 Electric guitar signals are recorded with an electro-magnetic
pickup attached to the instrument body under the strings. Reboursière et al. use a hexaphonic
piezo pickup3 to capture the string vibrations of the six guitar strings individually [149]. This
procedure allows to analyze strictly monophonic audio signals without temporal and spectral
overlap between notes.
Visual analysis is usually based on one or multiple cameras recording the fretboard and the

playing hand [36]. These cameras are mounted on the instrument neck or positioned in front of
the performing musician [24].
For the sensor-based analysis, Guaus et al. mount capacitive sensors to the first 10 frets of a

classical guitar [73, 74] to detect hand movements on the fretboard. The same setup is used by
Torres in [165]. A completely different approach is proposed by Karjalainen et al. in [91]. Instead
of playing a real guitar, the user plays an “air guitar”, i.e., the user only imitates to play a guitar
by hand movement. The user wears gloves with attached magnetic sensors that allow to track
the gloves’ location and orientation. The hand movement is optically tracked using cameras and
playing gestures are recognized from the musician’s movement.4 Norton used a motion capture
setup as well as “data gloves”, i.e., gloves that are equipped with sensors that the musician wears
during the performance, to analyze typical guitar playing gestures in [128].

Playing Techniques & Parameter Estimation Methods The amount of damping that is used
to play notes on a guitar is analyzed by Erkut et al. in [50]. Based on an STFT of the audio
recording, the magnitude, frequency, and phase trajectories of the note harmonics are tracked
over time. The decay rates of the individual harmonics are estimated to quantify the amount of

2Piezo pickups convert acoustic vibrations on the body surface of the instrument into an electric signal. In
contrast to electro-magnetic pickups, piezo pickups can be used for acoustic instruments such as the classical
guitar that have non-metallic strings.

3A hexaphonic pickup allows to capture the vibration of each individual string as a separate signal.
4 The user is provided with sonic feedback from a guitar synthesis algorithm that is controlled by the detected
gestures.
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damping. The authors also analyze the loudness of different notes, which directly relates to the
plucking force of the musician.
Frequency modulation techniques allow the musician to change the note pitch continuously as

previously discussed in Section 2.1.2. These techniques are very widely used in guitar performances.
Various publications analyze the estimated fundamental frequency course of single notes to
detect the playing techniques vibrato [50, 74], bending [149], or slides (also denoted as glissando,
appogiatura) [133,134,149].
The timbre of guitar notes not only depends on the plucking style but also on the plucking

position on the string. Traube and Depalle estimate the plucking point on the guitar and classify
the two classical guitar playing techniques sul ponticello (plucking near the bridge) and sul tasto
(plucking near the fretboard) [166]. Similarly, Orio analyzes how finger-style playing at different
plucking positions affects the guitar note sound in [131].

In between consecutive note events, different note transition techniques can be applied. Common
techniques are for instance the slide or the hammer-on and pull-off techniques (also referred to
as legato) [74,134,134,149]. Note onsets are usually detected as the note attack transients, i.e.,
signal frames in the spectrum with a non-harmonic, wide-band characteristic. Various detection
functions such as the High Frequency Content (HFC) measure or the spectral flux are used to
identify non-harmonic frames. The f0 curve is commonly extracted with automatic transcription
algorithms, Özaslan et al. for instance apply the YIN algorithm [38]. Finally, the applied note
transition technique is classified based on the shape of the f0 curve. A smooth transition between
two notes indicates the slide technique and a sudden change indicates the hammer-on or pull-off
techniques.
Guitar playing techniques are usually related to single musical note events. However, some

techniques describe the playing of note sequences in a particular way. Erkut et al. analyze repeated
plucks in [50], Guaus et al. analyze the hand movement if grace notes5 are played [74]. In [108],
Laurson et al. investigate the rasgueado technique, a rhythmically complex plucking technique,
which is commonly used on classical guitars in flamenco music. The rasgueado technique is
characterized by a sequence of fast consecutive note plucks with the finger nails and an up-
wards and down-wards movement of the plucking hand. The authors emphasize that the “attack
transients caused by nail-string contacts are wideband signals, which appear as short events even
at high frequencies”. In comparison, bass guitar notes played with the slap techniques explained
in Section 2.1.2 show similar spectral characteristics.

Evaluation Datasets & Results Most publications analyze multiple playing techniques. Tax-
onomies with two up to six different techniques are used. All publications analyze isolated
instrument recordings with no overlap of other instruments. Most datasets used for evaluation
are rather small and contain around 40-120 recordings [131, 133, 134] of single notes or simple
melodies. Exclusively, Reboursière et al. created a larger dataset of 2832 note recordings in [149],
which has a comparable size as the datasets published in this thesis (see Section 4.2).

Reboursière et al. report accuracy values between 93.0% and 100.0% for the classification of
4 expression styles (hammer-on, pull-off, bending, slide) and accuracy values betweem around
87.0% and 100.0% for the classification between the 2 plucking styles normal and muted in [149].

5Grace notes are short ornamentations infront of longer notes.
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Fot the classification of note transition techniques such as slides and hammer-on and pull-off,
Özaslan et al. achieved precision values between around 72.0% and 84.0% [133,134].

Violin

Data Acquisition Similarly to the guitar, violins are either recorded using external microphones
[20, 106] or piezo-electric pickups [116, 118]. In contrast, the violin is most often played using a
bow. The plucking hand is only used for playing in case the pizzicato technique is used. This
technique is comparable to the finger-style plucking style for the guitar and the bass guitar.

Multi-modal approaches that combine audio analysis and sensor-based analysis are proposed in
the literature. The bow movement is crucial for the understanding of the violinist’s performance
gestures. Therefore, movement sensors are used, which are attached to the bow to measure its
velocity, force, tilt, and distance between the bow-string contact and the bridge [31, 32, 116].
Maestre et al. use a two-sensor 3D tracking system based on electro-magnetic field (EMF) sensing
to capture violin playing gestures [117]. Leroy et al. propose to use an optical pickup instead of
commonly used electro-magnetic or piezo pickups for a laser-based pitch tracking in [110].

Playing Techniques & Parameter Estimation Methods Bowing is the most typical violin
playing technique. It is analyzed using either movement sensors [31,116] or audio analysis [32,106].
The largest taxonomy of violin playing techniques so far is used by Barbancho et al. in [20].

The authors present an algorithm to automatically classify 7 different playing techniques applied
in violin recordings—pizzicato (corresponds to the finger-style plucking style), tremolo, spiccato,
flageolett (corresponds to harmonics expression style), détaché with and without accent, and
vibrato. Both time-domain audio features (attack, sustain, and release time) and spectral features
(pitch, spectral width) from a FFT warped to a logarithmic frequency axis are computed. In
order to automatically classify the applied playing technique from the feature values, the authors
use an “expressive decision flowchart”, i.e., a multi-stage decision tree algorithm, to derive a class
decision based on feature values and corresponding thresholds. In contrast, Krishnaswamy and
Smith only distinguished two techniques, plucking and bowing of the string [106].

Most publications use an initial transcription stage to detect the note events and their param-
eters [20, 114]. Afterwards, different low-level audio features such as the note envelope and the
attack, sustain and release time [20] or features based on modulation and inharmonicity [114] are
computed to model different playing techniques.
In terms of spectral representations, STFT [32, 106] along with extensions such as linear

interpolation [183] or frequency warping [20] is used for fundamental frequency detection and the
tracking of harmonics.
As for the guitar, the vibrato technique is usually detected based on the f0 curve [183]. Inter-

estingly, Barbancho et al. instead try to capture the spectral width around the harmonic peaks as
a feature, since it is larger than for notes played without frequency modulation (due to frequency
smearing).

Yin et al. used three assumptions to tune their algorithm for violin analysis [183]. First, only a
limited pitch range (G3-G6) is considered for possible pitch candidates. Second, a fixed harmonic
structure is assumed with most of the spectral energy being located in the fundamental frequency.
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Finally, the authors search for monophonic melodies, i.e., note sequences with note temporal and
spectral overlap between adjacent note events.

Hähnel and Berndt analyze different note articulation techniques such as tenuto, neutral, staccato
& staccatissimo, bow vibrato, and portato in [76]. The authors focus on the note envelope, duration,
and loudness. However, no automatic classification of note articulations is performed.

Evaluation Datasets & Results Loscos et al. state that the low-level audio descriptors used
in [114] were tested with a rather large dataset of 1500 violin notes and double-stops. However,
no quantitative evaluation results are reported.
Barbancho et al. performed an evaluation both on isolated violin notes from the RWC in-

strument sample database [67] as well as from home-recordings. However, the authors do not
mention the size of the applied data set. The percentage of notes with correctly estimated pitch
and playing technique is reported to be 81.0% and 100.0% for five different violins [20].
Carrillo and Wanderley designed their evaluation dataset in such way, that “most part of the

violin controls space” is sampled, i.e., that the dataset contains as many different parameter
configurations as possible [32] (the dataset size was only given as total number of time frames).6

The authors of [32] could achieve very good results: rates of correctly predicted frames of 95.0%
(bow velocity), 93.5% (bow force), 95.0% (bow tilt), 98.0% (string & finger position), and 97.8%
(relative bow-bridge distance) are reported. The use of low-level audio features consistently
outperformed perceptual audio features for the given prediction tasks.

Krishnaswamy and Smith use a dataset of 208 “spectral patterns” for their experiments. These
samples come from 52 different fretboard positions (4 strings, 13 fret positions considered), two
plucking techniques (bowed and plucked), as well as two plucking points [106]. Additional note and
melody recordings were made for testing the classifier. The authors found that if all 208 spectral
patterns are used for classifier training, the pitch detection worked without errors. However, in
this case, the detection of the remaining parameters playing techniques and plucking point was
not reliable. Krishnaswamy and Smith could achieve a better classification performance if only
notes from the training database with the detected note pitch are used for training. Nevertheless,
no quantitative evaluation results were provided. None of the discussed evaluation sets discussed
in this section were published by the authors.

3.2.2 Estimation of the Fretboard Position

Spatial Parameters

On string instruments such as the bass guitar and the guitar, notes can not only be played with
different playing techniques as discussed in the previous section. Three types of spatial parameters
need to be considered:

Fingering Different fingers of the playing hand can be used to play a certain note. Similar to
the fretboard position, the choice of the fingering is ambiguous since any finger can be used to
play a note depending on the position of the playing hand. The automatic estimation of the

6As shown in Section 4.2.2, the creation of the IDMT-SMT-BASS-SINGLE-TRACKS database followed the same
goal with special focus on bass guitar recordings.
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playing hand fingering from bass guitar recordings will not be covered in the thesis. Previously
presented approaches indicate that this tasks can not be successfully tackled solely based on audio
analysis. In contrast, vision-based analysis methods [65] or machine learning methods based on
probabilistic models [78,145] are applied for this task.

Plucking Point The second spatial parameter is the plucking point, i.e., the point on the string,
where the finger or the plectrum plucks the string. As discussed in Section 2.1.2, the plucking
point influences the brightness of the bass guitar sound. Algorithms for plucking point detection
that were published so far are based on audio analysis either in the time domain [138, 139] or
in the frequency domain [166]. In this thesis, the plucking point is considered to be constant,
which usually is a fair assumption in bass guitar performances [150,182]. Hence, the automatic
detection of the plucking point will not be covered here.

Fretboard position Due to the construction of the instrument and the tuning of the strings,
most notes within the instrument’s pitch range can be played at multiple positions on the
instrument fretboard. The fretboard position defines a location on the instrument neck by a
string number NS and a fret number NF. The strings are enumerated starting with NS = 1 for
the string with the lowest tuning. The frets are enumerated starting with NS = 0 for the open
string, NS = 1 for the first fret, and so on. The tablature representation discussed in Section 2.2
provides information about the string number and the fret number for each note event. In this
section, solely publications about the estimation of the fretboard position from string instrument
recordings are reviewed.

Selection Criteria for Fretboard Positions

Musicians choose both the fretboard position(s) and the fingering(s) to play certain note sequence
based on two different types of criteria:

• Physical criteria: The musician’s main motivation is to minimize the overall physical
strain that results from finger stretching and hand movement across the neck. In the
music practice, vertical play on the instrument neck is often preferred over horizontal play.
Musicians prefer to stay in a fixed fretboard position as long as possible and try to make
use of the whole possible pitch range, which is given there [78].7

• Stylistic / tonal criteria: The choice of fretboard position and fingering is often influenced
by common practice that is associated to playing in a specific music genre or using a specific
playing technique on the instrument. Since the instrument strings have a different diameter
and—for the case of the acoustic guitar—different material properties, playing in different
fretboard positions result in different tonal properties of the instrument sound [118].

In the context of conventional music transcription, the string number and the fret number
extend the set of note parameters discussed in Section 3.1. As a consequence, these parameters
can be used to improve the performance in other estimation tasks. For instance, the estimation of

7However, in some genres such as rock and metal, guitar players occasionally prefer horizontal movement on the
higher strings.
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the fretboard position can improve the transcription accuracy. If a musician plays within a fixed
fretboard position, the range of possible note pitch values can be constrained due to the known
string tuning of the instrument. This constraint can be used to detect incorrect fundamental
frequency estimates in the transcription process. Similarly to the estimation of playing techniques
discussed in Section 3.2.1, three different sensory modalities can be distinguished in the reviewed
publications, ranging from pure audio-based methods to methods that exploit the visual modality
or that require sensors on the instrument.

Instruments

Bass Guitar

To the best knowledge of the author, no publication besides [4] and [14] dealt with estimation
of spatial parameters from bass guitar recordings. The contribution of this publication will be
detailed in Chapter 4.

Guitar

Data Acquisition The methods for data acquisition from guitar recordings are similar to those
used for the estimation of playing techniques (compare Section 3.2.1).
In addition to regular electro-magnetic pickups, hexaphonic pickups are used. In contrast to

commonly used guitar pickups, these pickups allow to capture the vibration of each individual
string. The analysis of the individual string signals allows to avoid the ambiguity between various
fretboard positions that can be used to play the same notes on the instrument and thus reduces
the problem of polyphonic transcription to a set of monophonic transcription tasks [129].
Mechanically enhanced instruments are extended by sensors that allow a very precise measuring

of the spatial hand position. The main disadvantage is that, “most of these methods, while
accurate, are obtrusive” to the musicians [80] since they constrain the natural hand movement
on the instrument and therefore affect the musical performance.
Kerdvibulvech and Saito propose to use a stereo-camera setup to record guitar player perfor-

mances [97]. The authors apply colored fingertips on the musician’s hand. This method improves
the visual hand tracking by avoiding potential confusion between skin color and the fretboard
color. However, in practice, the method is obtrusive to the musicians.

Spatial Parameter & Parameter Estimation Methods The first group of publications analyze
monophonic guitar recordings, i.e., melodies and single notes [4, 19,167]. Traube and Smith try
to match hypothetical comb-filter like spectra to the measured spectrum in order to estimate
the fingering point [167]. In order to classify the string number, Barbancho et al. [19] compute
various timbre-related spectral audio features such as the inharmonicity, relative magnitude of
the harmonics, or the temporal decay factor of harmonics. The classification of the string number
is performed using machine learning algorithms based on the extracted features.

The second group of publications focus on polyphonic guitar recordings. The estimation of the
guitar voicing, i.e., the fretboard position of each finger, is done using audio analysis [18,54,129],
visual analysis [28,29,96,97,136], or by combining both modalities to a multi-modal approach [80].
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For the audio analysis, O’Grady & Rickard perform music transcription on the individual
output signals of the hexaphonic guitar pickup [129]. These signals are inherently associated
with a particular string number, hence they directly allow to estimate the string number. In [18],
Barbancho et al. use a multi-pitch estimation algorithm to compute spectral saliency values for
all possible pitch values within the pitch range of the guitar. These saliency values are interpreted
as observations to a Hidden Markov Model (HMM). The played chord sequence is obtained by
determining the most likely state sequence in the model that explains the observed saliency values.
The authors distinguish 330 different fingering configuration for the most common three-voiced
and four-voiced guitar chords. In [54], Fiss and Kwasinski presented a multi-pitch estimation
algorithm tailored towards the guitar. Based on a STFT, quadratic interpolation is used to detect
spectral peaks and two metrics based on relationships between harmonic frequencies are used to
assign the most likely peaks to potential f0 candidates. A multi-pitch estimation algorithm is
also applied in the multi-modal approach presented by Hrybyk and Kim in [80]. This way, the
pitch values of all notes in guitar chords are estimated and candidates for possible chord voicings
can be derived (based on the knowledge about the guitar string tuning). The voicing is then
estimated by spatially tracking the musicians’ hand using computer vision techniques.
Different additional constraints are applied in the literature to improve the estimation of

spatial parameters. For instance, the metrics used in [54] are based on specific knowledge on
the instrument such as the highest possible degree of polyphony (6 simultaneous notes) as well
as the maximum stretch span of the playing hand within a fixed fretboard position. Barbancho
et al. use two additional models to constrain the transitions between different HMM states—a
musicological model, which captures the likelihood of different chord changes, and an acoustic
model, which measures the physical difficulty of changing the chord fingerings [18].

Evaluation Datasets & Results Based on the estimated spatial parameter, the applied datasets
contain either single note recordings [4, 19, 167], polyphonic chord recordings [96, 97, 129, 136],
or mixed datasets containing both types of recordings [18, 54, 80]. None of these datasets were
published.

Various evaluation measures were used so a fair performance comparison among the proposed
algorithms is difficult. The spatial accuracy of the fingering point estimation is reported to be
below 1 cm in [167] using audio-based analysis and to be between 2.49mm and 4.93mm in [96,97]
using visual analysis. The percentage of correct chord voicing detection using audio analysis is
given as 87.3% by [54] (for 18 chord voicings) and 87.0% by [18] (for 330 chord voicings). Vision-
based analysis leads to an accuracy of 94.4% [80] (for 24 chord voicings). No overall quantitative
evaluation results were reported in [19,28,29,129].

Violin

Data Acquisition Audio analysis is based on the microphone signal to record acoustic violins
[106] or the pickup output signal from electric violins [118]. Zhang et al. analyze video recordings
of violin performances [184].

Spatial Parameter & Parameter Estimation Methods The presented audio analysis algorithms
to estimate the fretboard position from violin recordings are based on rather simple features—
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spectral magnitude frames [106] and output energy values of filter bank using 8 filters [118].
Krishnaswamy & Smith apply Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) to reduce the high-dimensional feature space. For the string number classification,
they use a simple k-Nearest Neighbors (kNN) classifier where in contrast, Zhang et al. use a
Gaussian Mixture Model (GMM) classifier.

Evaluation Datasets & Results Krishnaswamy and Smith use only a small dataset and report
no quantitative evaluation results [106]. The authors found that the presented method works well
for pitch detection. However, it does not allow for a reliable estimation of the fretboard detection.

Maezawa et al. use a bigger dataset containing recordings of two different violins (one electric,
one acoustic) with different dynamic levels. They also use an additional audio-to-score alignment
in order to apply context-based error correction [118]. The highest F-measure that was achieved
for string number estimation was 86.0%.
The visual analysis algorithm presented by Zhang et al. in [184] was evaluated on a dataset

of 225 s of captured video covering 504 notes played in total. The string number was detected
correctly in 94.2% of all frames.



4 Contribution

In this chapter, a novel algorithm for the automatic transcription of bass guitar tracks that was
published in [4,7,13,14] will be detailed. The presented work is partially based on the collaboration
with Hanna Lukashevich, Christian Dittmar (Semantic Music Technologies group, Fraunhofer
IDMT), and Gerald Schuller (Technische Universität Ilmenau).
A bass guitar track is understood as a sequence of consecutive acoustic note events and each

event is represented by a set of parameters. In the experiments described in Chapter 5, perfectly
isolated bass guitar tracks are analyzed, which are not superimposed by other musical instruments.
The problem of source separation, i.e., the isolation of an instrument track from a polyphonic
audio mixture, is not investigated in this thesis. In multi-track recording sessions, the electric
bass guitar track is commonly recorded using the direct instrument output signal or using a
microphone close to the loudspeaker of the bass amplification system.

Figure 4.1: Processing flowchart and all algorithmic steps of the proposed bass guitar transcription
algorithm.

Figure 4.1 illustrates the flowchart of the proposed algorithm for bass guitar transcription.
It consists of two main parts, the estimation of score-level parameters and instrument-level
parameters. The score-level parameters are the note pitch P , onset O, duration D (both measured
in seconds), and loudness L. Based on these parameters, a bass guitar recording can be notated
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as a piano roll as shown in Figure 4.2. In Part II of this thesis, a musical analysis of basslines
based on score-level parameters will be discussed.
However, score-level parameters do not capture details about the expressive performance of

the musician playing the instrument. To overcome this limitation, additional instrument-level
parameters are extracted in the second part of the algorithm. First, the plucking style SP and
expression style SE are estimated, which describe how the instrument strings were played by the
musicians. Second, the string number NS

1 and fret number NF are estimated, which locate where
each note was played on the instrument fretboard.

As will be shown in Part III, the combined set of score-level and instrument-level note parameters
can be used as input to a physical modeling algorithm in order to re-synthesize the original bass
guitar track. In the following sections, all the processing steps of the transcription algorithm are
detailed.

Figure 4.2: Piano roll notation of a bassline [45]. Each rectangle represents one note. The vertical position
encodes the note’s pitch and the horizontal position and length of each rectangle encodes
the onset and duration of the corresponding note.

4.1 Instrument-centered Bass Guitar Transcription Algorithm

4.1.1 Development Data Sets

In the following sections, two development sets DS-1 and DS-2 were used for optimizing different
algorithm parameters. Development set DS-1 contains 550 randomly selected isolated bass guitar
notes taken from the IDMT-SMT-BASS dataset as introduced in Section 4.2.1 with 50 note
examples for each of the 11 playing techniques discussed in Section 2.1.2. Development set DS-2
contains all 1711 notes taken from the IDMT-SMT-BASS dataset that were recorded with the
same electric bass guitar (Fame Baphomet 4 NTB) as the basslines in the IDMT-SMT-BASS-
SINGLE-TRACKS dataset as introduced in Section 4.2.2, which is used for the final evaluation
of the transcription algorithm.

4.1.2 Pre-processing & Spectral Estimation

The (monaural) bass guitar track signal is initially down-sampled to a sampling frequency of
fs ≈ 5.51 kHz using an adjusted anti-aliasing filter. Then, two different time-frequency representa-
tions are extracted. First, the Short-time Fourier Transform (STFT) X(k, n) of the input signal

1The string number enumerates the bass guitar strings from the lowest to the highest string. For instance, NS = 1
corresponds to the lowest string.
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x ∈ RNS (NS denotes the number of samples) is computed using a blocksize of 512 samples, a
hopsize of 32 samples, and a Hanning window. At the given sample rate, the temporal resolution
of the spectrogram is 5.8ms. The linear frequency index is denoted as k and the frame number
(time index) is denoted as n both using zero-based indexing. Based on a zero-padding of the
signal by factor 8, the resulting FFT length is NFFT = 4096. The STFT magnitude spectrogram
M(k, n) = |X(k, n)| is used for spectral envelope modeling as will be described in Section 4.1.6.
The frequency value that corresponds to each linear frequency index k is

f(k) =
k

NFFT
fs (4.1)

with 0 ≤ k ≤ 2048 and 0 ≤ f(k) ≤ fs/2.
Second, a reassigned magnitude spectrogram MIF based on the instantaneous frequency (IF) is

computed. Here, a logarithmically-spaced frequency axis with the frequency index kIF is used.
The corresponding frequency values are

f(kIF) = 440× 2
22+kIF/10−69

12 (4.2)

with 0 ≤ kIF ≤ 780 and 29.1 ≤ f(kIF) ≤ fs/2.2 The frequency axis has a resolution of 120 bins per
octave, which was chosen to better capture micro-tonal variations of the fundamental frequency
over time.
The instantaneous frequency f̂(k, n) for each time-frequency bin in the spectrogram X(k, n)

is estimated from the time-derivative of the local phase in the STFT spectrogram as proposed
by Abe in [1].
The reassigned magnitude spectrogram MIF(kIF, n) is computed as follows. For each time-

frequency bin (k, n) in the STFT spectrogram, the magnitude value M(k, n) is mapped to the
corresponding time-frequency bin (kIF, n) in the reassigned spectrogram MIF. The frequency
index kIF is computed in such way that the corresponding frequency value f(kIF) is closest
to the original frequency value f(k) on the linear frequency scale of the STFT spectrogram.
Magnitude values mapping to the same time-frequency bins in MIF are accumulated. Sinusoidal
peaks tend to produce stable instantaneous frequency values in the surrounding frequency bins.
Since the magnitude values of these bins are mapped towards a similar frequency position in
the IF spectrogram, sinusoidal components result in sharp magnitude peaks in MIF. The IF
spectrogram is used for onset detection and fundamental frequency tracking as will be shown in
Section 4.1.3 and Section 4.1.4.
Figure 4.3 shows excerpts from both the STFT magnitude spectrogram M(k, n) (using a

linearly-spaced frequency axis) and the IF magnitude spectrogram MIF(kIF, n) (using a
logarithmically-spaced frequency axis) for a bass guitar note played with vibrato (VI). It can be
observed that the sharp peaks in the IF spectrogram are better suited for tracking of harmonic
frequency values over time.

2The lower frequency limit of 29.1Hz (MIDI pitch 22) corresponds to the note B[0, which is one semitone below
the lowest string of a five-string bass guitar. The algorithm is designed in such way that also bass guitar tracks
recorded with a five-string bass guitar can be transcribed. However, in this thesis, only a four-string bass
guitar with a lowest fundamental frequency of f0 = 41.2Hz (MIDI pitch 28) was used to record the evaluation
datasets that will be presented in Section 4.2.
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Figure 4.3: STFT magnitude spectrogram (linearly-spaced frequency axis) and IF spectrogram
(logarithmically-spaced frequency axis) with dB magnitude scale for a bass guitar note
played with vibrato. Both spectrograms are normalized for visualization purpose. It can
be observed that the sharp peaks in the IF spectrogram are better suited for tracking of
harmonic frequency components over time.

4.1.3 Onset Detection

In order to detect note onsets, a novel onset detection function is computed, which measures the
harmonic novelty. The IF spectrogram MIF is convolved with a kernel matrix

MO(k, n) =
[
0.3, 1, 0.3

]T × [1, 1, 1, 0,−1,−1,−1
]

(4.3)

that is the time-reversed (matched) filter which has two important properties: filtering of sparse
components along the frequency axis (presumably harmonic frequency components) and detection
of rising magnitude slopes along the time axis (presumably note onsets). Only the central part
of the convolution result

MIF,O(k, n) = MIF(k, n) ∗MO(k, n) (4.4)

is stored inMIF,O such that bothMIF,O andMIF have the same size. The onset detection function
αOn(n) is computed as follows:

αOn(n) = max
k

MIF,O(k, n). (4.5)

Note onset frames nOn are detected at all time frames n, where local maxima of αOn(n) are larger
than

αOn,min = 0.2 max
n

αOn(n). (4.6)

This empirical threshold was found using manual onset annotations for all notes in the development
set DS-1. The threshold αOn,min leading to the maximum F-measure in onset detection was
selected.
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The onset time in seconds of the i-th note is computed as

O(i) = nOn(i)/fs. (4.7)

The number of detected note onsets is denoted as N . Figure 4.4 shows the IF spectrogram
MIF(f, t) of an excerpt of a bassline in the upper plot and the corresponding onset detection
function αOn(t) in the lower plot. The detected onset positions are indicated as dashed lines. Even
though the wide-band attack transients of the bass notes are not captured by the IF spectrogram,
the proposed onset detection function shows clear peaks at the note onset times.
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Figure 4.4: The upper figure illustrates the IF spectrogram MIF(f, t) of a bassline excerpt. Stable
harmonic components indicate note events. The lower plot illustrates the onset detection
function αOn(t) (solid line) as well as the detected onset positions tOn (dashed line).

4.1.4 Fundamental Frequency Tracking

After the onset detection, the note’s fundamental frequency f0(n) is tracked for each note. There-
fore, the spectral frames in MIF(kIF, n) are first averaged over the first 20 % of the of the note’s
duration to obtain an accumulated IF spectrum vector MIF,acc(kIF). By averaging the magnitude
frames only over the note’s beginning period, smearing of harmonic peaks in the accumulated
spectrum is prevented in case the note was played with the expression styles bending (BE), vibrato
(VI), and slides (SL). If these styles are used, the fundamental frequency continuously changes
over the duration of a note.
In order to get a pre-estimate of the note’s fundamental frequency f0, the cross-correlation

CM,c(τ) is computed between MIF,acc(kIF) and a harmonic spectral template c(kIF), which is
shown in Figure 4.6. This template represents an idealized harmonic magnitude spectrum of a
tone. The frequency positions of the spectral template peaks follow the harmonic relationship
given in (2.7). The inharmonicity coefficient is set to β = 0.0004. This value was obtained by
averaging over the inharmonicity coefficients of all notes from the development set DS-1 except
of those played with the dead-note (DN) technique.
The frequency index of the fundamental frequency kIF,0 is computed as

kIF,0 = arg max
τ

CM,c(τ). (4.8)
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and the fundamental frequency f0 is derived using (4.2). Finally, the note pitch is computed via

P(i) = b12 log2

(
f0

440

)
+ 69c. (4.9)

by rounding to the equal temperament tuning.
Using 500 notes from the development set DS-1 (the 50 notes played with the dead-note

expression style were excluded since they have a percussive sound without a stable pitch), spectral
templates with different numbers of harmonic peaks were compared for the task of pitch detection.
Furthermore, spectral templates with peaks having unit magnitudes and spectral templates with
doubled magnitude on the first two peaks were compared. As shown in Figure 4.5, a spectral
templates with 10 peaks and doubled magnitude on the first two peaks achieved the highest pitch
detection accuracy of A = 0.98 on the development set. This spectral templates is illustrated in
Figure 4.6 and used in the transcription algorithm. Since the spectral envelopes of bass guitar notes
played at different fretboard positions vary among different instruments, no further adaptation
of the template peak magnitudes c(kIF) was performed.
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Figure 4.5: Pitch detection accuracy over 500 isolated notes (including all playing techniques but dead-
notes). Circles indicate accuracy values obtained with spectral templates with unit magnitude,
squares indicate spectral templates with doubled magnitude for the first two peaks.
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Figure 4.6: Harmonic spectral template c(kIF) based on a logarithmic frequency axis and with doubled
magnitude on the first two peaks.

The temporal f0-tracking is performed as follows. Starting at a start frame n0 at approximately
10 % of the note duration, the tracking is performed forwards and backwards in time. A continuity-
constraint is applied such that in each time frame n, only those frequency indices kIF around the
estimated fundamental frequency index of the preceding frame are considered as f0 candidates.
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Here, a maximum deviation of plus minus 1 frame is allowed. In each frame, the cross-correlation
between the spectral frame and the spectral templates is maximized to estimate kIF,0(n) as
described before. The maximum cross-correlation value is stored for each frame as Cmax(n). High
cross-correlation values indicate a harmonic, sparse magnitude characteristic of the spectrum.
Lower values indicate a percussive, wide-band characteristic.

4.1.5 Offset Detection

The offset frame index nOff(i) of the i -th note is retrieved as the first frame after nOn(i), where
Cmax(n) remains below a relative threshold of 0.05 for at least four adjacent frames or a new
note begins. Again, this threshold was determined using the DS-1 set by maximizing the offset
detection accuracy. Finally the note duration in seconds is obtained as

D(i) = nOff(i)/fs −O(i). (4.10)

Figure 4.7 shows the results of the f0-tracking and detection of onset and offset for a bass guitar
note played with vibrato expression style.
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Figure 4.7: Bass note played with vibrato expression style (same as in Figure 4.3). The tracked funda-
mental frequency f0(t) is indicated by a white dashed line. The onset and offset times are
shown as vertical black dotted lines. It can be observed that the corresponding excerpt of the
STFT magnitude spectrogram M(k, n) shown in the background exhibits strong spectral
leakage, which prevents a precise tracking of the fundamental frequency over time.

4.1.6 Spectral Envelope Modeling

As a next step, the harmonic magnitudes ah(n) must be estimated to capture the timbral properties
of bass guitar notes. For this purpose, partial tracking algorithms based on detecting spectral
peaks and tracking them over time are most-often used in the literature (see for instance [71]). Due
to the spectral leakage in lower frequency ranges, this approach is not promising for bass guitar
notes. Therefore, in this thesis, the spectral envelope of each note is modeled using a parametric
approach. This step aims at describing the fundamental frequency and the harmonics in the STFT
magnitude spectrogram M(k, n) using a set of time-varying frequency and magnitude values,
which will be used for feature extraction afterwards.
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Two simplifications are used. First, wide-band noise-like signal components such as the attack
transients are not considered in the model. As will be shown in Section 4.1.8, the wide-band charac-
teristic is nevertheless measured by some of the applied audio features. Second, the inharmonicity
coefficient β is assumed to be contant for each individual note event.

Estimation of the Inharmonicity Coefficient

For each note event, the inharmonicity coefficient β is estimated once in the frame n0 in the
beginning of the note decay part (compare Section 4.1.4). A grid search for β with 100 equidistant
grid points within the range [0, 0.001] is performed. For each candidate β̂, the corresponding
harmonic frequencies f̂h,β̂ of the first NH = 10 harmonics (including the fundamental frequency)
are computed as

f̂h,β̂ = (h+ 1)f0

√
1 + β̂(h+ 1)2 (4.11)

with 0 ≤ h ≤ NH. The estimation of the fundamental frequency f0 was explained in Section 4.1.4.
In order to estimate the inharmonicity coefficient, a likelihood measure L(β̂) is computed for

each candidate β̂ by summing up the magnitude values M̂h,β̂ at the corresponding harmonic
frequencies as

L(β̂) =

NH∑
h=0

M̂h,β̂. (4.12)

The magnitude values Mh,β̂ are computed using linear interpolation from the magnitude values
M(k, n0) of the STFT magnitude spectrogram at the frequencies f(k) (compare (4.1)).
Finally, the inharmonicity coefficient β is estimated as

β = arg max
β̂

L(β̂). (4.13)

Estimation of the Harmonic Magnitudes

In the next step, the harmonic magnitudes ah(n) are estimated using the Expectation-Maximization
(EM) algorithm [124]. This algorithm implements an iterative maximum-likelihood (ML) estima-
tion of parameters of a probability distribution based on a limited set of observations.3

In a given frame n, the (observed) magnitude spectrum M(k, n) is first normalized to unit sum
in order to be interpretable as probability density:

pn(k) =
M(k, n)∑
kM(k, n)

. (4.14)

This probability density is modeled as a sum of magnitude-scaled atom functions, which represent
the spectral peaks at the harmonic frequencies. The atom function W (k) is the Discrete Fourier
transform of the Hanning window w(n), which is applied in the time domain to compute the
STFT spectrogram X(k, n). As shown in Figure 4.8, the atom functionW (k) is truncated outside
its first two side-lobes and normalized to unit magnitude.

3As an alternative, the harmonic magnitudes could be solved in close form via least-squares optimization. However,
this approach was not investigated in this thesis.



4.1 Instrument-centered Bass Guitar Transcription Algorithm 59

20 40 60
0

0.5

1

k

W

Figure 4.8: Atom function W (k) used for spectral envelope modeling. The STFT blocksize is 512. The
function was truncated outside its first two side-lobes and normalized to unit magnitude.

In each time frame n and in each iteration of the EM-algorithm, the following steps are
performed4 based on the current parameters f0, β, and ah. First, the harmonic frequencies fh
are computed as

fh = (h+ 1)f0(n0)
√

1 + β(h+ 1)2. (4.15)

Then, for each harmonic, the corresponding marginal density ph(k) is computed (E-step) as

ph(k) = ahW (k − kh) . (4.16)

The frequency bin kh is the closest bin to the harmonic frequency fh:

kh = arg min
k
|f(k)− fh| (4.17)

Then, the marginal densities are normalized to unit sum as

ph(k)← ph(k)∑
h ph(k)

. (4.18)

In the last step, the harmonic magnitude weights are updated (M-step):

ah ←
∑
k

ph(k) · p(k) (4.19)

After the last iteration, the harmonic magnitudes ah are rescaled via

ah ← ah ·
∑
k

M(k, n) (4.20)

to match the observed magnitude spectrogram (compare (4.14)).
Starting in the frame n0, a frame-wise estimation of ah(n) is performed by stepping forward

and backward in time, similarly to the f0 tracking as described in Section 4.1.4. Since the spectral
envelope in the decay part of a harmonic note has a continuous shape, the estimates of ah(n)
can serve as a good initialization in the adjacent frames. In each frame, the EM algorithm is
initialized with the optimal parameter set obtained in the previous frame. Five iterations are

4The index n is omitted in the following section for better readability.
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used in the starting frame n0 and two iterations are used in each of the remaining frames. After
the envelope modeling, each note is described by the set of envelope parameters [ah(n), β, f0(n)],
which are used for feature extraction as will be described in the next section.

In Figure 4.9, the magnitude spectrogram M(f, t) of a bass guitar note played with the vibrato
expression style is shown in the left figure. The approximated magnitude spectrogram using the
estimated parameters ah(n), β, and f0(n) is shown in the right figure. The magnitude envelopes
of the harmonics (in particular the fourth harmonic) show the typical phenomena of string beating,
which is well captured by the modeling procedure. Due to the discussed limitations of the modeling
approach, the attack transients, occurring at the beginning of the note, are not properly modeled.
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Figure 4.9: STFT spectrogram M(f, t) of a bass guitar note played with the vibrato expression style:
original (left) and modeled (right). The start frame used for the optimization is shown as
vertical black line in the right figure. It can be observed that except for the onset segment,
the time-varying frequency and magnitude trajectories of the different harmonics are well
captured by the proposed spectral envelope modeling algorithm.

4.1.7 Envelope Segmentation & Loudness Estimation

Based on the harmonic envelopes ah(n), the aggregated magnitude envelope a(n) is computed as

a(n) =
∑
h

ah(n). (4.21)

As shown before in Figure 2.11, a simplified two-stage model is used to segment each note into
an attack part, which is characterized by a rapidly increasing magnitude envelope and a decay
part, which is characterized by approximately exponentially decaying magnitude values. Hence,
the frame

nPeak = arg max
n

a(n) (4.22)
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is estimated as the boundary between the note’s attack and decay part. The loudness of the i -th
note is computed from the envelope peak magnitude in dB as

L(i) = 20 log10 a (nPeak) . (4.23)

4.1.8 Feature Extraction

In the following sections, various audio features (denoted by χ) from different feature categories
will be described. In the proposed transcription algorithm, all features are extracted for each note
event. It will be shown in Section 4.1.9 and Section 4.1.10 how the plucking style, the expression
style, and the string number are automatically classified using these features.

Harmonic Magnitudes & Frequencies

The first group of features describes the shape of the aggregated magnitude envelope a(n) as
computed in (4.21). Following the two-stage envelope model, a(n) is modeled as an increasing
linear function in the attack part as

a(n) ≈ α1n+ α0 (4.24)
for nOn ≤ n ≤ nPeak

and as a decreasing exponential function in the decay part as

a(n) ≈ a(nPeak)e−β1n (4.25)
for nPeak ≤ n ≤ noff.

Linear regression is used to estimate the function parameters. The two coefficients α1 and β1 are
used as features χslope,attack and χslope,decay.
The second group of features are extracted over the harmonic magnitudes ah(nPeak) and

frequencies fh(nPeak) in the note’s peak frame. As previously detailed in [4], the relative harmonic
magnitudes

χa,rel(h) = ah(nPeak)/a0(nPeak) with h ≥ 1 (4.26)

and the inharmonicity coefficient χβ = β(nPeak) (compare Section 4.1.6) are used as features. By
using linear regression, the harmonic magnitudes are interpolated as a decaying linear function
over the harmonic index h as

ah ≈ γ1h+ γ0. (4.27)

The linear slope χa,slope = γ1 is used as feature to characterize the spectral magnitude decay over
frequency. Using the estimates of the fundamental frequency f0(nPeak) and of the inharmonicity
coefficient β(nPeak), the corresponding hypothetical harmonic frequencies f̂h(nPeak) are computed
using (2.7).
The normalized frequency deviations

χ∆,f(h) =
f̂h(nPeak)− fh(nPeak)

fh(nPeak)
for h ≥ 1 (4.28)
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between the hypothetical harmonic frequencies and the measured harmonic frequencies fh(nPeak)
in the IF spectrogram have shown to be suitable features for the task of string number classification
in [4]. Additional features are obtained by computing the statistical measures minimum,maximum,
mean, median, variance, skewness, and kurtosis over the two vectors χa,rel and χ∆,f .

Aggregated Timbre Features

In order to characterize the magnitude spectrogram of a note, the frame-wise features tristimulus

χharm,tri,1(n) =
a0(n)∑
h ah(n)

(4.29)

χharm,tri,2(n) =

∑4
h=2 ah(n)∑
h ah(n)

(4.30)

χharm,tri,3(n) =

∑10
h=5 ah(n)∑
h ah(n)

(4.31)

(4.32)

and spectral irregularity

χharm,irr(n) =

∑10
h=1(ah − ah−1)2∑10

h=0(ah)2
(4.33)

are computed from the harmonic magnitudes. The features spectral centroid

χspec,cent(n) =

∑
k kM(k, n)∑
kM(k, n)

, (4.34)

spectral crest factor

χspec,crest(n) =
maxkM(k, n)
1

kmax
∑

kM(k, n)
, (4.35)

differentiated spectral crest-factor

χspec,diff,crest(n) = χspec,crest(n)− χspec,crest(n− 1), (4.36)

spectral roll-off χspec,roll(n), spectral slope χspec,slope(n), and spectral spread χspec,spread(n) are
computed from the magnitude spectrogram as proposed in [62] and [89]. All these frame-wise
features are aggregated over the attack and the decay part using the statistical measures explained
in Section 4.1.8. As shown in [13], aggregated timbre features perform very well for the classification
of different plucking and expression styles.

Instrument Noise

Notes that are played with the plucking styles slap-thumb (ST) and slap-pluck (SP) as well as
the expression style dead-note (DN) have a percussive, wide-band characteristic in the attack
part of the magnitude spectrogram as shown in Section 2.1.2. In order to compute a feature
that measures the presence of wide-band noise between the harmonics in a given frame ñ, the
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harmonic peaks are removed from a spectral frameM(k, ñ) using a spectral template tuned to the
fundamental frequency f0(ñ) and the inharmonicity coefficient β(ñ). The remaining spectrogram
is stored in XN(k, ñ). The feature is computed as the energy ratio between the filtered and the
original magnitude spectrogram, averaged over the note attack part as

χNoise =
1

nPeak − nOn

nPeak∑
n=nOn

∑
kMN(k, n)∑
kM(k, n)

. (4.37)
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Figure 4.10: STFT spectrogram M(f, t) of a note played with the harmonics expression style on the low
E-string. It can be observed that note note’s fundamental frequency of 123.6Hz corresponds
to the third harmonic of the open string fundamental frequency of 41.2Hz.

Another group of features characterizes subharmonic components in the spectrogram. Figure
4.10 illustrates a note that was played on the low E string (f0,E = 41.2Hz) with the harmonics
(HA) expression style. The fundamental frequency of the open string can be seen in the beginning
of the note decay part (between 0.1 s and 0.25 s). However, due to the string damping at a third
of the string length, only the third vibration mode and its octaves remain audible after t = 0.25 s.
Hence, the perceived fundamental frequency of the note is three times higher (f0 = 3f0,E =
123.6Hz) than the fundamental frequency of the open string. The harmonics of f0,E can be
interpreted as subharmonics in relation to f0.
In order to distinguish notes played with the harmonics expression style from notes played

with other expression styles with the same perceived fundamental frequency, several features are
computed to characterize the spectral energy at subharmonic frequency positions. In order to
extract likelihood-values for different vibration modes that indicate the presence of subharmonics,
harmonic spectral templates are tuned to different virtual fundamental frequencies f0,virtual(m) =
f0/m with m ∈ [2, 7].5 At the same time, these spectral templates are modified in such way that
they have no spectral peaks at multiples of the “real” fundamental frequency f0. The likelihood-
value χsub,m for f0,virtual(m) is computed by multiplying the spectrum with the modified spectral
templates and using the energy sum ratio as feature similar to (4.37).

5The highest vibration mode played with the harmonics style in the dataset is m = 7.
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The third group of features are string-likelihood values. If harmonics are played on a particular
string, then the energy of the harmonic peaks is likely to be filtered out by the spectral template
that is tuned to the open string fundamental frequency. Hence, for all four strings of the bass
guitar, a likelihood value χstring is computed using spectral templates that are tuned to the open
string fundamental frequencies as described before.

Fundamental Frequency Modulation

The three expression styles vibrato, bending, and slide as explained in Section 2.1.2 involve a char-
acteristic modulation of the fundamental frequency over time. Examples for typical fundamental
frequency tracks f0(n) are given for all three styles in Figure 4.11.

0 0.5 1 1.5 2 2.5
0

20

40

60

80

t [s]

∆
 f

0
 [

c
e

n
t]

(a) Vibrato note (fretted bass guitar)
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(c) Slide note (fretless bass guitar)

Figure 4.11: Characteristic fundamental frequency tracks for the expression styles vibrato, bending, and
slide [7]. Frequency is given as relative frequency difference to the lowest f0-value in cent
with 100 cents corresponding to one semitone.

Several features are computed to characterize the f0 track. First, the normalized autocorrelation
function cf0(τ) is computed over f0(n) with cf0(0) = 1. Figure 4.12 illustrates cf0(τ) for the vibrato
note shown in Figure 4.11(a). The mean modulation frequency is estimated as

χf,mod = 1/τmax (4.38)

with τmax being the first non-zero lag of a local maximum in cf0(τ) (τ > 0).
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Figure 4.12: Normalized autocorrelation function over f0(n) [7]. The mean modulation frequency χf,mod

is derived from the first non-zero maximum (indicated by a cross).
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A dominance-measure
χmod,dom = cf0(τmax) (4.39)

is computed as feature to measure the intensity of the modulation. In order to discriminate between
the modulation techniques, the number of modulation quarter-periods is estimated as χmod,periods.
As shown in Figure 4.11, the slide technique commonly has one, the bending technique has two,
and the vibrato technique has more than 2 modulation quarter periods.

The modulation lift is measured in cent relative to the lowest fundamental frequency value as

χmod,lift [cent] = 1200 log2

(
max f0(n)

min f0(n)

)
(4.40)

Finally, the overall pitch progression χmod,prog is measured as the difference between the average
fundamental frequency in the last 30 % and the first 30 % of the note frames, also given in cent.
Finally, all extracted features are concatenated to a feature vector χ ∈ R210 that represents

each note event.

4.1.9 Estimation of Plucking Style & Expression Style

Three statistical models are trained using the approx. 1700 notes from development set DS-2.
Depending on the classification task, the note parameters plucking style SP, expression style SE,
or string number NS are used as class labels for the classifier training. In each training procedure,
the feature selection method IRMFSP as explained in Section 2.3.2 is applied to reduce the
dimensionality of the feature space to ND = 50. Then, a Support Vector Machine (SVM) classifier
with a radial basis function (RBF) kernel is trained for each of the three classification tasks. If a
bassline is transcribed, the plucking style, expression style, and string number is derived for each
note by maximizing the class probability values obtained from the trained classifiers based on
the extracted feature vector.

4.1.10 Estimation of String Number & Fret Number

Depending on the expression style SE, three cases are distinguished for the estimation of the
string number NS and fret number NF.

For dead-notes, the fret number is not considered to be relevant and the string number is either
randomly set for single notes or set to the string number of the closest note played with one of the
expression styles normal, vibrato, bending, or slide. This procedure results in tablature notations
that are easier to play for the bass player.
For notes played with the harmonics style, the string number is obtained by maximizing

the aforementioned string likelihood values χstring and mode number by maximizing the mode
likelihood values χsub,m as explained in Section 4.1.8. Since harmonics with a given mode can
be played on multiple fret positions, the fret number is set to be close to the fret numbers of
previous notes based on the estimated mode m̂.

For all other expression styles, the following steps are performed. First, the string number NS

is classified as explained in the previous section. Subsequently, the fret number is computed based
on the note pitch P and the pitch of the string that was classified PString (NS) as

NF = P − PString (NS) . (4.41)



66 4 Contribution

Assuming the standard tuning of the bass guitar, PString = [28, 33, 38, 43].

4.1.11 Context-based Error Correction

Two constraints are used to improve the estimation of the instrument-related parameters. First,
as shown in [4], the probability values of those strings where the note pitch P cannot be played
are set to zero before the string number is classified. Second, all plucking styles are partitioned
into the four classes finger-style, muted, picked, as well as slap, which combines slap-pluck and
slap-thumb. It is assumed that only one of the four plucking style classes is used within one
bassline. This is a reasonable assumption for most basslines in music practice [182]. Thus, the
class probabilities of all plucking style classes are accumulated over all notes of a given bass guitar
track in order to determine the most likely plucking style class. Then, all plucking styles SP are
set according to this class. For the slap class, the plucking style is chosen from slap-pluck or
slap-thumb by maximizing the class probability.

4.2 Data Sets

4.2.1 IDMT-SMT-BASS

In 2010, the IDMT-SMT-BASS dataset was made available to the research community in [13]
and can be accessed online at [2]. The dataset is intended as a public evaluation benchmark for
the tasks of playing technique estimation, fretboard position estimation, as well as transcription
of bass guitar notes.
The dataset contains isolated note recordings played on three different 4-string electric bass

guitars, each with 3 different pickup settings6. The notes cover the common pitch range of a
4-string bass guitar from E1 (41.2 Hz) to G2 (196.0 Hz). The overall duration of the audio material
is approximately 3.6 hours and the dataset consists of around 4300 WAV files.

All 5 plucking styles (FS, MU, PK, ST, and SP) and 6 expression styles (NO, DN, HA, BE, VI,
and SL) as well as the 6 expression style sub-classes (BEQ, BES, VIF, VIS, SLD, and SLU) as listed
in Table 2.1 are covered by the recorded notes. In real-world recordings, various combinations of
playing techniques can frequently be observed. In this data set, the plucking style FS was used
when the expression style was varied and the expression style NO was used when the plucking
style was varied, respectively.

4.2.2 IDMT-SMT-BASS-SINGLE-TRACKS

In 2013, the IDMT-SMT-BASS-SINGLE-TRACKS dataset was published in [9] and made avail-
able online at [3]. It contains 17 bass guitar recordings of realistic basslines from the music genres
blues, funk, rock, bossa nova, forró, and hip hop. All playing techniques discussed in Section 2.1.2
are represented within the contained basslines. The bass notes cover all four strings of the bass
guitar and contain 2, 4, or 8 repetitions of bass patterns of 1, 2, or 4 measures of length with no
or minor variations. The basslines are intended to cover most parts of the instrument’s “control

6The term pickup setting denotes a specific loudness ratio between the output signals of the two electro-magnetic
pickups at the instrument as explained in Section 2.1.1.
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Table 4.1: Overview of the IDMT-SMT-BASS-SINGLE-TRACKS dataset. The absolute number and
percentage of notes from different plucking style, expression style, and string number classes
in the dataset are given.

Plucking Styles FS MU PK ST SP Σ

Number of notes 395 216 138 138 56 934
% 41.89 22.91 14.63 14.63 5.94 100

Expression Styles NO VI BE SL DN HA Σ

Number of notes 822 31 8 20 30 32 934
% 87.17 3.29 0.85 2.12 3.18 3.39 100

String Number E A D G Σ

Number of notes 236 313 256 138 934
% 25.03 33.19 27.15 14.63 100

space” [32]. These properties qualify the dataset to be used for the evaluation of the transcription
of the bassline, the retrieval of repeating bass patterns, estimation of playing techniques (plucking
styles and expression styles), estimation of the fretboard position, as well as evaluation of the
instrument-based audio codec presented in Part III.

Table 4.1 summarizes the composition of the IDMT-SMT-BASS-SINGE-TRACKS dataset. It
can be seen that no equal distribution concerning the plucking style, expression style, and string
number classes can be achieved. However—to the best knowledge of the author—the distribution
of plucking styles, expression styles, and string numbers is in accordance to commonly played
basslines in music practice.
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5 Evaluation

5.1 Estimation of Plucking Styles & Expression Styles from Bass
Guitar Notes

Motivation & Goals

The goal of this experiment was to evaluate the discriminative power of the feature set explained
in Section 4.1.8 for the classification of plucking and expression styles. The classification task was
simplified by focusing on isolated bass guitar note recordings with pitch ground truth annotations
first. Hence, estimation errors of pitch, onset, and offset are ruled out in this experiment as potential
sources of error for the subsequent feature extraction and classification. The classification of the
5 plucking styles and 5 expression styles given in Table 2.1 (except the slide expression style) was
performed separately. The results of this study were published in [13].

Dataset

Approximately 4300 notes from the IDMT-SMT-BASS dataset presented in Section 4.2.1 were
used.

Experimental Procedure

The feature selection algorithm Inertia Ratio Maximization using Feature Space Projection
(IRMFSP) and the feature space transformation algorithms Linear Discriminant Analysis (LDA)
and Generalized Discriminant Analysis (GDA) were investigated to reduce the dimensionality of
the feature space prior to the classification. Furthermore, the performance of the classification
algorithms Support Vector Machines (SVM) (using the Radial Basis Function kernel), Gaussian
Mixture Models (GMM), Naive Bayes (NB), and k-Nearest Neighbors (kNN) were compared for
the given task. More details about these algorithms can be found in Section 2.3. The mean class
accuracy was computed based on a 10-fold stratified cross-validation.

Baseline Experiment

Initially, a baseline experiment was performed as follows. Instead of using the proposed feature
set for the classification of plucking and expression styles, Mel-Frequency Cepstral Coefficients
(MFCC) [62] were chosen as audio features since they are widely applied for comparable MIR
classification tasks such as instrument recognition [71]. Gaussian Mixture Models (GMM) were
used as classifiers with a varying number of NGauss ∈ {1, 2, 3, 5, 10} Gaussians. The best results
are given in Table 5.1.

69
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Table 5.1: Experimental results for the classification of plucking styles and expression styles from isolated
note recordings using MFCC features.

Experiment Number of classes Highest mean class accu-
racy

Plucking style classification 5 65.7% (NGauss = 2)
Expression style classification 5 67.3% (NGauss = 3)

Results & Summary

Table 5.2 shows the classification results for both classification tasks using the proposed feature
set with and without prior feature selection and feature space transformation. The mean class
accuracy values are given, the standard deviation values can be found in [13]. The parameters of
the chosen algorithms, i.e., the number of Gaussians (GMM), the number of nearest neighbors
(kNN), the number of selected features (IRMFSP) and γ (GDA), are given in brackets.

The highest mean class accuracy values of 93.3 % and 95.6 % were achieved for the classification
of the plucking and expression style, respectively. The combination of IRMFSP for feature selection
and GDA for feature space transformation lead to the highest classification scores for most of
the classifiers.

5.2 Estimation of Expression Styles Subclasses from Bass Guitar
Notes

Motivation & Goals

In this experiment, the classification of the expression styles shown in Table 2.1 was performed
on a class-level using 4 classes and on a sub-class level using 7 classes. Again, isolated bass guitar
notes with pitch ground truth annotations were used. The results of this study were published
in [7].

Dataset

A dataset containing 156 isolated note recordings for each of the 6 expression style sub-classes slow
vibrato (VIS), fast vibrato (VIF), quarter-tone bending (BEQ), half-tone bending (BEH), slide-up
(SLU) and slide-down (SLD) was utilized. The expression style normal was used as seventh
class. Hence, 156 samples of that class were randomly added from the IDMT-SMT-BASS. The
recordings for the two sub-classes slide-up and slide-down were recorded on a fretless bass guitar,
all others were recorded on a fretted bass guitar. For the classification using the 4 expression style
classes normal (NO), vibrato (VI), bending (BE), and slide (SL), the corresponding sub-class
samples were merged accordingly.
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Table 5.2: Mean class accuracy values for plucking and expression style classification from isolated note
recordings for different classifiers without and with feature selection (FS) / feature space
transformation (FST). The configurations with the best performance are highlighted with
bold print.

Plucking Style Classification
Classifier Without FS / FST With FS / FST Best Configuration

SVM 90.75 % 92.77 % IRMFSP(80) + GDA (10−7)
GMM(2) 70.04 % 92.30 % IRMFSP(80) + GDA (10−7)
GMM(3) 72.61 % 92.32 % IRMFSP(80) + GDA (10−7)
GMM(5) 75.92 % 93.25 % IRMFSP(100) + GDA(10−7)
GMM(10) 79.22 % 92.51 % IRMFSP(80) + GDA (10−7)
NB 66.43 % 91.63 % IRMFSP(80) + GDA( 10−7)
kNN(1) 79.62 % 92.34 % IRMFSP(100) + GDA (10−7)
kNN(5) 82.58 % 92.96 % IRMFSP(80) + GDA (10−7)
kNN(10) 82.61 % 92.80 % IRMFSP(100) + GDA (10−7)
Expression Style Classification
Classifier Without FS / FST With FS / FST Best Configuration

SVM 93.77 % 94.96 % IRMFSP(100) + GDA(10−7)
GMM(2) 77.63 % 95.13 % No FS + GDA(10−15)
GMM(3) 75.09 % 94.78 % No FS + GDA(10−9)
GMM(5) 77.62 % 95.28 % IRMFSP(100) + GDA(10−7)
GMM(10) 82.45 % 95.61 % IRMFSP (100) + GDA(10−7)
NB 72.61 % 95.28 % IRMFSP(100) + GDA(10−7)
kNN(1) 87.35 % 94.79 % IRMFSP(100) + GDA(10−7)
kNN(5) 90.08 % 95.12 % IRMFSP(100) + GDA(10−7)
kNN(10) 90.45 % 94.97 % IRMFSP(100) + GDA(10−7)

Experimental Procedure

In this experiment, a 12-dimensional feature vector was extracted using features related to the
fundamental frequency modulation [7]. Due to the small number of features, SVM classifiers with
a RBF kernel were used without any prior feature selection or feature space transformation. The
evaluation was based on a 10-fold stratified cross validation.

Results & Summary

Table 5.3 and Table 5.4 illustrate the confusion matrices for both classification tasks. The mean
class accuracy for the classification of expression styles on a class level is 85.7 %. The results
for the class slide are almost 100 % and the remaining three classes achieve about 80 % of
accuracy. Presumably, the pitch progression feature introduced in Section 4.1.8 allows almost
perfect discrimination between the slide class and all other classes.

The mean class accuracy for the classification of expression styles on a sub-class level is 81.7 %.
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The confusion matrix shown in Table 5.4 shows similar misclassification as in Table 5.3. Due
to similar pitch trajectories, misclassification between the slow vibrato class and the semi-tone
bending class appear naturally.

Table 5.3: Confusion matrix for expression style classification on class level. All values are given in
percent.

BE VI SL NO
BE 82.9 9.6 4.5 3.0
VI 8.9 79.9 5.0 6.2
SL 0.2 0.6 98.7 0.5
NO 5.8 8.7 4.3 81.2

Table 5.4: Confusion matrix for expression style classification on sub-class level. All values are given in
percent.

BEQ BEH VIF VIS SLD SLU NO
BEQ 76.9 0.8 9.5 6.0 1.6 0 5.2
BEH 7.6 74.6 0 6.9 5.3 0.8 4.8
VIF 5.3 0.7 76.2 5.1 5.0 0 7.6
VIS 9.3 1.6 8 70.5 5.5 0.8 4.2
SLD 0 1.1 0 0.6 97.6 0.6 0.1
SLU 0 0.4 0 0.9 1.3 96.7 0.8
NO 2.3 3.9 8.9 2.4 1.8 1.0 79.7

5.3 Estimation of String Number from Bass Guitar Notes

Motivation & Goals

This experiment was performed to evaluate the discriminative power of the proposed feature set
for string number classification. Similar to the previous experiments, isolated note recordings were
used. The influence of various factors such as the assignment of different bass guitars towards the
training and test set on the overall classificaton performance was investigated. In [4], the results
of this experiment were published for both electric guitar and electric bass guitar. In this section,
only the results for the bass guitar recordings will be detailed. The results for the electric guitar
having 6 string classes showed very similar tendencies concerning the classification performance.

Dataset

The dataset introduced in [161] was used in this experiment—it contains isolated bass guitar
and electric guitar notes both unprocessed and processed with different digital audio effects such
as distortion, chorus, or delay. All 1034 unprocessed bass and guitar recordings were used as
dataset in the experiment. The samples were recorded using two different bass guitars and two
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different electric guitars, each played with two different plucking styles (picked and finger-style)
and recorded with two different pickup settings (pickup close to the instrument neck or body).

Experimental Procedure

The main target of this experiment was to identify, how the following factors affect the performance
of the string classification algorithm:

• the separation of the training and test set according to the applied instrument, playing
technique, and pickup setting,

• the use of a plausibility filter (compare Section 4.1.11),

• and the use of a aggregation (voting-scheme) over multiple frame-wise classification results
(see [4] for details).

The different experimental conditions are illustrated in Table 5.7. The columns “Separated
instruments”, “Separated playing techniques”, and “Separated pickup setting” indicate which
criteria were applied to separate the samples from training and test set in each configuration. The
fifth and sixth column indicate whether the plausibility filter and the frame result aggregation
were applied.

LDA was used for feature space transformation. The number of remaining feature dimension
was N = NStrings − 1 = 3. The classification was performed using a SVM classifier with a RBF
kernel. For the configurations 1 to 5, the number of possible permutations is given in the seventh
column of Table 5.7. In each permutation, mean class precision, recall, and F-measure were
computed. For the configurations 6.a - 6.c, none of the criteria to separate the training and the
test set was applied. Instead, a 10-fold cross-validation was applied and the precision, recall, and
F-measure values were averaged over all folds.

Baseline Experiment (MFCC features)

The first baseline experiment was performed in a similar way as shown in Section 5.1—Mel-
Frequency Cepstral Coefficients (MFCC) features were used for the given classification task.
Similar as to the main experiment, LDA is used for feature space transformation and SVM is used
as classifier. The MFCC features were extracted every 10ms. The feature vectors were classified
and evaluated on a frame-level, a 10-fold stratified cross-validation was used for evaluation. It
was ensured that frames from the same audio file were not assigned to both the training and the
test set in different folds. The classification results were averaged of all folds and are given in
Table 5.5.

Table 5.5: Experiment results of the baseline experiment for automatic string classification using MFCC
audio features.

Experiment Number of classes Mean F-measure F̄

Automatic String Classification 4 46.0 %
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Baseline Experiment (Human performance)

In the second baseline experiment, a listening test was conducted to measure the performance
of human listeners for the given task of classifying the string number based on isolated bass
guitar notes. The study comprised 9 participants, most of them being semi-professional guitar
or bass players. To allow for a comparison between the algorithm performance and the human
performance, similar test conditions as for experiment 1.6.c. were achieved as follows. The samples
were randomly assigned to training and test set—no separation based on playing technique, pickup
setting, or instrument was performed. During the training phase, the participants were allowed
to listen to an arbitrary number of notes from the training set for each string class. Afterwards,
the participants were asked to assign randomly selected samples from the test set to one of the 4
string classes.

Table 5.6: Confusion matrix for human performance for string classification. All values are given in
percent. It can be observed that most false classifications are towards adjacent instrument
strings.

E A D G
E 47.0 43.0 9.9 0.1
A 18.7 53.7 26.8 0.8
D 0.8 18.2 64.5 16.5
G 0.7 7.0 35.0 57.3

As it can be seen in the confusion matrix in Table 5.6, human listeners tend to confuse notes
between adjacent strings on the instrument. In total, a mean class accuracy of 55.6% was achieved.

Results & Summary

The results for the automatic classification of different experimental configurations are shown in
Table 5.7. Both the plausibility filter as well as the result aggregation step significantly improve
the classification results in most configurations. Furthermore, the separation of training and test
samples according to instrument, playing technique, and pickup setting has a strong influence
on the achievable classification performance. In general, the results obtained for the bass guitar
and the electric guitar show the same trends [4]. The highest classification score of F̄ = .93 was
achieved for bass guitar notes using configuration 6.c. In this configuration, the samples in the
training and test set were not separated w.r.t. instrument, playing technique, and pick-up setting
and the plausibility filter and the result aggregation were used to improve the performance.

5.4 Transcription of Bass Guitar Tracks

Motivation & Goals

In this experiment, the performance of the proposed bass guitar transcription algorithm is eval-
uated on “real-world” bass guitar tracks and compared to 3 state-of-the-art bass transcription
algorithms. The results of this experiment were published in [14].
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Table 5.7: Mean class precision P̄ , recall R̄, and F-measure F̄ for automatic bass guitar string classification
for different experimental conditions. The best performance of F̄ = 93.0 % (highlighted in
bold print) was achieved using the plausibility filter and the frame-wise result aggregation.

E
xp

er
im

en
t

S
ep

ar
at
ed

in
st
ru
m
en
ts

in
tr
ai
n
in
g
&

te
st

se
t

S
ep

ar
at
ed

p
la
yi
n
g

te
ch
n
iq
u
es

in
tr
ai
n
in
g

&
te
st

se
t

S
ep

ar
at
ed

p
ic
ku

p
se
tt
in
gs

in
tr
ai
n
in
g

&
te
st

se
t

P
la
u
si
b
il
it
y
fi
lt
er

R
es
u
lt

ag
gr
eg
at
io
n

ov
er

5
fr
am

es

N
o.

of
P
er
m
u
ta
ti
on

s�
/

N
o.

of
C
V

fo
ld
s?

P̄ R̄ F̄

1.a x 2� 85.0 85.0 85.0
1.b x x 2� 87.0 87.0 87.0
1.c x x x 2� 78.0 78.0 78.0
2.a x x 8� 86.0 86.0 86.0
2.b x x x 8� 87.0 87.0 87.0
2.c x x x x 8� 88.0 88.0 88.0
3.a x x 8� 57.0 50.0 49.0
3.b x x x 8� 71.0 69.0 69.0
3.c x x x x 8� 88.0 88.0 88.0
4.a x 8� 60.0 54.0 54.0
4.b x x 8� 73.0 71.0 72.0
4.c x x x 8� 93.0 93.0 93.0
5.a x 8� 62.0 55.0 54.0
5.b x x 8� 74.0 71.0 71.0
5.c x x x 8� 92.0 92.0 92.0
6.a 10? 92.0 92.0 92.0
6.b x 10? 93.0 93.0 93.0
6.c x x 10? 93.0 93.0 93.0

Dataset

The IDMT-SMT-BASS-SINGLE-TRACKS dataset introduced in Section 4.2.1 was used for
evaluation. Figure 5.1 illustrates a pitch histogram over the evaluation dataset. The notes with a
MIDI pitch above 48 are played with the harmonics expression style.

Algorithms

The proposed algorithm explained in Section 4.1 (denoted as A) was compared against three
state-of-the-art bass transcription algorithms by Ryynänen & Klapuri [153] (R), Salamon [155]
(S), and Dittmar et al. [46] (D). Algorithm S is limited to a two-octave pitch range between the
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Figure 5.1: Pitch histogram over all notes in the IDMT-SMT-BASS-SINGLE-TRACKS dataset.

MIDI pitch values 21 and 45 (fundamental frequency values between 27.5 Hz - 110 Hz).

Experimental Procedure

For all 17 basslines in the dataset, the annotated note parameters onset, offset, and pitch are
used as ground truth data.
The algorithms R, D, and A provide note-wise transcription results, hence each detected

note is characterized by its onset and offset position as well as its MIDI pitch. The algorithm
S provides only frame-wise estimates of the fundamental frequency. Therefore, only the frame-
wise evaluation measures can be computed here. For the algorithms R, D, and A, frame-wise
fundamental frequency values are obtained using the same temporal resolution of ∆t = 5.8 ms
as in S. All algorithms and the extracted transcription parameters are listed in Table 5.8.

Recall R, precision P , and F-measure F are used as note-wise evaluation measures. The recall
is defined as the number of correctly transcribed notes divided by the total number of reference
notes. The precision is defined as the number of correctly transcribed notes divided by the total
number of transcribed notes. The F-measure combines both measures as F = 2RP/(R+ P ). A
note is considered as correctly transcribed, if it can be assigned to a reference note with the same
MIDI pitch and if it’s onset has a maximum absolute deviation to the ground truth of 150 ms as
proposed in [152].

As for frame-wise evaluation measures, five global measures from the MIREX 2005 competition
for melody extraction are used as explained for instance in [156]—Voicing Recall Rate V RC
(proportion of correctly detected ground-truth melody frames), Voicing False Alarm Rate V FAR
(proportion of ground-truth non-melody frames mistakenly detected as melody frames), Raw
Pitch Accuracy RPA (proportion of detected melody frames with the correct pitch), Raw Chroma
Accuracy RCA (proportion of detected melody frames with the correct pitch, octave errors are
ignored), as well as Overall Accuracy OA (combined performance measure for pitch estimation
and voicing detection).

Results & Summary

The frame-wise evaluation measures are shown in Table 5.9. Algorithm S outperforms the others
in the detection of voiced frames with the highest Voicing Recall Rate of V RC = 0.934. In
terms of pitch estimation, the proposed algorithm A outperforms the others with a Raw Pitch
Accuracy of RPA = 0.765. However, if the octave information is neglected, algorithm S shows
the best performance for the Raw Chroma Accuracy with RCA = 0.82. Keeping in mind that
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Table 5.8: Compared bass transcription algorithms and applicable evaluation measures. All algorithms
except S allow to compute both frame-wise and note-wise evaluation measures.

Algorithm Ref. Evaluation Measures

Frame-wise Note-wise

Ryynänen & Klapuri (R) [153] x x
Salamon (S) [155] x -
Dittmar et al. (D) [46] x x
Abeßer (A - proposed) [14] x x

the algorithm S only considers a limited pitch range of two octaves, a better performance of S
for the Raw Chroma Accuracy is likely if a larger pitch range would be considered.
Table 5.10 illustrates the results of the note-wise evaluation measures. Here, the proposed

algorithm A clearly outperforms the other two algorithms R and D in recall (R = 89.7 %),
precision (P = 90.8 %), and F-measure (F = 90.1 %). While R and D show comparable precision
values, R clearly has the higher recall value in the direct comparison.

The parameters of the proposed algorithm were optimized using isolated bass guitar notes
recorded with the same instrument that was used to record the basslines in the evaluation set.
Therefore, the obtained results can be interpreted as upper performance limit under idealized
conditions since in a real-world application, the bass guitar tracks that are to be transcribed
are very likely recorded with a different instrument. However, the conditions can be recreated in
music education software, if the transcription algorithm can be adapted to the particular sound
of the user’s instrument.

Table 5.9: Frame-wise evaluation results for score-level evaluation. The best performing algorithms are
indicated in bold print for each evaluation measure.

Algorithm Evaluation Measures
VRC VFAR RPA RCA OA

R 0.835 0.209 0.696 0.794 0.728
S 0.934 0.296 0.701 0.82 0.698
D 0.741 0.291 0.585 0.624 0.606
A 0.89 0.427 0.765 0.796 0.735

5.5 Estimation of Instrument-level Parameters from Bass Guitar
Tracks

Motivation & Goals

Finally, an experiment for the estimation of the instrument-related parameters plucking style
(PS), expression style (ES), and string number (SN) from realistic bass guitar recordings was



78 5 Evaluation

Table 5.10: Note-wise evaluation results for score-level evaluation. All values are given in percent. As
indicated in bold print, the proposed transcription algorithm outperforms the other two
algorithms in all three note-wise evaluation measures.

Algorithm Evaluation Measures
R P F

R 75.1 84.1 78.7
D 51.2 81.5 59.9
A 89.7 90.8 90.1

performed and published in [14].

Dataset

Similarly to Section 5.4, the IDMT-SMT-BASS-SINGLE-TRACKS dataset (compare Section
4.2.1) was used for evaluation.

Experimental Procedure

In order to rule out the transcription step as potential source or error in this experiment, ground
truth annotations were used for the note pitch, onset, and offset values. The three models for
the automatic classification of string number (SN), plucking style (PS), and expression style (ES)
were initially trained with notes from the development set DS-2 as explained in Section 4.1.1. For
the PS classifier, all notes from DS-2 were selected that were played with the normal expression
style (NO). For the ES classifier, all notes were used that were played with the finger-style (FS)
plucking style. For the SN classifier, all notes were used that were not played with the dead-note
(DN) nor the harmonics (HA) expression style. After the complete feature set is extracted, the
three aforementioned note parameters are classified and the confusion matrices are obtained.

Results & Summary

The confusion matrices for the estimation of the instrument-related parameters PS, ES, and SN
are shown in Table 5.12, Table 5.13, and Table 5.11. For PS and SN classification, a main diagonal
is clearly visible—mean class accuracy values of 63.6% and 75.2% were achieved. Due to the error
correction explained in Section 4.1.11, all basslines in the dataset played with the slap plucking
styles slap-thumb and slap-pluck were correctly identified, since no confusion appears with the
other plucking style classes. However, there is a frequent confusion between both slap classes.
Notes played with the finger-style (FS) style are often confused to the muted style. For the ES
classification, only the BE class shows satisfying results. The mean accuracy for ES classification is
44.2%. The other classes—especially NO and DN—show strong confusions towards other classes.

As shown before in Section 5.1 and Section 5.3, the presented approach of feature-based
classification of the instrument-related parameters achieved very high classification results if
isolated notes are used for training and prediction. Due to the rhythmic structure of the basslines
used in this experiment, note durations are much shorter than in the training set. This presumably
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caused the strong confusion of FS notes towards the MU expression style class. Also, while the
training set contained only 11 different combinations of plucking and expression, the evaluation
set included 19 different combinations, which lead to a greater variety in different instrument
sounds and which made it more challenging for the classifier models to make the right class
predictions. A possible solution to overcome these problems is to include shorter notes as well as
notes played with more different combinations of plucking and expression styles into the training
set.

Table 5.11: Confusion matrix for string number classification from bass guitar tracks. All values are
given in percent.

E A D G
E 98.8 1.2 0 0
A 15.2 68.7 15.6 0.4
D 1.0 19.4 66.0 13.6
G 0 0 33.0 67.0

Table 5.12: Confusion matrix for plucking style classification from bass guitar tracks. All values are
given in percent.

FS MU PK SP ST
FS 37.6 62.4 0 0 0

MU 0 100.0 0 0 0
PK 0 39.9 60.1 0 0
SP 0 0 0 81.6 18.4
ST 0 0 0 61.1 38.9

Table 5.13: Confusion matrix for expression style classification from bass guitar tracks. All values are
given in percent.

NO BE VI HA DN SL
NO 0.3 54.9 17.2 2.3 0.3 25.0
BE 0 87.5 12.5 0 0 0
VI 0 41.9 51.6 0 0 6.5
HA 16.1 19.4 9.7 48.4 0 6.5
DN 11.1 0 11.1 55.6 22.2 0
SL 0 35.0 10.0 0 0 55.0
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6 Summary

In the first part of this thesis, a novel transcription algorithm was presented that is tailored
towards the characteristics of the electric bass guitar. The algorithm extracts note parameters on
two levels—the score-level and the instrument-level. In Chapter 5 it was shown that the proposed
system performed very well for the estimation of plucking style, expression style, as well as string
number from isolated note recordings.
Also, given the idealized condition that the same bass guitar was used to record notes in the

training and test set, the proposed transcription algorithm could clearly outperform three state-of-
the-art bass transcription algorithm on a novel dataset of realistic bass guitar recordings. These
idealized conditions can be recreated in music education software, if a transcription algorithm
can be adapted to the particular sound of the user’s instrument.

In the remaining two parts of the thesis, the extracted set of note parameters is applied in two
application scenarios. First, in Part II, the score-level parameters note pitch, onset, and offset
are used to classify the musical genre based on the underlying bassline. Second, in Part III, the
complete set of parameters is transmitted to a sound synthesis algorithm in order to re-synthesize
the original bassline by simulating the instrument’s sound production mechanisms.
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Preface

In contrast to melody lines and harmonic progressions, basslines have rarely been investigated in
the field of MIR. The bass track plays an important role in music genres of different historical
epochs from Western classical Baroque music to contemporary genres such as heavy metal or
drum’n’bass, as well as genres from various regional traditions from Western European, American,
and African countries. In popular music genres, typical bass patterns have evolved over time. The
bassline carries important rhythmic and structural information of a song and provides insight to
its underlying harmonic progression. Hence, the automatic classification of extracted basslines
allows to describe a music piece in terms of harmony, rhythm, and style.

This part of the thesis is structured as follows. In Chapter 7, related work on genre classification
using score-based audio features will be reviewed. Amongst others, algorithms will be compared,
which extract semantic information from the bassline of a song. In Chapter 8, a mixed set of
adapted and newly developed score-based audio features will be presented, which allows for
quantifying different musical properties of basslines w.r.t rhythm, tonality, and structure. Also,
a novel dataset will be introduced that comprises 520 basslines from 13 different music genres
stored in the symbolic MIDI format. Finally, Chapter 9 presents a large-scale genre classification
experiment. Three different paradigms will be compared for the task of genre classification:
classification based on statistical pattern recognition, classification based on bass pattern similarity,
and rule-based classification. Finally, the experimental results will be discussed and conclusions
towards future research will be drawn.
Parts of the following sections have been published in [6], [12], [13], and [10].
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7.1 Genre Classification using Score-based Audio Features

Music genre recognition is one of the most popular tasks in the field of MIR. Sturm reviewed
over 430 related publications in [163]. This section focuses on publications towards music genre
classification using score-based audio features. The main focus is on approaches that analyze the
bassline of music pieces.

Figure 7.1: Criteria applied to categorize publications towards genre classification using score-based
audio features.

As shown in Figure 7.1, different criteria are applied to categorize the selected publications: the
instrument track that is analyzed, the proposed set of audio features, the applied classification
paradigm, the applied genre taxonomy and dataset size, as well as the achieved classification
results. All criteria will be detailed in the following sections.

7.1.1 Instrument Track

Genre classification algorithms that extract audio features from the bass track are presented
in [5,10,12,99,157,169,170]. Simsekli points out in [157] that “basslines form a bridge between the
melody and the rhythm section. Hence they encapsulate both rhythmic, melodic, and harmonic
information in a simple, monophonic melody”. Kitarahara discusses that basslines often have a
simple, phrase-like structure, which is repeated [99]. Therefore, as will be shown in Section 9.1,
the analysis of the bassline of a musical piece is a meaningful approach to classify its genre.
The second group of publications extract features from the main melody of a song [15,33,40,

42,94,112,140,174]. The main melody is one of the most memorizable parts of a music piece since
it is also commonly repeated. Different publications show that the tonal and rhythmic properties
of the melody are often well-discriminative among different music genres. Remarkably, the type
of instrument that is used to play the main melody is not considered as additional feature in the
literature.
In the third group of publications, multiple instrument tracks are analyzed [6, 21,43,111,121].

87



88 7 Related Work

The score of a music piece can be easily converted to a MIDI file. For the analysis of real audio
data, very accurate polyphonic music transcription algorithms are required to extract a symbolic
music representation. However, as stated for instance in [102], state-of-the-art polyphonic music
transcription algorithms will presumably remain error-prone to a certain extend in the near
future.

7.1.2 Feature Extraction

Semantic Levels of Audio Features

In the field of MIR, various audio-based features were proposed that can be extracted from the
audio signal itself or from a derived time-frequency representation such as the spectrogram [163].
Those features are commonly categorized into three semantic layers: low-level features, mid-
level features, and high-level features. Low-level features are extracted on a short time scale
(commonly several milliseconds) and relate to simple perceptual signal properties such as the
frequency centroid or the loudness. Mid-level features are computed on a larger time scale such
as the chromagram [127] or beat histograms [72]. These features capture different aspects from
music perception on a higher semantic level [57]. High-level features relate to musical terms such
as key, tempo, or time signature and can therefore easily be interpreted by human experts.
Score-based (or symbolic) features can be compared to the audio-based high-level features

since they are extracted from a musically meaningful (score-level) representation of music pieces.
As discussed in Section 3.1, score parameters such as pitch and onset can either be extracted
from audio recordings via a preliminary music transcription step or from existing symbolic audio
formats such as MIDI, MusicXML, or Humdrum [119]. In this thesis, the focus is solely on genre
classification using score-based features.

Musical Domains

Score-based audio features relate to different musical domains such as tonality, rhythm, structure,
and timbre. The first group of features are related to the tonality of given melodies or basslines.
Features that characterize the melodic shape are used in [5, 99, 140, 169]. The melodic shape
or contour describes how the absolute pitch of a melody changes over time. Tzanetakis et al.
compute simple histograms from the absolute pitch and the pitch class1 in [174]. Since pitch
histograms change if melodies are transposed2, other authors propose to use interval histograms
instead [21, 157]. A scale defines a sub-set of the 11 chromatic notes, which can be played in a
given harmonic context of a chord. The use of different scales is often genre-specific. Therefore,
likelihood measures of different scales are extracted using a pattern matching algorithm in [5,10]
and used as features.
The second group of features describe rhythmic properties. For this purpose, the distribution

of the note parameters onset [140], duration [94], as well as the inter-onset-interval (distance
between consecutive note onsets) [112] are analyzed using different statistical measures to extract

1As will be shown in Section 8.1.1, the pitch class simplifies the absolute pitch representation by neglecting the
octave information.

2Transposition denotes a constant shift of all absolute pitch values in a melody according to the given key.
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features. More complex rhythmic phenomena such as syncopations and rhythmic subdivisions
are investigated in [5].

The third feature group is based on the temporal structure of note sequences. Multiple authors
exploit the repetitive, pattern-like structure of melodies or basslines. For instance, the similarity
between repetitive bass patterns is either used for feature extraction [94, 170] or directly for
classifying unknown basslines [10].

Finally, timbre-related properties of music pieces are analyzed for feature extraction. As shown
in [163], most of the publications focusing on audio-based features try to use timbre descriptors for
genre classification tasks. However, symbolic audio formats represent note events on an abstract
level without capturing instrument-specific acoustic properties. Nevertheless, the MIDI format
allows to annotate the instrument type associated to each MIDI track. The presence of particular
instrument or instrument group is used as timbre feature in [21,121].

Time-windowing & Hybrid Feature Extraction

Most publications extract one set of features over the complete melody or bassline. In contrast,
Pérez-Sancho et al. as well as León & Iñesta apply a sliding window to compute local feature
values at different time instances [40, 140]. Similarly, Cataltepe et al. convert the melody in a
MIDI file into a character string over different time spans within the music piece [33].
Score-based features can be used to complement existing audio-based features in a hybrid

feature extraction framework [99,112,169]. Here, the audio features describe properties related
to rhythm and timbre while the score-based features relate to melodic properties. Some authors
follow an inverse approach. Existing MIDI files are re-synthesized to audio files in order to extract
audio-based features [33].

7.1.3 Classification

Classification Paradigms

In the literature reviewed in this section, three different classification paradigms are investigated:
The first type of classification systems applies pattern similarity measures: Melodies and basslines
are compared based on their melodic and rhythmic similarity. The second classification paradigm
is based on statistical pattern recognition: A statistical classifier model assigns a song to a music
genre class based on an extracted feature vector. The third type of classifiers is based on rules
or expert knowledge: A set of decision rules is first extracted based on the class distributions in
the feature space and then applied for genre classification.

Classification Based on Pattern Similarity The computation of similarity between different
melodies is useful for both music retrieval and analysis. First, the melody is converted into a
character string by transforming the note-wise score parameter values such as the absolute pitch
into a sequence of characters. Different distance measures are applied to measure the similarity
between melodies as for instance the Edit Distance [125], the Earth Mover’s Distance (EMD), and
the derived Proportional Transportation Distance (PTD) [172]. Other similarity measures are
derived from the perception-based Implication/Realization (I/R) model [70] or from a graph-based
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representation of musical structure [132]. Genre classification based on similarity between melodies
is discussed in [6, 15, 33]. The similarity between bass patterns is investigated in [5, 10, 170].

Classification Based on Statistical Pattern Recognition Statistical pattern recognition meth-
ods are widely applied for different MIR tasks such as genre, mood, or style classification. After a
set of features is extracted, the dimensionality of the feature space is reduced using feature space
transformation techniques such as Linear Discriminant Analysis (LDA) [6] and Principal Compo-
nent Analysis (PCA) [99] or using feature selection techniques such as Inertia Ratio Maximization
using Feature Space Projection (IRMFSP) [12] and feature grouping [40].
In the literature discussed in this section, various classification algorithms are used: Support

Vector Machines (SVM) [6, 10, 15, 112, 140], Neural Networks (NN) [121], k-Nearest Neighbor
[33,40,121,140,157,174], Bayesian classifier [40,99,140], Self-Organizing Map (SOM) classifier [40],
and Multi-layer Perceptron [140]. Machine learning algorithms for classification, feature selection,
and feature space transformation that are used in the experiments described in this thesis are
detailed in Section 2.3.

Rule-based Classification & Expert Systems The modeling of different genres or styles using
a list of rules is more intuitive and comprehensible for humans than using statistical pattern
recognition methods [11, 41]. Each rule corresponds to a distinct musical property and expresses
a simple feature-value-relation. The automatic learning of these rules is presented for harmony
progressions [16], melody characterization [41], as well as for automatic music generation [27]. The
Classification and Regression Tree (CART) algorithm was used in [10] to find rules to distinguish
13 different music genres from a global background based on repetitive bass patterns.

Hierarchical Structure of Data Sets & Classification Aggregation

In many publications, data sets with a hierarchical genre taxonomy, i.e., a set of root genres
having multiple leaf-genres, are used [33,43,121,157]. In the literature, the aggregation of multiple
classifiers is performed via result weighting [94,111], Bayesian decision frameworks [42], or classifier
ensembles [140].

7.1.4 Evaluation

Throughout the literature, cross-validation is used to evaluate classification algorithms (compare
Section 2.3.1). Given a data set of various item examples (songs, melodies, or basslines) for
different music genres, multiple evaluation folds are performed. In each fold, a different set of
items is assigned towards the training set, which is used to train the classifier, and the test set,
which is classified using the trained classifier. Based on the known genre class labels of the test
set items, different evaluation measures are computed for each fold and finally aggregated over
multiple folds.

Figure 7.2 gives an overview over the classification results reported in the discussed publications.
For each publication, both the average number of class items per genre as well as the average
classification accuracy is shown. Two observations can be made that complicate the comparison of
the reviewed publications. First, the number of class items per genre strongly varies from 20 [174]
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Figure 7.2: Average number of class items per genre and highest classification accuracy for all discussed
publications. Publications are ordered by increasing number of genres, which is also given
in brackets. Publications with the same number of genres are grouped in the figure by using
the same background color. Abbreviations for publications are Deh-2006 [43], Per-2006 [140],
Leo-2007 [40], Ana-2011 [15], Tza-2002 [173], Kar-2006 [94], Bas-2004 [21], Lid-2007 [112],
Tsu-2008 [169], Kit-2008 [99], Abe-2008 [6], Abe-2009 [12], Lid-2007 [112], Abe-2010 [5], Mck-
2004 [121], Sim-2010 [157], Cat-2007 [33], Lid-2007 [112], Tsu-2009 [170], and Abe-2012 [10].

to 243 [112]. In order to obtain a robust genre classification system, the number of class items
should be as high as possible in order to best represent a musical genre by means of those examples.
Second, the number of genres varied from 2 [15, 40, 43, 140], 5 [94, 174], 6 [6, 12, 21, 99, 112, 169],
8 [5, 112], 9 [33,121,157], 10 [112,170], up to 13 [10]. The classification tasks naturally becomes
more difficult with a higher number of classes. Therefore, it can be observed in Figure 7.2 that
the classification accuracy values decrease with increasing number of genres.

7.1.5 Conclusion

As shown in [5,10,12,99,157,169,170], the analysis of the bassline leads to promising genre classi-
fication results. However, the best results were obtained by analyzing multiple instrument tracks.
Hybrid approaches that combine audio-based and score-based features using an intermediate
music transcription algorithm obtain high classification results for different audio datasets [112].
The main advantage is that these approaches are not restricted to the analysis of symbolic audio
files but instead allow to analyze real audio recordings. Nevertheless, score-based features strongly
rely on the quality of the transcription results. Hence, the performance of this hybrid approach
depends on further improvements in the field of automatic music transcription.
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8.1 Score-based Audio Features

In this chapter, various score-based audio features will be introduced that allow to describe a
bassline from three different musical perspectives—rhythm, tonality, and structure. For each
perspective, several note representations will be discussed first and then related audio features
will be described.

8.1.1 Tonality

Representations

In the following sections, different tonal note representations are explained that will be used
throughout this part of the thesis. As an example, Table 8.1 illustrates a funk bassline with the
corresponding note representation values.

Table 8.1: Tonal note representations of a funk bassline. Score notation is given on top and different
note parameters are given for all notes below.Moderate h = 107

Page 1/1

; 44
1

.B
.B B BD P Q B

H
.B

.B BD B BF .B BD B
Note number i 1 2 3 4 5 6 7 8 9 10 11 12
Note name C3 G3 A3 A]3 B2 C3 G3 A]3 A3 G3 A]2 B2

Absolute pitch P(i) 48 55 57 58 47 48 55 58 57 55 46 47
Pitch class P12(i) 0 7 9 10 11 0 7 10 9 7 10 11
Relative pitch P∆(i) 7 2 1 -11 1 7 3 -1 -2 -9 1 -
Chromatic interval P∆,12(i) 7 2 1 -11 1 7 3 -1 -2 -9 1 -
Interval direction P∆,D(i) 1 1 1 -1 1 1 1 -1 -1 -1 1 -
Diatonic intervals P∆,7(i) 5 2 2 -7 2 5 3 -2 -2 -6 2 -

Absolute Pitch The absolute pitch P ∈ ZN (0 ≤ P(i) ≤ 127) corresponds to the note’s MIDI
pitch value. The number of notes in a bassline is denoted as N . For instance, the musical note A4
(pitch class A in the fourth octave) has a fundamental frequency of f0 = 440Hz and an absolute
pitch value of P(i) = 69.
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Pitch Class The pitch class P12 ∈ ZN is computed as

P12(i) = P(i) mod 12 (8.1)

and provides an octave-invariant representation of the absolute pitch. The pitch class P12(i) = 0
corresponds to the note name C.

Relative Pitch The relative pitch P∆ ∈ ZN−1 (interval) describes the pitch difference in semi-
tones between two consecutive notes.

P∆(i) = P(i+ 1)− P(i) (8.2)

Interval Direction The interval direction P∆,D ∈ ZN−1 measures whether two adjacent notes
show an increase or decrease in pitch or whether the absolute pitch remains constant.

P∆,D(i) = sgnP∆(i) (8.3)

Chromatic Interval The chromatic interval P∆,12 ∈ ZN−1 is obtained by mapping the absolute
interval P∆ to a range of one octave upwards and downwards as

P∆,12(i) =

{
P∆(i) mod 12 if P∆(i) ≥ 0,

− (−P∆(i) mod 12) otherwise.
(8.4)

Diatonic Interval The diatonic interval is denoted as P∆,7 ∈ ZN−1. For each chromatic interval
P∆,12, a corresponding diatonic interval P∆,7 can be associated as shown in Table 8.2.

Feature Extraction

In this section, all features will be described that are used in the genre classification experiments
described in Section 9.1. Similarly to the first part of the thesis, features will be denoted as χ
with a corresponding subscript.

Pitch Range The pitch range is computed as

χPitchRange = maxP −minP. (8.5)

Relative Frequency of Dominant Pitch The dominant absolute pitch Pdom value is the most
frequently appearing absolute pitch value. It is determined as

Pdom = u[P](imax) (8.6)

with
imax = arg max

i
n[P](i). (8.7)
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Table 8.2: Interval names and corresponding diatonic and chromatic intervals. Since for the analysis of
the bassline contours only the pitch distances and not the harmonic function/meaning of the
pitches matter, a simplified but unambiguous mapping from chromatic to diatonic interval
values is used here.

Interval name Diatonic interval P∆,7 Chromatic interval P∆,12

Descending seventh -7 -11,-10
Descending sixth -6 -9,-8
Descending fifth -5 -7,-6
Descending fourth -4 -5
Descending third -3 -4,-3
Descending second -2 -2,-1
Prime 1 0
Ascending second 2 1,2
Ascending third 3 3,4
Ascending fourth 4 5
Ascending fifth 5 6,7
Ascending sixth 6 8,9
Ascending seventh 7 10,11

In case multiple absolute pitch values appear equally often, the lowest of these values is selected
as dominant absolute pitch. The relative frequency of the dominant pitch is used as a feature:

χFreqDomPitch = p[P](imax). (8.8)

A high value of χFreqDomPitch can indicate a rather simple bassline with many pitch repetitions
and only a few tonal variations. The auxiliary functions u, n, and p are defined in Section 1.6.

Pedal Tone Some basslines are based on a pedal tone. Here, the dominant pitch is one of the
lowest pitch values that are present in the bassline. The feature χPedalTone measures this property
of the pitch distribution as follows:

χPedalTone =
Pdom −minP

maxP −minP
(8.9)

If χPedalTone is small, the dominant pitch is comparably low and the use of a pedal tone in the
bassline is more likely.

Tonal Complexity & Pitch Class Entropy Among others things, the tonal complexity of a
bassline depends on the number of unique pitch class values it contains. In each of the bass
patterns investigated in this part of the thesis, the key remains constant and one scale, which
can be represented by 7 pitch class values, is used. Simple basslines most consist of the root (and
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octave), and the fifth of the present chord. basslines with a higher tonal complexity include also
other chord tones such as thirds and sevenths.
In order to derive a quantitative measure for tonal complexity, the flatness of the pitch class

distribution p[P12] of a bassline is measured using the zero-order entropy as

χChromPitchEntropy =
N∑
i=1

p[P12](i) log2 p
[P12](i). (8.10)

High entropy values indicate that the distribution p[P12] tends towards an equal distribution,
which would imply a high number of unique pitch class values.

Interval Properties The absolute interval size is

P∆,abs(i) = |P∆(i)| with P∆,abs ∈ ZN−1. (8.11)

The mean over P∆,abs is used as feature to characterize the average absolute interval size within
a given bassline. The standard deviation over P∆,abs is computed as a feature to characterize the
fluctuation of the absolute interval size over time. In addition, the number of unique intervals is
computed as

χUniqueIntervals = dim
(
v(P∆)

)
. (8.12)

Simple basslines such as a repetitive, octave-based minimal techno bass line have a smaller number
of unique intervals than more complex basslines from other genres.

Typical Interval Progressions Some interval progressions in basslines are characteristic for
certain music genres. The following features capture the relative frequency of constant pitch
sequences and chromatic transitions between notes.
A ratio of constant pitch sequences is computed as

χConstPitch =
1

N − 1

N−1∑
i=1

δi with δi =

{
1 , if P(i) ≡ P(i+ 1)

0 , otherwise.
(8.13)

If two adjacent intervals have an absolute size of one semi-tone, the note transition is chromatic.
basslines in some jazz-related music genres1 often show chromatic note transitions. Similarly to
the previous feature, a feature can be derived as

χChromNoteTrans =
1

N − 2

N−2∑
i=0

δi, δi =

{
1 , if |P∆(i)| ≡ |P∆(i+ 1)| ≡ 1

0 , otherwise.
(8.14)

1This bass playing style is commonly referred to as walking bass.
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Melodic Contour The melodic contour, i.e., the melodic shape of a bassline is perceived as fluent
if multiple adjacent intervals have the same interval direction. The ratio of constant direction is
computed as

χConstIntDir =
1

N − 2

N−2∑
i=1

δi, δi =

{
1 , if P∆,D(i) ≡ P∆,D(i+ 1)

0 , otherwise.
(8.15)

The dominant interval direction is computed as the ratio between the number of ascending
intervals and the total number of ascending and descending intervals:

χDomIntDir =


n

[P∆,D]
(1)

n
[P∆,D]

(3)+n
[P∆,D]

(1)
, if n[P∆,D](3) + n[P∆,D](1) > 0

0 , otherwise.
(8.16)

with
u[P∆,D] =

[
−1, 0, 1

]
.

Small feature values indicate mostly descending intervals and vice versa.

Relative Frequency of Diatonic Interval Classes The diatonic interval representation P∆,7

corresponds to musical interval labels as shown in Table 8.2. The diatonic interval class P∆,7,abs ∈
ZN−1 neglects the interval direction:

P∆,7,abs(i) = |P∆,7(i)| . (8.17)

The relative frequencies of the 7 different possible values P∆,7,abs(i) ∈ {1, 2, . . . , 7} are computed
as features to characterize the occurring intervals in a bassline:

χFreqDiatonicInt(i) = p[P∆,7,abs](i) (8.18)
1 ≤ i ≤ 7

Melodic Scale A scale is a unique sub-set of the 12 possible pitch class values that fits to a
given key. The choice of the applied scale mainly depends on the underlying harmonic progression.
However, some scale types are typically applied in certain musical genres.

As shown in the third column of Table 8.3, a scale can be represented by a binary scale template
ts ∈ Z12 with ts(i) ∈ [0, 1]. This template describes the unique interval structure between adjacent
pitch class values of a scale. Pitch class values that are part of the scale are indicated by ts(i) = 1
and all others by ts(i) = 0. In music practice, melodies rarely only consist of inside-scale notes
due to local pitch variations. However, the binary template approach is used here as an effective
way to compute likelihood values for the 10 different scales listed in Table 8.3 for a given bassline.
These likelihood values are used as features.

The first (non-zero) element of a scale template represents the root note pitch class of the
scale. The relative positions of the remaining scale pitch classes can be derived from the interval
structure of the scale. Since the root note can have any arbitrary pitch class value, the scale
template ts can be modified by a cyclic shift operation by r semitones to obtain a shifted scale
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Table 8.3: Investigated scales with corresponding binary scale templates.

Scale index s Scale name Scale template ts
0 Natural minor

[
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0

]
1 Harmonic minor

[
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1

]
2 Melodic minor

[
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1

]
3 Pentatonic minor

[
1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0

]
4 Blues minor

[
1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1

]
5 Whole tone

[
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0

]
6 Whole tone half tone

[
1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1

]
7 Arabian

[
1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1

]
8 Minor gypsy

[
1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0

]
9 Hungarian gypsy

[
1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1

]

template ts,r. By applying this operation, the interval structure remains the same and the pitch
class value of the root note is adopted to the predominant chord or key.
A template-matching approach is used to compute a likelihood value of a scale s for a given

bassline. Based on the relative frequencies of all pitch class values p[P12] in a given bassline, a
likelihood measure γs,r can be computed for each rotated version of each scale as

γs,r =
〈
ts,r | p[P12]

〉
(8.19)

with 0 ≤ r ≤ 11

and 〈.〉 denoting the scalar product. The likelihood measures χScale(s) for each scale template are
computed by maximizing γs,r over all 12 possible rotations as

χScale(s) = max
0≤r≤11

γs,r (8.20)

with 0 ≤ s ≤ 9

and used as feature.

8.1.2 Rhythm

Representations

In the first part of this thesis, the note onset O and duration D was measured in seconds based
on a physical time representation. In this part, a musical time representation is used instead.
The onset and duration is measured in fractions of musical bar lengths. This representation is
tempo-independent and allows to compare music pieces of different tempo values.2 The MIDI
toolbox [48] is used to extract the score parameters O and D directly from MIDI files.

2Ambiguities could result from time signature changes and tempo changes with an octave relationship. However,
this is not a problem for the analyzed basslines.
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Table 8.4: Rhythmic note representations of a funk bassline. Score notation is given on top and different
note parameters are given for all notes below.Moderate h = 107

Page 1/1

; 44
1

.B
.B B BD P Q B

H
.B

.B BD B BF .B BD B
Note number i 1 2 3 4 5 6 7 8 9 10 11 12
Note name C3 G3 A3 A]3 B2 C3 G3 A]3 A3 G3 A]2 B2

Onset O(i) 0 1
4

3
8

7
16

7
8 1 11

4 1 7
16 110

16 13
4 17

8 115
16

Relative onset O1(i) 0 1
4

3
8

7
16

7
8 0 1

4
7
16

10
16

3
4

7
8

15
16

Bar number B(i) 0 0 0 0 0 1 1 1 1 1 1 1
Duration D(i) 1

8
1
16

1
16

1
16

1
8

1
8

3
32

3
16

1
8

1
16

1
16

1
16

Inter-onset-interval O∆(i) 1
4

1
8

1
16

7
16

1
8

1
4

3
16

3
16

1
8

1
8

1
16 -

In the following sections, all note representations related to rhythm will be explained, which
are used for feature extraction in this part of the thesis. In Table 8.4, these representations are
given for the same example bassline as previously used in Table 8.1.

Relative Onset The relative onset O1 ∈ RN neglects the bar number and only takes the relative
position of a note within its bar into account:

O1(i) = O(i) mod 1 (8.21)

Bar Number The onset of each note can be associated to one bar of the underlying rhythmic
structure. The bar number B ∈ RN is computed as

B(i) = bO(i)c (8.22)

using zero-based indexing. The length of a bassline in bars is denoted as NB.

Inter-Onset-Interval The inter-onset interval (IOI) O∆ ∈ RN−1 is the distance between two
consecutive note onsets.

O∆(i) = O(i+ 1)−O(i) (8.23)

Metric Level A metric level l ∈ Z defines a segmentation of a bar into multiple equidistant
beats. Table 8.5 shows the beat duration Dl that correspond to different metric levels for different
time signatures n

d . The first metric level (l = 1) can be interpreted as beat-level, the metric levels
l = 2 and l = 3 can be interpreted as first and second sub-beat level3. For instance, given a 4

4 time
signature, the first metric level is the quarter-note level, the second metric level is the eight-note
level and so forth.

3The sub-beat level is often referred to as tatum level in the literature.
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Table 8.5: Beat durations for different metric levels and different time signatures.

Time signature Beat duration Dl in metric level l

l = 1 l = 2 l = 3

3
4 ,

4
4

1
4

1
8

1
16

6
8

1
8

1
16

1
32

In each bar, a metric level is defined by n l beats with n denoting the numerator of the time
signature. The beats have the relative onset values

O1,l(i) =
i− 1

n l
with 1 ≤ i ≤ n l. (8.24)

As will be shown in Section 8.1.2, each note can be assigned to one metric level lM(i) with
lM ∈ ZN .

Pre-Processing

Note Quantization Note quantization refers to the mapping of arbitrary note onset values
towards a given metric level. Musical notes can be quantized in time onto the nearest beat
positions O1,l of a given metric level l. The i-th note is mapped to the beat index

bl(i) = arg min
1≤b≤d l

∣∣O1(i)−O1,l(b)
∣∣ with bl ∈ Zd l. (8.25)

If the note onset is exactly between two beat positions, it is quantized onto the first one. All
beats of a metric level can be either classified as on-beats or off-beats based on their index as

bOn,l(i) = 2k − 1, (8.26)

bOff,l(i) = 2k, (8.27)
1 ≤ k ≤ log2 (d l) .

This definition holds true for time signatures with a even-numbered numerator. On-beats corre-
spond to metrically strong positions in a bar.

Note Mapping Each note of a given bassline can be assigned to one metric level. First, a
mapping cost value cM(i, l) is computed based on the smallest distance between the relative onset
O1(i) of the i-th note and the relative onset values O1,l(k) of all beats that correspond to the
metric level l:

cM(i, l) = min
1≤k≤d l

∣∣O1(i)−O1,l(k)
∣∣ . (8.28)
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The metric level lM(i) of each note is computed by minimizing the mapping costs:

lM(i) = arg min
1≤l≤4

cM(i, l) (8.29)

For reasons of simplification, the smallest metric level that is considered here is l = 4. If multiple
metric levels have the lowest cost value minl cM(i, l), the smallest metric level is selected as lM(i).

Feature Extraction

Tempo The IDMT-SMT-BASS-GENRE-MIDI dataset, which is used in the genre classification
experiments in this part of the thesis, will be explained in Section 8.2. It contains MIDI files from
13 different music genres including tempo annotations. The tempo of each bassline in beats per
minute (bpm) is directly used as feature χTempo.4 Figure 8.1 illustrates the tempo distribution
over basslines from different music genres in the dataset. It can be observed that the tempo is a
discriminative feature among the genre classes.

BLU BOS FOR FUN HIP MIN MOT REG RON ROS SAL SWI ZOU
50

100

150

200

Genre

T
e

m
p

o
 [

b
p

m
]

Figure 8.1: Boxplot of tempo values of all bass patterns in the IDMT-SMT-BASS-GENRE-MIDI data
set for different music genres. The central mark is the median, the edges of the box are
the 25th and 75th percentiles. The tempo values are given in beats per minute (bpm). The
genre abbreviations are explained in Table 8.6. It can be observed that the tempo is a
well-discriminating feature among the genre classes.

Dominant Metric Level The dominant metrical level is defined as metrical level whom at least
80 percent of all notes are assigned to:

χDomMetLev = u[lM](imax) with (8.30)

p[lM](imax) ≥ 0.8 (8.31)

In case p[lM](imax) ≥ 0.8 is fulfilled by multiple metric levels, the smallest metric level is chosen
as dominant metric level.
In Figure 8.3, a salsa bassline is shown in the first row. In the second, third, and fourth row,

the metric levels lM ∈ {3, 2, 1} are illustrated as metric positions in the bar. For each metric level,
the plus signs indicate on which metric position a corresponding note in the bass exists. For the
given example, the dominant metric level is χDomMetLev = 3 (sixteenth-notes) since all notes can
be assigned to it.

4The tempo is obtained from the MIDI files using the gettempo function of the MIDI Toolbox for Matlab [48].
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Music engraving by LilyPond 2.12.3—www.lilypond.org

Figure 8.2: Excerpt of a salsa bassline in 4
4 time signature (first row). Here, notes of the bassline, which

refer to on-beat positions of the metric level lM = 3 (sixteenth notes) are indicated by a plus
sign (+), notes on off-beat positions are indicated by an accent sign (’). In the second to
fourth row, metrical levels lM = 3, lM = 2 (eight notes), and lM = 1 (quarter notes, beats)
are shown. Plus signs indicate that notes in the bassline exist at this metric position.

Average Metric Rating Based on the metric level lM(i) of each note, an inverse rating is
computed to emphasize the number of notes on strong metric positions:

χMetricRating =
1

N

N∑
i=1

1

lM(i)
(8.32)

High values of χMetricRating indicate that the majority of all notes of an instrument track are
played on strong metric positions and therefore correspond to low metric levels.

Note Density The number of notes in each of the NB bars is stored in NNB ∈ ZNB . The mean
and standard deviation are computed as features over NNB in order to measure the average note
density and the fluctuation of the note density over time.

On-beat Accentuation In Western European music genres, most notes are located at on-beat
positions. In contrast, in Latin American music styles, notes are often played on off-beat positions
due to note syncopation, as will be explained in the next paragraph. To measure the degree
of on-beat accentuation, different metric levels l ∈ {0, 1, 2, 3, 4} are investigated. Given the
most common 4

4 time signature, these metric levels correspond to the note durations Dl ∈{
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32

}
. For each metric level l and each bar b, the ratio between the number notes

nNB,On,l(b) that are mapped to on-beat positions and the total number of notes nNB(b) in that
bar are computed.

δOn,l(b) =
nNB,On,l(b)

nNB(b)
(8.33)

The mean and standard deviation over each δOn,l are computed as features to capture the degree
of on-beat accentuation as well as its fluctuation over time for all metric levels l ∈ {0, 1, 2, 3, 4}.
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In Figure 8.3, the salsa bassline from the previous note example is shown again. A metric level
of l = 3 (sixteenth note) is used as a reference. Notes on on-beat positions are indicated by a plus
sign (+) and notes on off-beat positions are indicated by an accent sign (’). Here, the number of
notes located on on-beat positions are nNB,On,3(1) = 5 for the first bar and nNB,On,3(2) = 2 for
the second bar. 
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Figure 8.3: Same bassline as in Figure 8.3 is shown. The dominant metric level is l = 3, the corresponding
sixteenth notes are shown in the second row. Notes on on-beat positions are indicated by a
plus sign (+) and notes on off-beat positions are indicated by an accent sign (’).

Syncopated Note Sequences Syncopated note sequences are characterized by notes that are
shifted from strong metric positions (on-beats) to weak metric positions (off-beats). Rhythms
with syncopation can be found especially in Latin American music genres such as salsa or bossa
nova. Examples for note sequences with and without syncopation are given in Figure 8.4.

1 0 0 1

No SyncopationSyncopation

0 1 1 0 1 1 0 1 0 1 1 1 1 0 1 1 1 1 1 0

Figure 8.4: Syncopated and non-syncopated note sequences for the metric level l = 2 (eight-notes) [10].
Corresponding binary beat sequences are shown above the score. The dotted lines are added
for visualization purpose.

Syncopated note sequences are detected as follows. First, each note of a bassline is quantized
towards the closest beat positions of a given metric level l as explained in Section 8.1.2. Then, a
binary value δBeat(b) ∈ [0, 1] is assigned to each beat as follows:

δBeat(b) =

{
1 , if at least one note was quantized to that beat and
0 , otherwise.

(8.34)

In Figure 8.5, the previously shown salsa bassline is encoded as binary beat sequence for the
metric level l = 3 (sixteenth-note level).
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Figure 8.5: Previously shown salsa bassline encoded as binary beat sequence based on sixteenth-notes
(metric level l = 3).

As shown in Figure 8.4, syncopated note sequences are indicated by the following binary
beat-sequences δSync,k ∈ Z4:

δSync,1 =
[
1, 0, 0, 1

]
(8.35)

δSync,2 =
[
0, 1, 1, 0

]
δSync,3 =

[
1, 1, 0, 1

]
δSync,4 =

[
0, 1, 1, 1

]
The number of beat sequences that occur in a bassline for a given metric level l is counted as
NSync(l). Syncopated note sequences are retrieved for the metric levels l ∈ {1, 2, 3, 4}.
The degree of syncopation is computed as the ratio between the number of syncopated note

sequences NSync(l) ∈ Z and the overall number of beats in a bassline for each metric level:

χSync(l) =
NSync(l)

NB d l
. (8.36)

8.1.3 Structure

Representations
Moderate h = 107

Page 1/1

; 44
1

.B
.B B BD P Q B

H
.B

.B BD B BF .B BD B
Figure 8.6: Funk bass pattern example.

Bass Patterns & Subpatterns A bass pattern Θ is a (repetitive) sequence of notes played by
the bass instrument. In the following, each bass pattern is represented either using the relative
onset times O (denoted as ΘO) or the absolute pitch values P (denoted as ΘP) of the notes it
contains. As an example, the funk bass pattern shown in Figure 8.6 can be represented as

ΘO =
[
0, 4

16 ,
6
16 ,

7
16 ,

14
16 , · · ·

]
or

ΘP =
[
48, 55, 57, 58, 48, · · ·

]
.
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Rhythmic and Tonal Similarity between Patterns Given two patterns Θm and Θn based on
one of the abovementioned representations, the Edit distance dE(Θm,Θn) can be used to compute
their similarity. The Edit distance between two character strings is the accumulated number of
character insertions, deletions, and replacements, which are necessary to convert one string into
the other [75]. A similarity value can be defined as

SE(Θm,Θn) = 1−
dE(Θm,Θn)

dE,max

(8.37)

with SE(Θm,Θn) ∈ R and 0 ≤ SE(Θm,Θn) ≤ 1.

The scaling factor dE,max is the number of notes in the longer pattern.

Feature Extraction

Tonal & Rhythmic Similarity between note sequences In order to describe the repetitive
structure of a bass pattern, it can be segmented into (non-overlapping) subpatterns of lsub bars
length. Depending on the subpattern repesentation (ΘP or ΘO), the rhythmic similarity SE,Rhy

and tonal similarity SE,Ton between adjacent subpatterns is computed using the Edit distance as
described in the previous section.
The tonal and rhythmic similarity between adjacent subpatterns is computed and averaged

over all subpattern pairs to derive the features χTonSim(lsub) and χRhySim(lsub). Both features
are computed for the three subpattern lengths lsub ∈ {1, 2, 4} since these lengths appear most
frequently in the dataset. These features for instance allow to discriminate between simple minimal
techno bass patterns, which are repeated every bar and more complex funk basslines, which are
repeated every 4 bars.

8.2 Data Sets

8.2.1 IDMT-SMT-BASS-GENRE-MIDI

Since 2009, a data set of MIDI files was assembled that contains typical bass patterns from various
music genres. The extraction of repetitive bass patterns from original bass lines is not within
the scope of this thesis. MIDI files were used in order to omit the error-prone transcription step
discussed in Part I of this thesis. The dataset was revised over time (versions V1 [12] and V2 [5])
until a final set (V3) including 520 basslines from 13 music genres was set up and used for the
genre classification experiments described in this part of the thesis as well as in [10].
Table 8.6 gives an overview over all three versions w.r.t to the number of basslines and the

number of covered music genres. For each music genre, the regional origin and the approximate
time of the first genre audio recordings are provided as additional information. As it can be seen,
the music genres included in the data set cover a large geographic and historic selection of music
cultures. The distribution of tempo values was shown before in Figure 8.1.

The first two version V1 and V2 comprised basslines from 6 and 8 different genres, respectively.
These basslines have been entirely taken from instructional bass literature [150,182]. For the third
version V3, the collection was extensively revised. All genre-sets were modified and five new sets
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Table 8.6: Music genres included in the three versions (V1, V2, and V3) of the IDMT-SMT-BASS-
GENRE-MIDI data set. For each music genre, the regional origin, the approximate time of
first audio recordings, and the abbreviation as used in this thesis are given.

Music genre Origin First rec. Abbr. Number of basslines
V1 V2 V3

africa (various) - AFR - 40 -
blues USA 1912 BLU 50 40 40
bossa nova Brasil 1958 BOS - - 40
funk USA 1960s FUN 50 40 40
forró Brasil 1900 FOR - - 40
hip-hop USA 1970s HIP - - 40
latin (various) - LAT 50 - -
metal & hard rock GB, USA 1968 MHR 50 - -
minimal techno USA, Germany 1994 MIN - - 40
motown USA 1960 MOT - - 40
nineties rock USA, GB 1990s RON - - 40
pop GB, USA, others 1960s POP 50 - -
reggae Jamaica 1960s REG - 40 40
rock GB, USA 1960s ROC - 40 -
salsa & mambo Cuba 1930s SAL - 40 40
seventies rock USA, GB 1970s ROS - - 40
soul & motown USA 1940 / 1960s SOU - 40 -
swing USA 1920s SWI 50 40 40
zouglou Cote d’Ivoire 1995 ZOU - - 40∑

300 320 520

were added. Since instructional literature is not available for some of the music genres, various
basslines have been manually transcribed from real audio recordings and were added to the data
set. The audio recordings associated to each genre were selected by a musicologist. Throughout
this thesis, the third version V3 will be referred to as IDMT-SMT-BASS-GENRE-MIDI. The
dataset was not published due to copyright reasons.
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9.1 Automatic Music Genre Classification based on Repetitive
Bass Patterns

The experiments described in this section were conducted in collaboration with Hanna Lukashevich
(Semantic Music Technologies group, Fraunhofer IDMT) and Paul Bräuer (piranha womex AG,
Berlin). The results were partly published in [10].

Motivation & Goals

Despite the large number of musical instruments that are played in different music genres, a
bass instrument such as the bass guitar or the double bass is almost always present in a musical
ensemble [186]. The bassline provides both a rhythmic and harmonic foundation for the remaining
instruments.

As discussed before, basslines can be represented in a compact form as repetitive bass patterns.
This procedure has two advantages. First, a bass pattern is a robust representation of a repetitive
bassline since it neglects local rhythmic and tonal variations. Second, bass patterns usually have
a length of 2, 4, or 8 bars. Hence, the extraction of score-based features such as presented in
Section 8.1 can be accelerated considerably.

The main goal of this experiment is to investigate, whether the music genre of a musical piece
can be automatically retrieved from its underlying bass patterns. Three different paradigms will
be compared for this classification task:

1. classification based on statistical pattern recognition,

2. classification based on a rule-based decision tree, and

3. classification based on the similarity between bass patterns.

Dataset

For this experiment, the IDMT-SMT-BASS-GENRE-MIDI data set described in Section 8.2 was
used. The dataset contains MIDI files of 520 bass patterns—40 bass patterns for each of the 13
music genres from different cultural, historical, and regional origins.

Baseline Experiment

As a baseline experiment, the jSymbolic software [120] published by McKay and Fujinaga in [122]
was used to extract score-based audio features from all 520 basslines. 22 features as listed in
Table 9.1 were selected and extracted for each bassline in the data set.

107
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As classifiers, a SVM with RBF kernel function was used and a 20-fold cross-validation was
performed as explained in Section 2.3 without any prior feature selection or feature space trans-
formation. A mean class accuracy of 49.6% was achieved over 13 genre classes, the confusion
matrix is shown in Table 9.2.

Table 9.1: Selected audio features from the jSymbolic software that were extracted for the baseline
experiment. Details can be found in [122].

Number Feature Name

1 Average Melodic Interval
2 Average Note Duration
3 Chromatic Motion
4 Initial Tempo
5 Maximum Note Duration
6 Melodic Fifths
7 Melodic Octaves
8 Melodic Thirds
9 Melodic Tritones
10 Minimum Note Duration
11 Most Common Melodic Interval
12 Most Common Pitch Class
13 Note Density
14 Number of Strong Pulses
15 Pitch Class Variety
16 Pitch Variety
17 Range
18 Repeated Notes
19 Rhythmic Variability
20 Stepwise Motion
21 Variability of Note Duration
22 Pitch Class Distribution

Experimental Procedure

The experimental procedure of the main experiment is illustrated in Figure 9.1. From the MIDI
files containing the bass patterns, the note parameters absolute pitch P, note onset O, and note
duration D are extracted. For each bass pattern, all score-based audio features described in
Section 8.1 are extracted and concatenated to a feature vector χ.

Classification based on Pattern Recognition

The first classification paradigm is the most commonly used classification approach in MIR. Here,
a SVN classifier model as explained in Section 2.3.3 was used. The evalation was performed using
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Table 9.2: Confusion matrix for genre classification using SVM classifier and the jSymbolic audio features.
All values are given in percent. The mean class accuracy is Ā = 49.6%. The music genre
abbreviations are explained in Table 8.6.
BLU BOS FOR FUN HIP MIN MOT REG RON ROS SAL SWI ZOU

BLU 60 5 0 0 2.5 0 7.5 5 5 5 5 5 0
BOS 0 70 12.5 0 0 5 5 2.5 0 2.5 2.5 0 0
FOR 0 15 65 0 0 0 2.5 0 0 10 5 2.5 0
FUN 2.5 0 0 50 10 2.5 15 0 15 0 5 0 0
HIP 7.5 2.5 2.5 17.5 37.5 10 0 10 2.5 2.5 5 0 2.5
MIN 5 5 0 5 7.5 57.5 7.5 5 5 0 2.5 0 0
MOT 10 2.5 0 17.5 0 15 17.5 2.5 7.5 12.5 10 0 5
REG 0 2.5 2.5 2.5 2.5 5 2.5 35 7.5 20 10 0 10
RON 7.5 0 0 12.5 5 7.5 5 17.5 30 2.5 7.5 2.5 2.5
ROS 12.5 2.5 0 7.5 5 5 17.5 10 10 22.5 7.5 0 0
SAL 0 5 0 7.5 5 10 5 2.5 10 0 52.5 0 2.5
SWI 0 0 2.5 0 0 2.5 0 0 0 2.5 0 92.5 0
ZOU 0 0 0 0 0 7.5 2.5 12.5 5 2.5 15 0 55

a 52-fold stratified cross-validation.

Classification based on a Decision Tree

The Classification and Regression Tree (CART) algorithm introduced in Section 2.3.3 is used in
this experiment with a subsequent optimal pruning strategy as proposed in [26]. The optimal
parameters for the stopping rules such as for instance a minimum number of items per node to be
still considered for splitting are determined experimentally. The generalization properties of the
decision tree are controlled in a cross validation scenario, where the tree is pruned to a certain
level in order to prevent overfitting the training data.

Classification based on Bass Pattern Similarity

The third classification paradigm is based on the assumption that bass patterns from the same
music genre share common rhythmic and tonal properties and therefore show a certain degree
of similarity among each other. The tonal and rhythmic representations of bass patterns as
introduced in Section 8.1.3 are applied here.

First, the problem of transposition and its effect on the tonal similarity between bass patterns
will be discussed. Second, different similarity measures will be derived from the Edit distance
and pair-wise note similarities. Finally, different aggregation strategies will be presented, which
are evaluated and compared in the genre classification experiment.

Transposition If a melody is transposed, the absolute pitch values of all notes in the melody
are shifted by a constant value. Transposition allows to notate a melody in a different musical
key. At the same time, transposition does not affect the interval structure between the notes and
therefore should not have an influence on the tonal similarity.

In order to compensate for a potential pitch transposition between two bass patterns ΘP,1 and
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Figure 9.1: Three different classification paradigms evaluated for automatic genre classification based
on repetitive bass patterns [10]—classification based pattern recognition (SVM classifier),
classification based on a rule-based decision tree, and classification based on similarity
between bass patterns.

ΘP,2, the dominant pitch values Pdom,1 and Pdom,2 of both patterns are aligned as

P2(i)← P2(i) + Pdom,1 − Pdom,2 (9.1)

before the tonal similarity measures are computed. The notion of transposition between patterns
requires that both patterns share a certain amount of similarity. P2 denotes the absolute pitch
values, and N2 the number of notes in the second pattern.

Similarity Measures Based on Edit Distance Between Bass Patterns Four different similarity
measures are derived from the Edit distance SE and used in the classification experiments—a
tonal similarity measure SE,T, a rhythmic similarity measure SE,R, as well as two combined



9.1 Automatic Music Genre Classification based on Repetitive Bass Patterns 111

similarity measures SE,RT,mean and SE,RT,max:

SE,T = SE(ΘP,1,ΘP,2) (9.2)
SE,R = SE(ΘO,1,ΘO,2) (9.3)

SE,RT,mean =
1

2
(SE,T + SE,R) (9.4)

SE,RT,max = max (SE,T, SE,R) (9.5)

Similarity Measures Based on a Pairwise Distance Between Bass Patterns The pairwise
similarity between two bass patterns is computed as follows: First, the number of notes N1,2 in
pattern Θ1 are counted, for which at least one note in pattern Θ2 exists with the same absolute
pitch or the same note onset, respectively. N2,1 is compute vice versa. The pairwise similarity is
computed as

SP(Θ1,Θ2) =
1

2

(
N1,2

N1
+
N2,1

N2

)
. (9.6)

Five different similarity measures derived from the pairwise similarity SP are investigated in the
experiments:

SP,T = SP(ΘP,1,ΘP,2) (9.7)
SP,R = SP(ΘO,1,ΘO,2) (9.8)

SP,RT,mean =
1

2
(SP,T + SP,R) (9.9)

SP,RT,max = max (SP,T, SP,R) (9.10)

The fifth similarity measure SP,RT is computed similar to SP,R and SP,T, however, only those
notes were counted for N1,2 and N2,1 that have both the same absolute pitch and the same note
onset.

Aggregation Strategies In the previous section, different similarity measures were discussed
that allow to compute a tonal or rhythmic similarity between bass patterns. In this section, two
strategies are compared to classify the music genre of an unknown bass pattern based on its
similarity towards a set of known bass patterns:

• Pattern-wise classification

• Classification via bar-wise aggregation

Pattern-wise Classification Given a dataset of NG genre classes, each class c is represented
by a set of associated bass patterns {Θc(i)} with i denoting the pattern index. The number of
patterns per genre is NP(c). Given an unknown pattern Θ, a likelihood measure L(c|Θ) can be
defined as the highest similarity between Θ and all patterns associated to the genre c as

L(c|Θ) = max
1≤i≤NP(c)

S (Θ,Θc(i)) for 1 ≤ c ≤ NG. (9.11)
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Finally, the genre of the unknown pattern is classified by maximizing the genre likelihood measure.

ĉ(Θ) = arg max
1≤c≤NG

L(c|Θ) (9.12)

In case two or more genres are associated with the same likelihood-value, the classified genre is
randomly selected from the most likeliest candidates.
In the following, lΘ denotes the length of a pattern in bars. The IDMT-SMT-BASS-GENRE-

MIDI dataset contains bass patterns that are between 4 and 16 bars long. The following procedure
is applied to compute the similarity between two patterns of arbitrary lengths:

1. If necessary, each pattern is elongated by adding its first bar to achieve a pattern length
that equals a power of two (lΘ ≡ 2i with i ∈ Z).

2. If the lengths of the patterns are not equal, the shorter pattern is shifted across the longer
pattern with a step-size of two as shown for an example of two patterns with the lengths
lΘ,1 = 4 and lΘ,2 = 8 in Figure 9.2.

3. For each shift, the similarity between the shorter pattern and the corresponding sub-pattern
(indicated by grey filling in the figure) of the longer pattern is computed.

4. Finally, all similarity values are averaged to an overall similarity score S(Θ1,Θ2).

Figure 9.2 illustrates the proposed comparison approach for two bass patterns, which are 4 and
7 bars long. For the second pattern, the appended eighth bar, which equals the first bar of the
pattern, is illustrated using a dashed edge.

Figure 9.2: Comparing two patterns of different lengths lΘ,1 = 4 and lΘ,2 = 7. Each square represents a
sub-pattern of one bar length. First, the patterns are elongated to a pattern length that is
a power of two. Then, the patterns are compared using a hopsize of 2 bars and finally, an
average similarity value is computed.
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Classification via Bar-wise Aggregation Each pattern Θ can be split into a set of lΘ,sub sub-
patterns {Θsub(i)} of one bar length. Again, given a dataset of NG genre classes, each genre c is
represented by a set of associated sub-patterns {Θsub,c(k)}.
The bar-wise aggregation strategy is based on the similarity between sub-patterns. Hence,

given an unknown pattern Θ, the likelihood measure L (c|Θsub(i)) between its i-th sub-pattern
and the genre class c is computed as

L (c|Θsub(i)) = max
1≤k≤lΘ,sub,c

S (Θsub(i),Θsub,c(k)) , 1 ≤ c ≤ NG (9.13)

with lΘ,sub,c denoting the number of (known) sub-patterns assigned to the genre class c. The
likelihood measure between the full pattern L(c|Θ) is computed by averaging the likelihood
measures of all of its sub-patterns for each genre class as

L(c|Θ) =
1

lΘ,sub

lΘ,sub∑
i=1

L (c|Θsub(i)) (9.14)

The final genre classification of the pattern is performed as previously shown in (9.12).

Results & Summary

Comparison of Classification Approaches based on Bass Pattern Similarity

Table 9.3: Performance of different configurations of similarity measures and aggregation strategies in
terms of classification accuracy—mean (MN), standard deviation (SD), minimum (MIN), and
maximum (MAX) [10]. All values given in percent.

Similarity measure Aggregation strategy

Pattern-wise Bar-wise

MN SD MIN MAX MN SD MIN MAX

SE,T 26.0 15.5 3.8 51.0 9.0 12.6 0 40.0
SE,R 33.5 22.3 10.7 93.3 16.3 18.9 1.7 73.3
SE,RT,mean 37.9 24.6 7.5 97.5 13.1 17.2 0 58.3
SE,RT,max 35.8 22.0 13.2 93.3 15.7 17.9 1.0 67.8
SP,T 21.7 8.5 7.9 35.4 7.8 12.5 0 44.5
SP,R 33.5 22.9 12.4 93.3 16.1 19.7 0 75.3
SP,RT 29.9 17.6 5.4 57.5 12.0 21.0 0 75.8
SP,RT,mean 38.9 23.9 7.5 97.5 14.4 25.5 0 92.5
SP,RT,max 38.6 23.6 10.0 97.5 12.1 23.1 0 85.0

In order to identify the optimal configuration of similarity measure and aggregation strategy, a
10-fold cross-validation experiment was performed using the IDMT-SMT-BASS-GENRE-MIDI
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dataset. Table 9.3 shows the mean, standard deviation, minimum, and maximum over all class-
wise accuracy values (denoted by MN, SD, MIN, and MAX) for all configurations. The following
conclusions can be drawn:

1. The pattern-wise classification outperformed the bar-wise classification approach. Hence, full
(repetitive) bass patterns seem to better represent the music genre than their sub-patterns.

2. The pair-wise similarity measures and the similarity measures based on the edit distance
performed comparably well in terms of mean class accuracy.

3. The similarity measures that combine the tonal and rhythmic similarity between bass
patterns achieved the highest mean accuracy values. In particular, the similarity measure
SP,RT,Mean that computes the mean between the tonal and rhythmic pair-wise similarity
performed best with 38.9 % of mean accuracy.

4. A large variance among the classification performance for the 13 genres can be observed.
Given the optimal configuration, the mean accuracy values strongly varied from 97.5 %
for swing down to 7.5 % for seventies rock (compare upper confusion matrix in Table 9.4).
Satisfying results over 60 % accuracy were only achieved for the genres swing, blues, and
bossa nova. The reason for that could be that these genres are well-characterized by only a
few typical prototypical bass-patterns, which are typically used with only minor tonal and
rhythmic variations. The bass patterns associated to other genres seem to be too diverse
in order to be classified appropriately using this approach.

Performance Comparison of Different Classification Approaches

Table 9.4 summarizes the confusion matrices for the best configuration of each of the three
proposed classification approaches. The following conclusions can be drawn:

1. The rule-based classification approach achieved a mean class accuracy of 64.8 % and out-
performed classification based on pattern similarity and statistical pattern recognition by
25.9 % and 9.4 %, respectively. The random classification accuracy baseline for 13 classes
is around 7.7 %.

2. The SVM classifier achieved a mean class accuracy of 55.4% using the proposed feature set.
In the baseline experiment, the feature set extracted using the jSymbolic software could only
achieve 49.6% of mean class accuracy. However, when comparing the confusion matrices
in Table 9.2 and Table 9.4, similar results can be observed for the different genre classes.
For instance, both classifiers perform comparably well for the genres blues (BLU), bossa
nova (BOS), funk (FUN), minimal techno (MIN), swing (SWI), and zouglou (ZOU). At
the same time, the classification performance for motown (MOT), reggae (REG), seventies
rock (ROS), and nineties rock (RON) is rather poor.

3. The class accuracy values strongly vary over all 13 classes, especially for the classification
based on pattern similarity and statistical pattern recognition. Low classification rates
strongly correspond to eclectic styles [10], i.e. music styles, which by their own history and
logic are a camouflage of older styles. In bossa nova (BOS) for example, Jazz and Latin
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styles – especially samba – are blended. However, the two styles are still recognizable. The
results confirm the ambiguous nature of the music genre classification task [163].

4. Many confusions between music genres can be explained from a musicological point of
view. The observed genre confusions can be separated into corresponding confusions and
non-corresponding confusions [10]. As regards the non-corresponding confusions, the classi-
fication is simply mistaken. Some confusions on the other hand correspond to, i.e., reflect,
ambiguities in the musical reality. For example basslines of blues music have been mistaken
as rock (ROS, RON) or motown (MOT), but almost never as one of the four different
Latin or Afro-Carribean music styles (SAL, ZOU, BOS, FOR). Other than mistakes or
misclassification, these highly corresponding confusions are valuable information in a lot of
use cases such as musicological research on genre similarity or distinguished classification
of fusion styles for online shops and distributors.

5. The performance of the SVM classifier is in a lot of cases but not always worse than
the pruned-tree approach. Regarding the harmonically more complex genre of bossa nova,
the SVM approach even beats the pruned tree by 10% of accuracy. While the pruned tree
approach has the best classification rates, it is worst regarding the rate of non-corresponding
confusions.

Performance Comparison to the State-of-the-art

As discussed in Section 7.1, no comparable classification experiment with 13 genres was presented
in the literature. Tsunoo et al. amongst others performed a genre classification experiment with 10
classes on audio data by comparing bass patterns. In [171], the authors report a genre classification
accuracy of 39.8% by solely using bass patterns for the GTZAN dataset that includes songs from
the 10 music genres blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, and rock.
In order to compare the proposed algorithm with this publication, a reduced version of the

IDMT-SMT-BASS-GENRE-MIDI was created by removing bass patterns of the three Latin
American music genres forró, salsa-mambo, and zouglou. Using the same set of features as before,
a mean class accuracy of 56.5% was achieved. The two results indicate that genre classification
based on transcribed bass patterns (given as MIDI files) results in better accuracy values than
audio-based genre classification. However, the two datasets do not cover the same music genres.
As discussed before, the bassline is a discriminative property for many music genres. At the same
time, some music genres can only be classified using other properties such as rhythm or timbre.
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Table 9.4: Genre classification confusion matrices for the three classification paradigms. All values in
the confusions matrices are given in percent. The decision tree approach outperformed the
classification using SVM and classification based on pattern similarity by 9.4% and 25.9% in
mean class accuracy Ā. It can observed that the classification performance strongly depends
on the music genre.

Classification based on bass pattern similarity: Ā = 38.9 %

BLU BOS FOR FUN HIP MIN MOT REG RON ROS SAL SWI ZOU

BLU 60 2.5 0 0 2.5 5 7.5 2.5 10 2.5 0 7.5 0
BOS 5 67.5 15 0 0 0 2.5 0 2.5 7.5 0 0 0
FOR 5 12.5 40 2.5 2.5 12.5 5 0 5 2.5 2.5 10 0
FUN 25 0 2.5 32.5 2.5 2.5 5 2.5 10 5 7.5 0 5
HIP 12.5 5 5 12.5 15 12.5 7.5 10 12.5 0 0 2.5 5
MIN 6.3 0 1.3 7.5 10 36.3 6.3 5 17.5 2.5 0 5 2.5
MOT 26.7 0 0 5 2.5 0 27.5 6.7 8.3 18.3 2.5 0 2.5
REG 12.5 0 5 2.5 7.5 2.5 17.5 25 5 7.5 2.5 2.5 10
RON 27.5 4.2 0 1.7 2.5 5 2.5 5 24.2 20 2.5 5 0
ROS 5 7.5 5 7.5 0 7.5 22.5 10 17.5 7.5 0 7.5 2.5
SAL 10 0 4.2 12.5 2.5 6.7 10 2.5 2.5 7.5 36.7 0 5
SWI 2.5 0 0 0 0 0 0 0 0 0 0 97.5 0
ZOU 5 0 2.5 6.3 11.3 8.8 5 5 15 0 5 0 36.3

Classification using a rule-based decision tree (CART): Ā = 64.8 %

BLU BOS FOR FUN HIP MIN MOT REG RON ROS SAL SWI ZOU

BLU 70 0 0 5 0 0 10 7.5 5 0 2.5 0 0
BOS 0 67.5 12.5 0 0 5 2.5 0 0 2.5 0 0 10
FOR 2.5 10 77.5 0 0 0 2.5 0 0 0 5 0 2.5
FUN 2.5 0 0 77.5 0 2.5 10 0 0 2.5 2.5 0 2.5
HIP 7.5 2.5 0 5 50 0 0 10 0 2.5 12.5 2.5 7.5
MIN 5 0 0 0 0 60 7.5 0 2.5 5 10 0 10
MOT 5 0 0 0 0 0 72.5 2.5 2.5 10 2.5 0 5
REG 10 2.5 0 2.5 2.5 0 2.5 55 0 0 7.5 0 17.5
RON 17.5 7.5 0 0 0 0 5 17.5 35 5 10 0 2.5
ROS 10 0 0 5 0 0 5 7.5 12.5 45 10 0 5
SAL 5 0 0 5 0 0 0 2.5 2.5 2.5 65 0 17.5
SWI 0 0 0 0 0 0 2.5 0 2.5 0 2.5 92.5 0
ZOU 2.5 0 0 2.5 2.5 0 5 2.5 0 5 5 0 75

Classification using an SVM classifier: Ā = 55.4 %

BLU BOS FOR FUN HIP MIN MOT REG RON ROS SAL SWI ZOU

BLU 60 0 0 2.5 2.5 2.5 10 2.5 7.5 7.5 0 5 0
BOS 0 77.5 17.5 0 0 0 0 0 0 2.5 2.5 0 0
FOR 0 25 57.5 0 0 5 5 0 0 2.5 2.5 0 2.5
FUN 5 0 0 67.5 2.5 0 5 7.5 7.5 2.5 2.5 0 0
HIP 2.5 0 2.5 0 45 17.5 5 7.5 0 10 7.5 0 2.5
MIN 0 0 2.5 0 12.5 67.5 0 2.5 5 5 5 0 0
MOT 17.5 0 2.5 12.5 2.5 7.5 20 2.5 7.5 17.5 5 0 5
REG 7.5 2.5 0 7.5 10 0 7.5 40 10 2.5 0 0 12.5
RON 5 2.5 2.5 12.5 0 10 12.5 10 37.5 5 0 2.5 0
ROS 10 2.5 0 5 10 2.5 15 10 7.5 27.5 2.5 2.5 5
SAL 0 2.5 5 2.5 12.5 2.5 2.5 2.5 5 0 55 0 10
SWI 2.5 0 0 0 0 2.5 0 0 0 2.5 0 92.5 0
ZOU 0 0 0 0 2.5 7.5 0 7.5 0 2.5 7.5 0 72.5
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As shown in this part of the thesis, the bassline itself is a successful discriminator among different
music genres. An algorithm that combines score-based audio features extracted from the bassline
with a rule-based classification strategy achieved a mean class accuracy of 64.8% for 13 genre
classes. The rule-based approach facilitates the analysis of the genre classification results by
musicologists since the automatically extracted rules are simple feature-value relationships that
can easily be interpreted. This approach can forge a bridge between automatic analysis methods
as presented here and their application for musicological research. The automatic analysis of large
datasets can reveal new insights into musical properties of music genres.

By reducing the dataset to 10 music genres, a mean class accuracy of 56.5% could be achieved
using the proposed set of features in combination with a SVM classifier. A state-of-the-art system
for genre classification that analyzes bass patterns in audio files achieves a mean accuracy of
39.8% on a dataset with the same number of music genres [171]. Even though the genres in both
datasets are not completely the same, the results indicate that a genre classification system that
investigates the bass line of a song can achieve higher performance, if features can be extracted
on a transcription of the repetitive bass patterns instead of a spectrogram representation of the
audio signal.
The dataset used in the genre classification experiments does not contain playing technique

annotation since it was assembled from various sources with different amounts of annotations as
explained in Section 8.2. Especially the applied plucking styles can be a useful indicator towards
the music genre and should be incorporated in future research. For instance, the slap techniques
slap-thumb and slap-pluck are typically used in funk music, the picked style is typically used in
rock and metal related genres.

In the future, a hybrid classification approach that combines the advantages of all three discussed
classification paradigms could be investigated. When source separation and music transcription
allow to robustly transcribe different instrument track from a mixed audio signal, score-based
features could be extracted on a track level allowing to obtain genre classification results that are
associated to the individual instruments. This multiple-expert genre classification strategy could
potentially reveal a more detailed stylistic description of a given piece of music.
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Part III

Application for Sound Synthesis &
Parametric Audio Coding
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Preface

In the past decades, various algorithms were proposed for the analysis and synthesis of musical
instrument recordings. As discussed in the first part of this thesis, automatic music transcription
aims to represent musical instrument recordings using a parametric description of all musical
note events that were played. The extracted score-level and instrument-level parameters capture
the most salient perceptual properties such as loudness, pitch, and timbre.
For the purpose of audio synthesis, physical modeling algorithms allow to mimic the sound

production of different instrument types. For string instruments, these algorithms rely on a simple
one-dimensional model of the string vibration. Various model extensions were proposed in the
literature to simulate different playing techniques, the acoustic properties of the instrument body,
or coupling effects between multiple vibrating strings.
In this part of the thesis, two main contributions will be presented. First, a novel physical

modeling algorithm for bass guitar synthesis will be described in Section 12.1. It implements
11 different bass guitar playing techniques and can therefore be used to synthesize basslines
from a large variety of musical styles. Furthermore, as will be shown in Section 12.1.2, the
proposed synthesis algorithm can be tuned towards the sonic properties of a particular bass
guitar instrument in order to improve the quality of the re-synthesized basslines.

Second, in Section 12.2, a parametric audio coding framework will be presented that combines
the analysis algorithms discussed in the first part of this thesis with the bass guitar synthesis
algorithm. The coding framework relies on the assumption that the extracted note-wise parameters
are sufficient to represent the acoustic properties of the original bass guitar track. In comparison to
conventional audio coding schemes, a note-wise parametrization allows to transmit the instrument
recording with significantly lower bit-rates. The results of a MUSHRA listening test showed that
an audio coding scheme based on the presented algorithms offers a higher perceived sound quality
in comparison to conventional coding schemes when set to very low bitrates.
Parts of the following sections have been previously published in [104] and [9].
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After a brief discussion of sampling-based synthesis and virtual instruments in Section 11.1,
physical modeling algorithms for string instrument synthesis will be reviewed in Section 11.2 and
Section 11.3. Finally, different parametric audio coding approaches will be compared in Section
11.4.

11.1 Digital Music Synthesis

Nowadays, most commercially available synthesis algorithms are based on sampling. The sampling
of real instruments allows to achieve a high sound quality. At the same time, the required amount
of data storage is high since the sampled instrument must be recorded with a large variety of
dynamic levels and playing techniques to allow for a naturally sounding re-synthesis. Within
the last decade, the constant rise in performance of modern computer hardware with regards
to processor performance and storage capacity lead to a wide application of sampling-based
algorithms in music production software.

Sound synthesis algorithms are usually encapsulated in virtual instruments, which are avail-
able as stand-alone software or as plug-ins for commercial Digital Audio Workstations (DAW).
Popular examples of virtual bass guitar simulations are BROOMSTICKBASS by Bornemark [25],
SCARBEE PRE-BASS by Native Instruments [81], and Trillian by Spectrasonics [159].

Virtual instruments are commonly triggered (or “played”) by using external controlling devices
such as a MIDI keyboards. These devices translate physical or haptic gestures like pressing a key
into a corresponding control signal that is sent to the synthesis algorithm. Janer proposes three
components for a real-time capable virtual musical instrument: the synthesis engine, the input
controller, and the mapping interface [83]. Popular digital formats such as MIDI or OSC can be
used as protocols to transmit control commands.

However, a major challenge is to develop controller interfaces that are similar to the haptic
properties of real instruments in order to create a greater acceptance among musicians [36].
Laurson et al. emphasize that the input parameter for a synthesis algorithm must capture both
score parameters (related to “common [music] notation”) as well as instrument specific expressions
[107].

In the following section, the physical modeling approach for sound synthesis will be detailed.
Other synthesis methods such as additive and subtractive sound synthesis, FM synthesis, or
wavetable synthesis will not be considered here. The interested reader is referred to [164].
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11.2 Physical Modeling

Physical modeling algorithms are based on mathematical and physical models that describe the
sound production of musical instruments. Depending on the type of instrument, the proposed
models show different complexities. The vibration of strings is commonly implemented using
a one-dimensional model. In contrast, vibrating drum membranes are approximated using two-
dimensional models [55].
The digital waveguide algorithm is commonly applied to simulate the sound production of

string instruments [158]. As detailed in Section 2.1.3, d’Alembert found that the vibration of
a plucked string can be modeled as a superposition of two waves that propagate in opposite
directions across the string and that are reflected at the string ends. Smith proposed in [158] that
the traveling-wave solutions can be modeled digitally by sampling the elongation of the vibrating
string at fixed geometric positions. The wave propagation into both directions is modeled by two
parallel chains of delay units, which are referred to as delay lines. The reflection and the damping
losses of the string vibration are simulated using digital filters.

The basic waveguide model has several limitations. First, as discussed in Section 2.1.3, the har-
monic envelopes are often amplitude-modulated due to string beating or show a non-exponential
decay. These phenomena cannot be modeled appropriately using the basic modeling approach
described above. Second, non-harmonic signal components such as attack transients, which have
a wide-band noise-like characteristic, are hard to include into the model. However, these signal
components are characteristic to the timbre of musical instruments.

11.3 Synthesis Model Extensions and Calibration

In order to model expressive playing on string instruments, various extensions of the basic digital
waveguide algorithm are presented in the literature. As discussed in Section I, the goal of the
parametrization process is to find a compact representation of a musical instrument recording.
In order to allow a realistic sound synthesis, the synthesis algorithm must be able to reproduce
the most important timbre variations of the instrument that result from using different playing
techniques.
In this section, the calibration of sound synthesis models by means of automatic parameter

estimation will be discussed. Most of the reviewed publications focus on the guitar. However,
due to the similar sound production, these proposed synthesis algorithms are also relevant for
bass guitar synthesis. Erkut describes the model calibration process as the “inverse problem to
physical modeling” [50]. The first step is to identify “physical correlates to complex performance
gestures” [162]. These correlates such as the plucking force of a guitarist playing a note on a
string determine the signal parameters that are to be automatically estimated.

Harmonic Envelopes & Inharmonicity

The first significant parameter that affects the synthesis is the decay time of the note envelope.
Plucking styles such as muted play or finger-style play allow musicians to vary the amount of
string damping. The correlate within the synthesis algorithm is the gain of the loop filter, which
is usually aligned according to the estimated slope of the note envelope. Erkut et al. propose a
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calibration scheme for a guitar synthesis algorithm based on pitch-synchronous STFT of recorded
notes [50]. The harmonics are individually modeled as “time-varying sinusoidal components with
individual magnitude, frequency, and phase trajectories”. Laurson et al. argue that the synthesis
of fast note sequences requires a different excitation function to get a brighter plucking sound
and a lower degree of damping [108].
The inharmonic relationship between the harmonic frequencies, which is often characteristic

for string instruments, affects the instrument timbre as discussed in Section 2.1.3. Inharmonicity
is commonly incorporated in the synthesis models to achieve a more natural sound as for instance
in [178] and [177].

Plucking Styles

The synthesis model is usually initialized with characteristic excitation functions in order to
mimic different plucking styles. The excitation function can be extracted for instance by inverse
filtering a recorded note with the synthesis model [91,176]. Lee et al. compare further approaches
to estimate the excitation function in [109].

Musicians most often use their fingers or a plastic plectrum to play a string instrument. Cuzzu-
coli and Lombardo propose to separately model three phases during the finger-string interaction
while the string is plucked: excitation, release, and damping [37]. As explained in Section 2.1.2,
the finger-string interaction is modeled as two consecutive gestures in this thesis—the plucking
style and the expression style. Germain & Evangelista model the plectrum-string interaction
in [63], which is characteristic for the plucking style picked. In [113], Lindroos et al. propose a
three-part excitation function that allows to simulate different dynamic levels, different plucking
angles of the plectrum, two-stage note decay, and the effect of magnetic pickups on the electric
guitar.
For the bass guitar, the two techniques slap-thumb and slap-pluck are very common. As

explained in Section 2.1.2, either the thumb of the playing hand is hammered on the string or
the string is plucked very strongly. Rank and Kubin [146], Trautmann & Rabenstein [168], as
well as Janer et al. [83] propose synthesis algorithms to simulate the (characteristic) collision
between the string and the fretboard that is caused by the large string elongation. In a similar
fashion, models for the collision between strings and the fretboard of the guitar [53] and for the
interaction between the player’s fingers and the string [37] are proposed in the literature.

Expression Styles

Concerning the expression techniques listed in Table 2.1, guitar synthesis models were proposed
that incorporate frequency modulation techniqes such as vibrato [107], harmonics [135], and dead-
notes [53]. As discussed in Section 2.1.2, the expression styles bending, vibrato, or slide result
in a time-varying fundamental frequency of the played note. Due to the spatial sampling of the
vibrating string, only a limited number of different fundamental frequency values can be simulated
using the basic waveguide model. This problem is solved by using additional fractional delay
filters in cascade to the delay line elements [92]. Karjalainen et al. shows in [93] that both delay
lines of the digital waveguide model can be reduced to a single delay-loop model as illustrated in
Figure 11.1. The delay line z−D and the fractional delay filter HF(z) are cascaded with a loop
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filter HL(z). The magnitude response of HL(z) is designed to best simulate the energy decay
rates of the guitar note harmonics.
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Figure 11.1: Single delay-loop model for physical modeling of string instruments consisting of a delay
line z−D, a fractional delay filter HF(z), and a loop filter HL(z).

The synthesis model is usually assumed to be a linear time-invariant (LTI) system. This
assumption has to be relaxed for the case of time-varying fundamental frequency. However, Erkut
et al. report that they found no negative effect in terms of audible artifacts [50].

11.4 Parametric Audio Coding Schemes

In many application scenarios such as audio analysis, transmission, or synthesis, a compact
representation of audio signals is required. The main goal of parametric audio coding is to
compress an audio signal by describing it using a suitable set of parameters. These parameters
capture the most important perceptual properties of the original signal. Hybrid audio coding
schemes exist that transmit the parametric information along with the conventionally encoded
audio data in order to improve the decoding result. Two popular examples are the spectral band
replication (SBR), where the upper frequency range is reconstructed based on the encoded lower
frequency range, or MPEG Surround, where only a stereo signal is conventionally coded and the
interchannel correlations between the stereo channels and the surround channels are transmitted
as parameters. In this thesis, a pure parametric audio coding approach will be followed.
Speech coding is one of the earliest approaches to parametric audio coding. It is based on a

source model of the human vocal tract. The vocal cord is modeled with an FIR filter and the
excitation signal of the glottis is approximated with pulses or noise. An audio recording of speech
can be compressed by using the estimated model parameter as its representation [88]. This way,
the audio signal can be stored and transmitted with very low bit-rates. The estimated model
parameters are not only used for speech coding but also for speech recognition applications.
For more general audio signals, the aforementioned approach is less effective due to the large

variety of musical instrument timbres. Therefore, instrument-specific models of sound production
must be applied to efficiently encode and reproduce the recorded sound. For example, Arnold
and Schuller propose a parametric instrument codec for guitar recordings in [17]. The extracted
parameters are the excitation function, which is influenced by the plucking style, the gain factor,
which controls the note decay, the note onset position, the note fundamental frequency, and
the loop filter parameters of the waveguide synthesis model. A dataset of monophonic melodies
recorded on acoustic and electric guitars was used as stimuli in a MUSHRA listening tests and
compared to the audio codecs HE-AAC, Ogg Vorbis, and AMR-WB+. The results show similar
preference among all codecs. However, in comparison to the other audio codecs, the proposed
parametric codec requires a significantly smaller bit-rate of 2.4 kbit/s.
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The most popular digital music description languages are Musical Instrument Digital Interface
(MIDI) and MusicXML. However, due to several limitations, they are not suitable to store the
full set of note parameters that was proposed in the first part of this thesis. MIDI cannot store
the information about the instrument-level parameters playing techniques and fretboard position.
MusicXML is also too restrictive to be adapted to the proposed instrument-level parameters.
Also, the note loudness information is only stored on a very coarse scale, which is not sufficient to
capture expressive dynamic variations on the instrument. In [95], the Hypermedia/Time-based
Structuring Language (HyTime) as presented in [64] was identified as a promising alternative to
annotated note events in string instrument recordings. Both time and frequency can be annotated
on an absolute scale or relative to given reference values. Hence, the fundamental frequency can be
described as a time-continuous parameter, which allows to precisely capture notes with vibrato,
bending, and slide. Instrument-specific parameters such as playing techniques and fretboard
position can be added as lookup tables and used for annotation. A detailed comparison among
music description languages such as MIDI, MusicXML, and HyTime is provided in [95].
Three additional description languages are proposed in the literature with special focus on

guitar synthesis. Karjalainen et al. present the Guitar Control Language to describe a guitar
recording as a series of events, which are represented by a set of instrument-specific parameters.
The authors provide an extensive list of guitar playing techniques, each technique is described in
terms of performance gestures and emerging sound characteristics [91]. The Expressive Notation
Package (ENP) is presented by Laurson et al. in [107]. This notation language extends regular
music notation by a set of expressions that range from playing techniques such as vibrato, note
parameters such as dynamic, to parameters describing the playing gesture such as plucking position
and string number. Finally, the ZIPI Music Parameter Description Language, which is proposed
by McMillen et al. in [123], allows to encode timbre properties such as brightness, roughness, and
attack to characterize individual notes or group of notes. Järveläinen investigates, which of the
parameters pitch, loudness, and timbre are the most salient ones from a perceptual perspective [85].
The author estimates also perceptual tolerance thresholds for different parameters.

In the MPEG-4 standard, the basic idea is to transmit audio data not as a sampled waveform
but in a more efficient, object-based parametric representation. The Harmonic and Individual
Lines and Noise (HILN) algorithm approximates a given audio signal using sinusoidal signals
and noise [142]. The algorithm is incorporated into the second version of MPEG-4. Individual
harmonic components are described by magnitude and frequency. Grouped harmonic components
such as musical notes are described by the fundamental frequency, the spectral envelope of the
harmonics, and the magnitude of the fundamental frequency. To improve the overall sound quality,
the estimated sinusoidal components are subtracted from the original signal and the remaining
signal is modeled using a linear filter. It is shown in [142] that the HILN algorithm leads to
comparable audio quality as transform-based coding algorithms such as AAC. At the same time,
HILN allows to change the parameters pitch and tempo for the individual signals on the decoder
side.
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12 Contribution

The contributions described in the following sections result from the collaboration with Patrick
Kramer, Christian Dittmar, and Gerald Schuller and were previously published in [103], [104]
and [9]. In Section 12.1, a novel physical modeling algorithm will be introduced that mimics the
sound production of an electric bass guitar and implements all discussed plucking and expression
styles. In Section 12.2, a parametric instrument codec will be discussed, which combines the
analysis and re-synthesis of a bass guitar track.

12.1 Physical Modeling Algorithm for Realistic Bass Guitar
Synthesis

The proposed algorithm to synthesize bass guitar tracks is illustrated as a flowchart in Figure
12.1. Its components will be detailed in the following sections. The synthesis model can be seen
as the counterpart to the bass guitar transcription algorithm presented in Chapter 4 since it takes
all extracted note-event parameters such as onset, offset, pitch, and playing techniques as input
and generates a synthesized version of the original bass guitar recording. Sound examples of the
proposed synthesis algorithm are available at [105].

12.1.1 Waveguide Model

The proposed bass guitar synthesis algorithm is based on the digital waveguide approach discussed
in Section 11.2. The vibrating string is sampled at equally-spaced string positions and the
corresponding deflection values are stored. The basic waveguide model consists of two delay lines
that simulate two waves traveling into opposite directions on the string as explained in Section
2.1.3.

The electric bass guitar string has a rigid termination at the bridge and at the nut. Therefore,
both delay lines are connected on their ends. The wave reflection is modeled by inverting the sign
of the string deflection values at the delay line end points. The overall decay of the simulated
string is adjusted by the damping factor g < 1 of the loss filter, which can be set as an input
parameter of the model. This allows to synthesize different amounts of string damping that go
along with different plucking styles such as finger-style (FS) and muted (MU). The loss filter
also simulates the frequency losses of the signal over time. A parametric zero phase FIR filter is
used for this purpose as proposed in [179]. Since the bass guitar strings show different amounts
of frequency losses over time, different parameters were chosen for the loss filter depending on
the string number of the synthesized note.

In order to implement arbitrary fundamental frequency values, a simple linear interpolation of
fractional delay values is used. This allows to tune the waveguide model to f0 values that are not

129
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Figure 12.1: Proposed waveguide model for bass guitar synthesis including a collision and damping
point, a loss filter, inharmonicity tuning, and a pickup filter [9].

a partial of the sampling frequency fs. The linear interpolation offers two advantages. First, it is
computationally efficient. Second, as will be shown in Section 13.1, listening tests revealed that
this approach is sufficient to model time-varying f0 values that are characteristic for the playing
techniques bending (BE), slide (SL), and vibrato (VI).

Excitation Function

Depending on the plucking style, both delay lines of the waveguide model are initialized with an
excitation function. The excitation function predefines the timbre and the spectral envelope of
the resulting tone. This function represents the string displacement at the time of plucking, it is
influenced by the plucking style, position, and intensity.

Figure 12.2 gives three examples for excitation functions. The finger-style plucking style results
in a triangular excitation function with the maximum string displacement at the plucking point.
The effect of using a plastic pick for the plucking style picked is simulated by a sharper peak at
the plucking position. The slap thumb plucking style is characterized by an initial velocity peak
caused by hammering the thumb on the string. The velocity function can be translated into a
displacement function by integration.

The absolute plucking position is considered to be constant for arbitrary string number and fret
number values. The physical length of the vibrating string defines the fundamental frequency f0.
Since the waveguide model only simulates the vibrating part of the string, the relative plucking
position within the displacement function changes for different f0.
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Figure 12.2: Model excitation functions for the plucking styles finger-style (FS) and picked (PK) as well
as initial velocity function for the plucking style slap-thumb (ST). n denotes the delay line
element.

Electro-magnetic Pickups

As discussed in Section 2.1.1, electro-magnetic pickups capture the string vibration on electric
bass guitars and convert it into an electric signal. In order to generate the model output signal,
the string deflection is captured at the delay line element that corresponds to the geometric
position of the pickup on the real instrument. The relative pickup position is computed similarly
to the relative plucking position in dependence of the vibrating string length.

The instrument output signal is influenced by the response of the inner tone circuitry including
the pickup [93]. As detailed in [103], a SPICE simulation of the circuitry was performed based on
the internal properties resistance, capacitance, and inductance of the pickup, a fixed tone circuit,
and a connected load that includes the capacitance of the instrument cable. An FIR filter was
implemented based on the simulation results and included into the waveguide model to filter the
output signal y(n,m).

Fret Collision

If the plucking styles slap-thumb (SP) and slap-pluck (SP) are used, the string collides with the
frets on the instrument neck due to its high displacement as discussed in Section 2.1.2. The
method presented by Evangelista in [52] is applied to simulate the string-fret collision in the
waveguide model. A scattering junction is located between both delay lines at all fret positions.
In every sampling step m, the string displacement yin(m) is computed as the sum of both delay
lines and compared to the string-fret distance yfret.

h(m) = yfret − yin(m) = yfret −
(
y+(m) + y-(m)

)
. (12.1)

If h(m) ≥ 0, a collision between the string and the fret is detected. In case of a collision, a
fraction of the delay line elements that travel into the scattering junction is reflected. The string
displacement is held fixed at yin(m) = yfret until the string moves back again (h(m) < 0). The
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collision is assumed to be not completely inelastic. The bouncing back of the string from the fret
is simulated by adding a constant impulse yimp to the string displacement function for a short
period of the collision time.

The output values of the scattering junction y−out(m) and y+
out(m) in the moment of a collision

are given by [
y−out(m)
y+

out(m)

]
= Sc

[
y−in(m)
y+

in(m)

]
+
yfret + yimp

2

[
1
1

]
(12.2)

with the scattering matrix

Sc =
1

2

[
+1 −1
−1 +1

]
. (12.3)

Depending on the current fretboard position, up to 20 frets are simulated in that manner. The
distance between the frets are computed with respect to the real geometry of the instrument neck.
The fret height values are set according to a slightly bowed instrument neck.

Finger Damping

The harmonic (HA) and dead-note (DN) expression styles are characterized by damping the
string at a certain fretboard position. The damping that results from the punctual finger-string
interaction is simulated using a wave digital resistor as proposed by Pakarinen in [135]. The
resistor is connected to the two delay lines with a three-port junction and is defined by the
damping factors ρ1 to ρ4. If the damping is activated, only those standing waves keep sounding
(after some cycles) that have a node yin(m) = 0 at the damping point.1 The output values y−out(m)
and y+

out(m) of the wave digital filter junction are given by[
y−out(m)
y+

out(m)

]
=

[
ρ1 ρ2

ρ3 ρ4

] [
y+

in(m)
y−in(m)

]
. (12.4)

The damping factors ρ1 to ρ4 are set in accordance to the given expression style.

12.1.2 Tuning of the Model Parameters

In this section, two approaches for tuning the bass guitar synthesis model proposed in Section
12.1.1 will be presented. The tuning process aims at reproducing the sonic properties of the bass
guitar2 that was used to record the IDMT-SMT-BASS-SINGLE-TRACKS dataset detailed in
Section 4.2.2. By better reproducing the sound of the original instrument, the perceptual quality
of the synthesis algorithm is expected to improve.

First, isolated note recordings that cover the full fretboard range (all four strings, open string
up to the 12th fret position) were analyzed. These notes were taken from the IDMT-SMT-BASS
dataset (see Section Section 4.2.1 ). Three steps are performed to tune the synthesis algorithm:
tuning of the temporal loss parameter, tuning of the frequency loss filter, and tuning of the
inharmonicity of the synthesized notes.

1This corresponds to the sound production principle of the harmonics (HA) expression style as discussed in
Section 2.1.2.

2Fame Baphomet 4 NTB, string gauges 1.05mm (E string), 0.85mm (A string), 0.65mm (D string), and 0.45mm
(G string).
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Figure 12.3: Normalized magnitude envelope of bass guitar note with fitted linear decay function over
time.
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Figure 12.4: Normalized magnitude envelope of bass guitar note with fitted linear decay function over
frequency.

Tuning of the Loss Filters

As described in Section 12.1.1, the simulation of the string vibration losses is realized by two
components, a damping factor g and an FIR filter. The damping factor g determines the overall
temporal decay of each note. To tune this parameter, the decay rate αt of the spectral envelope
over time is extracted using linear regression over the magnitude spectrogram (in dB) in the
note decay part. In Figure 12.3, a normalized magnitude envelope of a bass guitar note and the
corresponding fitted linear decay function is shown. The decay rate is estimated for all notes over
the complete instrument fretboard. The damping factor g in the waveguide model is computed
as g = 10

−αtNT
20 with N denoting the number of delay elements and T denoting the time of one

sample.

The loss filter is a zero-phase low-pass FIR filter. It introduces a faster decay to higher harmonics
to reproduce the natural faster damping of higher frequencies due to string stiffness. The applied
filter allows to adjust the increase in decay towards higher frequencies with only one parameter
[179]. To tune the FIR filter, the decay rate αf of the spectral envelope over frequency is estimated.
Figure 12.4 shows the magnitude decay over frequency for the same bass guitar note as shown
in Figure 12.3. Then, the time gradients ∂αf

∂t of every string-fret combination are estimated and
the frequency loss filter is tuned accordingly by minimizing the distance of this gradient between
synthesized and original decay.
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12.1.3 Inharmonicity

As explained in Section 2.1.3, the inharmonicity of string instruments needs to be considered,
especially for the high string diameter values of the bass guitar [55]. Therefore, the following
approach is included in the synthesis model in order to simulate the inharmonic relationship
between the harmonic frequencies. From the analysis stage explained in the first part of this
thesis, both the inharmonicity coefficient β and the fundamental frequency f0 are given for each
note. In the synthesized note, the center frequencies fh of the harmonic series are located at
fh = (h+ 1)f0 with h ≥ 0. The inharmonicity tuning aims to emulate the frequency relationship
f̂h = (h+ 1)f0

√
1 + β(h+ 1)2.

First, the band signal of each harmonic component is extracted using STFT, binary masking,
and inverse STFT. The binary mask for each harmonic component is centered around its ideal
frequency fh with a bandwidth of f0. During the spectral masking, the mirror spectra are set to
zero which yields the analytic signal [98] after applying the inverse STFT. The analytic signal
contains the original signal in its real part and a version of the original signal with constant
phase shift of 90◦ in its imaginary part. Second, the analytic signal is modulated with a complex
exponential exp(j2π(f̂h−fh)) in order to shift the band signal upwards by the deviation between
the inharmonic frequency f̂h and the ideal frequency fh. This procedure is repeated for each
harmonic component and the shifted spectral bands are superimposed to get an inharmonic
signal with the original timbre qualities. In the literature, an alternative method to incorporate
inharmonicity into physical modeling algorithms is to use an additional allpass filter [148]. This
approach was not investigated here.

12.2 Parametic Model-based Audio Coding of Bass Guitar Tracks

12.2.1 Overview

The proposed coding scheme consists of an encoder, which deals with the parameter extraction as
explained in the first part of the thesis, and a decoder, which re-synthesizes an audio signal based
on the transmitted parameters. Figure 12.5 gives an overview. As mentioned before, the focus is
on isolated bass guitar tracks. The analysis of mixed audio signals would require an additional
source separation algorithm.

In addition to the transmission and coding of the audio data, the coder also allows for generating
score or tablature notation as detailed in Section 2.2. Also, since the bass guitar track is represented
by a note-wise parametrization, these parameters can be altered in order to change the stylistic
properties of a bass line before it is re-synthesized. This alteration of note-wise parameters could
for instance change the plucking and expression styles, but also slightly change the note onsets
in order to influence the micro-timing of a bass line.

12.2.2 Parameter & Bitrate

Table 12.1 summarizes all parameters, which need to be transmitted for each note event. Based
on the ranges of values and the necessary precision, the number of quantization steps can be
derived. In total, 82 bits are necessary to encode all parameters to describe one note event.
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Figure 12.5: Flowchart of proposed parametric bass guitar coder.
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Figure 12.6: Bitrates using the proposed instrument coder for all 17 bass lines from the IDMT-SMT-
BASS-SINGLE-TRACKS dataset.

Table 12.1: Transmitted parameters and their quantization in the proposed bass guitar coder.

Parameter Range Resolution Quantization
bits (steps)

Loudness L [0, 127 dB] 0.1 dB 11 (2048)
Plucking Style SP [1, 5] 1 3 (8)
Expression Style SE [1, 6] 1 3 (8)
String Number NS [1, 4] 1 2 (4)
Fret Number NF [0, 24] 1 5 (32)
Onset O [0, 30 s] 0.01 s 12 (4096)
Duration D [0, 20 s] 0.01 s 11 (2048)
Magnitude decay αt [0, 127 dB/s] 1 dB/s 7 (128)
Fundamental frequency f0 [41.2Hz, 382.0Hz] 0.1Hz 12 (4096)
Modulation frequency χf,mod [0, 12Hz] 0.1Hz 7 (128)
Modulation lift χmod,lift [0, 500 cent] 1 cent 9 (512)∑

82 bit/Note

In Figure 12.6, the achieved bitrates for all bass lines from the IDMT-SMT-BASS-SINGLE-
TRACKS dataset are illustrated. The bit-rate depends mainly on the tempo and the note density
over time, the average bit-rate that can be achieved for this dataset is 225.4 bit/s. In comparison
to conventional perceptual audio coding schemes, only a fraction of the bit-rate is necessary.
This improvement comes with a strong specialization towards one particular musical instrument.
Hence, the proposed parametric audio codec can only be applied to encode isolated bass guitar
tracks.
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12.2.3 Application for Polyphonic Music

In order to apply the proposed parametric coding approach for multi-instrumental, polyphonic
music, a specific instrument coder must be designed for each instrument. The note parameters
have to be adjusted to the typical sound production and playing techniques. In order to estimate
the required bit-rate to encode polyphonic music pieces with the proposed parametric coding
approach, seven realistic multi-track MIDI files were obtained from [151]. For the sake of simplicity,
the bit-rate of 82 bit/Note is assumed for all instrument tracks. As shown in Table 12.2, the MIDI
files have an average number of 4.7 instrument tracks. The estimated bit-rate is around 2.25 kbit/s.

Table 12.2: Number of tracks, note density per second, and required bit-rate to encode multi-track MIDI
files.

File Number of instru-
ment tracks

Note density Bit-rate

BLUES.MID 4 34.53 notes/s 2.83 kbit/s
COUNTRY.MID 5 36.04 notes/s 2.96 kbit/s
HIP_HOP.MID 5 29.12 notes/s 2.39 kbit/s
JAZZ.MID 4 20.13 notes/s 1.66 kbit/s
LATIN.MID 7 37.9 notes/s 3.11 kbit/s
REGGAE.MID 5 13.29 notes/s 1.09 kbit/s
ROCK.MID 3 20.97 notes/s 1.72 kbit/s

Average 4.7143 27.42 notes/s 2.25 kbit/s
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The experiments described in this section were conducted in collaboration with Patrick Kramer,
Christian Dittmar (Semantic Music Technologies group, Fraunhofer IDMT), and Gerald Schuller
(Technische Universität Ilmenau) and were previously published in [104] (Section 13.1) and [9]
(Section 13.2 and Section 13.3).

13.1 Perceptual Audio Quality of Synthesized Basslines

Motivation & Goals

As discussed in Section 11.3, no bass guitar synthesis algorithm based on physical modeling
exists that allows to synthesize different playing techniques and could be used for a comparative
evaluation. However, when considering the application of the proposed synthesis algorithm within
an instrument codec as discussed in Section 12.2, existing conventional audio codecs can be used
to compare the perceptual quality of the resulting audio signals. In this experiment, a MUSHRA
listening test (Multi Stimulus test with Hidden Reference and Anchor) was performed to evaluate
the perceptual quality of the re-synthesized basslines. The test was performed throughout all
playing techniques separately.

Dataset & Participants

The dataset used in this experiment was assembled by Patrick Kramer in [103]. As shown in
Table 13.1, nine basslines with different playing techniques were included. Twelve participants
ranging from average music listeners to professional bass guitar players took part in the listening
test.
For each bassline, the order of the stimuli was randomized. The participants were allowed to

listen to each stimuli as often as they wanted. Each stimulus had to be rated on a scale between
0 for poor audio quality and 100 for excellent audio quality.

Table 13.1: Plucking styles (PS) and expression styles (ES) used in the bass lines used as stimuli of the
first listening test.

Bassline 1 2 3 4 5 6 7 8 9

Plucking Style FS FS FS FS FS MU PK ST SP
Expression Style BE DN HA NO VI NO NO NO NO

137
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Experimental Procedure

In the set of stimuli of the listening test, the original bassline recordings were included as hidden
reference (“Reference”). Low-pass filtered versions (fcut = 3.5 kHz) were used as hidden anchors
(“3.5 kHz LP”). The next three stimuli were different versions of the original bassline recordings
processed by several low-bit audio codecs. In particular, the codecs AMR-WB+ (at 6.0 kbit/s),
HE-AAC (at 14.1 kbit/s), and Ogg Vorbis (at 17.2 kbit/s) were chosen. Maximum compression
settings were used to achieve the lowest possible bit-rate for each codec. The last stimulus was the
re-synthesized bassline using the algorithm described in Section 12.1 without additional model
tuning. Table 13.2 provides an overview over all stimuli used in the first listening test.1

Table 13.2: Stimuli used in the first MUSHRA listening test.

Stimulus Type Low-pass
filtered

Processed with
Audio Codec

Synthesized
Audio

Label

1 Original Reference
2 Original x 3.5 kHz LP
3 Original x AMR-WB+
4 Original x HE-AAC
5 Original x Ogg Vorbis
6 Synthesized x Synthesis

Results & Summary

The results of the listening test are illustrated in Figure 13.1. The first nine columns show the
mean ratings and 95 % confidence intervals for the nine basslines. The last column shows the
averaged results.
The reference signal and the anchor signal were rated as “excellent” and “good”, respectively.

The average ratings for the three audio codecs are all in the upper “poor” region while the
proposed bass guitar codec achieved around 55% in the “fair” region.
Especially for the basslines 1, 4, 5, and 6 that are played with the plucking style finger-style

(FS) and muted (MU), the synthesized basslines clearly surpass the stimuli processed by the audio
codecs. The basslines 3, 7, 8, and 9 relate to the harmonics (HA), picked (PK), slap-pluck (SP),
and slap-thumb (ST) techniques, which are all characterized by high frequency spectral energy
in the audio signal.2 For these techniques, the listening test still shows higher ratings for the
synthesized basslines compared to the audio codec versions. However, the improvement is smaller
than for the the FS and MU technique. For the second bassline, which includes the percussive
dead-note technique, the synthesized version was rated worst.

In summary, the average results show that the proposed instrument audio codec for isolated
bass guitar recordings outperformed three different audio codecs in terms of perceptual quality, if

1 The abbreviations for the plucking and expression styles are explained in Table 2.1.
2This results from higher fundamental frequencies (HA), sharp attacks (PK), and from the collision between the
string and the fretboard (SP, ST) as detailed in Section 2.1.2.
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those are set to very low bit rates. At the same time, the instrument codec allows for a significantly
lower bit rate 0.06 kbit/s.

FS−BE FS−DN FS−HA FS−NO FS−VI MU−NO PK−NO SP−NO ST−NO All
0

Bad
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40
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80
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Reference 3.5kHz LP AMR−WB+ (6kbit/s) HE−AAC (14.1kbit/s) Ogg Vorbis (17.2kbit/s) Synthesis (0.06kbit/s)

Figure 13.1: The results of the first MUSHRA listening test for the different stimuli described in Table
13.2. Mean ratings with 95 % confidence intervals are given [103,104].

13.2 Perceptual Improvements by Applying Model Tuning to
Specific Instruments

Motivation & Goals

In Section 12.1.2, different methods were proposed to tune the parameters of the proposed
synthesis algorithm to better match the sonic properties of a particular instrument. In this
listening test, the influence of those methods on the perceptual quality of synthesized basslines
was investigated.

Dataset & Participants

17 recorded basslines from the IDMT-SMT-BASS-SINGLE-TRACKS dataset presented in Section
4.2.2 were used as reference audio data. The basslines cover various combinations of bass guitar
playing technique as detailed in Table 13.3. Nine participants took part in both tests, most of
whom are mostly semi-professional musicians.

Table 13.3: Plucking styles (PS) and expression styles (ES) used in the basslines of the IDMT-SMT-
BASS-SINGLE-TRACKS dataset [9].

Bassline 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Plucking
Style

MU FS MU FS PK PK ST,
SP

FS MU FS MU FS ST,
SP

PK FS SP,
ST

FS

Expression
Style

VI,
NO,
BE,
DN

VI,
NO

NO,
DN,
SL

NO,
VI,
SL,
BE

NO,
DN,
SL

NO,
VI

NO,
DN,
VI

NO BE,
NO,
VI

NO,
SL

NO NO,
SL

NO,
SL

NO NO,
VI

NO,
DN

NO,
HA
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Experimental Procedure

Similar to the previous experiment, a MUSHRA listening test was performed. Table 13.4 details
all stimuli that were used.

Table 13.4: Stimuli used in the MUSHRA listening test described in Section 13.2

Stimulus Audio
type

Low-pass
filtered

Tuning of
loss filters

Inharmonicity Label

1 Original Reference
2 Original x 3.5 kHz LP
3 Synthesized ICASSP 2012
4 Synthesized x Optimized
5 Synthesized x x Optimized +

Inharmonicity

In addition to the reference signal and anchor signal, three different synthesis model configura-
tions were used to create additional stimuli. The first configuration “ICASSP 2012” is the initial
version of the synthesis model used in Section 13.1 and presented in [104]. This model can be
considered as un-tuned model as its parameters were empirically adjusted by only a small set
of reference bass guitar recordings. The second configuration “Optimized” is tuned to the sonic
properties of the bass guitar that was used to record the reference basslines used in the listening
test. Here, the filter parameters of the synthesis model were optimized based on given single-note
recordings as described in Section 12.1.2. The third configuration “Optimized + Inharmonicity”
is the tuned model with an additional inharmonicity tuning as described in Section 12.1.3.

Results & Summary

The results of the listening test are shown in Figure 13.2. The first 17 columns illustrate the
mean ratings and 95 % confidence intervals for the 17 basslines. In the last column, the averaged
results are given.

While the reference was consistently rated as “excellent”, the low-pass filtered anchor was rated
as “good”. For the basslines 7, 13, and 16, which were played using the slap techniques slap-pluck
(SP) and slap-thumb (ST), the anchor ratings were significantly lower. Since the slap technique is
characterized by typical high frequency attack transients, the low-pass filtering impairs the audio
quality to a stronger extend.

The results for the synthesis model configurations show that the improvements in the perceived
audio quality of the re-synthesized basslines are very small. It can be seen in the final column
that the optimized synthesis algorithms with and without inharmonicity show no significant
improvement to the baseline model. All three synthesized versions achieved an average rating of
around 40. Hence, the perceptual quality can be described between “poor” and “fair”.

Interviews with the listening test participants confirmed that the overall “synthetic” impression
of the synthesized bass-lines still “masks” the perceptual improvements by the proposed model
tuning approaches. Additionally, two aspects were mentioned, which were not considered in the
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Figure 13.2: The results of the MUSHRA listening test for the different stimuli described in Table 13.4
for the 17 basslines. Mean ratings with 95 % confidence intervals are given [9].

re-synthesis: dynamic variations within the basslines and the typical noise caused by hand slides
over the strings when the fretboard position is changed.
Future research must identify aspects of the instrument sound production that are still not

captured by the synthesis model. At the current implementation stage, the estimation of temporal
and spectral decay parameters as well as the inharmonicity coefficient from single notes can be
considered as less important to the overall perceptual quality of the synthesis.

13.3 Importance of Plucking Styles and Expression Styles on the
Perceptual Quality of Synthesized Basslines

Motivation & Goals

As discussed in Section 2.1.2, the sound production on string instruments such as the bass guitar
can be separated into two physical gestures—the plucking style and the expression style. These
gestures have a strong influence on the attack part and decay part of the played note, respectively.
In this listening test it was investigated, how important the correct parameter values for plucking
style and expression style are to achieve a realistic re-synthesis of a given bassline.

Dataset & Participants

Again, the IDMT-SMT-BASS-SINGE-TRACKS data set was used as reference audio data. The
participants of this experiment were the same as for the previous experiment.

Experimental Procedure

Six stimuli were used in this listening test as shown in Table 13.5. Again, the hidden reference
signal (“Reference”) and the low-pass filtered anchor signal (“3.5 kHz LP”) were chosen as in the
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previous experiment. Additionally, four synthesized versions were generated: In the first version
(“Optimized + Inharmonicity”), all plucking style and expression style parameters were used as
given in the ground truth annotations. In the second version (“PS:FS”), the plucking styles of
all notes were unified and set to the finger-style (FS) technique. The expression styles were not
modified. In the third version (“ES:NO”), the expression styles of all notes were unified and set
to normal (NO) and the plucking styles remain as in the reference annotations. Finally, in the
fourth version (“PS:FS ES:NO”), both the plucking styles and expression styles were set to FS
and NO, respectively.

Table 13.5: Stimuli used in the MUSHRA listening test described in Section 13.3

Stimulus Audio
type

Low-
pass
filtered

Tuning
of
loss
filters

Inharmo-
nicity

Plucking & ex-
pression styles

Label

1 Original all PS, all ES Reference
2 Original x all PS, all ES 3.5 kHz LP
3 Synthesis x x all PS, all ES Optimized +

Inharmonicity
4 Synthesis x x PS = FS, all ES PS:FS
5 Synthesis x x all PS, ES = NO ES:NO
6 Synthesis x x PS = FS, ES =

NO
PS:FS ES:NO

Results & Summary

The results of the second experiment are shown in Figure 13.3.
The ratings of the reference and the anchor are comparable to the first experiment. Again, the

perceived audio quality of the slap basslines is more strongly affected by the low-pass filtering.
The averaged results in the final column indicate that changing the plucking style of all notes

decreases the audio quality of the synthesized basslines stronger than changing the expression
styles. Presumably, this is because a large fraction of the notes in realistic bass-lines have no
particular expression style. For the IDMT-SMT-BASS-SINGLE-TRACKS dataset, around 87%
of all notes have the expression style normal (NO) as shown in Table 4.1. Therefore, removing
all vibrato, bending, slide, harmonic, and dead note techniques affects only a small fraction of
the notes in the basslines. On the other hand, if a bassline has a different plucking style than the
finger-style technique (FS), changing the plucking style affects all notes in the given bassline. The
negative effect of changing the plucking style to finger-style is most prominent for the basslines
7, 13, 14, and 16 that incorporate either the slap-techniques ST and SP or the picked technique
(PK).

In summary, plucking styles have a higher importance for re-synthesizing string instrument
recordings than the expression styles have. A reliable parametrization and modeling of the attack
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Figure 13.3: The results of the MUSHRA listening test for the different stimuli described in Table 13.5
for the 17 basslines. Mean ratings with 95 % confidence intervals are given [9].

part of instrument notes (which is mainly influenced by the plucking style) is therefore crucial to
obtain realistic synthesis results.
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14 Summary

In the third part of this thesis, a novel sound synthesis algorithm was proposed that allows to
re-synthesize bass guitar recordings based on a compact set of note parameters. The algorithm
implements 11 different plucking and expression styles. Furthermore, it can be tuned to the sonic
properties of a particular bass guitar. The combination of the bass guitar transcription algorithm
presented in the first part of this thesis and the synthesis algorithm as a parametric audio coder
was discussed. In comparison to conventional audio coding algorithms, the parametric coding
approach requires only a fraction of the bit-rate. At the same time, the algorithm is currently
specialized and limited towards isolated bass guitar tracks.

A first listening test revealed that the proposed synthesis algorithm outperforms conventional
audio coding algorithms at very low bit-rate settings in terms of perceptual quality. In a second test,
the participants reported that the overall “synthetic” sound impression of the re-synthesized bass
lines still masks the perceptual improvements due to the model tuning. Future work must address
the simulation of physical phenomena such as string beating and noise-like attack transients.
Also, external factors such as the sound of the amplifier, loudspeaker, and additional audio effects
need to be considered in the synthesis algorithm. In a third listening test, it was observed that
the realistic synthesis of plucking styles is even more important than the synthesis of expression
styles.
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