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The authors discuss the concept and design criteria for a framework that facilitates the performance
assessment of shop-floo control systems. Their basic concept includes a simulation model that em-
ulates the shop floo of a wafer fab, sends information to the control system, and receives information
back from the control system. The shop-floo control system is realized as a separate module that
interfaces to the simulator via a data layer that contains the current shop-floo status and the con-
trol information generated by the controller. The authors provide detailed information on how the
simulation model and shop-floo control system communicate and how each system triggers events
in the other system. They show how this framework supports the performance assessment of the
shop-floo control system under consideration. They also present a prototype of the framework cur-
rently implemented in the course of the SRC/International Sematech FORCe project “Scheduling of
Semiconductor Wafer Fabrication Facilities.”

Keywords: Semiconductor manufacturing, shop-floo emulation via simulation, performance evalu-
ation, shop-floo control software

1. Introduction

Recently, the electronics industry has become the largest
industry in the world. The most important area in this in-
dustry is the manufacturing of integrated circuits (IC).

The production of integrated circuits on silicon wafers
is characterized by

• reentrant process fl ws due to the layered structuring of
the wafers,

• mix of different process types (i.e., batch processes vs.
single-wafer processes),

• diverse product mix,
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• inhomogeneous parallel machines with complicated ded-
ication practices,

• sequence-dependent setup times,
• rework.

In the past, sources of reducing costs were decreasing
the size of the chips, increasing the wafer sizes, and improv-
ing the yield while simultaneously improving operational
processes inside the fabs.

Currently, there is a strong indication that the improve-
ment of operational processes creates the best opportunity
to realize the necessary cost reductions [1]. Therefore, the
development of efficien state-of-the-art planning and con-
trol strategies is highly desirable in the semiconductor man-
ufacturing domain.
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Generally, the performance or the impact of new plan-
ning and control algorithms on manufacturing systems
is unknown in advance. Thus, a simulation test bed that
emulates the shop floo of an entire wafer fab would be
highly desirable. We found several papers following this
approach. Horiguchi, Raghavani, and Uzsoy [2] evaluated
a new planning system for a wafer fab by using a discrete
event simulator. Toba [3] focused on the evaluation of cer-
tain rescheduling strategies in a modern wafer fab, again
using a discrete event simulator for emulation purposes of
the shop floo .

We have participated in the project “Scheduling
of Semiconductor Wafer Fabrication Facilities” of the
Semiconductor Research Corporation (SRC)/International
Sematech–funded FORCe (Factory Operation Research
Center), which is working toward developing and imple-
menting a modifie shifting bottleneck heuristic [4] for
scheduling semiconductor wafer fabs. To evaluate and test
this algorithm, we also need an appropriate simulation
environment.

The semiconductor manufacturing domain currently
lacks a simulation framework that allows evaluations of
different planning, scheduling, and control software in an
easy and unifie way.

In this paper, we present a simulation concept, including
the description of various design decisions and a prototype
of such a framework in semiconductor manufacturing. We
want to point out, however, that this architecture can also
be used by other industries. Performance studies using our
approach will be presented in a later publication, but we
have included two sample studies to illustrate the imple-
mentation of our concept for real-world problems.

The paper begins by describing the design criteria used
for the simulation framework, continues with a discussion
of the overall concept of the framework, and then presents
the application of the framework in performance assess-
ment situations. We finis the paper by providing two case
studies using the concepts presented.

2. Framework Design Criteria

In a real wafer fab, a production planning and control tool
obtains its information via the message bus of the manu-
facturing execution system (MES), stores this information
in one or more databases, and computes fab control infor-
mation based on this information. It then stores the control
information in a database for evaluation purposes and fi
nally transmits it to the shop floo , where the control actions
are executed. The control information typically consists of
dispatching lists for a particular tool or tool set or an auto-
mated loading device. The information is used to determine
which lot to process next. At the moment, there are two ap-
proaches to create these dispatching lists: dispatching and
scheduling software. In a dispatcher, a set of rules is ap-
plied to fin the appropriate sequence of lots for a given
tool. A simple example of this type of control is firs in,
firs out (FIFO) dispatching where the lots are sequenced

in the order of their arrival at the tool under consideration.
In a scheduler, a complex algorithm solves the problem of
maximizing fab throughput while keeping cycle times low
and on-time delivery percentages high. Again, the results
are dispatching lists for the tools on the shop floo .

Therefore, the framework should support the following
tasks:

• mimic the behavior of a real shop floo that communicates
with a shop-floo control system over a message bus,

• provide a generic interface/data layer to plug in an arbi-
trary shop-floo control system (e.g., a planning, schedul-
ing, or dispatching software system for semiconductor
manufacturing),

• allow for user-specifi backups of the content of the data
layer into a database. This database is required in real
control systems to reset the controller to a reasonable state
after a breakdown. In addition, the database can be used
for statistical studies of the controller behavior.

The data layer works as the integrating part of the frame-
work and allows for fast access to the data to run the plan-
ning, scheduling, or dispatching algorithms. The use of
data layers of this type, also known as blackboards, is
quite common in the artificia intelligence (AI) commu-
nity [5, 6].

Before we provide a detailed description of the con-
ceptual issues of the framework, we need to discuss the
interoperability problem of the different applications (e.g.,
of the scheduler and simulation software packages). There
are several approaches to solve this problem. The simplest
way to exchange information is to use text files One ap-
plication writes a data text file and the other application
reads it. As soon as the fil format is specified the imple-
mentation of the read/write interfaces is straightforward.
The main disadvantages of this approach are the low speed
of the data exchange and the lack of a simple mechanism
to synchronize applications.

A second approach is to have the data exchange per-
formed via interprocess communication in the computers’
memory. For this approach, all participating applications
have to be able to share memory (i.e., it depends both on
the operating system and the way the applications are im-
plemented whether data can be transferred in this way).

The third approach requires that the applications com-
municate via network protocols. The applications may then
even reside on computers with different operating systems.
With this approach, we have to implement complex com-
munication interfaces, causing a significan slowdown in
the simulation execution speed.

The interoperability based on high-level architecture
(HLA) functionality is becoming more and more common
in simulation packages [7]. This does not hold, however,
for shop-floo control systems or optimizer software pack-
ages in which interoperability functionality is not yet pro-
vided. Due to the lack of interoperability standards for this
type of framework, significan work is required to defin

164 SIMULATION Volume 79, Number 3
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and implement appropriate data exchange interfaces for
the participating applications.

3. Overall Concept of the Framework

3.1 Architecture for Interfacing between Shop-Floor
Control Software and Simulation Model

In our design, we mimic the structure found in a real wafer
fab (Fig. 1). The simulation model generates data, which
is sent to a data model of the fab that stores this informa-
tion. The message bus is replaced by a set of functions,
providing a clear separation of data that reside inside the
simulation model and data that are going to be transferred
to the data model. This is necessary to facilitate the merg-
ing and splitting of the simulation model and controller
with minimal effort. The shop-floo control software only
makes use of the data stored in the data model to compute
the schedule. No internal information from the simulation
model is going to be used. The resulting schedule is stored
in the data model for testing and serves as reference data
that are required when a decision has to be made on whether
to reschedule. The schedule is implemented in the fab by
a set of functions.

3.2 Architecture for Interfacing Scheduler and Real
Wafer Fab

The MES controls the shop floo in terms of lot progress
in a real wafer fab. However, the MES systems core func-
tionalities are product tracking and lot progress monitor-
ing. Dispatching functionality is often limited in the state-
of-the art MES software systems, and therefore many IC
manufacturers use external dispatching software. The dis-
patching software contains rules that calculate a ranking
for lots waiting to be processed at specifi equipment fam-
ilies (dispatching lists). The rules consider lot attributes,
equipment status (setup information), and queuing infor-
mation. However, the complete process fl w information
of a lot is not required for the ranking process. In mod-
ern wafer fabs, there is a communication link between
the equipment controllers (ECs) of the process equipment
(tool) and the MES. Figure 2 shows a typical communica-
tion sequence between MES, ECs, and external dispatching
software. Each time processing equipment has finishe the
processing activities, the EC reports this event to the MES.
The MES that takes control over the process fl w looks for
the next process step of the lot and the required equipment
family. Then the MES requests the dispatching software
for lot ranking of the specifi dispatch list. As soon as the
next tool of the equipment family becomes idle, the next
lot is selected based on the dispatch list of the equipment
family. In our simulation framework, the communication
and the lot progress are tracked by the simulator itself.
The ranking of the dispatch lists is performed in certain
time intervals by the scheduler. In contrast to an external
dispatching software, the algorithm of the scheduler re-
quires the complete process fl w information (sequence,

processing times, setup times, etc.) and further fab status
information such as current equipment status.

The future MES system is a distributed system with
several components. Core components such as work-in-
process (WIP) tracking, machine management, process
specificatio management, dispatcher, and so forth are
necessary to control a wafer fab. The trend is that MES
core components and external applications such as equip-
ment control software communicate based on a standard-
ized middleware. Future information technology (IT) ar-
chitectures for wafer fabs must be open and comply with
de jure or de facto standards such as Common Object Re-
quest Broker Architecture (CORBA) specification [8],
CORBA services specifications several Semiconductor
Equipment and Materials International (SEMI) standards,
and COM/DCOM/.NET.

Not all information required for running advanced
scheduling or even dispatching algorithms is available
in state-of-the-art core MES components. For example,
planned wafer release is typically provided in planning
tools such as enterprise resource planning (ERP), supply
chain management (SCM), or order release planning soft-
ware; availabilities and current locations of reticles (pho-
tolithography masks) are handled by reticle management
systems. Locations of lots in the fab, particularly in next-
generation 300-mm fabs, are handled by automated mate-
rial handling and storage systems and their control system
framework or by equipment control systems and so forth.

To allow seamless integration to stand-alone schedul-
ing or dispatching software, the functions interfacing to
the simulation have to be easily replaced by functions in-
terfacing to factory IT systems such as MES and ERP.
This design principle requires no further changes in the
software itself while allowing interface changes to be im-
plemented with little additional work to other control and
planning applications. In a wafer fab, the scheduler and
the data model have to provide standardized interfaces for
middleware communication.

As specifie by Semiconductor Equipment and Mate-
rials International (SEMI) E-105-0701 [9], the following
interfaces have to be established:

• Scheduling service interface: this is the interface for ser-
vices by the scheduler in response to requests from, for
example, the MES dispatching component or some other
client.

• Scheduling factory input interface: this is the interface
used by other components to provide updated static or
dynamic factory state information to the scheduler data
model. The updates are typically lot-tracking information,
order release information, current machine status informa-
tion, and process fl w specificatio information.

3.3 Simulation Environment

The main purpose of the simulation environment is to em-
ulate the behavior of a real wafer fabrication facility for

Volume 79, Number 3 SIMULATION 165
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Figure 1. Structure of the simulation and performance access environment. MES = manufacturing execution system; ERP =
enterprise resource planning; ASAP = AutoSched AP.
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Figure 2. Simple communication scenario between manufacturing execution system (MES), equipment controller (EC), and
external dispatching software
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the performance assessment of shop-floo control software.
Therefore, the simulation software used in the framework
has to provide the functionality to model specifi char-
acteristics of wafer fabs in the semiconductor industry.
These characteristics include large process fl ws, multi-
ple products, a high number of different manufacturing
equipment types (resources), availability models (mean
time to repair, mean time to failure, preventive mainte-
nance), and semiconductor-specifi process and equipment
timing models (batch processing, single-wafer processing,
lot-based processing, etc.).

In addition, an event-based online communication be-
tween the simulation and the shop-floo control software
has to be established to realize the control of the material
fl w in the simulator based on decisions of the shop-floo
control software. This spontaneous data exchange capa-
bility is a considerable problem for most of the current
simulation packages. If the packages provide interfaces,
they are most likely implemented in proprietary data ob-
jects and communication protocols. The same generally
holds true for shop-floo control systems.

3.4 Shop-Floor Control System Triggering

The framework allows for an event-driven and a time-
driven triggering of the shop-floo control system. In the
case of event-driven triggering, events of the shop floo
trigger the generation of control information. These trig-
gers include bottleneck equipment breakdowns, exceeding
a given limit for the deviation of a planned schedule, and
lot movements. The shop-floo control system has to be
called to compute a new schedule if these events occur.
Event triggering is also intended for all rescheduling ac-
tivities (i.e., minor changes of the schedule to adapt to state
changes of the factory).

In the case of time-driven triggering, a timer starts the
control system (e.g., at the beginning of a shift). This ap-
proach allows for the implementation of rolling-horizon
approaches.

After finishin the action that launches the control algo-
rithm, a delay can be set before the results of the algorithm
are sent to the simulation model. Thus, we mimic the time-
consuming behavior of a shop-floo control algorithm.

3.5 Data Layer Design

The data model stores manufacturing-specifi informa-
tion required by the shop-floo controller to compute new
schedules. A cache such as data storage can be found
in most of the modern advanced planning systems (e.g.,
SAP’s “Advanced Planner and Optimizer (APO)”). Ad-
vanced planning systems require a large amount of data
from traditional ERP systems and/or MESs. This type of
cache was introduced in such systems to avoid performance
problems that occur while waiting for the data from a large
number of database queries.

We segmented the data model to facilitate an appropri-
ate storage of the types of data. We distinguish between

static and dynamic data types in the data model. The static
data include data such as information about process fl ws
(technological routes), required reticles, setup information,
existing tool sets, tool dedications, and data for calculating
processing times. The second type of data, termed dynamic
data, includes lot release information, lot states, tool states,
setup state of a certain tool, and reticle states.

The data model is used in three different situations:

1. initialization of the data model at the beginning of
the simulation,

2. update of the objects during the simulation run (or
during the runtime of the shop-floo control al-
gorithm in a real environment) in an event-driven
manner,

3. reading of data model information by the shop-floo
component.

The data model consists of classes representing busi-
ness objects and classes that are used to encapsulate techni-
cal functionality. We focused on applying object-oriented
modeling techniques because these techniques allow for
an easy integration of association and aggregation rela-
tions between the real-world objects found in a wafer fab
into the software.

The suggested class hierarchy is shown in Figure 3.
Double-linked lists, containing pointers of the represented
objects, are the basic abstract data structures that are used
in the data model.

4. Performance Assessment

The suggested framework allows testing the performance
of different shop-floo models and also of different shop-
floo control systems. It is possible to compare new shop-
floo control systems against built-in rules of the simulator
(rules that mimic dispatch rules commonly used to control
the real shop floor)

To that end, we implemented a data structure that
collects historical information of all lots. For each
step/operation of the lot’s route, we collect the following
information:

• simulated lot ready time,
• simulated lot completion time,
• planned lot ready time (if a scheduling algorithm is going

to be assessed),
• planned lot completion time,
• waiting time experienced by the lot caused by tool un-

availability since the last schedule generation instant.

As soon as we turn off all stochastic elements of the
simulation model (e.g., machine failure), there should be
very small differences between simulated and planned time
stamps. This provides a method to check the implemen-
tation of the scheduling algorithm and to validate/verify

Volume 79, Number 3 SIMULATION 167
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Figure 3. Class hierarchy of the data model in UML notation

the implementation. In a stochastic fab model, this differ-
ence in time stamps can be used to determine the need
for rescheduling. We expect that most of the difference
is caused by tool downtimes; therefore, we measure the
amount of time each lot is delayed due to nonproductive
equipment.

4.1 Implementation Language

The design, requirements, and implementation details of
the framework suggest a simulation language that is robust,
familiar within semiconductor manufacturing, and capable
of interfacing with the many scheduling and control sys-
tems discussed. AutoSched AP (ASAP) 7.1 (Brooks–PRI
Automation) was therefore selected as the simulation envi-
ronment to be used in the prototype implementation. This
decision was based on the evaluation results for general
semiconductor modeling applications and the framework-
specifi requirements, including the following:

• interprocess communication via memory with external
software systems (here the shop-floo control software),

• ease of model customization with C++ code by developing
our own dynamic link libraries (DLL),

• general acceptance and familiarity in semiconductor man-
ufacturing, and

• user-friendly building of large-scale models.

The interprocess communication and the opportunity to in-
tegrate our own DLL distinguish ASAP as different from
other simulation tools and was probably the most signifi
cant influenc on our fina decision.

4.2 Prototype Implementation

In this section, we report on the usage of the framework
in two different situations. First, we use the framework
for testing the shifting bottleneck heuristic of the FORCe
project (for details on this project, see Fowler et al. [10]).
The second example is the performance assessment of a
production-scheduling algorithm for lots in a wafer fab on
a coarser level of granularity.

4.2.1 Scheduling Based on the Shifting
Bottleneck Heuristic

The following parts of the framework are already realized
in the “Scheduling of Semiconductor Wafer Fabrication
Facilities” FORCe project (2001-NJ-880) [10].
Initialization of the static information of the datamodel.

We parse the ASAP fab model text file to obtain the static
data portion of the data model, such as tool set or prod-
uct routes. The parser copies textual information from the
model text file to the appropriate data structures of the

168 SIMULATION Volume 79, Number 3
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data model. Each time a new fab model is going to be cus-
tomized, the parser must be reviewed to determine if new
constructs were used to model the fab and therefore require
parser extensions.
Update functions for the data model. The data model

update is event driven. As soon as one of the following
events takes place, data are transferred from the simula-
tion to the data model: lot enters fab, lot leaves fab, lot
enters operation, lot enters load port, lot leaves load port,
reticle new location, reticle new state, and station new state.
These events are mapped to ASAP internal events. ASAP
has a notification/subscription/publicatio mechanism that
facilitates calling of C++ code upon ASAP internal events.
At the beginning of the simulation run, the custom code
subscribes to the publication routines of all events of inter-
est. As soon as such an event takes place, the custom code
is started to update the data model.
Starting the scheduler and delayed reception of its re-

sults. We use custom lots with custom action lists to start
the scheduler. For instance, to achieve one scheduler run
per shift, we generate a custom lot every 8 hours. These
lots possess action lists that only contain the single action
of calling the external scheduler or dispatcher. After the
action that runs the scheduler, a delay can be set before the
scheduler results are sent back to the simulation model.
This delay mimics the computation time of the schedule
in a real wafer fab. In addition, the scheduler results are
added to the data model.
Implementation of a scheduler ASAP rule. To make use

of the external schedule, we implemented a custom rule
that dispatches lots based on a lot list and start times that
are provided by the scheduler. Each tool uses this rule for
dispatching.
Testing of the implemented framework. We wrote an

external FIFO dispatcher for testing the above modules and
interfaces. This dispatcher simply scans the list of waiting
lots at each tool and writes this list of lots back to the
simulation model after a given delay. It turned out that our
external FIFO dispatcher leads to the same performance
results as the internal ASAP dispatching rule if the interval
between external dispatcher runs is less than 30 minutes.
From this result, we concluded that our implementation
has no serious bugs.
Adaptation of the FORCe scheduler. As expected from

our conceptual considerations above, only the data in-
put and output interfaces of the FORCe scheduler had
to be adapted to the data model. The implementation of
these data-mapping procedures was straightforward be-
cause both the ASAP customization and the FORCe sched-
uler are implemented in C++.

4.2.2 Scheduling Based on a Beam-
Search Algorithm

Very often, only rough schedules are required in semicon-
ductor manufacturing (i.e., start and end dates have to be
calculated only for a set of consecutive process steps and

not for each single process step). Habenicht and Mönch
[11] suggested the use of a finite-capacit beam-search al-
gorithm to solve this task. The data model was extended
to store additional information such as the segmentation of
the routes and the rough schedules. The beam-search algo-
rithm was developed using the commercial ILOG libraries
[12]. The scheduling algorithms were integrated into the
suggested framework with little effort because only the in-
terfaces to the data model had to be implemented. Thus,
the test of the beam-search algorithm in a dynamic environ-
ment was considerably simplifie compared to developing
a new simulation test environment just for this particular
purpose.

4.3 Customization Effort and Runtime Performance
for ASAP Fab Models

To use our framework, the following customization steps
are required:

• adapting the data model (as a consequence, the data model
initialization function, the event processing, and the parser
have to be updated),

• replacing the given dispatching rule by our custom rule,
• adding custom lots for starting the external scheduler or

dispatcher, a custom action list, a few external definitions
and a few user attributes.

Only the firs point requires a moderate amount of work
because most of the data structures that are typical for the
semiconductor industry are already available in the proto-
type. The remaining steps are copy actions from a given
sample fab model and can be performed in only a few
minutes.

The framework has only a minor effect on the runtime
of the simulation model. The parsing of the model data file
takes less time than the time ASAP consumes to initialize
the same model without our framework. We were not able
to detect an increase in simulation runtime due to the event-
based data model updates or our custom dispatching rule.

The framework leads to an increased memory consump-
tion of a fab model during runtime because of the data
model. Its size depends on the size of the factory, the simu-
lated interval, and the number of runs of the external sched-
uler or dispatcher. The size of the data model, however,
grows during simulation runtime only if the tracking of
statistical data is switched on. Then, historical information
for each lot and each scheduler/dispatcher run is kept in
the data model for performance assessment purposes after
the simulation run.

5. Conclusions

In this paper, we present a framework allowing perfor-
mance assessment of shop-floo control systems. We sug-
gest a framework based on emulation of the shop floo via
simulation that allows the test of different shop-floo mod-
els and different control systems in a unifie manner. We
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discuss the design decisions for the framework and report
on its implementation. We discuss the application of the
framework for two real-world scenarios.
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