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ABSTRACT 

Strain gauge based force transducers are often used in applications that require the 

measurement of static or quasi-static forces. For these measurements a static calibration is 

sufficient. In dynamic measurements however, the measurement deviation caused by using 

static calibration coefficients increases when approaching the resonance frequency of the 

sensor. This paper deals with the dynamic characterization of a multi-component force sensor 

used in Lorentz force eddy current testing, a measurement principle that is based on the 

measurement of dynamic force reactions. For the dynamic calibration a system is presented 

that allows the use of various test signals to determine the system parameters of the force 

transducer. Measurement results for different test signals are shown and main sources of error 

are discussed. Based on the estimated parameters, an inverse filter [1] can be designed to 

calculate the dynamic force from the measured output voltages of the sensor. 

1. INTRODUCTION

New applications for accurate force measurement are arising for example in robotics [2], flow 

measurement [3] or nondestructive testing. Lorentz force eddy current testing (LET) is a 

novel non-destructive testing technique introduced in [4-6] which is based on measuring the 

Lorentz force acting on a system of permanent magnets during the relative motion of an 

electrically conductive non-ferromagnetic object under test. Due to the relative motion, eddy 

currents are induced inside the specimen governed by Ohm‟s law for moving conductors. 

These eddy currents are accompanied with a Lorentz force acting on the conductor, and on the 

magnet system itself due to Newton‟s 3
rd

 law. This force is proportional to the specimens

conductivity and by that an indicator for material anomalies and defects inside the specimen. 

In these applications the direction of the force-vector as well as its magnitude are unknown 

and time-dependent. Multi-component force transducers are widely used for measuring all 

three components of force, but are calibrated with static loads in most cases. When the 

measured forces are getting closer to the sensors resonance frequency, the measurement error 

is increasing when static calibration factors are applied. A dynamic calibration reveals the 

frequency response of the measurement system and is the basis for designing an appropriate 

filter that compensates these deviations. The dynamic investigation of single-component force 

transducers by using a harmonic excitation created by a shaker is known from [7]. In [8] the 
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measurement of the impulse response is used to identify the dynamic characteristics. For 

multi-component transducers a dynamic characterization was only done in [9] using a shaker 

and a mass to create harmonic excitation by inertial forces. In the following paper a three 

component force sensor model is identified using different types of force signals. These are 

the chirp signal, sinusoidal signal and noise signal that are applied by a voice-coil actuator as 

described in [10]. 

 

2. MEASUREMENT SETUP 

 

To perform a dynamic measurement of the given multi-component force sensor, excitation-

forces of up to 400 Hz were applied using a voice-coil actuator. For a complete 

characterization of the three-axis sensor, at least three independent measurements are 

required, with the actuator being aligned with each one of the three measurement axes. The 

force sensor is mounted in a fixed position while the voice-coil actuator is mounted in three 

different orientations as can be seen from Figure 1. During every measurement the responses 

of all measurement axes are captured which allows the determination of the main responses 

and the crosstalk to other components. 

 

 
Figure 1: Mechanical setup for calibration of the z-axis 

 

The actuator generates a Lorentz force proportional to the current, applied by a U/I-converter 

which translates the test signals created by a dSPACE digital signal processing unit [11]. The 

current through the coil is measured to calculate the acting force from the calibration constant 

of the actuator. The U/I Converter has a constant transfer behavior of 76.73 mA/V up to a 

frequency of 10 kHz with a standard uncertainty of 0.44 mA/V. A schematic of the 

measurement setup is shown in Figure 2. Additional to creating the test signals and measuring 

the coil current, the dSPACE unit is used for simultaneous sampling of the output signals of 

the three channels of the force sensor. The dSPACE unit is controlled by a computer, which is 

responsible for processing the measured data and receiving the measuring parameters, such as 

the measuring time and type of test signal from the user. 
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Figure 2: Electrical setup 

 

2.1 Calibration of the Actuator 

Additional to the linear dependency of the force on the current, the force depends on the 

position of the coil inside the magnetic field. As the coil cannot be aligned perfectly in the 

center position and is displaced by the acting forces because of the compliance of the force 

sensor under test, the assumption of a constant force sensitivity of the actuator leads to an 

error in calibration. To determine the force sensitivity as a function of the coil position a 

calibration is necessary. This is done by replacing the force sensor in Figure 1 by a calibrated 

EFC balance as described in [12] and changing the position of the coil with a two-axis linear 

stage to measure the force at different positions in the magnetic field. From this calibration of 

the actuator, the force sensitivity (Figure 3) was determined. 

 

 
Figure 3: Force sensitivity of the voice coil actuator as a function of the axial and radial displacements 

 

From the calibration the force sensitivity is determined to be 4.5967 N/A at the center position 

with a standard uncertainty of 98 µN/A. The deviation of the actuator‟s force caused by 

deviations of the coil from its center position is 4.7 mN/A in maximum. This corresponds to a 

relative error in applied force of 0.1 %. 
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2.2 Static measurement uncertainties 

From the calibration of the actuator, the calibration force can be approximated by Equation 1 

 
        (         

       
 ) (1) 

The coil can be aligned to a radial position x and axial position y in the range of ±0.1 mm 

from the centered position. The displacement from this initial position caused by the 

calibration force of ±0.1 N and the sensor‟s stiffness of about 30 N/mm [13] is estimated to be 

in the range of ±3 µm and was neglected in the calculation of static measurement uncertainty. 

In the dynamic case, this uncertainty contribution is not negligible anymore, because the 

amplitude of the dynamical excited motion is higher near resonance frequency. The standard 

uncertainty of the calibration current from the U/I converter was determined by measurement 

to be ±132 µA. The uncertainty budget for the measurements of the force components in x 

and y direction is given in Table 1. The uncertainty contribution caused by the position of the 

coil was estimated for maximum misalignment of 0.1 mm to avoid sensitivity coefficients of 

zero due to the reference value being zero as well. 

 
Table 1: Measurement uncertainty budget 

Quantity Reference 

value 

Standard 

uncertainty 

Uncertainty 

contribution 

icoil                                      

x   m                          

y   m                           

Bl0                                         

Bl1                                                

Bl2                                               

Calibration force          

Expanded uncertainty (k=2)              

 

2.3 Estimation of error by eddy current damping 

Due to the movement of the actuators coil in the magnetic field, eddy currents proportional to 

the velocity are induced which counteract the acting force. The additional eddy current 

damping coefficient cd can be estimated by Equation 2 from the electrical conductivity of the 

copper wires of the coil  , the magnetic flux density of the permanent magnet  , the internal 

and external diameters of the coil       and the height of the coil in the field  . 

 

      
  (     )

    
 

 
         

  

 
 (2) 

From the datasheet of the sensor [13] the values of the stiffness   and natural frequency    

are approximately 30 N/mm and 220 Hz for the x and y axis. With the damping coefficient 

from (3) the change in damping ratio is given by 

 
   

     
   

        (3) 

For the z-axis the stiffness with 100 N/mm and a natural frequency of 400 Hz are given in 

[13], which gives an estimate of         . 
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3. DYNAMIC CHARACTERIZATION 

 

3.1 Methodology 

Two signal analysis techniques are used for the system identification: the Orthogonal 

Correlation [14] and the Fast Fourier Transform. In order to apply both methods to the 

identification of the force sensor, it is necessary to set up a measuring system, which is 

capable of generating test signals, sampling external signals and processing the measured 

data. The test signal is a specific input which is applied to the system under test during the 

identification. In this work four types of test signals are considered: the sine function, the 

pseudo white noise, the chirp signal and the maximum length binary sequence (MLBS) 

signal. The measuring system is shown in Figure 2 where a dSPACE digital signal processing 

unit is used for generating the test signal through a D/A converter and for sampling external 

signals through A/D converters. The dSPACE unit is controlled by a computer, which is 

responsible for receiving the measuring parameters from the user, such as the measuring time 

and type of test signal, and for processing the measured data. 

 

3.2 System identification through Orthogonal Correlation 

In the method of Orthogonal Correlation the system under study is excited by a sine-shaped 

test signal and its steady state output is analyzed. With the cross-correlation function 

calculated between the system‟s input  ( ) and output  ( ) 
 

   ( )     
   

 

 
∫  (   ) ( )   
 

 

  (4) 

the system‟s gain  (  ) and phase delay  (  ) can be determined [14]: 

 

 (  )  
 

  
 √   ( )

     (    )    

 
 (  )      (   ( )  j   (    ))  

where   ,    and    are respectively the frequency, period and amplitude of the test signal 

 ( ). By this means, equation (4) is evaluated only for     and     . Furthermore, its 

integral is calculated for a limited number      of oscillation periods: 

 

   ( )  
 

   
∫  (   ) ( )   
   

 

  

The system‟s frequency response diagram can be determined by the execution of this process 

for different values of     
 

3.3 System identification through Fast Fourier Transform 

The Fast Fourier Transform is a numeric efficient method for the evaluation of a signal‟s 

Discrete Fourier Transform. The computation of the Fourier Transform of a system‟s input 

signal  ( ) and output signal  ( ) provides the following relationships: 

 * ( )+   (  )      * ( )+   (  ) 
Under the assumption that the system is linear, its frequency response can be determined as 

[15]: 

 

 (  )  
 (  )

 (  )
  

By the FFT, a discrete estimative for the system‟s frequency response can be obtained: 
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 ̂(   )  
 ̂(   )

 ̂(   )
  

where  ̂(   ) and  ̂(   ) are respectively the FFT of the system‟s input and output signal and 

  *        +, with      equal to the domain size of the discrete frequency response 

function. The system‟s gain  (  ) and phase delay  (  ) are calculated through the 

following expressions: 

 
 (  )  | ̂(   )|      (  )     ( ̂(   ))  

The input signal  ( ) should contain every frequency component that is relevant for the 

analysis. In this work three types of input signal were considered: the pseudo white noise, the 

chirp signal and the MLBS signal. 

 

3.3.1 Pseudo white noise 

The pseudo white noise (Figure 4) contains a series of computer generated pseudo random 

numbers uniformly distributed between    and   . With this signal different frequency 

components can be excited at the same time. 

 
Figure 4: Pseudo white noise 

 

3.3.2 Chirp signal 

The chirp signal (Figure 5) comprises a sine function with time-dependent frequency. This 

signal is given by the following function: 

 

 ( )     (  (
     
   

      ))  

where    and    are the initial and final frequencies respectively. On mechanical systems with 

resonance, the chirp signal must be carefully applied in order to avoid excessive excitation of 

the system at its resonance frequency. 

 
Figure 5: Chirp signal 
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3.3.3 MLBS signal 

The MLBS signal (Figure 6, [14]) is a pseudo random, time-discrete, binary signal. Like the 

pseudo-random white noise, this signal is capable to excite different frequency components 

simultaneously. 

 
Figure 6: MLBS signal 

 

4. SYSTEM IDENTIFICATION 

 

The measurement setup was used to identify the dynamic behavior of the force sensor in its 

three directions (X, Y and Z axis). The three axes were excited seperately by means of the 

voice coil, using the four different test signals and the strain of the deflection elements in 

respective directions was measured. Figures 8, 9, 10 and 11 show the measurement results for 

the Z axis using the white noise, the MLBS signal, the sine function (orthogonal correlation) 

and the chirp signal respectively. Each measurement was executed 20 times (for orthogonal 

correlation 5 times), and its mean values and standard deviations are shown in the figures. The 

measured frequency response has a similar behavior for the four test signals, and the main 

difference between the plots resides in their standard deviations. The measurement with the 

pseudo white noise has the biggest uncertainties, followed by the results obtained through the 

MLBS signal. Meanwhile, the sine function and the chirp signal provided the lowest standard 

deviations. Since the identification through the chirp signal yields a “continuous” frequency 

response diagram, it has an additional advantage against the sine function. 

 

4.1 Characterization of the Amplifier 

To identify the sensor behavior separately from the measurement amplifier, its response was 

measured using the Chirp-signal described above (Figure 7). The amplifier has a gain of 60 

dB up to a corner frequency of 1.5 kHz. 

 

 
Figure 7: Frequency response diagram for the measurement amplifier 
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To reduce the influence of the amplifier on the measurement of the sensor-response, the 

sensor characterization will be done up to a frequency limit of 400 Hz. 

 

4.2 Characterization of the Force sensor 

 
Figure 8: Frequency response for Z axis using the white noise signal 

 
Figure 9: Frequency response for Z axis using the MLBS signal 

 
Figure 10: Frequency response for Z axis using the sinusoidal signal 

 
Figure 11: Frequency response for Z axis using the chirp signal 
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4.3 Parametric identification of the force sensor 

Figure 12 contains the measured frequency response diagram for the three axis of the force 

sensor. All axes were measured using the chirp signal, and the plotted curves comprise the 

mean values of 20 measurements. These results are very similar to the frequency response of 

the second order transfer function 

 

 ( )  
   

 

           
     

with       
  and   *         +. Through the parametric optimization of the 

error function 

 

 (      )  ∫ (| (  )|    ( ))
    

  

  

   

the transfer function  ( ) can be fitted to the measured frequency response data   ( ), and 

the parameters       and   can be determined. This process was executed for the three axes 

of the force sensor (with       Hz and        Hz) and the results are shown in Table 2. 

Figure 12 also shows three additional characteristics of the observed system‟s behavior: 

 

1. Disturbances at 50 Hz caused by the alternating-current electric power supply 

2. Coupling between the axes at resonance frequencies (at approx. 200, 220 and 280 Hz) 

3. A frequency-dependent phase shift caused by the sensor amplifier 

 

These characteristics are not considered by the transfer function  ( ). 
 

Table 2: Results of the parametric identification 

Axis      (Hz)   

X 0.1851 222.1 0.0142 

Y 0.3137 199.6 0.0138 

Z 0.1308 278.2 0.0071 

 

 
Figure 12: Frequency response for X, Y and Z axis 

 

A comparison of the dc gain K determined in the parametric optimization with calibration 

coefficients evaluated using static calibration yields results within the boundaries of the 

measurement uncertainty evaluated in Table 1 while the y-axis has a deviation of 8,5 %. 
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5. CONCLUSION 

 

In this paper, a calibration setup for dynamic forces by using a voice-coil actuator is described 

and contributions to static calibration uncertainty are estimated. The setup, which allows 

using different test-signals, is applied to the measurement of the frequency responses of every 

component of a three-component force sensor. The measurement results as well as the 

advantages and disadvantages of the test signals are discussed. From the frequency responses 

the parameters of a second-order transfer function model for every axis are identified. These 

values give a good approximation for the behavior of the main components of the sensor up to 

an operating frequency 400 Hz. The modeling allows the design of inverse filters which 

decrease the measurement error at operating frequencies close to the resonance frequency of 

the sensor. The measurement results shown in this paper contain the response of force sensor 

and of the measurement amplifier. Despite the small influence of the amplifier in the 

frequency range of interest, the results could be improved by deconvolution of the 

measurement results with the response of the amplifier, which was measured separately in 

4.1. 
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