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Abstract—Magnetic bearings can not only solve the bearing 
wear and life problems but also reduce the loss and noise of 
bearing. However, the strong disturbance and noise from the 
system affects the control behavior. Based on the Kalman filter 
the influence of noise will be reduced. But the strong nonlinear 
and uncertainty of parameter of the magnetic bearings make it 
difficult to establish the estimation / prediction equation in 
Kalman filter. This paper presents a design method of system 
estimation / prediction for Kalman filter with using soft 
computing. Firstly, linear local model for axial magnetic bearing 
overall system will be deduced. Then a few system parameters, 
which is relative with nonlinear and uncertainty, will be 
obtained by a intelligence function, which uses soft computing 
algorithm as system identification. Finally, the identified system 
parameters will be used in state equation in Kalman filter. It 
aims at better filter performance and state estimation than the 
conventional linear Kalman filter. 

A. Introduction 
Many works have shown, that AMBs have tremendous 

potential for many high speed industrial applications.  
The new approach aims to get a better filter performance 

and system observer by introducing a Kalman filter. Because 
of the intense nonlinear performance of the magnetically 
suspended bearings, the traditional linear system model is 
difficult to guarantee the accuracy in comparison with the 
actual system, when the system is far from the working point. 
As a result the filter function will be reduced. Thus a new 
approach for a precise system prediction for Kalman filter will 
be searched. 

The soft computing consists of fuzzy logic, artificial neural 
network, and neural fuzzy logic. In the method, the 
relationship between the large amount of input and output are 
established. As the widely used intelligent model, it is 
essentially one nonlinear model and is easy to describe a 
complicated dynamic system. It has been proved that soft 
computing model can identify arbitrary nonlinear system and 
system parameters with a high precision [2].  

This paper demonstrates a soft computing variation of the 
system equation in Kalman filter, with experimental validation 
on a simulated active axial magnetic bearing. Despite its 
highly nonlinear and uncertain nature, the dynamics of AMB 
system are represented using an adaptive linear model with 
parameters that are identified by system identification with 
soft computing. In paragraph B a linear Kalman for this 
system will be introduced. In paragraph C the artificial neural 
networks are an important tool of the identification for the 
system parameters. In paragraph D a expert system, which is 

based on fuzzy rule, using a radial basis function and the result 
from identification, will be designed for a adaptive Kalman 
filter. Lastly the simulation’s result will be showed. 

Fig 1: concept of the adaptive Kalman filtering in closed loop 

B. Traditional linear Kalman filter for magnet bearing 
The first step of Kalman filter is to design the system state 

equation. This paragraph proposes linear discrete equation 
model on the basis of the force analysis of rotors and 
linearization of the magnetic force. The Kalman filter 
embodies the process - and measurement noise. We design a 
Kalman filter with the constant noise. Detailed analysis is 
listed as follows. 

Force Analysis of the Single Degree Axial Magnetic 
Bearing 

Im magnetic bearing system, single degree magnet poles 
are usually assembled symmetrically as showed in Fig 2 a pair 
of electromagnetic forces opposite in direction is created 
simultaneously be adopting a pair of symmetric power 
amplification circuits and driving the electromagnet in 
differential mode. When the rotor is at the geometric center of 
the bearing, the distances between rotor and air gaps are 0s . 

There is equal current 0i , which is also termed as 
magnetic biasing current between the upper and lower 
magnet poles to set up magnetic field. An any working state, 
if the rotor bias is x, then the air gap between rotor and lower 
magnet is xs 0 . Accordingly, the air gap between rotor and 
lower magnet is xs 0  . So the resultant force generated by 
this pair of magnet poles is: [3] 
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With using magnet parameter: 
4

2
0 NAkMagnet





0  states for vacuum magnetic permeability, and A is the 
cross sectional area between core and air gap, N is turns of 
coil, ui  is control current.

Fig 2: mode of single degreed magnetic bearing

Plant physical parameters 
Mass of rotor 0.518 kg 

Force const 
Magnetk 6.7 22 / AmmN   

Total air gap 5 mm 
Nominal air gap 

0s 2 mm 

Nominal current 0i 1.5 A 

Table 1: parameter and value about experiment system 

According to Newton Second Law, the motion differential 
equation of single degree magnetic bearing is: 

xmFgmF RotorStRotorMagnet    ( 2) 

StF  is the disturbance force. 

Linearization of the magnetic force 
By taking the Taylor’s series expansion of equation (1) 

for arbitrary operating points ( *x , *
ui ), the nonlinear 

equations of the magnetic force can be represented by the 
following equation: 
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With linear approximation with respect to an equilibrium 
point ( 0s , 0i ), position stiffness sk  and current stiffness ik
are given by the following: 
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Because of the intense nonlinear performance of the 
magnet force, the traditional linearization of the force with 
the constant stiffness ik  and sk  is difficult to guarantee the 
long-term accuracy, which is showed by the work [4]. 

Fig 3: nonlinear performance of the magnet force [4] 
According to this reason, the linear magnet force is not 

equal to the real magnet force, when the work point is far 
from the equilibrium point. 
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Review of Kalman filter 
Im many cases, particularly in industrial practice, PID 

regulators are implemented for this purpose [5]. Considering 
the fact that measured rotor position signal typically contain 
amount of high-frequency measurement noise, a reliable filter 
with prediction function is desired, Kalman filter goes without 
differentiation.  

The process of designing an optimal state estimator for a 
magnetic levitation system can be summed up in four main 
steps-choosing an appropriate filter algorithm, determining the 
discrete-time state-space model and noise variance. Those 
steps are outlined subsequently. [5] 

In general, a discrete-time process model with stochastic 
disturbance will be given as: 

System state equation: 
)())(),(()1( kkukXfkX k    ( 7) 

Measurement equation: 
)())(()1( knkXhkY k    ( 8) 

With the state vector )(kX , the input value )(ku , the 
output vector (measurement) )(kY  at the time step k. )(k  
and )(kn  are the uncorrelated process noise and measurement 
noise. A Kalman filter consists of two parts, prediction step 
and correction step.  

As the prediction step: 
System state estimation: 

)()1|1()1|( kuBkkXAkkX 


  ( 9) 
Covariance matrix estimation: 

QAkkPAkkP T  )1|1()1|(   ( 10) 
As the correction step: 
Calculation for Kalman gain: 

  1)1|()1|()( 
 RHkkPHHkkPkK TT 

 ( 11) 
Optimal estimation for next step: 

 )1|()()()1|()|(  kkXHkZkKkkXkkX


(12) 
Optimal covariance matrix:  

)1|()()|(  kkPHKIkkP K


  ( 13) 

The notation k|k-1 denotes an estimation at the time step k 
with measurement information from time step k-1. The 
notation k-1|k-1 denotes an optimal measurement at the time 
step k-1. A is system matrix, B is input matrix, H is 
measurement vector, P is covariance matrix of the estimation 
error, Q and R are system noise covariance matrix and 
measurement noise covariance matrix. 
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Kalman filter of magnetic bearing system 
The active magnetic bearing treated in this paper is an 

axial bearing (see Fig 2). The electromagnetic force acting on 
the rotor in bearing axis, which is a function of axial rotor 
position x and control current i, can be calculated by 

xkikF issuisiMagnet  ),(),( 0000
||   ( 14) 

The rotor position is linked to the magnetic force and 
disturbance force. It is connected to the magnet force, 
disturbance force, “delayed” rotor position and velocity by the 
discrete equation: 

 
Rotor

StMagnet m
TFFkvTkxkx

2

2
1)()()1(   ( 15) 

The rotor velocity can be described by: 

 
Rotor

StMagnet m
TFFkvkx  )()1(  ( 16) 

The magnet force will be described by (3). The control 
current of the coil is generated by the control signal u from 
controller, and the magnetic force can be described by: 

xkukkF issuiisiMagnet  ),(),( 0000
||   ( 17) 

For generating the measuring signal, the state signal will 
be delayed. The sensor is modeled as a first-order lag element 
with the equivalent time constant 

SenT  and  proportional gain 

SenK . The “delayed” rotor position Mx  is connected to the 
undelayed rotor position x by the differential equation: 

x
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K
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1
   ( 18) 

In discrete form it will be described as: 
  )()(1)1( // kxekxeKkx M

TTTT
SenM

SenSen    ( 19) 
Active magnetic bearings are well known as nonlinear 

systems. But in general, active magnetic bearings are regarded 
as linear system. Thus, an estimation algorithm will be used, 
which regards the system as a linear system using a linear state 
space model. The equation (14)-(19) describe the 4 state 
variables of the system. They can be combined to the time 
discrete state space model: 
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The observation equation is: 
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Choice of measurement noise variance R is a quite simple 
problem, if a sequence of the Gaussian signal noise can be 
measured . For the experiments, R is the noise variance matrix 
of sensor  SensordiagR var . The process variance matrix Q 
will be calculated as: T

ocess BBQ  Prvar . For the element in 
matrix Q, which is relative with estimated disturbance, will be  
experimentally initialized. 

Besides the undisturbed rotor position signal, the Kalman 
filter yields the remaining state variables, rotor velocity, 
disturbance force and measurement signal. The combination 
of a Kalman filter as a state estimator in process is depicted in 
Fig 4. 

Fig 4: structure of kalman filter in process 

C. System identification with using softcomputing 
It is well known that active magnetic bearings are 

inherently unstable systems due to the indirect proportionality 
between the attractive force and the length of the air gap [5]. In 
addition, the uncertainty of the magnetic force, which is 
caused by the changed magnetic field, has effect an the 
calculating of the magnetic force. Thus a identification of the 
parameter Magnetk , furthermore of ik  and sk , are necessary. 

Identification the system parameter 
A neural network is a massively parallel distributed 

processor made up of simple processing units, called neurons, 
which has the natural propensity for storing experiential 
knowledge and making it available for use. And system 
identification, in general, is to determine the model structure 
and parameters for a dynamic system based on the measurable 
input and output data of the system. [7] Model structure in its 
classic form is multi input single output (MISO) linear system. 
The mathematical description of the used structure and 
adaptation law of the ADALINE (Adaptive Linear Element 
Neural Network) is presented in this section.  
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Fig 5: structure of ADALINE [6] 

Output signal y(k) for ADALINE model is described by 
equations (without bias value): 

))(()( kufky    ( 22) 
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)()()(   ( 23) 

Where f – activation function, iw  - weights coefficients, ix  - 
input signals, u – argument of the function. The online weight 
adaptation algorithm is realized in each iteration. All weight 
coefficients iw  are calculated according to the following 
equation: [6] 

)()()1( kwkwkw iii  , with k=0,1,2… 
Detail of the net training can be found in [6] and [7]. In this 

work, a ADALINE will be used for the online identification of 
linear time varying systems, which can be described by a 
discrete time model.  

For axial magnetic supported rotor, the system (rotor 
dynamic - magnet force) can be presented as a MISO system: 
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In such systems, the system input vector 
 TSt kFkvkxx 1),(),(),(  

Weight vector: 
T

Magnet
RotorRotor

kF
m

T
m

TTw 







 )(

2
1,

2
1,,1

22

Single output: 
)]1([ kx  

In this example the weight parameter (magnet force) 
)(4 kFw Magnet  will be adapted and identified. 

For magnet force, the system (magnet force – current and 
air gap) can be presented as a SISO system: 
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In such systems, the system input vector is just with one 
element: 
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In this example the weight parameter (magnet parameter) 

)(kkw Magnet  will be adapted and identified. 

Fig 6: ADALINE used in system identification

Identification of the parameter for working point 
The active magnetic bearing system is uncertain, 

nonlinear and unstable. The most useful approach of dealing 
with such a system is to linearize it about a single nominal 
equilibrium point. In this work, we apply least square method 
(LSM) to obtain the stiffness parameter of the different work 
point. In order to present the overall system, the work point 
shall be chosen from the F-(i, s)-map.  

The nodes of control current will be chosen as: 
control current ui

Aiu 5.11|   Aiu 75.02|   

Aiu 03|   Aiu 75.04|   

Aiu 5.15|   
Table 2: chosen value of contril current 

The nodes of rotor displacement will be chosen as: 
rotor displacement x  

mmx 5.01   mmx 25.02   
mmx 03   mmx 25.04   
mmx 5.05   

Table 3: chose value of rotor displacement 

To obtain a linear model of every work point  nmu xi ,|
, 

with ]5,1[m  and ]5,1[n , which means the number of the 
input – fuzzy set. The magnet force must be linearized. The 
equation will be used:  

xkikF
munmun ixsuiximnMagnet  ),(),(, ||

|||   ( 26) 

The parameters of this linearized model will not vary with 
rotor position, when the work point is not far from the set 
point. For these work points, the process will be presented as: 

)(|)(|| ),(),(, ||
xxkiikF

munmun ixsuuiximnMagnet    ( 27) 

With Aiu 01.0||  , and mmx 01.0||  . The work point 
series can be written as 9 equations: 

)01.0(|)01.0(|| ),(),(,1 ||
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Consider the given set of samples  , A  and Y , with least 
square method (LSM), the relation underlying the data set is 
represented as a function of the following form: 

eAY T     ( 28) 
Here e is the error for every equation. For the LSM 

regression, the error variables for the fitting problem will be 
introduced as follows: 

TAYe   ( 29) 
And for the given data those weights   will be searched, 

in which the summed quadratic error E of the training 
samples is smallest. The quadratic error is given as: 
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ii
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When the quadratic error is minimal, 0)( E , the 
weights   shall be: 

  YAAA TT 
1

  ( 31) 
The Fig 7 shows a schematic of the parameter 

identification process for stiffness parameter, when the 
identified magnet parameter is identified as: 

2

2

7.6
A
mmNkMagnet


 . 

Fig 7: demodulation of the parameter identification with LSM 

The table illustrates the experimental result of the 
stiffness parameter for every nominal work point: 

ui  (A) Parameter 
identification 

ik -1.5 -0.75 0 0.75 1.5 
-0.5 7.14 8.47 12.15 9.35 8.74 
-0.25 9.47 9.58 10.53 9.69 9.65 

0 10.05 10.05 10.05 10.05 10.05 
0.25 9.66 9.69 10.53 9.58 9.48 

Rotorx
(mm)

0.5 8.75 9.35 12.15 8.45 7.14 
Table 4: identified parameter ki for every sub space 

ui  (A) Parameter 
identification 

sk -1.5 -0.75 0 0.75 1.5 
-0.5 32.16 16.23 8.57 6.53 6.94 
-0.25 21.89 12.57 7.78 7.21 10.30 

0 15.08 9.42 7.53 9.42 15.08 
0.25 10.30 7.21 7.78 12.57 21.89 

Rotorx
(mm)

0.5 6.95 6.53 8.57 16.23 32.16 
Table 5: identified parameter ks for every sub space 

D. Kalman filter with Expert system 
In this paragraph, we apply a expert system, which is 

based on fuzzy basis function neural network (FBFNN), to 
obtain the actual stiffness parameter over the entire clearance 
and control current area in state equation in Kalman filter.  

Generation of expert system with using FBFNN 
Fuzzy logic system (FLS) is a logic in form of many-

valued-rules. The FLS can be expressed mathematically as a 
linear combination of the input and output, such as TSK-
fuzzy-logic, as a nonlinear combination it can be a Mamdani-
fuzzy-logic. Detail for the fuzzy theory can be found in [8]. 

The expert system uses the control current ui  and rotor 
displacement Rotorx  as input, the stiffness parameter ik  and 

sk  as output. As shown in Table 2 and Table 3, the input ui  and 

Rotorx  will be divided into 5 levels. The conclusion value will 
be captured from LSM-machine. The rule base is constructed 
with Mamdani-structure, and presented as follows: 
If <control current ui  is …, rotor displacement Rotorx  is …> 

Then < stiffness parameter ik  and sk  are …> 
A convenient way to list all rules, is to use a tabular 

representation from Table 4 and Table 5. 

Fig 8: structure of adaptive kalman filter with using fuzzy expert system  

Training of expert system with using FBFNN 
RBFN is an adaptive network functionally equivalent to a 

fuzzy inference system. The fuzzy basis function (FBFNN) 
has if-then of membership functions in the neural network. As 
a combination from both, the FBFNN has Input layer, hidden 
layer and output layer. The input layer receives input data into 
the network. Hidden layer is a fuzzy basis function which 
transfers input data into a membership function by using the 
Gaussian function. The output layer is linear combination for 
the hidden layer output.  

We use two input layer node, 25 hidden nodes and one 
output layer nodes. The input value )(kxRotor , )(kiu  as work 
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point are measurable in experiment. The value ik  and sk  for 
the work point are generated by LSM - Machine. For every 
logic rule, the Gaussian membership function shall be 
determined by the training function. Fig 9 is the FBFNN 
structure. The function of the nodes in each of the layers will 
be described. 

Fig 9: the structure of FRBFNN 

Layer 1: Input layer for input vector. 
Layer 2: the nonlinear activation function of hidden layer 

is a Gaussian function which expressed as: 

2
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,with ],1[ ni ,  ( 32) 
Where i  is the Gauss function vertex for the i-th sub 

space (rule), which expresses the value ui  and Rotorx . 
Parameter i  is the width (or variance) of the Gauss function. 

Layer 3: the output of hidden layer is expressed as: 
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 


m

i

m

i
iii uuwy

1 1
/  ( 33) 

Where iw  is the i-th weight between hidden layer nodes 
and output layer. The consequent parameters iw  for each sub 
model are from the process of parameter identification. 

FBFNN algorithmus uses the steepest gradient methode to 
learn the weights in the network. The steepest gradient 
methode is supervised leaning which reduces the error 
between output and input of neural network. Detail will be 
found in [13]. 

As a result in this work, the width of the Gaussian 
membership function i  of every rule (sub space) will be 
optimal adapted as shown in Fig 10. 

Fig 10: modulation for offline training of FNFNN  

Adaptive Kalman filter 
In the majority of cases, a Kalman filter requires many 

system information for the prediction function. So a 
interesting problem is the possibility for the parameter 
adaptation in system state equation for a linear Kalman filter 
by using of the expert system, which is relative with system 
identification. Its aim is to enhance the prediction ability of the 
Kalman filter.  

In this system, besides the constant parameter in state 
equation of the Kalman filter, the parameter  ik  and sk  will 
be adapted. The combination of the kalman filter and the 
expert system is known as “adaptive Kalman filter with using 
softcomputing”. The system structure and diagram of the 
work are depicted in Fig 8. 

E. Simulation and result 
In this section, the concept made in this work shall be 

verified by means of simulation and measurement. All 
relevant test rig parameters can be found in table. 

Process noise variance 5108   V 
Measurement noise variance 5103.8  V/mm 

Rotor rotation 0 /min 

Result of system identification 
The identification of the magnet force and magnet 

parameter will be verified by means of a rotor position step 
response without force disturbance. 

Fig 11: identified magnet force F 

Fig 12: training result for magnet parameter 
Magnetk

After the identification of magnet parameter and the 
calculation of stiffness parameter by LSM-machine, inclusive 
offline training, the RBFN expert systems are generated. In 
this case, the calculated stiffness parameter from expert 
system will be compared with the constant stiffness parameter 
from traditional linearization. The difference between the two 
values will be illustrated. 
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Fig 13: adapted 
ik  from fuzzy expert system 

Fig 14: adapted 
sk from fuzzy expert system 

Result of rotor displacement control 
As a position control, the rotor displacement in step 

response is shown. In this case, the measured rotor 
displacement with and without measure noise, the estimated 
rotor displacement from Kalman filter will be illustrated, 
where a high correlation between the actual and the estimated 
position signal can be observed. 

Fig 15: simulation result of the rotor displacement in step response 

Fig 16: simulation result of the rotor displacement 

F. Conclusion 
A new concept of Kalman filtering for AMB system has 

been introduced. To cope with the strong sensor noise and 
process noise, the Kalman filter is suggested to AMB system. 
It is based upon system identification which are realized by 
artificial neural network. Thus the system parameter and 
magnetic force can be identified online. Experiments have 
proved that the trained fuzzy expert system can give the actual 

system parameter. The strong uncertainty and nonlinear of the 
system to the linear state equation in Kalman filter are reduced. 

By estimating the magnet force, the ADALINE is used. By 
calculation of every sub-space, the LSM is suggested. All the 
calculation result will be saved in fuzzy system, which is 
optimal adjusted by RBFN. Results have shown, that the 
adapted linear state equation in Kalman filter is more 
reasonable. 

An outlook has been given on more parameter estimation 
for state equation in Kalman filter, including noise variance. 
On principle, it is possible to reduce the estimation errors, and 
to realize a better state observation. 
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