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Abstract

This thesis addresses the development of a system for pitch-informed solo and accom-

paniment separation capable of separating main instruments from music accompani-

ment regardless of the musical genre of the track, or type of music accompaniment.

For the solo instrument, only pitched monophonic instruments were considered in a

single-channel scenario where no panning or spatial location information is available.

In the proposed method, pitch information is used as an initial stage of a sinusoidal

modeling approach that attempts to estimate the spectral information of the solo

instrument from a given audio mixture. Instead of estimating the solo instrument

on a frame by frame basis, the proposed method gathers information of tone ob-

jects to perform separation. Tone-based processing allowed the inclusion of novel

processing stages for attack refinement, transient interference reduction, common

amplitude modulation (CAM) of tone objects, and for better estimation of non-

harmonic elements that can occur in musical instrument tones. The proposed solo

and accompaniment algorithm is an efficient method suitable for real-world applica-

tions.

A study was conducted to better model magnitude, frequency, and phase of isolated

musical instrument tones. As a result of this study, temporal envelope smoothness,

inharmonicty of musical instruments, and phase expectation were exploited in the

proposed separation method. Additionally, an algorithm for harmonic/percussive

separation based on phase expectation was proposed. The algorithm shows improved

perceptual quality with respect to state-of-the-art methods for harmonic/percussive

separation.

The proposed solo and accompaniment method obtained perceptual quality scores

comparable to other state-of-the-art algorithms under the SiSEC 2011 and SiSEC
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2013 campaigns, and outperformed the comparison algorithm on the instrumental

dataset described in this thesis.

As a use-case of solo and accompaniment separation, a listening test procedure was

conducted to assess separation quality requirements in the context of music educa-

tion. Results from the listening test showed that solo and accompaniment tracks

should be optimized differently to suit quality requirements of music education. The

Songs2See application was presented as a commercial music learning software which

includes the proposed solo and accompaniment separation method.
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Zusammenfassung

Das Thema dieser Dissertation ist die Entwicklung eines Systems zur Tonhöhen-

informierten Quellentrennung von Musiksignalen in Soloinstrument und Begleitung.

Dieses ist geeignet, die dominanten Instrumente aus einem Musikstück zu isolieren,

unabhängig von der Art des Instruments, der Begleitung und Stilrichtung. Dabei

werden nur einstimmige Melodieinstrumente in Betracht gezogen. Die Musikauf-

nahmen liegen monaural vor, es kann also keine zusätzliche Information aus der

Verteilung der Instrumente im Stereo-Panorama gewonnen werden.

Die entwickelte Methode nutzt Tonhöhen-Information als Basis für eine sinusoida-

le Modellierung der spektralen Eigenschaften des Soloinstruments aus dem Musik-

mischsignal. Anstatt die spektralen Informationen pro Frame zu bestimmen, werden

in der vorgeschlagenen Methode Tonobjekte für die Separation genutzt. Tonobjekt-

basierte Verarbeitung ermöglicht es, zusätzlich die Notenanfänge zu Verfeinern, tran-

siente Artefakte zu reduzieren, gemeinsame Amplitudenmodulation (Common Am-

plitude Modulation CAM) einzubeziehen und besser nichtharmonische Elemente der

Töne abzuschätzen. Der vorgestellte Algorithmus zur Quellentrennung von Soloin-

strument und Begleitung ermöglicht eine Echtzeitverarbeitung und ist somit relevant

für den praktischen Einsatz.

Ein Experiment zur besseren Modellierung der Zusammenhänge zwischen Magnitu-

de, Phase und Feinfrequenz von isolierten Instrumententönen wurde durchgeführt.

Als Ergebnis konnte die Kontinuität der zeitlichen Einhüllenden, die Inharmonizität

bestimmter Musikinstrumente und die Auswertung des Phasenfortschritts für die

vorgestellte Methode ausgenutzt werden. Zusätzlich wurde ein Algorithmus für die
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Quellentrennung in perkussive und harmonische Signalanteile auf Basis des Phasen-

fortschritts entwickelt. Dieser erreicht ein verbesserte perzeptuelle Qualität der har-

monischen und perkussiven Signale gegenüber vergleichbaren Methoden nach dem

Stand der Technik.

Die vorgestellte Methode zur Klangquellentrennung in Soloinstrument und Beglei-

tung wurde zu den Evaluationskampagnen SiSEC 2011 und SiSEC 2013 eingereicht.

Dort konnten vergleichbare Ergebnisse im Hinblick auf perzeptuelle Bewertungsma-

ße erzielt werden. Die Qualität eines Referenzalgorithmus im Hinblick auf den in

dieser Dissertation beschriebenen Instrumentaldatensatz übertroffen werden.

Als ein Anwendungsszenario für die Klangquellentrennung in Solo und Begleitung

wurde ein Hörtest durchgeführt, der die Qualitätsanforderungen an Quellentrennung

im Kontext von Musiklernsoftware bewerten sollte. Die Ergebnisse dieses Hörtests

zeigen, dass die Solo- und Begleitspur gemäß unterschiedlicher Qualitätskriterien

getrennt werden sollten. Die Musiklernsoftware Songs2See integriert die vorgestellte

Klangquellentrennung bereits in einer kommerziell erhältlichen Anwendung.
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1. Introduction

1.1. Motivation and Scope

What is sound source separation?

Sound source separation is the signal processing task that attempts to recover un-

known signals or sources from an audio mixture by computational means. In the

case of musical signals, a possible sound source separation task would be to obtain

independent signals for the saxophone, piano, bass, and percussion, given a recording

or audio mixture of a jazz quartet. In a more general scenario, a sound separation

problem could be to recover the original signals of a car passing by, a male speaker,

and a dog barking, given a sound field recording of a certain street intersection.

Why is it relevant to solve the sound source separation problem?

Many applications benefit from robust sound source separation approaches. In most

cases however, more than being the final goal, source separation appears as an in-

termediate step to allow and improve complex types of content analysis. This is

the case, for example, of automatic music transcription, up-mixing to multi-channel

formats, parametric audio coding, musicological analysis, automatic music classifi-

cation, search, and recommendation.

Automatic music transcription (AMT), which deals with the extraction of melodic,

rhythmic, and harmonic parameters of music recordings to allow its representation

as a musical score, could greatly benefit from having independent sound sources.

After many years of work in the Music Information Retrieval (MIR) community,

automatic music transcription is still considered today, an unsolved problem. The

main difficulty of this task lies in the complexity of extracting meaningful rhythmic,
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melodic and harmonic information, when the sound sources greatly overlap in the

spectral domain [9]. Ideally, a system for sound source separation would extract

independent signals for each one of the sources in the mixture. The transcription

problem would then be limited to monophonic signals where parameter extraction

is much more robust.

In the music production field, sound separation allows up-mixing of monaural and

stereo recordings to multi-channel formats. Numerous recordings are only available

as monaural (single-channel) tracks. Starting in the 1960s, stereo recording became

popular and has been the standard for audio distribution since then. However, due

to developments in audio systems, increased capacity of handling information, and

the popularity of immersive sound, multi-channel formats are becoming more and

more common. Sound separation gives the possibility to create new mixes in new

audio formats from any type of existing recording [10].

More advanced tools for musicological analysis can be achieved if separation of sound

sources is available. Style, melody, genre and artistic elements in music could be

more thoroughly studied and characterized. Similarly, tools for automatic music

classification, search and recommendation would become more powerful as more

detailed information from the different sources could be extracted [O1].

Audio coding also benefits from sound separation as new coding schemes, that re-

duce the amount of information needed to characterize the different channels or

instruments, can be developed [11]. The capability of separating audio sources in

the decoder’s side by only transmitting a series of signal parameters is very powerful.

In the particular case of this work, the motivation to work on sound separation is

two-fold: on the one hand, this work aims at improving quality of sound separation

through better understanding and characterization of musical instrument signals

and their time-frequency characteristics. On the other hand, this works aims at

exploring the potential of sound separation technologies in music education appli-

cations. Even when music education has been an extremely active field for many

decades, its methods and tools still remain very traditional. Only in the past few

years, music technologies have started to reach the music education context. This
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work attempts to further push these boundaries and study the usability of sound

separation technologies for content and practice material creation.

Which specific separation task does this work attempt to solve?

The work presented in this thesis focuses on a particular case of sound source sep-

aration called solo and accompaniment separation, also referred to as lead or main

instrument separation or de-soloing. For this specific task, the goal is to separate

the audio mix into two sources only: the main instrument or solo, and the accom-

paniment. The accompaniment refers to one or more instruments playing along

with the solo. In this thesis, the terms accompaniment tracks and backing tracks

are used interchangeably, both referring to extracted musical accompaniment. The

solo is assumed to be the instrument playing the main melody of the piece. The

Music Information Retrieval (MIR) community commonly refers to main melody as

the single (monophonic) pitch sequence that a listener might reproduce if asked to

whistle or hum a piece of polyphonic music, and that a listener would recognize as

being the essence of that music [12].

Results of many years of sound separation research suggest that separation perfor-

mance can be improved when prior information about the sources is available. The

inclusion of known information about the sources in the separation scheme is re-

ferred to as Informed Sound Source Separation (ISS) and comprises, among others,

the use of MIDI-like musical scores, the use of pitch tracks of one or several sources,

oracle sound separation where the original sources are available, and the extraction

of model parameters from training data of a particular sound source [13]. The work

described in this thesis focuses on solving the solo and accompaniment separation

problem in polyphonic music using pitch as prior information. This approach is

referred to as pitch-informed solo/accompaniment separation.

Problem Definition and Scope

The goal of this work is the development of a system for pitch-informed solo

and accompaniment separation capable of separating main instruments from

music accompaniment regardless of the musical genre of the track, or type of

music accompaniment. For the solo instrument, only pitched instruments are
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considered and no attempt is made to separate percussive instruments. This

work focuses on the monophonic case, where the solo instrument is assumed

to play only one note at a time. Only the single-channel separation problem

is considered and no panning or spatial location information is used for sep-

aration. The algorithm should be lightweight and processing times should be

minimized to allow its use in real-world applications.

1.2. Thesis structure

Figure 1.1 shows a block diagram of the structure of this thesis. The contents of

this work are distributed in five chapters:

Chapter 1 presents a general introduction to the work presented in this thesis, clearly

presenting the problem definition and scope.

In Chapter 2, the relevant theoretical background and a general survey of state-of-

the-art approaches in sound source separation is presented. As they are the core

foundations of this thesis, special attention was given to informed sound source

separation approaches and to the characterization of the spectral parameters of

musical instruments (magnitude, frequency, and phase).

In Chapter 3, the studies conducted as part of this research and the proposed

methods for pitch-informed sound separation are described. Three main sections

compose this chapter. Section 3.1 presents the proposed method for frame-based

pitch-informed solo and accompaniment separation. The method is described and

its performance is evaluated and put into context of state-of-the-art approaches.

In Section 3.2, different studies conducted to better describe the characteristics of

spectral parameters (magnitude, frequency and phase) of musical instrument and

their contributions to the quality of audio signals, are presented. Section 3.3 collects

the findings from the two previous sections to propose a pitch-informed tone-based

solo and accompaniment separation approach. Being a fundamental component of

the proposed methods for solo and accompaniment separation, an evaluation of the
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Chapter 2

Background
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& Accompaniment 

Separation Method

Section 3.2

Analysis of Musical 
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Chapter 4

Sound Separation 

in Music Education 

Applications

Chapter 5

Conclusions

Figure 1.1.: Structure of the thesis

performance of pitch detection algorithms within the separation context is also pre-

sented in Section 3.3.8.1. The performance of the tone-based separation algorithm

is evaluated and placed into context of state-of-the-art approaches.

In Chapter 4, the use of solo and accompaniment separation technologies in music

education applications is described as a case study. Quality requirements posed by

music education applications on separation methods are studied through a listening

test procedure. Songs2See is described as a commercial application that incorporates

the separation method described in this thesis for content creation in a music practice

scenario.

Finally, Chapter 5 draws some conclusions and depicts future directions for this

research.
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1.2.1. Format and conventions

Throughout this thesis, citations will be presented using bracket notation [x]. In the

cases where own publications are cited in the text, the convention [Ox] will be used,

where O stands for own and x is the publication number. All the cited publications

are listed in the Reference section of this thesis.

In the different chapters, terms that are not defined directly in the text but that are

presented in the Glossary for reference are shown in blue. In all the figures where

several observations are simultaneously displayed, the Categorical Color Scheme in

12 steps is used as a color scheme. This color scheme was designed for easier the

visualization of scientific data [14].

1.3. Associated Publications

This thesis covers work conducted by the author as a research assistant and PhD

student at the Fraunhofer Institute for Digital Media Technology from January 2010

until September 2013. The majority of the work presented in this thesis has been

presented in international peer-reviewed conferences and journals. Additionally, it

should be noted that parts of this work have been linked to industry-related projects:

1. Songs2See Project: The goal of this project was the development of a mu-

sic learning application to be used with real musical instruments that could

offer real-time performance feedback to the user. The separation algorithm

presented in Section 3.1 is included in this application as a tool for content

creation. This project was conducted from 2010-2012 at the Fraunhofer Insti-

tute for Digital Media Technology IDMT in collaboration with the following

academic and industry partners: Tampere University, Grieg Music, Kids Inter-

active, and Sweets for Brains. The project website can be accessed in [15] and

a brief description of the application is provided in Section 4.3 of this thesis.

Several publications resulted from the involvement in the Songs2See project

and several sections of this thesis refer to the results presented in them, spe-

cially Chapter 4 which refers to the use of sound separation research in Music

Education applications.
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The following list of publications is related to the work presented in this thesis:

Book Chapters

[i] Dittmar, C., Cano, E., Grollmisch, S., Abeßer, J. & Maennchen A. Music Tech-

nology and Music Education. To appear in Springer Handbook on Systematic

Musicology, (Springer Berlin Heidelberg, 2014).

[ii] Dittmar, C., Cano, E., Abeßer, J. & Grollmisch, S. Music Information Re-

trieval Meets Music Education. In Müller, M., Goto, M. & Schedl, M. (eds.)

Multimodal Music Processing, chap. Music Info, 1-24 (Dagstuhl Publishing,

2012). ISBN 978-3-939897-37-8

[iii] Dittmar, C., Grossman, H., Cano, E., Grollmisch, S., Lukashevich, H., Abeßer,

J. Songs2see and Globalmusic2one: Two Applied Research Projects in Mu-

sic Information Retrieval at Fraunhofer IDMT. In Ystad, S., Aramaki, M.,

Kronland-Martinet, R. & Jensen, K. (eds.) Exploring Music Contents, vol.

6684 of Lecture Notes in Computer Science, 259-272 (Springer Berlin Heidel-

berg, 2011).

Journal Papers

[vi] Cano, E., Schuller, G. & Dittmar, C. Pitch-Informed Solo and Accompaniment

Separation: Towards its use in Music Education Applications. In EURASIP

Journal on Advances on Signal Processing, special issue on Informed Source

Separation. 2013 (Submitted)

Peer-reviewed Conference Papers

[v] Weiss, Christof, Cano, E. & Lukashevich Hanna. A Mid-level Approach to

Local Tonality Analysis: Extracting Key Signatures from Audio. To appear in

AES 53rd International Conference on Semantic Audio, (London, UK, 2014).
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[vi] Cano, E., Dittmar, C. & Schuller, G. Re-thinking Sound Separation: Prior

Information and Additivity Constraint in Separation Algorithms. In 16th

International Conference on Digital Audio effects (DAFx-13), 1-7 (Maynooth,

Ireland, 2013).

[vii] Krasser, J., Abeßer, J., Grossmann, H., Dittmar, C. & Cano, E. Improved

Music Similarity Computation based on Tone Objects Categories. In Audio

Mostly Conference, 47-54 (Corfu, Greece, 2012).

[viii] Cano, E., Dittmar, C. & Schuller, G. Efficient Implementation of a System for

Solo and Accompaniment Separation in Polyphonic Music. In 20th European

Signal Processing Conference (EUSIPCO 2012), Eusipco, 285-289 (Bucharest,

Romania, 2012).

[ix] Cano, E., Grollmisch, S. & Dittmar, C. Songs2See: Towards a New Generation

of Music Performance Games. In 9th International Symposium on Computer

Music Modeling and Retrieval CMMR, June, 19-22 (London, UK, 2012).

[x] Cano, E., Dittmar, C. & Schuller, G. Influence of Phase, Magnitude, and Lo-

cation of Harmonic Components in the Perceived Quality of Extracted Solo

Signals. In AES 42nd International Conference on Semantic Audio, 1-6 (Ilme-

nau, Germany, 2011).

[xi] Grollmisch, S., Dittmar, C., Cano, E. & Dressler, K. Server Based Pitch De-

tection for Web Applications. In AES 41st International Conference on Audio

for Games, 1-5 (London, UK, 2011).

[xii] Grollmisch, S., Cano, E. & Dittmar, C. Songs2See: Learn to Play by Playing.

In AES 41st International Conference on Audio for Games, 2-7 (London, UK,

2011).

[xiii] Cano, E., Dittmar, C. & Grollmisch, S. Acoustics and Signal Processing in the

Development of Music Education Software. In Proceeding of the 2nd Vienna

Talk, 19-22 (Vienna, Austria, 2010).



1.3. Associated Publications 9

[xiv] Cano, E., Schuller, G. & Dittmar, C. Exploring Phase Information in Sound

Source Separation Applications. In 13th International Conference on Digital

Audio Effects (DAFx-10), 1-8 (Graz, Austria, 2010).

[xv] Cano, E. & Cheng, C. Melody Line Detection and Source Separation in Classi-

cal Saxophone Recordings. In 12th International Conference on Digital Audio

Effects (DAFx-09), 1-6 (Como, Italy, 2009).

Other Publications

[xvi] Cano, E., Dittmar, C.& Grollmisch, S. Songs2See: Learn to Play by Play-

ing. In 12th International Society for Music Information Retrieval Conference:

Late-breaking Demo (ISMIR 2011) (Miami, USA, 2011).

In [vii], the frame-based separation algorithm presented in Section 3.1 of this the-

sis was used to improve music similarity estimation by extracting relevant features

directly on tone objects. The proposed method was tested in a 5 class genre classifi-

cation system using Mel Frequency Cepstral Coefficients (MFCC) and Octave-based

Spectral Contrast (OSC) features and showed improved performance compared to

a baseline system.
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2. Background

As described in the introductory sections, sound source separation is the signal

processing task that attempts to extract unknown sound sources from a given audio

mixture. Attempting to classify separation approaches into distinct categories can be

a difficult task: as systems become more complex, many of the distinctions between

categories have become blurred and a clear classification border between them can

no longer be drawn. An important categorization of separation systems that remains

valid refers to the proportion between sounds sources and channels in the problem

to be addressed. When the number of channels available is larger than the number

of sources, the separation task is named overdetermined. Similarly, if the number of

channels is the same as the number of sound sources in the mixture, the problem

is referred to as determined. The opposite case appears when less channels than

sources are available and the separation task becomes underdetermined. This last

case poses greater difficulties than the previous two, as with a reduced number of

channels, less information from the sources is available and the mathematical means

to solve the problem greatly rely on strong assumptions about the sources.

Another distinction between separation algorithms that is still very frequently used

refers to the available knowledge of the sources to be separated. A source separation

approach is said to be blind if little or no knowledge about the sources is available.

This type of separation is referred to as Blind Source Separation (BSS). It is

important to mention that no separation method is completely blind as at least

some probabilistic assumptions have to be made to address the task. In contrast,

those separation approaches that make use of available high-level information about

the sources are categorized as Informed Source Separation (ISS).



12 2. Background

Being the core of this work, this section focuses on underdetermined separation

methods where prior information of the sources is accessible. Here, the separation

process is described in different stages depicted in Figure 2.1:

(1) Source Parameter Estimation: before any separation can be performed, all

methods need to estimate the parameters corresponding to the desired source.

Depending on the method used, different parameters might be required: mag-

nitude envelopes, frequency locations of harmonic components, activation coef-

ficients, etc. The estimation stage often makes use of prior information about

the sources to guide and make the estimation more robust.

(2) Separation Procedure: After having estimated the source parameters, this stage

refers to the actual separation of the spectral content from the different sources.

The stages of the separation process are further explained in the following sections.

The separation procedure is explained in Section 2.1, different methods used to

estimate source parameters are described in Section 2.2, and finally, types of prior

information frequently used in separation tasks are described in Section 2.3.

Prior 
Information

Separation 
Procedure

Parameter 
Estimation

Input 
Audio

Output 
Audio

Figure 2.1.: Block diagram of a separation process where prior information about
the sources is available.
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2.1. Separation Stage

As shown in Figure 2.1, the separation procedure in a typical sound source separation

method is only performed after a series of parameters have been estimated and have

defined the elements in the time-frequency representation that should be separated.

Here, the separation procedure is explained first, as it is usually the simplest stage

of the processing chain.

Wiener filtering has been the most commonly used separation procedure in the last

few years. To exploit the short-term stationarity of audio signals, Wiener filtering is

most commonly applied on time-frequency representations such as the Short Time

Fourier Transform (STFT). In the following section, the multi-channel generalized

Wiener filter is first introduced. Being probably the most used procedure so far, the

particular case of time-frequency masking is also described. Finally, the concept of

binary masking is introduced.

2.1.1. Wiener Filtering

Given a multi-channel system with j = 1, . . . , J sources and i = 1, . . . , I channels,

the STFT coefficients Sj(f, n) of each source are modeled as statistically indepen-

dent Gaussian random variables with variance vj(f, n) [16]. Furthermore, let the

relationship between each source j and its image in channel i be given by the spatial

covariance matrix Rj(f) of size I × I [13]. Namely, for each source j, the matrix

Rj(f) describes its contribution in each of the i = 1, . . . , I channels. The spatial

image ŷj0(f, n) of source j0 is given in the Minimum Mean-Square Error (MMSE)

sense by [17]:

ŷj0(f, n) =
vj0(f, n)Rj0(f)∑J
j=1 vj(f, n)Rj(f)

x(f, n) (2.1)

with x(f, n) an I × 1 vector holding the STFT coefficients of the observed mixture.
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In a single-channel separation scenario, the generalized Wiener filter becomes the

commonly used time-frequency masking approach. The classical Wiener Filter esti-

mate for Ŝj(f, n) is then given by [18]:

Ŝj(f, n) =
vj(f, n)∑J
j=1 vj(f, n)

x(f, n) (2.2)

2.1.2. Binary Masking

In many applications, efficiency of computation plays an important role. In these

cases, Wiener filtering approaches might not be suitable as its calculation requires

the estimation of the STFT coefficients Ŝj of all sources and possibly large matrix

divisions before separation. Binary masks represent a simple alternative with a good

trade-off between efficiency and separation performance.

Under the assumption that the observed mixture x[n] is the sum of a target source

s1[n] and an interference source s2[n]:

x[n] = s1[n] + s2[n] (2.3)

with STFT coefficients given by X(f, n) = S1(f, n) + S2(f, n), the Ideal Binary

Masks (IBM) is defined as [19]:

M(f, n) =

1 if |S1(f, n)|2 > |S2(f, n)|2

0 otherwise
(2.4)
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2.1.3. Divergence-based Masks

As mentioned in the Introduction, Wiener masking has been the most commonly

used masking approach in separation research. While being a relatively simple

approach, Wiener masking can result in good separation quality. However, while

Wiener masks are optimal in a least-square sense, this does not necessarily mean

that the masks are optimal from a perceptual point of view. With this in mind,

[20] proposes the use of divergence-based masks for separation. The choice of

divergence-based masks was made due to the fact that in Non-negative Matrix Fac-

torization (NMF)-based separation algorithms, least-squares approximations have

been outperformed by divergence-based cost functions. In their study, the authors

compare quality of separation when Wiener masking and two types of divergence

masks — Itakura-Saito and Kullback-Leibler divergence— are used. Results from

this study show that with three different separation algorithms, the use of diver-

gence masks outperforms Generalized Wiener filtering in terms of overall perceptual

quality. The divergence-based masks are defined as follows [20]:

M(f, n) = 1− D(Sk(f, n), Q(f, n))t

(J − 1)
∑J

j=1D(Sj(f, n), Q(f, n))t
(2.5)

where Q(f, n) is the spectrogram of the original mixture, Sk(f, n) is the estimated

spectrogram of the target source k, t is a parameter used to vary the characteristics

of the mask, J the total number of sources, and D denotes a suitable diverge metric.

The Kullback-Leibler and Itakuro-Saito divergences are given by Equations (2.17)

and (2.18), respectively, and are further explained in Section 2.2.3.

2.2. Source Parameters Estimation

In most sound separation methods, a series of signal parameters are first estimated

given certain assumptions made about the sources. The role that the parameter

estimation stage plays in a source separation method is depicted in Figure 2.1. In
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the following sections, several models and methods are introduced which have been

applied in a sound separation scenario. Even if their formal formulation does not

explicitly conceive them as such, their main function in a separation context is either

to facilitate parameter extraction or to directly extract source parameters that will

guide the final separation.

2.2.1. Signal Models

In general, music information retrieval tasks attempt to identify perceived signal

characteristics as the pitch, duration, timbre, etc. It is then desirable to have mod-

eling approaches that allow easy control of these high-level categories of the physical

domain. One modeling alternative that provides such a link with the physical world

is the use of physical models of the sound sources, e.g., the physical model of a

trumpet. In practice, physical models are not frequently used in Music Information

Retrieval (MIR) as they tend to be complex, still require extensive research, and

learning them automatically from data is difficult. Furthermore, physical models

are often very specific, making it difficult to develop general solutions with them

[21]. A second alternative and a more frequently used one is the use of signals mod-

els. The idea here is not to model the sound source that produces the signal, but the

resulting signal itself. Almost all signal processing tasks rely on the assumption that

the signal x[n] can be modeled as a weighted sum of a set of expansion functions [22].

This assumption is referred to as linear signal model and is described as follows:

x̂[n] =
M∑
m=1

gmbm[n] (2.6)

where M is the number of expansion functions, gm are the expansion coefficients,

and bm[n] are the expansion functions. Two special cases of the linear signal model

model in (2.6) have become very widespread in MIR research as they are especially

successful in establishing the link between the processing and physical worlds: Si-

nusoidal Model and Source/Filter Model.
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2.2.1.1. Sinusoidal Model

The sinusoidal signal model decomposes the signal as a sum of sinusoids with varying

frequencies and amplitudes. The main idea behind this model is to represent the

individual vibration modes of the excitation source [23]. The linear signal model in

(2.6) becomes:

x̂[n] =

M [n]∑
m=1

gm[n]cosφm[n] (2.7)

where gm[n] and φm[n] represent the amplitude variation and total phase of the

m-th sinusoidal partial. M [n] is the total number of sinusoids which may also vary

in time.

2.2.1.2. Source/Filter Model

The linear signal model described in (2.6) can also be used to model the magnitude

spectrogram xn[k] of a signal x[n], with k the frequency index, and n the time

frame. The magnitude spectrogram is then modeled as a weighted sum of expansion

functions:

x̂n[k] =

M∑
m=1

gm,nbm[k] (2.8)

where gm,n is the gain of the expansion function m in time frame n, and bm[k] the

expansion functions with m = 1, . . . ,M . In the context of polyphonic signals, the

expansion functions in (2.8) represent the magnitude spectra of the different musical

instrument tones. In this model, x̂n[k] is represented as a sum of fixed spectra. This

implies that a distinct excitation function is required for each pitch value of each

musical instrument. The source/filter model builds upon this definition and further

models the expansion functions bm[k] as a product of the magnitude spectra of an

excitation source ei,n[k], and a resonator structure or filter hj [k] [24] .
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x̂n[k] =
I∑
i=1

J∑
j=1

gi,j,nei,n[k]hj [k] (2.9)

In this model, the source represents a vibrating object such as a violin string, and

the filter represents the resonance structure of the instrument. In the polyphonic

signal context, the excitations sources ei,n[k] correspond to pitch values of individual

notes i = 1, . . . , I at time frame n. The filters hj [k] correspond to the spectral shapes

of the different musical instruments j = 1, . . . , J . One of the main advantages of the

source/filter model described in (2.9) over the initial linear model in (2.8) is that the

number of parameters to estimate is highly reduced as it only assigns one excitation

per pitch and one filter per instrument.

In a separation context, source/filter models are often used to model solo instruments

and the voice. The system described in [25] proposes a mid-level representation of the

audio signal assuming an instantaneous mixture model (IMM) of the target source

and the residual. The solo instrument is represented with a source/filter model

where the source carries pitch information, and the filter timbral information. Non-

negative-matrix factorization (NMF) and soft masking are used to separate the solo

instrument from its accompaniment.

2.2.2. Signal Sparsity

The linear signal model in (2.6) can be represented in matrix form as follows:

x̂ = ĝB (2.10)

where B is a matrix of expansion functions and Bm,n = bm[n]. A signal x[n] is

said to be sparse if most of its expansion coefficients gm are zero or close to zero,

or equivalently, if only a small number of coefficients in ĝ are non-zero. Sparse

representations have proven to be very powerful in the analysis of audio signals [26].

In the context of sound source separation, signal sparsity is a desired characteristic
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as it implies that a given sound source can be described with a small number of

coefficients. Furthermore, assuming signal sparsity in a separation problem implies

that the degree of overlapping between sources is small, and if the separation scheme

succeeds in detecting the coefficients that correspond to each one of the sources in

the mixture, the amount of unwanted interference in the resulting separated sources

will be minimal. However, solving (2.10) to recover a sparse representation needs to

be handled with care. In systems where the number of basis functions M is larger

than the number of signal samples N , that is M > N , the matrix B is rectangular

and (2.10) cannot be solved by simple matrix inversion. A common approach in

these cases is the use of the Moore-Penrose pseudoinverse B† such that ĝ = x̂B†.

This solution however, is not guaranteed to be sparse. A sparse representation can

be obtained for example, by using the Basis Pursuit relaxation [26]:

argmin
ĝ
{‖ĝ‖1 |x̂ = ĝB} (2.11)

where 1-norm ||ĝ||1 =
∑M

m=1 |ĝ| is the sum of absolute values of the expansion

coefficients.

Another possibility to retrieve sparse representations is the use of greedy algorithms

such as Matching Pursuits (MP) and Orthogonal Matching Pursuits (OMP) to find

an approximation to:

argmin
ĝ
{‖ĝ‖0 |x̂ = ĝB} (2.12)

where 0-norm ||ĝ||0 is the number of non-zero elements in ĝ. A comparative study

of different greedy algorithms is presented in [27].

Signal sparsity for example, has been exploited in several approaches. In [28] a sys-

tem for singing voice separation is proposed where the singing voice is modeled as

a high-rank but sparse signal in the time-frequency domain. The accompaniment is

modeled as a low-rank signal due to its assumed repetitive structure. Robust Prin-

cipal Component Analysis (RPCA) is used as a factorization scheme to extract the
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desired sources. Another approach that takes advantage of the repetitive structure

of the accompaniment is presented in [29]. The system first identifies the repeat-

ing period p of the signal using an autocorrelation approach to calculate a beat

spectrum. The algorithm then models the repeating segment S as the element-wise

median of the r segments of length p in the spectrogram.The repeating patterns are

finally extracted using a soft masking approach.

2.2.3. Non-negative Matrix Factorization

NMF is a dimensionality reduction technique employed to represent non-negative

data [30]. Given a data matrix V of size n×m with non-negative entries, the goal

is to find a factorization given by:

V ≈WH (2.13)

such that W , H are also non-negative matrices of dimensions n × r and r × m

respectively, with r less than n and m.

When used for sounds source separation, NMF is usually applied to the magnitude or

power spectrogram where the matrices W and H represent frequency and amplitude

basis respectively. The columns of W can be interpreted as the spectral basis

contained in the spectrogram. The rows of H can be interpreted as the weights of

the spectral basis in each time frame. The assumption behind this approach is that

the sum of all the spectrograms generated as the combination of basis functions, is

the equal to the mixture spectrogram.

The approximate solution to the factorization problem is usually obtained through

a minimization problem:

min
W ,H≥0

D(V |WH) (2.14)

where D(V |WH) is the cost defined as:
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D(V |WH) =
N∑
n=1

M∑
m=1

d([V ]nm | [WH]nm) (2.15)

where d(x |y) is a scalar cost function usually taken from the family of β-Divergence

cost functions. Commonly used cost functions such as the Euclidean Distance,

Kullback-Leibler (KL) divergence, and the Itakura-Saito (IS) divergence are all spe-

cial cases of the β-Divergence with β = 2, β = 1, and β = 0, respectively [31]:

dEUC(x | y) =
1

2
(x− y)2 (2.16)

dKL(x | y) = x log
x

y
− x+ y (2.17)

dIS(x | y) =
x

y
− log

x

y
− 1 (2.18)

The choice of cost function is highly dependent on the application at hand. In the

case of audio signals, [31] reports that the IS divergence outperforms both the Eu-

clidean and the KL divergence costs. However, [32] explored the use of β-Divergence

masks in the context of audio source separation. In the experiments reported, the

KL divergence used in the magnitude spectrogram resulted in better quality of sep-

aration.

Besides the basic NMF formulation, numerous variants of the factorization scheme

have been developed. A comprehensive overview of NMF algorithms is presented

in [33]. In this review, the authors categorize the NMF model in four subclasses:

Constrained NMF, Basic NMF, Structured NMF, and Generalized NMF. Partic-

ularly relevant in the sound separation context is the Convolutive NMF under the

Structured NMF subclass. It was originally proposed by Smaragdis in [34], and the

goal is to incorporate time domain information in the decomposition; namely, the

dependency between neighboring columns of the input data matrix V . It is formally

described as follows [34]:
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V ≈
T−1∑
t=0

Wt

t→
H (2.19)

where Wt varies across time and the
i→
(·) operator shifts the columns of its argument

by i spots to the right. This formulation expresses the input data matrix V as the

convolution between the basis matrix W and the weights matrix H. The Convo-

lutive NMF formulation can express more effectively the temporal continuity of the

input signal (whose frequency varies in time) in the time-frequency domain.

Other variants of the NMF formulation that have been used for sound source sep-

aration include: Sparse NMF from the Constrained category of NMF algorithms.

The sparse NMF formulation penalizes non-zero gains through a sparseness criterion

in the cost function to be minimized [35]. Weighted NMF has also been applied to

source separation [36, 37]. In [36] for example, the time-frequency components are

given a perceptually motivated gain so that their contribution corresponds to their

perceptual significance. Each weight is selected so that the weighted sum of spectral

bins is equal to the estimated loudness of each time frame.

Finally, Probabilistic Latent Component Analysis (PLCA) is an important method-

ology for single-channel separation of sounds proposed by Smaragdis in [38]. PLCA

is a statistical model that uses the product of marginal distributions to model an

N-dimensional distribution. In the context of sound separation, the magnitude spec-

trogram is modeled with a 2-d PLCA formulation as the product of a frequency and

a temporal marginals:

P (f, n) =
∑
z

P (z)P (f/z)P (t/z) (2.20)

with P (f, n) the magnitude spectrogram, P (f/z) and P (t/z) the frequency and time

marginals respectively, and z the latent variable. When written in matrix form, the

PLCA formulation becomes V = WSH, with V the magnitude spectrogram, W

containing the columns of P (f/z), S a diagonal matrix containing the elements of
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P (z), and H containing the rows of P (t/z). If the matrix S is absorbed by W and

H, the model becomes the NMF decomposition: V = W̄ H̄. PLCA is a statistical

interpretation of NMF that allows the incorporation of prior distributions. It has

been applied to sound separation for example in [39, 40].

2.2.4. Non-negative Tensor Factorization

Non-negative Tensor Factorization (NTF) belongs to the Generalized NMF category

of NMF-based algorithms [33]. Here, the factorization techniques from NMF are

extended to deal with stereo and multi-channel signals. The idea behind the basic

NTF model is that in a multi-channel scenario, the same basis function can be used

to describe the contribution of a given instrument in each of the channels. However,

the gains of the basis functions in each channel should be incorporated [41]. The

factorization then becomes:

X̂ ≈
K∑
k=1

G:k ◦A:k ◦ S:k. (2.21)

where X̂ is a c×n×m tensor containing the magnitude spectrograms of each of the

c channels. G is a c×k matrix containing the gains of the k basis in each channel. A

is a n×k matrix of frequency basis functions and S is a m×k matrix with the time

activations of these functions. Finally, ◦ denotes the outer product multiplication

and :k the k-th column of a given matrix. Tensor factorization has been applied to

drum separation from polyphonic music [42], score-informed separation [43], and

Coding-based Informed Source Separation (CISS) [44] (see Section 2.3.4) among

others.

2.3. Prior Information in Sound Source Separation

Many years of sound separation research have shown that separation performance

can be improved when prior information about the sources is available. The inclusion
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of known information about the sources in the separation scheme is referred to as

Informed Source Separation (ISS) and comprises, among others, the use of MIDI-like

musical scores, the use of pitch tracks of one or several sources, and the extraction

of model parameters from training data of a particular sound source [13]. This

section describes the most common types of prior information used in separation

approaches. As shown in Figure 2.1, the role of prior information in the separation

process is to make the parameter estimation stage more robust, leading to better

performance of the separation algorithms.

2.3.1. Pitch-informed Separation

Some approaches make use of pitch as prior information to perform separation. In

these cases, an initial pitch detection stage extracts sequences of f0 (fundamental

frequency) values of the target source. Due to the complexity of multi-pitch extrac-

tion, these algorithms mostly focus on the extraction of pitch values and consequent

separation of the lead instrument only. Consequently, most of the pitch-informed

separation approaches in the literature focus on the solo and accompaniment sep-

aration problem. For the purposes of this thesis, only those methods that directly

extract pitch information before separation are included into the pitch-informed

separation category. Those methods that make use of available MIDI-like represen-

tations such as musical scores are categorized as score-informed methods and are

further explained in Section 2.3.2.

Initially, two pitch detection approaches that have shown superior performance in

the Music Information Retrieval Evaluation eXchange (MIREX) in recent years, and

that are of special relevance for the work presented in this thesis are described.

In the first approach [45], the author addresses the task of melody extraction from

polyphonic music with an approach divided in four processing stages: (1) Spectral

representation, (2) Pitch candidate detection and tone formation, (3) Voice forma-

tion, and (4) Main melody selection. A spectral representation is obtained starting

with a multi-resolution spectrogram that provides a good trade-off between time
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resolution for higher frequencies and frequency resolution in the lower range. Mag-

nitude and instantaneous frequency (IF) values are obtained for each peak within

the frequency range of 55 Hz to 5 kHz. The magnitude of each spectral peak is

weighted with its instantaneous frequency value to obtain a 6 dB magnitude boost

per octave. Each spectral peak is either assigned to a previously existing tone (if

it can be explained by the spectral envelope of such a tone), or is used to detect

new salient pitches. To detect new salient pitches, a pair-wise evaluation of spectral

peaks, which tries to detect partials with successive harmonic numbers, is used in

conjunction with a set of perceptually motivated ratings. These ratings include a

harmonicity threshold defined as a maximum deviation of 120 cents from the exact

harmonic interval between the peaks, a measure to guarantee a degree of spectral

smoothness, and a harmonic impact measure that reduces the impact of higher har-

monics. In the voice formation stage, each voice is characterized by its magnitude

and frequency range. A tone is assigned to a voice if it passes the magnitude thresh-

old and lies within the frequency range of the voice. After different voices have been

created, the most salient stream is selected as the main melody. In cases where no

clear difference exists between the magnitude of two voices, a frequency weighting is

applied that gives lower weight to voices in the lower frequency range. This approach

will be referred to as Alg1 in Section 3.3.8.1 of this thesis.

In the second approach [12], the authors propose a method for melody extraction

from polyphonic music by pitch contour extraction and characterization. In this

approach, pitch contours are defined as time continuous sequences of f0 candidates

grouped based on auditory streaming cues such as harmonicity, pitch continuity,

and exclusive allocation. This approach is divided in four processing stages: (1)

Sinusoid extraction, (2) Salience function, (3) Pitch contour creation, and (4) Melody

selection. For the sinusoid extraction an equal loudness filter is first applied to

enhance the frequencies to which the human auditory system is more sensitive. The

STFT is applied and instantaneous frequency and instantaneous amplitude values

are obtained using phase differences. In order to obtain a salience function, an

approach which computes the salience of a given frequency as the sum of the weighted

magnitudes at integer multiples of that frequency is used. A compression parameter
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and a magnitude threshold are defined to prune the peak candidates and a frequency

range of 55 Hz to 1.76 kHz is considered. To create the pitch contours, initial

peak candidates are filtered using a salience threshold and a deviation threshold.

The salience threshold is computed in relation to the highest peak in the frame

and the deviation threshold is calculated using the salience mean and standard

deviation of all remaining peaks. The final peaks are grouped into contours using

heuristics based on auditory streaming cues. For each contour a set of features is

calculated: pitch mean, pitch standard deviation, contour mean salience, contour

total salience, contour salience deviation, length, and vibrato presence. For the

melody selection stage, an initial voicing detection stage determines when the main

melody is present and when it is not by setting a voicing threshold slightly below

the average contour mean salience. Octave errors are also addressed by comparing

pitch trajectories, which in case of octave relationships, will be almost identical with

an octave separation. The correct contour is always assumed to be the most salient

of the two and has to be somehow continuous with the other melody contours. If

more than one contour is still present in a certain frame, the melody is selected as

the peak belonging to the contour with the highest total salience. This approach

will be referred to as Alg2 in Section 3.3.8.1 of this thesis.

Several approaches for pitch-informed separation have also been proposed in the

literature. The system described in [25] proposes a mid-level representation of the

audio signal which is on the one hand invertible, which makes it suitable for sound

separation applications, and gives, on the other hand, access to some semantically

rich salience functions for pitch and timbre content analysis. The system uses an

instantaneous signal model which represents the audio signal as the sum of a signal

of interest, i.e., the lead instrument, and a residual, i.e., accompaniment. A source-

filter model is used to represent the signal of interest. Information from the source

is related to the pitch of the lead instrument and information from the filter is

related to the timbre of the instrument. The residual is modeled using NMF. The

mid-level representation is used to separate lead instrument from accompaniment in

conjunction with a Wiener masking approach.

An interesting approach is presented in [46] where Computational Auditory Scene
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Analysis (CASA) elements are introduced in the separation scheme. The system

attempts to separate sound sources in monaural recordings using multi-pitch infor-

mation of the sources obtained either from a MIDI-like score or from the multi-pitch

detection algorithm presented by Klapuri in [47]. The multi-pitch information is used

to differentiate overlapped harmonics from non-overlapped ones. This is performed

by assuming harmonicity of the sources and by the use of a frequency threshold that

assigns a set of frequency bins to a given harmonic. Harmonic masks are created

for each of the sources by first refining the pitch estimates as the weighted average

of the instantaneous frequency of the harmonics divided by their harmonic number.

A new set of frequency bins is then assigned to each harmonic based on the refined

pitch estimate. In the case of overlapped harmonics, the Common Amplitude Mod-

ulation (CAM) principle is applied in a least square estimation. The underlying

assumption here is that the amplitude envelopes of the harmonic components of a

source are correlated. In this system, the envelope of the strongest non-overlapped

harmonic is used to estimate the envelopes of the overlapped ones. The system is

evaluated with a dataset created from 20 MIDI files of Bach quartets where either

2 or 3 of the voices are created by inserting instrument notes taken from the RWC

music instruments dataset.

In [48], an approach for singing voice extraction in stereo recordings is presented.

The system is designed to specifically deal with real-time constraints achieving a

latency of 250 ms (which is enough for on-line processing). To address the problem,

two different spectral masks are obtained. An initial binary mask, i.e., spectral

bin classification mask, based on panning information, phase difference between the

stereo channels, and absolute frequency is calculated. A second mask, i.e., harmonic

mask, is calculated based on a probabilistic pitch tracking approach composed of

three steps: pitch likelihood estimation, timbre classification, and instrument pitch

tracking. Two assumptions are made for the harmonic mask calculation: (1) the

vocal component is fully localized in the spectral bins around the partials and (2) the

singing voice is the only source present in those bins. Even though these assumptions

are often violated, they greatly simplify the problem and lower the computational

load. A final mask is obtained by combining the harmonic and the spectral bin
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classification masks.

2.3.2. Score-informed Separation

Musical scores are often used as prior information in separation methods. A score

is a form of music notation where the parts of the different instruments (which con-

tain their corresponding pitch and timing information) are specified independently.

Having pitch and rhythm already as prior information naturally removes some of

the difficulties inherent to pitch extraction; nevertheless, score-informed separation

brings its own challenges and difficulties. Namely, due to artistic liberties taken in

musical performances, audio recordings will never be completely synchronized with

music scores. It is then necessary, before any separation is attempted, to align score

and audio as precisely as possible. A common approach to address this issue is

the use of Dynamic Time Warping (DTW) to find the optimal match between the

two sequences. However, the spectrogram is not usually the best representation to

perform the alignment as it can be very sensitive to possible differences between the

sequences. The audio sequences are usually transformed into chroma representations

as they have proven to be a very powerful and robust tool for synchronization of

music [49]. Chroma features encode the energy distribution over 12 pitch classes of

the equal-tempered scale , i.e., C, C#, D, D#, E,..., B. Generally speaking, chroma

features give information about the harmonic content of a musical piece. A thorough

overview of chroma representations can be found in [50]

In [49] for example, a system for high-resolution synchronization of audio streams

via chroma-based onset features is presented. This system takes advantage of the

robustness of chroma features and enhances them by calculating a set of chroma

onset features. The onset features are obtained by selecting salient peaks in the

time derivative of the energy curve of each pitch subband . The authors report

increased accuracy in audio synchronization when the onset features are used in

music with clear note attacks. In music where attacks are not so clearly marked,

the authors report that no performance degradation occurs.
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Similarly, [51] proposes the use of chroma-based DTW to address global misalign-

ments between the score and the audio signal. A MIDI confidence measure is pro-

posed to deal with small-scale misalignments. The confidence measure gives a lower

weight to attack and offset regions of each note and a higher weight to the sustained

part of the notes. The authors report that within a score-informed scheme for lead

instrument separation, the proposed alignment produces results comparable to those

obtained with manually synchronized scores. Another approach that proposes the

use of score information to separate leading voice is presented in [52]. The authors

propose a NMF routine with time and pitch constraints taken from the score, and

a source/filter model to represent the leading voice.

In [53], information from the score is used both to provide signal models of the

different sources, and to incorporate temporal and harmonic constraints in a NMF

approach. The system divides the separation process in two phases: In an initial

learning phase, synthesized signals from the score are decomposed with a NMF rou-

tine to generate models for the spectral bases and amplitude of each note. To impose

the constraints, the activation coefficients of each note are initialized with a binary

mask (1 if the note is playing, 0 if not) which results in a piano-roll representa-

tion of the score used to initialize the gain matrix. For the final separation phase,

a new NMF routine is performed using the learned spectral bases and activation

coefficients as initialization. A similar approach based on PLCA was proposed in

[39].

An interesting online approach to score-informed separation is presented in [54]. As

opposed to DTW-based approaches which need to have the entire score and audio

signal to perform the alignment, this approach processes each incoming frame at

a time. A hidden Markov approach is used to model each time frame as a 2D-

state vector with score position and tempo as entries. The aligned score position

and tempo are used to guide the separation stage where a pitch refinement stage is

first conducted and a harmonic mask, that tries to take into account overlapping of

harmonic components in the spectral domain, is extracted.

In [43], a Generalized Coupled Tensor Factorization (GCTF) approach is used to

jointly include harmonic information from an approximate score and spectral infor-
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mation from instrument recordings. The system uses music scores as prior infor-

mation but relaxes the alignment constraint between score and audio. The authors

showed that a strict alignment between audio and score is not necessary when note

co-occurrences, which are the same in the score and audio signal, are exploited.

A general overview of score-informed separation approaches is presented in [55].

2.3.3. Source Specific Prior Information

In those separation tasks where the type of source to be separated is known a priori,

source specific information can be exploited as prior information in the separation

scheme. That is the case for example of several approaches for lead voice separation

that take advantage of characteristics of voice signals directly in their signal models

or in their parameter estimation stages [52, 56, 57].

In [48] for example, a system for lead voice separation is presented where source

specific information is included in a trained Support Vector Machine (SVM) for

timbre classification of spectral envelopes of pitch candidates. The classifier attempts

to predict the probability of a pitch candidate being a voiced envelope. The system

is based on Mel Frequency Cepstral Coefficients (MFCC).

For the case of musical instruments, [58] presents a system for solo and accompani-

ment separation based on a probabilistic approach to NMF. In this system, source

specific information is included in the form of temporal smoothness priors modeled

as Inverse Gamma (IG) distributions. The smoothness priors are learned from a

database of isolated instruments notes.

Similarly, timbre models for different musical instruments are used as time-frequency

templates to guide a separation scheme in [22]. The separation method is based on

sinusoidal modeling, followed by an onset detection stage that allows grouping of

tracks based on their start and end points. A timbre matching stage attempts to

assign an instrument to each track group before re-synthesis.
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2.3.4. Oracle Source Separation

Oracle source separation refers to separation methods where the original sources

are available as prior information. These methods are mainly relevant within an

audio coding context where the main idea is not to transmit independent audio

objects, but to transmit the parameters required to recover them using the mixture

and a separation scheme. For this matter, the original sources are analyzed to

extract relevant side information that is transmitted along with the mixture. In

the decoder’s side, the available side information is used to retrieve the independent

sources from the transmitted mixture. In the audio coding community, this is known

as Spatial Audio Object Coding (SAOC).

Given that in past years, the audio coding community and the separation community

independently worked on this topic, [59] presents a general overview of the relation-

ships between the approaches taken by the two communities and draws theoretical

connections between ISS and source coding.

In [11], the concept of Coding-based Informed Source Separation (CISS) is extended

to multi-channel mixtures. As opposed to source coding (which encodes the signals

using their distributions only), CISS encodes the signals of interest using a prob-

abilistic model relying on their a posteriori distribution given the mixture. The

residual is encoded using posterior covariances as signal statistics. This represents

one of the main characteristics of CISS, as the posterior dependencies between the

sources are exploited. In this system a non-negative tensor factorization source

model is used.

A similar approach is presented in [60] where information about the sources is ex-

tracted in the encoder’s side and embedded in the mixture by means of a quantization-

based watermarking technique on the Modified Discrete Cosine Transform (MDCT)

coefficients.
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2.3.5. User-assisted Source Separation

In the past few years, a number of methods have been proposed where the separation

scheme is guided by information directly provided by the user. The idea here is to

overcome some of the major difficulties faced by separation schemes such as the lack

of reliable signal models or the difficulty of extracting accurate pitch sequences, by

introducing information provided by the user.

Some systems, often referred to as exemplar-based methods, use example signals

to perform separation. In [61], the user provides a version of the target source by

humming the melody line of the source to be extracted. The user rendition is then

used as prior in a PLCA factorization scheme. An extension to multi-channel signals

that uses example signals as prior information is proposed in [62]. The systems makes

use of a NTF scheme to perform separation.

In [63], the authors take advantage of the great number of multi-track recordings of

cover songs commercially available and use them as prior information in a NMF ap-

proach. The use of cover songs in a separation scheme is referred to as cover-informed

separation. A slightly related method is presented in [64] where an approach for

common signal extraction is proposed with the goal of extracting common music in

soundtracks in different languages.

Other methods have been proposed with the goal of overcoming one of the main

difficulties of pitch-informed sound separation: errors in the pitch detection stage

inevitably propagate to the separation stage. Some approaches that propose su-

pervised pitch extraction with a consequent separation scheme have been presented

in [65, O2]. In [66] for example, a probabilistic model of the Constant-Q Trans-

form (CQT) is proposed for the estimation of polyphonic pitch content. Notes

are modeled with time-frequency activations and normalized harmonic spectra. A

sparseness prior is introduced for the note activations to guarantee that the data will

be represented with the least amount of active notes possible. Through a especially

designed interface, the user can choose the pitches to be extracted by clicking on

them. Separation is performed with time-frequency masking in the CQT domain.
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2.4. Performance Evaluation in Sound Separation

An important part of sound separation research is the development of appropriate

methods to consistently evaluate the quality of extracted sources. Standardized eval-

uation metrics or evaluation setups allow on the one hand, a systematic evaluation

and comparison of algorithms’ performance under a unified dataset. They allow, on

the other hand, the optimization of certain metrics that might be especially relevant

in some applications. In this section, an overview of methods for quality assessment

used in sound separation research is presented.

2.4.1. Subjective Quality Assessment

Subjective evaluation of audio quality is usually achieved by means of listening tests.

In the source separation community however, listening tests have not been very com-

mon so far [67]. It is mostly in the audio coding and in the audio systems evaluation

communities where active research in this field has been conducted in the past

years. Specifically for audio quality evaluation, several standards have been pub-

lished. Some relevant standards are: General methods for the subjective assessment

of sound quality (ITU-R BS.1284-1) [68], Methods for the subjective assessment of

small impairments in audio systems including multichannel sound systems (ITU-R

BS.1116-1) [69], and Method for the subjective assessment of intermediate quality

level of coding systems (ITU-R BS.1534-1) [70]. This last standard is particularly

relevant for the source separation community, as this is where the Multiple Stimulus

with Hidden Reference and Anchors (MUSHRA) test is defined. The main goal of

MUSHRA tests is to evaluate signals of intermediate quality by assessing the degra-

dation of a test signal relative to a known reference. In the specific context of sound

separation, the test signal represents the estimated source ŝj(t) and the reference

would be the original recording of the source sj(t). An adaptation of the MUSHRA

test for sound separation evaluation is presented in [67] and in [71] similar listening

tests have been conducted.
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2.4.2. Objective Quality Assessment

This section describes two sets of objective evaluation metrics that have been pro-

posed in the literature and that have been widely used in the research community:

(1) the BSS evaluation metrics designed to evaluate the quality of single-channel

source estimates, and (2) an extension of BSS to multi-channel environments that

evaluates the quality of the spatial images of a source in the different channels.

The BSS is a set of four performance metrics that evaluates the quality of the ex-

tracted source ŝj by means of energy ratios between the different signal components

[72]. These metrics first attempt to decompose the signal into different signal dis-

tortions: interference from unwanted sources, sensor noise, and burbling artifacts

(musical noise). The extracted source is then decomposed as follows:

ŝj = starget + einterf + enoise + eartif (2.22)

where starget = f(sj) is a version of the original source sj modified by an allowed

distortion f . The terms einterf , enoise, and eartif are the interference, noise, and ar-

tifacts error terms, respectively. The following design requirements were considered

for the development of these metrics:

• The performance metrics can be applied to underdetermined separation prob-

lems, i.e., the number of sources is larger than the number of available channels.

• Mixing and de-mixing system do not need to be known.

• True sources are available.

• The user can select the set of available signal distortions F according to the ap-

plication: time-invariant gain distortions, time-invariant filters, time-varying

gains, and time-varying filters.
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The numerical performance criteria are then computed as energy ratios expressed in

dB. Namely, Source to Distortion Ratio (SDR), Source to Interference Ratio (SIR),

Source to Noise Ratio (SNR), and Source to Artifacts Ratio (SAR) [72]:

SDR = 10 log10
‖starget‖2

‖einterf + enoise + eartif‖2
(2.23)

SIR = 10 log10
‖starget‖2

‖einterf‖2
(2.24)

SNR = 10 log10
‖starget + einterf‖2

‖enoise‖2
(2.25)

SAR = 10 log10
‖starget + einterf + enoise‖2

‖eartif‖2
(2.26)

As an extension of BSS to multi-channel environments, a set of four objective per-

formance measures was proposed to evaluate the contribution of source j to channel

i. This is referred to as, the spatial image of source j in channel i, with j = 1, . . . , J

images, and i = 1, . . . , I channels. The estimated image of source j in channel i is

modeled as follows:

ŝimagij (t) = simagij (t) + espatij (t) + einterfij (t) + eartifij (t) (2.27)

where simagij (t) is the true source image, and espatij (t), einterfij (t), and eartifij (t) are error

components of spatial, interferences, and artifacts distortions respectively. The set

of objective measures is once again defined as a an energy ratio between signal

components and is expressed in dB. In this case, the following measures are defined:

Source Image to Spatial Ratio (ISR), Source to Interference Ratio (SIR), Source to

Artifacts Ratio (SAR), and Source to Distortion Ratio (SDR).
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ISRj = 10 log10
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∑I
i=1

∑
t(s

imag
ij (t) + espatij (t))2∑I

i=1

∑
t e
interf
ij (t)2

(2.29)

SARj = 10 log10
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SDRj = 10 log10
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imag
ij (t)2∑I
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artif
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(2.31)

An important characteristic of these two sets of objective measures is that they

assign equal weights to the different error terms. This assumes that in terms of

quality, all types of distortions contribute equally to the overall quality of the ex-

tracted source. However, experience has shown that different applications pose

different quality requirements and while artifacts, for example, might play a very

important role in hearing aid research, their importance might not as critical when

it comes to karaoke applications [73]. Another important characteristics of these

sets of measures is that they do not take into consideration perceptual aspects of

hearing for their calculations. This comes as a major drawback as the measures do

not necessarily correlate to perceptual attributes and consequently, their ability to

fit subjective ratings can be questioned [O3, O4]. In cases for example, when the

perceived loudness of interference or artifacts is much smaller than the power of the

corresponding signals, resulting numeric values can be misleading.

2.4.3. Objective Perceptual Quality Assessment

The development of objective perceptual measures for source quality assessment

came as an attempt to exploit the main strengths of both subjective and objec-

tive measures into a single evaluation scheme: while subjective measures take into
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account the perceptual phenomena of hearing, objective measures allow consistent

numerical evaluation of the extracted sources.

The PEASS Toolkit –Perceptual Evaluation Methods for Audio Source Separation–

was developed as a set of four objective perceptual measures that attempt to pre-

dict subjective scores by decomposing the signal into different types of distortions;

namely, interference, artifacts, and target distortions [71]. The spatial image of

source j in channel i is modeled as follows:

ŝij(t) = sij(t) + etargetij (t) + einterfij (t) + eartifij (t) (2.32)

Subjective scores were obtained by means of a listening test protocol designed to

address the perceptual characteristics of the distortions components: target, inter-

ference, and artifacts. Objective scores were obtained by calculating the perceptual

salience of each specific distortion and of the overall distortion using the PEMO-Q

auditory model [74]. Subjective and objective results were joined using non-linear

mappings which aim at combining the salience features obtained with PEMO-Q into

a single scalar value, and at adapting the feature scale to the subjective scale from

the listening test.

A family of four objective perceptual measures was proposed: Overall Percep-

tual Score (OPS), the Target-related Perceptual Score (TPS), the Interference-

related Perceptual Score (IPS) and the Artifacts-related Perceptual Score (APS).

The PEASS Toolkit, freely accessible in [75], is considered the state-of-the-art eval-

uation scheme for separation research and it is used in current public evaluation

campaigns described in the next section.

2.5. Public Evaluation

Several public evaluation campaigns for sound source separation have taken place

in the last few years. These campaigns play an important role in the research
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community as they allow regular evaluation of the effects of algorithm design, they

specify a common evaluation method, and promote the results and advances in the

field.

A structured evaluation of a source separation system requires four important ele-

ments: (1) a dataset, (2) a task to be addressed, (2) one or more evaluation criteria,

and (4) performance bounds [76, 77].

Several datasets have been compiled and released in the last few years and are freely

available for the research community. Table 2.1 presents a list of some of datasets,

generally described as Professionally Produced Music Recordings, that are relevant

to the work presented in this thesis.

Table 2.1.: Public dataset that can be used for sound source separation

Name Year Published by Ref

BASS dB 2006 IRISA [78]

SiSEC2008 2008 SiSEC [79]

SiSEC2010 2010 SiSEC [80]

TRIOS 2012 Queen Mary University [81]

SiSEC2013 2013 SiSEC [82]

SA DS2 2013 Fraunhofer IDMT [83]

Professionally Produced Music Rec

2006

Public Evaluation Campaigns

2007 2008 2009 2010 2011 2012 2013

• Single-Channel 
BSS

• SASSEC 2007
• Multi-Channel 

BSS 

• SiSEC 2013
• PEASS 
• 15 submissions

• SiSEC 2011
• PEASS
• 8 submissions

• SiSEC 2008
• Multi-Channel 

BSS
• 9 submissions 

• SiSEC 2010
• Multi-Channel 

BSS
• 3 submissions

Professionally Produced Music Recordings

Figure 2.2.: Timeline of public evaluation campaigns. Name of the campaigns, eval-
uation criteria, and number of submissions for the Professionally Produced Music
Recordings Dataset are displayed.
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In terms of the tasks to be addressed in a structured evaluation, some examples that

have been proposed in separation campaigns are: source counting which attempts to

determine the number of sources in a mix, source signal estimation, source spatial

image estimation, and source direction of arrival DOA estimation.

The third element of a structured evaluation refers to the evaluation criteria. In

terms of the evaluation criteria used in separation campaigns, the metrics described

in sections 2.4.2 and 2.4.3 have been used in previous separation campaigns. See

Figure 2.2 for a chronological overview of the usage of these metrics.

Finally, performance bounds can be defined in terms of a reference algorithm which

is evaluated under the same criteria. Oracle estimators, for example, can be used to

provide a theoretical upper bound on performance.

With these requirements in mind, several evaluations campaigns have been held in

the last few years, including the Stereo Audio Source Separation Campaign (SASSEC

2007) [73], and the 2008, 2010, 2011, and 2013 Signal Separation Evaluation Cam-

paign (SiSEC) [84]. While SASSEC2007 was restricted to audio applications only,

the following SiSEC campaigns were open to other applications, such as biomedical

data. The SiSEC campaigns are run in conjunction with the International Confer-

ence on Latent Variable Analysis and Signal Separation (LVA/ICA) as community-

based scientific evaluations. Figure 2.2 shows a chronological description of the

different campaigns, the evaluation criteria used in them, and the number of sub-

missions for the Professionally Produced Music Recordings estimation.

2.6. Spectral Parameters of Musical Instrument Signals

In this section, the general characteristics of the spectral parameters of musical

instrument signals are described. Namely, the spectral magnitude, frequency, and

phase of musical instrument signals are described in an attempt to draw general

directions that can be used within a solo and accompaniment separation context.

As will be explained in Section 3.1, our proposed method for solo and accompaniment
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separation is built upon the idea that the spectrum of the solo instrument can be

estimated with a certain accuracy when pitch information is available, and simple

acoustical and spectral characteristics of musical instrument tones are considered.

In this section, the theoretical background that allows the understanding of spectral

parameters of musical tones is described.

2.6.1. Magnitude

Throughout the years of sound separation research, spectral magnitude has received

a lot of attention from the research community. Most sound separation approaches

work directly on the magnitude spectrogram and perform source estimation entirely

in this domain. When it comes to representing the magnitude information of a given

source, two different representations are commonly used : one exhibits the frequency

characteristics of the source in a given time instant, and the other shows the time

evolution of a given harmonic of a source. The first representation is called the

spectral envelope and it is defined as a smooth function of frequency that tracks the

individual partial peaks of a source in a given time frame. The second representation

called the amplitude envelope or temporal envelope, exhibits the frame-wise evolution

of the amplitude of a given partial of a sound source. In Figure 2.3 the amplitude

envelope of the first harmonic h1 of an A4 trombone tone without vibrato, and the

spectral envelope of the same tone in a given time frame, are displayed.

Some approaches have attempted to describe musical instruments by their spectral

envelopes. In [85] for example, isolated instrument tones from the clarinet, saxo-

phone, and trombone are used to create a library of spectra to be used within a

harmonic source separation system. The method first attempts to perform poly-

phonic pitch detection by modeling the spectrum of the target source as a mixture

of Gaussian distributions located at integer multiples of the fundamental frequency.

Overlapped harmonics are detected based on the estimated f0s. To replace cor-

rupted harmonics, the library of pre-stored spectra is searched for the best match to

the uncorrupted harmonics. The best match match is found using a simple Euclidean

distance measure.
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Figure 2.3.: Temporal and spectral representations of the magnitude spectrogram:
(a) Amplitude envelope of the first harmonic h1 of an A4 trombone tone without
vibrato. (b) Spectral envelope in time frame n = 200 of the A4 trombone tone
without vibrato shown in (a). The original magnitude spectrogram is displayed
with a continuous blue line, the spectral envelope is displayed with a red dashed
line.

Results have shown however, that spectral envelopes of musical instruments are

difficult to model. The prediction of unknown amplitude values of harmonic compo-

nents based on known information from neighboring harmonics of the same source

has not shown consistent results [46, 86]. With this in mind, several approaches

have attempted to only enforce smoothness in the spectral envelopes of the esti-

mated sources without trying to model a particular behavior for the different musical

instruments. Even when a smoothness constraint is not as powerful as the hypothet-

ical idea of finding a representative spectral envelope for each musical instrument,

it is a more robust assumption that holds for many harmonic musical instrument

tones. Some approaches have used the smoothness of spectral envelope to resolve

overlapped harmonics of different sources. In [47], the smoothness of the spectral

envelope is exploited within a multiple fundamental frequency estimation method.
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The spectral envelope of overlapped sections of the spectrum is smoothed using a

moving average filter. The amplitude of overlapped harmonics is chosen as the min-

imum between the original amplitude and its filtered version. Similarly, [87] exploits

the spectral envelope smoothness for separation of synchronous pitched notes. To

deal with overlapped harmonics, filters are designed to split the spectral content

shared by M overlapping harmonics into M parts using M overlapping filters. The

amplitude of the harmonics is predicted using simple linear interpolation between

the amplitudes of the nearest non-overlapped harmonics.

The spectral envelope is often used to describe characteristics of the singing voice.

The vibration of the vocal folds produces a varying air flow of periodic nature. The

vocal tract acts as a variable filter which can change its response depending on

the position of the tongue and shape of the mouth opening. This variable nature

occurs due to the fact that any changes in the tongue position and mouth opening,

change the physical dimensions of the vocal tract. A resonant frequency R1 in the

vocal tract gives rise to a formant at frequency F1. The term formant refers to a

broad peak in the spectral envelope of the singing voice. The singer’s formant is a

broad band of enhanced power, noticed in the spectral envelope of classically trained

singers. The singer’s formant clusters the 3rd, 4th, and 5th resonances of the vocal

tract and is usually evident in the frequency range of [2 kHz, 4 kHz] . Except for high

voices as the soprano voice, the fundamental frequencies of the singing voice usually

fall below any of the resonances, leading in many cases, to fundamental frequencies

weaker than the other harmonics [88].

In contrast, some approaches have focused on the temporal information of the har-

monics and use the amplitude envelope to perform separation. Here, the concept of

Common Amplitude Modulation (CAM) becomes relevant. CAM refers to the ob-

served characteristic that amplitude envelopes of the harmonics of the same source

tend to be similar and correlated. Correlation studies of amplitude envelopes in

musical instruments are reported in [46, 89]. Results from these studies conclude

that correlation values are highest between adjacent partials and decrease exponen-

tially with increasing distance. Results also suggest that strong harmonics are highly
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correlated with one another, but approximating low-energy harmonics using strong

non-overlapped harmonics may be less accurate.

In [90], CAM is used within a multi-channel separation approach. The system first

estimates regions in the time-frequency plane that cover the main energy of one

or more overlapped harmonics. Each region is mapped to a certain source using

the harmonicity principle, spatial cues, and CAM. The amplitude envelopes of the

non-overlapped sections are used as models for the overlapped sections. A similar

approach that uses CAM for pitch-informed sound separation is presented in [46].

The details of this system were described in Section 2.3.1 of this thesis.

2.6.2. Frequency

It is a well known fact that the spectrum of a musical instrument tone has peaks at

approximately harmonic ratios. Given a fundamental frequency f0, harmonic peaks

will most likely be evident in the spectrum, in the regions around 2f0, 3f0, 4f0, etc.

The degree to which the frequencies of the overtones deviate from integer multiples

of the fundamental frequency is called inharmonicity. In real musical instruments

where assumptions such as infinitely thin and flexible strings, or perfectly cylindrical

or conical pipes do not completely hold, it is expected that the frequencies of the

overtones deviate to different extents (depending on the instrument and f0) from

harmonic ratios.

In Figure 2.4 the magnitude spectrogram of an A#3 trumpet tone without vibrato

is displayed. The red vertical lines show the expected location of the harmonic

components when integer multiples of the fundamental frequency (f0 = 236 Hz)

are calculated. It is evident in the figure not only that harmonics deviate from

their harmonic locations but also that the deviation changes with harmonic number:

the higher the harmonic number, the larger the frequency deviation. Even when

these exact observation cannot be generalized to all musical instruments, the tone

displayed in Figure 2.4 is a clear example of an inharmonicity pattern in musical

instrument sounds.
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Figure 2.4.: Magnitude spectrogram of an A#3 trumpet tone (blue): the red vertical
lines mark the expected location of the harmonic components when calculated
as multiple integers of the fundamental frequency f0 = 236 Hz. The frequency
deviation of the observed harmonic peaks from their harmonic locations can be
clearly seen.

Different aspects contribute to the harmonicity (or deviation from it) of a musical

tone. As described in [91], musical instruments capable of producing sustained tones

consist of one or more resonant systems (air columns, cavities, strings), excited by

a non-linear source (lips, reed, air jet, strings) with which they are coupled. In

the resonant system, natural modes are never in exact harmonic relation because

of second order effects like end corrections and string stiffness. In other words, the

harmonic components (overtones), given a fundamental frequency f0 are never in

exact harmonic relation. End corrections refer to the phenomenon occurring at the

open end of a pipe: When a pulse of high pressure air gets to the end of the pipe, it

spreads out and this allows reflection; however, the air outside the pipe has its own

mass and inertia and thus, the reflection does not happen immediately at the open

end but slightly beyond it. Consequently, the pipe appears to be longer (effective
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length) than it physically is (geometrical length). This effect causes flattening of

upper resonances in conical bore instruments. In the case of string instruments,

inharmonicity effects are caused by the fact that real strings are not infinitely thin

or flexible and as such, they do not bend perfectly. This bending stiffness affects

especially the higher modes of vibration and they become stretched, often appearing

at higher frequencies than the calculated harmonic ones.

The excitation source of musical instruments also plays an important role in the

harmonicity of musical instruments. The effects of the bow on string instruments,

and the effects of reeds and lips on wind instruments, provide a locking mechanism

that results in spectra of nearly harmonic tones. The effect of the bow on string in-

struments (stick-slip phenomenon) drives all of the resonances of the string at nearly

exact harmonic ratios, even if it means driving the resonant modes slightly off their

natural frequency. A similar effect occurs in wind instruments where reeds (as in the

clarinet and saxophone) and lips (as in the trumpet, horn, or flute) undergo their

own periodic vibrations which act as a locking mechanism to find a compromise be-

tween all the slightly inharmonic modes of vibration. This phenomenon is referred to

as mode locking. For plucked string instruments such as the piano, guitar, or strings

played with pizzicato, such locking mechanisms are not present and inharmonicity

is much more noticeable.

Several studies have been conducted to characterize the frequency relationship be-

tween the harmonic components and the fundamental frequency of a tone. In [92], a

study is presented were clarinet, voice, alto flute, piano, violin, viola, and cello tones

are analyzed to calculate frequency ratios of their spectral components. As a fre-

quency tracker, the Single Frame Approximation method, proposed by the authors,

was used. This method is equivalent to the phase vocoder but with a time advance

of one sample only. The benefit of this method over the phase vocoder was its com-

putational efficiency (which was still relevant at the time for such calculations) as

only one Fast Fourier Transform (FFT) frame needed to be calculated. This study

reported harmonic ratios (to a 0.2% achievable accuracy) for all instruments but the

piano and string instruments played with pizzicato. For the piano, the study found

that deviation from harmonicity increases with partial number, and was found to be
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proportional to the harmonic number squared. For the case of string instruments

played with pizzicato, the ratios were also found to deviate from integer relationships

but no quantitative values are presented. The measurement of pizzicato notes was

reported to be problematic due to the rapidly decaying amplitudes of the partials.

An interesting finding was the fact that for bowed string instruments played with

vibrato, frequency variations of the fundamental frequency exceeded those of the

tracked partials. In the current separation context where the harmonic components

are always estimated based on an initial estimate of the fundamental frequency, this

effect will prove to be problematic and could possibly lead to wrong estimations.

In [93] a statistical study of the spectral parameters of seven C5 instrument tones

is presented. The statistical study was directed to finding spectral characteristics

that could lead to better synthesis models of musical instruments. Violin, flute, and

oboe were analyzed with and without vibrato, while the trumpet was only analyzed

without vibrato. Results show mean frequency deviations from harmonicity that are

nearly constant for all harmonics (in the ±0.3% range); however, standard deviations

of percentage frequency deviations tend to be slightly larger for higher partials than

for lower ones. An interesting finding is that for vibrato tones, standard deviations

of the percentage frequency deviations are much larger than for the non vibrato

tones (5 times larger for the violin, and twice as large for the oboe and flute)

Because inharmonicity effects are much more notorious in plucked string instru-

ments, special attention has been given to instruments such as guitar, piano, and

harpsichord, and several studies that attempt to characterize different aspects of in-

harmonicity have been presented. The inharmoncity of plucked strings is described

by the following formulation [94]:

fk = kf0
√

1 + βk2 (2.33)

In this equation, fk represents the frequency of the kth partial given a fundamental

frequency f0, and an inharmonicity constant β determined by the physical charac-

teristics of the string.
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In [95] for example, the inharmonicity of the electric guitar is studied, showing that

human listeners slightly prefer synthesized sounds with inharmonic characteristics

than the perfectly harmonic ones. It was also shown that lower strings produce

larger inharmonicities than higher strings. In [96] the audibility of inharmonicity is

studied for guitar and piano sounds as a function of β. Results from the listening test

show that detection of inharmonicity is dependent on the fundamental frequency,

being more easily detected in the lower frequency range. Other studies that have

focused on inharmonicity of string instruments are [97, 98, 99]

In the case of the singing voice, the source/filter model explained in Section 2.2.1.2

is often used to describe the process of voice production. The source in this case

comes from the vibration of the vocal folds which produces a varying air flow often

treated as a periodic source. Thus, harmonic components are expected to appear

in nearly integer multiples of the fundamental frequency. The vocal tract acts as a

variable filter which can change its response depending on the position of the tongue

and shape of the mouth opening. As explained in Section 2.6.1, the filter modifies

the spectral envelope depending on the resonant frequencies of the vocal tract. An

important aspect in the characterization of the singing voice is the presence of both

voiced and unvoiced sounds which need to be considered in any spectral analysis.

Voiced sounds are produced by the vibration of the vocal chords producing a periodic

wave. Normal vowel sounds (as opposed to whispered vowel sounds) are examples

of voiced sounds. In unvoiced sounds, the vocal chords do not vibrate but are

held very close together. This produces a flow of air of turbulent quality which

produces a broadband sound characterized by a flat spectrum [100]. Whispered

vowels and consonant sounds such as ss, sh, f, p, t, k are unvoiced. Consonant

sounds are classified as fricatives, where the vocal tract is constricted and a turbulent

flow contributes a broadband sound to the spectrum, and plosives, which involve

the opening and closing of the tract and produce a brief broadband sound. Both

fricatives and plosives can be voiced or unvoiced. Examples of voiced fricatives are

z, j, v ; unvoiced fricatives are ss, sh, f. Similarly, voiced plosives are b, d, g and

unvoiced ones are p,t,k [88].

As explained in this section, musical instruments and the singing voice can exhibit
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very diverse frequency characteristics. This diversity naturally represents a big chal-

lenge for the development of algorithms capable of dealing with different types of

sound sources.

2.6.3. Phase

In the most general sense, phase refers to the fraction of the cycle of a harmonic

wave that has elapsed with respect to the origin at a given time. The unit circle is

commonly used to describe the characteristics of phase, as for any given harmonic

wave, a full period T0 occurs every 2π radians or every full turn around the unit

circle. The unit circle is shown in Figure 2.5. Here, phase is represented by the

angle φ with respect to the origin.

Re

Im

ϕ
a

b

Figure 2.5.: Representation of phase in the unit circle. The real components are
plotted in the horizontal axis. The imaginary components are plotted in the
vertical axis. The angle φ with respect to the origin represents the phase.

The Fourier transform of signal x(t) at frequency bin k and time frame n is given

by:

X(k, n) = |X(k, n)| · expiφ(k,n) (2.34)
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whereX(k, n) represents the complex valued spectrogram, φ(k, n) the spectral phase,

and |X(k, n)| the spectral magnitude. If the Fourier transform is analyzed from

the unit circle point of view, it can be easily seen that X(k, n) = a + ib. Here,

a = XR(k, n) and b = XI(k, n) are the real and imaginary parts of X(k, n), respec-

tively. See Figure 2.5 for reference.

The spectral phase is denoted by arg[X(k, n)] and can be calculated as follows:

φW(k, n) = arctan(
b

a
) (2.35)

Two important aspects should be considered when dealing with phase:

• From the definition of phase, it is evident that phase takes values within the

−π < φW(k, n) ≤ π range. This is often referred to as wrapped phase, as it is

wrapped around ±π. Following the notation presented in [101], the subscript

W refers to the wrapped phase.

• There are inherent discontinuities in phase at ±π. This makes phase in its

original form, difficult to predict.

To avoid confusions, it is important to note that the concept of phase can in general

be interpreted in two different ways. On the one hand, phase can refer to the change

in the arrival time of a signal’s frequency component due to variations in the path

length between the signal source and the ear [102]. On the other hand, the term

phase can be used to refer to the short-time phase spectrum. In this thesis, the

terms phase and phase spectrum are used interchangeably always to refer to the

short-time phase spectrum in a Fourier analysis.

Of all the spectral parameters described in this section, phase has probably received

the least amount of attention from the separation community. Until now, very

few separation methods have explored the analysis of phase within their processing

schemes. Several factors have contributed to the lack of studies related to phase in

the separation context:
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• The phase spectrum is an abstract representation where information is difficult

to extract and model. In contrast, the spectral magnitude is easy to analyze

and parameterize into features.

• The assumption that humans are insensitive to phase. This assumption comes

from the frequent confusion between the two definitions of phase (explained in

the previous paragraph). The human ear is relatively insensitive to changes

in the arrival time of a signal’s frequency component due to variations in the

path length between the signal source and the ear; however, spectral phase has

proven to highly contribute to speech quality and naturalness and as such, it

is used for speech coding algorithms and high-quality speech synthesis [102].

In the case of musical signals, no formal studies have been conducted (to the

author’s knowledge) to evaluate the contribution of phase in signal quality.

In Section 3.2.2 of this thesis a study of the influence of phase in separation

quality is presented.

• Phase is very sensitive to modifications and even minor changes can lead, in

some cases, to heavily distorted signals.

• The development of factorization schemes that allow the inclusion of phase is

still limited.

Most of the studies on the importance of phase have been conducted within the

speech community. A very early study on phase is presented in [103]. The au-

thors conducted a study where noisy speech signals are generated by adding white

Gaussian noise to clean speech signals. The Signal to Noise Ratio (SNR) of the

Fourier magnitude and phase were systematically changed. To assess the effects

of phase on speech enhancement for example, the SNR of the magnitude was kept

unchanged and the SNR of the phase was varied. A listening test was conducted

where subjects were asked to rate the quality of the audio signals with different

SNRs. Results showed that only for very low magnitude SNRs, the equivalent SNR

of the reconstructed signal improves significantly with a more accurate estimate of

the phase.
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Another study presented in [104], evaluated the importance of phase for speech

intelligibility. The authors conducted a listening test where subjects were asked

to recognize utterances synthesized with different spectral parameters. Magnitude

only signals, synthesized with random phase and phase only signals, synthesized with

unit magnitude were used during the test. Results showed that phase contributes

to speech intelligibility as much as the spectral magnitude. An important open

question was raised by the authors in the conclusion of the paper: even when both

magnitude and phase proved to be equally important for speech intelligibility, it was

not clear whether their effects are complementary or independent.

In [105] the authors evaluate the effects of uncertainty (error) in the phase of speech

signals on the word recognition error rate of human listeners. Results from the

listening test showed that the importance of phase is SNR-dependent. At lower

SNRs, the effects of phase uncertainty are more pronounced than at higher SNRs.

For all the experiments, speech signals were corrupted using Gaussian noise.

When it comes to sound source separation, only a few systems have attempted to

address phase. In [106] for example, reconstruction of separated sources is obtained

by applying the spectrogram inversion technique originally proposed by Griffin and

Lim in [107]. The spectrogram inversion technique attempts to estimate a signal

from its modified STFT by minimizing the mean squared error between the STFT

of the estimated signal and the Modified Short Time Fourier Transform (MSTFT).

The complex MSTFT is obtained with the estimated magnitude spectrogram of the

target source and the original phase of the audio mixture. Most recently, the problem

of spectrogram consistency has been addressed by [16]. Spectrogram consistency

refers to the guarantee that a given STFT actually corresponds to a time domain

audio signal. In the separation context, most algorithms work on the magnitude

spectrogram to obtain estimates of the target sources. The original phase from

the audio mixture is often used to obtain a complex valued spectrogram. This

procedure often results in arrays of complex numbers that do not correspond to any

audio signal. In [16], the authors address the problem of spectrogram consistency

within a generalized Wiener Filtering or time-frequency masking approach.
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In a slightly different context, phase information was used in [108] to resolve over-

lapped harmonics within a separation scheme. The systems works under two as-

sumptions: (1) The harmonic components of the same source have correlated mag-

nitude envelopes. This is known as Common Amplitude Modulation (CAM) and

was further explained in Section 2.6.1. (2) Phase change of harmonics can be ac-

curately predicted from an instrument’s pitch. Overlapped harmonics are detected

using known pitch information about the sources. The system uses a sinusoidal

modeling approach to formulate a set of equations representing the time-frequency

bins where the overlapping occurs. A solution in a least squares sense is found.

Another aspect of phase relevant to this thesis is the capability of predicting the

phase spectrum of an audio signal. In [O4] we presented a preliminary study of the

use of phase prediction in the context of sound separation. This study is described

in Section 3.2.3.4 of this thesis. In [101] the authors address the prediction of phase

spectra of audio signals from two different approaches: a least squares estimation

and a neural network approach. The goal of this study was to estimate the phase at

a specific point in the phase spectrum by using the observed values of the phases at

neighboring points. Their study concluded that there exists structure in phase that

allows the prediction of phase spectrum to a certain extent.

An important aspect in the prediction of phase spectrum is the concept of unwrapped

phase. To better handle phase information it is a common procedure to unwrap the

phase spectrum to obtain a continuous representation where the discontinuities are

removed. The most common process of phase unwrapping corrects the phase values

by adding multiples of ±2π when absolute jumps between adjacent values are greater

than or equal to a pre-defined tolerance. The tolerance is normally chosen to be π.

This is the approach taken in Matlab’s unwrap function.

In the remainder of this thesis, the unwrapped phase is referred to as φk,n (the

superscript W has been dropped). In Figure 2.6 the wrapped and unwrapped phase

of the fundamental frequency of an A#3 alto saxophone tone without vibrato is

displayed. It can be seen how phase unwrapping results in a continuous phase curve

much easier to model.
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Figure 2.6.: Phase spectrum of the fundamental frequency of an A#3 alto saxophone
tone without vibrato: (a) Wrapped phase φW(k, n), (b) Unwrapped phase φ(k, n).
It can be observed how phase unwrapping removes the discontinuities of standard
Fourier phase.
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Figure 2.7.: Instantaneous Frequency Distribution (IFD) Φ(k, n) of the A#3 alto
saxophone tone without vibrato presented in Figure 2.6. The IFD representation
clearly shows the variations of the instantaneous frequency over time.
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Another important representation of phase derived from the short-time phase spec-

trum is its first-order time derivative. This representation is called Instantaneous

Frequency Distribution (IFD) and is defined as follows:

Φ(k, n) =
1

2π

dφ(k, n)

dn
(2.36)

where φ(k, n) is the unwrapped phase spectrum. In practice, the differentiation in

(2.36) is approximated by taking the difference between two consecutive values of

the phase spectrum. The division by 2π is used to normalize the instantaneous

frequency (IF). The normalized IF can be used to obtain the IF in Hertz simply by

multiplying it by the sampling frequency fs [102]. In Figure 2.7, the IFD of the

saxophone tone presented in Figure 2.6 is displayed.
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3. Pitch-informed Solo and Accompaniment

Separation: Studies and Proposed Methods

This chapter presents a series of studies and methods developed in the attempt to

reach the goals of this thesis. Here, a summary of our goals is presented again for

reference:

The goal of this work is the development of a system for pitch-informed solo

and accompaniment separation capable of separating main instruments from

music accompaniment, regardless of the type of solo instrument used, musical

genre of the track, or type of music accompaniment. For the solo instrument,

only pitched instruments are considered and no attempt is made to separate

percussive instruments. We focus on the monophonic case, where the solo

instrument is assumed to play only one note at a time. Only the single-channel

separation problem is considered and no panning or spatial location information

is used for separation. The algorithm should be lightweight and processing times

should be minimized to allow its use in real-world applications.

For the development of these studies, different datasets have been compiled always

attempting to have a sample as general as possible, but somehow limited by the

availability of multi-track recordings that allow proper evaluation of separation re-

sults. As the human voice and musical instruments can have very different acoustic

and spectral characteristics, both vocal and instrumental solos are included in the

datasets. In each section, the relevant datasets used for evaluation are explained in

detail.

For evaluation of results, the PEASS Toolkit introduced in Section 2.4.3 is used.

This choice was made based on the fact that current public evaluation campaigns
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such as the Signal Separation Evaluation Campaign (SiSEC) have chosen this set

of measures to present their results, and as such, the evaluations presented in this

thesis could be used as reference for future works.

As the goal of this study is to develop a method that can produce solo and backing

tracks of similar quality, in all the tests conducted through this chapter, indepen-

dent evaluations of solo and backing tracks are always conducted. Additionally, and

taking into consideration the acoustical and spectral difference between musical in-

struments and the human voice, the evaluation is also conducted independently for

vocal and instrumental tracks. This distinctions in the evaluation allows a thorough

analysis of results, a better understanding of the differences between the signals, and

more specific conclusions specific to each signal case.

Notation

For the remainder of this thesis, the following notation applies: let f(t) be a monau-

ral signal representing the audio mixture. The mixture f(t) is assumed to be the

sum of a monaural signal s(t) representing the solo instrument, and a monaural

signal a(t) representing the accompaniment such that:

f(t) = s(t) + a(t) (3.1)

The complex-valued spectrogram of the mixture obtained by means of the Short

Time Fourier Transform (STFT) is given by F (k, n). The complex-valued spectro-

gram is also assumed to be the sum of the complex-valued spectrograms of the solo

and accompaniment signals:

F (k, n) = S(k, n) +A(k, n) (3.2)

where S(k, n) is the complex valued spectrogram of the solo signal, and A(k, n) the

complex valued spectrogram of the accompaniment. The index k will always de-

note frequency bins while the index n will denote time frames in the time-frequency

representation. The window length will always be denoted by N , and the sam-

pling frequency by fs. For simplicity of notation, the magnitude spectrogram of

the mixture will be denoted M(k, n). The magnitude spectrogram of the solo and

accompaniment signals will be denoted by |S(k, n)|, and |A(k, n)| respectively.
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3.1. Frame-based Solo and Accompaniment Separation

The algorithm described in this section attempts to separate the solo instrument

from its music accompaniment by estimating on a frame by frame basis, a spectral

representation of the solo instrument given a fundamental frequency value f0. In

Figure 3.1, a block diagram of the algorithm is shown for reference.

Pitch Detection

Input 
Audio Spectral 

Masking
Harmonics 

Output 
Audio

Re-synthesis

Parameter EstimationPrior Information Separation Procedure

Figure 3.1.: Block diagram of the proposed frame-based solo and accompaniment
separation algorithm. After an initial pitch detection stage, parameter estimation
is composed of an F0 Refinement stage and a Harmonics Refinement stage. To
complete separation a spectral masking approach is proposed.

As explained in Section 2 of this thesis, the separation process is generally composed

of three main stages: parameter estimation, inclusion of prior information (when

used), and a final separation stage. As shown in Figure 3.1, prior information is

used in this algorithm in the form of f0 sequences of the solo instrument extracted

by a pitch detection front-end. The pitch sequences obtained as prior information are

used in the parameter estimation stage to obtain a frame-wise spectral representation

of the solo instrument. Parameter estimation is composed of an initial f0 refinement

stage followed by a harmonics refinement stage. Finally, separation is conducted

using a masking approach. The details of the different processing stages of the

proposed algorithm are further explained in the next sections.

3.1.1. Pitch Detection

As pitch detection front-end, the algorithm proposed in [45] is used. This method

was already described in Section 2.3.1 of this thesis and only the main processing

steps are mentioned here for reference. The algorithm extracts pitch information

in four different stages: (1) Spectral representation, (2) Pitch candidate detection
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and tone formation, (3) Voice formation, and (4) Main melody selection. The idea

behind this method is to use a multi-resolution Fast Fourier Transform (FFT) to

extract pitch candidates based on a pair-wise evaluation of spectral peaks. After

an initial peak detection stage, each peak is either assigned to an existing voice or

starts a new one. Each voice is characterized by its mean magnitude and frequency

range. A tone is assigned to a voice if it falls in its frequency range and passes its

magnitude threshold. The most salient voice is selected as the main melody.

During pitch extraction, an analysis frame of 46 ms is used in conjunction with a

hopsize of 5.8 ms. The pitch detection algorithm returns fundamental frequency se-

quences of the main melody on a frame by frame basis. Let f0(n) be the frame-wise

sequence of fundamental frequency values returned by the pitch detection algo-

rithm. For those frames where no melodies are detected (silent frames) or where

the solo instrument is assumed to be silent (only the accompaniment is playing), an

f0(n) = 0 Hz is returned.

3.1.2. F0 Refinement

To further refine the fundamental frequency values delivered by the pitch detection

algorithm, a refinement stage is proposed where the magnitude spectrogram is in-

terpolated in a narrow band around each f0(n) and its constituent harmonics. For

a given f0(n), low and high quarter tone deviations in Hz are given by:

f↓(n) = f0(n)/2(50/1200) (3.3)

f↑(n) = f0(n) · 2(50/1200) (3.4)

Expressions (3.3) and (3.4) are derived from the definition of cent, the logarithmic

unit of measure for music intervals. Here, a semitone spans 100 cents and an octave

spans 1200 cents. The definition of cent states that given an initial frequency value

f1, and the number of cents covering the desired ascending interval c the frequency of
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the second note in the interval is given by f2 = f1 ·2(c/1200). For descending intervals,

the expression simply changes from a multiplication to a division: f2 = f1/2
(c/1200).

Given that a semitone spans 100 cents (and thus, a tone spans 200 cents), quarter

tone intervals are represented by a difference of 50 cents, which explains Equations

(3.3) and (3.4). The choice of cents was made because as a logarithmic unit of

measure, interval calculations can be made in a simple and musically meaningful

manner.

For each partial with partial index p = 1, . . . , pmax, the same strategy is used to

calculate the boundaries of its interpolation band. The initial (ideal) frequency

location in Hz of the partial with partial index p is given by fp(n) = f0(n) · p, and

the boundaries of the interpolation band are calculated with Equations (3.3) and

(3.4).

The interpolation band around each partial is given by [f↓p (n), f↑p (n)]. For a given

window size N and a sampling frequency fs, the frequency bin k(n) where a fre-

quency value f(n) falls is given by k(n) = bf(n) · Nfse. Here, the notation bxe
indicates the round operator. The interpolation band expressed in frequency bins

is given by [k↓p(n), k↑p(n)]. Let k↓p(n) and k↑p(n) be the frequency bins of f↓p (n) and

f↑p (n), respectively.

For each time frame n, linear interpolation is used to refine the location of each

partial within its interpolation band. Here, i = 1, . . . , imax is the interpolation step.

Each interpolation step i results in a new magnitude value M(kip(n), n) for each

partial, with kip(n) the frequency bin (not necessarily integer) of partial p in the

interpolation step i. The value of kip(n) is not necessarily an integer because the

interpolation is conducted between two integer frequency bins [k↓p(n), k↑p(n)].

A cumulative magnitude sum Ei(n) is obtained for each interpolation step i. The

optimal frequency bin kopt(n) is taken as the one that maximizes Ei(n):

kopt(n) = argmax
i

(Ei =

pmax∑
p=1

M(kip(n), n)) (3.5)
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The new refined fundamental frequency f̂0(n) in time frame n is simply obtained

by:

f̂0(n) = bkopt(n) · fs
N
e (3.6)

Again here, the notation bxe indicates the round operator. This approach assumes

that all the partials deviate from their harmonic locations by exactly the same factor.

3.1.3. Harmonic Series Refinement

To estimate the complete harmonic series of the solo instrument, the location of each

one of the harmonic components is also refined. Two principles are followed at this

stage: (1) Each harmonic component is allowed to have an independent deviation

from its ideal harmonic location, i.e., multiple integer of the fundamental frequency.

(2) The acoustic differences between the voice, strings, and wind instruments are

considered when harmonic components are located. Namely, inharmonicity char-

acteristics differ between instrument families. As explained in Section 2.6.2, string

instruments tend to show harmonic components at frequencies slightly higher than

the calculated harmonic ones. In contrast, wind instruments tend to show devia-

tions to frequencies which are lower than the harmonic ones. The voice is in general

assumed to be harmonic. Consequently, the harmonic estimation stage is kept con-

sistent with either lower or higher deviations from harmonic locations, but never a

mix of both.

Let kp(n) be the frequency bin of the ideal partial location of partial p (calcu-

lated as integer multiple of the fundamental frequency). To keep control of har-

monic deviations, each partial is allowed a maximum deviation ρmax from its har-

monic location kp(n) of one quarter tone. This will guarantee that tones will re-

main perceptually harmonic. For each time frame n a frequency band given by

[kp(n)− δmax, kp(n) + δmax] is defined to conduct an iterative search in the vicinity

of the ideal partial location kp(n) for all partials with partial index p = 2, . . . , pmax.
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For each partial index p, the search returns the frequency bin k̂p(n) where the ob-

served harmonic with the largest amplitude is detected. A detection mask D(k, n)

where the observed harmonics are marked with 1 for each time frame, is defined for

k in the [1, N/2] range:

D(k, n) =

1 for k ∈ {k̂p(n), p = 1, . . . , pmax}

0 otherwise
(3.7)

A simple smoothness constraint δk is set in the refinement stage in the attempt to

avoid sudden frequency bin jumps in the harmonic estimation. The assumption here

is that the frequency variation of a tone (and thus, of its harmonic components) in

the time interval spanned by two processing frames should be relatively small and

as such, large frequency bin jumps between two frames are unlikely. For each time

frame n, the frequency bin k̂p(n) where each partial p appears is stored in memory.

In the next time frame n + 1, this information is used to guarantee that the time-

frequency bins assigned to each harmonic are a maximum of δk = 2 bins apart. When

the refinement stage finds a frequency bin k̂p(n + 1) with a larger bin jump than

δk with respect to k̂p(n), the smoothness constraint is enforced and the harmonic

component is located in k̂p(n) ± δk. (the sign in the expression is determined by

whether the deviation is to higher or lower frequency bins). This approach only

requires the storage of a vector of length pmax which saves the frequency bin k̂p(n)

of each harmonic component in time frame n.

A clear distinction needs to be made between the smoothness constraint δk and

the allowed frequency deviation ρmax. While ρmax allows harmonic components to

deviate from their calculated harmonic location, δk guarantees that this deviation is

relatively smooth over time. Here, only the previous time frame is used to impose

smoothness and as such, it could be understood as a low-pass filter of length L = 2.

3.1.4. Spectral Masking

After the complete harmonic series that represents the solo instrument has been

estimated, a binary mask for the solo ZS(k, n), and a binary mask for the accompa-
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niment ZA(k, n) are calculated. To compensate for spectral leakage in the time fre-

quency transform, a tolerance band ∆ centered at the estimated location k̂p(n) is in-

cluded in the masking procedure. Thus, for a frequency range [k̂p(n)−∆, k̂p(n) + ∆]

and time frame n we have:

(ZS(k, n), ZA(k, n)) =

(1, 0) ∀k, nwithD(k, n) = 1

(0, 1) otherwise
(3.8)

As in any binary masking procedure, the underlying assumption is that the energy

in each time-frequency bin mainly belongs to one sound source and as such, each bin

will be assigned to one source only in the masking procedure. With this in mind,

(3.8) is equivalent to: ZA(k, n) = 1− ZS(k, n).

3.1.5. Re-synthesis

To obtain time domain signals for the solo and accompaniment, the complex valued

spectrogram of the mixture is masked to obtain estimates of the complex spectro-

grams of the solo and accompaniment :

Ŝ(k, n) = F (k, n)� ZS(k, n) (3.9)

Â(k, n) = F (k, n)� ZA(k, n) (3.10)

where � denotes the Hadamard product. The estimated solo and accompaniment

tracks are given by the Inverse Short Time Fourier Transform (ISTFT) of the masked

spectrograms:

ŝ (t) = ISTFT
(
Ŝ(k, n)

)
(3.11)

â (t) = ISTFT
(
Â(k, n)

)
(3.12)
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3.1.6. Experiments and Results

In this section, the performance of the frame-based separation algorithm is evaluated.

The details of the dataset used, the evaluation criteria and the conclusions drawn

from the experiments are presented in the following sections.

3.1.6.1. Implementation Details

For the experiments described in this section, the following algorithm parameters

were used: in the f0 refinement stage, imax = 50 iterations were used in the interpo-

lation stage. As the assumption that partials deviate by the same factor from their

harmonic locations does not necessarily hold true for higher partials, only the p < 5

partials were used for interpolation. In general, this assumption within this range

can be loosely held as true. For the harmonic series refinement the total number of

partials was set to pmax = 25. This choice was made given that informal observa-

tions show that wind instruments in particular can exhibit up to 25 clear harmonic

components. A tolerance band ∆ = 1 was used for spectral binary masking. An

analysis frame of 46 ms in conjunction with a hop size of 5.8 ms were used, given a

sampling frequency fs = 44.1 kHz.

3.1.6.2. Dataset

For the evaluation of the algorithm, a dataset of 27 tracks was compiled. For the

remainder of this thesis, this dataset will be referred to as SA DS1 (Solo and

Accompaniment DataSet 1). A full description of the tracks used in the evaluation,

as well as the copyright and availability information is provided in Appendix B.

Here, only a general description is provided. The dataset is composed of two parts:

(1) SA DS1a with copyright free tracks. A total of 17 tracks, 10 with voice as main

instrument, and 7 instrumental tracks are included. (2) SA DS1b composed of 10

commercial instrumental tracks with saxophone as the solo instrument.

All the tracks in SA DS1a were mixed from the available multi-track recordings into

a solo signal, an accompaniment track, and a final mixture. Solo and accompaniment

tracks were already available in the commercial distribution of SA DS1b.
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3.1.6.3. Analysis of Results

The Perceptual Evaluation Methods for Audio Source Separation (PEASS) Toolkit

was used for evaluation of separation results. Mean values with 95% confidence

intervals for the entire dataset are presented in Figure 3.2. For reference purposes

and to allow future comparison of results, the full table of results with independent

scores for each track in the dataset are presented in Appendix C of this thesis.

Solo Backing
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Figure 3.2.: Results obtained with the frame-base separation algorithm for the en-
tire dataset. Objective perceptual quality measures: Overall Perceptual Score
(OPS), Target-Related Perceptual Score (TPS), Interference-Related Perceptual
Score (IPS), Artifact-Related Perceptual Score (APS). Mean values with 95% con-
fidence intervals are presented. It can be observed that the algorithm results in
particularly high IPS scores for both the solo and the backing tracks. The backing
tracks show in general more homogeneous scores than the solo tracks where clear
differences between the IPS and TPS scores can be observed.

For the solo tracks, an Overall Perceptual Score (OPS) of 25.07 was obtained. For

the backing tracks, slightly better results were obtained with an OPS of 34.55. The

high Interference-related Perceptual Scores (IPS) scores obtained for both the solo

and backing tracks are particularly noticeable, being in both cases, the highest score
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from the four measures. Given that the IPS measures the distortion in the signal

produced by interferences from other sources, these results suggest that the iterative

estimation of the algorithm is very effective in detecting spectral information that

corresponds specifically to the solo instrument.

For the solo tracks however, a much higher variation in the IPS is observed, resulting

in a much larger confidence interval than for the backing IPS. These results evidence

that the algorithm can better handle some musical instruments than others.

Particularly noticeable are also the lower Target-related Perceptual Scores (TPS)

and Artifacts-related Perceptual Scores (APS) obtained for the solo instrument in

comparison to the backing tracks. The TPS for the solo also showing large confidence

intervals that evidence the great variability in the results. These low TPS and

APS scores for the solo instrument suggest that while the estimation stage is very

effective in detecting spectral information that belongs to the solo, its estimation

might be too restrictive and does not guarantee the continuity and smoothness

expected in spectral representations of harmonic sources. This naturally results in

more artifacts in the solo signal and in the loss of important spectral information

mistakenly assigned to the backing track. Simply stated, results suggest that the

information detected by the algorithm as belonging to the solo, does belong to the

solo in most cases (and thus, high IPS); however, there is valuable information from

the solo being assigned to the backing track (and thus, low APS and TPS for the

solo). Given that some information from the solo is being mistakenly assigned to

the backing track, it could be expected that low IPS scores would be obtained for

the backing tracks. However, this is not the case. These results can be understood

taking into consideration the fact that backing tracks are composed of several musical

instruments playing together, including percussive instruments. This naturally poses

different conditions for the backing tracks as minor artifacts and interferences from

the solo might be somehow masked by the information from other instruments.

Consequently, quality measures for the backing tracks are not so strongly affected

by mis-estimations as they are for the solo.

A final remark can be made regarding the low APS obtained for the solo signals.

It should be noted that the frame-based algorithm performs separation by apply-
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ing binary masks to the complex valued spectrogram of the original mixture (See

Section 2.1.1 for a definition of binary masks). While binary masking allows very

efficient processing, it also results in separated signals with more artifact distortions

in comparison to soft time-frequency masking from a generalized Wiener filtering

approach. Artifacts often appear due to sudden discontinuities in the magnitude

or phase spectrograms produced by the binary approach. Soft Wiener masks act

as low-pass filters, smoothing the resulting signals and reducing artifacts at the ex-

pense of more interference between the sources. This approach can often result in

reduced sharpness of the solo signals and requires longer processing times. However,

depending on the application, it can be an option to reduce artifact distortions.

As stated in the introduction of this chapter, the different spectral characteristics

of musical instruments and the human voice call for independent evaluations which

are now presented in Figure 3.3. For these figures, mean values with 95% confidence

intervals where calculated by dividing the dataset (SA DS1) into vocal and instru-

mental tracks. This distinction is only made to better assess the performance of the

algorithm when dealing with different types of signals.

It can be seen that even when the OPS obtained for the instrumental and vocal

solo tracks are very similar, 26.16 and 23.21, respectively, very different behavior

is observed for the APS and TPS of the two types of signals. Vocal solo tracks

exhibit considerably lower TPS and APS when compared to the instrumental solo

tracks. These results most likely come from the fact that the algorithm fails to

capture unvoiced sounds present in vocal signals (see Section 2.6.2 for a definition of

unvoiced sounds). The estimation algorithm assumes completely harmonic sources

at all times, and while this assumption holds in most cases for the sustained parts of

musical instrument tones, fricatives and plosives in vocal sounds evidence broadband

spectral characteristics that the algorithm fails to handle. It is also evident from

the results in Figure 3.3a that the solo tracks for the instrumental database still

result in considerable large confidence intervals. Considering that the database

used contains solo tracks from different musical instruments, this variability can be

expected. Even when general assumptions about musical instrument tones can be

used for the estimation, particular differences between brass and string instruments,
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Figure 3.3.: Results obtained with the frame-based separation algorithm displayed
independently for instrumental and vocal tracks. (a) Instrument (b) Vocal. Objec-
tive perceptual quality measures: Overall Perceptual Score (OPS), Target-Related
Perceptual Score (TPS), Interference-Related Perceptual Score (IPS), Artifact-
Related Perceptual Score (APS). Mean values with 95% confidence intervals are
presented. Specially for the solo tracks, performance differences between the vocal
and instrumental datasets can be clearly observed. Vocal solos show in general
lower APS and TPS than the instrumental solos. Results for the backing tracks
for the two datasets do not show such big differences in performance as the solo
tracks.

for example, or strings and woodwinds, are not properly captured by the algorithm.

In the case of vocal tracks (Figure 3.3b), confidence intervals are smaller and results

are more consistent among the different signals.

Even when the evaluation using the set of objective perceptual measures is informa-

tive, very valuable observations can also be made by simply listening to the resulting

separated tracks. Here, a series of observations made by informal listening tests are

presented. It is very evident from the resulting backing tracks that the attacks

of the tones are not being properly captured by the estimation of the solo signal.

This causes, in some cases, very audible artifacts in the backing tracks where the

remaining attacks that should have been assigned to the solo signal, are kept as

information belonging to the accompaniment. A second observation refers to the
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sometimes very clear interference from percussion instruments in the solo tracks. In

many cases and specially when percussion hits coincide in time with the beginning

of a tone, very clear percussive sounds can be heard in the separated solo signal.

Finally, backing tracks obtained for the vocal database often have audible noise-like

sounds that belong to the unvoiced parts of the singing voice. Specially noticeable is

a whisper-like sound with clear voice components, constantly present in the backing

tracks.

3.1.6.4. Conclusions

The results presented in this section represent a compromise consciously taken be-

tween separation quality and algorithm efficiency. While performing a frame-based

estimation allows very fast processing, only simple harmonic modeling constraints

can be set.

The frame-based separation algorithm results in Overall Perceptual Scores

(OPS) for the solo and backing track of 25.07 and 34.55, respectively. These

results show that the goal of obtaining solo and backing tracks of similar quality

is being reached. The algorithm has an average processing time of 0.2 · l, where

l is the total length of the song, on a 2.66GHz computer, making it suitable for

real world applications and real-time performance.

With this in mind, important conclusions were drawn from the analysis:

• While the algorithm is very effective in the estimation of the solo instrument

(evidenced by the high IPS obtained), results suggest that the algorithm could

benefit from estimations that consider longer time intervals and allow the

inclusion of more complex models of musical instrument sounds.

• The differences in performance between vocal and instrumental tracks are very

evident. The algorithm fails to capture unvoiced sounds in vocal signals, and

instrumental tracks show large confidence intervals that evidence variability in

the results.
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The natural question that comes to mind is: How can the results of the algorithm be

improved while maintaining the initial design goal of having a lightweight system that

can handle different types of solo instruments? In Section 3.2 several studies are

presented which were conducted with the goal of better characterizing the spectral

behavior of musical instrument sounds. Magnitude, frequency, and phase of musical

instruments are studied to draw effective measures to improve separation results.

In Section 3.3, the findings from these studies are applied to a new Tone-based

Separation Algorithm.

3.2. Analysis of Spectral Parameters of Musical Instrument

Signals

In Section 3.1, a frame-based separation algorithm was proposed to address the solo

and accompaniment separation problem. Several important conclusions were drawn

from the results obtained in that section; namely, the need to better characterize

musical instrument spectra to obtain more accurate representations of the sources to

be separated. In this section, several studies are conducted in the attempt to get a

better understanding of the spectral characteristics of different musical instruments.

The different studies and relevant datasets compiled for each analysis are described

in the next sections.

3.2.1. Partial Tracking Method

In this section, a partial tracking method is proposed to extract magnitude, phase,

and frequency of the harmonic components of a solo signal. The goal of this method

is to extract accurate spectral information from isolated instrument signals, to be

used in the analyses described in sections 3.2.2 and 3.2.3. The extraction process is

composed of three stages: (1) Energy Detection, (2) Peak Detection & Pruning, and

(3) Trajectory Formation. A block diagram of the proposed partial tracking method
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Figure 3.4.: Block diagram of the partial tracking method proposed. This method
is used in the following sections to study the spectral parameters of musical in-
struments.

is shown in Figure 3.4 for reference. The main processing blocks of the algorithm

are described in the following sections.

Energy Detection

At this stage, possible silent frames at the beginning and end of the signal are

removed to make sure that the partial tracking algorithm only receives frames where

the tone is active. To detect silent frames, the energy of the time domain signal x(t)

of length T is calculated:

ε =
T−1∑
t=0

|x(t)|2 (3.13)

To avoid excessive segmentation of the signal due to frames of low energy, a minimum

silence length threshold of γ = 80 ms is defined. To avoid including clicks or bursts

that might occur at the beginning or end of the signal, a minimum sound length

threshold is also defined. Only segments of sound longer than ρ = 200 ms are used

in the peak detection stage.

Let L be the number of samples of the minimum allowed silence L = γ ·fs. A moving

average filter of length L is used to calculate the mean energy within segments of

length γ. The mean energy value at time t is given by:
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ε̄(t) =
1

L

L−1∑
j=0

ε(t− j) (3.14)

The mean energy ε̄(t) is normalized to a [0 1] range and any segments whose en-

ergy falls below the energy threshold ϕe = 0.015 are discarded. Finally, only the

remaining energy segments that pass the minimum segment length threshold ρ are

kept.

The new boundaries of the signal which define the onsets and offsets of each of the

tones, are then passed to the peak detection stage.

Peak Detection & Pruning

A STFT analysis with a 46 ms frame size and a 5.8 ms hop size is used as time-

frequency representation. For each time frame n, the magnitude spectrogram is

analyzed to extract relevant peaks that might correspond to partials of the given

tone. Even when this method is meant to be used with isolated solo signals, care

needs to be taken when building partial tracks. Some instruments such as the flute,

present noise-like elements in their spectra that can appear as spectral peaks of

different frequencies and amplitudes. Additionally, it is not uncommon for musical

instruments to show subharmonic peaks. Even when these subharmonic components

might exhibit particular characteristics of each instrument, they are not considered

in these studies and thus, were excluded in the peak detection stage. Figure 3.5

shows the magnitude spectrogram of two example tones with visible peaks that do

not correspond to harmonic components. In the figure, expected partial peaks are

shown in blue while subharmonic components are shown in red.

To guide the peak detection algorithm and to avoid too many spurious peaks, an

initial estimate of the fundamental frequency f0 of the tone is always provided to

the peak detection algorithm. In the cases where the signal analyzed is a single note,

the initial estimate of the fundamental frequency is taken from the metadata of the

dataset. If metadata is not available or signals where the solo instrument plays a full

melody are used (as in Section 3.2.2), an initial pitch detection stage is performed

to obtain the corresponding f0 values. In such cases, the pitch detection algorithm
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Figure 3.5.: Examples of magnitude spectrograms of instrument tones that exhibit
subharmonic components. Subharmonic peaks are marked with red while har-
monic peaks are marked with blue. (a) Trumpet D#5 Vibrato (b) Violin A#5
Sul-D (The notation Sul-D refers to the string where the note is played on the
violin)

described in Section 3.1.1 is used. The goal of having a fundamental frequency value

before peak detection is to restrict the search to frequency regions where partials

are expected. The frequency range where the search is conducted is restricted to

[f0/2(100/1200), fs/2]. The lower bound corresponds to a semitone lower than the
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f0 defined in cents. The higher frequency bound is given by the Nyquist frequency,

with fs the sampling frequency. In the defined frequency range, an initial peak

detection stage is conducted where all the frequency bins k where local maxima in

the magnitude spectrogram are detected, are saved.

To remove spurious peaks from the initial peak candidates, a frequency adaptive

magnitude threshold ϕf is defined. A frequency delta ∆f = 50 Hz is defined such

that the frequency band where ϕf is calculated, is given by: [fk −∆f , fk + ∆f ].

Here, fk is the frequency in Hz of the bin k where the peak was detected. Given an

analysis window of length N and a sampling frequency fs, low and high frequency

bins where the threshold is defined are given by:

kL = bN
fs
· (fk −∆f )e (3.15)

kH = bN
fs
· (fk + ∆f )e (3.16)

with bxe the round operator.

For a given time frame n, the magnitude spectrogram of the tone is denoted by

M(k, n). The frequency adaptive magnitude threshold is calculated as follows:

ϕf =
1

K

kH∑
k=kL

M(k, n) (3.17)

where K is the total number of frequency bins included in the [kL, kH ] band. Any

peak within the band whose magnitude falls below the threshold is eliminated.

Finally, only a maximum number of peaks pmax = 25 are kept in each frame. In the

cases where more than pmax peaks remain after the pruning stage, only the pmax

peaks with the largest amplitude are kept.

The peak detection stage restricts the maximum number of harmonics that can

be found; however, a minimum number is not imposed. This approach makes the
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detection stage more robust to spurious peaks and accounts for the fact that for

higher fundamental frequency values, fewer harmonics are visible in the spectrogram.

For those tones where fewer peaks than pmax are found, the remainder of the buffer

is filled with zeros. The resulting peaks correspond to rough, unordered peak can-

didates of the harmonic components of each frame in the tone.

Trajectory Formation

The peak detection stage delivers a set of peak candidates for all the time frames

n of the signal. The peak candidates are delivered as a pmax × M matrix, with

pmax = 25 partials, and M the total number of frames in the tone. It must be noted

that zero entries in the peak candidate matrix indicate time frames where less than

pmax peak candidates were detected. The goal at this stage is to organize the peak

candidates into partial trajectories that represent the time evolution of each partial

over the length of the tone.

To be able to assign peak candidates to a certain partial of a tone, it is necessary

to first define a frequency range where the search for prominent peaks is conducted.

A rough estimate of the frequency of the partials is given by their ideal harmonic

locations, calculated as integer multiples of the fundamental frequency: fp = f0 · p,
with p = 1, . . . , pmax the partial index. For each partial p, a frequency band cen-

tered at the ideal harmonic location is defined using the cents unit of measure:

[fp/2
(150/1200), fp · 2(150/1200)]. In each time frame n, the peak candidate matrix is

searched for peaks that fall within the defined frequency band of each partial. If

for a time frame n, more that one peak is found within the given frequency band

of a partial, the peak that minimizes the frequency difference with the peak found

in the previous frame n− 1, is taken as the partial peak. This measure guarantees

continuity of the partial tracks and reduces the possibility of selecting subharmonic

components. If no peak fulfills the frequency bands, the partial track is set to zero.

At the end of this stage, frequency trajectories in time are delivered for each partial.

To facilitate further analyses, results are delivered again as a pmax × M matrix

where each row of the matrix corresponds to the temporal trajectory of one partial.

In this particular case, frequency bin trajectories are delivered; namely, each of the
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entries in the matrix contains the frequency bin k where each partial was found in

a given time frame.

Algorithm Performance

The performance of the partial tracking method described in this section was eval-

uated with a set of manually annotated instrument tones. A total of 20 instrument

tones taken from the University of IOWA Musical Instrument Dataset [109] were

manually annotated on a frame by frame basis for the first 15 observed partials.

The instruments used in the evaluation were piano, violin, trumpet, flute, and alto

saxophone. For the evaluation, a window length of 2048 samples and a hop size

of 256 samples were used. All signals had a sampling frequency fs = 44100 Hz.

The dataset was processed with the partial tracking algorithm and Precision p, Re-

call r, and F-Measure F values were calculated. The proposed method resulted

in r = 0.7539, p = 0.9698, and F = 0.8398 and showed to be suitable for robust

detection of partial tracks from musical instrument recordings.

3.2.2. Contribution of Spectral Parameter in Separation Quality

During the many years of sound separation research, many techniques have been

proposed to address the separation problem. As described in Chapter 2, many algo-

rithms have focused on getting an accurate representation of the spectral magnitude

of the individual sources. Some approaches have relied on assumptions such as

smoothness of the spectral envelope, others have assumed a certain spectral shape

for the different musical instruments, while others have enforced common amplitude

modulation among harmonic components. When it comes to frequency informa-

tion, the assumption of perfect harmonicity in musical tones has been made in

many systems. Perfect harmonicty assumes that the frequencies of the partials of

a tone are given by integer multiples of the fundamental frequency f0. Some sys-

tems have relaxed the perfect harmoncity assumption but to the author’s knowledge,

no structured study has been conducted within the separation community to better

characterize inharmonicity patterns of musical instruments. When it comes to phase

information, very few studies have addressed its effects on separation methods. It
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has in general been the case that phase information is left untouched and the original

phase from the mixture is taken to re-synthesize the different sources. A notable

exception is the work of [16] on spectrogram consistency.

Given the results obtained with the frame-base separation algorithm in Section 3.1,

several open questions remained:

Which stage of the estimation process of the algorithm should be improved to optimize

the quality of separation? Should the optimization focus on getting better estimates

of the magnitude of the sources, or should more attention be given to frequency and

phase information?

After many years of separation research, very little effort has been made to assess

the impact of different spectral parameters such as phase, magnitude, and frequency

location of harmonic components in the resulting quality of the extracted signals.

The development of objective perceptual measures for separation quality assessment

has considerably facilitated the systematic study of such impact. For a given separa-

tion approach, the effects of different algorithm parameters can be assessed in a very

straightforward manner and guidelines for algorithm optimization can be drawn. In

the next section, a study that attempts to describe the influence of phase, magni-

tude, and frequency location of harmonic components in the perceived quality of

separated solo signals, is presented.

3.2.2.1. Experiments and Results

In this study, the effects of magnitude, phase, and frequency location of harmonic

components on the perceived quality of separated tracks, was evaluated. The main

goal of this study was to understand the impact on separation quality of having

very accurate spectral information. This study evaluates independently the impact

of the three spectral parameters: magnitude, frequency and phase.
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To obtain the necessary spectral information for the study, solo signals from the cho-

sen dataset were processed to extract frame-wise magnitude, phase, and frequency

information of the harmonic components. The method for partial tracking described

in Section 3.2.1. was used for this purpose.

To better assess the effect of each of the spectral parameters, different signal versions

of the solo were created for each of tracks in the dataset. For each signal version, the

spectral parameters were slightly modified before re-synthesis. Table 3.1 shows the

characteristics of each signal version. The first signal in each table, i.e., Name FB,

is the solo signal obtained with the frame-based separation algorithm described

in Section 3.1. The label Original was given to the parameters obtained from the

original solo track from the multi-track recordings using the partial tracking method

described in Section 3.2.1. The label Estimate was given to each of the parameters

obtained with the frame-based separation algorithm. In should be noted that in this

algorithm, no attempt was made to estimate the phase of the separated signals. The

phase of the original mixture is conservatively taken as the phase of both the solo

and accompaniment.

For the magnitude estimates, three additional variants were created: exp. Estimate

which refers to the magnitude obtained with the frame-based separation algorithm

additionally weighted with an exponential decay in frequency, rand Estimate which

refers to the original magnitude modified by a random percentage within the [-1, 1]

range, and rand + exp Estimate which refers to the original magnitude with the same

random modification as the previous label with an additional exponential decay in

frequency.

For each of the tracks in the dataset, ten signal versions of the solo instrument

were synthesized using the parameters described in Table 3.1. For the evaluation,

the available multi-track recording were used to create a solo, an accompaniment

signal and the final mixture. The obtained mix was processed with the frame-based

separation algorithm to obtain estimates of the spectral parameters. The clean solo

signals from the multi-track recordings were used to extract the original spectral

parameters.
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Table 3.1.: Description of the spectral parameters used for each of the signal versions
created.

Signal Name Phase Mag Freq.

Name FB Estimate Estimate Estimate

Name 1 Original Original Estimate

Name 2 Original Estimate Estimate

Name 3 Original exp. Estimate Estimate

Name 4 Estimate Original Original

Name 5 Estimate rand Estimate Original

Name 6 Estimate rand + exp. Estimate Original

Name 7 Estimate Original Estimate

Name 8 Original rand Estimate Original

Name 9 Original rand + exp. Estimate Original

Dataset

A small dataset of three tracks was used for this experiment. This dataset is referred

to as SA DS2. As shown in Table 3.2, different solo instruments and genres were

used for the study. Due to copyright restrictions, this dataset cannot be made

publicly available; however, detailed information about the tracks is presented in

Appendix B of this thesis. For all the signals, multi-track recordings were available.

Table 3.2.: Dataset SA DS2 description.

Track Genre Solo Instrument Accompaniment

test1 Jazz Alto saxophone Drums, piano, bass

test2 Pop ballad Male voice Vocals, piano, bass

test3 Swing Clarinet Drums, piano, bass

Evaluation

The PEASS Toolkit was used to evaluate the quality of the synthesized solo signals.

Resulting measures are presented for each of the signals in Table 3.3, Table 3.4,

and Table 3.5, respectively. For each signal the Overall Perceptual Score (OPS),

Target-related Perceptual Score (TPS), Interference-related Perceptual Score (IPS),
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and Artifacts-related Perceptual Score (APS), are presented.

Table 3.3.: Objective perceptual quality measures for signal test1: Overall Percep-
tual Score (OPS), Target-Related Perceptual Score (TPS), Interference-Related
Perceptual Score (IPS), Artifact-Related Perceptual Score (APS). The highest
scores are shown in red. The lowest scores are shown in blue.

Signal OPS /100 TPS /100 IPS /100 APS /100

test1 FB 19.4461 25.5726 60.9986 15.5474

test1 1 55.328 40.7943 82.8943 52.1161

test1 2 33.2821 31.3511 74.8165 28.2587

test1 3 39.2252 26.3295 78.063 33.6584

test1 4 52.0785 51.8362 81.5127 50.3228

test1 5 50.6688 49.2281 80.7793 49.5745

test1 6 53.2174 39.3166 81.5976 51.9513

test1 7 47.1452 40.3439 79.752 45.1934

test1 8 60.1738 60.248 83.6985 58.7983

test1 9 64.0188 48.1209 84.5643 62.2899

Analysis of Results

For easier visualization of results, the lowest scores for each measure are shown in

blue and the highest scores are shown in red in each of the tables. The scores obtained

with the frame-based algorithm (Name FB) were excluded from this ranking as they

are always the lowest ones. The low scores obtained by the frame-based algorithm

in comparison to the other signal versions are not surprising as it is the only signal

version where all the synthesis parameters are estimates. The following remarks can

be made by analyzing the results obtained:

• For all signals, the highest OPS was obtained by signal version Name 9 which

uses original phase and frequency of the harmonic components, and an expo-

nentially weighted estimate of the magnitude.

• The lowest OPS scores were always obtained by Name 2, i.e., original phase,

and estimate of the magnitude and frequency of the harmonics. For the three

solo signals, Name 2 also presents the lowest IPS and APS scores. It is impor-

tant to point out that even with the lowest OPS scores, Name 2 still shows a
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Table 3.4.: Objective perceptual quality measures for signal test2: Overall Percep-
tual Score (OPS), Target-Related Perceptual Score (TPS), Interference-Related
Perceptual Score (IPS), Artifact-Related Perceptual Score (APS). The highest
scores are shown in red. The lowest scores are shown in blue.

Signal OPS /100 TPS /100 IPS /100 APS /100

test2 FB 2.72197 8.46823 20.0746 0.87033

test2 1 16.2539 17.8368 62.3981 8.86316

test2 2 7.28879 9.51548 46.4168 2.5511

test2 3 7.6865 9.40061 46.9784 2.82705

test2 4 20.8346 48.5833 67.2165 13.6942

test2 5 20.1149 46.9775 66.5921 12.9841

test2 6 22.2277 36.1384 67.6809 15.3038

test2 7 16.2539 17.8368 62.3981 8.86316

test2 8 42.8365 57.1865 80.5594 35.4936

test2 9 45.5591 44.1082 80.4709 40.033

quality improvement in relation to Name FB which supports the importance

of refined phase information in the separation algorithm.

• The relationship between an accurate phase estimation and an accurate fre-

quency location of the harmonic components appears to be very relevant to

the quality of the solo signal as both Name 8 and Name 9 which are obtained

with original phase and original frequency of the harmonic components, are al-

ways in the high end of the OPS ranking. These scores show the importance of

fine frequency variations of the harmonic components in the perceived quality

of a signal.

• To asses the impact of having very accurate estimates of the magnitude of the

harmonic components, Name 1, Name 4 and Name 7 are analyzed as they are

all obtained with the Original magnitude. Name 7 always presents the lowest

OPS of the three which accounts for the use of estimates both for the phase and

harmonic locations. Additionally, the OPS of Name 7 is always among the 3

lowest scores of each set which further points out the importance not only to

concentrate on the spectral magnitude but to look at the interaction between
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Table 3.5.: Objective perceptual quality measures for signal test3: Overall Percep-
tual Score (OPS), Target-Related Perceptual Score (TPS), Interference-Related
Perceptual Score (IPS), Artifact-Related Perceptual Score (APS). The highest
scores are shown in red. The lowest scores are shown in blue.

Signal OPS /100 TPS /100 IPS /100 APS /100

test3 FB 15.756 33.4435 60.3932 9.46146

test3 1 47.8058 47.5321 80.7135 43.5196

test3 2 35.0171 33.878 76.2494 28.6766

test3 3 36.0682 34.6635 76.7815 29.7799

test3 4 55.1085 47.0971 81.2993 55.9969

test3 5 47.4624 52.8007 79.2465 46.8611

test3 6 51.5365 46.8204 80.3821 51.7322

test3 7 47.186 40.4 79.8656 44.2033

test3 8 53.6307 52.7405 81.3849 53.6137

test3 9 60.0377 48.3531 83.0139 60.2893

the different parameters. Both Name 1 and Name 4 show an improvement in

OPS compared to Name 7 ; however, no consistent conclusion can be drawn

from this test set regarding the difference in the impact of including original

phase or original harmonic locations for synthesis.

These results suggest that even if the accuracy of the spectral magnitude estimates is

comparable to the original magnitude, the OPS obtained will still be on the lower end

of the scale. In contrast, Name 8 and Name 9, which are both obtained with only

estimates of the spectral magnitude, both obtained OPS scores in the highest end of

the ranking. For the two types of magnitude estimates presented, the exponentially

weighted outperforms in all cases the initial estimate, i.e., Name 3 outperforms

Name 2, Name 6 outperforms Name 5, Name 9 outperforms Name 8. Additionally,

the use of exponential decay always results in lower IPS scores. Exponential decay by

definition, lowers the contribution of high frequency components where estimation

can be noisy and less accurate.

Conclusions

The analysis of results provided some insight on how to modify the proposed method
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to optimize quality of separated tracks. Even when this conclusions might specifically

evidence the shortcomings of the frame-base separation algorithm evaluated, the

conclusions can be used as rough guidelines for other separation approaches. The

importance of refined estimates of phase and frequency of the harmonic components

has shown to be necessary for improved separation quality, showing greater impact

than the spectral magnitude. Having very accurate magnitude estimates showed

little quality improvement; however, the use of exponential decay in frequency to

weight magnitude estimates has proven to result in better separation quality. For a

consistent improvement of the quality of resulting audio tracks, the development of

sound separation algorithms should be directed to include and refine not only one

of the given parameters, but to properly capture the interactions between them.

3.2.3. Analysis of Isolated Tones of Musical Instruments

The most part of the studies presented in this section were conducted from 03.2012-

06.2012 during a research stay at the Center for Digital Music C4DM at Queen Mary

University of London under the supervision of Prof. Mark Plumbley.

Results from the frame-based separation algorithm revealed that more accurate spec-

tral estimates of the solo instrument were needed to improve quality of the separated

tracks. The study conducted in Section 3.2 also evidenced the need not only to focus

on more accurate magnitude estimations, but also to focus on possible refinements

of the phase and frequency estimates of the harmonic components of the solo sig-

nal. To better understand the relationship of these spectral parameters, a study is

proposed where isolated notes of different musical instruments are analyzed to char-

acterize their behavior in the time-frequency domain. This study was designed with

the goal of finding spectral characteristics of instrumental tones that can be used as

guidelines for parameter estimation in the separation algorithm. The use of isolated

notes naturally poses different acoustical and spectral conditions than the analysis

of audio mixtures where several instruments overlap in time and frequency. Never-

theless, this study aims at understanding instrumental tones under ideal conditions
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to then analyze to what extent the same characteristics can be observed within an

audio mixture.

The next sections present a description of the datasets and methods used for this

analysis.

3.2.3.1. Dataset

For the magnitude and frequency studies (Sections 3.2.3.2 and 3.2.3.3) presented in

this section, a selection of six musical instruments was made: 3 wind instruments —

saxophone, Bb trumpet, and clarinet—, and 3 string instruments —violin, guitar,

and piano—. All instrument samples were taken from the University of IOWA

Musical Instrument Dataset [109]. For the alto saxophone, a total of 64 tones were

processed, 32 with vibrato and 32 without vibrato. All the tones were played in mf

and were in the Db3 - G#5 range. For the Bb trumpet, a total of 70 tones were

processed, 35 with vibrato and 35 without vibrato. All the tones were played in

mf and were in the E3 - D6 range. For the clarinet, a total of 35 tones played in

mf without vibrato in the G3 - C7 range were processed. For the violin, a total

of 88 tones in the G3 - B6 range were processed. All tones were played without

vibrato in mf using the bow. Where possible, the different notes were played on

different strings of the violin. For the guitar, a total of 117 tones in the E2 - B5

range were processed. All tones were played without vibrato in mf. As for the violin,

the different notes were also played on different strings of the guitar. Finally, 33

notes were processed for the piano in the C3 - B5 range played in mf. This gives

a total of 407 processed and analyzed tones all of them with a sampling frequency

fs = 44100 Hz.

For the phase analysis (Sections 3.2.3.4), additional tones for the flute and the tenor

trombone also taken from [109] were also processed. For the flute, a total of 76 mf

tones were processed, 38 with vibrato and 38 without vibrato. All tones were in the

B3 - Db7 range. For the trombone, a total of 33 mf tones in the E2 - C5 range were

processed.

The method for partial tracking presented in Section 3.2.1 was used to extract

magnitude, frequency, and phase information for all the tones in the dataset.
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3.2.3.2. Magnitude Analysis

As described in Section 2.6.1, several studies have been conducted in the attempt to

better characterize magnitude spectrograms of different musical instruments. How-

ever, results have shown that finding an accurate model that allows the prediction

of the magnitude envelope of one partial based on the magnitude envelope of an-

other partial of the same tone, or that allows the characterization of the shape of

spectral and temporal envelopes of a given musical instrument, is a challenging task.

To date, no robust solution has been proposed to address this estimation problem.

Consequently, this study focuses on the characterization of the change in time of the

temporal envelopes of musical instruments tones. The importance of statistically

studying the change of magnitude over time, comes from the fact that it allows to

characterize envelope smoothness of musical instrument tones. Envelope smooth-

ness is an important parameter in the estimation of the spectral components of the

target source in a separation context.

In this study, temporal envelopes Mp(k, n) were obtained for each of the first 10

partials of the tones in the dataset. Here, p refers to the partial index, k and n are

the frequency bin, and time index, respectively. To extract the envelopes, a window

length of 2048 samples, and a hop size of 256 samples were used. All signals had a

sampling frequency fs = 44100 Hz. The temporal envelopes were first normalized

to the [0,1] range. Then, the first-order time derivative
d(Mp(k,n))

dn was obtained for

each of the envelopes, and mean values and standard deviations were obtained for

each of the partials.

Results of the analysis are presented in Figures 3.6 - 3.9. For the alto saxophone

and trumpet where tones both played with and without vibrato were available,

results are presented independently. For the clarinet, violin, piano, and guitar only

tones without vibrato were studied. For each instrument, mean values and standard

deviations for each partial over the entire instrument dataset are presented.

Analysis of results

Results of the magnitude analysis are presented in Figures 3.6 - 3.9. Mean frame-

wise percentage magnitude changes are shown for each partial. The whiskers in the

plots indicate the standard deviation.
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Figure 3.6.: Mean magnitude change of the temporal envelopes of the first 10 partials
of saxophone tones. The standard deviation is indicated by the whiskers. (a) Alto
sax without vibrato. (b) Alto sax with vibrato.
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Figure 3.7.: Mean magnitude change of the temporal envelopes of the first 10 par-
tials of trumpet tones. The standard deviation is indicated by the whiskers. (a)
Trumpet without vibrato. (b) Trumpet with vibrato.

The saxophone (Figure 3.6) shows mean percentage magnitude changes about -1%

both for tones with and without vibrato. The standard deviations differ slightly

between the partials with values in the [0.5, 2]% range for tones without vibrato,

and in the [0.5, 3.5]% range for tones with vibrato.

The trumpet (Figure 3.7) shows very stable mean magnitude envelopes both for
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Figure 3.8.: Mean magnitude change of the temporal envelopes of the first 10 partials
of clarinet and violin tones without vibrato. The standard deviation is indicated
by the whiskers. (a) Clarinetwithout vibrato. (b) Violin without vibrato.
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Figure 3.9.: Mean magnitude change of the temporal envelopes of the first 10 partials
of guitar and piano tones without vibrato. The standard deviation is indicated
by the whiskers. (a) Guitar without vibrato. (b) Piano.

tones with and without vibrato, with mean percentage magnitude changes around

-0.3%. Standard deviations differ among partials with values lower than 1% in all

cases but for partial 8 in the tones without vibrato.

The clarinet (Figure 3.8a) also shows very stable envelopes with mean percentage

magnitude changes around -0.6% with standard deviations in the [0.3, 1.5]% range
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for the different partials. The violin (Figure 3.8b) shows mean percentage magni-

tude changes around -0.3% with standard deviations in the [0.3, 0.6]% range for the

different partials.

The guitar and piano (Figure 3.9) show in general larger mean percentage magnitude

changes than the rest of the instruments. The guitar shows mean values between

-0.3% and -6% with standard deviations between 0.2% and 4% for the different par-

tials. The piano shows mean values between -2% and -12% with standard deviations

between 2% and 7% for the different partials.

Conclusions

The following general remarks can be made from the analysis conducted:

• For the saxophone, trumpet, clarinet, and violin mean percentage magnitude

changes are never higher than -2%. This evidences the great degree of smooth-

ness in the magnitude envelopes for an analysis time resolution of 5.8 ms.

• Results show clear differences between those instruments with sustained tones

such as the clarinet, saxophone, trumpet, and violin (bowed), and the plucked

string instruments such as the piano and the guitar whose tones immediately

start decaying after the string has been plucked. The piano and guitar clearly

show much larger mean percentage magnitude changes than the rest of the

instruments (reaching percentage changes up to 12%). A common and very

noticeable phenomenon is observed in the partial 5 of the guitar and piano,

showing a very steep magnitude change in comparison to the other partials.

The exact cause of this phenomenon is not known but appears to be common

to plucked string instruments.
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3.2.3.3. Frequency Analysis

In this section, inharmonicity of musical instrument tones as introduced in Section

2.6.2, is studied. In a separation context, the importance of characterizing inhar-

monicity of musical instruments comes from the fact that it allows more accurate

estimation of the target source. Additionally, the study presented in Section 3.2.2

showed that more accurate localization of the sources in the frequency domain results

in better quality of separation.

The full dataset was processed to obtain the observed frequency location f̂p(n) of

the first 10 partials of each tone. The observed frequency location was obtained

with the partial tracking algorithm described in Section 3.2.1, by finding the spec-

tral peaks corresponding to each of the partials of the tone. To obtain refined

frequency locations of the partials, the method proposed in [110] was used to obtain

an Instantaneous Frequency (IF) spectrogram. The IF spectrogram has proven to

provide better frequency resolution than standard STFT and as such, is relevant for

the present study. Frame-wise IF values in Hz were found for each of the partials of

the tone.

Additionally, harmonic frequencies fp(n) in Hz were calculated for all partials. The

harmonic frequency of each partial is calculated as the product of the fundamen-

tal frequency f0(n) and the partial number p. That is, fp(n) = f0(n) · p, with

p = 2 · · · 10. To estimate the deviation of each partial from its harmonic location,

the difference between the observed and the harmonic location of each partial was

obtained. The deviation of each partial from its harmonic location is given by:

∆p(n) = f̂p(n)− fp(n).

Analysis of results

Inharmoncity values are presented in Figures 3.10 - 3.13. Results are shown for each

partial as mean percentage deviation from its harmonic location. Negative values

represent frequency deviations to lower frequencies than the calculated harmonic

ones. Positive percentage deviations indicate observed frequencies higher than the

calculated harmonic ones. The whiskers in the plots indicate the standard deviation.
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For the saxophone and trumpet where tones both played with and without vibrato

were available, results are presented independently. For the clarinet, violin, piano,

and guitar only tones without vibrato were studied. This study considers inharmon-

icty from an objective point of view, and no attempt is made to study the perceptual

aspects of inharmonicity.

Saxophone tones without vibrato (Figure 3.10a) show percentage frequency devia-

tions in the [−0.5, 0.5]% range with standard deviation about 2%. For the saxo-

phone tones with vibrato (Figure 3.10b), particularly noticeable are the very stable

frequencies of the 3 lower partials, with frequency deviations close to zero and stan-

dard deviations about 0.1%. For the rest of the partials of the saxophone tones with

vibrato, mean values between [−0.5, 0.5]% are observed with standard deviations of

about 2.5%. The standard deviations of the tones with vibrato are slightly larger

than the ones for tones without vibrato. Specially for the saxophone tones without

vibrato, a slight tendency to deviations to lower frequencies than the harmonic ones

is observed.

Particularly noticeable in the results for the trumpet are the large standard devia-

tions obtained for partial 3 for tones both with and without vibrato (Figure 3.11)

of approximately 3.5%. The third partial also showing a clear deviation to lower

frequencies approximately 1% lower than the harmonic one. Trumpet tones without

vibrato show percentage deviations in the [−1, 1]% range with standard deviation

about 2% (excluding the aforementioned 3th partial). For the trumpet tones with

vibrato, mean values in the [−0.5, 0.5]% range are observed with standard deviations

approximately 2%. As opposed to the saxophone, no clear differences in the stan-

dard deviations of tones with and without vibrato are observed. For both tones with

and without vibrato, a slight tendency to higher frequency deviations is observed.

The clarinet shows very stable behavior particularly in the lower partials where mean

values are very close to zero (Figure 3.12a). The rest of the partials show mean

percentage deviations of approximately 0.1%, showing in general, almost completely

harmonic behavior. The standard deviations tend to increase with increasing partial

number but remain lower than 0.5%. No clear tendency of deviations towards lower

or higher frequencies than the harmonic ones can be observed.
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For the violin (Figure 3.12b), mean percentage deviations in the [0, 0.5]% range

are observed, showing a tendency to deviations to higher frequencies than the har-

monic ones. Deviation tends to increase with increasing partial number. Standard

deviations about 1.5% range are observed.

The guitar (Figure 3.13a) shows mean percentage deviations in the [−0.5, 0.5]%

range exhibiting almost harmonic behavior with a slight tendency to lower frequency

deviations. Standard deviations around 2% are observed. The piano (Figure 3.13b)

shows mean percentage deviations in the [−1, 1]% range with a slight tendency to

higher frequency deviations in the higher partials. Standard deviations around 2%

are observed.
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Figure 3.10.: Mean percentage deviation of the observed frequency of the first 10 par-
tials of a tone with respect to calculated harmonic locations. (a) Alto saxophone
without vibrato. (b) Alto saxophone with vibrato.

Conclusions

Even though results show clear differences between the different musical instruments,

general observations can be made:

• None of the musical instruments shows a definite tendency to lower or higher

frequency deviations than the harmonic ones. Some tendencies can be observed
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Figure 3.11.: Mean percentage deviation of the observed frequency of the first 10
partials of a tone with respect to calculated harmonic locations. (a) Trumpet
without vibrato. (b) Trumpet with vibrato.
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Figure 3.12.: Mean percentage deviation of the observed frequency of the first 10
partials of a tone with respect to calculated harmonic locations. (a) Clarinet
without vibrato. (b) Violin without vibrato.

for some of the instruments, but in general, all the instruments studied can

show both lower and higher deviations.

• Mean deviations and standard deviations tend to increase with increasing par-

tial number.
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Figure 3.13.: Mean percentage deviation of the observed frequency of the first 10 par-
tials of a tone with respect to calculated harmonic locations. (a) Guitar without
vibrato. (b) Piano.

• Mode-locking mechanisms as described in Section 2.6.2 result in partial fre-

quencies very close to harmonic ones. All the mean percentage frequency

deviations observed are in the [−1, 1]% range.

• Even though mean values for all the instruments fall approximately in the same

percentage deviation range, larger standard deviations were observed for the

two plucked string instruments (piano and guitar) than for the other ones. The

main difference between the two groups of instruments is that for the plucked

ones, there is no mechanism available that allows to produce sustained tones.

After the string has been plucked, the partials immediately start decaying. For

the rest of the instruments, the performer can control the duration of the tone

and use either the blowing pressure or the bow to sustain the tone as needed.

This clearly sets a difference in the frequency characteristics of the two groups

of instruments. Similar differences were observed in the magnitude analysis

presented in Section 3.2.3.2.

• Given that this analysis was conceived within a separation context with the

goal of drawing general guidelines for parameter estimation, no considera-

tion was taken regarding the register of the notes analyzed. All the results
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presented are mean values over the full range of the instruments considered.

More specific inharmonicty tendencies (such as deviations to higher frequencies

than the harmonic ones in the lower register of the guitar) could very likely

be observed if pitch is considered in the analysis. However, as the class of

the solo instrument is not known beforehand in the proposed method for solo

and accompaniment separation, specific instrument distinctions for parameter

estimation cannot be done and thus, this analysis was not conducted.

3.2.3.4. Phase Analysis

(1) Phase Correlation and Coupling

The principle of Common Fate states that different parts of the spectrum that change

in the same way in time will probably belong to the same environmental sound [111].

This is a characteristic that can be clearly observed in the Instantaneous Frequency

Distribution (IFD) of many musical instrument tones (see Section 2.6.3 for a detailed

description of IFD). Figures 3.14 - 3.21 show the IFD of different musical instrument

tones. All the IFDs where obtained using a window length of 4096 samples, a hop

size of 256 samples, and a sampling frequency fs = 44100 Hz. For visualization

purposes only, and to avoid excessive overlapping between the different contours, the

vertical axis of the plots was extended to the [−2π, 2π] range; however, the original

calculations use the standard [−π, π] range for the phase. Additionally, to get a

better understanding of the behavior of IFD across different musical instruments,

plots for the saxophone, trumpet, violin, clarinet, flute, and trombone are presented.

For the saxophone (Figure 3.14), trumpet (Figure 3.15), and flute (Figure 3.16) tones

with vibrato are presented. It can be seen that modulations in the IFD are common

among the different partials of the tone and the principle of Common Fate can be

clearly observed. Similar behavior as the one observed for the tones with vibrato, can

be observed for the trombone (Figure 3.17), clarinet (Figure 3.18), and violin (Figure

3.19) tones played without vibrato. For these examples, common micro-modulations
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Figure 3.14.: Instantaneous Frequency Distribution (IFD): B4 alto saxophone tone
with vibrato. The modulations are common to all partials of the tone.

can be seen among all the partials. For the violin, the sustained part of the tone

is very stable, almost showing linear contours; however, common modulations can

be more clearly seen in the beginning of the tone. For the guitar (Figure 3.20) and

the piano (Figure 3.21), common modulations among the different partials cannot

be observed, and IFD contours do not show clear correlations. Similar results were

presented in [112, O3] and are most likely caused by non-linear interactions between

the strings and the instrument’s body. In the case of the piano, also the string-

hammer interactions have shown to be non-linear and might have an influence in

phase characteristics. Here again, results show that phase correlation characteristics

differ among musical instruments.

Given that some musical instruments can exhibit clear common modulations in the

IFD of the different harmonics, the natural question that follows is whether this

information can be used to predict the phase of one harmonic component given

the phase of another harmonic component of the same tone. The concept of phase

coupling becomes relevant in this context. In this section, partials will be denoted by
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Figure 3.15.: Instantaneous Frequency Distribution (IFD): G5 trumpet tone with
vibrato. Clear common modulations among the partials of the tone can be ob-
served.
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Figure 3.16.: Instantaneous Frequency Distribution (IFD): A#4 flute tone with
vibrato. It can be observed that the contour of the 9th harmonic (h9) is not
completely continuous and some segments are missing. This happens when for a
given frame, the partial tracking method cannot find a peak for a given partial.
These frames are marked as missing information in the analysis.
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Figure 3.17.: Instantaneous Frequency Distribution (IFD): C4 trombone tone with-
out vibrato. Common modulations can be observed in all the partials.
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Figure 3.18.: Instantaneous Frequency Distribution (IFD): F4 clarinet tone without
vibrato. It can be seen that for tones without vibrato, the common fate principle
also applies.
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Figure 3.19.: Instantaneous Frequency Distribution (IFD): E4 violin tone without
vibrato. In this case, extremely stable contours are observed, being the common
modulations more clearly in the first frames of the tone.

px, with x the partial number. In general, phase coupling implies that for a triplet

of harmonically related partials pi, pj , ph, and with ph = pi + pj , any deviations

that occur in their respective phases φpi(n), φpj (n) will sum up to occur identically

in φph(n) [112]. That is:

φpi(n) + φpj (n)− φph(n) = 0 (3.18)

Evaluation and Results

For phase coupling characteristics to be applicable within a sound separation con-

text, one condition must be fulfilled: To be able to estimate information of partial

ph, it must be guaranteed that information of at least two partials pj and pi that

fulfill the condition ph = pj + pi, is available. The study presented in this section

evaluates how accurately the phase information from one partial can be estimated
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Figure 3.20.: Instantaneous Frequency Distribution (IFD): F#4 guitar tone without
vibrato.
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Figure 3.21.: Instantaneous Frequency Distribution (IFD): C#4 piano tone without
vibrato.
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using the phase information of two harmonically related partials. The first 10 par-

tials of each tone were used, and estimation of partials p3 to p10 were evaluated. The

fundamental frequency f0 cannot be estimated under this condition but was used

for the estimation of the higher partials. The different possibilities of harmonically

related partial triplets were considered. For partial p5 for example, the two com-

binations of partials that fulfill ph = pi + pj were considered, that is, p5(1, 4) and

p5(2, 3). The notation ph(i, j) is used in this section to denote harmonically related

partials.

For the saxophone, trumpet, and flute both tones with and without vibrato were

considered. For the clarinet, trombone, violin, and piano only tones without vibrato

were considered. Mean phase reconstruction errors in radians are shown in Figures

3.22 - 3.31 for partials 3 to 10. The different possibilities of harmonically related

partial triplets are shown in each plot. For easier visualization, different background

colors are used for consecutive partials, and the ph(i, j) notation is shown in the

horizontal axis of each plot.

Results for the saxophone (Figures 3.22 and 3.23) show mean reconstruction errors

between 0.2 and 0.4 radians with larger errors obtained for higher partials. For the

trumpet, reconstruction errors for tones without vibrato (Figure 3.24) tend to be

smaller when p1 (fundamental frequency) is used for reconstruction in comparison to

other partial combinations. Mean reconstruction errors between 0.2 and 0.4 radians

are obtained. For the 3 lower reconstructed partials of trumpet tones with vibrato

(Figure 3.25), reconstruction errors are very close to zero with standard deviations

of approximately 0.1 radians. For flute tones without vibrato (Figure 3.26) errors

between 0.2 and 0.4 radians are obtained. For flute tones with vibrato (Figure

3.27) mean errors greatly increase with increasing partial number, reaching values

up to 0.8 radians. The clarinet (Figure 3.28) also shows more accurate estimations

when p1 (fundamental frequency) is used for reconstruction in comparison to other

partial combinations. Very accurate lower partial reconstruction is obtained for the

clarinet with reconstruction errors very close to zero. Larger standard deviations are

observed for higher partials. The trombone (Figure 3.29) as well as the violin (Figure

3.30) obtain mean reconstruction errors between 0.2 and 0.4 radians. As expected
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Figure 3.22.: Phase estimation error: Saxophone tones without vibrato. Estimation
errors around 0.2% radians are observed.

p3(2,1) p4(3,1) p5(4,1) p5(3,2) p6(5,1) p6(4,2) p7(6,1) p7(5,2) p7(4,3) p8(7,1) p8(6,2) p8(5,3) p9(8,1) p9(7,2) p9(6,3) p9(5,4) p10(9,1) p10(8,2) p10(7,3) p10(6,4)
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Alto Sax (No Vib)

Partial Numbers: ph(i,j)

Ph
as

e 
Es

tim
at

io
n 

Er
ro

r [
ra

di
an

s]

p3 p4 p5 p6 p7 p8 p9 p10

Figure 3.23.: Phase estimation error: Saxophone tones with vibrato. There is a
slight increase in the estimation error of higher partials.
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Figure 3.24.: Phase estimation error: Trumpet tones without vibrato. Phase re-
construction using p1 results in smaller phase estimation errors than with other
partial combinations.
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Figure 3.25.: Phase estimation error: Trumpet tones with vibrato. The first 3 re-
constructed partials show reconstruction errors very close to zero.
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Figure 3.26.: Phase estimation error: Flute tones without vibrato. Estimation errors
around 0.2% radians are observed.
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Figure 3.27.: Phase estimation error: Flute tones with vibrato. Phase estimation
error greatly increases for higher partials.
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Figure 3.28.: Phase estimation error: Clarinet tones without vibrato. Phase estima-
tion error increases with increasing partial number.
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Figure 3.29.: Phase estimation error: Trombone tones without vibrato. Estimation
errors around 0.2% radians are observed.
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Figure 3.30.: Phase estimation error: Violin tones without vibrato. Estimation errors
around 0.2% radians are observed.
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Figure 3.31.: Phase estimation error: Piano tones without vibrato. The piano shows
the largest estimation errors of all instruments, with increasing error for higher
partials.
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given the uncorrelated IFDs of the piano in Figure 3.21, reconstruction errors for

the piano (Figure 3.31) are considerably higher than for the rest of the instruments,

with errors increasing with increasing partial number and reaching values up to 1

radian.

Conclusions

The following general observations can be made from the studies on phase recon-

struction using phase coupling characteristics described in this section:

• Results suggest that estimation for lower partials tends to be more accurate

than for higher partials, obtaining in general lower reconstruction errors for

all the instruments.

• In the studies on phase presented in this section, the piano has proven to

be the biggest challenge of all the instruments considered. Phase coupling

characteristics are not observed in general for the piano, and reconstruction

errors are considerably higher than for the rest of the instruments.

• It is particularly noticeable the large standard deviations obtained in general

for all the instruments. Only the clarinet and the trumpet tones with vibrato

show standard deviations around 0.1 radians, and only for the lower partials.

These large standard deviation values show the difficulty of obtaining robust

phase estimations under all conditions. It has to be noted that these studies

were conducted with isolated instrument tones where the analysis conditions

are somehow ideal. Within a separation scenario, spectral analysis and partial

tracking is a much more complex task and estimations can only decrease in

accuracy. For phase reconstruction based on coupling to be possible, it has

to be guaranteed that clean phase information from at least two harmonically

related partials can be extracted. This is in itself, another challenge to be

added to the estimation task.
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• To give a rough idea of the perceptual impact of phase reconstruction errors

as the ones observed, all the tones for the clarinet where reconstructed using

estimated phase for partials p3 to p10. All partials were reconstructed using

p1 (fundamental frequency). That is, for partial p3 for example, the combi-

nation p3(p1, p2) was used. The clarinet was chosen as it showed the most

accurate estimations of all instruments and as such, can give a good perfor-

mance reference. The first partial p1 was used for reconstruction because for

the clarinet in particular, it proved to result in lower reconstruction errors.

The Perceptual Evaluation of Audio Quality (PEAQ) model [113] was used to

calculate the perceptual quality of the reconstructed audio tracks with respect

to the original instrumental tone. PEAQ returns for each signal an Objec-

tive Difference Grade (ODG) which is an impairment scale with the following

meaning: 0 imperceptible, -1 perceptible but not annoying, -2 slightly annoy-

ing, -3 annoying, and -4 very annoying. The clarinet dataset obtained a mean

ODG of -1.18 showing distortions that according to the scale, are slightly an-

noying. This evaluation only gives a very rough reference of the reach of this

approach. All the signals were synthesized with 7 partials with reconstructed

phase. This is naturally a hypothetical scenario and more studies need to

be conducted under different characteristics to better assess the perceptual

impact of phase reconstruction.

(2) Phase Expectation: Phase-based Harmonic/Percussive separation

In this section phase expectation is explored in the context of sound source sepa-

ration. The main idea behind phase expectation is that the frame-wise change in

phase of a harmonic source, can be predicted given the pitch of the source and the

hop size H in samples of the time-frequency transform. For a given harmonic source

appearing in frequency bin k of the time-frequency representation, the phase change

in radians from time frame n to time frame n+ 1 is given by:

∆φk(n) =
2πfk ·H

fs
(3.19)
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with fs the sampling frequency, and fk the center frequency of bin k in Hz.

In a given time-frequency transform where a window of length N has been used,

each frequency bin k covers a band of frequencies of size fs/N . Equation (3.19)

can be used to calculate the range of expected phase changes for the frequency

band covered by each bin k. These values of expected phase changes can be used

to predict whether the energy falling in a given time-frequency bin belongs to a

harmonic source or not. If the change in phase between two consecutive time frames

falls in the expected radian ranges, the source can be assumed harmonic. If on the

contrary, the phase change falls outside the expected ranges, the source exhibits

transient or noise-like characteristics.

Spectral leaking plays a critical role in this type of analysis. For a certain harmonic

source that exhibits a peak in frequency bin k, it is likely that at least the adjacent

frequency bins, k − 1 and k + 1, are also affected by the presence of the harmonic

source. With this in mind, it is to be expected that phase expectation characteristics

of the frequency bins adjacent to a harmonic peak are also affected by spectral leak-

ing. Figure 3.32 shows two example plots where phase expectation of the frequency

bin k (where the peak is observed), and its two adjacent bins, k − 1 and k + 1,

is displayed. Figure 3.32a shows a phase expectation plot extracted from the sus-

tained part of an isolated A4 trumpet tone without vibrato using the partial tracking

method described in Section 3.2.1. Figure 3.32b shows the phase expectation plot

of two consecutive A4 saxophone tones. The saxophone tones were estimated using

the tone-based separation algorithm proposed in Section 3.3 from an audio mixture

of a jazz quartet containing saxophone, piano, bass, and drums. In both plots, the

horizontal axis represents the time in frames. Additional black bars displaying the

length of the tones are shown for reference (A4 trumpet tone and A4 saxophone

tone). The vertical axis in both plots displays three frequency bins for each of the

ten first partials of the tones; namely, the lower adjacent bin kp − 1, the bin where

the peak is observed kp, and the higher adjacent bin kp + 1. The natural order of

the frequency bins was preserved in the plot, being kp − 1 the lower bin shown, kp

the middle bin shown, and kp + 1 the higher bin shown for each partial. The color

convention used is displayed on the right side of the figure. The time-frequency bins
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Figure 3.32.: Phase expectation plots for the first 10 partials of musical instrument
tones. For each partial pi, the bin corresponding to the main peak and its two
adjacent frequency bins are shown. The dark blue color shows time-frequency
bins with expected phase changes. The dark red color shows time-frequency bins
whose phase cannot be predicted. (a) A4 Trumpet tone (b) Two consecutive A4
saxophone tones.

whose phase change falls in the expected radian ranges as calculated with (3.19),

are shown in dark blue. Those frequency bins whose expected phase change falls in

the radian ranges of their higher adjacent bins are shown in yellow. Those frequency
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bins whose expected phase change falls in the radian ranges of their lower adjacent

bins are shown in light blue. Those frequency bins whose phase cannot be explained

or predicted based on radian ranges calculated with (3.19), are shown in dark red.

The plots clearly show a structured behavior for the phase expectation of each

partial and its adjacent bins. It can be observed that the frequency bin kp where

each partial p is observed, presents phase change values mostly in the predicted

ranges, showing very clear dark blue horizontal trajectories. Phase expectation of

kp + 1 and kp − 1 clearly follow the behavior of kp, kp − 1 being mostly pulled to

higher phase changes (closer to kp) than the ones given by (3.19). This can be

observed by the clear yellow horizontal trajectories in the plots. Phase expectation

of kp + 1 is also clearly affected by the main peak kp, showing phase change values

lower to the ones predicted and mainly being pulled down to be closer to kp. This

can be observed by the horizontal light blue trajectories in the plots. As a result,

the three bins corresponding to each partial show a very structured behavior mostly

in a – yellow - dark blue - light blue – configuration. A very important observation

to be made, is the behavior of phase expectation when the higher partials of the

tones in Figure 3.32b decay. It can be seen that as the partials decay at the end of

each of the two tones, their phase changes cannot longer be accurately predicted,

mainly showing dark red color in the plot. In Figure 3.32a, only the sustained part

of the tone is shown and thus, most frames follow the expected behavior. This

clear difference in the behavior of phase expectation between harmonic sources and

non-harmonic ones will be exploited in the separation context.

The concept of phase expectation is used to address the harmonic/percussive sepa-

ration task. Preliminary results on this direction were published in [O3] where the

proposed method outperformed the method proposed in [114]. In this thesis, these

results are extended to a larger dataset and results are compared to a more recent

method proposed in [115] where the authors claim to obtain similar results to the

ones obtained in [114]. Both in [114] and [115], the fact that percussive instruments

mostly appear as vertical events in the magnitude spectrogram is used to differ-

entiate harmonic from percussive components. To better understand this concept,
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Figure 3.33 shows two example spectrograms of percussive instruments. In both

examples, clear vertical events mark the location of percussive hits.
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Figure 3.33.: Example spectrograms of percussive instruments. In both figures, clear
verticals events in the spectrogram mark the percussive hits.

The system proposed in [114] attempts to differentiate between horizontal and ver-

tical components in the spectrogram by minimizing an objective function based

on the quadrature form of the spectrogram gradients. Similarly, [115] proposes a

method for harmonic percussive separation based on the use of median filtering in

the horizontal (time domain—to detect harmonic instruments), and in the vertical

(frequency domain—to detect percussive instruments) directions of the spectrogram.

As opposed to these two methods, phase expectation is exploited here to perform the

separation task. In the approach here proposed, the fact that for a certain frequency

bin k, phase values of tonal components will fall within a radian range determined by

the frequency band covered by k, and the hop sizeH of the time-frequency transform,

is exploited. Phase values outside the calculated range are assumed non-harmonic

and classified as percussive components. The method works as follows: (1) The

magnitude and phase spectrograms of the input audio signal are obtained by means

of the STFT. (2) For each frequency bin k in the time-frequency transform, the

minimum and maximum radian changes are calculated using (3.19). (3) The main

spectral peaks in the power spectrogram in each frame are detected using the peak
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detection algorithm described in Section 3.2.1. A spectral mask is created where for

each time frame n, the frequency bins where clear peaks are observed are marked

with 1s and the rest are marked with 0s. (4) The phase spectrogram is masked using

the calculated binary mask. (5) The Instantaneous Frequency Distribution (IFD)

as described in Section 2.6.3 is calculated for the masked phase spectrogram. (6)

Binary spectral masks for the percussive and harmonic components are created. For

every time frame n and bin k, phase values that fall within the calculated radian

ranges are assigned to the harmonic mask (marked with 1). The remaining time-

frequency bins are classified as percussive and marked with 1 in the percussive mask.

It has been observed that for those time-frequency bins where both harmonic and

percussive components overlap, phase characteristics of percussive instruments tend

to prevail. These time-frequency bins are classified as percussive and no attempt

is made to estimate the underlying harmonic component. (7) Spectral leakage is

considered by including the adjacent frequency bins kp + 1 and kp− 1 (whose phase

changes follow the ones of the main peak kp) in the harmonic mask. In Figure 3.32,

that means that all the yellow and light blue time-frequency bins are also included in

the harmonic mask. (8) The complex spectrogram of the original mixture is masked

to obtain estimates of the harmonic and percussive sources. (9) Audio signals for

the percussive and harmonic components are obtained by means of the Inverse Short

Time Fourier Transform (ISTFT).

Dataset

The dataset SA DS1a (copyright free) was used to evaluate the harmonic/percussive

separation method. Those signals that do not contain percussive instruments were

removed from the evaluation (signals 2, 8, 11, 12, 14, 16, and 17 in Table B.2). That

gives a total of 10 signals for which percussive and harmonic signals were mixed from

the multi-track recordings. The dataset was processed with the proposed method

and with the algorithm proposed in [115] for comparison (reference algorithm).

Implementation Details

For the proposed method, the following algorithm parameters were used: a window
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length N = 2048 with a hop size H = 128 was used. All tracks in the dataset

had a sampling frequency fs = 44100 Hz. For the peak detection algorithm the

frequency adaptive magnitude threshold ϕf was calculated using a frequency delta

∆f = 50 Hz.

For the reference algorithm [115] the processing parameters recommended by the

author for best performance were used: window lengthN = 4096, hop sizeH = 1024,

filter length L = 17, and spectral compression parameter p = 2 .

Evaluation and Results

Perceptual quality measures for both algorithms were obtained using the PEASS

Toolkit. Mean values and 95% confidence intervals are presented in Figure 3.34.

The full table of results is also presented in Appendix C for reference.
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Figure 3.34.: Results obtained with the proposed harmonic/percussive separation
algorithm and the algorithm proposed by Fitzgerald [115] (Reference). Overall
Perceptual Score (OPS), Target-Related Perceptual Score (TPS), Interference-
Related Perceptual Score (IPS), Artifact-Related Perceptual Score (APS). Mean
values with 95% confidence intervals are presented. (a) Harmonic. (b) Percussive.
It can be observed that the proposed algorithm outperforms the reference method
in terms of OPS and APS. For the percussive tracks the proposed method also
outperforms the reference method in TPS. The reference algorithm always results
in higher IPS than the proposed method.
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The proposed algorithm outperforms the reference method in terms of the Overall

Perceptual Score (OPS) both for the percussive and harmonic components. Particu-

larly noticeable is the performance improvement obtained with the proposed method

for the percussive components, the proposed method obtaining a mean OPS score of

32.93, and the reference method a mean OPS score of 23.11 over the entire dataset.

For the harmonic components (Figure 3.34a), the proposed method obtains slightly

higher APS scores than the reference algorithm, but slightly lower TPS scores.

For the percussive components (Figure 3.34b) the proposed method outperforms the

reference algorithm in three of the perceptual scores, that is, OPS, TPS, and APS.

It is to be noted the particularly high IPS scores obtained by the reference algo-

rithm for the both harmonic and percussive components, outperforming the pro-

posed method in both cases. Additionally, the reference algorithm shows in general

smaller confidence intervals than the proposed method.

Informal listening tests showed that for vocal tracks, the proposed method assigns

more of the fricative and plosive sounds to the percussive signal than the reference

algorithm. For the instrumental tracks, more information from the attacks of the

instruments is assigned by the proposed algorithm to the percussive signal than the

reference algorithm. These two observations explain the clear difference in IPS scores

between the two methods. Due to the transient-like characteristics of fricatives, plo-

sives, and attacks, their corresponding phase exhibits non-harmonic characteristics

and consequently, are assigned to the percussive components in the separation.

3.3. Tone-based Solo and Accompaniment Separation

In Section 3.1 of this thesis, a frame-based solo and accompaniment separation algo-

rithm was proposed. Following the analysis of results of the frame-based algorithm,

several studies were conducted in Section 3.2 to better characterize the behavior of

musical instruments in the spectral domain. In this section, a new tone-based solo

and accompaniment separation algorithm is proposed where instead of estimating
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the spectral parameters of the solo instrument based solely on the information of one

frame, all the frames that belong to a given tone are accumulated for processing.

Tone-based parameter estimation presents several benefits compared to the origi-

nally proposed frame-based processing. Firstly, it allows a meaningful segmentation

of the audio signal. Results from the frame-based separation algorithm showed that

parameter estimation based solely on the information of one frame, only allowed ba-

sic modeling of the solo instrument. Having information from several frames allows

the inclusion of more complex temporal modeling as will be explained in the follow-

ing sections. With this in mind, one might be led to think that any kind of temporal

segmentation of the audio signal would allow the same kind of processing. However,

specifically segmenting the signal into tones allows one to take advantage of known

characteristics of musical tones: It allows to directly address attack sections of the

tone, to better model temporal envelopes as for example with the use of Common

Amplitude Modulation (CAM), and to incorporate post-processing strategies to re-

move interferences from other sources. Theses processing stages will be explained

in detail throughout this section. Additionally, this kind of segmentation still al-

lows efficient processing with minimal memory requirements as the only spectral

information saved in memory is the one that corresponds to the current tone.

It should be noted that extracting tone information before performing separation,

brings Automatic Music Transcription (AMT) and sound separation a step closer.

Even when these are considered separate fields of research, they greatly overlap in

the parameter estimation stage.

As shown in Figure 3.35, parameter estimation is now composed of three processing

blocks. After an initial pitch detection stage, the tone formation stage creates tone

objects from the delivered f0(n) sequences. A Harmonic Refinement stage follows

where an estimate of the spectrum of the solo instrument is obtained on a tone

by tone basis. A new post-processing stage is included where the above mentioned

tone-based refinements (attacks, CAM, and transient interferences) are conducted.

Finally, the original mix is masked and solo and accompaniment signals are obtained.

In the following sections, the different processing stages included in the tone-based

separation method are described.
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Figure 3.35.: Block diagram of the proposed tone-based solo and accompaniment
separation algorithm. It has to be noted that an additional Tone Formation block
has been included in the parameter estimation stage if compared to the frame-
based separation method in Figure 3.1.

3.3.1. Notation

In this section, a slightly different notation is used for simplicity and readability’s

sake. The spectral masks created for the solo and accompaniment are denoted here

MS(k, n) and MA(k, n), respectively. The index k will always denote frequency bins

while the index n will denote time frames in the time-frequency representation. The

window length will always be denoted by N , and the sampling frequency by fs.

3.3.2. Pitch Detection

As in the frame-based separation algorithm, the method for main melody detection

presented in [45] was used as pitch detection front-end. For reference purposes the

main characteristics of this method are described again: the algorithm is based

on a multi-resolution FFT used to extract pitch candidates based on a pair-wise

evaluation of spectral peaks. The algorithm attempts to build voices from the pitch

candidates found, by defining a frequency range and a mean magnitude value for

each voice. Peaks in the magnitude spectrogram are either assigned to an existing

voice—if the peak passes the voice’s magnitude threshold and falls in its frequency

range—or starts a new voice. The most salient voice is selected as the main melody.

The reader is referred to Section 2.3.1 for a detailed description of the method.

Following the notation introduced in Section 3.1, the pitch detection algorithm de-

livers frame-wise fundamental frequency sequences of the main instrument f0(n).

In frames where no solo instrument is detected, the algorithm delivers f0(n) = 0 Hz.
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3.3.3. Tone Formation

The goal of the tone formation stage is to create tone objects from the f0(n) sequence

delivered by the pitch detection stage. In this case, instead of estimating parameters

on a frame by frame basis, the proposed method accumulates all the spectral frames

that correspond to one tone, before performing parameter estimation. In this work,

a tone is defined as a sound with distinct pitch and duration and it is characterized

by its onset frame, offset frame, and frame-wise instantaneous frequency (IF) values.

The raw f0 estimates from the pitch detection stage are analyzed over time to

create tone objects. When no melody is detected, the pitch detection stage delivers

f0(n) = 0 Hz. A new tone is only started when an f0 value in the [65 Hz, 2000 Hz]

range is found. This range roughly corresponds to 5 octaves between C2 and B6.

After the start of a tone has been detected, a moving average filter of length L = 3

frames is used to calculate the mean frequency value f̄0(n) in the time interval

defined by the filter length L. That is:

f̄0(n) =
1

L

L−1∑
j=0

f0(n− j) (3.20)

The end of a tone is defined either by a new f0(n) = 0 Hz (no tone was detected)

or by a mean frequency variation larger than a semitone (a new tone has started).

Low and high semitone intervals from f̄0(n) are calculated using the cent units of

measure. The interval is then given by [f̄0(n)/2(100/1200) , f̄0(n) · 2(100/1200)]. To

remove any spurious tones, a minimum tone length of 100 ms which is roughly a

16th note at 140 BPM, is defined. After this stage, each tone object is defined by

its initial frame ni, final frame nf , and an instantaneous frequency (IF) value for

each of the frames in the tone. Capturing frame-wise IF values for each tone allows

minor pitch variations that can occur within a tone.
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3.3.4. Harmonic Series Refinement

The goal of this stage is to obtain an estimate of the harmonic structure of each

tone of the solo instrument. Following the results obtained in the frequency analysis

presented in Section 3.2.3.3, each harmonic component is allowed to have an inde-

pendent deviation from the calculated ideal location of the harmonic, i.e., multiple

integer of the fundamental frequency. As opposed to the frame-based separation

algorithm, no restriction is set to deviations to higher or lower frequencies than the

ideal harmonic ones.

In this section, p denotes the partial index, with p = 1 representing the fundamental

frequency and p = pmax representing the highest partial considered in each tone.

Additionally, kp(n) is defined as the frequency bin of the ideal partial location of

partial p (calculated as integer multiple of the fundamental frequency). Finally, δmax

is defined as the maximum frequency deviation that each partial p is allowed to have

from its ideal harmonic location.

For each time frame n in the range defined by [ni, nf ], where ni is the initial detected

frame of the tone, and nf is the final frame of the tone, a frequency band given

by [kp(n)− δmax, kp(n) + δmax] is defined where a search for the observed partial

location is conducted. An iterative search in the vicinity of the ideal partial location

kp(n) is performed for all partials with partial index p = 2, . . . , pmax. For each

partial, the search returns the frequency bin k̂p(n) where the observed harmonic

with the largest amplitude is detected. A simple smoothness constraint δk is set

in the attempt to avoid sudden frequency bin jumps in the harmonic estimation.

This constraint is supported by the smoothness observed in the IFDs of different

musical instruments described in Section 3.2.3.4. When the refinement stage finds

a frequency bin k̂p(n + 1) that implies a larger bin jump than δk with respect to

k̂p(n), the smoothness constraint is enforced and the harmonic component is located

in k̂p(n)± δk. (the sign in the expression is determined by whether the deviation is

to higher or lower frequency bins). A detection mask D(k, n), where the observed

harmonics are marked with 1 for each frame, is defined for k in the [1, N/2] range:
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D(k, n) =

1 if k ∈ {k̂p(n), p = 1, . . . , pmax}

0 otherwise
(3.21)

3.3.5. Spectral Masking

After the complete harmonic series has been estimated, initial binary spectral masks

for the solo MS(k, n) and accompaniment MA(k, n) are created. At this stage, each

time-frequency bin is defined either as part of the solo instrument or part of the ac-

companiment. To compensate for spectral leakage in the time frequency transform,

a tolerance band ∆ centered at the observed partial location k̂p(n), is included in

the masking procedure. Thus, for a frequency range k̂p(n)−∆ ≤ k ≤ k̂p(n) + ∆,

and time frame n ε [ni, nf ] the masks are defined as follows:

(MS(k, n),MA(k, n)) =

(1, 0) ∀k, nwithD(k, n) = 1

(0, 1) otherwise
(3.22)

3.3.6. Attack Correction

The pitch detection front-end requires clear peaks in the magnitude spectrogram to

accurately detect pitch candidates and create melodic voices. Due to the noise-like

characteristics of attacks, clear peaks can usually only be observed in the sustained

part of the tone. This causes the pitch detection algorithm to deliver a valid f0

only after the attack portion of the tone has passed. This is naturally problematic

in a separation context as the attack portions of the solo instrument will always be

estimated as part of the accompaniment, creating audible and disturbing artifacts.

Durations of attack transients of musical instruments were studied in [116]. In this

study, the authors measured durations of attack transients of different musical in-

struments under different conditions. Their study showed that attack durations vary
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from instrument to instrument, from note to note, and from player to player. Aver-

age attack durations range from 14 ms to 85 ms with the flute and string instruments

having slower attacks (> 50 ms), and the clarinet, double reeds, and brass instru-

ments faster attacks (< 50 ms). Results also showed that attack durations tend to

decrease with increasing pitch and can vary from one player to the other. Their

study also concluded that attack durations are independent of dynamic, length of

the note played, and presence or not of vibrato in the note played.

Following the findings of [116] and taking into consideration that this separation

algorithm deals with different kinds of solo instruments, an attack duration of 70 ms

was used for processing. This value represents a compromise between long and short

attacks, and proved to deliver good separation results. Modifying longer regions

resulted in audible interference from other sources in the solo track, and shorter

regions resulted in audible artifacts in the backing track.

The strategy used to capture the attacks replicates the observed harmonic structure

in frame ni of MS(k, ni) in all the frames 70 ms before ni.

This is a simple but effective solution to better capture attacks of the solo instru-

ment. Figure 3.36 shows four example spectrograms of tones played with different

musical instruments. Special care was taken to clearly display the attack portions

of each tone. It can be seen that all musical instruments have attacks with very

different spectral characteristics. The piano and trumpet show more broadband

characteristics than the flute and the saxophone for example. The saxophone shows

clearly marked subharmonic components and the flute in this case, shows a very har-

monic structure with minimal noise-like components. The great diversity of spectral

characteristics of attack sections added to the differences in attack durations for

all instruments, makes finding an unified approach for attack estimation, very chal-

lenging. This is the reason why a conservative approach was taken where only

the observed harmonic structure in time frame ni is replicated and no attempt is

made to better represent the transient-like characteristics of attacks. The approach

of creating a noise spectrum in the attack frames for example, resulted in audible

interferences in the solo signal.
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Figure 3.36.: Example spectrograms showing attack sections from different musical
instruments. (a) A#4 flute tone. (b) A#3 piano tone. (c) A#3 saxophone
tone. (d) A#4 trumpet tone. The great differences between the attack sections
of different musical instruments can be clearly observed.

A final note has to be added about the importance of tone-based processing for the

attack refinement stage. To be able to perform attack refinement, clear information

about the estimated start frame of each tone ni, is needed. This is only possible

when segmentation based on tone objects is used in the separation approach.
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3.3.7. Post-processing of Tone Objects

In a polyphonic music context, sounds from different musical instruments merge into

a single piece of music to produce an unique sonority and texture. In Western music

in particular, where equal temperament and harmony based on major and minor

chords is used, it is particularly likely that musical sources overlap in the frequency

domain. This is naturally very evident in a time-frequency representation where

energy from different sources often falls in the same frequency bands. In such cases,

telling one sound source from the other is not a straight forward task.

Many studies have been conducted that address the problem of overlapping of spec-

tral content from different sources. Source separation is in itself a matter of re-

solving overlapping components from different sources. Systems like [108, 89] have

attempted to resolve overlapped components by using pitch information from all the

sources in the mix. If the pitch of each instrument is known at all times, it can be

easily predicted where spectral collisions are likely to occur. Once the collisions have

been detected, clean information from the temporal and spectral envelopes or trained

systems with instrument specific information are used to resolve the collisions.

A much bigger challenge is encountered by systems where pitch information from

all the sources is not available before processing. To date, performance of multi-

pitch detection systems is not accurate enough to allow robust separation with a

wide range of music signals [117]. Therefore, unless musical scores from the signal

to separate are available, having reliable pitch information from all the sources is a

difficult task. An additional challenge is posed by percussive instruments that also

overlap with harmonic instruments in the spectral domain. The transient and noise-

like characteristics of percussive instruments in the spectral domain, add a higher

difficulty level to the separation problem.

The separation method proposed in this thesis extracts pitch information from the

solo instrument only. Thus, predicting time-frequency regions where collision can

occur is not possible. To be able to detect and reduce interference from other sources

in the estimation of the solo instrument, strategies that can accurately perform

without the use of pitch information from all the sources, are required.
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In this post-processing stage, two strategies to reduce interferences from other

sources in the solo estimation are proposed. (1) The first one addresses transient

and percussive interferences that might have been erroneously estimated as part of

the solo instrument. (2) The second strategy, addresses interferences from other

harmonic sources. (3) Additionally, a strategy to better estimate non-harmonic el-

ements that can occur in musical instrument tones such as fricatives in the singing

voice, is proposed based on phase expectation.

The most important feature of the post-processing stage is that it is completely

based on modeling of musical instrument tones. As will be explained, only known

information about the temporal evolution of musical instrument will be used at this

stage. Here, the importance of the tone-based separation proposed in this thesis

becomes once again very clear.

(1) Removing transient and percussive interferences from the solo signal

As explained in Section 3.2.3.4 and shown in Figure 3.33, studies on percussive

instruments have shown that percussion onsets are evident in the spectrogram as

vertical events occurring in a short time interval. This broadband characteristic

of percussive events naturally results in a large degree of overlapping of spectral

components from the solo instrument and the percussive ones. In Figure 3.37 an

example of the estimation of a saxophone tone after Harmonic Series Refinement is

shown. In the figure, interferences from percussive instruments can be clearly ob-

served. The red arrows indicate two percussive hits that were initially estimated as

part of the solo signal. The mentioned vertical characteristics of percussive events

can be clearly observed. Even when the magnitudes of these events are not particu-

larly large in comparison to the lower partials of the tone, the perceptual impact of

such events is considerable, being in most cases clearly audible and disturbing. It

can be observed that these events are common to all harmonics and occur in a short

interval of time.

To detect these transients, an approach based on the method for harmonic/percussive

separation described in [115], is proposed. The main idea is to detect vertical events
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Figure 3.37.: Estimated saxophone tone before post-processing. The red arrows
indicate the places where elements from two percussive events are mistakenly
estimated as part of the solo instrument.

in the spectrogram by detecting large amplitude variations common to several par-

tials. The approach works as follows: First, the temporal envelope of each partial is

smoothed with a median filter of length L. Each smoothed envelope is then normal-

ized to the [0, 1] range. Second, a magnitude threshold γL is defined and all the time

frames where the normalized smoothed magnitude envelopes have amplitudes larger

than γL, are detected. To guarantee that the detected events are indeed percussive

transients, the events should simultaneously happen in several partial (if not in all).

The minimum number of partials minp where the event should occur is defined, and

only the detected time frames that are common to at least minp partials are kept as

possible transients. As the perceptual impact of such events is stronger for higher

frequencies, only the magnitude envelopes of partials with partial index p > plow,

are modified. For partials with partial index p < plow, magnitude values are in

general considerably large (as lower partials are always stronger). For this reason,

percussive transients are better masked by the magnitudes of the partials of the solo

instrument. Tests conducted showed that modifying the temporal envelopes of par-

tials lower than plow was detrimental to the perceptual quality of the solo instrument

and thus, these envelopes are kept untouched.
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To remove the detected transients, the value of the solo spectral mask MS(k, n) in

the time frames where the transient was detected is modified. The mean magnitude

value of the normalized smoothed magnitude envelope in the L time frames before

the transient was detected, is obtained for each partial. Bearing in mind that the

initial mask MS(k, n) is binary, the initial 1 in the binary mask is replaced by the

mean magnitude value in the [0, 1] range obtained. This introduces a smoothness

constraint in the temporal envelopes of the partials. The number of time frames that

determine the smoothness constraint of the temporal envelopes is given by the filter

length L. The accompaniment mask is also recalculated as MA(k, n) = 1−MS(k, n).

It should be noted that the new post-processed spectral masks are no longer binary.

Another important processing consideration taken was to remove from the tran-

sient detection stage, the attack frames considered in the Attack Correction stage

(Section 3.3.6) . As already mentioned, attack portions of instrument tones often

show transient characteristics. By removing the attack frames from post-processing,

the transient-like characteristics of the attacks that might have been captured in

the Attack Correction stage, are preserved. This approach has the disadvantage of

failing to remove percussion hits in the solo signal that coincide with the attacks of

the solo instrument. Nevertheless, it presents a good compromise between removing

percussive interferences from the sustained part of the tones (where they are most

audible), preserving attack portions of the tone, and minimizing the interference

from the solo instrument in the backing track.

The effect of the transient removal stage can be observed in Figure 3.38 where the

same saxophone tone from Figure 3.37 is shown after post-processing. The location

of the detected percussive events are marked with red arrows and with a slightly

lighter blue color in both plots. It can be seen that this processing stage guarantees

a degree of smoothness in the temporal envelopes of the tone.

The transient removal stage is a lightweight but effective approach to remove tran-

sients from the solo signal. It has the benefit of only being performed in the time

frames where the solo instrument has been detected and removes the need of per-

forming a previous harmonic/percussive separation to avoid percussive interference

in the solo signal.
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Figure 3.38.: This figure displays the saxophone tone shown in Figure 3.37 after
the post-processing stage has been applied. The red arrows indicate the places
where elements from two percussive events had been originally assigned to the
solo instrument. As can be observed, the post-processing stage greatly reduces
the interference from percussive hits in the solo signal.

(2) Minimizing effects of interference from other harmonic instruments

in the solo signal: Data-driven Common Amplitude Modulation (CAM)

Amplitude envelopes of musical instruments (both temporal and spectral envelopes)

have proven to be difficult to model. Finding a reference curve that could serve as a

template envelope for a given musical instrument has proven to be unreliable and in-

accurate [108]. There are many factors that contribute to the shape of the envelopes

including instrument model, performer, and dynamics among others. However, even

when finding a reference curve that accurately represents a musical instrument is not

possible, harmonic components of the same source exhibit similar temporal envelopes

that can be highly correlated. In other words, even when accurately predicting the

shape of the magnitude envelopes of a source is difficult, this shape is expected to

be common to all the harmonic components of the musical instrument tone. This

is known as Common Amplitude Modulation (CAM) and it is an important cue in

human auditory perception [111]. With CAM being an observed characteristic in
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musical instrument spectra, some separation approaches have attempted to include

CAM in their processing chains. In [46] for example, CAM is used as a means to

resolve overlapped harmonic components in a least squares estimation framework.

In [89], the authors propose a spectro-temporal modeling of harmonic magnitudes

and test their method on isolated instrument notes. They also test their estimation

algorithm in the separation context by creating random mixes of a maximum of 6

instrumental tones. Both [46] and [89] require prior information of the pitch of all

the sources in the mix to be able to detect time-frequency sections where sources

are likely to overlap.

To impose CAM in the estimation of solo signals, it is necessary to first obtain a

reference temporal envelope that all the harmonic components of the tone should

follow. However, as opposed to [46] and [89] where prior knowledge of the f0s of

all the sources allowed the differentiation between clean and overlapped envelopes,

this prior information is not available in the method proposed in this thesis. In the

solo/accompaniment separation method here proposed, determining where harmonic

components overlap is not plausible without having a good idea of the spectral

content of the other sources. Similarly, extracting clean envelope information from

at least one of the harmonics is not straight-forward either as the presence of other

sources is impossible to predict. Consequently, the use of CAM is proposed in a

different way. To introduce CAM, the magnitude envelope of the partial which is

most similar to the envelopes of the other partials is found, and used as a reference

to impose CAM in the spectral estimation. The method works as follows: (1) The

temporal magnitude envelopes of all partials are estimated as described in Section

3.3.4. (2) As estimation of lower partials is more robust than of higher ones (as lower

partials are always stronger), only the first pCAM partials are used at this stage.

The goal is to find the partial p among the first pCAM partials, whose temporal

envelope has the highest mean cross-correlation with the other pCAM − 1 envelopes.

For this matter, the cross-correlation rij between the temporal envelopes of the i-

th and j-th partials for all i, j ≤ pCAM and i 6= j, are calculated. (3) The mean

cross-correlation r̄p for each partial is calculated by averaging the pCAM − 1 cross-

correlation coefficients rij obtained for each partial. The partial with the maximum
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mean cross-correlation r̄p is taken as the reference. That is, pref = argmax
p

(r̄p). (4)

The temporal envelope of the reference partial is normalized to the [0, 1] range and

used as a weighting function for all the other partial envelopes. Even when only the

first pCAM partials are used to obtain the reference envelope, the temporal envelopes

of all partials p = 1 · · · pmax are weighted with the reference curve.
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Figure 3.39.: Effects of common amplitude modulation (CAM) on the estimation
of a saxophone tone. The three plots show the temporal envelopes of the 5 first
partials of the tone: F0 (blue), p1 (red), p2 (magenta), p3 (green), p4 (cyan).
(a) Initial estimation of the tone before CAM. (b) Estimated tone after CAM has
been applied (c) Original saxophone tone extracted from the original saxophone
recording (ground-truth). The greater similarity between the envelopes in (b) and
(c), especially in the early time frames, can be observed.

The effects of imposing CAM in the spectral estimation of a saxophone tone are

shown in Figure 3.39. For visualization purposes, only the first five partials of the

tone are shown. In Figure 3.39a, the estimated tone before CAM is displayed. In

Figure 3.39b, the estimated tone after CAM is shown. Finally, in Figure 3.39c, the

original tone taken from the original saxophone recording (ground-truth) is shown

for reference. It can be seen that the use CAM results in temporal envelopes closer

to the original ones. Particularly noticeable is its effect on the f0 envelope (blue

curve) where the estimation of the initial time frames of the tone are clearly affected

by overlapping of spectral components of other sources. This causes the initial

estimation to show considerable differences with the original tone. However, the use
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of CAM reduces the impact of initial mis-estimations and results in solo signals with

reduced interference from other sources.

(3) Capturing non-harmonic elements of the tones using phase expecta-

tion:

The concept of phase expectation as described in Section 3.2.3.4, is used to detect

time frames where phase values show non-harmonic behavior in the estimated spec-

tral content of the tone. Detecting these events is particularly important for vocal

sounds as it allows for example, to better capture characteristic fricative and plosive

sounds.

The phase spectrum of all the partials p with frequencies fp > 3000 Hz is evaluated

using Eq. (3.19). For all the partials considered, the time frames whose phase cannot

be explained with Eq. (3.19), and that do not exhibit phase values characteristic of

any of its adjacent bins, are detected. As described in Section 3.2.3.4, due to spectral

leakage in time-frequency representations, the frequency bins adjacent to a main

spectral peak tend to exhibit phase values characteristic of the main peak and as

such, expectation values fall outside the calculated radian ranges. This phenomenon

can be easily observed in Figure 3.32. These bins are not used in this processing

stage and only phase values that cannot be explained under any circumstances are

detected. Only partials with frequencies fp > 3000 Hz are considered as initial tests

showed that taking lower partials can result in increased interference in solo tracks.

In all the time frames where at least NHp partials show non-harmonic behavior, a

noise spectrum starting at 3000 Hz and ending at the highest partial frequency is

created in the solo mask MS(k, n). All the frequency bins between 3000 Hz and the

highest partial are replaced by a random number in the [0,1] range. This creates a

noise-like spectrum in the detected time-frames.

3.3.8. Experiments and Results

3.3.8.1. Analysis of Pitch Detection Algorithms

In Section 3.2.3, an analysis of musical instrument tones was conducted with the

goal of better characterizing the behavior of musical instruments in the spectral do-
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main. With the findings from this study and the preliminary results obtained with

the frame-based separation algorithm, a tone-based method for solo and accompa-

niment separation was proposed. Going back to the general block diagram of an

informed sound separation method (shown again in Figure 3.40 for reference), prior

information plays a very important role in the final separation results.

Prior 
Information

Separation 
Procedure

Parameter 
Estimation

Input 
Audio

Output 
Audio

Figure 3.40.: Block diagram of the general structure of an informed sound source
separation algorithm. Three main stages compose the entire separation process:
prior information, parameter estimation, and the final separation procedure. Pitch
detection resides inside the Prior Information block.

In the particular case of a pitch-informed separation algorithm as the one described

in this thesis, the performance of the pitch detection front-end plays a very critical

role. As shown in the block diagram of the tone-based separation algorithm displayed

in Figure 3.35, with such an algorithm structure, any errors in the pitch estimation

will directly propagate to the separation stage. It is naturally of great importance

to guarantee that the pitch information delivered to the parameter estimation stage,

is as accurate and robust as possible.

In this section, the performance of the pitch detection stage of the proposed method

is addressed by comparing two pitch detection front-ends. These two algorithms

were chosen as they have shown superior performance in the Music Information

Retrieval Evaluation eXchange (MIREX) of previous years. The reader is referred

to [12] for a thorough comparison of the performance of pitch detection algorithms
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in past MIREX campaigns. The two compared methods are: (1) Pitch Estimation

by Pair-Wise Evaluation of Spectral Peaks [45], and (2) Melody Extraction using

Pitch Contour Characterization [12]. The two algorithms were already described in

Section 2.3.1 of this thesis and here, only their main characteristics are provided.

These two algorithms will be referred to as Alg1 and Alg2, respectively. Table 3.6

presents in a comparative manner the main processing stages of the two methods. It

should also be noted that Alg1 is the method used in both the Frame-based and in

the Tone-based separation algorithms presented in Sections 3.1 and 3.3, respectively.

Table 3.6.: Comparative table of the two pitch detection algorithms evaluated in this section.
The main processing stages of each algorithm are listed in a comparative manner.

Processing Step Alg1: Dressler Alg2: Salamon

Spectral Representation Multi-resolution FFT STFT

Peak Characterization IF and Magnitude IF and Magnitude

Freq. Range 55Hz - 5kHz 55Hz - 1.76kHz

Pitch Candidate Selection Pair-wise peak evaluation Salience function

Time Evolution of Pitch Candidates Tone formation & Voice Formation Pitch Contours

Extra Processing – Voice/unvoiced & Octave error

Main Melody Selection Salience Salience

The relevance of this evaluation of the pitch detection algorithms is two-fold. On

the one hand, the study evaluates the two algorithms directly in the separation

context. Namely, the evaluation attempts to determine which of the two algorithms

results in better separation quality. With this in mind, it is important to note

that a thorough evaluation of pitch detection accuracy (using ground-truth pitch

information and frame-wise evaluation) goes beyond the scope of this study and

only their performance as front-ends of the separation method is evaluated. On

the other hand, this evaluation was designed in a way that performance differences

between vocal and instrumental tracks can be addressed. This particular distinction

in the evaluation was motivated by the fact that musical instruments and the singing

voice show very different spectral characteristics. Previous results has shown that

these differences affect the performance of pitch detection algorithms and as such,

this study is of great relevance.
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Implementation Details

The evaluation of pitch detection performance was conducted using the Tone-based

Solo and Accompaniment separation method presented in Section 3.3. The tone-

based separation algorithm used for this evaluation did not include the non-harmonic

element detection stage described in the Section 3.3.7 and included as slightly dif-

ferent Harmonic Refinement stage. For Alg1, a C++ implementation was used that

delivers f0(n) sequences as output. The resulting sequences are then used as input

to the separation scheme. For Alg2 the available VAMP plug-in for Sonic Visu-

aliser [118, 119] was used, and annotations were used as inputs to the separation

algorithm. For Alg2, the following processing parameters were used: given a sam-

pling frequency fs = 44100 Hz, an analysis frame of 46 ms with a hop size of 2.9 ms

was used. The Voicing Tolerance parameter was set to 0.2.

The processing parameters used in the separation algorithm for this evaluation were:

pmax = 20, ∆ = 1, plow = 9, minp = 6, L = 5, δk = 2, and γL = 0.6.

Dataset

For this evaluation, the dataset SA DS1a first introduced in Section 3.1.6 was used.

It is composed of 17 copyright free tracks, 10 of which are vocal and 7 instrumental.

A full description of this dataset is presented in Appendix B of this thesis.

Evaluation

The SA DS1a dataset was processed with both pitch detection algorithms and the

resulting f0(n) sequences were used as input to the tone-based separation algorithm.

Additionally and with the goal of having a clear performance boundary, ground-

truth pitch information was obtained for the full dataset using the Song2See Editor

presented in [O2] and briefly described in Section 4.3.1 of this thesis. The Songs2See

interface allows the manual refinement of the results provided by the automatic pitch

detection feature in the software by deleting, inserting, and correcting pitch and time

information of all note objects. In Figure 3.41, a screenshot of the Songs2See Editor

is presented. The automatic pitch detection functionality in the software delivers

pitch estimates of the solo instrument in the form of note objects displayed as blue

horizontal bars. The user is allowed to delete notes, create new ones, or modify

existing ones in duration and pitch.
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Figure 3.41.: Screenshot of the Songs2See Editor. The Songs2See Editor was used to
manually create ground-truth pitch information. Each blue bar in the piano-roll
representation is a note played by the solo instrument.

The full dataset was processed with the Songs2See Editor and results were refined

and corrected by musical experts. The refined pitch sequences were used as ground-

truth pitch information in this study.

To evaluate separation results the PEASS Toolkit was used and objective perceptual

measures were calculated. Figure 3.42 presents mean values and 95 % confidence

intervals of the results obtained for Alg1, Alg2, and with ground-truth pitch informa-

tion (referred to as Prior in the figure). In this section, the terms accompaniment

and backing tracks are used interchangeably. To better understand performance

differences for the solo and backing tracks, results are presented independently for

each of them. Furthermore, to assess the differences between vocal and instrumental

performance, results are also presented separately for vocal and instrumental tracks.

Analysis of Results

With respect to general separation quality, results show minor overall performance
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Figure 3.42.: Overall Perceptual Score (OPS), Target-Related Perceptual Score
(TPS), Interference-Related Perceptual Score (IPS), Artifact-Related Perceptual
Score (APS). Results with the two pitch detection algorithms (Alg1, Alg2) and
with ground-truth pitch information (Prior) are presented independently for the
vocal and instrumental datasets. Mean values with 95% confidence intervals are
presented. (a) Solo: vocal dataset. (b) Solo: instrument dataset. (c) Backing:
vocal dataset. (d) Backing: instrument dataset. The OPS scores obtained by
both algorithms are very similar.

differences between the two algorithms, obtaining in general comparable Overall

Perceptual Scores (OPS). For both algorithms, scores obtained for the instrument
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dataset are higher than the ones obtained with the voice dataset. These results sug-

gest that independently of the pitch detection method used, the proposed separation

method can better handle instrumental signals than vocal ones. However, it should

also be noted that larger confidence intervals are also obtained for the Instrument

dataset, suggesting that some instruments can be better handled than others.

A few important differences between the two algorithms can also be outlined:

• Alg2 shows in general larger confidence intervals than Alg1. These results

suggest that the performance of Alg1 is more consistent across signals with

different acoustical and timbral characteristics.

• For the task here addressed, the IPS of the backing tracks can be considered

a rough indicator of the quality of pitch detection. With the solo instrument

being the only source of interference for the backing track, high IPS scores for

the backing indicate that very little content from the solo signal remained in

the backing track. Alg1 obtained a slightly higher IPS score for the backing

tracks with the instrument dataset. Alg2 obtained a higher IPS score for the

backing tracks with the voice dataset. Both of these IPS scores are slightly

lower than the ones obtained with Prior (ground-truth information), which

represents the performance boundary for the proposed separation scheme.

• It is particularly noticeable that in some cases, Alg2 results in higher APS

and TPS than Alg1, sometimes even higher than the ones obtained with Prior

(ground-truth information). These results might seem surprising but careful

analysis of the extracted audio tracks show that Alg2 tends to benefit more

continuous pitch contours. This allows the spectral estimation to better char-

acterize each of the tones and to capture more accurately their attacks and

releases. This comes at the cost of slightly lower IPS scores for the solo track.

• Analysis of the resulting signals suggest that Alg2 can discriminate more ac-

curately voiced from unvoiced segments in the vocal tracks but octave errors

occur more often.
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Conclusions

In this section, a comparative evaluation of two pitch detection methods within a

separation context has been presented. The two algorithms perform very similarly;

however, slight differences might benefit the use of one over the other for certain

applications. The fact that each algorithm maximizes different quality measures,

makes them optimal in different scenarios. Alg1 shows very robust performance

under different types of signals, slightly favoring instrumental tracks and resulting

in reduced interference from other sources. In contrast, Alg2 slightly outperforms

when dealing with vocal signals. It results in reduced artifacts (in comparison to

Alg1 ) but with slightly more interference from other sources.

3.3.8.2. Tone-Based Algorithm Performance

Implementation Details

For the evaluation of the tone-base separation algorithm, the following processing

parameters were used: Algorithm Alg1 was chosen as a pitch detection front-end as it

showed to be more robust to different types of signals, genres, and instrumentations.

The total number of estimated partials per tone was set to pmax = 20. A tolerance

band was set to ∆ = 1. Larger values of ∆ would result in perceptible interference

from other sources in the target source. A δk = 2 was set. For the post-processing

stage, plow = 9 was selected as higher values were shown to be too restrictive and

failed to remove certain percussive interferences. The minimum number of partials

used for transient detection was set to minp = 6. A filter length value L = 5 with

γL = 0.6 were used as they showed to be a good balance between proper handling

of spectral leakage and magnitude variations in magnitude envelopes. A value of

NHp = 4 was used for non-harmonic element detection. An analysis frame of 46 ms

is used in conjunction with a hopsize of 5.8 ms.

Dataset

For the evaluation of the algorithm, the SA DS1 (Solo and Accompaniment DataSet
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1) was used for evaluation. A full description of all the tracks, as well as the copy-

right and availability information is provided in Appendix B. Here, only a general

description is provided. The dataset has a total of 27 track and is composed of two

parts: (1) SA DS1a with copyright free tracks. A total of 17 tracks, 10 with voice as

main instrument, and 7 instrumental tracks are included. (2) SA DS1b composed

of 10 commercial instrumental tracks with saxophone as the solo instrument. This

dataset was also used for the evaluation of the frame-based separation algorithm

presented in Section 3.1.6.

All the tracks in SA DS1a were mixed from the available multi-track recordings into

a solo signal, an accompaniment track, and a final mixture. Solo and mixed accom-

paniment tracks were already available in the commercial distribution of SA DS1b.

Evaluation

The PEASS Toolkit was used for evaluation of separation results. Mean values with

95% confidence intervals for the entire dataset are presented in Figure 3.43. For

reference purposes and to allow future comparison of results, the full table of results

with independent scores for each track are presented in Appendix C of this thesis.

For the solo tracks, an OPS of 24.78 was obtained. For the backing tracks, slightly

better results were obtained with an OPS of 34.68. Similar to the results obtained

with the frame-based separation algorithm (see Section 3.1.6.3), particularly high

IPS scores were obtained both for the solo and the backing tracks. These results

suggest an effective estimation of the spectral information of the solo instrument.

Particularly noticeable is the improvement in the TPS and APS scores obtained for

the solo instrument in comparison to the frame-based separation algorithm. The

TPS of the solo shows an improvement from 18.07 in the frame-based algorithm,

to 23.91 in the tone-based separation algorithm. This evidences that the strate-

gies included in the harmonic series estimation and in the post-processing stage

were effective in improving the estimation of the spectral content of the solo sig-

nal. The improved TPS and APS scores for the solo come at the cost of a slightly

lower IPS for the solo (from 53.77 to 47.46). However, it is in general desirable to
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Figure 3.43.: Results obtained with the tone-base separation algorithm for the en-
tire dataset. Overall Perceptual Score (OPS), Target-Related Perceptual Score
(TPS), Interference-Related Perceptual Score (IPS), Artifact-Related Perceptual
Score (APS). Mean values with 95% confidence intervals are presented. It can be
observed that the algorithm results in particularly high IPS scores for both the
solo and the backing tracks, indicating good isolation of the solo instrument.

obtain an homogeneous set of perceptual measures as it is an indication of a well-

balanced algorithm that does not emphasize too hardly one measure over the others.

The processing stages included in the tone-based separation algorithm resulted in

a more homogeneous set of measures for the solo in comparison to the frame-based

algorithm.

All the confidence intervals obtained with the tone-based algorithm are smaller than

the ones obtained with the frame-based method. This proves that robustness in the

estimation was improved and the algorithm can more uniformly handle the different

musical instruments.

To better assess the performance differences between vocal and instrumental tracks,

independent results for the two datasets are shown in Figure 3.44. The most notable

improvement with respect to the frame-based algorithm are the TPS and APS scores
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Figure 3.44.: Results obtained with the tone-based separation algorithm displayed
independently for instrumental and vocal tracks. (a) Instrument (b) Vocal. Over-
all Perceptual Score (OPS), Target-Related Perceptual Score (TPS), Interference-
Related Perceptual Score (IPS), Artifact-Related Perceptual Score (APS). Mean
values with 95% confidence intervals are presented. Results for the backing tracks
in both datasets are slightly better than for the solo tracks. Vocal solo extrac-
tion obtains slightly lower scores than instrument solo extraction, particularly
noticeable in the APS and TPS scores.

obtained for the vocal solo. The TPS for the vocal solo shows an improvement from

4.34 to to 11.56, and an APS improvement from 8.07 to 17.97. This results show

that the non-harmonic element detection stage included in the tone-based separation

algorithm is very effective in capturing fricatives and plosives of the vocal tracks

which results in increased TPS scores. The backing tracks obtained for the vocal

dataset show improved OPS, TPS, and APS scores with respect to the frame-based

algorithm. The instrumental dataset also shows improvement in the OPS, TPS, and

APS scores of the solo tracks with respect to the frame-based separation algorithm.

The achieved improvement in the APS scores for both the vocal and instrumental

datasets shows that the transient detection stage is effective in removing erroneous

estimations in the solo instrument. The general improvement in most of the measures

comes at a cost of slightly lower IPS score for both the vocal and instrumental solo

and backing tracks.
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The effects of the different processing blocks on the perceptual quality of separated

tracks were studied in [O5]. Results indicate that the largest perceptual quality gain

is achieved during the post-processing stage of the proposed algorithm.

Conclusions

The results presented in this section show that the processing stages included in the

tone-based separation algorithm have contributed to the improvement of perceptual

quality of separated tracks while still allowing efficient performance with minimized

processing delays:

The tone-based separation algorithm results in Overall Perceptual Scores (OPS)

for the solo and backing track of 27.12 and 37.36, respectively. Results show

clear improvement with respect to the frame-based separation algorithm, par-

ticularly in terms of the TPS and APS scores of the solo signals. The goal of

obtaining solo and backing tracks of similar quality is being reached with the

additional benefit of having obtained more homogeneous sets of measures with-

out any notorious differences between the perceptual scores. Smaller confidence

intervals were obtained with the tone-based algorithm which shows improved ro-

bustness to different kinds of signals. The algorithm has an average processing

time of 0.25 · l, where l is the total length of the song, on a 2.66GHz computer,

making it suitable for real world applications.

3.3.9. Proposed methods vs state-of-the-art algorithms

In this section, a performance comparison between different versions of the proposed

method for solo and accompaniment separation and other state-of-the-art algorithms

is presented. In particular, results from the two Signal Separation Evaluation Cam-

paigns (SiSECs) that took place during the development of this work are presented.

The SiSEC campaign takes place every two years and in 2011 and 2013 intermediate

versions of the algorithm described in this thesis were submitted. A brief description

of the details of the algorithm versions submitted for each campaign is presented

in the corresponding sections. Additionally, a performance comparison between the

tone-based separation algorithm presented in Section 3.3 and the algorithm proposed

in [29] is presented.
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3.3.9.1. SiSEC 2011

The frame-based separation algorithm presented in Section 3.1 of this thesis with an

additional post-processing section to reduce transient artifacts as described in [O5]

was submitted to the Professionally Produced Music Recordings task in SiSEC 2011

For this campaign, a total of seven algorithms were submitted and evaluated under a

common dataset. In this section, only the results from the proposed method and the

algorithm submitted by Durrieu [65] are presented. The Durrieu algorithm was cho-

sen for comparison as it works under the same processing conditions as the proposed

method: The two methods attempt to solve the single-channel solo/accompaniment

separation problem using only pitch as prior information.

The full table of results including other methods submitted that work under different

processing conditions can be found in the campaign’s website [120]. As described

in Section 2.3.1, the algorithm proposed by Durrieu uses an instantaneous signal

model which represents the audio signal as the sum of a signal of interest, i.e.,

the lead instrument, and a residual, i.e., accompaniment. A source-filter model

is used to represent the signal of interest. Information from the source is related

to the pitch of the lead instrument and information from the filter is related to

the timbre of the instrument. The residual is modeled using Non-negative Matrix

Factorization (NMF).

In Table 3.7, the resulting scores for SiSEC 2011 of the two algorithms are presented.

It has to be noted that the dataset used for this campaign was entirely composed

of commercial vocal tracks. As the campaign only evaluates the quality of single

sources, the backing tracks obtained were not evaluated. Consequently, the results

presented in the table are for solo extraction on the test dataset only.

It can be seen that the proposed method presents OPS values comparable but slightly

lower than those obtained by Durrieu. Both algorithms show in general high IPS

values that suggest a successful isolation of the main melody. The proposed method

outperforms the method proposed by Durrieu in terms of IPS but obtains slightly

lower values for the TPS and APS.
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Table 3.7.: Results from the SiSEC11 Evaluation Campaign on the test dataset. Overall
Perceptual Score (OPS), Target-Related Perceptual Score (TPS), Interference-Related
Perceptual Score (IPS), Artifact-Related Perceptual Score (APS)

Cano Durrieu

OPS 24.1 26.3

TPS 30.4 54.2

IPS 59.1 46.7

APS 27.9 44.3

While the algorithm proposed by Durrieu reports an average processing time of 600

sec per excerpt, the proposed method requires an average of 8 sec per excerpt. This

means that the proposed method is 75 times faster than the Durrieu algorithm.

Results from this campaign show that the proposed method accomplished its design

goal of finding a balance between performance and algorithm efficiency.

3.3.9.2. SiSEC 2013

The performance of the proposed tone-based separation algorithm (without Non-

harmonic Element detection and a slightly different Harmonic Series Refinement

stage) was compared to state-of-the-art approaches under the Signal Separation

Evaluation Campaign (SiSEC 2013) in the Professionally Produced Music Record-

ings task. A total of 15 algorithms were submitted and evaluated under a common

dataset. In Table 3.8 the results obtained with the proposed method and with

three other algorithms designed for separation of solo instruments (or specifically

singing voice) from music accompaniment are presented for reference. The algo-

rithm Marxer2 [121] is an NMF-based approach which extends the work of [25] to

specifically address the problem of singing voice extraction and fricative modeling

in the separation scheme. The REPET algorithm presented in [29] takes advan-

tage of the repetitive structure of most commercial songs to separate singing voice

from music accompaniment in single-channel mixtures. Additionally, results from
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the Marxer1 algorithm are also presented for reference. As opposed to the other ap-

proaches presented in the table, the Marxer1 algorithm works in stereo mixtures and

uses panning information to perform separation. Even when a fair direct comparison

cannot be done with this algorithm, results are presented to give the reader a gen-

eral overview of the state-of-the-art performance in solo/accompaniment separation.

The algorithm Marxer1 is a low-latency main instrument separation approach for

stereo mixtures presented in [48]. The method uses a probabilistic pitch extraction

approach in conjunction with panning masks to perform separation.

The full table of results for all the algorithms submitted can be found at the cam-

paign’s website [122]. As in the 2011 campaign, the dataset used in 2013 was entirely

composed of commercial vocal tracks and consequently, only results for voice extrac-

tion on the test dataset are presented in the table.

Table 3.8.: Results from the SiSEC13 Evaluation Campaign for vocal extraction on the test
dataset.

Cano Marxer2 REPET Marxer1

OPS 19.5 20 22.8 22.0

TPS 5.0 18.2 54.6 49.3

IPS 62.0 64.1 35.7 49.5

APS 8.7 16.5 49.4 29.3

The proposed method obtained comparable OPS scores to the other approaches,

exhibiting particularly high IPS scores at the expense of lower APS and TPS scores.

The proposed method has a processing time of 0.25 sec for 1 second of audio on

a 2.6 GHz computer, allowing real-time processing. The algorithm Marxer2 has a

performance time of approximately 3 times the length of the audio segment on a

3.2GHz. This means that the proposed method is approximately (without taking

computer speed into consideration) 12 times faster than Marxer2. The authors

report that algorithm Marxer1 allows real-time processing on a 3.2 GHz computer.

The good balance between performance and efficiency of the REPET algorithm is

particularly interesting. The authors report processing times of 0.04 sec for 1 second
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of audio on a 3.4 GHz computer. However, it is to be noted that the assumptions

behind the REPET algorithm are particularly strong as the algorithm assumes that

a repetitive structure will always be present in the accompaniment. This assumption

holds true for most commercial music; however, the veracity of the assumption for

other types of music is still questionable. Further tests with the REPET algorithm

are presented in Section 3.3.9.3.

Results show that the proposed method is an efficient solution for solo/accompaniment

separation, obtaining comparable OPS to other state-of-the-art algorithms without

making any strong assumptions about the signals to be separated.

3.3.9.3. Other comparisons

Given that the REPET algorithm [29] obtained good results in the SiSEC 2013

campaign (see Section 3.3.9.2), the algorithm is used in this section for performance

comparison with the proposed tone-based separation algorithm (including all the

processing stages described in Section 3.3). The available Matlab implementation of

the REPET algorithm [123] was used for the analysis. The instrumental dataset in

SA DS1 (see Appendix B for a description of the dataset) was processed with the

REPET algorithm. This dataset was chosen as it shows a great diversity of musical

genres and instrumentations. Results obtained for the REPET algorithm are shown

in Figure 3.45b. Results with the proposed algorithm with the instrumental dataset

are displayed again in Figure 3.45a for reference and easy comparison.

The proposed tone-based separation algorithm clearly outperforms the reference

method both in terms of Overall Perceptual Score (OPS) and Interference-related

Perceptual Score (IPS) for the solo and backing tracks. Additionally, the proposed

method obtains slightly higher Target-related Perceptual Score (TPS) (49.63) for

the backing than the reference algorithm (45.46). However, the reference method

obtains slightly higher Artifacts-related Perceptual Score (APS) than the proposed

method for both the solo and backing.

As described in Section 3.3.9.2, both the proposed algorithm and the REPET algo-

rithm allow real-time processing. Results presented in this section show that for the
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Figure 3.45.: Results obtained with the proposed tone-based separation algorithm
(proposed) and the REPET algorithm (reference) for the instrumental dataset. (a)
Proposed (b) Reference. Overall Perceptual Score (OPS), Target-Related Percep-
tual Score (TPS), Interference-Related Perceptual Score (IPS), Artifact-Related
Perceptual Score (APS). Mean values with 95% confidence intervals are presented.
It can be observed that the proposed method outperforms the reference method
in terms of OPS and IPS both for the solo and backing tracks

instrumental dataset evaluated, the proposed method outperforms REPET in 5 of

the 8 perceptual measures.
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4. Sound Source Separation in Music Education

One application that can directly benefit from sound source separation research is

music education. The possibility to extract a desired sound source (or group of

sources) and use them as practice material, is very powerful. Different use-cases of

separation technologies in music education can be depicted : (1) Music teachers in

schools and music academies often use audio recordings and YouTube videos when

teaching a new piece of music to a group of students [124]. Sound separation would

allow the creation of accompaniment tracks for the students to play along with. (2)

Amateur and self-taught musicians can benefit from separation technologies by cre-

ating accompaniment tracks to use in practice time and performances, and by using

solo tracks for reference when learning a new musical piece. (3) Semi-professional

musicians and college music students, specially in the classical realm, often encounter

the difficulty of limited rehearsal time with accompanying ensembles when preparing

for solo concerts. It is often the case that only one or two general rehearsals are

scheduled before a given concert. The possibility of creating backing tracks from

existing recordings of a given piece would allow musicians to make themselves famil-

iar with accompanying parts, and to have unlimited practice time with a reference

accompaniment before the real rehearsal.

Even when the possibilities and potential are immense, the usage of music tech-

nologies in music education is an ongoing process: on the one hand, it completely

relies on the accomplishments of the scientific community where robustness and per-

formance of many methods still requires a lot of work; on the other hand, it is a

process that requires a progressive change of mentality in a community where many

processes and techniques still remain very traditional. The use of Music Information

Retrieval (MIR) technologies in the development of music education systems faces
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many challenges: (1) Development of music technologies robust and efficient enough

to be delivered to the final user. (2) Bridging the gap between two communities—

music education and music technology—that have completely different ways of work-

ing and mentalities. (3) Design of appealing and entertaining systems capable of

creating interest while developing real musical skills.

This chapter gives a brief overview of the use of MIR and separation technologies in

music education. Additionally, a comprehensive list of music education applications

and tools that use music technologies is presented in Appendix A for reference.

Furthermore, to place this research in the context of music education, the usability of

sound separation technologies was evaluated through a listening test procedure. The

listening test was developed with the goal of understanding the quality requirements

posed by music education to separation technologies. Finally, as an example of

a commercial application that includes solo and accompaniment separation as a

feature, the Songs2See application is described. Songs2See uses the frame-based

separation method presented in this thesis for solo and accompaniment separation.

4.1. Music Technologies in Music Education: A Historical

Overview

The rapid development of music technology in the past decades has dramatically

changed the way people interact with music today. It was only a natural conse-

quence that the potential of developing more advanced tools for music education

was also recognized. An automatic system that could give instructions, perfor-

mance feedback, and guide music students through practice sessions, could become

a very powerful teaching and learning tool. However, between the 1980s and the

early 2000s, automatic methods for pitch detection, music transcription, and sound

separation among others, were still in very preliminary stages. Consequently, ini-

tial systems for music education, even though innovative and creative, had many

restrictions and mainly relied on the possibilities offered by recording studios.
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Starting in the 1980s, play-along CDs became popular as an alternative way to

practice an instrument. Play-along CDs consist of specially recorded versions of

popular musical pieces, where the user plays along to the recorded accompaniment.

The main advantages of play-alongs are that users can directly practice with their

musical instrument, time for practice and rehearsal is unlimited, and getting familiar

with accompaniment parts becomes much easier. The downside of these types of

practice content is that the amount of available practice material is limited by the

high production costs of recording sessions: In many cases, large ensembles and

long recording sessions are needed for the production of one track. Consequently,

play-alongs are mainly available for very popular songs and for some representative

concerts of the instrumental repertoire.

Additionally, instructional videos came out as an educational tool where renowned

musicians addressed particular topics—playing techniques, improvisation, warm-up

exercises—and offered hints and instructions to help users improve their skills. With

time, the catalog of instructional videos grew both in size and diversity, featuring

not only famous musicians, but also different playing techniques, learning methods,

and the very famous self-teaching videos.

The main weakness of both play-alongs and instructional videos is that there is no

direct feedback for the user in terms of performance evaluation. Users completely

rely on their own perception and assessment, which in case of beginners, can be

challenging. However, these types of learning material have played a very important

role as they offer an alternative way to practice at home, helping to keep motivation

for learning, and offering the flexibility of practicing on your own time, pace, and

schedule.

Later on, the video game community introduced rhythm games to the market with

titles such as the well-known Guitar Hero series. In rhythm games, the user is

required to repeat patterns of fingering gestures on special hardware controllers

while the audio track plays on the background. The use of game controllers that

resemble real musical instruments greatly simplified the signal processing involved in

capturing user renditions. Entertainment, more than music education, was clearly
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the target of these games. However, they are still considered in this section as they

were and still are very successful in creating interest in music performance and thus,

play an educational role.

From a music education point of view, video games of these characteristics have two

main weaknesses: (1) They often fail to develop musical skills that can be directly

transfered to real musical instruments [125]. This is due to the fact that game

controllers cannot capture the complexities and intricacies of musical instruments.

(2) Content is entirely limited to a set of songs delivered with each game or to titles

offered by publishers for download.

As the importance of having more engaging means for education was recognized,

interactive applications and web services that offered a more formal approach to

music education were also developed. Different topics such as music history, musical

instruments, and band practice have been covered by applications of this kind. Some

of these systems are used in music schools and universities as part of their class work;

others are targeted for home users that wish to approach music in a more individual

way.

A very strong trend in recent years propelled by the high processing power of

portable devices, is the development of platform specific apps. Music learning has

not been the exception and many music-related applications are now available for

the Android and iOS markets.

All the above mentioned types of applications have benefited by the developments

of the MIR community. Applications of different kinds that already include music

content analysis have emerged in the last couple of years. The reader is referred

to Appendix A of this thesis for more detailed information about music education

applications that use MIR technologies. In the Appendix, a comprehensive list of

play-alongs, instructional videos, music video games, music education software, on-

line systems, mobile applications, and research projects is presented.
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4.2. Sound Separation and Music Education

As already mentioned in Section 2.4 (where quality assessment in sound separation

is introduced), different applications pose different quality requirements in terms of

allowed artifacts, interference from other sources, or target related distortions. A

separation algorithm used as an intermediate step in an Automatic Music Transcrip-

tion (AMT) system would probably have strict requirements in terms of the allowed

interference from other sources. Minimizing interference will allow a more accurate

extraction of melodic and rhythmic information. However, the overall perceptual

quality of the separated track falls into second place as the separated tracks are

not meant to be heard by the final user. Similarly, if the goal is to remix a given

recording, target-related distortions become more important and audible artifacts

should be kept to a minimum.

In the case of music education, sound separation is in itself, the final goal of process-

ing. A given audio mixture is separated and the resulting tracks are used directly

during practice time. Ideally, all the individual quality metrics would be optimized

to guarantee separated tracks suitable for the music education context, and for that

matter, for any other context. However, reality shows that the state-of-the-art is far

from reaching that optimal point. This is however no reason to discard the possi-

bility of using separation results for music education. The questions that this study

addressed is:

(1) Which are the quality requirements expected from separation algorithms for them

to be suited for Music Education and practice applications?.

To address this question, a listening test procedure that puts music practice and

separation research together, was designed and conducted. The characteristics of

this test are presented in the following section.

4.2.1. Listening Test Procedures

Laboratory Set-up

All the tests described in this section were conducted using the same laboratory
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set-up. The music practice room at Fraunhofer IDMT was used to conduct the

listening tests. Subjects were asked to play short pieces of music featuring their mu-

sical instrument. To minimize the impact of musical knowledge in the results of the

listening tests, users were given several performance options to choose from. Par-

ticipants could choose between using a traditional printed musical score, a scrolling

piano-roll view, and a tablature representation for guitar and bass. For the scrolling

piano-roll and the tablature representation, the Songs2see Game interface was used

[O6]. The Songs2See interface is shown in Figures 4.1a-c, and is briefly described

in Section 4.3. With this, the goal was to resemble as closely as possible a real

practice session for the participants. All the audio material was played through a

pair of AKG K701 semi-open headphones and the subjects were allowed to modify

both the playback level of the tracks and of their instruments to their own personal

taste. The choice of headphones over speakers was made based on the fact that in

real practice scenarios, commonly used playback devices are portable audio players,

tablets, and cell phones in combination with a pair of headphones.

4.2.1.1. Listening Test 1: Is sound separation a desired functionality in music

education?

This research has always followed the lead of the music education community when it

comes to the relevance of developing algorithms capable of separating audio record-

ings into its solo and accompaniment components. Given that a great number of

music education methods and literature have been published where the use of solo

and accompaniment tracks is proposed for practice (as was described in Section 4.1

and published in [O7]), the assumption that sound separation is a desired functional-

ity for music education and practice was always made. However, to verify this initial

assumption, a simple listening test was conducted to assess users’ preferences when

both separated tracks and mixtures are available within a practice environment. In

the listening test, subjects were asked to compare playing to the original mix, with

playing to the original solo and accompaniment tracks obtained from the multi-track

recordings. This is of course a hypothetical scenario that tries to asses the usability
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of solo and accompaniment tracks in Music Education applications given that very

high quality separation can be achieved. In the listening test, the solo and back-

ing track were not evaluated independently; instead, subjects were allowed to play

with either the solo, the backing, or with a mixture of the two. The mixer options

within the Songs2See Game were used to allow subjects to get the desired balance

between the tracks. Having the option to freely mix the solo and backing tracks is a

functionality that is available to the users when sound separation is performed. In

Figure 4.1c, the Songs2See game interface with its mixer options are displayed. By

moving the sliders for the solo and backing playback levels, the desired balance can

be obtained.

(a) (b) (c)

Figure 4.1.: Songs2See Game interface. (a) Score sheet view (b) Tablature view (c)
Scrolling piano-roll view and mixer menu. The mixer menu can be used to modify
the solo/backing track playback volume. The different visualization options were
offered to the subjects of the listening test for convenience.

A total of 10 subjects conducted the listening test. The subjects were all beginner

to advanced musicians between 27 and 34 years old: 3 bass players, 1 trumpet

player, 3 guitar players, 2 piano players, and 1 saxophonist. All the subjects were

asked to play a piece of music (previously unknown to them) featuring their musical

instrument. Each subject was given 60 minutes of practice time where they could

freely use the mix or the separated tracks to assess their preference. Subjects were

asked to rate how comfortable they felt playing with the mix and how comfortable

they felt playing with the separated tracks. All ratings in the listening test were

performed in a continuous scale from 0 to 100 where additional descriptive hints were
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given: Bad [0-20], Poor [20-40], Fair [40-60], Good [60-80] and Excellent [80-100]

[70].

Listening Test Results

Results from the listening test are displayed in Figure 4.2. Following the recom-

mendations in [70], mean values with 95% confidence intervals are presented. In

the figure, results obtained with the original mix are shown as Mixture, while the

results obtained with the solo and accompaniment (or a mix of the two), are shown

as Separated. Results clearly show that subjects prefer having the possibility of

playing with separated tracks than with the original mix. Performing separation

allows users to control the playback levels depending on their skills and preferences:

completely mute the solo, add a little of the solo to the backing track for reference,

or combine the tracks again to get the original mix. The separated tracks obtained

a mean value of 95.22 and a confidence interval of only 3.3. The mixture obtained a

mean value of 62.88 with a slightly large confidence interval of 14.87. This listening

test confirms the somehow expected results that the use of sound separation in music

education applications brings beneficial functionalities for the practice sessions.

4.2.1.2. Listening Test 2: What are the quality requirements for sound

separation to be suitable for music education?

After having verified the initial assumption that sound separation is a desired func-

tionality for music education, this listening test addressed the question of quality

expectations for separation results within a music education context: Which types

of signal distortions are acceptable in a music practice scenario? Are quality require-

ments the same for the solo and accompaniment? How can separation algorithms

be optimized to be suitable for music education?

A group of participants were asked to play along to different versions of solo and

accompaniment tracks specifically created to resemble common distortions in separa-

tion algorithms: artifact distortions, interference distortions, and target distortions.

All the participants played with their own musical instruments a piece unknown to
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Figure 4.2.: Listening test results. Mean values with 95% confidence intervals are
shown for the original mix and the separated tracks. It can be clearly seen that
subjects prefer to play with separated tracks than with the original mix.

them before the test. Participants were asked to rate how comfortable they felt play-

ing with each of the tracks and the degree to which each of the tracks contributed

to making it easier to play the newly presented musical piece.

A total of 12 subjects conducted the listening test which again took place in the music

practice room at Fraunhofer IDMT. The subjects were all intermediate to advanced

musicians from 15 to 34 years old: 4 guitar players, 3 bass players, 3 piano players,

1 trumpet player, and 1 saxophonist. For each instrument, commercial multi-track

recordings were used to create the test material. Due to copyright restrictions, this

dataset cannot be made publicly available.
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The listening test consisted of a Training Phase and an Evaluation Phase. During

the training phase, the subjects were given a short explanation of the listening test

procedure, its goals, and the evaluation procedure. The subjects were also presented

with test material so they could make themselves familiar with the types of signals

and distortions in the evaluation.

The evaluation stage was divided in two sections: (1) Solo Track Evaluation, and (2)

Backing Track Evaluation. In the two evaluation sections, four versions of solo and

backing tracks, as well as the original recording (mix) were used. This gives a total

of five versions of each signal that the subjects were asked to compare. Three of

the signal versions (v1, v2, v3) were created so that each one specifically described

one of the signal distortions (interference, artifacts, target). The fourth version (v4)

was obtained with the separation algorithm presented in Section 3.3. The original

recording (mix) was always used as a comparison as in most music practice scenarios,

this track is the only one available to the users. To create v1, v2 and v3 the approach

proposed in [71] was used:

1. Artifacts Signal: This version was obtained as the sum of the original target

signal and an artifacts signal. The artifacts signal was created by randomly

taking 1 % of the time-frequency coefficients of the target source (and thus

setting 99 % of the time-frequency coefficients to zero) and synthesizing this

very sparse signal. The loudness of the artifacts signal was adjusted to that

of the target. This artifacts signal is then added to the original target sig-

nal (clean) to artificially create a signal with artifact distortions. Randomly

taking 1 % of the time-frequency coefficients results in a very sparse time-

frequency representation that sounds like clicks, breaks, and musical noise

when re-synthesized.

2. Target Signal: This version was created by low-pass filtering the original source

signal to a 3.5 kHz cut-off frequency and by randomly setting 20 % of the time-

frequency coefficients to zero.

3. Interference Signal: This version was obtained as the sum of the original source

signal and an interference signal. In the case of solo and accompaniment
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separation, the interference signal for the solo is always the accompaniment

and the interference for the accompaniment is the solo signal. The loudness of

the interference signal was adjusted to that of the target.

The order in which the signals were presented to each user in the two sections of

the test was randomized. The subjects were asked to rate how comfortable they felt

practicing the musical piece with each of the different signal versions. In the Solo

Track Evaluation section, the subjects were asked to practice the musical piece and

play it as fluidly as possible with the aid of the solo track versions. In the Backing

Track Evaluation section, the users were asked to play the given melody with the

accompaniment of the backing tracks. Subjects were then asked to evaluate the

provided tracks. All ratings in the listening test were performed in a continuous scale

from 0 to 100 where additional descriptive hints were given: Bad [0-20], Poor [20-

40], Fair [40-60], Good [60-80] and Excellent [80-100] [70]. Users were also allowed

to submit any comments that they found relevant about their experience in the

listening test.

Listening Test Results

Following [70], the results from the listening test presented in Figure 4.3 show mean

values and 95% confidence intervals for each of the four signal version and the mix.

Results for the solo signals are presented in the left pane of the figure and results

for the backing on the right.

In the Solo Track Evaluation the highest score was obtained by the Interference

signal closely followed by the mix. Subjects found the Artifacts signal the most

disturbing type of distortion during practice time. This evidences the importance of

preserving the signal’s quality with a minimum of introduced artifacts, regardless of

the fact that traces of the other source are still present. Subjects comments after the

listening test emphasized the fact that artifacts are distracting and make it more

difficult to keep rhythm. The lowest rating for the solo signals was obtained by

the proposed algorithm with fairly large variance between subjects. Two possible

explanations for these results can be envisioned. On the one hand, it is possible that

due to the special characteristics of each instrument’s sound and the types of melody
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lines that each instrument usually plays, different instruments pose different quality

requirements. A trumpet for example, an instrument with a powerful sound and

distinctive timbre, might pose different requirements than a bass guitar which has a

less distinctive timbre and a less powerful sound. It is plausible that signal distortions

are perceptually more disturbing for the latter. On the other hand, the fact that

the proposed separation algorithm handles different instruments differently might

have an important effect on the ratings. If the quality of the extracted solo is lower

for certain instruments than for others, it is to be expected that this is evidenced

by the ratings. Further experiments need to be conducted to better understand the

variance of the ratings.

In the Backing Track Evaluation the highest score was also obtained by the Inter-

ference signal, the mix also following very closely. In this case, the Target signal

obtained the lowest overall rating, making it the most disturbing of the all signal

distortions. The importance of a clear bass to follow was mentioned by the users

and due to the somehow smoothed (low-pass filtered)Target versions, onsets and

bass notes were no longer so clear. The backing signals obtained with the proposed

algorithm obtained in this case, scores superior to those of the Target and Artifacts

signals.

The high mean values obtained for the reference mix might be due to the fact

that the reference mix is the only version that entirely preserves the quality of the

signal. Furthermore, a familiarity factor might play a role here as in most cases,

the mix is the only version available to the users and they might feel most familiar

with it. However, results from the Listening Test 1 where subjects clearly showed

their preference to play with separated tracks than with the mix, support the fact

that high mean values obtained for the mix in the second listening test are greatly

due to the fact that signal quality is entirely preserved. In a hypothetical scenario

where quality of separated tracks reaches its maximum (as in Listening Test 1), user

preference is clearly towards separated tracks. This naturally poses a challenge for

separation research as the performance boundary that separates users’ preference

for the mix from users’ preference of separated tracks has not entirely been reached.
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Figure 4.3.: Listening Tests Results: (left) Solo tracks, (right) Backing tracks. Mean
values with 95% confidence intervals are shown. Ratings for the original recording
(mix), signals obtained with the proposed algorithm (own), Interference Signal
(Interference), Artifacts Signal (Artifacts), and Target Signal (Target) are pre-
sented. It can be observed that from the distortion signals, the lowest rating was
obtained by the artifacts signal in the solo evaluation and by the target signal in
the backing evaluation.

4.3. Songs2See: Music Learning Game

This section briefly describes a commercial application for music practice that in-

corporates solo and accompaniment separation as one of its features. The release of

this application and the inclusion of a separation algorithm in it, sets an important

precedent for the potential and usability of separation algorithms in music education

applications.

Songs2See is an application developed at the Fraunhofer Institute for Digital Media

Technology IDMT with the goal of placing music practice in a gaming environment.



158 4. Sound Source Separation in Music Education

Songs2See offers, among many other features, the possibility to use real musical

instruments and receive real-time performance feedback. Songs2See is composed

of two different applications depicted in Figure 4.4: the Songs2See Game used at

practice time, and the Songs2See Editor used to create content for the game.

(a) (c)(b)

Figure 4.4.: Song2See application. The Songs2See application uses the frame-based
separation algorithm proposed in this thesis for practice content creation. (a)
Songs2See logo (b) Songs2See Game Interface, (c) Songs2See Editor Interface.

Song2See currently supports eight musical instruments: saxophone, trumpet, clar-

inet, ukulele, guitar, piano, and bass. For all the musical instruments, automatic

fingering animations are displayed to guide users through the performance. Further-

more, users’ performance is rated through a real-time pitch detection functionality.

As shown in Figure 4.1, Songs2See offers different visualizations of the main melody:

scrolling score, tablature for guitar, bass, and ukulele, and traditional music score.

A feature for tempo reduction is also available in the game, allowing users to slow

down the track to a tempo where they feel comfortable.

One important feature in Songs2See is the possibility to create personal content

using the Songs2See Editor. The main idea is to give users flexibility to play any

piece of their taste and provide the corresponding processing tools that allow the

extraction of all the necessary performance information. Besides performing the

transcription process for the main melody, Songs2See also includes the possibility

to separate the solo instrument from the musical accompaniment. Users can play to

the created backing tracks which resemble real performance environments, or use the

solo tracks for performance analysis and reference. A mixing control, as displayed in
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Figure 4.4c, allows users to adjust the playback level of the solo and accompaniment

tracks to their personal taste and needs. Also within the Songs2See Editor, features

for automatic tempo extraction and key analysis are available.

Songs2See was released to the market on March 2012.

4.3.1. Sound Separation in Songs2See

The main goal of including a solo and accompaniment separation algorithm within

the Songs2See application was to give users flexibility to create practice content for

the game from any musical recording of their taste. For this matter, two possibilities

of performing solo and accompaniment separation are included in Songs2See: (1)

fully automatic separation. This feature uses the separation algorithm presented in

Section 3.1. (2) User-assisted separation.

As the details of the automatic separation algorithm have already been explained in

Section 3.1, only the details of the user-assisted separation as described in publica-

tions [O5, O7], are described in this section.

Bearing in mind that both pitch detection and separation results are highly depen-

dent on the complexity of the audio mixture, a user-assisted version of the algorithm

was included such that the user could correct and guide the application in the sep-

aration process. After an initial pitch detection stage, the sequences of f0 values

are transformed into note objects, in a similar approach as the one used in Section

3.3.3. A specially designed user interface was included to display the initial estimate

of the main melody in a piano-roll representation. In Figure 4.5 an example piece

is displayed in the Songs2See piano-roll representation.

Each one of the tone objects can be modified both in pitch and length. Furthermore,

new tone objects can be included and erroneous ones can be deleted. These flexible

processing options allow the user to obtain a very accurate representation of the main

instrument in the track. With the refined pitch estimate, the separation algorithm is

run again (by-passing the pitch detection stage), and new solo and accompaniment

tracks are calculated.
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Figure 4.5.: Songs2See Editor piano-roll view: The f0 sequences delivered by the
pitch detection stage are converted into tone objects and displayed to the user as
blue bars covering the length of the tone. Pitch is given by the piano keyboard
on the left side of the figure.

Two additional options for user-assisted separation are also included in Songs2See:

(1) Audio + MusicXML import, and (2) Audio + MIDI import. These two options

allow the user to import not only the audio track to be separated, but a MIDI or a

MusicXML file containing the transcription of the melody of the main instrument.

These options were motivated by the great number of MIDI files available online and

by the widespread use of music notation software such as Finale and Sibelius that

support the MusicXML format. The separation process in these cases is equivalent to

a score-informed separation approach where the user is directly in charge of aligning

the melody representation with the given audio track.

4.3.2. Conclusions

This chapter presented a general overview of sound separation in music education

applications. After a historical overview of the use of MIR technologies in music

education, results from two listening tests were presented where quality requirements

of separation results in a music education context were evaluated. Lastly, an example

of a commercial application for music education where the separation algorithm

proposed in this thesis is featured, was described. Several conclusions can be drawn

from the studies presented in this chapter:
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• The listening tests have confirmed the initial assumption that solo and accom-

paniment separation is a desired functionality in music education and practice

applications. However, results also showed that separation quality still needs

to be improved for users to prefer the use of separated tracks over the original

mix.

• The second listening test showed that solo and accompaniment tracks should

be addressed differently in terms of quality, with artifact distortions being most

relevant for solo signals, and target distortions most relevant for the backing

tracks.

• Songs2See, as well as applications like Riffstation (See Appendix A ), have set

a precedent for commercial application for music education that offer sound

separation as a feature.
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5. Concluding Remarks

This thesis addressed the development of a system for pitch-informed solo and ac-

companiment separation capable of separating main instruments from music accom-

paniment, regardless of the type of solo instrument used, musical genre of the track,

or type of music accompaniment. For the solo instrument, only pitched monophonic

instruments were considered in a single-channel scenario where no panning or spatial

location information is available. The algorithm was kept lightweight and processing

times were minimized allowing its use in real-world applications.

The different stages of the separation process—prior information, parameter extrac-

tion, and the final separation procedure—were studied independently to better assess

their contributions to separation quality, their main weaknesses and strengths, and

possible ways to improve their performance.

For the prior information stage, two methods for main melody extraction were stud-

ied and compared in the separation context. Even though each algorithm proved to

benefit separation in different ways, experimental results suggest that more accurate

pitch detection will not bring considerable quality improvements unless more com-

plex modeling strategies for the target sources are used. The use of ground-truth

pitch information in pitch-informed separation algorithms has made clear that the

performance boundary of current methods will not reach maximal quality scores.

The main limiting factor of separation algorithms is parameter estimation which

has shown to restrict separation quality more than accuracy of pitch as prior infor-

mation. Similar results have been presented in [51], [65], and [O8].

In the parameter estimation stage, a tone-based separation approach was proposed

to address the solo/accompaniment separation problem. Parameter estimation is
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based on a sinusoidal modeling approach where the harmonic components of each

tone are estimated using known characteristics of musical instrument tones. The

proposed approach is entirely based on the understanding of the temporal and spec-

tral characteristics of musical instruments and has proven to be both an efficient

and flexible strategy.

To improve parameter estimation, the spectral parameters of musical instrument

tones were studied both to understand their importance in the perceived quality of

separated tracks, and to better model them within the separation scheme. Gen-

eral tendencies for the magnitude variations of spectral envelopes, inharmonicity, as

well as phase expectation and coupling were studied and applied in the context of

sound separation. For the instruments studied, magnitude envelopes showed mean

frame-wise percentage changes of approx. ±5 %. Slightly larger magnitude vari-

ations were observed for musical instruments such as the piano and guitar whose

notes do not have a sustained part and only decay in time after the string has been

plucked. Inharmonicity varies slightly between musical instruments; however, an av-

erage percent frequency from harmonic location of ± 1% was observed for the first 9

harmonics of the instruments considered. The study of the Instantaneous Frequency

Distribution (IFD) of the different partials of a tone showed that for most instru-

ments, phase contours of the different partials are highly correlated and common

micro-modulations can be observed among the partials. A clear exception to this

observation was the piano where no correlation was observed between the IFDs of

the different partials. Phase coupling was also studied as a mean of estimating phase

of a given partial using information from other partials of the tone. Phase estimation

errors of approx. ±0.3 radians were observed, with errors increasing with increasing

partial index. A preliminary study on the perceptual quality of instrumental sounds

with reconstructed phase based on coupling was conducted for the clarinet. Results

suggest that good perceptual audio quality can be achieved under certain condi-

tions; however, the approach also proved to be very sensitive to minor estimations

errors. Reconstructed audio for the clarinet dataset obtained a mean PEAQ score of

-1.18 which stands for a “slightly annoying” degradation of quality. Finally, phase

expectation was studied and a novel approach for harmonic/percussive separation
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was proposed. The proposed harmonic/percussive separation method outperformed

the reference state-of-the-art algorithm [115] obtaining a mean Overall Perceptual

Score (OPS) of 32.93 for percussive extraction, with the reference algorithm obtain-

ing a mean OPS of 23.11.

Within the separation scheme, the proposed tone-based processing allowed the in-

clusion of novel processing stages to better estimate attack sections of the tones, to

reduce transient interferences in the solo signal, and to apply the concept of Com-

mon Amplitude Modulation (CAM) to reduce interferences from other harmonic

sources in the solo estimation. Additionally, the concept of phase expectation was

used within the separation scheme to capture noise-like characteristics of musical

tones such as fricative sounds in the singing voice. The tone-based solo and accom-

paniment separation method proposed achieved comparable performance to state-

of-the-art algorithms under the Signal Separation Evaluation Campaign (SiSEC)

2013. It also outperformed the reference state-of-the-art algorithm [29] with the

instrumental dataset obtaining a mean OPS for the solo of 27.12, with the reference

algorithm obtaining a mean OPS of 15.86.

Additionally, solo and accompaniment separation was evaluated in the Music Edu-

cation context. Two listening tests were conducted with the goal of understanding

ways of optimizing separation algorithms for music education. An initial listening

test clearly proved that instrumental practice can benefit from solo and accompa-

niment separation, giving users flexibility and better tools to learn a new musical

piece. The second listening test showed that different quality requirements are posed

for the solo and for the accompaniment tracks in a practice scenario. While artifact

distortions are most relevant for the solo signal, target distortions proved to be very

important for the accompaniment tracks. The use of solo and accompaniment sepa-

ration in the Songs2See application was also described. The frame-based separation

algorithm proposed in this thesis is used in the application to create practice content

to be used in the Songs2See Game. Algorithm robustness and efficiency were criti-

cal factors in the inclusion of the separation method in the Songs2See application.

Songs2See was awarded the 2012 Prize for Innovation and Entrepreneurship by the

German Informatics Society.
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5.1. Outlook

In this thesis, several processing alternatives have been proposed to address spe-

cific challenges in separation research and ultimately, to improve separation quality.

However, many questions still remain unanswered and many more have emerged

during the completion of this thesis.

Probably one of the most relevant topics that needs to be addressed in sound sep-

aration research is perceptual quality evaluation of separation results. Even though

great efforts have been placed into the development of objective perceptual quality

measures specifically designed for the separation context, the weaknesses of current

evaluation scores such as the ones proposed in the Perceptual Evaluation Methods

for Audio Source Separation (PEASS) Toolkit have been long recognized by the

separation community. Even when the measures have proven to be rough indica-

tors of separation quality, they often fail to numerically evidence quality differences

clearly audible and easily recognized by non-expert human listeners. This naturally

represents a major weakness as a thorough and truthful evaluation of algorithm

enhancements is often difficult without conducting a formal listening test. As part

of the calculations returned by the PEASS Toolkit, audio signals with the distor-

tion errors calculated by the toolkit are available. Each audio signal contains those

distortions found in the estimated target source that are classified either as target,

interference or artifacts distortions. Informal listening of these signals clearly show

that the different types of distortions are not properly discerned, and resulting errors

are very often a clear mix between different types of distortions. This evidences the

shortcomings of the toolkit to properly categorize signal distortions.

Also relevant to quality evaluation of separation results is the understanding of

the separation quality requirements posed by different applications. Ideally, sep-

aration algorithms would be powerful enough to obtain high quality scores for all

the measures; however, given the current state-of-the-art, it is clear that separation

quality is still far from maximal ratings and in most cases, separation approaches

benefit certain measures over others. Additionally, taking into consideration that

in many cases sound separation is not the final goal but an intermediate step for
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more advanced content analysis tasks—automatic music transcription, instrument

recognition, re-mixing, tempo and beat extraction—, clearly understanding quality

requirements of different applications is of critical importance.

Separation results have also shown that in many cases, separation strategies that

are beneficial for certain target sources are not necessarily beneficial for separation

of other sources in the audio mix. In these cases, it is often very difficult to come up

with a separation method that can balance the quality of all the extracted sources

under an unified processing approach. To date, most separation algorithms attempt

to extract audio sources that exactly reconstruct the original audio mix; however,

only very specific applications actually restrict separation algorithms to exactly re-

construct the audio mix from the separated tracks. It can be preferable in some

cases to relax the Perfect Reconstruction constraint [O8] for the sake of improved

perceptual quality of the separated tracks. Relaxing this constraint would allow

different sources to be estimated with different algorithms that can better address

their spectral characteristics. Additionally, introduced algorithm distortions would

not propagate from one separation procedure to the consequent one and better sep-

aration quality can be achieved.

In the particular case of pitch-informed separation addressed in this thesis, it has

become clear that having pitch detection and parameter estimation as independent

processing entities does not allow the proper addressing of the estimation errors. The

potential of combining separation techniques with other types of content retrieval

methods has proven to improve robustness of results. In [126] for example, sound

separation is used as a pre-processing step for beat tracking. In [O1] separation is

used within an audio similarity context. In pitch-informed separation algorithms,

a simple one-directional relationship has been the common approach used in the

methods to date proposed. To improve results and make processing more robust

under different signal characteristics, the use of a feedback loop between separation

and pitch detection could bring beneficial results. The idea would be to perform

an initial pitch-informed separation that would then return to pitch detection for

refinement. Parameter estimation in separation approaches very often results in
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the extraction of valuable information that could be used for pitch detection refine-

ment. In this thesis for example, a tone-based separation approach was proposed

that estimates the harmonic structure of the solo instrument for every tone. It is an

approach that brings Automatic Music Transcription (AMT) and sound separation

a step closer to each other. Knowledge of musical instrument tones was also included

in the estimation to model the spectral characteristics of the solo instrument. This

information could be used for example, to discard erroneous tones detected by the

pitch detection algorithm that do not fit the expected characteristics of an instru-

mental tone as defined by the proposed model. With this information, the pitch

detection stage could be called again with the new constraints obtained at the sep-

aration stage. Several iterations between separation and pitch detection could be

performed to further refine results.

A critical issue that also needs to be addressed in current separation research is the

fact that most methods fail to include phase information directly in the estimation

stage. Even when preliminary studies have been conducted and the importance of

phase has been recognized, no robust solutions have been proposed so far that can

take advantage of the valuable perceptual information contained in the phase of an

audio signal. As opposed to spectral magnitude, phase information is extremely

sensitive to modifications and minor changes can result in very audible distortions.

This is most likely the reason why current approaches that include phase processing,

are all very conservative in nature. However, results suggest that in many cases

the performance boundary for current magnitude-based approaches is still far from

reaching high quality ratings and the need of more complex estimation stages is

critical if separation quality is to be improved.

A promising approach that could result in improved sound separation quality is

the combination of sound separation techniques with sound synthesis technologies.

These two fields of research have evolved independently over the years but the poten-

tial of combining them has scarcely been explored. One of the main difficulties faced

by sound separation algorithms is the fact that sound sources inevitably overlap in

the time-frequency domain. Different estimation techniques have been proposed in

the attempt to resolve overlapping of spectral components and estimate the different
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sound sources. As a completely independent field of research, synthesis research has

long worked on the refinement of instrument models that can more accurately cap-

ture musical instrument timbre and sound qualities. Synthesis models could be used

to estimate sections of the signal whose estimation with standard separation meth-

ods is poor due to overlapping of spectral components. This would naturally mean

that separation algorithms would have to be refined to specifically target a particu-

lar musical instrument. Nevertheless, the state-of-the-art in separation research has

already recognized the need to more accurately model certain musical instruments

such as percussion instruments or the voice, and separation methods to specifically

address these instruments have been proposed in the literature. This concept would

expand the idea of instrument-specific separation to any other musical instrument

where a synthesis model can be used in conjunction with parameter extraction in

the separation scheme.
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Appendix A.

List of Music Education Applications

(In alphabetical order)

A.1. Play Alongs and Instructional Videos

[A1] Alfred Music Publishing

http://www.alfred.com/Browse/Formats/DVD.aspx

[A2] Berklee Press

http://www.berkleepress.com/catalog/product-type-browse?product_type_id=

10

[A3] Hal Leonard Corporation

http://www.halleonard.com/promo/promo.do?promotion=590001&subsiteid=1

[A4] Homespun

http://www.homespuntapes.com/home.html

[A5] Icons of Rock

http://www.livetojam.com/ltjstore/index.php5?app=ccp0&ns=splash

[A6] Jamey Aebersold

http://www.jazzbooks.com/jazz/category/AEBPLA

[A7] Music Minus One

http://www.musicminusone.com

http://www.alfred.com/Browse/Formats/DVD.aspx
http://www.berkleepress.com/catalog/product-type-browse?product_type_id=10
http://www.berkleepress.com/catalog/product-type-browse?product_type_id=10
http://www.halleonard.com/promo/promo.do?promotion=590001&subsiteid=1
http://www.homespuntapes.com/home.html
http://www.livetojam.com/ltjstore/index.php5?app=ccp0&ns=splash
http://www.jazzbooks.com/jazz/category/AEBPLA
http://www.musicminusone.com
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(In alphabetical order)

A.2. Music Video Games

[A8] BandFuse: Rock Legends

http://www.bandfuse.com

BanFuse is scheduled for release for Xbox 360 and Sony PS3 in November 19, 2013.

It offers the possibility to play real musical instruments —guitar, bass, and voice—

and presents animated tablature and multi-player options. The game offers step-by-

step guidance from famous rock legends.

[A9] Guitar Hero

http://www.guitarhero.com

Guitar Hero has been released for different video game consoles like Microsoft Xbox

360, Sony PS3, and also for Windows PCs.

[A10] Rock Band

http://www.rockband.com

Rock Band 3 has been released for Microsoft Xbox 360, Nintendo Wii, Sony PS3, and

Nintendo DS. It supports up to three singers with a three-part harmony recognition

feature. It was released with a set of 83 songs and has full compatibility with all

Rock Band peripherals as well as most Guitar Hero instruments.

[A11] Rocksmith

http://rocksmith.ubi.com/rocksmith/en-US/home/

First commercial release in the video game community that allowed users to play

with real guitars. It was released in the United States in September 2011 for Mi-

crosoft Xbox 360, Windows, and Sony PS3.

[A12] Singstar

http://www.singstar.com

SingStar was released for Sony PlayStation 2 & 3. It offers the possibility to sing

along to the included songs with the lyrics shown synchronously.

http://www.bandfuse.com
http://www.guitarhero.com
http://www.rockband.com
http://rocksmith.ubi.com/rocksmith/en-US/home/
http://www.singstar.com
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A.3. Music Education Software & Online services

[A13] Garage Band

http://www.apple.com/ilife/garageband/

GarageBand is a software released by Apple for Mac and iPad. It provides the possi-

bility to learn to play piano and guitar with specially designed content, performance

feedback, and appealing user interfaces. Users can play directly to the computer

microphone or through USB connection.

[A14] GuitarBots

http://ovelin.com/guitarbots/

Online service that allows to play with real guitars and offers different animated

tablature with real-time performance feedback

[A15] Instinct

http://instinct.com

Web-based system to learn to play guitar. Users play to the computer microphone

with real guitars. It offers an introductory course, and different lessons for chords,

scales, rhythm, among others.

[A16] Music Delta

http://www.musicdelta.com

Music Delta is a web based system developed by Grieg Music Education comprising

music curricula, content articles, and interactive tools.

[A17] Riffstation

http://www.riffstation.com/

Riffstation is a practice app for guitarists available for mac OSx an PC. If offers a

tempo modification tool to slow down the audio track, pitch shifting to change the

key of a song, and the possibility to mute the guitar in the mix.

[A18] Smart Music

http://www.smartmusic.com

http://www.apple.com/ilife/garageband/
http://ovelin.com/guitarbots/
http://instinct.com
http://www.musicdelta.com
http://www.riffstation.com/
http://www.smartmusic.com
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SmartMusic is a Windows and Mac software developed by MakeMusic especially for

bands, orchestras, and vocals. Users can play their instruments to the computer

microphone and receive immediate feedback from the software. Teachers can as-

sign tasks for the students to practice at home and track and rate their progress.

Currently, there are around 2000 musical pieces available for the software.

[A19] Songle

http://songle.jp/

Web service for active music listening that uses Music Information Retrieval (MIR)

technologies to extract melody, chord, beat, and structure information about the

musical piece. The main idea behind this system is to allow users to have a deeper

understanding of music and enrich their listening experience.

A.4. Mobile Apps

[A20] Cube Jam

http://www.roland.com/amp/cubejam/

Cube Jam is an iOS application developed by Roland as a companion for their series

of guitar amplifiers. The app allows users to import songs from their iTunes library,

play along to them, record their performances, tempo stretching, among others. It

requires the use of a special cable to connect the mobile device to the i-Cube link

jack on the amplifier.

[A21] Jamstar

http://jamstar.co/

Jamstar is an application to learn to play guitar available for iOs, Android, and as a

browser application. It offers real-time feedback, a guitar tuner and a set of courses

to address different topics from beginner to advanced level.

http://songle.jp/
http://www.roland.com/amp/cubejam/
http://jamstar.co/
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[A22] JoyTunes

http://www.joytunes.com/

JoyTunes offers different applications to learn piano and recorder. Their iPad ap-

plication Piano Dust Buster allows the use of real pianos or keyboards as wells as

touch input form the mobile device. It comes with a set of songs included and with

a special game mode to learn to read sheet music.

[A23] Rock Prodigy

http://www.rockprodigy.com/

Rock Prodigy is a guitar playing app developed for the iPad, iPhone, and iPod

Touch. Users can play their guitar directly to microphone and, based on a lesson

plan and a rating system, receive performance feedback from the application.

[A24] Tonara

http://tonara.com/

Tonara is an interactive sheet music iPad app where users can download and view

music directly on their iPad. The app records input directly from the microphone

and automatically detects the user’s position in the score.

[A25] Wild Chords

http://www.wildchords.com/

Wild Chords is a music game developed by Ovelin and designed to help beginners

familiarize with guitar chords. It is available as an iPad app and uses appealing vi-

suals and references to animals to help users identify the chords. The game records

audio input directly from the microphone and no hardware controllers are needed.

http://www.joytunes.com/
http://www.rockprodigy.com/
http://tonara.com/
http://www.wildchords.com/
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A.5. Research Projects

[A26] i-maestro

http://www.i-maestro.org/

i-Maestro focused on the violin family and besides offering enhanced and collabora-

tive practice tools, the project also addresses gesture and posture analysis based on

audio visual systems and sensors attached to the performer’s body.

[A27] IMUTUS

http://www.ilsp.gr/en/infoprojects/meta?view=project&task=show&id=120

IMUTUS focused on the recorder with the goal developing a practice environment

where students could perform and get immediate feedback from their renditions.

[A28] KOPRA-M

http://www.idmt.fraunhofer.de/en/projects/Current_publicly_financed_research_

projects/kopra_m.html

This is an ongoing project at the Fraunhofer Institute for Digital Media Technology

that focuses on measurement of competencies in music. For this matter, a systematic

methodology and a proprietary software solution to assign and control music tasks

is developed.

[A29] Songs2See

http://www.songs2see.com

Songs2See dealt with the development of a music practice and learning tool that

allow the use of real musical instruments and provided different options for content

creation. It was conducted at the Fraunhofer Institute for Digital Media Technology.

[A30] VEMUS

http://www.tehne.ro/projects/vemus_virtual_music_school.html

VEMUS was proposed as a follow up project of IMUTUS and addressed the inclusion

of further musical instruments and the development of tools for self-practicing, music

teaching, and remote learning.

http://www.i-maestro.org/
http://www.ilsp.gr/en/infoprojects/meta?view=project&task=show&id=120
http://www.idmt.fraunhofer.de/en/projects/Current_publicly_financed_research_projects/kopra_m.html
http://www.idmt.fraunhofer.de/en/projects/Current_publicly_financed_research_projects/kopra_m.html
http://www.songs2see.com
http://www.tehne.ro/projects/vemus_virtual_music_school.html
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Appendix B.

Evaluation Datasets

Dataset Parts Track N. Name Source

1 Dreams Bass-dB
2 Life as a disturbed infobeing Bass-dB
3 Mix tape Bass-dB
4 The ones we love Bass-dB

SA DS1a 5 We weren’t there Bass-dB
Vocal 6 Wreck Bass-dB

7 bearlin-roads SiSEC
8 tamy-que pena tanto faz SiSEC
9 another dreamer SiSEC
10 ultimate nz tour SiSEC
11 Lussier TRIOS
12 Mozart TRIOS

SA DS1a 13 Take Five TRIOS
SA DS1 Instr. 14 Seed CCMixter

15 Free Music CCMixter
16 Mind Map1 CCMixter
17 Mind Map2 CCMixter
18 Saxophone Track 33
19 Saxophone Track 38
20 Saxophone Track 45
21 Saxophone Track 46

SA DS1b 22 Saxophone Track 54
23 Saxophone Track 64 Commercial
24 Saxophone Track 65
25 Saxophone Track 67
26 Saxophone Track 68
27 Saxophone Track 69

Table B.1.: Description of the dataset SA DS1.
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Dataset Num. Length Instrumentation Copyright

1 35 Male voice, guitar, bass, drums CC 1.0
2 57 Male voice, piano, guitar CC 1.0
3 46 Male voice, bass, drums, electric guitar, vocals CC 1.0
4 16 Male voice, guitar, bass, drums CC 1.0
5 32 Male voice, guitar1-2, bass, drums CC 1.0
6 19 Male voice, guitar, bass, drums CC 2.0
7 14 Male voice, piano, guitar, bass, drums CC 3.0
8 13 Guitar, female voice CC 3.0
9 25 Male voice, drums, guitar CC 1.0
10 18 Female voice, guitar, bass, drums CC 3.0
11 17 Basson, piano, trumpet CC 2.0
12 33 Clarinet, piano, viola CC 2.0
13 43 Saxophone, piano, drums CC 2.0

SA DS1 14 16 Piano, guitar CC 3.0
15 24 Guitar, rhythm guitar, organ, piano, bass, drums. CC 3.0
16 18 Whistle, ukulele CC 3.0
17 27 Kazoo, ukulele CC 3.0
19 16
19 66
20 34
21 59
22 43 Saxophone, Bass, Schott Music GmBH
23 95 electric guitar & drums ISBN 3795751594
24 54
25 49
26 67
27 56

Table B.2.: Description of the dataset SA DS1. The short CC in the copyright column stands for Creative
Commons License. For all the instrumental tracks, the solo instrument is shown in bold.
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Dataset SA DS2

Tracks Genre Instrumentation Duration Copyright

test1 Jazz Alto sax, drums, piano, bass 30 sec Schott Music GmBH. ISBN 3795751594

test2 Pop Ballad Male voice, piano, bass, vocals 30 sec Mikestar

test3 Swing Clarinet, piano, drums, bass 30 sec Grieg Music Education

Table B.3.: Description of the dataset SA DS2
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Appendix C.

Complete Tables of Perceptual Quality Measures

In all the tables of results presented in this Appendix, both the PEASS measures—

Overall Perceptual Score (OPS), Target-Related Perceptual Score (TPS), Interference-

Related Perceptual Score (IPS), Artifact-Related Perceptual Score (APS)—, and the

standard objective measures—Signal to Distortion Ratio (SDR), Source Image to

Spatial Ration (ISR), Source to Artifact Ratio (SAR), and Source to Artifact Ratio

(SAR)— are presented for reference.
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free Music [B] 29,3 41,9 53,8 39,7 -3,0 -2,2 2,4 11,2

TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR Free Music [S] 19,3 4,4 76,3 12,7 -2,8 -2,2 7,0 12,4

bearlin-roads__snip_85_99 [B] 24,9 32,4 64,1 34,5 -3,4 -3,3 13,6 16,8 Mind Map1 [B] 43,2 65,4 58,3 60,5 -8,5 -6,1 1,6 21,5

bearlin-roads__snip_85_99 [S] 19,6 2,9 71,8 7,8 -7,8 -6,8 6,5 11,8 Mind Map1 [S] 25,3 33,0 66,6 20,2 -7,5 -7,4 20,8 18,9

tamy-que_pena_tanto_faz__snip_6_19 [B] 25,5 48,6 57,7 43,3 -4,2 -3,6 7,5 14,4 Mind Map2 [B] 38,9 62,6 59,3 52,0 -5,6 -5,2 11,6 14,1

tamy-que_pena_tanto_faz__snip_6_19 [S] 24,2 20,1 49,0 18,6 -4,0 -3,7 12,3 17,3 Mind Map2 [S] 23,7 6,9 71,0 8,6 -11,8 -9,3 2,4 10,0

another_dreamer-the_ones_we_love__snip_69_94 [B] 22,0 40,6 57,5 39,3 -11,0 -9,6 5,6 9,8 Seed [B] 38,8 40,6 69,0 42,2 -4,7 -4,4 8,9 14,2

another_dreamer-the_ones_we_love__snip_69_94 [S] 22,3 2,0 68,0 6,1 -14,1 -13,5 10,9 13,4 Seed [S] 15,1 8,5 27,0 28,6 -6,1 -4,9 6,0 14,7

ultimate_nz_tour__snip_43_61 [B] 32,4 46,5 52,0 42,5 -13,5 -12,7 8,6 11,6 lussier [B] 39,8 63,5 52,9 38,7 -3,1 -2,7 12,2 17,9

ultimate_nz_tour__snip_43_61 [S] 31,9 1,0 65,0 1,1 -15,8 -14,5 7,5 10,7 lussier [S] 33,2 18,9 37,5 20,1 -9,2 -7,2 3,1 18,0

dreams [B] 35,7 53,3 66,6 44,9 -3,4 -3,2 10,4 11,6 mozart [B] 38,0 53,6 53,4 33,4 -5,4 -4,6 5,7 18,1

dreams [S] 21,8 2,5 53,9 6,9 -4,2 -2,9 3,9 11,6 mozart [S] 21,7 16,9 17,9 36,3 -6,7 -6,5 14,6 22,9

life_as_an_0_57 [B] 19,6 49,1 51,4 44,8 -3,3 -2,9 7,9 13,1 sax_33 [B] 42,6 62,7 70,8 45,2 -3,0 -3,0 12,0 17,5

life_as_an_0_57 [S] 24,1 2,4 55,9 5,7 -4,3 -3,2 4,6 13,2 sax_33 [S] 36,0 37,0 61,3 35,1 -3,5 -3,4 13,7 21,4

mix _tape_7_53 [B] 32,3 48,6 60,3 44,6 -2,8 -2,7 10,9 14,8 sax_38 [B] 38,7 47,0 66,7 44,1 -6,7 -6,4 14,2 17,0

mix_tape_7_53 [S] 23,0 1,6 59,8 4,6 -3,8 -2,6 3,1 9,3 sax_38 [S] 31,0 60,0 44,1 30,0 -4,2 -4,1 16,5 24,8

the_ones_we_love_32_48 [B] 25,3 43,0 58,0 40,4 -3,6 -3,0 6,0 10,1 sax_45 [B] 38,3 38,4 67,4 39,6 -4,0 -3,9 17,1 16,7

the_ones_we_love_32_48 [S] 19,8 6,0 49,9 14,2 -5,0 -4,2 5,3 12,2 sax_45 [S] 28,5 40,4 36,8 22,3 -4,4 -4,3 13,2 26,2

we_werent_there_0_32 [B] 26,6 36,5 68,3 38,9 -3,6 -3,3 12,2 13,5 sax_46 [B] 34,9 57,0 58,6 45,3 -7,3 -7,3 11,4 18,3

we_werent_there_0_32 [S] 18,4 4,0 47,8 13,7 -4,7 -3,7 4,6 11,9 sax_46 [S] 27,0 8,6 73,5 18,4 -7,9 -7,3 9,6 16,7

wreck_15_34 [B] 31,1 28,0 61,6 32,7 -3,4 -3,2 10,2 14,5 sax_54 [S] 41,5 57,0 68,7 47,2 -4,6 -4,7 13,0 15,1

wreck_15_34 [S] 27,0 0,8 65,9 1,9 -3,8 -3,3 8,8 10,7 sax_54 [S] 22,6 7,1 65,6 12,8 -7,6 -6,5 6,4 13,5

sax_65 [B] 40,3 46,9 68,6 44,5 -5,7 -5,6 16,3 16,3

sax_65 [S] 28,9 44,0 37,9 22,9 -9,0 -8,8 14,2 23,1

sax_67 [B] 34,3 37,5 66,0 39,1 -3,9 -3,3 6,0 15,8

sax_67 [S] 28,5 28,3 49,0 36,0 -5,2 -5,2 17,6 23,4

sax_68 [B] 39,7 47,1 66,3 44,2 -2,3 -2,0 8,8 17,4

sax_68 [S] 29,3 34,0 55,8 37,5 -5,0 -4,9 16,3 22,6

sax_69 [B] 34,8 36,0 67,8 38,4 -4,0 -3,6 8,8 14,0

sax_69 [S] 30,5 29,2 49,3 32,8 -3,6 -3,5 15,0 20,6

sax_64 [B] 39,1 53,5 67,3 45,9 -4,1 -3,7 9,2 16,4

sax_64 [S] 32,1 35,2 53,6 37,1 -4,0 -3,8 16,3 22,0

take_five [B] 44,9 62,4 59,5 47,5 -3,6 -3,3 11,5 15,3

take_five [S] 12,0 32,1 41,4 36,2 -6,2 -5,8 10,7 19,5

Figure C.1.: Results from the frame-based separation algorithm for the vocal dataset
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free Music [B] 29,3 41,9 53,8 39,7 -3,0 -2,2 2,4 11,2

TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR Free Music [S] 19,3 4,4 76,3 12,7 -2,8 -2,2 7,0 12,4

bearlin-roads__snip_85_99 [B] 24,9 32,4 64,1 34,5 -3,4 -3,3 13,6 16,8 Mind Map1 [B] 43,2 65,4 58,3 60,5 -8,5 -6,1 1,6 21,5

bearlin-roads__snip_85_99 [S] 19,6 2,9 71,8 7,8 -7,8 -6,8 6,5 11,8 Mind Map1 [S] 25,3 33,0 66,6 20,2 -7,5 -7,4 20,8 18,9

tamy-que_pena_tanto_faz__snip_6_19 [B] 25,5 48,6 57,7 43,3 -4,2 -3,6 7,5 14,4 Mind Map2 [B] 38,9 62,6 59,3 52,0 -5,6 -5,2 11,6 14,1

tamy-que_pena_tanto_faz__snip_6_19 [S] 24,2 20,1 49,0 18,6 -4,0 -3,7 12,3 17,3 Mind Map2 [S] 23,7 6,9 71,0 8,6 -11,8 -9,3 2,4 10,0

another_dreamer-the_ones_we_love__snip_69_94 [B] 22,0 40,6 57,5 39,3 -11,0 -9,6 5,6 9,8 Seed [B] 38,8 40,6 69,0 42,2 -4,7 -4,4 8,9 14,2

another_dreamer-the_ones_we_love__snip_69_94 [S] 22,3 2,0 68,0 6,1 -14,1 -13,5 10,9 13,4 Seed [S] 15,1 8,5 27,0 28,6 -6,1 -4,9 6,0 14,7

ultimate_nz_tour__snip_43_61 [B] 32,4 46,5 52,0 42,5 -13,5 -12,7 8,6 11,6 lussier [B] 39,8 63,5 52,9 38,7 -3,1 -2,7 12,2 17,9

ultimate_nz_tour__snip_43_61 [S] 31,9 1,0 65,0 1,1 -15,8 -14,5 7,5 10,7 lussier [S] 33,2 18,9 37,5 20,1 -9,2 -7,2 3,1 18,0

dreams [B] 35,7 53,3 66,6 44,9 -3,4 -3,2 10,4 11,6 mozart [B] 38,0 53,6 53,4 33,4 -5,4 -4,6 5,7 18,1

dreams [S] 21,8 2,5 53,9 6,9 -4,2 -2,9 3,9 11,6 mozart [S] 21,7 16,9 17,9 36,3 -6,7 -6,5 14,6 22,9

life_as_an_0_57 [B] 19,6 49,1 51,4 44,8 -3,3 -2,9 7,9 13,1 sax_33 [B] 42,6 62,7 70,8 45,2 -3,0 -3,0 12,0 17,5

life_as_an_0_57 [S] 24,1 2,4 55,9 5,7 -4,3 -3,2 4,6 13,2 sax_33 [S] 36,0 37,0 61,3 35,1 -3,5 -3,4 13,7 21,4

mix _tape_7_53 [B] 32,3 48,6 60,3 44,6 -2,8 -2,7 10,9 14,8 sax_38 [B] 38,7 47,0 66,7 44,1 -6,7 -6,4 14,2 17,0

mix_tape_7_53 [S] 23,0 1,6 59,8 4,6 -3,8 -2,6 3,1 9,3 sax_38 [S] 31,0 60,0 44,1 30,0 -4,2 -4,1 16,5 24,8

the_ones_we_love_32_48 [B] 25,3 43,0 58,0 40,4 -3,6 -3,0 6,0 10,1 sax_45 [B] 38,3 38,4 67,4 39,6 -4,0 -3,9 17,1 16,7

the_ones_we_love_32_48 [S] 19,8 6,0 49,9 14,2 -5,0 -4,2 5,3 12,2 sax_45 [S] 28,5 40,4 36,8 22,3 -4,4 -4,3 13,2 26,2

we_werent_there_0_32 [B] 26,6 36,5 68,3 38,9 -3,6 -3,3 12,2 13,5 sax_46 [B] 34,9 57,0 58,6 45,3 -7,3 -7,3 11,4 18,3

we_werent_there_0_32 [S] 18,4 4,0 47,8 13,7 -4,7 -3,7 4,6 11,9 sax_46 [S] 27,0 8,6 73,5 18,4 -7,9 -7,3 9,6 16,7

wreck_15_34 [B] 31,1 28,0 61,6 32,7 -3,4 -3,2 10,2 14,5 sax_54 [S] 41,5 57,0 68,7 47,2 -4,6 -4,7 13,0 15,1

wreck_15_34 [S] 27,0 0,8 65,9 1,9 -3,8 -3,3 8,8 10,7 sax_54 [S] 22,6 7,1 65,6 12,8 -7,6 -6,5 6,4 13,5

sax_65 [B] 40,3 46,9 68,6 44,5 -5,7 -5,6 16,3 16,3

sax_65 [S] 28,9 44,0 37,9 22,9 -9,0 -8,8 14,2 23,1

sax_67 [B] 34,3 37,5 66,0 39,1 -3,9 -3,3 6,0 15,8

sax_67 [S] 28,5 28,3 49,0 36,0 -5,2 -5,2 17,6 23,4

sax_68 [B] 39,7 47,1 66,3 44,2 -2,3 -2,0 8,8 17,4

sax_68 [S] 29,3 34,0 55,8 37,5 -5,0 -4,9 16,3 22,6

sax_69 [B] 34,8 36,0 67,8 38,4 -4,0 -3,6 8,8 14,0

sax_69 [S] 30,5 29,2 49,3 32,8 -3,6 -3,5 15,0 20,6

sax_64 [B] 39,1 53,5 67,3 45,9 -4,1 -3,7 9,2 16,4

sax_64 [S] 32,1 35,2 53,6 37,1 -4,0 -3,8 16,3 22,0

take_five [B] 44,9 62,4 59,5 47,5 -3,6 -3,3 11,5 15,3

take_five [S] 12,0 32,1 41,4 36,2 -6,2 -5,8 10,7 19,5

Figure C.2.: Results from the frame-based separation algorithm for the instrumental
dataset
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free_Music [H] 12,19 57,99 79,40 3,55 0,29 0,94 0,88 0,84

Free_Music [P] 21,76 0,41 83,74 13,67 0,56 0,67 0,98 0,88

bearlin-roads__snip_85_99 [H] 9,02 56,10 77,03 9,92 0,26 0,93 0,89 0,87

bearlin-roads__snip_85_99_percussive [P] 23,11 0,30 87,85 9,39 0,59 0,65 0,98 0,85

another_dreamer-the_ones_we_love__snip_69_94 [H] 13,84 82,70 81,59 0,48 0,33 0,97 0,89 0,84

another_dreamer-the_ones_we_love__snip_69_94 [P] 23,36 0,15 87,16 9,54 0,59 0,69 0,99 0,84

ultimate_nz_tour__snip_43_61 [H] 11,15 67,64 81,62 2,60 0,28 0,95 0,90 0,85

ultimate_nz_tour__snip_43_61 [P] 21,89 1,10 87,22 11,66 0,55 0,68 0,97 0,86

dreams_0_35 [H] 8,42 75,44 83,42 1,78 0,22 0,96 0,91 0,86

dreams_0_35 [P] 22,00 0,07 85,65 9,02 0,56 0,60 0,99 0,86

mix_tape_7_53 [H] 12,33 50,52 84,33 3,64 0,28 0,92 0,90 0,83

mix_tape_7_53 [P] 23,35 0,47 88,52 9,34 0,59 0,69 0,98 0,84

take_five [H] 10,98 21,98 80,90 9,77 0,26 0,84 0,88 0,84

take_five [P] 24,56 25,54 74,18 32,58 0,62 0,85 0,95 0,92

the_ones_we_love_32_48 [H] 15,37 78,23 84,34 0,46 0,34 0,97 0,90 0,83

the_ones_we_love_32_48 [P] 23,64 0,07 87,69 7,92 0,59 0,65 0,99 0,83

we_werent_there_0_32 [H] 12,87 72,08 77,48 2,61 0,33 0,96 0,88 0,86

we_werent_there_0_32 [P] 24,37 0,54 83,34 14,40 0,65 0,70 0,98 0,87

wreck_15_34 [H] 8,38 32,33 67,89 4,06 0,17 0,90 0,79 0,83

wreck_15_34 [P] 23,08 0,30 91,34 4,55 0,48 0,60 0,96 0,80

TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free_Music [H] 23,33 26,90 92,70 0,20 0,21 0,90 0,91 0,71

Free_Music [P] 26,55 0,02 93,92 2,43 0,45 0,61 0,98 0,76

bearlin-roads__snip_85_99 [H] 11,93 53,68 47,58 15,11 0,36 0,95 0,77 0,90

bearlin-roads__snip_85_99_percussive [P] 34,57 52,06 46,68 17,13 0,78 0,80 0,98 0,97

another_dreamer-the_ones_we_love__snip_69_94 [H] 17,90 72,25 47,00 12,09 0,50 0,97 0,79 0,91

another_dreamer-the_ones_we_love__snip_69_94 [P] 38,31 66,56 41,96 25,65 0,81 0,83 0,99 0,97

ultimate_nz_tour__snip_43_61 [H] 19,27 42,24 54,25 31,15 0,52 0,91 0,83 0,92

ultimate_nz_tour__snip_43_61 [P] 35,33 54,65 48,27 25,50 0,82 0,86 0,96 0,98

dreams_0_35 [H] 13,92 81,57 47,40 15,63 0,43 0,98 0,84 0,93

dreams_0_35 [P] 39,94 68,91 42,31 26,51 0,83 0,83 0,99 0,97

mix_tape_7_53 [H] 19,24 63,33 53,65 26,19 0,52 0,95 0,84 0,92

mix_tape_7_53 [P] 25,48 12,91 74,40 26,59 0,64 0,78 0,96 0,92

take_five [H] 23,24 40,13 71,05 15,91 0,61 0,90 0,87 0,88

take_five [P] 28,66 54,89 38,24 51,98 0,80 0,94 0,93 0,98

the_ones_we_love_32_48 [H] 19,95 82,89 61,48 3,66 0,53 0,98 0,84 0,90

the_ones_we_love_32_48 [P] 33,35 12,47 61,52 23,04 0,75 0,76 0,99 0,95

we_werent_there_0_32 [H] 20,65 66,67 52,33 10,53 0,55 0,96 0,79 0,90

we_werent_there_0_32 [P] 31,91 49,62 43,84 15,56 0,79 0,82 0,96 0,98

wreck_15_34 [H] 9,47 23,47 37,67 9,66 0,26 0,92 0,67 0,87

wreck_15_34 [P] 35,29 22,25 59,73 21,62 0,76 0,77 0,98 0,96

Figure C.3.: Results from the proposed harmonic/percussive separation algorithm
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free_Music [H] 12,19 57,99 79,40 3,55 0,29 0,94 0,88 0,84

Free_Music [P] 21,76 0,41 83,74 13,67 0,56 0,67 0,98 0,88

bearlin-roads__snip_85_99 [H] 9,02 56,10 77,03 9,92 0,26 0,93 0,89 0,87

bearlin-roads__snip_85_99_percussive [P] 23,11 0,30 87,85 9,39 0,59 0,65 0,98 0,85

another_dreamer-the_ones_we_love__snip_69_94 [H] 13,84 82,70 81,59 0,48 0,33 0,97 0,89 0,84

another_dreamer-the_ones_we_love__snip_69_94 [P] 23,36 0,15 87,16 9,54 0,59 0,69 0,99 0,84

ultimate_nz_tour__snip_43_61 [H] 11,15 67,64 81,62 2,60 0,28 0,95 0,90 0,85

ultimate_nz_tour__snip_43_61 [P] 21,89 1,10 87,22 11,66 0,55 0,68 0,97 0,86

dreams_0_35 [H] 8,42 75,44 83,42 1,78 0,22 0,96 0,91 0,86

dreams_0_35 [P] 22,00 0,07 85,65 9,02 0,56 0,60 0,99 0,86

mix_tape_7_53 [H] 12,33 50,52 84,33 3,64 0,28 0,92 0,90 0,83

mix_tape_7_53 [P] 23,35 0,47 88,52 9,34 0,59 0,69 0,98 0,84

take_five [H] 10,98 21,98 80,90 9,77 0,26 0,84 0,88 0,84

take_five [P] 24,56 25,54 74,18 32,58 0,62 0,85 0,95 0,92

the_ones_we_love_32_48 [H] 15,37 78,23 84,34 0,46 0,34 0,97 0,90 0,83

the_ones_we_love_32_48 [P] 23,64 0,07 87,69 7,92 0,59 0,65 0,99 0,83

we_werent_there_0_32 [H] 12,87 72,08 77,48 2,61 0,33 0,96 0,88 0,86

we_werent_there_0_32 [P] 24,37 0,54 83,34 14,40 0,65 0,70 0,98 0,87

wreck_15_34 [H] 8,38 32,33 67,89 4,06 0,17 0,90 0,79 0,83

wreck_15_34 [P] 23,08 0,30 91,34 4,55 0,48 0,60 0,96 0,80

Figure C.4.: Results from the reference harmonic/percussive separation algorithm proposed in [115]
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

bearlin-roads__snip_85_99 [B] 25,9 35,2 62,8 35,9 -3,4 -3,3 15,1 17,3

bearlin-roads__snip_85_99 [S] 19,1 11,4 53,8 19,0 -4,3 -3,5 5,1 13,2

tamy-que_pena_tanto_faz__snip_6_19 [B] 25,8 50,3 52,6 45,1 -4,4 -3,7 6,8 15,1

tamy-que_pena_tanto_faz__snip_6_19 [S] 29,1 24,7 52,6 23,5 -3,5 -3,2 12,6 17,2

another_dreamer-the_ones_we_love__snip_69_94 [B] 24,6 41,0 54,8 40,8 -11,6 -10,3 5,8 9,9

another_dreamer-the_ones_we_love__snip_69_94 [S] 19,8 3,4 63,8 10,0 -13,9 -13,3 10,5 13,7

ultimate_nz_tour__snip_43_61 [B] 32,8 45,5 48,8 40,5 -13,4 -12,6 9,0 11,8

ultimate_nz_tour__snip_43_61 [S] 23,2 4,3 70,0 8,1 -16,6 -15,1 6,7 11,7

dreams [B] 37,9 55,9 65,9 46,7 -3,3 -3,1 10,7 12,2

dreams [S] 20,9 3,9 51,0 10,2 -4,9 -3,5 4,1 12,3

life_as_an_0_57 [B] 20,5 50,6 50,5 45,7 -3,3 -2,9 8,0 13,7

life_as_an_0_57 [S] 22,8 7,1 46,6 18,8 -3,5 -2,5 4,3 13,8

mix _tape_7_53 [B] 32,8 51,3 56,8 46,8 -2,8 -2,7 11,3 15,0

mix_tape_7_53 [S] 19,5 4,9 53,7 13,2 -3,7 -2,5 2,4 9,8

the_ones_we_love_32_48 [B] 26,6 48,3 52,4 44,7 -3,8 -3,2 6,3 11,1

the_ones_we_love_32_48 [S] 22,1 11,1 39,1 13,7 -4,8 -4,0 5,5 13,9

we_werent_there_0_32 [B] 26,9 39,3 66,6 40,7 -3,7 -3,5 12,3 13,9

we_werent_there_0_32 [S] 16,6 8,4 38,5 20,5 -5,0 -3,9 4,1 12,4

wreck_15_34 [B] 31,4 30,4 59,3 34,0 -3,4 -3,1 10,7 14,8

wreck_15_34 [S] 23,9 1,6 63,5 4,0 -3,9 -3,3 8,2 11,6

Figure C.5.: Results from the tone-based separation algorithm for the vocal dataset
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free Music [B] 30,22 40,41 54,29 40,32 -2,70 -1,99 2,33 12,04

Free Music [S] 29,26 19,49 62,88 24,87 -2,99 -2,34 6,32 13,14

Mind Map1 [B] 39,46 63,05 54,66 62,21 -8,55 -6,02 1,00 22,85

Mind Map1 [S] 20,96 38,58 55,97 36,42 -7,58 -7,17 13,69 19,51

Mind Map2 [B] 40,25 62,56 61,80 51,20 -6,50 -6,14 12,42 14,15

Mind Map2 [S] 24,89 17,72 68,03 21,13 -12,65 -9,92 2,00 10,30

Seed [B] 41,70 47,10 68,39 44,48 -4,48 -4,15 8,59 15,77

Seed [S] 15,69 12,45 22,33 33,18 -5,72 -4,53 6,18 15,98

lussier [B] 38,62 55,74 52,50 38,85 -2,87 -2,57 12,00 18,55

lussier [S] 35,59 21,91 41,71 26,40 -8,99 -7,00 3,17 18,13

mozart [B] 38,98 49,16 53,89 35,86 -5,48 -4,62 4,98 18,85

mozart [S] 20,62 17,06 13,76 31,61 -6,33 -6,19 14,56 22,92

sax_33 [B] 42,78 63,44 71,55 44,35 -3,25 -3,13 13,28 17,59

sax_33 [S] 34,02 47,38 46,97 27,28 -3,63 -3,52 12,55 21,39

sax_38 [B] 38,27 50,32 62,21 45,70 -7,04 -6,63 9,85 18,26

sax_38 [S] 22,66 74,08 40,67 28,67 -3,76 -3,66 16,65 25,41

sax_45 [B] 36,43 40,37 60,99 40,70 -4,10 -3,91 11,88 16,97

sax_45 [S] 26,46 44,44 36,86 25,94 -3,86 -3,70 13,29 25,82

sax_46 [B] 37,07 55,90 59,10 46,34 -7,40 -7,40 11,36 19,35

sax_46 [S] 31,94 24,22 62,83 27,24 -7,19 -6,63 9,58 17,36

sax_54 [S] 41,44 56,35 69,56 46,66 -4,59 -4,70 13,27 15,65

sax_54 [S] 19,95 13,12 57,82 21,23 -7,21 -6,13 6,07 13,99

sax_65 [B] 39,19 54,97 65,00 46,52 -4,06 -3,68 8,58 16,83

sax_65 [S] 32,56 40,83 43,86 36,83 -3,75 -3,61 15,99 22,15

sax_67 [B] 40,68 51,29 66,10 46,25 -5,92 -5,61 11,33 16,97

sax_67 [S] 29,33 46,79 39,60 22,61 -8,52 -8,34 14,36 22,93

sax_68 [B] 32,82 36,79 62,58 38,33 -4,12 -3,46 5,79 15,58

sax_68 [S] 29,71 33,77 36,44 31,92 -5,16 -5,11 17,76 22,45

sax_69 [B] 39,92 47,62 65,73 44,42 -2,30 -2,02 8,33 17,41

sax_69 [S] 32,04 41,84 44,29 34,81 -4,76 -4,68 15,91 22,27

sax_64 [B] 34,09 38,39 63,77 39,19 -4,01 -3,54 7,71 13,99

sax_64 [S] 31,57 34,77 39,01 29,69 -3,26 -3,13 14,93 19,71

take_five [B] 45,58 61,67 62,05 48,28 -4,03 -3,79 11,28 16,17

take_five [S] 15,07 36,43 36,09 42,63 -5,99 -5,65 10,79 20,14

Figure C.6.: Results from the tone-based separation algorithm for the instrumental
dataset
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TRACK NAME OPS TPS IPS APS SDR ISR SIR SAR

Free Music [B] 24,62 54,49 13,69 60,60 0,06 8,14 -2,05 15,88

Free Music [S] 23,79 33,02 51,51 36,92 1,88 2,79 1,46 10,37

Mind Map1 [B] 32,58 58,01 41,05 64,19 -1,05 9,77 -3,04 18,38

Mind Map1 [S] 11,52 37,76 32,34 38,74 1,48 1,97 2,87 11,02

Mind Map2 [B] 23,33 60,21 36,91 74,16 8,08 11,69 9,63 17,96

Mind Map2 [S] 25,76 63,12 50,95 28,57 1,31 4,61 -0,36 10,38

Seed [B] 40,41 61,06 55,39 63,48 1,54 11,20 0,50 19,58

Seed [S] 12,10 29,74 39,57 29,33 1,22 1,66 0,64 10,40

lussier [B] 36,48 69,75 43,68 50,02 4,68 10,23 4,51 16,90

lussier [S] 18,64 23,63 51,12 20,51 2,12 3,95 1,63 11,26

mozart [B] 31,07 46,40 41,08 48,46 -1,90 4,89 -5,47 16,84

mozart [S] 18,17 29,61 20,63 39,71 3,67 4,83 6,01 17,05

sax_33 [B] 48,03 62,62 64,07 54,70 2,88 3,78 2,11 15,91

sax_33 [S] 9,56 37,71 52,07 35,63 2,42 2,66 5,41 13,95

sax_38 [B] 31,86 37,06 26,39 51,09 0,27 3,48 -5,51 17,80

sax_38 [S] 20,78 29,66 54,00 34,85 1,80 1,88 8,46 15,14

sax_45 [B] 30,73 30,95 34,57 43,65 2,40 3,98 0,36 15,81

sax_45 [S] 14,02 46,69 42,60 43,54 2,92 3,07 9,86 16,41

sax_46 [B] 34,10 41,00 30,63 51,79 3,72 4,66 4,37 18,40

sax_46 [S] 22,18 35,25 51,82 38,35 1,50 1,67 2,80 11,17

sax_54 [S] 44,23 56,27 57,72 54,72 4,28 4,96 7,18 19,28

sax_54 [S] 8,83 35,93 37,95 41,11 1,74 1,98 3,61 11,30

sax_65 [B] 31,09 37,40 24,64 53,50 1,58 4,15 -2,59 17,76

sax_65 [S] 14,32 21,93 49,37 30,90 1,79 1,86 8,33 14,08

sax_67 [B] 37,41 41,27 39,65 48,72 1,74 3,71 -2,09 17,40

sax_67 [S] 18,86 29,24 37,00 37,31 2,40 2,49 8,96 16,73

sax_68 [B] 17,30 7,89 3,73 40,81 0,34 3,40 -5,43 20,32

sax_68 [S] 10,87 15,29 43,08 27,68 0,56 0,66 0,34 12,19

sax_69 [B] 24,32 20,41 12,56 44,69 0,79 3,45 -4,41 18,83

sax_69 [S] 7,81 20,00 36,56 33,25 0,92 1,04 2,68 12,57

sax_64 [B] 25,59 19,81 15,89 44,72 0,88 3,57 -4,25 18,05

sax_64 [S] 14,23 24,13 40,36 34,96 1,70 1,78 7,54 15,20

take_five [B] 37,06 60,25 47,79 63,97 -0,07 8,70 -1,63 17,71

take_five [S] 7,64 44,87 36,78 35,04 2,27 2,91 4,14 12,97

Figure C.7.: Results from the REPET separation algorithm for the instrumental
dataset
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Glossary of Acronyms

Acronyms

AMT Automatic Music Transcription
APS Artifacts-related Perceptual Score
BSS Blind Source Separation
CAM Common Amplitude Modulation
CISS Coding-based Informed Source Separation
CQT Constant-Q Transform
DTW Dynamic Time Warping
FFT Fast Fourier Transform
GCTF Generalized Coupled Tensor Factorization
IBM Ideal Binary Masks
IF Instantaneous Frequency
IFD Instantaneous Frequency Distribution
IG Inverse Gamma
IPS Interference-related Perceptual Score
ISS Informed Source Separation
IS Itakura-Saito
ISTFT Inverse Short Time Fourier Transform
KL Kullback-Leibler
MIR Music Information Retrieval
MDCT Modified Discrete Cosine Transform
MFCC Mel Frequency Cepstral Coefficients
MIREX Music Information Retrieval Evaluation eXchange
MMSE Minimum Mean-Square Error
MP Matching Pursuits
MSTFT Modified Short Time Fourier Transform
NMF Non-negative Matrix Factorization
NTF Non-negative Tensor Factorization
OMP Orthogonal Matching Pursuits
OPS Overall Perceptual Score
OSC Octave-based Spectral Contrast
PEASS Perceptual Evaluation Methods for Audio Source Separation
PLCA Probabilistic Latent Component Analysis
PLCA Probabilistic Latent Component Analysis
SAOC Spatial Audio Object Coding
SiSEC Signal Separation Evaluation Campaign
SNR Signal to Noise Ratio
STFT Short Time Fourier Transform
SVM Support Vector Machine
TPS Target-related Perceptual Score
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Glossary

blue is the color of glossary terms. 6

BPM Beats per minute is a unit typically used as a measure of tempo in music. 93

brass A brass instrument is a musical instrument that produces sound by sympa-

thetic vibration of air in a tubular resonator in sympathy with the vibration

of the player’s lips. The trumpet, trombone, and tuba are example of brass

instruments. 95

cent is a logarithmic unit of measure for musical intervals. An equally tempered

semitone spans 100 cents. An octave spans of 12 semitones and thus, 1200

cents. 58

double reeds The term double reed comes from the fact that some musical instru-

ments produce sound by the vibration against each other of two pieces of cane.

The bassoon, oboe, and English horn are examples of double reed instruments.

95

equal temperament is a system of tuning in which every pair of adjacent notes has

an identical frequency ratio. 97

F-Measure can be interpreted as a weighted average of the precision and recall.. 74

major a major chord is one whose third degree is a major third above the tonic or

root note. 97
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MIDI is a technical standard that describes a protocol, digital interface and con-

nectors and allows a wide variety of electronic musical instruments, computers

and other related devices to connect and communicate with one another. MIDI

carries event messages that specify notation, pitch and velocity, control signals

for parameters such as volume, vibrato, audio panning, cues, and clock signals

that set and synchronize tempo between multiple devices. 24

minor a minor chord is one whose third degree is a minor third above the tonic or

root note. 97

mixture is the resulting signal after combining multiple recorded sounds into one or

more audio channels. 56

monaural single-channel signal. 56

Precision in information retrieval, Precision is the fraction of relevant instances that

are retrieved. 74

real-time In digital signal processing, real-time means that the mean processing

time per sample is no greater than the sampling period. 68

Recall in information retrieval, Recall is the fraction of retrieved instances that are

relevant. 74
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