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ABSTRACT 

Modern electrical power window regulator for vehicle door is made of electrical drive, 
mechanism, electronic hardware and controlling software. Due to the increasing system 
complexity, method is being searched to analyze system behavior and influencing factors. In 
this article, a mechanical model is introduced to simplify window regulator systems. In the 
model, glass mass and moment of inertia of electrical drive armature are essential 
components, because they possess the most kinetic energy of system during moving. To build 
up model, moment of inertia is firstly converted into effective mass. With it, mechanical 
model, with two degrees of freedom, is formed in the way that tow masses are connected by 
spring and damper. The driving force in model has a constant component and a periodical 
component and the direction of friction force between door and glass depends only on the 
velocity of glass. Both driving force and friction force are assumed to be small in comparison 
with elastic force. The system is investigated by means of method of averaging. In the end, 
numerical calculation is presented and the outcomes from different combination of driving 
force are discussed. 

Index Terms - Window regulator, method of averaging 

1. INTRODUCTION

Window regulator is the mechanism in vehicle doors to lift up and pull down window glass. 
Its design evolves from metallic lever system in the early age to nowadays cable driving 
system, shown in Fig. 1 (1 - Electrical drive and electronics, 2 - Cable drum and housing 
(covered), 3 - Compensation spring, 4 - Bowden cable and cable, 5 - Pulley, 6 - Guiding rail, 
7 - Slider (Glass carrier)). In comparison with manual window lifting system, electrical 
window regulators provide more comfort, with function, for example auto-up or so-called 
one-touch closing. However, it draws attention in aspect of safety. It leads to the invention of 
anti-trap function. The robust realization of anti-trap function in each single trapping event 
relies on the cooperation of mechanical components, electrical drive, electronic hardware, 
software and algorithms. Technically, modern development methods are under searching [3]. 
The external pressure is higher requirements, for instance, light weighted design (less CO2 
emission), higher durability, better acoustic performance and child finger protection for 4mm 
open glass. Internally, the development cycle is getting shorter and shorter. Under such 
circumstance, the earlier a design failure is found, the less cost and effort would be involved. 
For all these reasons, deeper understandings of window regulator systems are required.  

In this paper, we studied the dynamic behaviour of window regulator system during 
transition from start-up to stationary state. A better understanding of effecting factors to such 
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oscillation process benefits, from one side, the improvement of mechanical components and 
electrical drives and, from another side, the advancement of anti-trap function. 
  

 
Figure 1: Window regulator 

 
2. MECHANICAL MODEL 

 
First of all, window regulator system is transformed into a lumped model. Window regulator 
transfers the lifting power from electrical drive to glass and at the same time transforms 
rotational movement into translational movement. If slack is ignored, a spring and a damper 
are introduced to represent its mechanical structure. The spring rate is denoted with � and the 
damping factor is denoted with �. For the convenience, all movement is analyzed in form of 
translational movement. Therefore, The masses, ��	and ��, stand each for the equivalent 
mass of armature inertia in electrical drive and the mass of window glass. Only two masses 
are taken into consideration, because the most kinetic energy is distributed in these two 
components during the motion of glass, seen in Tab. 1.  
 

 Speed Mass/Inertia Kinetic Energy 
Glass 0.12 m/s 3 kg 0.022 J 
Drum 5.4 rad/s 4.9e-6 kg·m2 0.073e-03 J 
Gear 5.4 rad/s 12e-6 kg·m2 0.186e-03 J 
Armature 398 rad/s 9.9e-6 kg·m2 0.7848 J 

Table 1: kinetic energy of components 
 
According to energy conservation low, moment of inertia of electrical motor armature can be 
converted to effective mass with Eq. (1), where J� is moment of inertia of armature, i is the 
worm gear ratio, η is the worm gear efficiency and r is the gear wheel radius. Verification can 
be performed by comparing the kinetic energy of obtained mass at speed of glass and the 
production of kinetic energy of armature with consideration of gear efficiency. 
 �� 	� �
����� . (1)  

With simplified mechanism and converted inertia, the mechanical model of window regulator 
system is represented in Fig. 2. In the figure, ��∗ and ��∗ correspond each the position of 
masses �� and ��. The external driving force �� applies to the mass ��, simulating driving 
torque of electrical drive, while the value �� represents Coulomb’s dry friction force, which is 
depending on the velocity of mass ��. 
 
The force equilibriums at masses ��	and �� give the two following differential equations, 
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 ��	���∗ 	+ 	����∗ − ��∗� 	+ 	��	���∗ −	���∗� 	� 	�� , (2)  

 ��	���∗ 	+ 	����∗ − ��∗� 	+ 	��	���∗ −	���∗� 	� 	�� . (3)  

When �� and 	�� take difference forms, their combination can imitate various working 
situation of window regulator systems. We assume that the friction and the excitation forces 
are small in comparison to the spring force. In the following sections, the model is analyzed 
with method of averaging. 
 

 
Figure 2: Model of window regulator 

 
3. THEORETICAL INVESTIGATION – METHOD OF AVERAGING 

 
The Coulomb’s dry friction at �� takes form as	−���������∗�, where F! is constant. The 
external driving force, applied to mass	M�, contains two parts. One part is constant force, ��#. 
The other part is described by a harmonic function on time t∗ with angular frequency ω and 
constant amplitude of F& [1]. With this assumption, system equations are 
 	 ��	���∗ 	+ 	����∗ − ��∗� 	+ 	�����∗ −	���∗� 	� ��# +	���
��'(∗�,	 �1� 		 ��	���∗ 	+ 	����∗ − ��∗� 	+ 	�����∗ −	���∗� 	� 	−���������∗�.	 �2� 	
 
For further investigation, we introduce that system with dimension variables (denoted by 
asterisk) above is converted into system with dimensionless variables below: 
 ( � (∗'#,									�+ � �+∗, , 
 � 1,2,									��+ � 	��+∗, ∙ '# , 
 � 1,2,									��+ � 	��+∗, ∙ '#� , 
 � 1,2, 

'#� � ��� +��2���� ,					. � ''# ,					/ � ���,'#� , 0 � �,'#	�� 	1�1� ,				2 � ���� ,				3 � ��#�� , 1� � ��� ,									1� � ��� ,									1� +1� � 1. 
 
The value L is the scale of length and the value '# is the scale of time, used for the 
conversion from dimensional system to dimensionless system. Substituting the dimensional 
variable in Eq. (4) - (5), we obtain the system in dimensionless variables 
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 ��� 	+ 	21���� − ��� 	+ 	1�/0���� − ���� 	� /1� 3 + /1� 2�
��.(�, (3)  

 ��� 	+ 	21���� − ��� 	+ 	1�/0���� − ���� 	� 	− /1� ��������. (4)  

The method of averaging [2] is applied, so that the system is transformed into standard 
form. For this purpose, we rewrite the system in Eq. (6) - (7) as 
 1���� +1���� 		� /	43 + 2	�
��.(� − ��������5, (5)  

���� − ���� 	+ 2��� − ��� 	� 	−/ 6 11� �������� + 0���� − ���� + /1� 3 + 2 11� �
��.(�7. (6)  

 
Introducing new variables, velocity of center of mass 	8�(� � 1���� 	+ 	1���� and relative 

displacement 9�(� � �� − ��. We obtain 
 8� 		� /4	3 + 2	�
��.(� − ��������5, (7)

9� 	+ 29	 � 	−/ 609� + 11� �������� + 2 11� �
��.(� + 3 11�7. (8)

 
For unperturbed system,	. in (10) is equal to constant,	9�(� � �� − �� changes harmonically 
with constant amplitude. According to it, we provide the general solution of Eq. (10) in the 
form: 9�(� � :�t�	cos�>�,	where  > � √2( + @. Then, 
 z� � −a√2	 sin�φ�, (9)z� � a� cos�φ� − aE√2 + θ� G sin�φ�. (10)

It yields 
 @� � :� cos�>�	:	sin	�>� , ��� � 8 −1�:√2sin	�>�. (11)

 
Therefore, the system in Eq. (10) - (11) has form 
 8� � /H3 + 2�
��.(� − ���E8 −1�:√2sin	�>�GI, (12)

:� � / sin	�>�	√2 6−0:√2sin	�>� + 11� ���E8 −1�:√2sin	�>�G + 2 11� �
��.(� + 3 11�7, (13)

>� � @� + √2 � / cos�>�	√2: 6−0:√2sin	�>� + 11� ���E8 −1�:√2sin	�>�G + 2 11� �
��.(�
+ 3 11�7 + √2. (14)

In the case of 2 � 0, the periodic component of driving force is equal zero. The stable state of 
system can achieve when  8� � 0, :� � 0 and >� � 0. For 8� � 0, we obtain  3 � ���E8 −1�:√2sin	�>�G. (15)
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It means that the constant component of driving force ��# can be equal to either ��  or −��. 
The up-lifting process of window regulator is interested, therefore, V > 0 and γ � 1. :� � 0 
and >� � 0 can only be achieved, when > � �N, �	O	P. By simplifying Eq. (17) and applying >� � 0, it gives : � − /2 � 11� + 11��. (16)

Substitute /, it yields : � − ���,. (17)

By multiplying L, it gives the dimensional stationary amplitude of :. 
 

In the case of  2 ≠ 0, the system behavior is investigated in vicinity of the main resonance 
frequency: S � E√2 + 	/∆G(, . � √2 + 	/∆. After introducing new slow variable, U � S −>,	U� � −@� + 	/∆, the system has standard form: 
 8� � /H3 + 2�
��.(� − ���E8 −1�:√2sin	�>�GI, (18)

:� � / sin	�>�	√2 6−0:√2sin	�>� + 11� ���E8 −1�:√2sin	�>�G + 2 11� �
��.(� + 3 11�7, (19)

U� � −/ cos�>�	√2: 6−0:√2sin	�>� + 11� ���E8 −1�:√2sin	�>�G + 2 11� �
��.(� + 3 11�7+ 	/∆. (20)

We assume that / ≪ 1. Then in the system above, the variables, 8, : and U, are slow 
variables. According to the method of averaging, the procedure 〈⋯ 〉 � Z �⋯�[>�\#  is applied 
to the system of Eq. (21) - (23). 

 

8� �
]̂_̂
` /�3 + 1�, 8 < −1�:√2,/ b3 − 2π arcsin d 81�:√2ef , |8| ≤ 1�:√2,

/�3 − 1�, 8 > 1�:√2,
 (21)

:� � 	
]̂
_̂
^̂
` −/ 1	√2 i0:√212 − 2 11�

12 �j�Uk , 8 < −1�:√2,
−/ 1	√2 l0:√212 + 11�

2πm1 − 8�21��:� − 2 11�
12 �j�Un , |8| ≤ 1�:√2,

−/ 1	√2 i0:√212 − 2 11�
12 �j�Uk , 8 > 1�:√2,

 (22)

U� � −@� + 	/∆� −/ 1	√2: i2 11�
12 �
�Uk + /∆. (23)

Where �j� oarcsin p qrs�√�tu � v1 − qw�rsw�w. 
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The stationary motion of the system exists if 8� � 0, :� � 0 and U� � 0. The value 8�  can be 
equal to zero only if  |8| ≤ 1�:√2. By eliminating �j�U and �
�U with �j���U� + �
���U� �1, Eq. (25) - (26) give  
 

For the positivity of amplitude, the restriction, 2 > xrsyrw cos	�\z� �, should be implied. Under 
this condition, the stationary amplitude of 	: is 
 

: � −4√21�0os	�N32 � + v2 o1��π�2��0� + 4∆�� − 64∆�1��cos�	�N32 �u21�1�π�0� + 4∆�� . (25)

 
With known stationary amplitude of  :, the stationary value of phase U can be calculated by 
either :� � 0 in Eq. (25) or U� � 0 in Eq. (26). 
 

4. NUMERICAL CALCULATION 
 
The typical values from real window regulator systems are �� � 45	~�,				�� � 5	~�,					� �2 × 10x �r , � � 80 �r/� , �� � 10	�. In the case of  2 � 0 , ��# must be equal to either F!, so 
as to a reach stable amplitude during up-lifting process of window regulator, according to the 
analysis previously. Thus, ��# is equal to 10	N. Then, the dimensional stationary amplitude of : yields to be −0.5 × 10�	m, by eliminating , in Eq. (20). It is verified by the numerical 
solutions of dimensional system in Eq. (4)-(5). Fig. 3 shows the solved 8 and :. The initial 
condition for the solution is x�∗�0� � 0 and x�∗�0� � 0 . 
 
In the case of 2 ≠ 0,  �� and '  have each typical value of 200N and 75.8���. '# is 
calculated to have value of 47.1���. With Coulomb’s dry friction force F! is 10N, we obtain β � 20 . According to the restriction of Eq. 28, β must be greater than xrsyrw cos	�\z� � and 3 can 
only vary in range between -1 and 1, so that stationary amplitude of 	: exists. The maximal 
value of xrsyrw cos	�\z� �  is 11.5, when 3 is 0. Thus, there exists stationary amplitude of :, with 

the system setup. According to [4], the scale of length L is equal to  ���s��w|���w|. In this case, L 

has value of 3.3 × 10��m. 
 
 

21��1��π��0� + 4∆��:� + 8√21��1�π0acos	�N32 � + p161��cos�	�N32 � − 1��π�2�t
� 0. (24)
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Fig. 3 Numerical solutions of the dimensional system in Eq. (4)-(5) 

 

In one case, ��# � 0. As a result, 3 � 0. The left side of Fig. 4 shows the results, after 
solving the exact system in Eq. (15) – (17) and averaged system in Eq. (24) – (26) with initial 
condition, 8�0� � 0, :�0� � 0.01, U�0� � 0. From the numerical solution of averaged 
system, stationary : is 0.45, which is identical to the calculation in Eq. (28). The dimensional 
value of : here is 1.5 × 10��1. In a more general case, ��# ≠ 0. As an example, ��# is given 
to be 5. As a result, 3 � 0.5. The right side of Fig. 4 shows the numerical solution, with the 
same initial condition. From the solution of averaged equation, stationary : is 0.62, which is 
identical to the calculation in Eq. (28). The dimensional value of : here is 2.1 × 10��1. Such 
system setup and combination of driving force and friction force simulates the system respond 
of window regulator under disturbance from electrical drive. The vibration in electrical drive, 
which is usually caused by the irregularity of its gear transmission, can lead into the unstable 
moving speed of window glass. The instability can be troublesome in realizing anti-trap 
function; in extreme case it can cause failure, such as false reversing of window regulator. 
Results of calculations on the basis of mathematical model will qualitatively be coordinated 
with experiment. 
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Fig. 4 Numerical solutions of the exact system (15)–(17) and the averaged system (24)-(26) 
 

5. SUMMARY AND OUTLOOK 
 
The paper presents a simple mathematical model of window regulator system. It is assumed 
that system is driven by an excitation, which has constant and periodic parts. The standard 
form of system is converted. Depending on driving force, system is analyzed respectively. 
The “averaged” system is deduced with applying the method of averaging to the exact system. 
Then the numerical solutions of system are computed and presented in graph. The stationary 
amplitude is compared between numerical solution of asymptotical approximation equation 
system and calculation from obtained analytical formula. The two values are equal to each 
other. In the end, the practical meanings are briefly discussed.  
 
Although the model of driving force has its generality, the approach to analyze the dynamical 
behavior of window regulator systems can be advanced with more complicated model setup. 
For example, the mass 1 can be replaced by a model of electrical drive, so as to test the 
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compatibility of electrical drive and window regulator. It is also interesting to find out, when a 
drive with smaller inertia is implemented, how window regulator system should be adjusted  
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