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ABSTRACT

Inspired by the motivation to find new possibilities for creating adaptive mechanical motion systems, this work is
a contribution to the research on fuzzy adaptive control concepts. An already existing high-gain adaptive control
strategy is extended by a fuzzy-adaptation law using various fuzzy logics. In succession, several strategies are
developed, analyzed and simulated when they are firstly applied to control a biologically inspired sensor system
(fast-adapting receptor cells). The controllers are more effective than other ones from literature. In a next step, the
best working fuzzy-adaptation strategy is used to adaptively control a lane assist of vehicles based on a single-
track model in state space. To find an optimal solution, the classic control theory and fuzzy logic are combined. In
order to assess the effectiveness of the fuzzy-adaptation model, other lane assists which are already known from
literature are compared to show the Pros and Cons and to find out which efficiency the attempt has.

Index Terms— fuzzy logic, fuzzy system, fuzzy-adaptive control, λ-tracking, linear state-feedback, lane assist of
vehicles, single-track model.

1. INTRODUCTION

The requirements of modern motor vehicles are continuously increased in order to fulfill the expectation of the
driver. The basic goal is to increase the driving comfort without compromising safety. This includes systems such
as

• cruise control (CC),

• adaptive cruise control (ACC), and

• lane departure warning system (LDW).

For the implementation of these systems, modern controllers are required, which do not only fulfill their function
but also follow the needs of the driver. Unwanted intrusive in the driving behavior is not only unpleasant for the
driver, but can also endanger the driving safety.
On the basis of the modern video technology and image processing and the incentive for autonomous driving, lane
assists of vehicles are more often in the focus of development. There are basically two principles, based on the
human driver, for the controller designs: one is oriented to the road behavior and the other one on other vehicles.
But, what the human being can judge bad and what is not included in the controller design, are low road inclination
changes and fluctuating crosswind. In addition, the vehicle models for a classical controller design with linear state
feedback (pole placement) can be mapped linearly only at a constant vehicle velocity, [6], [18].
For these reasons, the following investigations start. The goal is a linear state-feedback to improve a P-controller
with fuzzy adaptation, to keep the vehicle with a specified lateral disturbance in a λ-tube around an ideal roadway
centerline, regardless of the vehicle velocity.
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1.1. MOTIVATION

Owing to the increasing electrification in a variety of industrial applications, classical regulatory approaches reach
more and more often their technical limits. Nonlinear control strategies are a possibility for solving the problem.
But, these have the disadvantages that they are usually designed for specific applications and they cannot be ana-
lyzed with classical methods of linear control theory. Therefore, another possibility for solving the problem is an
adaptive control strategy. With its help it is possible to optimize classical linear control approaches and make them
available to a larger field of tasks. The advantage of these methods is also that one can use many conventional
analytical procedures. For this reason, the focus is on the adaptive λ-tracking control in the following, see Secti-
on 2. With the help of the adaptation strategy, linear control laws can be adapted in different situations to generate
a higher control quality. Most of the works from literature usually use classical adaptive approaches. Therefore,
in this work, a non-conventional adaptation is developed. With the help of the fuzzy logic, the adaptation task is
going to verbalize, in order to improve the quality of adaptation compared to the approaches in literature.

1.2. FUZZY-CONTROL

In general language area, there are many statements that cannot be clearly described with right/wrong, yes/no or
belonging to/not belonging to. In contrast to classical logic or binary logic, where the truth value of a statement is
xi � }0, 1| , the fuzzy logic provides a continuous transition between membership and non-membership. Therefore,
the possibility is offered to attributable a statement j the membership value xj � (0, 1), [16]. The origin of the
unsharp logic and of the resulting unsharp control, known today as fuzzy control, goes back to [17]. In 1965, the
author advanced a set theory by a fuzzy set mapping and so coined the term fuzzy logic.
By using the unsharp logic, a simple fuzzy system, consisting of a system of rules and inference-scheme, can be
derived, which creates a static, nonlinear functional relationship y = f(u) between scalar (sharp) input variables
ui with i = 1, . . . ,m, and a scalar (sharp) output y, see Fig. 1.
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Figure 1. Scheme of a fuzzy system, adapted from [1].

The in-/output interfaces of a fuzzy system are generally referred to as fuzzification and defuzzification. They are
used to convert the real values into fuzzy values. The processing of the fuzzified input variables ui is then in the
inference system, consisting of the rule-base with r rules and the accumulation which represents the union of all
rule outputs.
The task of the fuzzification is to identify the membership degree of the different statements (e.g., “low”, “medi-
um”, “high”) for the linguistic input variables (e.g., “error”, “velocity”). In this context, the membership function
for each input variable

μ
(1)
i (ui), μ

(2)
i (ui), . . . , μ

(k)
i (ui) , , k = number of statements,

is evaluated and an inference-scheme is provided.
The fuzzy inference forms the core of each fuzzy system. It consists of a rule-base with j = 1, . . . , r rules in which



the causal in-/output context is defined and the accumulation which linked the different membership degrees of the
rules r. Each rule is subject to a specific “if-then”-scheme:

IF premise j, THEN conclusion j
(e.g., IF error “high” and/or velocity “high”, THEN gain factor “high”)

Because premise and conclusion are based on the statements of fuzzy in-/output variables, such rules are referred
in accordance to the classical implication as fuzzy implication.
The result of the fuzzy inference is initially a resulting fuzzy set of the output with the membership function
μInf (y). The task of defuzzification is then to win from the given fuzzy set a real output value of y. This is usually
done with help of the gravity method, see [16]:

ys =

+∞︷
−∞

μinf (y)≡y dy

+∞︷
−∞

μinf (y) dy

or ys =

r∫
j=1

μRj ≡y

r∫
j=1

μRj

2. STATE OF THE ART

As a result of a large variety of adaptive control systems, the main focus is on the adaptive λ-tracking“-control [7]
in this paper, see Fig. 2.

Figure 2. λ-tracking objective, [2].

The objective of the λ-tracking is:

• to force the controlled variable y(≡) as quick as possible into the λ-tube, which is a around the setpoint
trajectory yref (≡),

• to keep the controlled variable y(≡) in the λ-tube with the lowest possible control signal u(≡), and

• to control y(≡) under (supposed) unknown system parameters (i.e., uncertainty).

Remark 2.1. An implementation of a λ-tracking control does not necessarily yield in a stable closed-loop system.
The λ-tracking controller only achieves the desired object from above.

Remark 2.2. The λ-tracking objective also includes two special cases: firstly, the λ-stabilization where λ ∧= 0 and
yref (≡) ≤ 0, and stabilization1 with λ ≤ 0 and yref (≡) ≤ 0, [2], [11].

1Although stabilization is also part of other adaptation methods, it is not discussed in this work. Further information on additional content
can be found in the corresponding literature.



2.1. CLASSICAL λ-TRACKING USING A P- AND A PD-CONTROLLER

First attempts for solving this problem are done in 1994. In [8], the basic approach of a conventional P-controller
was taken up and provided with a gain factor k(≡), which increases depending on the size of the control error e(≡),
[8]:

e(t) := yref (t) y(t)
u(t) = k(t)e(t)

k̇(t) = max}0, ‖e‖ λ| 2 , λ > 0

⎩⎪
⎨ (1)

There results are extended in [2] and [3] to a PD-controller for multiple-input multiple-output (MIMO) systems:

e(t) := yref (t) y(t)
u(t) = k(t)e(t) + k(t)ė(t)

k̇(t) = max}0, e λ| 2 , λ > 0

⎩⎪
⎨ (2)

2.2. MODIFIED λ-TRACKING ADAPTATION OF A PD-CONTROLLER

Later, the authors of [5] use the approach of [8] (see Subsection 2.1) to control a biologically inspired sensor
system, see also [4]. But, it turned out that the basic structure of the conventional λ-tracking controller is not
sufficient for this system. An appropriate modification of the approach of [8] was necessary to get the required
performance, [3], [5]:

e(t) := yref (t) y(t)
u(t) = k(t)e(t) + κk(t)ė(t)

k̇(t) =

⎫∑∑∑∑⎬
∑∑∑∑⎭

γ( e(t) λ)2 , λ+ 1 ≥ e(t)

γ( e(t) λ)0.5 , λ ≥ e(t) < λ+ 1

0 , e(t) < λ { t te < td

σ
)
1 ‖e(t)‖

λ

[
k(t) , e(t) < λ { t te �td

λ > 0 , κ > 0 , σ > 0 , γ → 1 , td > 0

⎩∑∑∑∑∑∑∑∑∑∑∑∑⎪
∑∑∑∑∑∑∑∑∑∑∑∑⎨

(3)

By the reduction of the gain factor k̇(t) < 0, it is possible to respond to a decreasing disturbance and to ensure an
optimal utilization of the λ-tube. The result is, that the energy fed to the plant is reduced, so that the system can
nearly free oscillate in the λ-tube.

2.3. INTERIM CONCLUSION

The modified λ-tracking control strategy (3) represents a process which is adapted from the classical PD-controller,
to get an optimal result of the controlled system. Compared to the approach of [8], the quality of adaptation can
be significantly improved. But until reaching the desired behavior, many simulations or optimization procedures
are necessary to determine the free parameters. Despite this deficit, the modified λ-tracking control strategy (3) is
used in the next steps of this investigation to compare the classical method with the fuzzy-adaptation strategy.

3. GOAL OF THIS WORK

The modified λ-tracking control strategy (3) in [5] represents an important improvement also including a fuzzy-
adaptation law, but a large number of preliminary investigations are necessary to reach an optimum of performance.
More precisely, the starting point is to find out the potential of a fuzzy-adaptation strategy. With the help of the
fuzzy logic, the following questions should be answered:

1. Can a λ-tracking adaptation be performed with the addition of the fuzzy logic?

2. Can similarly good result, as in the approach of [5], be achieved or even more?

3. Can the number of free parameter be reduced (in the best case equal to zero) in order to increase the direct
application to a diversity of systems and save costly simulation studies?

4. Can the designed fuzzy-adaptation strategies be used for a lane assist of vehicles to improved the feedback
control?



4. FUZZY λ-TRACKING ADAPTATION

In the following subsections, various possibilities are presented for fuzzy-adaptation of mechanical motion sy-
stems. The most promising approaches are used later for the fuzzy adapted P-controller and for the comparison to
the concept of [5], see Subsection 2.2.
In contrast to the approach of [5], the gain factor k(≡) is influenced by the fuzzy logic instead of an analytical
adaptation law, where as the PD-structure of the feedback law is kept the same:

e(t) := yref (t) y(t)
u(t) = k(t)e(t) + κk(t)ė(t)

k̇(t) = error-dependent fuzzy-adaptation
or

k(t) = event-dependent fuzzy-adaptation

⎩∑∑∑∑⎪
∑∑∑∑⎨

To distinguish the various fuzzy systems, the following definition is introduced:

(type of the fuzzy system)-dependent fuzzy-adaptation-a b c d

number of input variables number of output variables

maximum number of linguistic
terms of input variables

maximum number of linguistic
terms of output variables

Figure 3. Definition of the fuzzy system designation.

4.1. ERROR-DEPENDENT FUZZY λ-TRACKING ADAPTATION

The first way to implement a λ-tracking adaptation with the help of the fuzzy logic is the change of the gain factor
k(t) dependent on the error e(t), see Fig. 4.
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Figure 4. Error-dependent fuzzy λ-tracking adaptation.

GAIN AREA ( e(t) �λ):
Is the error e(t) outside the λ-tube, the gain factor k(t) is increased by evaluating the degrees of membership and
the rule i:

rule i: IF “ e(t) > λ”, THEN “k̇(t) > 0”

MINIMIZATION AREA ( e(t) ≥ λ≡ε):
If the error e(t) is within the λ ≡ε-area, the gain factor k(t) is reduced by evaluating the degrees of membership
and the rule j:

rule j: IF “ e(t) ≥ λ≡ε”, THEN “k̇(t) < 0”

STABILIZATION AREA (λ≡ε < e(t) < λ):
If the error e(t) does not belong to the presented intervals, the gain factor k(t) is stabilized by evaluating the
degrees of membership and the rule m:



rule m: IF “λ≡ε < e(t) < λ”, THEN “k̇(t) = 0”

Remark 4.1. A too low stabilization area (ε ⇒ 1−) leads to a continuous adaptation and early reduction of the
gain factor k(≡). For this reason, the minimization area is limited by ε = 1/4.

4.1.1. ERROR-DEPENDENT FUZZY-ADAPTATION-1331

The easiest way to implement a error-dependent fuzzy adaptation is the solely use of the three basic rules i, j and
m, see Subsection 4.1. For this, the fuzzy system requires only one input variable and one output variable with
three linguistic terms (explained in Fig. 5) and the three fuzzified basic rules:

rule 1: IF “ e(t) is high”, THEN “k̇(t) is positive”
rule 2: IF “ e(t) is low”, THEN “k̇(t) is negative”
rule 3: IF “ e(t) is medium”, THEN “k̇(t) is zero”

μ1( e(t) ) μ1(k̇(t))
low medium high

neg.

zero pos.
1 1

0 λ/4 λ e(t) 1≡10p 0 3≡10p k̇(t)

λ/2 λ/5

Figure 5. Membership functions of the error-dependent fuzzy-adaptation-1331 with the design factor p.

An advantage in using the fuzzy logic is to overlap the membership functions of the input variable depending on
λ. Therefore, a sharp separation of the three specific areas (see Subsection 4.1) does not take place immediately.
For selecting the overlapping membership functions, various simulations were performed. It turned out that

• a small overlap of the linguistic terms of the input variable produces an oscillating or chaotic adaptation
performance, and

• a large overlap of the linguistic terms of the input variable generates a permanent adaptation of k(≡) and
partly an unstable system.

By defining the input membership functions dependent on λ, this results in the arrangement of the three singletons
at the output for the remaining degrees of freedom of the fuzzy system. Because of the stabilization area, one
singleton of the output variable k̇(t) must be zero. For the other two we have a ratio of 3 : 1 between gain and
minimization of k̇(t) by means of further simulations. This case is based on that

• a large positive value of the singleton „positive“ produces a fast adaptation of the gain factor k(≡) when
leaving the λ-tube, and

• a small negative value of the singleton „negative“ avoids a too rapid minimization of the gain factor k(≡)
and, therefore, a lower, partly stable, new adaptation is achieved.

Remark 4.2. From the above statements it follows that the degree of freedom DoF = 1 for the fuzzy system
with p ∧= const. This means, that in contrast to the approach in [5], only one parameter p must be specified to
optimize the adaptation performance. Therefore, the necessary simulation studies will go down, when using this
fuzzy system.



4.1.2. ERROR-DEPENDENT FUZZY-ADAPTATION-1441

The second way to implement a error-dependent fuzzy-adaptation is the use of the two basic rules j and m (see
Subsection 4.1), but the third basic rule i is divided into:

rule 1: IF “ e(t) is high”, THEN “k̇(t) is positive”
rule 2: IF “ e(t) is very high”, THEN “k̇(t) is positive high”
rule 3: IF “ e(t) is low”, THEN “k̇(t) is negative”
rule 4: IF “ e(t) is medium”, THEN “k̇(t) is zero”

This modification makes it possible to divide the increase of the gain factor k̇(t) into two areas. This provides a
faster adaptation with a large initial deviation and a constant adaptation performance in the further course when
the controlled variable is near the λ-tube. In addition to the subdivision of the third rule, one linguistic term of the
input and output variable must be added, see Fig. 6.

μ1( e(t) ) μ1(k̇(t))
low medium high very high

neg.

zero pos. pos. high
1 1

0 λ/4 λ 1.2λ e(t) 1≡10p 0 3≡10p 12≡10p k̇(t)

λ/2 λ/5 λ/5

Figure 6. Membership functions of the error-dependent fuzzy-adaptation-1441 with the design factor p.

Remark 4.3. With the help of further simulations a ratio of 1 : 4 between the two linguistic terms “positive” and
“positive high” of the output variable k̇(t) is determined.

By means of this adaptation structure, it is possible to respond quickly to large deviation between the controlled
variable y(≡) and the λ-tube, without affecting the sensibility of the adaptation performance in the vicinity of the
target area. The disadvantage of this system is to react quickly to small or reduced disturbances. Here is a shift
of the singleton “negative” (see Fig. 6) inefficient, because the gain factor k̇(≡) is reduced by a pass through the
λ-tube. Furthermore, the adaptation performance is destabilized with a shift of the singleton.

4.1.3. ERROR-DEPENDENT FUZZY-ADAPTATION-3451

By referring to Subsection 4.1.2, it could be demonstrated, that a simple error-dependent fuzzy-adaptation is not
sufficient to optimally control a system under disturbances into the λ-tube. The reason is the low information
content, which is associated with the norm of the control error e(≡) , so that the following fuzzy-adaptation-3451
has two new input variables, see Fig. 7.

e(t)

ė(t)

e(t)

k̇(t)

fuzzy-adaptation-3451

Figure 7. Extended fuzzy system-3451.

With the help of the control error e(t) := yref (t) y(t) and its derivative ė(t) as new inputs of the fuzzy system,
it is possible, taking into account the corresponding rule-base, to adapt the gain factor k(≡) in dependence on the



movement direction and the speed of the controlled variable y(≡).
For the selection of membership functions μi of the input variables u(t) = [e(t), ė(t), e(t) ]

T or singletons of the
output variables k̇(t), there are different approaches. One possible implementation is shown in the Figure 8.

μ1(e(t)) μ2(ė(t))
negative zero positive negative zero positive

1 1

λ 0 λ e(t) λ 0 λ ė(t)
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0 λ/4 λ 1.2λ e(t) 18≡10p 1≡10p 0 6≡10p 18≡10p k̇(t)

λ/2 λ/5 λ/5

Figure 8. Membership functions of the error-dependent fuzzy-adaptation-3451 with the design factor p.

The linguistic statements and membership functions of the input variable e(t) were taken from the error-
dependent fuzzy-adaptation-1441, see Subsection 4.1.2. In the determination of new input variables e(t) and ė(t),
it was found, with the help of various simulations, that a “simple” approach with three linguistic terms }“negative”,
“zero”, “positive”| and the reference to λ-value is sufficient to achieve the desired adaptation performance.
On the other hand, it turned out that is very difficult to design the rule-base. Because of the different adaptation
scenarios and the evaluation of three input signals at the same time, it had to be derived from the basic rules i, j
and m, which described in the Subsection 4.1.

The rules used in the error-dependent fuzzy adaptation-3451 are summarized in the Table 1.

Table 1. Rule-base of the error-dependent fuzzy-adaptation-3451.
R01: IF “ e(t) is low, e(t) is zero and ė(t) is zero”, THEN “k̇(t) is negative high”
R02: IF “ e(t) is low, e(t) is negative and ė(t) is positive”, THEN “k̇(t) is negative”
R03: IF “ e(t) is low, e(t) is positive and ė(t) is negative”, THEN “k̇(t) is negative”
R04: IF “ e(t) is medium”, THEN “k̇(t) is zero“
R05: IF “ e(t) is high, e(t) is negative and ė(t) is negative”, THEN “k̇(t) is positive”
R06: IF “ e(t) is high, e(t) is negative and ė(t) is zero”, THEN “k̇(t) is zero”
R07: IF “ e(t) is high, e(t) is positive and ė(t) is positive”, THEN “k̇(t) is positive”
R08: IF “ e(t) is high, e(t) is positive and ė(t) is zero”, THEN “k̇(t) is zero”
R09: IF “ e(t) is very high, e(t) is negative and ė(t) is negative”, THEN “k̇(t) is positive high”
R10: IF “ e(t) is very high, e(t) is negative and ė(t) is zero”, THEN “k̇(t) is positive”
R11: IF “‘ e(t) is very high, e(t) is negative and ė(t) is positive”, THEN “k̇(t) is positive”
R12: IF “ e(t) is very high, e(t) is positive and ė(t) is positive”, THEN “k̇(t) is positive high”
R13: IF “ e(t) is very high, e(t) is positive and ė(t) is zero”, THEN “k̇(t) is positive”
R14: IF “ e(t) is very high, e(t) is positive and ė(t) is negative”, THEN “k̇(t) is positive”

With the help of these rules, the fuzzy system is able to optimally assess the current situation. As soon as the
disturbance is decreased and before there is a low utilization of the λ-tube, the gain factor k(≡) is quickly reduced
in order to avoid an unnecessarily high energy fed to the plant.
In contrast to the error-dependent fuzzy-adaptation-1331 and -1441 (see Subsections 4.1.1 and 4.1.2), the optimal



fuzzy system-3451 is able to respond optimal to a reduction of the disturbance. Therefore, the result of the energy
fed to the system is reduced substantially and the λ-tube is fully utilized.
The error-dependent fuzzy-adaptation-3451 cannot only respond to a reduced disturbance, but it has also other
intelligent features:

• A reduction of the gain factor k(≡) always takes place when the controlled variable y(≡) is in a certain area
and moves in the direction of the setpoint trajectory yref (≡). Therefore, the risk of premature reduction of
k(≡) can be counteracted.

• An increase of the gain factor k(≡) takes place in different intensities. Is the controlled variable outside
the λ-tube and moves away from the setpoint trajectory yref (≡), then the gain factor k(≡) is significantly
increased. But, is the direction of motion in the opposite way, only a weak amplification takes place to avoid
an unnecessarily high gain factor k(≡).

Remark 4.4. In [3], [5] and [10], a velocity-dependent change of the gain factor, called a “non-classical-
feedback”, is specified and analyzed.

4.1.4. INTERIM CONCLUSION

The error-dependent fuzzy-adaptation-3451 is based on the evaluation of

• the norm of the control error e(t) ,

• the control error e(t), and

• the speed of the control error ė(t),

and is able to assess the situation of the plant and to adjust the gain factor k(≡). Through the evaluation of additional
information, significant advantages could be achieved over the others presented error-dependent fuzzy-λ-tracking-
adaptation, see Subsections 4.1.1 and 4.1.2. For this reason, only the error-dependent fuzzy-adaptation-3451 (p =
1) is used in further studies.

4.2. EVENT-DEPENDENT FUZZY-ADAPTATION-2221

Based on the already presented error-dependent fuzzy-adaptations and the modified λ-tracking control strategy
(3) as well as time-dependent fuzzy-adaptation [13], at this point a possibility is to show which combines the
advantages of all three strategies:

• simple and efficient structure, such as the time-dependent fuzzy-adaptation-1221-Ti [13];

• individual increase of the gain factor k(≡), such as the error-dependent fuzzy-adaptation-3451 (Subsecti-
on 4.1.3);

• simple reduction part to reduce the gain factor k(≡), such as the modified λ-tracking control strategy (3)
(Subsection 2.2).

In order to generate a simple fuzzy system, two new input variables are introduced, see Fig. 9:

Aout =

N∫
i=1

Aout
i < Amax

tout =
N∫
i=1

touti < tmax,

(4)

where Amax and tmax are limit values.
These two input variables are limited to describe the characteristic of the controlled variable y(≡) outside of the
λ-tube. Therefore, the event-dependent fuzzy-adaptation-2221 may be adapted depending on the situation, similar
to the error-dependent fuzzy-adaptation-3451, see Subsection 4.1.3. In this context, the use of the norm of the
control error e(t) , the control error e(t) and its derivative ė(t) are redundant.



y(t)

Aout
1 Aout
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yref λ
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N
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Figure 9. Definition of the event-dependent fuzzy-adaptation according to (4).

Furthermore, a substitute gain factor k̂(≡) = k−1(≡) (based on the time-dependent fuzzy-adaptation-1221 [13]) is
used to generate a high gain factor k(≡) in a short tim, see Fig. 10.

Aout

tout

k̂(t)

fuzzy-adaptation-2221

Figure 10. Fuzzy system-2221.

In the determination of membership functions of the input variables u(t) = [Aout(t), tout(t)]
T and singletons of

the output variable k̂(t), it was found by different simulations, that a „simple“ approach is sufficient. There are only
two linguistic terms {“low“,“high“} at the inputs and two linguistic terms {“zero“,“one“} at the output needed, see
Fig. 11.

μ1(Aout(t)) μ2(tout(t))
low high low high

1 1

p 0 Amax Aout(t) p 0 tmax tout(t)

μ1(k̂(t))
zero one

1

0 1 k̂(t)

Figure 11. Membership functions of the event-dependent fuzzy-adaptation-2221 with the design factor p.

Owing to the simple structure of the fuzzy system and the increased level of abstraction by the new input variables,
the rule-base can be very brief:



rule 1: IF “Aout is low and tout ist low”, THEN “k̂(t) is one”
rule 2: IF “Aout is high or tout is high”, THEN “k̂(t) is zero”

Last, the event-dependent fuzzy-adaptation-2221 needs a reduction part for the gain factor k(t), to react to a
decreasing disturbance and to reduced the energy fed to the plant. Different studies have shown that, at this point,
the approach of [5] is very comfortable, because the effectiveness and easy combinability with the fuzzy system
can be used:

k̇(t) =

⎫∑∑⎬
∑∑⎭

fuzzy-adaptation-2221 , e(t) �λ

0 , e(t) < λ { t te < td

σ
)
1 ‖e(t)‖

λ

[
k(t) , e(t) < λ { t te �td

λ�0 , σ > 0 , td �0

(5)

In this case the parameters σ and td (time duration of stay) represent the adaptation activities related to signal
reduction and signal delay. Both parameters are determined according to the model of [5].

5. MODEL OF THE LANE ASSIST OF VEHICLES

The controllers showed their effectiveness in simulations of a fast-adaption receptor cell model, see [4]. Hence,
they are now applied to a lane assist in this paper.
In a tracking control, a vehicle tries to follow a given course of the road by means of a change in steering angle
of the front wheels (vehicle with front steering). Figure 12 shows the most commonly used measured variables for
this controller.

yref ψz(t)

y(t)

CG

Figure 12. Measured variables of the vehicle for a tracking control.

The vertical distance of setpoint trajectory yref (≡) and the vehicle center of gravity (CG) is referred to as lateral
deviation y(≡). The angle between the ideal lane centerline and the longitudinal axis of the vehicle is referred to
as yaw error ψz(t). In combination with the linear single-track model (see Fig. 13 and Tab. 2) and by using the
principle of linear momentum, this system can be formulated in the state-space (the vehicle longitudinal velocity
vx must be const.), [14]:
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With the help of (6) and (7), the basic driving behavior of a vehicle can be sufficiently accurately described and
analyzed. The state differential equation (6) is a linear system of differential equations of first order with the front
wheel steering angle δv(t) as the input variable u(t) and the state vector x(t) with the state variables:

slip angle β(t) and yaw rate ψ̇z(t).

It should be noted, that some coefficients of matrix A and input vector B are dependent on the vehicle velocity
v. This means that the driving characteristics are changed by the vehicle velocity v. If one chooses, for example,
v = 0, then the geometric model results to the determination of the static Ackermann angle. On the other hand at
high velocities, the vehicle may tend to oscillate depending on the suspension adjustment, [9].
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Figure 13. Linear single-track model.

Table 2. Parameters for the single-track model, [14].
Symbols Reference vehicle Description

m 1700 kg mass of vehicle
Jz 2500 kgm2 mass moment of inertia (z-axis)
Cv 45 300N/m cornering stiffness of front axis
Ch 65 000N/m cornering stiffness of rear axis
lv 1.33m distance CG to front axis
lh 1.17m distance CG to rear axis
vx variable constant longitudinal vehicle velocity

6. CONTROL DESIGN

For the design of a tracking control, a linear state-feedback and a output-feedback with fuzzy-adaptation are de-
veloped, see Fig. 14. The goal is a combination of these two controllers to have a optimal control quality. For the
basic control of the system, linear state-feedback with a vehicle velocity of vxZR = 27.78m/s (equal 100 km/h)
of the linear single-track model is used. As an additional controller for the λ-tracking control, a fuzzy-adapted
P-control is used, which is adapted depending on the lateral deviation y(≡) of the vehicle.
The corresponding differential equation is:
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Figure 14. Scheme of the fuzzy-adaptation feedback control.

The reason for using of two controllers is the marginal stability2 of the vehicle model, but it can be compensated
by pole placement for the state-feedback, see Fig. 15.
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Figure 15. Pole zero map of the linear single-track model linear with (right) and without (left) linear state-feedback.

On the other hand, the fuzzy-adapted P-control can be used for readjustment to correct deviations of the vehicle
(see Fig. 12) and model deviations and to control the vehicle into the λ-tube. This prevents that the fuzzy-adaptation
affects directly the stability of the controlled system.

6.1. DESIGN OF THE STATE-FEEDBACK CONTROL

By using of pole placement in the controller design, the poles of the plant can be changed. In this way, unstable and
marginally stable systems are transferred to stable ones. The precondition for the pole placement of linear state-
feedback is a full controllability of all states. For this, the Kalman’s criteria of controllability has to be fulfilled:
the rank of the matrix

Qs =
]
B AB A2B ≡≡≡ An−1B

(
(9)

has to be maximal n, or has n linearly independent column vectors, [12]. Insertion of the system matrix A and the
input vector B (see (6)) into (9) yields:

rang(Qs) = 4 = n

2“Marginal stability” means in this context that the model has a pole at the coordinate origin or a conjugated complex pole pair on the

imaginary axis and the system can assume a value
∣
∣
∣
∣
lim
t→∞ y(t)

∣
∣
∣
∣
≤ C < +∞, C ∈ R

n.



That means, that the system is completely controllable and a linear state-feedback can be used.
In order to obtain an optimal correction behavior by the undisturbed vehicle model (f̈(≡) ≤ 0), the poles P are
chosen for the pole placement as follows:

P =
]

3 + 3i 3 3i 3 4
(
.

With these values, a aperiodic corrective behavior for the undisturbed vehicle model (f̈(≡) ≤ 0) is given, [13]. But,
the transient response can be guaranteed only when the vehicle velocity is vx = vxR = 100 km/h. For comparison,
the author of [13] shows in a simulation that the oscillation is not more a aperiodic process when the vehicle
velocity vx ∧= vxR is changed.
In the later studies, there are also simulation results with other velocities vx ∧= vxR

, so the fuzzy-adapted P-control
is not only able to compensate the disturbance f̈(≡), but also model uncertainties of the linear state-feedback.

6.2. DESIGN OF THE FUZZY-ADAPTATION P-CONTROL

For the design of the fuzzy-adapted P-control according to (8), the following approach is chosen:
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Substituting p1 = p2 = 1, so a destabilization of the system is counteracted, because the yaw error ψz(t) is also
multiplied with the gain factor k(t). As a reminder, the gain factor k(t) is only dependent on the lateral deviation
y(t). This prevents, that the vehicle turns too much to the setpoint trajectory yref (≡) for a high-gain factor k(≡) and
causes an unstable vehicle behavior.

7. SIMULATIONS

Based on the previous Section 6, simulations of various driving scenarios with the following disturbance take place:

f̈(t) = 3 sin(t) + 10 cos(2t) (10)

This disturbance f̈(≡) represents a lateral force on the vehicle, which is caused by fluctuating crosswind and lateral
road inclinations, see Fig. 16.
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Figure 16. Graph of the lateral disturbance f̈(≡).

The vehicle speed is kept constant in the following three tests:

vx � }100 km/h, 50 km/h, 175 km/h| ,

The additional fuzzy-adapted P-control can control the vehicle into the λ-tube, although a part of the vehicle
velocity vx does not match with the velocity of the controller design (vxR = 100 km/h). A last study is performed
to find out, how the system behaves in a unsteady ride. In this context, the vehicle is decelerated from an initial
velocity vx0 = 175 km/h to a final velocity vxend

= 50 km/h. Research has shown that this case is very critical to
assess for a linear state-feedback, because the model is dynamically changing (⇒ non-linear single-track model).
Furthermore, the event-dependent fuzzy-adaptation-2221 is only used in the following simulations (Subsections
7.1 – 7.4) to illustrate the effectiveness of the new control strategy.



7.1. SIMULATION WITH vx = 100 km/h AND v̇x ≡ 0

In a first investigation, we focus on the vehicle behavior with and without an additional fuzzy-adapted P-control
at a vehicle velocity of vx = vxR

= 100 km/h. In the following Figure 17, the simulation is shown without a
fuzzy-adapted P-control.
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Figure 17. Simulation with vx = 100 km/h and without the event-dependent fuzzy-adaptation-2221.

It can be clearly seen, that the system is stable but the control signal u(≡) is not sufficient to control the vehicle
into the λ-tube. A new pole placement is not the correct way, because the basic control behavior would change.
Therefore, an additional control is required.
The modified control behavior with a fuzzy-adapted P-control is shown in the following Figure 18.
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Figure 18. Simulation with vx = 100 km/h and with the event-dependent fuzzy-adaptation-2221.

Based on the Figure 18, one can see that the control behavior is improved. With the help of the event-dependent
fuzzy-adaptation-2221, it is possible to control the vehicle into the λ-tube. At the beginning of the simulation, the
gain factor k(≡) is increased. The result is a movement of the vehicle into the λ-tube. In the further course of the
simulation, a permanent adapting of the gain factor k(≡) takes place by the event-dependent fuzzy-adaptation-2221.
After entering of the controlled variable y(≡) into the λ-tube, the value for k(≡) is kept constant in the following
time (Δt < td). When (Δt � td) and yref y(t) ≥ λ, then the gain factor is reduced. But, if the controlled
variable y(≡) leaves the λ-tube, then the gain factor k(≡) is increased again, repeatedly.

7.2. SIMULATION WITH vx = 50 km/h AND v̇x ≡ 0

A second simulation is carried out to find, how the vehicle behaves with and without an additional fuzzy-adapted
P-control at a reduced vehicle velocity vx � vxR

. Owing to the additional model deviation, it is to be expected
that the basic control behavior is changing by the linear state-feedback. Figure 19 shows the results without a
fuzzy-adapted P-control.
Based on the Figure 19, one can see that the basic control behavior has changed in comparison to the first study,
see Fig. 17. Owing to the low vehicle velocity vx = 50 km/h and despite of the model deviations, the linear state-
feedback is capable to control the plant with smaller deviations to the setpoint trajectory yref (≡). Therefore, the
requirements for the fuzzy-adapted P-control appear to be smaller than the first investigation. In [13], however, it
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Figure 19. Simulation with vx = 50 km/h and without the event-dependent fuzzy-adaptation-2221.

could be demonstrated that a fuzzy adaptation method tends to incorrect interpretations, when the disturbance is
below a certain value.
Figure 20 shows the result of simulation with a fuzzy-adapted P-control.
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Figure 20. Simulation with vx = 50 km/h and with the event-dependent fuzzy-adaptation-2221.

With respect to Figure 20, one can see that here the plant is also optimally controlled with help of the event-
dependent fuzzy-adaptation-2221. A peculiarity may be observed that the trend of the gain factor k(≡) is similar
compared to the first investigation, see Fig. 18. The formulated problem of a faulty fuzzy-adaptation, owing to a in-
correct interpretations by a small disturbance, is not relevant here. The reason is the lower yaw amplification factor3

of the vehicle. This means that a larger steering wheel angle δv(≡) and control signal u(≡) is necessary, respectively.
Therefore, the event-dependent fuzzy-adaptation-2221 must spend similar values as in the first investigation.

7.3. SIMULATION WITH vx = 175 km/h AND v̇x ≡ 0

The last investigation is directed to a scenario with a constant vehicle velocity to find, how the vehicle behaves
with and without an additional fuzzy-adapted P-control at an increased vehicle velocity vx → vxR . Owing to the
dynamic characteristics of the vehicle at high velocities, an optimal control at this point is not only comfortably, but
also safety critical. In the following Figure 21, the simulation result is shown without a fuzzy-adapted P-control.
With respect to Figure 21, one can see that the linear state-feedback is incapable to control the plant at a high
vehicle velocity. It results in an unstable oscillation of controlled variable (⇒ unstable vehicle behavior) as a result
of the disturbance f̈(≡). Therefore, an additional control is absolutely necessary.
The modified control behavior with a fuzzy-adapted P-control is shown in the following Figure 22.
Figure 22 shows a significantly better control behavior. Owing to the additional fuzzy-adapted P-control, the vehic-
le is not only stabilized but it is also controlled into the λ-tube. Compared to the previous simulation (see Fig. 21),
the unstable oscillation of the vehicle is prevented. For this purpose, the gain factor k(≡) is comparatively strongly
increased at the beginning, in order to compensate the model deviations and the control error. At the time t > 15 s,
the gain factor k(≡) shows a periodic adaptation as in the studies before. The level which is reached at the end of

3“Yaw amplification factor” refers to the response of the vehicle (yaw velocity). This is dependent on the steering wheel angle and on the
vehicle velocity vx, [15], [14].
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Figure 21. Simulation with vx = 175 km/h and without the event-dependent fuzzy-adaptation-2221.
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Figure 22. Simulation with vx = 175 km/h and with the event-dependent fuzzy-adaptation-2221.

the simulation time is lower compared to the first two studies, see Fig. 18 and 20. The reason is the higher yaw
amplification factor in this simulation.

7.4. SIMULATION WITH vx0 = 175 km/h AND vxend = 50 km/h

In a last study, we consider, how the vehicle behavior changes with and without an additional fuzzy-adapted P-
control at a braking process. Owing to the non-linear system (v̇x ∧= 0), this case is especially interesting, because
the state-feedback is based on a linear vehicle model and thereby a faulty control behavior could be produced. In
the following Figure 23, the simulation is shown without a fuzzy-adapted P-control.
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Figure 23. Simulation with vx = 175 km/h⇒ 50 km/h and without the event-dependent fuzzy-adaptation-2221.

Based on the Figure 23, one can see that the system behavior is stable at the observed braking process. Therefore,
the designed linear state-feedback is also able to compensate larger model deviations and certain model dynamics
(A(t) and b(t), see (6)). However, a control into the λ-tube does not take place.
Figure 24 shows the result of the simulation with a fuzzy-adapted P-control. One can see that the additional fuzzy-
adaptive control optimally forces the vehicle into the λ-tube, regardless to the vehicle velocity change v̇x < 0 and
the resulting consequences for the linear state-feedback. By the pure evaluation of the current situation, the event-
dependent fuzzy-adaptation-2221 is able to adapt the gain factor k(≡), to counteract model and control deviation.
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Figure 24. Simulation with vx = 175 km/h⇒ 50 km/h and with the event-dependent fuzzy-adaptation-2221.

7.5. COMPARISON OF ADAPTATION STRATEGIES

In the previous Subsections 7.1 – 7.4, the advantages of an additional fuzzy-adapted P-control for a new lane assist
of vehicle which control the vehicle in a λ-tube around the setpoint trajectory yref (≡) were shown. But, the goal of
this subsection is to find out which of the presented fuzzy adaptation method:

• error-dependent fuzzy-adaptation-3451 (Subsection 4.1.3),

• event-dependent fuzzy-adaptation-2221 (Subsection 4.2)

and classical adaptation method:

• modified λ-tracking control strategy (3) (Subsection 2.2)

is the most effective. For this, the existing studies are used to analyze the different adaptation strategies and to
determine the optimal method.
As the results of the controlled variable y(t) = yref e(t) are visually almost indistinguishable from each other,
a performance index is introduced:

J =
1

2

︷
q ≡x(t)2dt︸ ︸︷
Jx

+
1

2

︷
r ≡u(t)2dt︸ ︸︷
Ju

x(t) =

⎡
e(t) λ , λ ≥ e(t)

0 , 0 ≥ e(t) < λ

⎩∑∑∑∑∑⎪
∑∑∑∑∑⎨

(11)

In choosing the weighting factors q and r, however, certain conditions must be considered:

• Owing to the various value ranges of y(≡) and u(≡) a scaling is necessary.

• For a fast control of the controlled variable into the λ-tube, x(≡) must be weighted more than u(≡).

• Quantity x(≡) makes no contribution when the controlled variable is in the λ-tube, so the simulation time t
must be taken into account in the weighting factors q and r.

After a simulation study, the weighting factors have been found suitable for the performance index (11):

q = 200 and r = 1 .

By this type of weighting, the course of controlled variable y(≡) outside the λ-tube is very severely punished. As
soon as the controlled variable y(≡) is inside the target area, only the required control signal u(≡) = δv(≡) is taken
into account.
The results of the performance indices for the various investigations from Subsections 7.1 – 7.4 are summarized
in the Table 3. For a better overview, they are given in percent relative to the classical adaptation method in [5].



Negative values of the performance indices mean that the fuzzy-adaptation has reached a better value. For positive
numbers, the reverse is true.

Table 3. Comparison of the performance index Ji of fuzzy-adaptations regarding to [5].
performance index vehicle velocity
J = Jx + Ju 100 km/h 50 km/h 175 km/h 175 km/h ∈ 50 km/h

fuzzy-adaptation-3451
Ju 3.36 % 20.41 % 8.98 % 6.09 %
Jx 12.54 % 4.26 % 34.06 % 8.08 %
J −10.01 % −7.81 % −19.27 % −3.81 %

fuzzy-adaptation-2221
Ju 0.06 % 3.09 % 0.81 % 0.56 %
Jx 33.93 % 36.69 % 34.94 % 31.76 %
J −24.60 % −27.95 % −23.21 % −22.36 %

Based on the Table 3, one can generally say that no adaptation method in the carried out simulations appears nega-
tive. This is not always the case. The author of [13] shows with the help of a long-term study that the disturbance
function f̈(≡) makes an essential contribution to the adaptation performance. Owing to the quasi zero-mean distur-
bance signal f̈(≡), all used adaptation methods can optimally work in these investigations.
Comparing the energy Ju fed to the plant (see Tab. 3), a clear trend can be seen: The event-dependent fuzzy-
adaptation-2221 and the modified λ-tracking control strategy (3) have both similar results with a slight advantage
of the fuzzy-adaptation method. In contrast, the error-dependent fuzzy-adaptation-3541 provides a fluctuating re-
sult. Depending on these investigations, a significantly better or poorer performance index Ju occurs. This is also
confirmed by the study in [13]. It turned out that the error-dependent fuzzy-adaptation is highly dependent on the
disturbance function f̈(≡) and, therefore, it cannot be used for all systems. For this reason, only the other two ad-
aptation methods will be made in the further course.
When comparing the control performance, Jx also results an clear result: Despite the quasi identical energy fed to
the plant, the factor is much better by the event-dependent fuzzy-adaptation-2221 compared to the classical adap-
tation method by [5]. On the average, the control performance Jx is lower by 1/3 than the value of the comparison
process. Thereby, the evaluation of the total performance index J is 25 % better when comparing the two methods.
The findings obtained with the modified λ-tracking control strategy (3) must be judged critical at this point. Alt-
hough this approach could not dominate in these studies, however, there was no fluctuating result as with the
error-dependent fuzzy-adaptation-3451. Overall, it must be said that the modified λ-tracking control strategy (3)
is suitable for many applications, however, a parameter optimization is always necessary in order to obtain similar
results as a fuzzy method.

8. CONCLUSION AND OUTLOOK

The paper dealt with the development of various fuzzy-adaptation laws for λ-tracking control of a lane-assist
of vehicles. With the help of the various investigations, it was shown which positive influence has an additional
fuzzy-adaptation. A pure linear state-feedback can be applied only for a velocity vx of the vehicle and a specific
behavior. But, a fluctuating disturbance f̈(≡) may lead to different control behavior at different vehicle velocities
vx(≡), which has to be compensated. Therefore, the additional use of a fuzzy-adapted P-control could eliminate
the crucial disadvantages. The result is a complete control system which allows a optimal λ-tracking control for
various constant vehicle velocities vx or vehicle accelerations v̇x.
Furthermore, the comparison of the various adaptation methods show that all presented methods can indeed adapt
the control behavior of the vehicle, but only one method was able to prevail. With the help of the event-dependent
fuzzy-adaptation-2221 it could be shown, how much potential lies in an additional adaptation to the controlled
system.
Based on the findings in this paper, further investigations of the fuzzy-adapted lane assist are directed to:

• Investigations of a fuzzy-adaptation behavior with other lateral disturbances, see [13];

• Investigations of the fuzzy-adapted lane assist of vehicles with respect to a lateral disturbance and a corne-
ring, evasive or overtaking maneuvers at the same time;

• Investigations of the fuzzy-adaptation behavior in combination with other control structures, such as a PID-
controller or fuzzy controller.
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