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Quasistatic inflation processes within compliant tubes

Part 2: Numerical simulations
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Abstract

In former work [7], [8], and [9], a mechanical system was considered that models a
segment of a live or artificial worm or a balloon for angioplasty that is placed within a
cylindrical rigid or compliant tube (vein). Based on the Principle of Minimal Potential
Energy and treated as an optimal control problem with state constraint the authors
derived a system of differential equations that describes the statics of the inflation
process including the shape of the inflated system and the contact forces between
balloon and vein. This Part 2 of [8] now presents corresponding simulation results. A
short but complete introduction to the theory makes the paper selfconsistent.
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2 THE PHYSICAL MODEL

1 Introduction

In this paper we continue investigations published in [7],[8],and [9]. There, the authors firstly
considered quasistatic ballooning processes of originally cylindrical compliant ”segments” -
by means of internal pressure expanding either freely or within a rigid tube. In [9], the rigid
tube has been replaced with a compliant one. An ODE boundary value problem allows to
describe the shape of the system under internal pressure and additional external longitu-
dinal force, and the contact pressure between segment and tube as well. These theoretical
investigations were done with a background from mechanics and medicine: peristaltic lo-
comotion of segmented worms used for exploration in hazardous terrain and in minimally
invasive surgery. Caused by certain circumstances, the announced simulation results had to
be postponed and are now presented in the following.

To make the paper in hand self-contained, we sketch the theoretical results of the foregoing
paper. For this end, the paper is organized as follows. Sections 2 and 3 present the physical
and the mathematical model of the system to be analyzed. The corresponding essentials are
sketched in Figure 1. Section 3 ends up in describing the final boundary value problem, its
origin, and its handling. The numerical exploitation of the BVP is explained in Section 4,
whereas Section 5 presents simulation results concerning the system behavior under change
of relevant parameters. The Conclusion gives a quick summary of what has been done,
hints at some facts that might be seen as inadequate to practical applications, and offers
corresponding possible improvements.

Some of the improvements (which are to cover wider regions of applications) require slight
enlargements of the theory, some can be accomplished simply by interchanging parameter
values for others. Any interested specialist is invited to use our source code - on request via
the secretary of the Institute of Mathematics (see top).

2 The physical model

A ”segment” is a compliant mechanical element that has a hull consisting of two rigid circular
discs of radius r1 ≥ 0 connected by a deformable membrane of circular cylindrical original
shape. The segment is positioned within a compliant circular cylindrical tube (”vein”) of
radius r2 ≥ r1. Filling the segment with an incompressible fluid the internal pressure makes
the segment radially expand - possibly freely at the beginning, then after a first touch
together with the vein (a modest scenario of vessel dilation in medical surgery, see [11]).
Keeping some working pressure p0 fixed, two opposite longitudinal forces ±f1 acting at the
discs may press or pull the segment, thereby changing its radial expansion. These forces can
be seen as external forces caused by a fluid filling of the tube or as internal ones caused by
displacing the segment discs via some mechanical device to be operated from outside.

We emphasize that the following propositions and simulation results do not depend on any
geometrical assumptions concerning the shape of the deformed system (as done, e.g., in
[2] and [6]). Rather, they are based on clear physical hypotheses and come up by strict
mathematical reasoning, see [9].
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2 THE PHYSICAL MODEL 2.1 Geometric assumptions

Figure 1: Inflated segment within vein

2.1 Geometric assumptions

(1) The arrangement of the cylindrical parts of the system is of both longitudinal and
latitudinal symmetry (segment in mid position).

2.2 Physical assumptions

(1) Both vein and (hull of) segment are membranes (in the sense of shell theory: zero
bending stiffness) and skin-like (stable only under tensile internal stresses).

(2) The membranes are of originally constant thicknesses h1 (segment) and h2 (vein).

(3) The membranes are meridionally inextensible and latitudinally hyper-elastic. So, the
arc-lengths of the meridians are invariant under deformation; hyper-elasticity means
stress-strain relations of the form σ = Eχ(ε). For Hooke material we have χ(ε) = ε
with given Young’s modulus E, else χ(·) is some smooth function R

+ → R
+ with

χ(0) = 0 and some suitably chosen fictitious E. The relation of the latitudinal tensile
stiffnesses is marked β := h2E2/h1E1 (β > 1(< 1) : ”thick(thin)-walled vein”).

(4) The supposed meridional inextensibility of the vein excludes any longitudinal fixation
of the vein’s ends. In order to mimic a real elastic shortening under radial expansion,
the ends are to be fastened by means of two elastic springs of stiffness k 1. The end
radii r2 shall be fixed under deformation (rigid rings).

(5) Any inflation process is to run as slow as to allow to neglect dynamical effects (qua-
sistatic process).

1In calculations, k can be chosen arbitrary but positive. k = 0 would entail a trivial configuration:
stress-free outer parts of the vein with constant radius r2 and running into the inflated segment with a fold.
A closer relation to a longitudinally extensible vein can be achieved by k = βr2/l (stiffness of an extensible
cylinder following a Hooke law).
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3 THE MATHEMATICAL MODEL

3 The mathematical model

Based on the foregoing working hypotheses the mathematical model was established in [9]
by exploiting the Principle of Minimal Potential Energy. The potential energy of the system
is an additive composite of (a) the potential energy stored in the deformed membranes, (b)
the energy of the inflating fluid, (c) the energy of the longitudinal forces ±f1, (d) the energy
of the elastic springs at the vein ends.

3.1 About notation

(1) In order to get all expressions rid of misplaced ballast (and simultaneously make the
model match real systems of any dimension) the following normalization is used:

lengths: unit of measure:=L1=original length of segment
(then, formally, length of segment=1, length of vein=l > 1),

pressure: P = (2h1E1

L1

)p,

force: F = (2πh1E1L1)f .

Sometimes it is comfortable to use q := 1

p
instead of the pressure p.

(2) Due to symmetry the membrane shapes are well-described by the normal equations of
the meridians: dx

ds
= cos(u), dy

ds
= sin(u), du

ds
= κ ,

(s: arc-length, x, y: longitudinal and radial coordinate, u: slope, κ: curvature, to be found.)

(3) Latitudinal strains and stresses (everything to be labeled 1 or 2):

ε(s) = (y(s) − r)/r, σ(s) = Eχ(ε(s));

let ψ(y) := χ(
y

r
− 1), Ψ(y) :=

∫ y

r

ψ(η)dη.

For Hooke material we have ψ1(y1) = 1

r1

(y1 − 1), ψ2(y2) = β

r2

(y2 − 1).

3.2 The final boundary value problem

(1) Primarily, minimizing the potential energy is a variational problem for the radii y1, y2.
Considering remark 3.1(2), it can be turned into an optimal control problem with state con-
straint (y1 no bigger than y2) for the slopes u1, u2 as controls. In respect of the membrane
properties (which allow edges) the slopes are supposed to be piecewise continuous functions
with values in (−π

2
, π

2
), i.e., meridians are piecewise smooth curves, schlicht over the x−axis.

(2) A careful analysis of the optimality conditions exhibits the slopes u1(s), u2(s) as contin-
uous functions, piecewise smooth (off the junction points, see below) of a smoothness class
implied by those of the two elasticity functions χ1 and χ2.

(3) The ultimate representation of the mathematical model is the following parameter-
dependent boundary value problem:

ẋ = cos u, ẏ = sin u, u̇ = F0(u, y; p, f1, ξ2), s ∈ (t0, 0],

ẋ1 = cos u1, ẏ1 = sin u1, u̇1 = F1(u1, y1; p, f1), s ∈ (−1

2
, t0),

ẋ2 = cos u2, ẏ2 = sin u2, u̇2 = F2(u2, y2; p, k, ξ2), s ∈ (− l
2
, t0),

(1)
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3 THE MATHEMATICAL MODEL 3.2 The final boundary value problem

where the right-hand-sides are

F0(u, y; p, f1, ξ2) = {−2py + ψ(y) cos(u)} cos(u)/[py2 − f1 + k · ( l
2
− ξ2)],

F1(u1, y1; p, f1) = {−2py1 + ψ1(y1) cos(u1)} cos(u1)/[py
2
1 − f1],

F2(u2, y2; p, k, ξ2) = ψ2(y2) cos2(u2)/[k · ( l
2
− ξ2)].

(2)

The total problem splits into three: one on (− l
2
, t0) for the free part of the vein, one on

(−1

2
, t0) for the free part of the segment, and one on (t0, 0] for that part where segment and

vein are in contact (u1 = u2 =: u, y1 = y2 =: y, ψ := ψ1+ψ2 mirror the common deformation
of both membranes). All this describes the left half of the system, due to symmetry, the right
half comes up simply by reflection with respect to x = 0. The respective state functions are
(u2, y2): slope and radius of free vein part; (u1, y1): slope and radius of free segment part;
(u, y): common slope and radius of vein and segment in contact.

The supplementing boundary conditions (prescribing boundary values or continuity, resp.)
are the following:

y1(−1

2
) = r1,

y2(− l
2
) = r2, x2(− l

2
) = −ξ2,

u(0) = 0, x(0) = 0, y(0) =: y0.
u1(t0) = u2(t0) = u(t0),

y1(t0) = y2(t0) = y(t0),

x1(t0) = x2(t0) = x(t0).

(3)

Parameters to be matched are the junction point t0 < 0 and the actual coordinate of the
left vein end −ξ2, only the latter enters the differential equations. In most problems, the
equatorial radius y0 is simply an outcome of evaluations. Besides these to-be-determined
parameters the differential equation is entered by the parameters p, f1, and k which can
be adjusted to appropriate values (whereby F1(...) shows that f1 6= pr2

1 has to be obeyed).
Thereby the internal pressure p is not a state variable (as it was in [7]; here, it has practically
to be kept constant by means of a fluid reservoir). The further parameters r1, r2, l can also
get suitable fixed values which then characterize the system dimensions.

(4) With every solution of the boundary value problem the common geometry of both
segment and vein on the contact region is well-known (and so are the functions u, y). The
normalized constraint pressure z (upon segment inwards, upon vein outwards, z > 0 on the
contact area, z = 0 else) then follows in two equivalent forms from the membrane equations
of shell theory (for separated segment and vein),

2yz = 2py − ψ1(y) cos u + u̇[Ψ1(y) + (pr2
1 − f1)/ cos(α1)],

−2yz = −ψ2(y) cos u + u̇[Ψ2(y) + k( l
2
− ξ2)/ cos(α2)].

(4)

Here α1 = u1(−1

2
), α2 = u2(− l

2
), and u̇ is simply F0(u, y; p, f1, ξ2).

(5) Geometrically, the supposed meridional inextensibility guarantees the existence of a
shape of maximal volume of the segment (formally approached by p → ∞). This shape can
be described by means of elliptic integrals (see [8]) and may be used as a starting object in
iteration. For this reason it seems useful to have some corresponding data at hand:
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4 METHODS AND SOFTWARES USED FOR SIMULATION

The equatorial radius y0, length l := 2 | x1(−1

2
) |, and volume v of the maximal volume

segment are2

y0(r1) = 0.3824 + 0.7476r1 + 0.0502r2

1 + 0.0130r3

1,

l(r1) = 0.4555 + 0.9761r1 − 0.7974r2

1 + 0.2603r3

1,

v(r1) = 0.1586 + 0.8048r1 + 2.3471r2

1 + 0.3017r3

1.

The above polynomials are L2−approximates (with coefficients cut to 4 digits).

At our preferred radius r1 = 0.1 we get the values

y0 = 0.4577, l = 0.5454, v = 0.2629,

which shall be met in some of the later diagrams.

4 Methods and softwares used for simulation

4.1 A collocation approach

The problem (1),(2),(3) contains several parameters: there are, first, the system parameters
r1, r2, l, k, q = 1/p, β, f1, to be prescribed under the restrictions

0 ≤ r1 ≤ r2, 1 < l, 0 < k, 0 ≤ q, 0 < β, f1 6= pr2

1. (5)

(To work with q instead of p is reasonable in particular for large values of p in approximating
the maximum volume segment shape). Second, there are free, to-be-matched parameters
y0, t0, ξ2 undergoing the restrictions

r1 < y0 ≤ y0(r1), t0 < 0, ξ2 > 0. (6)

There are 9 differential equations, 3 to-be-matched parameters, and 12 conditions at the
boundary points − l

2
,−1

2
, t0. So the problem appears as a multi-point boundary value prob-

lem with one free boundary t0. Any numerical solving procedure must be specially tailored,
common numerical software is applicable to subproblems like initial-value problems and
systems of nonlinear equations only.

Powerful numerical procedures suppose the following standard form of the boundary value
problems:

ż = f(t, z), g(z(a), z(b)) = 0,

z : [a, b] → R
n, f : R × R

n → R
n, g : R

n×R
n → R

n.
(7)

2In [8], p.567, there is a misprint in (40), to be removed by means of
∫

u

0

√
cos v dv = 2E(sin(u/2),

√
2).
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4 METHODS AND SOFTWARES USED FOR SIMULATION4.1 A collocation approach

To this end our problem (consisting of three parts) can be transformed to a 12-dimensional
problem on the interval [0, 1] by suitable linear transformations s Ã τ in each partial problem
and adjoining three trivial differential equations for the free parameters.

(1) s = −t0τ + t0, z1(τ) = u(s), z2(τ) = y(s), z3(τ) = x(s);

(2) s = (t0 + 1

2
)τ − 1

2
, z4(τ) = u1(s), z5(τ) = y1(s), z6(τ) = x1(s);

(3) s = (t0 + l
2
)τ − l

2
, z7(τ) = u2(s), z8(τ) = y2(s), z9(τ) = x2(s);

(4) z10(τ) = y0, z11(τ) = t0, z12(τ) = ξ2.

(8)

The transformed boundary value problem, now in standard form for z : τ → (z1(τ), ..., z12(τ)),
τ ∈ [0, 1], reads

z′1 = −z11G0(z1, z2; q; f1; z12), z1(1) = 0,

z′2 = −z11 sin z1, z2(1) − z10(0) = 0,

z′3 = −z11 cos z1, z3(1) = 0,

z′4 = (z11 + 1

2
)G1(z4, z5; q; f1), z4(1) − z1(0) = 0,

z′5 = (z11 + 1

2
) sin z4, z5(1) − z2(0) = 0,

z′6 = (z11 + 1

2
) cos z4, z6(1) − z3(0) = 0,

z′7 = (z11 + l
2
)G2(z7, z8; z12), z7(1) − z1(0) = 0,

z′8 = (z11 + l
2
) sin z7, z8(1) − z2(0) = 0,

z′9 = (z11 + l
2
) cos z7, z9(1) − z3(0) = 0,

z′10 = 0, z5(0) − r1 = 0,

z′11 = 0, z8(0) − r2 = 0,

z′12 = 0, z9(0) + z12(0) = 0.

(9)

Here, the functions Gj stand for Fj, j = 0, 1, 2, with p = 1/q, see (2). The following values
for the given parameters,

(r1, r2, l, k, f1, β, q) = (0.1, 0.12, 2, 0.06, 0, 1, 0.01)

and the far-off constant start approximations zi(τ) = 0.5, i = 1, .., 12, yield a starting
solution z∗(τ), which always admit a continuation with respect to any of the parameters.

MATLABTM offers an efficient collocation procedure [1] to solve boundary and eigenvalue
problems in standard form (9). The solutions zi(τ) are approximated by piecewise polyno-
mials on a given grid. Their unknown coefficients are computed through the condition that
all the ODEs have to be fulfilled exactly at the so called collocation points. This approach
avoids all insufficiencies which shooting and finite-difference procedures exhibit in this field.
Collocation methods can easily be established by using implicit Runge-Kutta methods, where
especially Gauss-Legendre, Radau, and Lobatto formulas are preferred because of their good
convergence and stability. The collocation code bvp4c of MATLAB implements a three-step
Lobatto-IIIA formula [1]. It yields the approximate solution of convergence order 4 via grid
adaptation and error control within given absolute and relative tolerance AbsTol and RelTol,
respectively.
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4 METHODS AND SOFTWARES USED FOR SIMULATION 4.2 A shooting approach

In our computations, we decided to use the increased error tolerances AbsTol=RelTol=10−6

and 10−8 as well. So, by comparison of the numerical results it can be seen that the built-in
error estimates guarantee an accuracy of all results with 6 significant digits, [2]. Another
guarantee of correct results was achieved through independent simultaneous computing of
choice problems by means of the shooting procedure sketched next. This was done by P.
Maisser on a TI-VoyageTM-200 computer using the CAS-software DeriveTM 6.

4.2 A shooting approach

In this method the problem (1),(2),(3) is treated as a three-point boundary value prob-
lem which is solved by parallel shooting with respect to the three integration domains
[t0, 0], [−1

2
, t0], [− l

2
, t0], each with the unknown boundary point t0. A standard ODE-

solver with step-size control (Runge-Kutta due to the Bogacki-Shampine 3(2)-formula) is
used for the initial value problems

ode (1) with u(0) = 0, y(0) = y0, x(0) = 0 ;

ode (2) with u1(−1

2
) = u1b, y1(−1

2
) = r1, x1(−1

2
) = x1b ;

ode (3) with u2(− l
2
) = u2b, y2(− l

2
) = r2, x2(− l

2
) = x2b ,

where each fat letter marks an unknown quantity. Then the six transition conditions at the
unknown junction point t0

u(t0) = u1(t0) = u2(t0),
y(t0) = y1(t0) = y2(t0),
x(t0) = x1(t0) = x2(t0).

define a system of six nonlinear equations

Φ(α0) = 0 (10)

with respect to the six shooting parameters (c := k · (x2b + l
2
))

(y0, t0, c,u1b,x1b,u2b) =: α0.

The shooting procedure with the ODEs (1),(2),(3) starts at the known boundary points
0,−1

2
,− l

2
in the direction to t0, while Φ(α0) = 0 is solved by a damped Newton-iteration

scheme where the Jacobian is approximated by forward differences. In each step the damping
factor is selected in such a way that monotonous error convergence

err(α0) := norm(Φ(α0)) → 0

takes place. The iteration works exclusively on the admissible domain (y0(r1) is y0 in the
maximal volume shape)

B : {r2 ≤ y0 ≤ y0(r1), −1

2
≤ t0 ≤ 0, c > 0, 0 ≤ u1b ≤

π

2
, −1

2
≤ x1b ≤ 0, u2b ≥ 0}.

The iteration stops if err(α0) < δ, where δ denotes a given tolerance radius around the
junction point t0.
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4 METHODS AND SOFTWARES USED FOR SIMULATION 4.2 A shooting approach

The first-contact problem (y0 = r2) is designed as a 2-point boundary value problem for
ODE(2) with t0 = 0, so that the former integration strategy can be used.

For a comparison of this problem-adapted shooting method with the general collocation method

we had to choose the same parameter values in both approaches. Table 1 displays some
computed values y0, t0, ξ2 of the boundary conditions (3) with r1 = r2 = 0.1, l = 2, q = 0.01
and k = βr2/l, which were obtained by shooting for different β.

β y0 t0 ξ2

0.01 0.453 959 52 -0.407 048 42 0.809 676 0
0.1 0.453 983 50 -0.407 871 31 0.810 508 80
0.2 0.453 562 57 -0.408 093 40 0.811 152 52
0.4 0.452 933 38 -0.408 517 14 0.811 635 51
0.6 0.452 224 09 -0.409 037 85 0.812 414 04
0.8 0.451 509 09 -0.409 198 95 0.813 072 50
1.0 0.450 785 01 -0.409 812 66 0.813 767 94

Table 1: Results of the shooting approach with tolerance δ = 0.002

β y0 t0 ξ2

0.01 0.454 311 32 -0.407 496 16 0.810 146 58
0.1 0.453 999 05 -0.407 693 25 0.810 477 98
0.2 0.453 650 55 -0.407 912 66 0.810 847 38
0.4 0.452 948 65 -0.408 352 80 0.811 589 93
0.6 0.452 240 15 -0.408 794 71 0.812 337 51
0.8 0.451 524 95 -0.409 238 40 0.813 090 18
1.0 0.450 802 98 -0.409 683 87 0.813 847 96

Table 2: Results of the collocation approach with tolerance tol = 10−6

The corresponding values of the collocation method with error tolerances AbsTol=RelTol=10−6

can be seen in Table 2. Obviously these very different approaches yield results which agree by
three significant digits. For larger values of parameter β this coincidence is slightly better.3

Finally the computations were repeated with increased accuracy AbsTol=RelTol=10−8 of
the collocation code. But the results rounded to 8 digits are identical with those of Table
2. For a more precise comparison of both accuracies we display some y0-results and their
differences ∆ in Table 3. They show that the accuracy AbsTol=RelTol=10−6 will be small
enough for all our following computations.

3Table 2 and its graphical output were obtained by MATLABTM on a Toshiba Satellite notebook (2 core,
2.27 GHz) within 8 seconds.
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5 SIMULATION RESULTS

β tol = 10−6 tol = 10−8 ∆

0.0 0.454 345 934 202 0.454 345 934 621 4.19 · 10−10

0.01 0.454 311 318 439 0.454 311 318 953 5.14 · 10−10

0.1 0.453 999 051 984 0.453 999 052 450 4.66 · 10−10

1.0 0.450 802 983 342 0.450 802 983 049 −2.93 · 10−10

Table 3: Values y0 of the collocation approach and their difference ∆

5 Simulation results

We emphasize that our simulations do not aim at the investigation of real processes such as,
e.g., the active behavior of a worm segment during crawling through a tube, or details in
angioplasty (human vessel dilation). Rather, the numerical analysis of our model (that was,
indeed, set up in view to such real processes) is to be seen as an instrument to gain insight
into the principal behavior of the background paradigm systems. To this end, most of the
following simulations were done with fixed system parameters except one or two distinguished
ones (e.g., pressure p and vein stiffness β). Through varying the latter, their influence over
certain state functions of interest (e.g., segment radius y0 or constraint pressure z) becomes
evident.

In nutshell, the goal of the simulations is to find general propositions about the behavior of
the modeled systems.

Possibly, the chosen parameter intervals might show some subjective arbitrariness to the
specialist. This originates, primarily, in our simplifying use of elasticity moduli which are
of considerable uncertainty (in particular those of the multi-layered animal tissues) and
nevertheless determine the units of measure used for normalization. We hope not to be too
far off the mainstream. As another drawback specialists could see the sole use of Hooke
elasticity in the simulations (ψ(·) linear function). It is of no trouble to treat nonlinear
hyperelasticity simply by choosing any different nonlinear ψ−functions [7]. For our first,
principal investigations linearity has been regarded as sufficient.

Doing simulations, we could recognize that certain parameter values did not lead to signifi-
cant results. So, e.g., large values of the vein length l exhibited a long, nearly undeformed
part of the vein during inflation (while wasting computing time). That is, why most cal-
culations were done with l = 2. Similarly, preferred values of the radii are r1 = 0.1 and
r2 = 0.12. This leads to reasonably tall segment and vein while letting sufficient space for
free inflation of the segment until touch with the vein.

5.1 System shape under free and constrained inflation

In order to get a visual impression of what happens under increasing pressure p we first
choose the system data

• r1 = 0.1 (radius of segment),

• r2 = 0.15, l = 2 (radius and length of vein),

• β = 1 (identical membranes of segment and vein),

10



5 SIMULATION RESULTS 5.1 System shape under free and constrained inflation

• k = 1 (substitute for longitudinal vein extensibility),

• f1 = 0 (no extra forces upon segment).

This last setting f1 = 0 holds for the complete section 5.1.

Then we solve the boundary value problem (9) with several values of q = 1/p. The joint
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Figure 2: Shapes under pressure p = 2, 5, 6.667, 10, 20, 100

graphs of the solutions (z3, z2), (z6, z5) and (z9, z8) - colored blue, and representing the
membrane meridians - sketch the left upper part of the system profile (longitudinal cut of
the deformed system), the rigid discs are given fat and black. Only Figure 2 shows the
total profile (gained through the postulated system symmetry). Later, a 3D image of the
complete system is achieved through rotation about the x-axis. Figure 3 is to give a more
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Figure 3: Shapes under various pressures p
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5 SIMULATION RESULTS 5.1 System shape under free and constrained inflation

vivid impression of how the system deforms under variation of the internal pressure. Each
cut parallel to the x, y−plane shows the (right upper part of the) profile (mind different
scalings of x and y!). The junction points are emphasized.
The first touch occurs at p ≈ 1.67. The pressure p = 100 approximates the fictitious pressure
p = ∞, that stands for the (theoretically important and β-independent) configuration with
a segment of maximal volume.
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Figure 4: Equatorial radius y0 vs. pressure p for vein with radii r2 and β = 1
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Figure 5: Equatorial radius y0 vs. pressure p for vein with radii r2 and β = 10

Maybe, the actual y0 = ys=0 (equatorial radius) could be seen as the most important quantity
during inflation. Figures 4 and 5 show the graphs of p → y0 for a segment of radius r1 = 0.1
and veins of various radii r2 ≥ r1 with β = 1 (”thin vein”) and β = 10 (”thick vein”),
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5 SIMULATION RESULTS 5.1 System shape under free and constrained inflation

respectively. The upper curves represent p → y0 for free inflation (vein radius r2 > y0(r1)).

The influence of the (thickness or stiffness) parameter β is obvious and might have been
expected: the growth of y0 with p slows down with increasing β because of the increasing
resistance of the vein. The limit limp→∞ y0 remains the same for all β. This effect is plausible
and can be seen for higher pressure in Figure 6, where every curve asymptotically goes to
y0(0.1) ≈ 0.457 for p → ∞.
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Figure 6: Equatorial radius y0 vs. pressure p = 0...100 for vein with radii r2 and β = 10

The transition from free to constrained inflation shows up as a break point of good clearness
for large β. Principally, this effect could be used in practice for detecting the event of
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Figure 7: Segment volume v vs. pressure p = 0...100 for vein with radii r2 and β = 10
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5 SIMULATION RESULTS 5.1 System shape under free and constrained inflation

first touch segment-vein during inflation (thereby discovering the possibly unknown r2).
Now, since y0 is, for instance in angioplasty, invisible, one could turn to the observable
segment volume which, simultaneously with p, can be controlled from outside during filling
the segment with fluid. Figure 7 sketches the effects for β = 10. This figure is the counterpart
to Figure 6, it serves for comparison of the effects in observing either y0 or v.

Figures 8 to 11 sketch the system profiles under various values of the pressure p and the vein
stiffness β in different representations. It can be clearly seen how at a fixed working pressure
the equatorial radius y0 of the segment becomes smaller for bigger β whereas the segment
length growths.
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Figure 8: Shapes at p = 10, r2 = 0.12 for thickness β = 1 . . . 20
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Figure 9: Shapes at p = 10, r2 = 0.12 for thickness β = 0.003 . . . 1
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5 SIMULATION RESULTS 5.1 System shape under free and constrained inflation

Figure 12 then shows the effect of p on the system shape during inflation with two different
stiffnesses β = 1 and β = 10.
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Figure 12: Shapes under pressure p = 1, 2, 5, 6.667, 10, 20, 100 for r2 = 0.12
and β = 1 (left), β = 10 (right).

For the sake of completion we present the dependence of the segment’s length 2 | x1(−1

2
) |

on the pressure p in Figure 13. The asymptotic length for p = ∞ is l = 0.5454...
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Figure 13: Length of the segment vs. pressure p for various β
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5 SIMULATION RESULTS 5.2 The contact pressure

5.2 The contact pressure

As we have seen above, the system behavior during inflation, i.e., during filling the segment
with fluid, always follows the same line. Suppose r2 > r1. Then, with p = 0 (segment just full
of fluid) both segment and vein have their original stress-free cylindrical shape. Increasing
p means supply of fluid, the segment shows a radial expansion coupled with a longitudinal
shortening, the vein remains undeformed. At a certain p1 the equatorial radius of the segment
equals r2, that is, there is a point touch of the meridians of segment and vein. Further on,
p > p1, segment and vein undergo a joint deformation whereby both membrane meridians
coincide along an interval [t0,−t0] of the arc-length (t0 is taken negative in calculating the
upper left part of the profile). The points t0 and −t0 are called junction points since outside
the interval the meridians of segment and vein separate. This scenario continues (in theory)
up to p = ∞.

Now, in the inflation phase p > p1 the membranes of segment and vein on a non-void area
press against each other. We want to investigate this contact pressure z, its dependence on
system parameters and its distribution over the contact area. That the junction point t0,
and so the contact area as well, depend on p and β is already known from the foregoing
considerations.

The line of investigation is evident. First, solve the boundary value problem (9) with the
preferred parameter values and find, among others, the junction point t0 and the function
s 7→ (u, y, x)(s), s ∈ [t0, 0]. Second, introduce these functions into (4) to get the contact
pressure z as a function of s and dependent on the parameters.

Figure 14 sketches the distribution of z under various values of p and β. Mind that here the
distribution is presented over the longitudinal coordinate x instead of s. Obviously, z has
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Figure 14: Contact pressure z vs. x for β = 1 and p = 2, 5, 6.667, 10, 20, 100 (left);
for β = 10 and p = 5, 6.667, 10, 20, 50, 100 (right).

its maximum at x = 0 and jumps down to zero at x(t0). A 3-dimensional representation
is given in Figures 15 and 16. Finally, Figure 17 shows the dependence of the maximum
contact pressure z0 = z(0, p) on p for various β.
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Figure 17: Maximal contact pressure z0 = z(0, p) vs. p for various β

5.3 Effects of the longitudinal force f1

Until now, our investigations disregarded the opposite longitudinal forces f1 which optionally
press (f1 > 0) or pull (f1 < 0) at the discs of the segment. These forces have been introduced
in order to mimic some (surgical) action in a system state of constant working pressure p0.
The influence of f1 (at this pressure p0) on the system can be expected as follows.
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Figure 18: System profiles with β = 0, p = 100, for −5 ≤ f1 ≤ 5.

19



5 SIMULATION RESULTS 5.3 Effects of the longitudinal force f1

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

f
1

y 0

−5 −4 −3 −2 −1 0 1 2 3 4 5
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

f
1

z 0

Figure 19: Characteristics from Fig. 18: y0 vs. f1 (left), z0 = z |s=0 vs. f1 (right).

Both radius y0 and length 2 | x1 | of the segment depend on f1, that means the segment be-
haves like a spring (certainly of nonlinear characteristic which will be essentially determined
by the parameters p0 and β). Also the length of the contact interval 2 | t0 | and the contact
pressure z shall vary with f1 and oscillate about their steady values at p0 if f1 repeatedly
changes its sign.
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Figure 20: System profiles with β = 1, p = 100, for −5 ≤ f1 ≤ 5.

The following figures (numerical results gained by exploitation of (9)) are to give an impres-
sion of these dependencies. Mind that (2) gives a hint to precaution: f1 should be unequal to
pr2

1 (denominator of F1!). For small pressing f1 < pr2
1, the segment profile is convex, whereas

it becomes tyre-like for f1 > pr2
1 (α1 > π

2
). (See [7], where this singularity is overcome by a

suitable transformation.)
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5 SIMULATION RESULTS 5.3 Effects of the longitudinal force f1

We start with systems of high internal pressure p = 100 and vein stiffness β = 0. This is
a ”hard” segment and a ”ghost vein”, i.e. a meridianally inextensible and of zero circum-
ferential tension (stiffness E2h2 = 0). First, we show the change of system shape under the
action of pulling or pushing f1 in Figure 18.

Figure 19 sketches the corresponding behavior of two important state functions: equatorial
radius y0 and maximal contact pressure z0 = z at s = 0.

Effects of greater vein stiffness become clear in Figures 20, 21 and 22 showing system shapes
and characteristics as before.
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Figure 21: System profiles with β = 2, p = 100, for −5 ≤ f1 ≤ 3.66.
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Figure 22: y0 vs. f1 (left), z0 = z |s=0 vs. f1 (right) for various β.
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5 SIMULATION RESULTS 5.3 Effects of the longitudinal force f1

The non-straight vein profile for β > 0 is due to the fact that now the circumferential tension
in the vein, E2h2 = βE1h1, is not zero anymore. A vein with β = 0 stands for an extremely
thin vein (which is, nevertheless, longitudinally inextensible). So its effects on shape and
contact pressure mainly come from the end springs of stiffness k which are to mimic some
longitudinal extensibility. The influence of k in this case and for comparison in the case
β = 1 is demonstrated in Figures 23 and 24.
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Figure 23: System profiles with β = 0, p = 100, f1 = 0 with k = 10 . . . 2000.
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Figure 24: System profiles with β = 1, p = 100, f1 = 0 with k = 1 . . . 100.

The influence of the stiffness k for f1 6= 0 is left for further investigation. So we keep the
value k = 1 in the following graphics.
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5 SIMULATION RESULTS 5.3 Effects of the longitudinal force f1

Having in mind that p = 100 is obviously a rather high internal pressure making the segment
a very tense device we now decrease the pressure by a factor 1

10
and see what happens. Let

us first consider the shape of the system under a pressing force f1 = 0.5 for β = 0 and β = 1
(see Figures 25 and 26).
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Figure 25: System shape with β = 0, p = 10, k = 1, f1 = 0.5.
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Figure 26: System shape with β = 1, p = 10, k = 1, f1 = 0.5.

Mind, on the contrary, that with p = 100 the tyre-like shapes just begin to show up at f1 = 5
(see Fig. 18). Finally we sketch a family of shapes for β = 2 in Figure 27, and we conclude
this gallery in showing some characteristics for p = 10.
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Figure 27: Profiles for p = 10, β = 2, k = 1 with −1 ≤ f1 ≤ 0.4.
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Figure 28: Characteristics for p = 10 and various β: y0 vs. f1 (left), z0 vs. f1 (right).

Remark: Different positive bounds for f1 and a little trembling in the last characteristics
may be due to some numerical difficulties connected with the above mentioned singularity
in the differential equations.
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6 CONCLUSION 5.4 Some 3D-Views

5.4 Some 3D-Views

Concluding our gallery of graphics we show some 3D-views of the system inflated segment/
enveloping vein, with stiffness k = 1 and zero internal force f1 = 0. The following four
figures should be compared with Figures 2, 3, 8 to 12.

Figure 29: Rotated shape for β = 1, r2 = 0.12, p = 10

The latter ones present (each a quarter of) the system shapes for various values of the internal
pressure p and vein stiffness β. Figures 29 to 31 show the system under an internal pressure
p = 10 (medium-sized) with stiffness β = 1 (medium; equal stiffnesses of segment and vein),
β = 0.001 (very low), and β = 5 (high), respectively. The effect of ’thin’ and ’thick’ vein is
obvious. Figure 32 finally shows the system with β = 1 under high inflating pressure p = 100,
i.e., segment close to its maximum volume state. The corresponding contact pressures z can
be found in Figures 14 to 17.

6 Conclusion

In this paper we set up and investigate a mathematical model of a balloon-like mechanical
device ’segment’ that is inflated within a (long) cylindrical compliant tube (’vein’). Put
in concrete terms, compliance means hyperelasticity with a special anisotropy (meridional
inextensibility). The background system can be seen as part of a worm crawling in a com-
pliant tube or as a system in medical endoscopy. The investigations continue former work,
that concerned freely inflating segments and rigid surrounding tubes, respectively, [7], [8].
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Figure 30: Rotated shape for β = 0.01, r2 = 0.12, p = 10

The mathematical basis is taken from [9], where the governing boundary value problem was
derived out of the Principle of Minimal Potential Energy formulated as an optimal control
problem with state constraint.

The analysis of the optimality condition ends up with a 9-dimensional ordinary boundary
value problem where several given parameters (the internal pressure of the segment in the
first place) and to-be-matched parameters enter the differential equations and the boundary
conditions as well. All geometrical and physical quantities are appropriately normalized so
that the boundary value problem applies to segment-vein systems of arbitrary absolute size
and elasticity. A solution of the boundary value problem describes the shape of the deformed
system (without using any presupposition about the shape of the deformed system, as done,
e.g., in [2] and [6]), afterwards the internal pressure between the contacting segment and
vein can be determined utilizing a formula.

Once again we emphasize that the aim of our investigations was to see the principal behavior
of the modeled system. To this end the presented simulation results were achieved by using
choice parameter values which we hoped to be reasonable. Any dissatisfied specialist is
invited to do his own simulations using our source code (on request).

Various possible improvements of the presented model are at hand. We list some samples.

Regarding membrane material:

• Drop the Hooke law and switch to some other material constitutions, maybe of Mooney-
Rivlin type and different for segment and vein; easily done within the source code by
exchanging the ψ-functions with any others.
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Figure 31: Rotated shape for β = 5, r2 = 0.12, p = 10

• Take into consideration finite strength of the membranes: introduce bounds for the
stress resultants n11 and n22 (see [8]) and therefrom find a maximal feasible pressure
pmax.

• Relax the constraint of meridional inextensibility; this might give a more realistic
rheology - but at the expense of losing the (theoretically and computationally valuable)
invariance of arc-lengths and the existence of the maximum volume configuration of
the inflated (p = ∞) segment.

Regarding system geometry:

• Allow for longitudinal asymmetry of the system: eccentric position of the segment
within the vein, or different spring stiffnesses. The optimality conditions remain es-
sentially unchanged but, possibly, the analysis cannot be restricted to one quarter of
a longitudinal cut anymore.

• Drop the original circular cylindrical shape of the tube: allow for a constriction or
for non-constant thickness (Some first investigations of segments eccentrically placed
within a rigid stenosis were done in [5]).

Regarding applications:

• Consider two mutually non-compensating forces instead of ±f1; such forces could be
generated by fluid filling within the vein. Possibly, these forces must be equilibrated
by tangential forces in the contact area (”friction”).
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Figure 32: Rotated shape for β = 1, r2 = 0.12, p = 100

• Replace the isobaric process ’change of shape by variable f1 at constant pressure p0’
by an isochoric one, ’change of shape by variable f1 at constant volume v0 of the seg-
ment’. Then the pressure p varies in the neighborhood of the pre-adjusted pressure p0

(corresponding to v0), and it is governed by the additional isoperimetric side condition∫ ξ
1

−ξ
1

y2
1dx = v0, [7]. This setting could be crucial in the field of worm-like locomotion

systems with ±f1 generated by muscles.

• As to the background application problems it is clear that the presented investigations
and simulation results are only a first step towards a description of, e.g., stenosis
dilatation. Until now nothing has been done to capture a complicated rheology and
rotational non-symmetry (or randomness) of the constricting plaque.

(One day, during a meeting, a medical colleague was asked how he can hit the right
parameter values (e.g., pressure) in trachea dilation. ”By intuition” he replied. Maybe,
our paper gives some modest hints to strengthen the quantitative bases of this method.)

• And finally, concerning worm-like motion, at least a concatenation of segments within a
rigid or compliant surrounding, considering also tangent surface contact forces (driving
force or friction), demands an intensified theoretical attention.
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