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Mathematical model of vibrissae

for surface texture detection

Joachim Steigenberger∗, Carsten Behn†, and Christoph Will†

April 28, 2015

Abstract

The plane elastic bending rod serves as a model of biological and artificial vibrissae. One task
of vibrissae is to scan surfaces in order to detect their textures. We sketch the theory of static
bending rod problems with a view to this field of applications. The solutions of the respective
autonomous boundary value problems are given analytically. Numerical simulations are
done in some worked out examples. Being aware of the fact that (1) in papers, object
detecting by means of touch is seemingly exclusively investigated under the assumption of
ideal contact (no stiction or friction), and (2) our present omission of this assumption is based
upon simplifying model properties, the conclusions give some corresponding discussions and
proposals for improvements and necessary work in future.
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1 Introduction

A paragon of (biological or artificial) tactile sensors is the animal vibrissa, [Carl et al. 2012],
[Voges et al. 2012]. This hair-like sensor serves for recognition and exploration of outer objects
(existence, location, size, shape) by touching the objects’ surfaces. The touch takes place in an
active mode (vibrissa in an internally excited oscillating state, frequency disturbance owing to
touch) or in a passive mode (vibrissa in rest-state, quasi-static deformation owing to touch). The
perception (measuring?) of the effects is achieved by pressure- or strain-sensitive mechanore-
ceptors, [Behn and Steigenberger 2009], [Behn 2014], in the support region, their output signals
are forwarded to the central nervous system for analysis.

In a corresponding theory, it is obvious to model the vibrissa by a thin elastic bending rod,
supported in suitable way at its “lower” end, where the supporting device is equipped with
certain elements for measuring (forces, torques, frequencies) or vibration excitation. The outer
object is taken as a rigid or deformable solid body, the touch takes place at the tip of the
rod or at some point between support and tip. The adequate mathematical model is based on
the theory of the Euler-Bernoulli bending rod in R2, and the touching processes show up as
ordinary boundary value problems of order three or four, [Will 2013]. Concrete dimensions of
both vibrissa and outer object can be removed from the theory by suitable normalization.

Seemingly every theory presupposes an ideal contact vibrissa-object, [Scholz and Rahn 2004],
[Clements and Rahn 2006], [Will et al. 2014a], [Will et al. 2014b], i.e., the contact force (reac-
tion force to constraint “touch”) is in normal direction to the contacting surfaces. Physically,
this means smooth surfaces, an assumption which is a more or less crude approximation in any
application. Therefore, it seems reasonable to allow for physical non-smoothness in dealing with
tactile sensing.
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As a first step, we give in the following a simple theoretical description of how to determine the
“roughness” of a surface by means of a scan with an (artificial) vibrissa.

The trivial paragon for this approach is just the everyday procedure of roughly finding out the
surface texture of something: scratch the surface with your finger-nail (keeping the nail’s edge
in movement direction) and observe the produced noise that may hint to a stick-slip motion.
This scenario suggests to use a model like the following. A straight vibrissa is pressed against a
horizontal plane object surface by means of a force (acting at the foot of the vibrissa) in normal
direction to the plane. Thereby, the vibrissa gets bent such that its tip contacts the plane
with inclination neither normal nor tangential, the equilibrating contact force is vertical. If the
vibrissa foot is horizontally displaced then the vibrissa tip slides along the plane while the vibrissa
undergoes a translation, if and only if the contact is ideal, else, if there is some “dry friction”
then the tip is kept fixed by some horizontal counter-force until a certain threshold is exceeded.
So, a stick-slip behavior of the vibrissa occurs that could be observed through registration of
the forces in the vibrissa support, giving a qualitative or even quantitative statement about the
surface texture.

The paper at hand presents a first theoretical penetration of this scenario. It was not planned as
a mature one that achieves ultimate results. It is just to serve as a basic tool for investigations
to come next.

As the authors are working in a multi-disciplinary research group (reaching from engineering
and mathematics to zoology) it frequently happens that various irritations come up during dis-
cussions. That is why the present paper terminates with a Supplement (see Appendix B) which
is hoped to clarify misunderstandings concerning investigation methods.

Sections which are dominated by purely mathematical content are marked by an asterisk *.

2 The Euler-Bernoulli bending rod

Under certain simplifying assumptions which fit our context we consider a rod of circular cylin-
drical original shape, that consists of Hooke material, deforms by bending in a plane, has a
constant bending stiffness, and undergoes no stretching so that the arc-length s of the elastic
line shows up as a parameter that is invariant w.r.t. deformation. One end of the rod is supposed
to be clamped, at the other end there acts a (reaction or impressed) force. Every state of the
rod is an equilibrium state, i.e., any change of state must be seen as a quasistatic one (no inertia
effects). Details are shown in Figure 1.

x

y

x

y

Figure 1: The deformed rod, two different states: α = −π
6 (left), α = − π

10 (right).

Possible or necessary relaxations of the postulated properties of the rod are discussed at the end
of the paper.

Let the force be described as

f = fx ex + fy ey ,
fx = f · sin(α), fy = −f · cos(α), f :=| f |, α ∈

[
−π

2 , 0
]
.
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(The restriction of α matches the applications to come; it might be changed on the spot.)

Generally, every geometric or physical quantity shall appear as a real number emerging from
the following normalization (i.e., choice of measuring units related to the actual system) that
rids the formalism of ballast and makes the results independent of the real system dimensions:

units: [length]=L ; [force]=E Iz L
−2 ; [moment]=E Iz L

−1 ,

where L is the real length of the rod, E the elasticity modulus of the rod, and EIz its constant
bending stiffness. (In this formulation the rod has now length 1.)

Describe the elastic line of the deformed rod as s 7→ (x(s), y(s)), s ∈ [0, 1], s 7→ φ(s) its slope.
The static bending moment then writes

m(s) = fy
(
x1 − x(s)

)
− fx

(
y1 − y(s)

)
= f ·

{(
x(s)− x1

)
cos(α) +

(
y(s)− y1

)
sin(α)

}
.

The clamping reaction moment then is

m0 = −m(+0) = f {x1 cos(α) + y1 sin(α)} .

Let κ = φ′ be the actual curvature of the deformed rod, then the central bending relation is
m = κ, so the elastica is governed by the ordinary differential equations (x′ := dx

ds , etc.)

x′ = cos
(
φ(s)

)
,

y′ = sin
(
φ(s)

)
,

φ′ = f ·
{(

x(s)− x1
)
cos(α) +

(
y(s)− y1

)
sin(α)

}
,

 (2.1)

together with the boundary conditions

x(0) = 0, x(1) = x1,

y(0) = 0, y(1) = y1,

φ(0) = π
2 , φ(1) =: φ1 .

 (2.2)

The values in the right column may or may not be given in advance, nevertheless the tip
coordinates x1 and y1 enter the differential equation. Anyway, this problem of order three has
to be tackled as one packet.

We use a little trick by adding κ as another variable, whose derivative is known as m′ =
f · {cos(φ) cos(α) + sin(φ) sin(α)}, coming up with a fourth order problem

(a) x′ = cos
(
φ(s)

)
, (0) x(0) = 0, (1) x(1) = x1,

(b) y′ = sin
(
φ(s)

)
, (0) y(0) = 0, (1) y(1) = y1,

(c) φ′ = κ(s), (0) φ(0) = π
2 , (1) φ(1) = φ1,

(d) κ′ = f · cos
(
φ(s)− α

)
, (0) κ(0) = m0, (1) κ(1) = 0 .

(2.3)

Despite the raised order there are some advantages: none of the (possibly unknown) boundary
values enters the differential equation anymore and, more important, the last two lines decouple
from the upper ones forming a boundary value problem of order two per se. Moreover, the latter
generates a useful first integral which is a step towards a formal solution.

Having in mind the scenario sketched in the Introduction it makes sense to restrict the tip angle
φ1 in all that follows:

0 ≤ φ1 ≤
π

2
.

Concerning α, we should envisage α = 0 as starting value: the tip force f points vertically
downward, causing a clamp reaction moment m0 > 0. Then α takes negative values letting f
rotate clockwise. Incidentally, f points to the clamp yielding m0 = 0 while afterwards f will
tend to some point s♭ > 0 so as m(s♭) = κ(s♭) = 0. Altogether, it means, at s♭ the elastica has
a flex point (curvature changing sign),

κ(s) R 0 iff s Q s♭ .
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2.1 Treating the mathematical model *

The ODEs (c) and (d) in (2.3), considering (c.1) and (d.1), generate the first integral

1
2κ

2 = 2 f {sin(φ− α)− sin(φ1 − α)} . (2.4)

This can be utilized in the sequel as a differential equation

φ′2 = 2 f [sin(φ− α)− sin(φ1 − α)]

for φ(s) alone. But, to get φ′ by taking the root, one has to take care of the sign because it
rules the curvature behavior of the elastic line.

Anyway, φ′2 has to be non-negative. Now, f is positive, and one may verify that with α ∈ [−π
2 , 0]

the bracket in (2.4) is non-negative if

0 ≤ φ1 ≤
π

2
+ 2α . (2.5)

The meaning of the upper bound will become clear later on.
Hint: In the following, various integrals of elliptic type will appear. They can be represented by
standard elliptic integrals which are handled on the computer. These representations are listed
in the Appendix A and are frequently taken over from there.

2.1.1 Convex elastica

Assuming, inspired by Fig. 1(left), the elastica as a right-handed curve (negative curvature) it
follows

φ′ = −
√

2f
√

sin(φ− α)− sin(φ1 − α) =: κ(φ; f, φ1, α). (2.6)

Negative φ′ makes φ(s) monotonically decrease from π
2 to φ1. So, we have −π

2 ≤ α ≤ 0 and
φ1 ≤ φ ≤ π

2 . If we focus on the scenario sketched in the Introduction, then φ1 must not be
negative, and with (2.5) a non-negative radicand in (2.6) is guaranteed.

The differential equation for φ, φ′ = κ(φ; f, φ1, α) contains f , φ1, α as parameters. Together
with the condition (c.0) in (2.3) separation of variables yields the solution

√
2fs = −

φ∫
π
2

[sin(t− α)− sin(φ1 − α)]−1/2 dt.

This integral can be rewritten with the help of standard elliptic integrals, at the moment it
suffices to see it as a well-defined function K of (φ,φ1, α). Therefore, the central equation
governing the elastica is

√
2f s = K(φ,φ1, α) := −

φ∫
π
2

[sin(t− α)− sin(φ1 − α)]−1/2 dt,

s ∈ [0, 1], φ ∈
[
φ1,

π
2

]
, φ1 ∈

[
0, π2 + 2α

]
.

(2.7)

A crucial conclusion follows with s = 1, φ(1) = φ1:

f = 1
2K

2(φ1, φ1, α) =: f(α,φ1). (2.8)

This relates the acting force and the tip slope of the elastica. In the next Subsection 2.1.2, Fig. 2
gives an interesting sketch and a discussion of this relation.

The central equation above presents several different options to proceed towards the finally
interesting function s 7→ (x(s), y(s)).
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(a) Since K(·, φ1, α) is monotonic, the central equation can be solved for φ (possible by using
Jacobi functions). Then we had φ = Φ(s; f, φ1, α) to be put into the first two differ-
ential equations in (2.3), whence the elastica representation s 7→ (x(s), y(s)) follows by
integration.

(b) If we knew the parameters f, φ1, α, then we could try to construct an approximate solution.
To this end, one had to choose a finite sequence of (s, φ)-values in [0, 1]×[φ1,

π
2 ] which solve

the central equation. Then a suitable computer routine yields a polynomial φ = pol(s)
that interpolates or approximates the respective point sequence in the (s, φ)−plane. The
rest is as in (a).

(c) A general procedure is to consider the differential equations (2.3),(a),(b),(c). Since the
central equation told us the monotonicity of s 7→ φ(s), this function can be used as a
feasible parameter transformation on the elastica. Then, combining (a),(c) and (b),(c), we
have (abusing notation) x′ = dx

dφ φ′ and y′ = dy
dφ φ′, and, with φ′ = κ, see (2.6), we get the

transformed differential equations and initial conditions

dx
dφ = cos(φ)/κ(φ; f, φ1, α), x

(
π
2

)
= 0,

dy
dφ = sin(φ)/κ(φ; f, φ1, α), y

(
π
2

)
= 0.

(2.9)

By integration we get the functions whose graph is the elastic line:

x = X(φ; f, φ1, α) :=
−1√
2f

φ∫
π
2

cos(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt,

y = Y (φ; f, φ1, α) :=
−1√
2f

φ∫
π
2

sin(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt.
(2.10)

If a feasible triplet (f, φ1, α) is given, then we are done, else the functions X and Y undergo
further conditions (most important one in our scenario: fixed height η < 1 of the tip, i.e.,
Y (φ1; f, φ1, α) = η). Again, these integrals can be rewritten with the help of standard
elliptic integrals (see Appendix A), for the moment we will proceed with these functions
X and Y taking them as given.

2.1.2 Elastica with one flex point

Now we assume, inspired by Fig. 1(right), that the elastica has one flex point (x♭, y♭) at s♭ ∈
(0, 1). Then (2.6) turns into

φ′ =

{ √
2f
√

sin(φ− α)− sin(φ1 − α) = −κ(φ; f, φ1, α), s < s♭,

−
√
2f
√

sin(φ− α)− sin(φ1 − α) = κ(φ; f, φ1, α), s > s♭.
(2.11)

If we put φ(s♭) := φ♭ > π
2 (φ increases on [0, s♭] from π

2 to φ♭ since φ′ is non-negative), then

there holds sin(φ♭ − α)− sin(φ1 − α) = 0 and we get a relation between these angles

φ♭ + φ1 = π + 2α. (2.12)

This relation entails a nice conclusion concerning the angle φ♭. Since we are interested in
vibrissae constrained by the horizontal plane y = η, we always have φ1 ∈ [0, π2 ]. This implies

π

2
< φ♭ ≤ π + 2α and − π

4
≤ α ≤ 0. (2.13)

The integration in (2.11) which leads to the central equation has now to be done piecewise:

s < s♭ :
√
2fs = −

φ∫
π
2

1
κ(φ;f,φ1,α)

dφ,

s > s♭ :
√
2f(s− 1) =

φ∫
φ1

1
κ(φ;f,φ1,α)

dφ,
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or for short

√
2fs = −K(φ,φ1, α), φ ∈

[
π
2 , φ

♭
]
,

√
2f(s− 1) = K(φ,φ1, α)−K(φ1, φ1, α), φ ∈ [φ1, φ

♭],

with φ♭ = π + 2α− φ1.

(2.14)

(For K(·, ·, ·) remind (2.7).)

Putting s = s♭, φ = φ♭, we obtain
√
2f s♭ = −K(φ♭, φ1, α) from the 1st line and

√
2f(s♭ − 1) =

K(φ♭, φ1, α) − K(φ1, φ1, α) from the 2nd one. Finally, we have the useful formulae
√
2f =

K(φ1, φ1, α)− 2K(φ♭, φ1, α) yielding the force explicitly as

f = 1
2 [K(φ1, φ1, α)− 2K(π + 2α− φ1, φ1, α)]

2 (2.15)

and √
2f s♭ = −K(φ♭, φ1, α). (2.16)

As we announced in the foregoing section we can now sketch the relations f = f(α, φ1) given in
(2.8) for the convex elastica and (2.15), now under the supposition that one flex point exists.

Figure 2: Force f vs. tip slope φ1 for various α.

In fact, this family of curves deserves a particular interest: given any point (φ1, f) of the
curve “numbered” α, then the triplet (α, φ1, f) characterizes a unique elastic line through the
differential equations (2.3). That means, that this family of curves is a kind of configuration
space of the Bernoulli rods under consideration.

There are several types of schlicht curves. The bold curves for α = 0 (vertical force) end at
φ1 = π

2 , with f = 1
4π

2 (lower one: zero flex point) and at φ1 = π
2 with f = 9

4π
2 (upper one:

one flex point), respectively. Evidently, these f -values are just the 1st and 2nd critical buckling
load.

The solid curves above come from (2.8), no flex point with α = −π
4 (

π
40)0. Each curve with fixed

negative α terminates vertically at φ1α = π
2 + 2α, fα = 4K2(sin(α2 )), (K(·) : complete elliptic

integral of 1st kind, see Appendix A). These points in the (φ1, f)-plane mark the border of the
theory with convex elastic lines. This becomes obvious if we notice κ |s=0= 0 from (2.6). The
geometric locus of these points is the middle dash-dot line. In fact, these points are turning
points since they join to the dashed (φ1, f)-curves given by (2.15), one flex point.

The lowest region in the diagram is filled with (φ1, f)-curves given by (2.8) with positive α (only
few of them shown dotted-lined, they are not of interest in our context).

Being sure that actually there is a flex point and we know α and φ1 then φ♭, s♭ and f follow
from (2.12), (2.15) and (2.16). Finally, the elastic line can be determined by the procedures (a)
and (b) explained in Subsection 2.1.1.
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If we prefer to proceed by the method (c) given there, i.e., ODEs (2.3a,b,c) and parameter
transformation s → φ now piecewise using (2.11), we come to the following:

φ =
π

2
. . . φ♭ :


x = 1√

2f

φ∫
π
2

cos(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt ≡ −X(φ),

y = 1√
2f

φ∫
π
2

sin(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt ≡ −Y (φ),

φ = φ♭ . . . φ1 :



x− x♭ = −1√
2f

( π
2∫

φ♭

cos(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt

+
φ∫
π
2

cos(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt

)
≡ X(φ)−X(φ♭),

y − y♭ = −1√
2f

( π
2∫

φ♭

sin(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt

+
φ∫
π
2

sin(t) [sin(t− α)− sin(φ1 − α)]−1/2 dt

)
≡ Y (φ)− Y (φ♭).

Here X(φ), Y (φ) abbreviate the evaluable function values X(φ; f, φ1, α), Y (φ; f, φ1, α) intro-
duced in (2.10). Continuity of the elastic line demands x♭ = −X(φ♭), y♭ = −Y (φ♭). Hence, we
obtain the representation of the elastic line with one flex point in analogy to (2.10)

x =

{
−X(φ; f, φ1, α), φ = π

2 . . . φ
♭

X(φ; f, φ1, α)− 2X(φ♭; f, φ1, α), φ = φ♭ . . . φ1

,

y =

{
−Y (φ; f, φ1, α), φ = π

2 . . . φ
♭

Y (φ; f, φ1, α)− 2Y (φ♭; f, φ1, α), φ = φ♭ . . . φ1

.

(2.17)

Again, we refer to the Appendix A to find a usable representation by standard elliptic integrals.

At this stage we do not worry about the stability of states showing a flex point.

Figure 3 shows two elastic lines both with the same prescribed values of α and φ1, whereas the
tip forces f are different since determined from (2.8) and (2.15), respectively.

Figure 3: Elastic lines with zero and one flex point, tip forces acting under α = −π
8 , tip slopes

prescribed as φ1 =
1
2(

π
2 + 2α). Dashed segments represent tip forces f = 4.72 and f = 19.0.

Remark 2.1. In Fig. 3 one may notice that the flex point bisects the arc between the two points
with slope φ = π

2 . This can be proven by means of (2.14).
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3 Vibrissa for surface texture detection

Now we tackle the problem set up at the end of the Section 1 (Introduction): to detect the
texture of a surface by means of a vibrissa in passive mode.

3.1 Physical model

Clearly, we use a bending rod to model the vibrissa, and we admit the following confinements
of the overall scene.

(a) The object to be scanned is a plane (a straight line in our configuration space R2);

(b) The vibrissa is originally straight and vertical, its foot is supported by a clamp that is
movable along the x-axis;

(c) The to-be-scanned line is horizontal at a level η above the vibrissa foot;

(d) The texture of that line is characterized by stiction (Coulomb’s “dry friction”).

We start the scan process in a configuration with the vibrissa bent right-handed and touching
the object under an inclination (tip slope) φ10 ∈ (0, π2 ), its foot coordinate is taken as x0 = 0.
This configuration is achieved if we choose a level η ∈ (η, 1), where η is that tip coordinate y1
of a convex vibrissa under vertical tip load f (α = 0) which causes the tip slope φ1 = 0. From
(2.8) and (2.10) we obtain

f = 1
2K

2(0, 0, 0) = 3.4373, η = Y
(
0; f, 0, 0

)
= 0.4569 .

Having chosen any feasible η ∈ (0.4569, 1), then we need the corresponding f and φ1. For this
end, we have to solve the equation

Y

(
φ1;

1

2
K2
(
φ1, φ1, 0

)
, φ1, 0

)
− η = 0,

for φ1 and, using the solution φ1η, we obtain

fη :=
1

2
K2 (φ1η, φ1η, 0) .

Figure 4 sketches these values versus the altitude η, whereas Fig. 5 shows the elastic lines for
η = 0.6 and η = 0.75.

Figure 4: Left: φ1η vs. η; right: fη vs. η.
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Figure 5: Elastic lines under vertical tip force with two different prescribed tip altitudes η.

Now, the physical procedure to be simulated is as follows:
We displace the vibrissa foot from x0 = 0 to some small x̃0 > 0. If the contact was ideal then
the vibrissa tip would slide from x1 to x̃1 = x1 + x̃0 while the tip force f does not change.
However, if there is some “roughness” in the contact region, this becomes apparent by stiction:
the tip gets locked by an additional horizontal constraint force acting to the left, i.e., the total
tip load f has got a clock-wise rotation by a certain angle α < 0 (maybe accompanied by some
change in magnitude). We repeat this step by another foot displacement, again changing the
direction of the tip force. The contact point stays at rest as long as the horizontal component
of the constraint force, fx, does not exceed the threshold given by Coulomb’s law

|fx| ≤ µ0 |fy| ,

where µ0 is just that stiction coefficient we are aiming at.

If the forces fx and fy are under permanent observation (through a measurement device in
the foot region) during the process then the violation of Coulomb’s relation is noticed by some
“bang”, and the last measured values yield µ0. After the tip has slipped forward to a new rest
position, the procedure starts anew.

So far about a first experimental way to determine the stiction coefficient µ0.

3.2 Mathematical model and simulations

In themathematical simulation it seems more convenient to mimic every step in reverse direction:
prescribe a negative α and compute the corresponding elastica restricted by y |s=1= η.1 Running
a sequence of steps this way, we end up with the relation foot displacement → α. If this is
formally known for various η (as far as the computer is willing), then the measurement in
experiment can be converted (and simplified) from forces to displacements: displacement →
µ = tan(−α). The Coulomb stiction coefficient µ0, we aim at, shows up in that step where the
“bang” takes place.

Clearly, if we start with α = 0 (vertical f) then no flex point occurs at first, and the evaluations
run according to Subsection 2.1.1 (phase 0). But, at some α < 0, it may happen that a flex
point is born, and the next computing (phase 1) has to follow Subsection 2.1.2.

Using MAPLE 15, it appears that passing the turnover point (φα = π
2 + 2α, fα = f(α, φα))

is a bit trickish (to choose the right density of the α-sequence and the resolution of equations

1Using the toolkit from Subsection 2.1 we have, first of all, a fixed foot at (0, 0) and a displaced tip (x1, η).
Afterwards, a translation has to shift the elastic line to a position with the tip in its starting place.
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deserved some caution). Anyway, the computing process runs through the following steps.
(Every function needed is defined and represented by means of standard functions (see Ap-
pendix A) in the preliminaries of the program.)

• Step 0: Choose η, choose some α-sequence (α0, α1, . . .) ⊂ [−π
4 , 0], αi+1 < αi. For α =

α0 = 0 find (φ10, f0) such that (see (2.10), (2.8)) Y (φ10, f0, φ10, α0) = η and f0 =
1
2K

2(φ10, φ10, α0).

• Step n > 0: For α = αn find (φ1n, fn) such that Y (φ1n, fn, φ1n, αn) = η and fn =
1
2K

2(φ1n, φ1n, αn). Check φ1n < φ1n−1. If φ1n = π
2 + 2αn then n =: n1: end of no-

flex-point phase 0! If φ1n1 = 0 then stop, else (using tools from Subsection 2.1.2)

• Step n > n1: For α = αn find (φ1n, fn) such that (see (2.17), (2.15)) y |φ=φ1n= η and
fn = f(αn, φ1n) until a computing break occurs (reasons for the latter still unknown).

The results of these steps become apparent by a point sequence (φ1n, fn)n=0,1,... in the (φ1, f)-
plane. The phase 0 part of this sequence obviously terminates in a well-defined turning point
(φ1n1 , fn1) with α = αn1 such that fn1 = 4K2(sin(α2 )).

Remark 3.1. Finally, it turned out that a modification of this procedure is more robust and
efficient: Determine, first, the turning point the (φ1, f)-sequence has to terminate at α solv-
ing Y (φα, f(α, φα), φα, α) = η where φα = π

2 + 2α. Then, start with a choice descending
φ1−sequence in [φ1, φα] and determine for each φ1n the corresponding αn and f(αn, φ1n).

An example is given in Fig. 6.

Figure 6: Sequence (φ1i, fi)i=0,1,... for η = 0.75 (cross: calculated turning point).

The following two figures, Figs. 7 and 8, sketch some of the corresponding elastic lines (dots
mark flex points) and the relation of the foot displacement d and µ :=| fx

fy
|=| tan(α) |.
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Figure 7: Elastic lines.

Figure 8: Coefficient µ vs. foot displacement d.

The handling in practice is now this: Run an experiment with η = 0.75. Aim is at the maximal
value of µ - the coefficient µ0 in Coulomb’s law - which marks the roughness of the scanned
surface. Experimentally, µ0 is reached at that (measured) displacement d0 where a “bang” is
observed (tip gets slipping), then µ0 is obtained from Fig. 8.

Figures 9 to 11 show the analogues for the smaller height η = 0.6.
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Figure 9: Sequence (φ1i, fi)i=0,1,... for η = 0.6.

Figure 10: Elastic lines.

Figure 11: Coefficient µ vs. foot displacement d.
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Here, a particular case was met by accident: Figure 9 shows that the no-flex-point phase 0
terminates at α = −π

4 , φ1 = 0. Running further steps, then negative φ1 appear (visible in
Fig. 9) which are coupled with an overshooting of the elastic line. This effect is quite correct in
the theory of bending rods with tip fixed in R2.

Precisely, our context needs a stronger theory with a compound constraint

{y(1) = η ∧ y(s) ≤ η for every s ∈ (0, 1)}

instead of solely y(1) = η. Clearly, the experimental run ends at that step with φ1 = 0.

4 Conclusion

The authors would like to understand the foregoing investigations as a first attempt to incorpo-
rate stiction into touch problems with vibrissae. The underlying mathematical model admits a
far-reaching analytical treatment, this is due to several simplifying assumptions in the physical
model:

- the vibrissa is modeled as a bending rod that is originally straight, it has a constant
bending stiffness, and it is made of homogeneous Hooke elastic material;

- the vibrissa foot is clamped, its tip is constrained to fixed constant level.

This makes the core of the mathematical model an autonomous ordinary differential equation
boundary value problem, whose energy integral enables one to present the solution of the total
boundary value problem by means of elliptic integrals. So, the numerical exploitation is shifted
as far as possible, and final simulations only need evaluation of standard functions. The latter
was achieved on the PC by means of MAPLE 15.

Although at first there is no urgent necessity, this way of simulation can be changed (and should
be changed to see the effects):

- replace the computer algebra-oriented software MAPLE used for evaluating the analytical
expressions by a different, numerical software, as for instance MATLAB;

- use a numerical software from the very beginning, i.e., solve the total boundary value
problem numerically (without handling solutions analytically).

The last mentioned way of treating the problem might become unavoidable if the physical model
is improved. Notice that the real vibrissa may be non-cylindrical but tapered (diameters of the
cross-sections decrease towards the tip), and the original stress-free shape is not a straight line
(there is a non-zero pre-curvature κ0 depending on s in general). Then the bending stiffness
EIz is not constant anymore (same effect if E depends on s) and the classical bending relation
κ = m turns into κ − κ0(s) = b(s)m, where, after normalization, b represents the reciprocal
bending stiffness. The differential equation (2.3,d) then writes

κ′ − b′

b
κ = bm+

(
κ′
0 −

b′

b
κ0

)
,

it shows up as non-autonomous (exceptional case: constant stiffness, b′ = 0, and circular pre-
curvature: κ′

0 = 0), and it demands a more complicated treatment. This must be accepted if
in particular the effects of tapering and pre-curving on the behavior of the vibrissa are to be
explored.

Another improvement relates to the vibrissa support. The real vibrissa is rooted in the follicle-
sinus complex with its various biological devices. So, the least improvement towards mimicking
the follicle-sinus complex would be to replace the clamp with a viscoelastic support which si-
multaneously could serve for certain control tasks.
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Assume that these effects are sufficiently well known or not of interest then another kind of
model improvement is to replace the straight horizontal tip constraint by any inclined or curved
one. Thereby, the model comes closer to the scenario in object scan but now dropping the
assumption of ideal touch and instead allow for roughness of the contacting surfaces.

In order to validate the presented theory (and its hopefully coming improved versions) a measur-
ing device for the investigation of hardware macro models is currently in statu nascendi. At the
Department of Technical Mechanics (Ilmenau University of Technology, Germany), experiments
are to start in next future.

Possibly, this gives rise to establish a dynamical theory of vibrissae in stick-slip motion (thereby
enlightening also the dark “bang” from above).

This paper contributes to the DFG-supported research project “Technical, non-visual character-
ization of substrate contact using carpal vibrissae as a biological model”, [Schmidt et al. 2014],
(TU Ilmenau: Departments Technical Mechanics & Biomechatronics; FSU Jena: Institute of
Systematic Zoology and Evolutionary Biology with Phyletic Museum).

A Elliptic integrals

Representations by standard elliptic integrals are given for the most frequently appearing func-
tions in the theory.

The standard elliptic integrals, in MAPLE to be called by ’EllipticF’, etc., are the following.
Elliptic integral of 1st kind:

F(z, k) :=
z∫

0

1√
1− t2

√
1− k2t2

dt, (k < 1).

Complete elliptic integral of 1st kind:

K(k) := F(1, k).

Elliptic integral of 2nd kind:

E(z, k) :=
z∫

0

√
1− k2t2

1− t2
dt, (k < 1).

(z: argument, k: module).

We sketch some reformulations of relevant integrals encountered in the foregoing sections and
give their acceptable final form. Most frequently we met the integrals

φ∫
π/2

[sin(τ − α)− sin(u)]−1/2 dτ and

φ∫
π/2

sin(τ)
cos(τ)

[sin(τ − α)− sin(u)]−1/2 dτ

with u := φ1 − α. We introduce the following abbreviations

I1(x, u) :=
x∫

π/2

[sin(τ)− sin(u)]−1/2 dτ,

I2(x, u) :=
x∫

π/2

[sin(τ)− sin(u)]1/2 dτ,

I3(x, u) :=
x∫

π/2

sin(τ) [sin(τ)− sin(u)]−1/2 dτ,

I4(x, u) :=
x∫

π/2

cos(τ) [sin(τ)− sin(u)]−1/2 dτ.
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Applying transformations like this:

I1 =
x∫

π/2

[
cos
(
τ − π

2

)
− sin(u)

]−1/2
dτ =

x−π
2∫

0

[cos(σ)− sin(u)]−1/2 dσ

=
x−π

2∫
0

[
1− 2 sin2

(
σ
2

)
− sin(u)

]−1/2
dσ, let k(u) := 1√

2

√
1− sin(u),

= 1√
2k(u)

x−π
2∫

0

[
1− 1

k(u)2
sin2

(
σ
2

)]−1/2
dσ, substitution: sin

(
σ
2

)
= k(u) · z,

=
√
2

1
k
sin(x

2
−π

4 )∫
0

[(
1− z2

)(
1− k2z2

)]−1/2
dz,

we obtain the auxiliary function

I1(x, u) =
√
2F
(

1
k(u) sin

(
x
2 − π

4

)
, k(u)

)
with module k(u) =

√
1
2

(
1− sin(u)

)
.

Similarly we get

I2(x, u) = 2
√
2
{
E
(

1
k(u) sin

(
x
2 − π

4

)
, k(u)

)
−
(
1− k(u)2

)
F
(

1
k(u) sin

(
x
2 − π

4

)
, k(u)

)}
.

Rewriting

I3 =
x∫
π
2

{sin(u) + sin(τ)− sin(u)} [sin(τ)− sin(u)]−1/2 dτ,

I4 =
x∫
π
2

2 d
dτ

{[
sin(τ)− sin(u)

]1/2}
dτ,

we find

I3(x, u) = sin(u) · I1(x, u) + I2(x, u),

I4(x, u) = 2
{√

sin(x)− sin(u)−
√

1− sin(u)
}
.

In relation to the elastica coordinate Y , there appears

Js(φ,φ1, α) :=

φ∫
π
2

sin(t)
[
sin(t− α)− sin

(
φ1 − α

)]−1/2
dt

and analogously Jc :=
∫
cos(t)[. . .]−1/2dt for X. Putting t = τ +α, and using addition theorems

for sin(τ + α), and cos(τ + α), the J integrals show up as linear combinations of I3 and I4.

Altogether, we have the following comfortable way to handle the relevant objects of the theory:

K(φ,φ1, α) = −I1(φ− α, φ1 − α) + I1
(
π
2 − α,φ1 − α

)
,

√
2f ·X(φ; f, φ1, α) = sin(α)

[
I3(φ− α, φ1 − α)− I3

(
π
2 − α,φ1 − α

)]
− cos(α)

[
I4(φ− α, φ1 − α)− I4

(
π
2 − α, φ1 − α

)]
,

√
2f · Y (φ; f, φ1, α) = − cos(α)

[
I3(φ− α, φ1 − α)− I3

(
π
2 − α,φ1 − α

)]
− sin(α)

[
I4(φ− α, φ1 − α)− I4

(
π
2 − α, φ1 − α

)]
,

where I1, I2, I3, I4 have to be taken from above. Regarding internal computer peculiarities it is
advisable to use real parts Re(·) explicitly and compute with high precision (say, Digits := 25).
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B Supplement

It is unquestionable that scientists from different branches come along with different concrete
interests for natural objects, their structure, interconnections and interactions, and they show
a preference for different investigation methods. Our current research group may serve as a
striking example.

Although there is one common general research object - bio-inspired sensors - several scientific
branches are present: biology, zoology, medicine, mechanics, mathematics.

Certainly, it is the business of biologists and zoologists to investigate natural objects (e.g.,
sensory organs like vibrissae) in a maximum of details: geometry, material, behavior under
external influences, structure and mode of operation of the supporting elements like the follicle-
sine complex (FSC).This task blows up due to the multiple forms of vibrissae, distinguished by
their place on the surface of a living organism (mystacial v.: snout region, carpal v.: foot region,
as examples) in connection with various purposes (object perception quite near or afar). This
raises questions: which structure (created through evolution) makes the vibrissa optimally fit
for its task? And which internal processes are the very reason for this fitness? It may be true
that the answers to these questions are primarily sought by means of both in vivo and in vitro
observations and measuring. Their results then lead to hypotheses and further on to theories
which describe structure and functioning of a group of natural objects.

Co-operating engineering scientists are primarily interested in the principles of structure and
functioning with the final aim to design an artificial object that (under choice aspects) comes
close to the live paragon. For this end they take up the results gained by the life scientists
as the basis of their own work that specifically uses techniques from technology, physics, and
mathematics.

And this is just the principle of bionics: See the nature and adopt evolutionary achievements to
technology.

The overwhelming complexity of natural objects excludes, from the very beginning, the investi-
gation of such objects as a whole, i.e., as they show up with all their details. Any investigation
has to focus on a model of the object, and this means, take the (possibly incomplete) image of
the object presented by the observing scientists (biologists, zoologists), dissect this image and
take away all pieces of (actual or guessed) non-interest. The rest then forms a virtual object,
which all considerations to come have to be concentrated on.

Next, this virtual object must be described by means of physical terms, this description repre-
sents a physical model of the natural object. Finally, applying corresponding physical theories
and turning physical terms into adequate mathematical ones, a mathematical model of the nat-
ural object has appeared. As a rule, this shows up as a system of constants and variables,
combined by equations of any kind. Possibly, based on such models, engineers could design a
(preliminary) hardware model to be used for demonstration or measuring.

All these steps should strictly follow this general guide in modeling: Make the model as simple
as possible (to enable a thorough analysis) and as comprehensive and complicated as necessary
(to capture all important items). The extent of performing these claims obviously depends
on objective necessities and subjective abilities to master the coming steps. (To quote Albert
Einstein: “Everything should be made as simple as possible, but no simpler”.)

The analysis of the mathematical model consists of the following items:

1) to find general or particular solutions of the equations,

2) to study these solutions under different feasible values of system parameters,

3) to compare these simulation results with empirical results from measurements at a hard-
ware physical model or at an original object.
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As a rule, this comparison discloses certain deviations in properties and behavior, throwing a
light on the quality of the actual model. It must be seen as the normal case that an improvement
of the model should make sense or even shows up as unavoidable. Thereby, a natural iteration
process has been opened: object→model→comparison→improvement→new model→... Regret-
tably, most improvements imply a complication of the mathematical model that frequently en-
forces new methods for treatment. The worst case is, of course, that in some step the comparison
definitely shows the model as unusable.

Concluding, a glance to an example from current research:

(1) Object: vibrissa (any kind).

(2) Physical model 1: straight slender rod, foot clamped, tip free, force at tip.

(3) Mathematical model 1: Euler-Bernoulli bending rod, cylindrical, elastic, differential bound-
ary value problems;
solution: a) analytical expressions, PC-evaluation;

b) a-priori numerical software.

(4) Comparison with object: vibrissa tapered, pre-curved, hollow, no clamp.

(5) Improvement: add tapering (how?), pre-curvature (which?), viscoelastic support.

(6) Mathematical model 2: DEs no more autonomous, only solution b).

(7) Compare to results (3): which effects (5) on sensitivity, natural frequencies, ...?

It is desirable and useful to start with a mathematical model 1 that admits solutions (e.g., of
differential equations) in closed form (“formulas”). These could enable one to exhibit, qualita-
tively and without numerical expense, the effects of parameter variations. This knowledge may
then be utilizable in setting up and running computer software needed for improved models.
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