

Ghulam Rasool; Shabib Aftab; Shafiq Hussain; Detlef Streitferdt

eXRUP: a hybrid software development model for small to medium scale projects

Original published in:

Journal of Software Engineering and Applications, 6 (2013), 9, pp. 446-457.
ISSN (online): 1945-3124

DOI: 10.4236/jsea.2013.69055
URL: http://dx.doi.org/10.4236/jsea.2013.69055
[Visited: 2015-06-02]

This work is licensed under a
Creative Commons Attribution 4.0 International License.
[http://creativecommons.org/licenses/by/4.0/]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224751159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4236/jsea.2013.69055
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Software Engineering and Applications, 2013, 6, 446-457
http://dx.doi.org/10.4236/jsea.2013.69055 Published Online September 2013 (http://www.scirp.org/journal/jsea)

eXRUP: A Hybrid Software Development Model for Small
to Medium Scale Projects

Ghulam Rasool1*, Shabib Aftab1, Shafiq Hussain2, Detlef Streitferdt3

1Department of Computer Science, COMSATS Institute of Information Technology, Lahore, Pakistan; 2Department of Engineering,
Computing and Technology, University of Sunderland, Sunderland, UK; 3Software Architectures and Product Lines Group, The
Ilmenau University of Technology, Ilmenau, Germany.
Email: *grasool@ciitlahore.edu.pk

Received June 12th, 2013; revised July 15th, 2013; accepted July 23rd, 2013

Copyright © 2013 Ghulam Rasool et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT
The conventional and agile software development process models are proposed and used nowadays in software industry
to meet emergent requirements of the customers. Conventional software development models such as Waterfall, V
model and RUP have been predominant in industry until mid 1990s, but these models are mainly focused on extensive
planning, heavy documentation and team expertise which suit only to medium and large scale projects. The Rational
Unified Process is one of the widely used conventional models. Agile process models got attention of the software in-
dustry in last decade due to limitations of conventional models such as slow adaptation to rapidly changing business
requirements and they overcome problems of schedule and cost. Extreme Programming is one of the most useful agile
methods that provide best engineering practices for a good quality product at small scale. XP follows the iterative and
incremental approach, but its key focus is on programming, and reusability becomes arduous. In this paper, we present
characteristics, strengths, and weaknesses of RUP and XP process models, and propose a new hybrid software develop-
ment model eXRUP (eXtreme Programming and Rational Unified Process), which integrates the strengths of RUP and
XP while suppressing their weaknesses. The proposed process model is validated through a controlled case study.

Keywords: Process Models; Agile Modeling; eXtreme Programming; Rational Unified Process; Process Evaluation

1. Introduction
With the gradual passage of time, the conventional soft-
ware development process models have been in the
process of replacement by lightweight agile software
development methodologies. The conventional models
are presented and discussed in various papers [1-4]. In
the last decade, agile models got attention of the software
industry due to their unique features, such as quick re-
sponse to requirement changes, reduced/pragmatic docu-
mentation and agility [5]. Authors of studies [6,7] refer to
agile models as lightweight compared to conventional
heavyweight models. The important characteristics of
agile models are the incremental development style, a
cooperative development, straightforward and adaptive
process steps. These characteristics can be measured by
small releases, continuous feedback, collective owner-
ship and small team size.

XP is the most popular agile model widely used in
various organizations and software industry [8-10]. It is a

lightweight and fast agile software development process
model for simple and small scale projects. Its basic
working disciplines/values are simplicity, feedback, com-
munication and courage. XP is suitable for small teams
of 2 to 10 people and its basic working metaphor is that
“the whole team is working together on a single table”
[11]. It is person centric rather than process oriented [12].
XP follows an iterative and incremental approach; heavily
focusing on constant customer collaboration, delivering
early release through small iterations, it provides low bug
rates and frequent adaptation of changing business re-
quirements [13,14]. XP also helps the developers to con-
stantly identify and work on the highest priority artifacts
of the software. It has the capability to manage and han-
dle the frequently changing business requirements which
are the main reason for XPs tendency to be within budget
even with changing business requirements. Due to con-
stant customer feedback, XP has a positive effect on the
correspondence of the requirements to the application,
the final application better fits to customer desires [15]
and is of good quality due to lower software bugs rates. *Corresponding author.

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 447

XP strengths also include fast development, cost saving,
high satisfaction of client and test driven development.
Results of these strengths include less errors and ac-
ceptance of changes at any stage with minimum cost.
XP practices include Planning Game, Small Releases,
Metaphor, Simple Design, Tests, Refactoring, Pair Pro-
gramming, Collective Ownership, Continuous Integra-
tion, 40-hour Week On-site customer, and Coding Stan-
dards [16].

The Rational Unified Process (RUP) is an incremental,
iterative and architecture centric framework, based on sound
software engineering principles [17]. It is a well defined
process model that provides step by step guidelines to
develop object oriented software applications. RUP has
been evolved in different areas in different situations.
RUP provides a very structured and formalized process
for software development through its deep planning,
thorough analysis, best design practices, codified process
and extensive documentation. The key features of RUP
are case driven design using, tailoring and tool support
processing [18]. RUP or any other document driven ap-
proach is very beneficial when it deals with large scale
projects due to its straightforwardness. These approaches
are also providing better predictability and high as-
surance due to its potential benefits for large scale pro-
jects [18]. However, RUP can be tailored according to
requirements of customers for medium scale projects.

Both XP and RUP share common features; they are it-
erative, customer oriented and role based [19]. RUP
comprises 100 artifacts while XP focuses only on code.
Similarly, RUP has 40 roles while XP has only 5 roles.
These similarities and differences motivated us to ana-
lyze and integrate best features of both models. The fea-
ture shows that the advantage of one model is unavail-
able or limited in the other model. eXRUP has all the
advantages of both the models by reducing the limita-
tions of both models to a minimum level. The important
feature of eXRUP is that even after the integration, it is
lightweight and easy to understand for the developers
and other stakeholders. The rest of paper is organized as
follows.

Section 2 discusses the related work. Section 3 dis-
cusses and compares the features of RUP and XP and
maps key features with proposed model. The proposed
eXRUP model is presented and discussed in Section 4.
Section 5 discusses the case study and its evaluation. The
validity of proposed model is discussed in Section 6.
Finally, Section 7 presents conclusion and future work.

2. Related Work
We discuss some important studies which focused on
integration of various models and they are similar to the
eXRUP model proposed in this paper. To the best of our
knowledge, different authors worked on the integration
of models but no work is reported on the integration of

RUP and XP.
Permeation of RUP and XP on small to medium scale

projects is presented in [20]. Authors presented theoretic-
cal study which focused on comparing features of RUP
and XP. These discussed and compared activities of both
models during phases of primary investigation, analysis
and design, implementation and transition. Authors claim
without any practical case study that the proposed model
is more efficient than XP and RUP models as it exploits
human experience during software development. Such
claims need the evaluation of model by developing dif-
ferent software applications and especially feedback
from the industry.

Authors in [19] presented Contrasts or Synonyms of
RUP and XP and they concluded both models have some
common character tics but they are quite different. The
key focus of paper was to compare similarities and dif-
ferences of both models based on a framework. They
concluded that the selection of both models for different
types of projects needs to be investigated empirically.
They did not propose any new model based on the char-
acteristics of both RUP and XP.

Reference [21] presented a model which integrates
features from SCRUM and RUP. Authors evaluated the
proposed model on a case study. They did not implement
the same case study using SCRUM and RUP separately.
The key objection which could be risen is that there is no
need of integrating SCRUM and RUP according to the
authors, they have used the RUP for project management
activities of SCRUM but the RUP itself has a total of 9
workflows and three of them totally deal with the project
management such as project Management, environment
and configuration & change management. Moreover, the
proposed model is still pretty much a traditional software
development model.

A new process model by amalgamating best charac-
teristics of XP, Scrum and RUP namely SPRUL is pre-
sented in [22]. Authors claim that proposed integrated
model will be effective and efficient by satisfying cus-
tomer and business needs. They conducted a controlled
case study to validate their model but did not compare
presented model with other process models. The usability
and effectiveness cannot be measured without compare-
son and empirical evaluation.

In publication [23], the integration of XP with Scrum
is presented which combined the advantages of both
models and reduced their limitations. There is no doubt
that XP in contrast with Scrum has amazing engineering
practices and Scum in contrast with XP has extensive
project management activities and these two basic fea-
tures leads towards the proposed integration in this re-
search. The main limitation of the presented model is the
scope of its validation. The proposed model is validated
through a controlled case study and a comparison with

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 448

published case studies but cannot be justified because
these applications have different sizes, parameters and
conditions for development. Furthermore the research is
also silent on the question that the process model is good
for which type and size of projects (small, medium,
large)?

Reference [24] used the combination of XP and Scrum
in the department of Software Engineering Services
which is a part of Philips Research Organization in the
Netherlands. The purpose was to add some critical suc-
cess factors like Delivery on time, Quality and Scope of
functionality in their projects to qualify for the certifica-
tions of both CMM Level 2 and ISO9001. Initially, team
started using XP in daily practice which resulted in high
customers and programmer’s satisfaction. After working
with only XP for a period of one year, the developers
identified some issues regarding the use of XP model.
They identified that XP did not help them in determining
how to interact with the management as well as how to
improve the way of working. Moreover, the customers
provided ambiguous requirements which imposed diffi-
culties for the developers to perform automated testing
for all requirements using the XP model. They also felt
the need of including non-functional requirements in the
user stories along with the functional requirements. In
order to address these issues, the author decided to merge
XP and Scrum when he discovered the solutions of these
issues using Scrum. He combined the engineering prac-
tices of XP with managerial and organizational aspects of
Scrum. The use of a combined model XP@Scrum en-
abled the company to be certified according to ISO9001:
2000.

3. Characteristics of RUP and XP
It is evident from studies [25,26] that RUP and XP have
common and varying characteristics. Here we discuss
strengths and weaknesses of both models and map their
characteristics with the proposed eXRUP model.

RUP is a complete framework supplemented with tool
support and it can be customized for different projects
according to customer requirements. The major strength
of RUP is its structured and methodical approach which
assures the process stability and a high quality of the
developed products. RUP follows use case driven, archi-
tecture centric, incremental and iterative approach. How-
ever, RUP has following weaknesses which are high-
lighted by different other authors as well:
 RUP is a complex methodology and it is difficult to

learn and apply it correctly on all type of projects [27,
28].

 While developing software according to RUP, an ex-
pert who has already developed such type of projects
is necessary in the team to get high quality software
[28].

 It is process oriented and does not focus on people at
all [29].

 It works well with the large projects due to its com-
plexity and heavy documentation [30,31].

 In RUP there is much focus on documentation, ac-
commodating changes in the software is time con-
suming and difficult as first changes are implemented
in use cases then in remaining diagrams and then in
code [32].

Like other conventional software development metho-
dologies, RUP also slowly adopts the frequent change in
business requirements due to its complexity and heavy
documentation. This is also the reason that the pro-
jects developed by RUP have the tendency to be over
budgeted and behind the schedule [33].

XP is a lightweight methodology which has major
stress on coding, communication, feedback, simplicity
and problem solving [34]. It involves best engineering
practices and accommodates rapidly changing require-
ments with quick feedback from customers However, we
observed following weakness of XP:
 XP is suitable only for small scale projects and does

not provide structured approach for medium and large
scale projects [35-37].

 XP follows the code centered approach rather than
design centered approach. Lack of design approach
might go well with the small scale project, but when
the scope of the project or team members grows then
it is not suitable at all [22,38,39].

 XP model is a disciplined software development ap-
proach which is characterized by the continuous feed-
back, communication and courage [40].

 XP supports less or no documentation which makes it
suitable only for small scale projects and this feature
of XP make it difficult to get the benefits of reusability
[22,38,39].

 XP document the project after coding which is itself a
difficult and time consuming task. This feature of XP
becomes almost impossible when the scope of the
project grows [22,38,39].

 XP totally depends upon testing for its quality; how-
ever lack of structured reviews ultimately brings more
time consumption in testing and lack of quality [22,
38,39].

 XP does not support global software development [22,
38,39].

Finally, we analyzed the characteristics of both models
and map their activities, artifacts and roles to our pro-
posed model as shown in Table 1. The list of characteris-
tics in Table 1 is indicative and not exhaustive.

4. Proposed eXRUP Model
The proposed eXRUP model integrates best RUP prac-
ices into XP phases. In this section, we discuss phases, t

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects

Copyright © 2013 SciRes. JSEA

449

Table 1. Comparison of characteristics of RUP, XP and eXRUP.

Activities/Artifacts RUP XP eXRUP

Requirement analysis and business
modeling

Vision document
Use-Case analysis

User Stories
Communication Feedback
On-site customer

User Stories

Analysis & Design

Preliminary architecture design,
UML Diagrams (Class Diagram,
Sequence Diagram, Collaboration
Diagram, Activity Diagram)

Simple Design
System Metaphor

Use case diagrams, Class, diagrams,
Sequence diagrams

Implementation/Development use-cases prototypes
Architecture prototype

Small Releases
Continual Integration Collective
Ownership
Refactoring
Pair programming

Small Releases
Pair programming
Testing, Validation

Project Management
Project Schedule
Defined Project Plan
Status Assessment document

Story Estimates
Iteration Plan Project plan

Customer Team Customer System Analyst, Project manager Project Manager

Project Size Medium to large Small Small to medium

Configuration & Change Management Yes No Yes

Integrated tool support Yes No No

Focus on teams Yes Yes Yes

Pair programming No Yes Yes

Iterative software development Yes Yes Yes

Tailoring Yes No Yes

iteration cycle and practices of proposed model. The ar-
chitecture of proposed model is presented in Figure 1.

4.1. eXRUP Phases
This is the first phase of eXRUP iteration which has fol-
lowing activities.

4.1.1. Initialization Phase
This is the first phase of our proposed model and it has 2
logical activities namely requirement gathering and pro-
ject planning. We perform necessary tasks such as re-
quirements gathering, project planning in this phase be-
fore starting the iterations because when the iteration is
started then customer hardly has a chance to give feed-
back in this phase (during the iteration) until he/she
wants to change the overall project plan or project scope.
Furthermore in this phase, it is finally decided how many
iterations are needed in current project.
1) Requirements Gathering

In this activity the customer/stakeholder elaborates all
the features and requirements needed in the project. The
project manager can assign this activity to any particular
member/s of the team and can involve himself according
to the nature of the project. All the requirements of cus-
tomers are known as user stories in this process, which
are written on story cards. Each story card clearly de-

scribes an individual feature, which should be in the pro-
ject. These requirements are further categorized as func-
tional and non functional requirements.
2) Project Planning

This is the key activity of the Initialization phase
which keeps the functional and nonfunctional require-
ments on true direction towards the success of the project
within limited time, budget and resources. This activity
starts with the consensus of customer, project manager
and development team on the project scope. Further, it
includes budget estimation based on requirements, re-
quirement prioritization, iteration time, software archi-
tecture diagram, effort estimation, resource estimation,
risk identification and tool/technology selection.

4.1.2. Evolution Phase
This is the first phase of eXRUP iteration which has fol-
lowing activities:
1) Analysis

This activity starts with the risk monitoring plan which
is optional and will only work when the risks are in-
volved. The risks which were identified in the project
planning are analyzed deeply at the start of this phase.
Risk analysis explicitly involves the project manager. He
plans the monitoring and controlling strategy for identi-
ied risks after analyzing the nature of the risks and may f

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 450

Figure 1. Architecture of proposed eXRUP model.

assign extra duties of other team members for the review
and testing of risky part of the software. The risk identi-
fication and management is optional and depends upon
the nature of the project.
2) Design

Design activity of this phase focuses on UML as it is

used for the visualizing, constructing, specifying, and
documenting the software. It is platform independent and
has become the industry standard. We used only use-case
diagrams, class diagrams and sequence diagrams. In
eXRUP, our purpose is to keep track of changes, docu-
ment the project and breaking the monopoly of develop-

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 451

ers. In eXRUP these diagrams will be used as the ab-
straction of the detailed software design. It tells the de-
velopers that how the system will work. The architecture
is the most crucial aspect of the software which is used to
control the iterative development of the project through-
out its lifecycle.

4.1.3. Production Phase
It is the third phase of the iteration and consumes more
time as compared to other two phases of iteration (ini-
tialization and maintenance). This phase ensures the de-
velopment of test cases, development (coding) of mod-
ules/sub-systems according to user stories/requirements
and validation of modules/sub-systems using validation
techniques to make sure that there is no bug and error in
that module.

4.1.4. Maintenance Phase
This is last step of eXRUP iteration cycle and consumes
more resources than evolution phase and fewer resources
than production phase. In this phase, team have to man-
age the system which has been released to the customer
and also take care of the integration with the previously
developed/released module as well as integration testing
of the product.

4.1.5. Release Phase
This is the last phase of the process and work starts on it
when iteration process is complete and developed prod-
uct is error free. Release phase follows following active-
ties:
1) Deployment

In this phase, the completed software product is de-
ployed on the customer site. Chances of errors are mini-
mized as testing is conducted at the end of each iteration.
Configuration management is also important and ensured
during this phase.
2) User Training & User Manuals

User training is important in this phase as all the users
have to be trained for their particular interface. Software
may have many interfaces (such as data entry interface,
admin interface) and particular user/group of users inter-
act with the particular interface so each user group is
trained according to his desired part of the software and
then they can work better with the software in their en-
vironment. User manuals and documents are finalized in
this phase for training of users. They can take help from
the manuals at any later stage or at that time. When they
hire any new person to operate the software then these
manuals will be very helpful for the training of the new
users.
3) Alpha System Testing

Alpha testing is performed in which group of custom-
ers/potential users test the software at developers site

before the deployment of the software at customer site.
Any error or bug can be reported back to maintenance
phase because keeping the previous release/sub-system
in working condition is the key responsibility of this
phase.

4.2. eXRUP Iteration
eXRUP follows an iterative approach which helps the
developers in understanding the problem gradually and
provides them a way to solve that particular problem
with incremental approach. The whole project in each
iteration cycle is divided into different releases. The SQA
related activities are performed on each iteration of the
project and each iteration of eXRUP produces a sub-
system/module of the whole product. The project man-
ager controls the project velocity to complete the project
within limited time frame. Finally, all the necessary deci-
sions in project planning (in project initialization phase)
such as prioritized list of requirements, risk analysis,
iteration time analysis and cost & benefit analysis data is
transferred to the business modeling part of this phase. In
business modeling use case diagrams are created on the
basis of selected requirements (functional and non-func-
tional). These use cases are then transferred to the pro-
duction phase where developers write test cases on the
basis of use cases which are followed for the develop-
ment activity.

Each eXRUP iteration cycle starts with the Evolution
phase. In Evolution phase, all those selected require-
ments and the risks (optional) are analyzed. Monitoring
and controlling strategies for the risks are included in the
analysis. Project manager decides in consultation with
team members whether serious risks shall be involved in
the project or not? If they are involved then the risk
analysis includes that how much they could be vulner-
able for the project, for environment or for people. If
there are no risks involved in the project then data is
transferred to the business modeling part of this phase.
The working of iteration cycle is presented in Figure 2.

With reviews and testing developers integrate the de-
veloped story in maintenance phase and perform integra-
tion testing to validate the input/output flow between
different subsystems. Now if they feel any problem in the
integration then can go back to production phase and
then evolution phase, if problem is related to design. In
iteration customer can interact in any phase and may
present any change request.

4.3. eXRUP Practices
These are the practices and the key principles for the
eXRUP model. Implementation of each activity/practice/
workflow can influence a software project positively.
eXRUP practices are given below:

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 452

Figure 2. eXRUP iteration cycle.

1) Software Quality Assurance (SQA)

Our key emphasis is that final product should fulfill
the requirements of the customer in terms of reliability
and functionality. The parameters of quality like applica-
tion performance and system performance must be en-
sured by proper testing and reviews while keeping the
environment in mind where the software is going to work.
In eXRUP quality assessment and assurance is performed
with the following sub activities:

Project and Environment management.
Configuration and Change Management.
Testing.

2) Iterative Development
eXRUP provides an iterative approach of software de-

velopment so the testing is an ongoing process throughout
the development cycle of software. This approach ad-
dresses change requests and new requirements at any
stage and also reduces the overall cost to detect the de-
fects at early stages. eXRUP also ensures the quality
product because of its qualitative testing efforts (func-
tional testing, integration testing, alpha testing, beta test-
ing), as quality is ensured in four perspectives reliability,
functionally (functional and non-functional requirements)
and performance of application and system (environment
for which the product is going to built).
3) Continuous Integration

This practice ensures the continuous integration of the
code. This practice of eXRUP eliminates the problems
which occur due to late integration, as continuous inte-
gration is less difficult than integrating the system in later
stages. The cost of fixing bugs, which occurs in early and
continuous integration, is far less than the integration at
once in later stages. This practice can be easily imple-
mented by dedicating a machine for testing. The pair
with completed work can sit on that system, integrate
their part of code, runs the test and fix the bugs.
4) Deployment

The purpose of this practice is to deliver the system to
the end user/stakeholder. It includes the deployment stra-
tegies, supporting materials/user manuals, performing
alpha and beta tests, installation of the complete software,
migration to the new system and database, and training
of the end users in their respective environment.

5) Pair Programming
Through this practice two developers work together on

the same computer. One developer writes test cases and
develops the software while other one continuously re-
views the test cases and the coding. This exercise not
only brings the two brains together on the same table to
work simultaneously on the same part of code but also
reduces the bug rate. Pairing exercise is dynamic which
means that the two developers work together at one time
may work with other individuals in second time. So any
developer got the task for which he does not have much
experience may have a partner/pair who has, and then
produce a qualitative product by working with partner.
6) Collective Code Ownership

This practice ensures that the whole code belongs to
every member of the team. This practice differs from
other two ownership strategies: individual ownership and
no ownership. In individual ownership the code belongs
to the single person and if any other team member wants
to change the code due to any reason then he/she has to
submit the request to the owner of that code. On the other
hand in no-ownership strategy any one could change the
code according to his need and this could result in many
problems. In such scenario code reflects the change and
grows quickly but also vulnerable to bring down the sys-
tem as change code may had a relationship with any
other code and due to the change that integration may
have got down. Collective ownership reduced problems
in our proposed model as according to this practice every
team member is equally responsible for the ownership
and the improvement of code is easy in pair program-
ming.
7) Coding Standards

This practice ensures that the proper coding standards
should be followed by each developer. If we want to get
the advantages from “collective ownership” and “pair
programming” then to follow “coding standards” is es-
sential because following the same standards by all de-
velopers will not only boost the quality development but
also understand the code by any other developer would
also be easy. Furthermore for developers, this practice
also gives the advantage of consistency in naming con-
ventions of programming elements such as modules,
packages, classes and functions.
8) Business Modeling

All the previous practices improved quality of devel-
oped product but a gap was observed between the busi-
ness engineering process and the software development
process. This gap could lead to a project which may not
fully respond to the stakeholder’s requirements and may
need further working by the development team results in
the product which is overall behind the schedule. The
proposed eXRUP reduces this gap by using business
modeling diagrams (use case diagrams, class diagrams
and sequence diagrams).

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects

Copyright © 2013 SciRes. JSEA

453

9) Management of Requirements
The purpose of this discipline is to elaborate that what

exactly the system would do? Then stakeholders and the
development team both agreed upon the description of
functionality of the system. For this purpose, requirement
elicitation and organization is performed by the devel-
opment team. These requirements are documented after
categorized as functional and non functional require-
ments (constraints).

Dream viewer 8, Net beans, MS Visio and Apache
Wamp Server for a client. The source code of developed
application cannot be publicized due to licensing issues.
A training session was conducted before the start of each
iteration. The total numbers of iterations is same in all
the releases. The project team consists of three team
members and total duration for each development was
one month. The second author of this paper was a MSCS
student and he played the role of project manager in each
team using three models and other two members were
programmers. The programmers were final year students
of BSCS at Comsats Institute of IT, Lahore.

10) Component based development
eXRUP provides the component based architecture in

which gradually components/increments are built and
integrated to a full product through iterations. Compo-
nent based development provides the feature of reusabi-
lity, which means once developed component, can be
further integrated in any other relevant project. As
eXRUP focuses on iterative development, in which each
iteration gives us a component. Each component pro-
vides a specific functionality.

5.1. Evaluation Parameters
Software process models are evaluated for their usability
and effectiveness on the basis of different parameters.
Reference [23] presented 22 parameters which are im-
portant for evaluation of different process models. Table
2 depicts results of three releases of our case study de-
veloped using RUP, XP and eXRUP models. We filtered
some parameters which were redundant such as lines of
codes and KLOC.

5. Case Study and Evaluation
The proposed eXRUP model is validated through a con-
trolled case study. The primary intention of conducting
this case study was to develop same application by three
different teams of students under the supervision of one
project manager in the same environment. A Portal for
Real Estate was developed using PHP, Macromedia

Figure 3 graphically presents comparison of important
parameters of model used for implementation of case
study. The other parameters of eXRUP can be seen in
Table 2. It’s very clear from Table 2 that our proposed
model has significant improvement in all parameters

(a) (b)

(c) (d)

Figure 3. Productivity, completion time in each release, total completion time and post release defect.

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 454

Table 2. Evaluation results using three models.

RUP XP eXRUP
ID Parameters

R1 R2 R3 Tot R1 R2 R3 Tot R1 R2 R3 Tot

1 Completion time duration (weeks) 2.4 1.2 1.2 4.8 2 1 1 4 1.6 0.8 0.6 3

2 Number of Modules 2 1 1 4 2 1 1 4 2 1 1 4

3 No of user stories 17 13 11 41 17 13 11 41 17 13 11 41

4 Total budgeted work effort (h) 288 144 144 576 240 120 120 480 192 96 72 360

5 Total actual work effort (h) 252 108 108 468 210 90 90 390 168 72 54 254

6 Number of User Interfaces 2 1 1 4 2 1 1 4 2 1 1 4

7 Number of Design Classes 45 33 30 108 46 34 30 110 45 33 30 108

8 Total KLOC 4.5 3.2 3.3 11 4.5 3.2 3.3 11 4.5 3.2 3.3 11

9 Post release change requests 1 0 0 1 1 0 0 1 1 0 0 1

10 Number of code Integrations 5 2 1 8 20 12 12 44 6 4 3 13

11 Post Release Defects 4 3 4 11 2 2 4 8 0 1 2 3

12 Post Release defects/KLOC 0.88 0.93 1.21 1 0.44 0.25 1.21 0.72 0 .31 0.60 0.27

13 Productivity (=line of code/ actual time spent) 15.6 29.2 30.5 23.2 21.4 35.3 36.6 28.2 26.7 44.4 61.1 37.4

14 Team Size 3 3 3 3 3 3 3 3 3 3 3 3

15 No. of pre-release change request 3 2 2 7 3 2 2 7 3 2 2 7

16 Total change requests/KLOC 0.66 0.63 0.61 0.64 0.66 0.62 0.60 0.63 0.66 0.62 0.60 0.63

17 Time duration to manage total change requests (h) 7 5 2 14 4 3 1 8 3 2.5 3.7 9.2

18 Pair Programming % NA NA NA NA 100 100 100 100 100 100 100 100

19 Total allocated actual spent time in % 87.5 75 75 81.2 87.5 75 75 81.6 87.5 75 75 81.6

20 Customer participation in % 10 10 10 10 80 85 85 83.3 30 30 30 30

R1: Release 1; R2: Release 2; R3: Release 3; Tot: Total.

which are used to evaluate the developed case study. We
do not claim same percentage of improvement for other
type of systems until the proposed model is evaluated by
the academia and industry.

It is very difficult to compare results of presented
model with other models because standard benchmark
systems are not available for comparison. Different au-
thors proposed integration of agile and conventional
models and they evaluated performance of their models
on different case studies. The nature of case studies vary
in size, complexity, team structure, team size, team ex-
pertise, programming languages, tool support, customer
requirements and various other factors. Due to these
varying factors we developed same case study using
three models one by one and results presented in Table 2
reflect that our proposed model has significant improve-
ment in productivity, it take less time to manage change
requests per hour and same system was developed with
less time as compared with XP and RUP.

5.2. Validity

Validity is the key challenge for researchers and prac-
tioners in conducting empirical research work. Reference
[41] states that for empirical research to be acceptable as
a contribution to scientific knowledge, the researcher
needs to convince related academia and industry conclu-
sions drawn from an empirical study are valid. Threats to
validity of our results can be classified as:

5.2.1. Internal Validity
Internal validity is addressed more frequently in experi-
mental studies. It is concerned with the consistency of
the measurements, appropriate use of tools, and methods
[42]. The implementation of real case study using RUP,
XP and eXRUP validated proposed model. Internal va-
lidity is also affected by experimental bias. The same
application was developed by three different teams in the
same environment to reduce this threat as already pub-

Copyright © 2013 SciRes. JSEA

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 455

lished case studies may have been developed with dif-
ferent intentions and environment conditions.

5.2.2. External Validity
Key concern while conducting external validity is
whether the findings of the study can be generalized be-
yond the sample for which they were derived. To avoid
this threat, the case study, and other tasks planned to
conduct case study are designed keeping in view the
schedule and knowledge level of students. The proposed
model is an amalgamation of best features of RUP and
XP which is validated through case study, but we cannot
generalize the improvement in productivity and other
attributes until it should be evaluated on different types
of systems by academia and industry. Currently, we are
working on different other projects using our proposed
model which will evaluate threats to external validity.

5.2.3. Criterion Validity
Reference [43] discussed two types of validity criteria:
Concurrent and Predictive validity. Concurrent validity
uses an already existing and well accepted measure
against which the performance of the new measure can
be compared while predictive validity assesses the degree
to which a measure can predict a future event of interest.
The presented model demonstrates concurrent validity as
results of eXRUP are compared results of RUP and XP.
eXRUP exhibits predictive validity as the results of the
case study can predict improvement in productivity and
various other evaluation parameters of the delivered
product when they will be compared with other conven-
tional and agile models in future.

5.2.4. Construct Validity
Construct validity involve the relation between theory
and observation. The proposed model can be customized
according to nature of software and customers’ require-
ments. The construct validity is established when pro-
posed model is related to both conventional (RUP) and
agile model (XP).

5.2.5. Reliability Validity
This reliability affects the replicability of our results. The
proposed model is evaluated using standards parameters
as used by other case studies. However, we cannot pub-
lish the implemented systems due to licensing issues.

6. Conclusion and Future Work
We present a hybrid software development process
model named eXRUP which integrates best characteris-
tics of XP and RUP models by suppressing their weak-
nesses. The objective of presented model is to develop
high-quality, small-to-medium scale applications within
budget and time constraints. The proposed model is

validated through a controlled case study which is de-
veloped by three different teams by using three models.
The results of case study proved that presented model has
improved the productivity, performance, completion time
and various other attributes as shown in Table 2, only
with the exception of time duration to manage change
requests. The improvement in productivity is 15% and
completion time is reduced to 20% which is significant
improvement. The proposed model will be evaluated on
other types of medium size projects using different pro-
gramming languages. We also plan to validate presented
model from software industry. We strongly recommend
the application of proposed model for web based applica-
tions where time to market is critical measure for success,
but its effectiveness for other types of software is under
experiments. One key question about proposed model is
its generalization for large and complex systems which
need to be empirically investigated. Second drawback of
presented model is minimal interaction of developers
with customers and higher management. Finally, time
duration to manage total change requests is a little higher
in eXRUP as compared with simple XP model.

REFERENCES
[1] N. M. A. Munassar and A. Govardhan, “A Comparison

between Five Models of Software Engineering,” Interna-
tional Journal of Computer Science Issues (IJCSI), Vol. 7,
No. 5, 2010, pp. 94-101.

[2] P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta,
“Agile Software Development Methods-Review and Ana-
lysis,” VTT Publications 478, 2002.

[3] D. Truex, R. Baskerville and J. Travis, “A Methodical
Systems Development: The Deferred Meaning of Sys-
tems Development Methods,” Accounting Management
and Information Technologies, Vol. 10, No. 1, 2000, pp.
53-79. doi:10.1016/S0959-8022(99)00009-0

[4] S. Cronholm, “Using Agile Methods?—Expected Ef-
fects,” Proceedings of 17th International Conference on
Information Systems Development (ISD2008), Paphos,
25-27 August 2008, pp. 913-924.

[5] N. Ganesh and S. Thangasamy, “Issues Identified in the
Software Process Due to Barriers found during Eliciting
Requirements on Agile Software Projects: Insights from
India,” International Journal of Computer Applications,
Vol. 16, No. 5, 2011, p. 7.

[6] B. Boehm, “Get Ready for the Agile Methods, with Care,”
Computer, Vol. 35, No. 1, 2002, pp. 64-69.
doi:10.1109/2.976920

[7] R. F. Roggio, “Process Driven Software Development:
An Approach for the Capstone Sequence,” Proceedings of
Information Systems Education Conference (ISECON),
Pittsburgh, 1-4 November 2007, pp. 234-242.

[8] J. Newkirk, “Introducing to Agile Processes and Extreme
Programming,” Proceedings of 24th International Con-
ference on Software Engineering, Orlando, 25 May 2002,

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1016/S0959-8022(99)00009-0
http://dx.doi.org/10.1109/2.976920

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects 456

pp. 695-696.
[9] P. Abrahamsson, “Extreme Programming: First Results

from a Controlled Case Study,” Proceedings of 29th Eu-
romicro Conference (EUROMICRO’03), Antalya, 1-6
September 2003, pp. 259-266.

[10] L. Lindstrom and R. Jeffries, “Extreme Programming and
Agile Software Development Methodologies,” Informa-
tion Systems Management, Vol. 21, No. 3, 2004, pp. 41-
52. doi:10.1201/1078/44432.21.3.20040601/82476.7

[11] M. Grant, “Introduction to Extreme Programming”.
http://www.xprogramming.com

[12] A. Sillitti and G. Succi, “The Role of Plan-Based Ap-
proaches in Organizing Agile Companies,” Cutter IT
Journal, Vol. 19, No. 2, 2006, pp. 14-19.

[13] “Extreme Programming Official Website”.
http://www.extremeprogramming.org/map/project.html

[14] J. Osorio, M. Chaudron and W. Heijstek, “Moving from
Waterfall to Iterative Development: An Empirical Evalu-
ation of Advantages, Disadvantages and Risks of RUP,”
Proceedings of 37th EUROMICRO Conference of Soft-
ware Engineering and Advanced Applications, Oulu, 30
August-2 September 2011, pp. 453-440

[15] A. Paul and P. A. Beavers, “Managing a Large ‘Agile’
Software Engineering Organization,” Proceedings of Agile
Conference, Washington DC, 13-17 August 2007, pp. 296-
303.

[16] J. Newkirk, “Introduction to Agile Processes and Extreme
Programming,” Proceedings of 24th International Con-
ference of Software Engineering, Orlando, 19-25 May
2002, pp. 695-696.

[17] P. Kroll and P. Kruchten, “Rational Unified Process
Made Easy: A Practitioner’s Guide to the RUP,” Addison
Wesley, Boston, 2003.

[18] P. Kruchten, “The Rational Unified Process—An Intro-
duction,” 2nd Edition, Addison-Wesley, 2000.

[19] Y. Dubinskyl, O. Hazzanz and A. Keren, “Introducing
Extreme Programming into a Software Project at the Is-
raeli Air Force,” Proceedings of the 6th International
Conference on Extreme Programming and Agile Proc-
esses in Software Engineering, Sheffield, 18-23 June
2005, pp. 19-27.

[20] K. Fertalk, N. Hlupic and D. Kalpic, “Permeation of RUP
and XP on Small and Middle-Size Projects,” Proceedings
of the 5th WSEAS International Conference on Telecom-
munications and Informatics, Tenerife, 16-18 December
2006, pp. 98-104.

[21] W. C. de Souza Carvalho, P. F. Rosa and M. L D. S.
Soares, “A Hybrid Approach to Integrate Agile and Tra-
ditional Software Development Processes,” Proceedings
of Jornadas Chilenas de Computación, Curico, Septem-
ber 2011, pp.

[22] S. U. Nisa and M. R. J. Qureshi, “Empirical Estimation of
Hybrid Model: A Controlled Case Study,” I.J. Informa-
tion Technology and Computer Science, Vol. 4, No. 8,
2012, pp. 43-50. doi:10.5815/ijitcs.2012.08.05

[23] M. R. J. Qureshi, “Empirical Evaluation of the Proposed
eXSCRUM Model: Results of a Case Study,” Interna-
tional Journal of Computer Science Issues, Vol. 8, No. 3,

2011, pp. 150-157.
[24] C. Vriens, “Certifying for CMM Level 2 and ISO 9001

with XP@Scrum,” Proceedings of Agile Development
Conference (ADC’03), Salt Lake City, 25-28 June 2003,
pp. 120-124.

[25] P. Runeson and P. Greberg, “Extreme Programming and
Rational Unified Process—Contrasts or Synonyms?” Pro-
ceedings European Software Process Improvement Con-
ference (EuroSPI), Budapest, 9-11 November 2005.

[26] http://www-106.ibm.com/developerworks/rational/library
/4156.html

[27] W. Hesse, “Dinosaur Meets Archaeopteryx? Seven The-
ses on Rational’s Unified Process (RUP),” Proceedings of
6th International Workshop on Evaluation of Modeling
Methods in System Analysis and Design, Marburg, 4-5
June 2001, 9 Pages.

[28] “The Advantages and Disadvantages/Best Practices of
RUP Software Development”.
http://www.my-project-management-expert.com/the-adva
ntaes anddisadvantaes-of-rup-software-development.html

[29] N. Shahid, O. A. Khan, S. K. Anwar and U. T. Pirzada,
“Rational Unified Process,” Online Notes on RUP.
http://ovais.khan.tripod.com/papers/Rational_Unified_Pro
cess.pdf

[30] M. Hirsch, “Making RUP Agile,” Proceedings for Con-
ference of Object-Oriented Programming, Systems, Lan-
guages & Applications, New York, 4-8 November 2002,
p. 44.

[31] E. G. Sally and K. T. Rudahl, “Software Process in the
Classroom: A Comparative Study,” Proceedings of 9th
International Symposium on Communications and Infor-
mation Technology, Icheon, 28-30 September 2009, pp.
427-431.

[32] T. Massoni, A. Sampaio and P. Borba1, “A RUP-Based
Software Process Supporting Progressive Implementa-
tion,” In: UML and the Unified Process, Chapter 3, IGI
Publishing, Hershey, 2003, pp. 375-387.

[33] J. Cho. “A Hybrid Software Development Method for Large-
Scale Projects: Rational Unified Process with Scrum,”
Journal of Issues in Information Systems, Vol. 5, No. 2,
2009, pp. 340-348.

[34] K. Beck, “Extreme Programming Explained Embrace
Change,” Addison-Wesley, Boston, 2000.

[35] J. Smith, “A Comparison of RUP and XP,” White Paper,
Rational Software.TP167, 5/01.

[36] A. Farrel, “Selecting a Software Development Methodo-
logy based on Organizational Characteristics,” An Essay
Submitted in Partial Fulfillment of the Requirements for
the Degree of “Master of Science in Information Sys-
tems”, Athabasca University, Athabasca, 2007.

[37] A. Sillitti, M. Ceschi, B. Russo and G. Succi, “Managing
Uncertainty in Requirements: a Survey in Documenta-
tion-Driven and Agile Companies,” Proceedings of 11th
IEEE International Software Metrics Symposium, Como,
19-22 September 2005, pp. 10-17.

[38] P. Emery, “The Dangers of Extreme Programing,” Term
Paper, 2002.
http://members.cox.net/cobbler/XPDangers.htm#_Toc530

Copyright © 2013 SciRes. JSEA

http://dx.doi.org/10.1201/1078/44432.21.3.20040601/82476.7
http://dx.doi.org/10.5815/ijitcs.2012.08.05

eXRUP: A Hybrid Software Development Model for Small to Medium Scale Projects

Copyright © 2013 SciRes. JSEA

457

042781
[39] P. Mattis, A. Trafford and A. Sakalaspur, “Extreme Pro-

gramming”.
http:// csis.pace.edu/~ctappert/cs616-02/pres-xp.ppt

[40] A. Ullah, G. Rasool and R. J. Qureshi, “IXPRUM—A
Novel Agile Model for Software Development,” AWER
Procedia Information Technology and Computer Science,
Vol. 1, No. 1, 2012, pp. 1314-1320.

[41] S. Easterbrook, J. Singer, M. A. Storey and D. Damian,

“Selecting Empirical Methods for Software Engineering
Research,” Springer, London, 2008.

[42] M. Voka, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code,” IEEE Transactions
on Software Engineering, Vol. 30, No. 12, 2004, pp. 904-
917. doi:10.1109/TSE.2004.99

[43] M. J. Neale and J. M. R. Liebert, “Science and Behavior:
An Introduction to Methods of Research,” Prentice-Hall,
Upper Saddle River, 1986.

http://dx.doi.org/10.1109/TSE.2004.99

