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ZUSAMMENFASSUNG 

Grundlage Autophagie ist ein grundlegender, evolutionär konservierter zellulärer Prozess, 

der in die Initiation und Progression der Tumorbildung einbezogen ist. Dabei sind sowohl 

onkogene Effekte bekannt, während in anderen Fällen diese Prozesse zur Tumorsuppression 

beitragen. GABARAP spielt bei der Autophagie eine wesentliche Rolle, indem es an der 

Reifung der Autophagosomen beteiligt ist. Die Funktion von GABARAP bei der Tumor-

genese ist jedoch bisher nicht geklärt. Während GABARAP in allen normalen Geweben 

exprimiert wird, ist das Vorkommen in Tumorgeweben sehr unterschiedlich. In einer früheren 

Studie der Arbeitsgruppe konnte gezeigt werden, dass GABARAP beim Brustkrebs als 

Tumorsuppressor fungiert. Hier sollte nun die generelle Bedeutung von GABARAP in der 

Kanzerogen-induzierten Tumorgenese näher untersucht werden. 

Methoden Die Untersuchungen erfolgten vorwiegend an GABARAP-knockout (KO)-

Mäusen, bei denen die spontane sowie die durch verschiedene Kanzerogene induzierte 

Tumorbildung analysiert wurde. Als Kontrollen dienten C57BL/6-Wildtyp-Mäuse. In den 

beiden Versuchstiergruppen wurde außerdem das Wachstum von inokulierten syngenen 

Tumorzellen (B16-Melanomzellen) verfolgt. In Milzen und im Brustdrüsengewebe wurden 

die Proliferations- (Ki-67) und Apotoseraten (TUNEL-Assay) bestimmt. Mit der Flow-

Zytometrie wurden die Milzzell-Populationen bestimmt und in Überständen von kultivierten 

Peritoneal-Makrophagen und Milz-Lymphozyten wurde mittels ELISA die Zytokinsekretion 

gemessen. In Totalpräparaten von Brustdrüsen von Mäusen, die mit dem Kanzerogen DMBA 

behandelt worden waren, wurde die Proliferation von Epithelzellen und das Auswachsen und 

Verzweigen der Ausführungsgänge untersucht. Mittels Analysen des Gesamt-Genoms 

(Agilent Whole Mouse Genome Array) und quantitativer RT-PCR wurden Veränderungen der 

Genexpression analysiert und mögliche molekulare Mechanismen identifiziert, die durch die 

GABARAP-Defizienz und die Kanzerogenbehandlung induziert werden. Durch Behandlung 

von isolierten embryonalen Mausfibroblasten (MEFs) mit den genotoxischen Agenzien 

DMBA und Camptothecin (CPT) wurde mittels Western-Blotting die Bedeutung von 

GABARAP im Autophagieprozess und bei der Reparatur von DNA-Schäden untersucht. In 

DMBA-induzierten Tumoren wurden schließlich noch H-ras-Mutationen analysiert. 

Ergebnisse Im Vergleich zu WT-Kontrollen war in GABARAP-KO-Mäusen die spontane 

und die DMBA-induzierte Tumorentwicklung signifikant geringer ausgeprägt. Nach der 

Kanzerogenbehandlung wurden verschiedene phänotypische Veränderungen beobachtet, so 

z.B. ein reduziertes Überleben der Tiere und eine hohe Toxizität von DMBA für Milzzellen 
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(deutlich verringertes Volumen der Milz und der Zellzahl). FACS-Analysen zeigten, dass 

diese Verringerung alle Zellpopulationen betraf, d.h. kein selektiver Einfluss auf bestimmte 

Populationen stattfand. Die Verringerung der Zahl der Milzzellen nach DMBA-Behandlung 

war dabei in GABARAP-KO-Mäusen deutlich stärker ausgeprägt als in den WT-Kontrollen. 

Makrophagen aus GABARAP-KO-Mäusen produzierten nach DMBA-Behandlung 

signifikant höhere Mengen der proinflammatorischen Zytokine IL-1ß und IL-6 als Zellen von 

WT-Kontrollen, bei den Milz-Lymphozyten war in ähnlicher Weise nach Stimulation mit 

Anti-CD3 die Sekretion von IL-2 und IFN-γ erhöht. In Brustdrüsenpräparaten aus 

GABARAP-KO-Mäusen war nach DMBA-Behandlung die Proliferation der epithelialen 

Zellen und das Auswachsen und Verzweigen der Ausführungsgänge signifikant geringer als 

in WT-Kontrollen. Im Brustdrüsengewebe und in der Milz waren darüber hinaus die zelluläre 

Proliferation (Ki-67) verringert und die Apoptose (Zahl TUNEL-positiver Zellen) erhöht. 

Genexpressions-Analysen und qRT-PCR belegten im Brustdrüsengewebe von GABARAP-

KO-Mäusen sowie in Milz, Leber, Lunge und Niere eine hohe und differentielle Expression 

des Tumorsuppressor- und Apoptoseinducer-Gens Xaf1. Darüber hinaus waren verschiedene 

Zelltod-Gene (Bid, Apaf1, Bax, Tnfrs10b, Ripk1 und Siva1) und die Zellzyklus-Inhibitoren 

Cdkn1a (p21) und Cdkn2c (p18) hochreguliert. In GABARAP-defizienten MEFs war nach 

Behandlung mit DMBA und CPT die Reparatur von DNA-Schäden beeinträchtigt, wie die 

Akkumulation von phosphoryliertem γH2AX und des Autophagiemarkers p62 sowie die 

Verringerung der Cyclin D1-Proteine belegen. In GABARAP-KO-Mäusen war auch das 

Tumorwachstum nach Inokulation von B16-Melanomzellen reduziert. Mutationsanalysen 

haben gezeigt, dass bei GABARAP-KO-Mäusen in den DMBA-induzierten Tumoren keine 

H-ras-Mutationen nachweisbar sind, im Gegensatz zu 5 Mutationen, die in den 14 Tumoren 

bei den WT-Kontrollen auftraten. 

Schlussfolgerung Unsere Ergebnisse zeigen, dass GABARAP auf unterschiedliche Weise in 

die Hemmung der Tumorgenese einbezogen sein könnte. Die in GABARAP-KO-Mäusen 

nach DMBA-Behandlung beobachtete Modulation der Immunreaktivität lässt vermuten, dass 

GABARAP bei der Steigerung der Anti-Tumor-Immunität eine Rolle spielt, wie die erhöhte 

Sekretion von IL-1ß, IL-2, IL-6 und IFN-γ zeigen. Die hohe Expression von Xaf1 in 

GABARAP-KO-Mäusen könnte nach genotoxische Einflüssen die zelluläre Todesrate 

erhöhen und auf diese Weise die Tumorbildung verhindern sowie das Wachstum/Verzweigen 

des Brustdrüsengewebes hemmen. Die Beeinträchtigung der Reparatur von DNA-Schäden in 

GABARAP-defizienten MEFs wiederum lässt vermuten, dass GABARAP auch in diesem 

Prozess eine wichtige Rolle spielt. Bei GABARAP-Mangel könnte so der Zellzyklusarrest 
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gefördert werden, der nach Behandlung mit genotoxischen Agenzien auftritt. Die Hemmung 

des Wachstums von inokulierten Melanomzellen und das Fehlen von H-ras-Mutationen in den 

DMBA-induzierten Tumoren bei GABARAP-KO-Mäusen unterstreichen die besondere 

Bedeutung von GABARAP für die Tumorprogression. 
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SUMMARY 

Background: Autophagy is a basic, evolutionary conserved cellular process has been linked 

with tumor initiation and progression. In some instances, it may serve as oncogene, whereas 

in others, it contributes to tumor suppression. GABARAP has an essential role in the 

autophagic process through its involvement in the maturation of the autophagosome. The role 

of GABARAP in tumorigenesis is not yet clarified. It is ubiquitously expressed in all tested 

normal tissues, while its expression in tumors is divers. A previous study of our group 

revealed that GABARAP may function as a tumor suppressor in breast cancer. Here the 

general impact of GABARAP should now be examined in the carcinogen-induced tumor 

formation. 

Methods: GABARAP knockout (KO) mice were used as the main experimental substrate. 

They were investigated for spontaneous and induced tumorigenesis by applying different 

carcinogens to the GABARAP KO and C57BL/6 control mice. Furthermore, the growth of 

inoculated syngeneic tumor cells (B16 melanoma) was monitored. Murine spleen and 

mammary gland tissue was investigated for proliferation and apoptosis by using Ki-67 

immunostaining and the TUNEL assay. Peritoneal macrophages and splenic lymphocytes 

were isolated and cultured. Flow cytometry and ELISA were implemented to detect the 

populations of splenocytes and measure their cytokine secretion. Mammary gland whole 

mount analysis was carried out to investigate the proliferation of epithelial cells and ductal 

branching after treatment with the carcinogen DMBA. Agilent Whole Mouse Genome 

expression analysis and quantitative reverse transcriptase PCR (qRT-PCR) were performed to 

analyse the alteration of gene expression and to identify candidate molecular mechanisms 

being affected by GABARAP knockout and carcinogen treatment. Mouse embryonic 

fibroblasts (MEFs) were cultured and treated with the genotoxic agents DMBA and 

camptothecin (CPT) to reveal the role of GABARAP in autophagy and DNA damage repair 

by using western blotting. H-ras mutation analysis was performed in the DMBA-induced 

tumors. 

Results: GABARAP KO mice exhibited significantly less tumor formation after DMBA 

treatment and less spontaneous tumor growth. Several phenotypic changes were observed in 

GABARAP KO mice upon carcinogen treatment: reduction in animal survival and high 

toxicity of DMBA to splenocytes represented by decrease of the spleen volume and the total 

cell number. FACS analysis revealed that the decreased number of splenocyte populations 

was in agreement with the reduction in total cell number and there was no discrimination for 
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the effect of DMBA on particular cell types. However, the reduction of splenocytes was more 

profound in GABARAP KO mice. GABARAP-deficient macrophages of DMBA-treated 

mice produced higher levels of proinflammatory cytokines (IL-1β and IL-6) compared to 

wild-type counterparts. Moreover, GABARAP-deficient lymphocytes of DMBA-treated mice 

enhanced the immune response through increasing the production of IL-2 and IFN-γ upon 

CD3 stimulation. Mammary glands of GABARAP KO mice showed a significant reduction in 

epithelial cell proliferation and ductal branching after DMBA treatment. Mammary gland and 

spleen sections revealed a decrease of proliferation cells and an increase of positive cells in 

the TUNEL assay. Gene expression profiling and qRT-PCR manifested a high and  

a differential expression of tumor suppressor and apoptosis inducer gene Xaf1 in mammary 

glands of GABARAP KO mice as well as in the spleen, liver, lung and kidney. Moreover, 

several cell death genes (Bid, Apaf1, Bax, Tnfrsf10b, Ripk1 and Siva1) and cell cycle 

inhibitors (Cdkn1a (p21) and Cdkn2c (p18)) were upregulated. GABARAP-deficient MEFs 

treated with DMBA and CPT showed impairment in DNA damage repair through 

accumulation of phosphorylated γH2AX which was accompanied by accumulation of the 

autophagy marker p62 and downregulation of the Cyclin D1 protein. Reduced tumor growth 

in GABARAP KO mice was also evident after B16 melanoma cell inoculation. Furthermore, 

mutation analysis of DMBA-induced tumors revealed no H-ras mutation in the tumors of 

GABARAP KO mice compared to 5 mutations in 14 tumors of the wild-type mice. 

Conclusion: Our results indicated different aspects for the role of GABARAP in the 

inhibition of tumorigenesis. The immunomodulation by GABARAP deficiency upon DMBA 

treatment suggests the involvement of GABARAP in the enhancement of anti-tumor immune 

response by increasing IL-1β, IL-6, IL-2 and IFN-γ. High Xaf1 expression in GABARAP KO 

mice may mediate increased cellular death upon genotoxic insult thereby preventing tumor 

formation and favoring inhibition of growth/branching of the mammary glandular tissue. 

Impairment of DNA damage repair in GABARAP-deficient MEFs suggests that GABARAP 

plays an important role in this process and that its deficiency promotes cell cycle arrest after 

treatment with genotoxic agents. Inhibition of inoculated B16 melanoma cell growth and 

absence of H-ras mutation in DMBA-induced tumors of GABARAP KO mice further 

underscores the importance of GABARAP in tumor progression. 
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1.       Introduction 

1.1     GABARAP 

Gamma (γ)-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) is 

an evolutionarily highly conserved gene family from yeast to mammals and ubiquitously 

expressed in a wide range of organisms and tissues. The amino acid level for mammalian 

forms of GABARAP showed 100% identity suggesting that the function of this gene is 

essential or beneficial in mammals (Mohrlüder et al., 2009). GABARAP, a cytoplasmic 

protein of 14 kDa, belongs to a gene family including GEC1 (glandular epithelial cell protein 

1) or GABARAPL1; GATE-16 (Golgi associated ATPase enhancer of 16 kDa) or 

GABARAPL2 or GEF-2 (Ganglioside expression factor 2); GABARAPL3; LC3 

(Microtubule-associated protein light chain 3); yeast Apg8 or Aut7p; and Caenorhabditis 

elegans (C. elegans) LGGs (LC3, GABARAP and GATE-16) protein (Chen and Olsen, 

2007). GABARAP was previously described acting as a trafficking molecule for different 

receptors like the GABAA receptor, a major inhibitory neurotransmitter in cortical neurons, or 

the transferrin receptor, a type II integral membrane protein responsible for delivery of iron-

laden transferrin to the endosomal compartment (Wang et al., 1999; Chen et al., 2000; Green 

et al., 2002). It is involved in the transport of proteins or vesicles from intracellular pools to 

the cell surface through its interaction with microtubules, tubulin, and N-ethylmaleimide-

sensitive factor (NSF), an ATPase and chaperone that activates soluble NSF attachment 

protein receptor (SNARE) proteins in membrane fusion events (Wang and Olsen, 2000; Coyle 

et al., 2002; Kittler et al., 2001). The N-terminus of GABARAP is highly positively charged 

and features a putative tubulin-binding motif. GABARAP was identified in a yeast two-

hybrid search for proteins that bind to the loop of the GABAA receptor and has been 

implicated in the clustering of these receptors (Wang et al., 1999; Chen et al., 2000), thus 

GABARAP mediated inhibitory neurotransmission in mammalian through its interaction with 

the γ2 subunit of GABAA receptors in the central nervous system. In subsequent studies, 

GABARAP was shown to increase the cell-surface expression of GABAA receptors, implying 

that GABARAP might be an important factor regulating the intracellular trafficking of 

GABAA receptors (Leil et al., 2004; Boileau et al., 2005; Chen et al., 2005). Furthermore, it 

has been reported that GABARAP binds to the C-terminal region and thereby inhibits Ost-III, 

a splice variant of the guanine nucleotide exchange factor Ost, suppressing Rac-1-dependent 

negative regulation of transferrin receptor endocytosis (Ieguchi et al., 2007). Sequence 

analysis showed similarity between GABARAP and light chain-3 of microtubule-associated 

proteins 1A and 1B at the NH2-terminus, whereas the COOH-terminal part of the GABARAP 
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protein is thought to interact with the target protein (Wang et al., 1999). Figure 1 represents 

schematic protein structure of GABARAP indicating the alpha helix and beta sheet domains 

(Bavro et al., 2002).  

 

 

 

 

 

 

 

 

 

 
Figure 1. Ribbon presentation of the GABARAP structure. The N-terminal region (N) is shown in grey, the 

core structure displaying a conserved ubiquitin-like fold is shown in red and Carboxyl  terminal ends is 
indicated as C (Source: Bavro et al., 2002). 

 

By using yeast two-hybrid analyses and/or coimmunoprecipitation assays, GABARAP has 

been found to interact directly with several proteins. For instance, GABARAP interacts with: 

P130 ⁄ phospholipase C-related inactive protein (PRIP); one of the essential factors in the 

dynamic regulation of GABAA receptor expression at inhibitory synapses (Kanematsu et al., 

2002), transferrin receptor (TfR); a carrier protein needed for the import of iron into the cell 

through receptor-mediated endocytosis (Green et al., 2002), glutamate receptor-interacting 

protein 1 (GRIP1); a synaptic protein that plays an important role in trafficking, synaptic 

targeting and recycling of glutamate receptors (Kittler et al., 2004), DEAD box polypeptide 

47 (DDX47); an RNA helicase implicated in pre-mRNA splicing or ribosome biogenesis (Lee 

et al., 2005), Ras-related protein 24 (RAB24); one of the small GTP-binding proteins that are 

involved in vesicular transport and fusion events (Wu et al., 2006), and calreticulin (CRT); a 

multifunctional protein known as a luminal Ca2+ dependent chaperone located in the 

endoplasmic reticulum (ER) (Mohrlüder et al., 2007). Finally, Schwarten et al. (2009)  

have been identified BNIP3L ⁄ Nip-like protein x (Nix) as a direct interaction partner  

of GABARAP. BNIP3L (Bcl-2 and adenovirus E1B 19 kDa interacting protein-like),  

is commonly known to be implicated in apoptosis and known to localize to mitochondria, 

ER and the nuclear envelope (Imazu et al., 1999; Ohi et al., 1999; Yussman et al., 2002). 
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1.2     Autophagy 

The cellular homeostasis requires for a constant turnover of continuous synthesis of cellular 

components and clearance of damaged or superfluous proteins and organelles. Eukaryotic 

cells have developed two degradation pathways to achieve this homeostasis and controlling 

the balance between anabolism and catabolism in order to have a normal cell growth and 

development. These degradation pathways are the ubiquitin-proteasome system (UPS) and the 

lysosomal pathway. Proteasomal degradation has high selectivity; generally the proteasome 

recognizes only ubiquitinated substrates, which are primarily short-lived proteins, that’s mean 

the proteasome only has the ability to degrade proteins; it is unable to degrade damaged 

organelles (Ciechanover, 2005; Cuervo et al., 2005). The lysosomal degradation does not 

follow such a simple pattern as the proteasomal pathway; it is mainly supported by autophagy 

(Mizushima and Komatsu, 2011). The term autophagy derived from the Greek words “auto” 

and “phagy” which means “self” and “eating”, this term was coined by de Duve in 1963 when 

he described the presence of single- or double-membrane vesicles that contain parts of the 

cytoplasm and organelles (De Duve and Wattiaux, 1966). 

Autophagy is an intracellular pathway for bulk degradation of proteins and organelles within 

the lysosome/vacuole. It is used for recycling cytoplasm to generate macromolecular building 

blocks and energy under stress conditions (Feng et al., 2014). There are three primary types of 

autophagy (Fig. 2) (Wirawan et al., 2012): macroautophagy (hereafter referred as autophagy), 

microautophagy and chaperone-mediated autophagy (CMA). Both macroautophagy and 

microautophagy can be selective or nonselective. Nonselective autophagy is used for the 

turnover of bulk cytoplasm under starvation conditions, whereas selective autophagy 

specifically targets damaged or dispensable organelles, including mitochondria and 

peroxisomes, as well as invasive microbes. The CMA degrades only soluble targeted proteins 

in a selective manner (Feng et al., 2014). Autophagy is initiated by the formation of a cup 

shaped membrane (termed “phagophore”), suggested to originate from the ER (Hayashi-

Nishino et al., 2009; Yla-Anttila et al., 2009). The phagophore enwraps parts of the 

cytoplasm to form a double-membrane vesicle, called autophagosome, which eventually fuses 

with the lysosomes/vacuole (Fig. 2). Autophagy was initially revealed in mammalian systems, 

but the molecular identification of it has been expanded and differentiated through genetic 

screening of autophagy-defective mutants in Saccharomyces cerevisiae (Tsukada and 

Ohsumi, 1993; Thumm et al., 1994). 
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Figure 2. Schematic representation of the types of autophagy.  Microautophagy: the cargos are sequestered 
by direct invagination of the lysosome membrane. Chaperone-mediated autophagy: the protein transported by 
chaperone hsc70 complex to the lysosome membrane. Macroautophagy: the most distinguishing feature is the 
initiation of isolated membrane (phagophore) that encloses and isolates the cytoplasmic components by 
formation the autophagosome which eventually fuses with the lysosomes/vacuole (Wirawan et al., 2012). 
 

In 1997, the first autophagy-specific gene, APG1 (now Atg1 (Klionsky et al., 2003)), was 

identified, and the corresponding gene product, Apg1/Atg1, was characterized as a Ser/Thr 

protein kinase (Matsuura et al., 1997). Subsequently, multiple laboratories discovered more 

than thirty autophagy-related (Atg) genes in the autophagy machinery. The morphology of the 

autophagy process is essentially the same in yeast, plants and animals. The mammalian 

autophagy pathway can be divided into six discrete steps: initiation, nucleation, elongation, 

closure, autophagosome maturation and degradation by fusion with the lysosome  

(Kang et al., 2011). A critical regulator of autophagy is the serine/threonine kinase mTOR 

(mammalian target of rapamycin). The mTOR pathway involves two functional complexes: 

mTORC1 and mTORC2 (Fig. 3). The rapamycin-sensitive mTOR complex 1 (mTORC1) is 

composed of mTOR catalytic subunit, raptor (regulatory associated protein of mTOR, a 

protein that acts as a scaffold for the mTOR-mediated phosphorylation of mTOR substrates), 

GβL, PRAS40 (proline-rich Akt substrate of 40 kDa), and Deptor (DEP domain-containing 

mTOR-interacting protein) (Fig. 3). This complex functions as a nutrient/energy/redox sensor 

and controls protein synthesis (Kim et al., 2002; Hay and Sonenberg, 2004; Laplante and 

Sabatini, 2009). The other mTOR complex, mTORC2, which is less sensitive to rapamycin, 

includes mTOR, rictor (rapamycin-insensitive companion of mTOR), GβL, Sin1 (SAPK-

interacting protein 1), PRR5/Protor-1 (protein observed with rictor), and Deptor (Fig. 3). The 
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mTORC2 promotes cellular survival by phosphorylating the Ser473 of Akt/PKB and also 

functions as an important regulator of cytoskeletal organization and metabolism (Sarbassov et 

al., 2006; Laplante and Sabatini, 2009).  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Schematic representation of mTOR signaling network 

(Source: http://www.iimcb.gov.pl/Jaworski-Laboratory-research-focus.html) 

 

ULK1 (homolog of yeast Atg1), Atg13, and FIP200 (FAK family-interacting protein of 200 

kDa) form a stable complex that signals to the autophagic machinery downstream of 

mTORC1. In nutrient-rich states, mTORC1 forms a complex with ULK1/2 kinase, mAtg13, 

FIP200 and Atg101. mTOR phosphorylates ULK1 and Atg13 and thereby keeps the kinase 

activity of ULK1 in check. Under starvation conditions or if the AMP-to-ATP ratio increases 

or upon treatment with rapamycin (mTOR inhibitor), mTORC1 dissociates from the ULK 

complex resulting in the activation of ULK1 (the inhibitory phosphorylation of ULK1 is lost). 

ULK1 then autophosphorylates and activates Atg13 and FIP200 to initiate autophagy.  

The activated ULK complex localizes to the developing phagophore (Jung et al., 2009;  

Mehrpour et al. 2010). 

Another important nutrient-sensitive entry route to autophagy signaling is the class III 

phosphatidylinositol 3-kinase complex (PI3K-III) consisting of hVps34, Beclin-1 (yeast Atg6) 

and p150/hVps35. Phosphatidylinositol-3-phosphate is bound to its core partner Beclin-1 and 

p150/hVps35. The complex is found on the phagophore and might facilitate recruitment of 

other Atgs to the developing vesicle (Funderburk et al., 2010; Rosenfeldt and Ryan, 2011). 

Moreover, the autophagy pathway can be stimulated by multiple forms of cellular stress apart 
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from nutrient or growth factor deprivation, for instance hypoxia, reactive oxygen species, 

DNA damage, protein aggregates, damaged organelles or intracellular pathogens (Kroemer et 

al., 2010).  

GABARAP belongs to a family of mammalian orthologues of the yeast autophagy-related 

ubiquitin-like protein Atg8 (autophagy-related 8 proteins) (Ohsumi, 2001), it has an essential 

role in the autophagic process possibly in the elongation of the phagophore membrane by 

mediating hemi-fusion events (Nakatogawa et al., 2007; Xie et al., 2008; Weidberg et al., 

2010). In mammalian cells, three Atg8 homologs have been identified: MAP1LC3 or LC3 (in 

human: LC3A, LC3B, LC3C), GABARAP and GATE-16 (GABARAPL2). LC3 and 

GABARAP proteins are the most studied protein in the autophagy machinery and appear to 

be modified by lipids in the same manner as described in yeasts, and have been shown to 

localize to the autophagosome (Kabeya et al., 2004). The GABARAP family is not only 

structurally similar to ubiquitin, but also undergoes a similar posttranslational cascade 

modification process as occurs in ubiquitinylation (Hochstrasser, 2000). GABARAP contains 

117 amino acids and consists of an ubiquitin-like fold with two additional amino terminal 

helices. In vivo, the C-terminal Leu-117 of GABARAP is cleaved off leaving Gly-116 as a 

C-terminal residue that can be conjugated covalently to proteins and lipids via an E1 (Atg7), 

E2 (Atg3) and E3 (Atg12/Atg5/Atg16 complex) enzymes cascade (Tanida et al., 1999; 

Kirisako et al., 2000; Hanada et al., 2007). Although LC3 proteins and GABARAP are 

known to be conjugated to phosphatidylethanolamine (PE) and incorporated into 

autophagosomes, the biological relevance of the expansion of Atg8 proteins in higher 

mammals is largely unknown (Behrends et al., 2010; Wild et al., 2014). This autophagic 

factor is known to decorate autophagosomes and recruit factors such as p62/SQSTM1 and 

NBR1 (Bjorkoy et al., 2005; Kirkin et al., 2009; Shvets et al., 2011). However, the exact role 

of this gene in autophagy is not yet fully understood. Weidberg et al. (2010) indicated that 

LC3 is involved in elongation of the phagophore membrane whereas GABARAP is essential 

for a later stage of autophagosome maturation, this study have been done by using RNA 

silencing to target GABARAP and other Atg8 family members in HeLa cells. 

The autophagosomes origin is still a matter of debate. Several hypotheses have been 

generated about the origin of autophagosome, but the most well accepted theories are those 

which hypothesized ER or mitochondrial origin.  In yeast, the cytoplasm of cell contained 

vesicles forming the phagophore assembly site (PAS). At this site, autophagy machinery 

proteins have been identified to be coupled to the PAS (Suzuki et al., 2001), which matures 

from a phagophore to an autophagosome (Kim et al., 2002). In mammals, no PAS has been 
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identified but the growing and expansion of isolated membranes is induced under the action 

of ULK1, coupled to the PI3K complex (hVps34, Beclin-1 and p150/hVps35) and to mAtg9, 

homolog of yeast Atg9 (Young et al., 2006). The further expansion, closure and maturation of 

the autophagosomes rely on the mammalian homologs of the Atg12/Atg5/Atg16 complex and 

on Atg8 (Tanida et al., 2004). Figure 4 shows a schematic model of autophagy signaling 

pathway. 

E1-like protein (Atg7) is the first enzyme that activates Atg8 (Tanida et al., 1999), then Atg8 

is transmitted to an E2-like protein (Atg3) (Kirisako et al., 2000). Thereafter, Atg8 is 

conjugated to PE by an amine bond through the free C-terminus of the Atg8 glycine residue. 

Under the cleavage action of Atg4, PE can be released later from Atg8 to facilitate 

autophagosome-lysosome fusion (Ichimura et al., 2000). Since the Atg12/Atg5/Atg16 

complex stimulates Atg8-PE formation, this complex acts potentially as an E3-like enzyme in 

the Atg8 conjugation system (Hanada et al., 2007). When Atg8 is conjugated to PE, it joins to 

the membrane of the autophagosome; therefore Atg8 is used as an autophagosomal marker 

(Kirisako et al., 1999). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Signaling pathway of autophagy (Source: http://www.cellsignal.com/). 
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1.2.1    Role of autophagy in cellular homeostasis and survival 

Autophagy occurs at low basal levels in most normal cells to perform homeostatic functions 

such as protein and organelle turnover or when the cells need to ‘self-cannibalize’ and to 

proceed to cell survival under stress in order to maintain cellular integrity (Mizushima et al.; 

2008). Observations and genetic analyses in patients, as well as studies in transgenic animal 

models, clearly implicate autophagy in diseases, including neurodegenerative diseases (such 

as Parkinson’s disease), skeletal muscle diseases (myopathy), cardiac failure, hepatic 

disorders, infectious diseases, inflammatory disorders (such as Crohn’s disease), aging, 

diabetes, obesity and cancer (Levine and Kroemer, 2008; Mizushima et al., 2008; Mizushima 

and Komatsu, 2011). Investigations of the role of autophagy in cellular homeostasis 

have been performed in liver and brain tissue pathophysiology. Mice with brain-specific Atg5 

or Atg7 deletion revealed neuronal degeneration accompanied with protein aggregates and 

damaged mitochondria accumulation, which are hallmarks of Huntington’s and Parkinson’s 

diseases (Hara et al., 2006; Komatsu et al., 2006); whereas, mice with liver-specific Atg7 

deletion exhibited p62-containing protein aggregations in the liver which prompted liver 

injury and accelerated the death of hepatocytes (Komatsu et al., 2007). Furthermore, a mouse 

model with a targeted deletion of Atg7 in adipose tissue displayed unique anti-obesity and 

insulin sensitization effects with impaired adipogenesis (Singh et al., 2009; Zhang et al., 

2009). Survival mechanism of autophagy has been shown in autophagy-deficient mice  

that die within 1 day of birth due to lack of nutrients (Kuma et al., 2004). In addition, mice 

with homozygous mutant of Beclin-1 die in early embryonic development (E7.5 or earlier) 

(Yue et al., 2003); in contrast to mice with other homozygous autophagy gene deficiencies 

which showed normal embryonic phenotype, for example GABARAP, Atg4 and FIP200 

(O’Sullivan et al., 2005; Marino et al., 2007; Wei et al., 2011). 

Autophagy proteolysis has been shown to extensively decrease with age (Cuervo et al., 2005; 

Martinez-Vicente et al., 2005). Diminishing and alteration in the regulation of autophagy 

leads to the accumulation of altered organelles and membranes, and may start a vicious  

pro-aging circle (Bergamini et al., 2004). Furthermore, blockage of autophagy genes in  

long-lived C. elegans mutants prevents life-span extension (Melendez et al., 2003). 

Moreover, autophagy related gene Atg16L1 is expressed in the intestine and particularly 

strongly in Crohn’s disease, and the functional knockdown of this gene abrogates autophagy 

of the intracellular pathogen Salmonella typhimurium (Rioux et al., 2007). 

 

 

  
 8 

 
  



1. Introduction 
 

1.2.2    Role of autophagy and GABARAP in tumorigenesis 

The role of autophagy in cancer is complex and likely tissue and genetic context-dependent. 

There is evidence that autophagy may be oncogenic in some instances, whereas in others, it 

clearly contributes to tumor suppression (Levine, 2007; Mathew et al., 2007; Wilkinson and 

Ryan, 2010; Rosenfeldt and Ryan, 2011). Indeed, the connections between autophagy and 

cancer occur at two aspects, first at the level of tumor initiation and progression, and the 

second during cancer treatment. Autophagy is regulated by many sensors involved in tumor 

suppression (PTEN, TSC1-TSC2, p53, DAPk) or oncogenesis (Akt, Ras), and the signaling 

pathways of these sensors form part of a cell program that is constantly modified in cancer 

cells, such as growth, proliferation, survival, death and processes that play important roles in 

tumor progression, such as tumor immunity and angiogenesis. Botti et al. (2006) represented 

these potential interconnections between autophagy and cell functions that are often disrupted 

in cancer cells as an integrative model designed by cogwheels moving in a concerted manner 

to influence autophagy and other cell properties in an alternative manner (Fig. 5). 

 

 
Figure 5. Potential interconnection of autophagy and cellular functions that are constantly disrupted in 
malignant cells. Autophagy signaling (outer cogwheel on the left), autophagy machinery (inner cogwheel on 
the left) and cell functions (cogwheel on the right) are symbolized by cogwheels connected by chains. The 
movement of one cogwheel drives the other two. Bold black arrows and bold black bars indicate the 
stimulation and inhibition of autophagy, respectively (Source: Botti et al., 2006). 
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One example of a tumor suppressor sensor of autophagy is p53 that has been demonstrated to 

play a dual role in autophagy regulation depending on its subcellular location. In the nucleus, 

p53 executes a pro-autophagic role in a transcription-dependent or independent manner (Feng 

et al., 2007), whereas the cytoplasmic p53 has been characterized as a master repressor of 

autophagy (Tasdemir et al., 2008). Ras oncogene is an example of an oncogenic sensor of 

autophagy; it is a member of the small GTPase family which plays a fundamental role in 

regulation of cell growth and survival that is frequently activated in cancer (Schubbert et al., 

2007). It has been reported that active oncogenic Ras induces autophagy, but depending on 

the cellular context, autophagy induction can either promotes autophagic cell death (Elgendy 

et al., 2011) or promotes and facilitates oncogenic transformation by maintaining and 

improving cell metabolism (Guo et al., 2011; Kim et al., 2011; Lock et al., 2011). 

In 2003, Qu et al. and Yue et al. provided the first genetic link between autophagy and 

tumorigenesis. They conferred evidence that mice with heterozygous loss of Beclin-1; an 

autophagy and apoptosis regulating gene (Kang et al., 2011), promoted spontaneous 

malignancies including lung and liver cancers and lymphomas in aged mice. Many human 

and murine tissues express Beclin-1, and it localizes primarily within cytoplasmic structures, 

including the ER, mitochondria and the perinuclear membrane. A monoallelic deletion of 

Beclin-1 has been frequently observed in sporadic human breast cancers and ovarian cancers 

(Aita et al., 1999; Kondo and Kondo 2006). In addition, inhibition of autophagy by 

heterozygous loss of Beclin-1 or homozygous deletion of Atg5 in apoptosis-defective tumor 

cells induced reactive oxygen species (ROS), mitochondrial damage, and p62 accumulation 

which led to increased DNA damage and ultimately facilitated cancer progression  

(Karantza-Wadsworth et al., 2007; Mathew et al., 2009). Paradoxically, Atg5, Atg7, or 

FIP200 knockout in various tissues did not lead to malignant tumor development in vivo  

(Wei et al., 2011), but the mice with systemic mosaic deletion of Atg5 and liver-specific  

Atg7 deletion developed benign liver adenomas originating from autophagy-deficient 

hepatocytes (Takamura et al., 2011). Moreover, Atg4C-deficient mice showed increased 

susceptibility to fibrosarcoma induction by the chemical carcinogen methylcholanthrene 

(MCA) (Marino et al., 2007). 

It is unlikely that the increased rate of tumorigenesis in mice with heterozygous loss of 

Beclin-1 is due to autophagy deficiency. First of all, Beclin-1 has been shown to interact with 

Bcl-2 (B-cell lymphoma 2); an important anti-apoptotic protein. Substantially decreased 

levels of Beclin-1 in the cells with heterozygous loss of Beclin-1 may promote the activity 

of Bcl-2 to boost cell survival which in turn promotes tumorigenesis (Pattingre et al., 2005). 

  
 10 

 
  



1. Introduction 
 

Surprisingly, Beclin-1 deficiency has been associated with deficiency in the tumor 

suppressor p53, suggesting that p53 deficiency, rather than autophagy deficiency, 

provide a mechanism to promote genomic instability which in turn leads to tumorigenesis 

in Beclin-1 deficient mice (Liu et al., 2011). Moreover, Liu et al. (2011) showed that 

increased ubiquitination of both Beclin-1 (in the class III PI3K complex) and p53 have 

been achieved by the inhibition of the deubiquitinating activities of USP10 (ubiquitin specific 

peptidase 10) and USP13 (ubiquitin carboxyl-terminal hydrolase 13), and subsequently 

promotes their proteasome-mediated degradation. Beclin-1 by interacting with USP13 

regulates the deubiquitinating activities of both USP13 and USP10. Thus, Beclin-1 appears to 

sit at the center of the mechanisms directing the levels of p53 (Lorina et al., 2013). On the 

other hand, there is a similarity in the tumor spectra of heterozygous deletions of Beclin-1 and 

p53 mice. The frequencies of tumors in mice with heterozygous deletions of Beclin-1 and p53 

are lung carcinoma, lymphoma and hepatoma (Jacks et al., 1994; Qu et al., 2003), and the 

Beclin-1 gene is frequently monoallelically deleted in human sporadic ovarian, prostate and 

breast cancers similar to that of p53 mutations (Liu et al., 2011). 

In an elegant study of Wei et al. (2011), autophagy inhibition by FIP200 knockout suppressed 

mammary tumor initiation and progression in a mouse model of breast cancer driven by 

the PyMT oncogene in association with decreased Cyclin D1 expression, induction of 

interferon (IFN)-responsive genes, effector T-cell tumor infiltration and increased production 

of cytokines, such as CXCL10. Furthermore, the consequences of FIP200 deletion resulted 

in defects in the autophagy machinery including deficient LC3I to LC3II conversion, 

accumulation of ubiquitinated protein aggregates and p62/SQSTM1, and increased  

number of abnormal mitochondrial morphology in tumor cells. Mammary tumor cells or 

Ras-transformed mouse embryonic fibroblasts (MEFs) harbouring FIP200 deletion 

exhibited decreased cell proliferation in both cell systems with no changes in apoptosis 

(Wei et al., 2011). 

GABARAP is ubiquitously expressed in all tested normal tissues, however, its expression in 

human tumors has shown diversity; for instance neuroblastoma (Roberts et al., 2004), breast 

tumors (Klebig et al., 2005), thyroid tumors (Roberts et al., 2009) and colorectal tumors 

(Miao et al., 2010) were investigated. Roberts et al. (2004) studied a cohort of primary 

neuroblastoma tumor samples and predicted that a low mRNA expression level of 

GABARAP were associated with decreased survival among patients with neuroblastoma. 

Moreover, GABARAP transfection into the CAL51 breast cancer cell line influenced the 

growth rate of cancer cells in vitro and the ability of colony formation in soft agar and, 
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furthermore, suppressed the tumorigenicity of the cells in nude mice (Klebig et al., 2005). 

They suggested that GABARAP functions as a putative tumor suppressor gene in breast 

cancer, however, the precise role and mechanism that GABARAP played to inhibit cell 

growth was not elucidated. In an effort to explore the involvement of neurotransmitter and 

neurotrophic factors in thyroid carcinogenesis, Roberts et al. (2009) showed that the 

expression level of GABARAP was increased in adenomas and thyroid cancer suggesting its 

role in early stages of thyroid tumorigenesis. Moreover, Miao et al. (2010) found that 

GABARAP expression was significantly higher in colorectal cancers than that in adjacent 

matched non-tumor tissues, and the high expression of GABARAP was significantly 

correlated with a low grade of differentiation and shortened survival. 

The second aspect of connection between cancer and autophagy occurs during cancer 

treatment. Indeed, autophagy induction have been found to spatially localize to hypoxic tumor 

regions (Mathew et al., 2007), poorly vascularized tumor regions (Degenhardt et al., 2006) or 

following cytotoxic treatments (Ertmer et al., 2007; Apel et al., 2008; Amaravadi et al., 

2011), and thus promotes cancer cell survival under stressful conditions. In general, 

autophagy induction after both radiation and chemotherapy (Yang et al., 2011), essentially 

acts as a treatment resistance mechanism, stress-relieving and pro-survival function that is 

crucial for viability of cancer cell (Lozy and Karantzaa, 2012). In such cases, genetic or 

pharmacologic autophagy inhibition preferentially sensitizes cancer cells to treatment 

(Vazquez-Martin et al., 2009; Wang et al., 2011). It has been shown that chloroquine,  

a non-specific autophagy inhibitor, could enhance the γ-irradiation-induced cell death 

in glioma cells and enhanced cyclophosphamide-induced tumor cell death in a murine 

Myc-driven lymphoma model (Firat et al., 2012; Amaravadi et al., 2007). Combination 

treatment of cisplatin or paclitaxel with chloroquine in non-small cell lung cancer (NSCLC) 

cell line A549 enhanced the cisplatin- and paclitaxel-induced apoptosis (Liu et al., 2012a). 

Furthermore, 3-methyladenine, another non-specific autophagy inhibitor, augments 

5-fluorouracil chemotherapy by increasing cancer cell apoptosis accompanied by tumor 

regression in colon cancer xenografts (Li et al., 2010). Pancreatic ductal adenocarcinoma 

(PDAC) has been shown to require elevated autophagy for growing, and it is highly 

resistant to chemotherapy. Inhibition of autophagy sensitized PDAC cell lines and xenograft 

mouse model to gemcitabine; the current standard treatment for PDAC (Donohue et al., 

2013). These findings might be a promising approach for augmenting the efficacy of 

standard anticancer regimens. 
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1.2.3    Role of autophagy in cancer cell metabolism 

Autophagy is a cellular process of self-cannibalization, by which the cells seize their own 

cytoplasm and organelles and consume them in lysosomes for reusing the resulting 

metabolites as a source to generate energy and to provide building blocks for the synthesis of 

new macromolecules. Thus, autophagy is considered being a major cell survival mechanism 

and deeply integrated into metabolism, stress response and cell death pathways (Rabinowitz 

and White, 2010; Arroyo et al., 2014). Metabolism function of autophagy is a highly 

advantageous to cancer cells, which have demonstrated high metabolic demands and a 

requirement for metabolic reprogramming, as evidenced by the Warburg and reverse Warburg 

effects (Lozy and Karantzaa, 2012). 

Warburg effect is the observation that cancer cells predominantly produce energy by 

glycolysis followed by lactic acid fermentation in the cytosol, rather than by an oxidation of 

pyruvate in mitochondria as in most normal cells. Rapidly growing tumor cells have higher 

glycolytic rates than those of their normal tissues of origin; this occurs even if oxygen is 

plentiful (aerobic glycolysis) (Warburg, 1956; Kim and Dang, 2006; Vander Heiden et al., 

2009). For example, leukemia cells are highly glycolytic despite residing in the bloodstream. 

Reverse Warburg effect has been elucidated in human epithelial breast cancers. According to 

this model, aerobic glycolysis (Warburg effect) actually takes place in tumor associated 

fibroblasts, not in cancer cells. Aerobic glycolysis in cancer associated fibroblasts results in 

the production of high-energy metabolites (such as lactate and pyruvate), which can then be 

transferred to adjacent epithelial cancer cells, which are undergoing oxidative mitochondrial 

metabolism, resulting in increased adenosine triphosphate (ATP) production in cancer cells, 

driving tumor growth and metastasis (Pavlides et al., 2009; Martinez-Outschoorn et al., 2010; 

Pavlides et al., 2010). Increased reactive oxygen species (ROS) production and oxidative 

stress in tumors are caused by the high rates of aerobic glycolysis and glutaminolysis  

(Lozy and Karantzaa, 2012). ROS act as signal transducers in various intracellular pathways 

and play critical roles in cell survival, death, and immune defenses.  It has been found that 

ROS production in tumor cells commonly upregulates autophagy for survival (Scherz-

Shouval and Elazar, 2007; Huang et al. 2011). Furthermore, autophagy in stromal cells 

stimulates by cancer cell-induced oxidative stress and result in release of metabolites by 

tumor-associated fibroblasts and their subsequent utilization by neighboring cancer cells 

(Lozy and Karantzaa, 2012). 

The protumorigenic function of autophagy has been demonstrated in recent years through  

its ability to increase the glucose metabolism in tumor cells in response to diverse stresses. 
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Lock et al. (2011) showed that H-Ras transformation in autophagy-competent MEFs 

displayed enhancement in glucose uptake compared with their autophagy-deficient 

counterparts. Increased glycolysis in autophagy-competent cells facilitates Ras-mediated 

adhesion-independent transformation, indicating a unique mechanism for autophagy to 

promote Ras-driven tumor growth in specific metabolic microenvironments. In contrast, 

autophagy-deficiency in Ras-transformed cells and in cancer cells possessing activating Ras 

mutations has decreased the rate of glycolysis accompanied with decreased the sensitivity to 

dropped glucose concentrations in comparison with autophagy-competent counterparts, both 

in terms of proliferation and adhesion-independent transformation (Lock et al., 2011). 

Implication of autophagy in prevention and progression of cancer has been elucidated in 

human normal breast epithelial cells (MCF10A). MCF10A cells infected with retroviral 

MFG-K-RasV12 undergo cellular transformation with increased levels of autophagy-related 

genes. In contrast, pharmacological inhibition of autophagy or targeted suppression of Atg5 

and Atg7 expression by short hairpin (sh) RNA completely blocked K-RasV12-induced 

anchorage-independent cell growth on soft agar and inhibited tumor formation in nude mice 

(Kim et al., 2011). Moreover, Kim et al. (2011) provided evidence for the cross-talk between 

ROS and MAPK (mitogen-activated protein kinases) signaling that is required for both 

autophagy-related gene expression and autophagy induction in cells overexpressing 

oncogenic K-Ras. Increased ROS production in K-Ras transformed cells resulted in 

autophagy induction via activation of JNK (c-Jun N-terminal kinase) that lead to MAPK 

signaling activation. 

Because Ras mutations are frequently observed in pancreatic, lung and colon cancers, the role 

of autophagy has been studied extensively in these cancer models (Guo et al., 2011; Yang et 

al., 2011). Although Ras mutation is not routinely observed in breast tumors, there is evidence 

that the Ras pathway is activated in breast cancer cell lines (Eckert et al., 2004), as Ras 

hyperactivation may occur downstream of ErbB2 signaling, which is often amplified in breast 

cancers (Birnbaum et al., 2009; Arias-Romero and Chernoff, 2010). High levels of basal 

autophagy in human cancer cell lines bearing activating Ras mutations have been commonly 

observed, and down-regulating the expression of essential autophagy genes impaired cell 

growth through accumulation of abnormal mitochondria and reduced oxygen consumption. In 

addition, suppression of autophagy in cells transduced with Ras reduced the tumor growth in 

nude mice, and the tumors displayed abnormal histology, active caspase-3, and p62 and 

ubiquitin accumulation (Guo et al., 2011). 
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1.3     Autophagy and apoptosis 

Autophagy and apoptosis are both well-controlled biological processes and play fundamental 

roles in development, maintenance of tissue homeostasis and diseases, and subsequently 

determining cellular fate. Although autophagy is primarily considered to have a 

cytoprotective function, it can also promote cell death during normal development and 

disease, which is called type II programmed cell death (Mizushima et al., 2008; Mizushima 

and Levine, 2010). There are many crucial factors governing the cross-talk between 

autophagy and apoptosis. Several autophagic proteins have potential roles in apoptosis, and 

vice versa, i.e. several proteins known to regulate apoptosis have also been identified as 

inducers of autophagy (Table 1) (Mukhopadhyay et al., 2014). For example, the functional 

and structural interaction between Beclin-1 and anti-apoptotic proteins Bcl-2 and Bcl-xL is 

well documented (Fig. 6) (Pattingre et al., 2005; Takacs-Vellai et al., 2005; Maiuri et al., 

2007a; Nikoletopoulou et al., 2013). Inactivation of Beclin-1 triggers apoptotic cell death as 

evidenced by the increased number of apoptotic cell corpses in somatic tissues and in the 

germline of animals (Takacs-Vellai et al., 2005). Proteins of Bcl-2 family classified into three 

groups based on their apoptotic properties. One group inhibits apoptosis (Bcl-2, Bcl-xL, Bcl-

w, Bcl-B, Mcl-1, and A1), and two groups of pro-apoptotic proteins: the multi-domain 

proteins (Bax, Bak, and Bok) contain three Bcl-2 homology (BH) domains, and the BH3-only 

proteins (Bad, Bid, Bim, Bmf, Bik, Hrk, Noxa, and PUMA), which interact with the anti-

apoptotic Bcl-2 protein family to promote apoptosis (Oltvai et al., 1993; Wong and 

Puthalakath, 2008; Hou et al., 2010). Beclin-1 has a BH3 region, which can bind to BH3 

receptors and inhibit anti-apoptotic Bcl-2 proteins, such as Bcl-2 and Bcl-xL, or can stimulate 

the pro-apoptotic Bcl-2 family members, such as Bax and Bak (Galonek and Hardwick, 

2006). Moreover, Bcl-2 inhibits autophagy when it localized to the mitochondria and ER by 

binding to nutrient-deprivation autophagy factor-1 (NAF-1), which stabilizes the interaction 

between Bcl-2 and Beclin-1 at the ER surface. Cellular stress conditions cause displacement 

of Bcl-2 from Beclin-1 and Bax thereby inducing autophagy and apoptosis, respectively. Pro-

apoptotic BH3-only protein Bad disrupts the interaction of Bcl-2/Bcl-xL and Beclin-1 to 

induce autophagy by binding to the BH3-binding domain of Bcl-2 or Bcl-xL (Levine et al., 

2008; Marquez and Xu, 2012). In addition, anti-apoptotic Bcl-2 proteins regulate apoptosis at 

the mitochondrial membrane, where they sequester Bax (pro-apoptotic protein), thus 

preventing mitochondrial membrane permeability and cytochrome c release to cytosol to 

execute apoptosis (Wong and Puthalakath, 2008). Recently, specific cellular inhibitors called 

inhibitor of apoptotic proteins (IAPs), for example Xiap (X-linked inhibitor of apoptosis 
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protein), have been shown to regulate autophagy via interaction of Xiap with Mdm2 (p53 E3 

ubiquitin protein ligase), a negative regulator of p53, and subsequently suppresses autophagy 

(Huang et al., 2013). 

 
Table 1.  Proteins with dual role in autophagy and apoptosis (Source: Mukhopadhyay et al., 2014) 

 

Protein              Role in autophagy           Role in apoptosis 
Autophagic proteins   

mTOR Inactive form involves in initiation mTOR regulates apoptosis 

Beclin-1 Autophagosome nucleation Cleaved C-fragment induces 
mitochondrial apoptosis 

UVRAG Upregulates Vps34–Beclin1 interaction 
Antiapoptotic, inhibits Bax 
translocation from cytosol to 
mitochondria 

AMBRA Upregulates Vps34–Beclin1 interaction Regulate mitochondrial apoptosis; 
cleaved by caspases and calpains 

Atg3 Conjugates with Atg12 Regulates mitochondrial cell death 

Atg5 Conjugates with Atg12, autophagosome 
elongation 

Interacts with FADD to inhibit 
apoptosis, cleaved N-fragment induces 
mitochondrial apoptosis 

Atg12 Autophagosome elongation Stimulates mitochondrial apoptosis by 
inactivating Bcl-2 and Mcl-1 

Atg4D LC3 processing Cleaved Atg4D localize to 
mitochondria and induces apoptosis 

p62 Binds with LC3, promotes degradation of 
polyubiquitinated protein aggregates Caspase-8 processing and activation 

Apoptotic proteins   

Bcl-2, Bcl-xL Interacts with Beclin-1 and inhibit 
autophagy Antiapoptotic 

Bad, Bak, BNIP3, 
Nix 

Proautophagic, disrupting Beclin-1/Bcl-2 
interaction Proapoptotic 

Bax, PUMA Proautophagic, noncanonical type Proapoptotic 

p53 - Inhibits by cytoplasmic p53 
- Induces by nuclear p53 through DRAM 

Proapoptotic 
Proapoptotic 

Noxa Induces autophagy by disrupting Mcl-
1/Beclin-1 interaction Proapoptotic 

Bim Sequesters Beclin-1, inhibits autophagy Proapoptotic 
XIAP Inhibits by Mdm2-p53 signaling Inhibits caspase 3,7 
cFLIP Prevent interaction between Atg3 and LC3 Inhibits caspase 8 

 

 

Furthermore, autophagic proteins have been involved in intrinsic and extrinsic apoptosis 

pathways (Table 1 and Fig. 6) (Mukhopadhyay et al., 2014; Nikoletopoulou et al., 2013). The 

extrinsic apoptosis pathway gets stimulation by soluble molecules that bind to plasma-

membrane receptors (cell surface death receptors), such as Fas (CD95/APO1), TNFα (tumor 

necrosis factor-α) and TRAIL (TNF related apoptosis inducing ligand) receptors (Mathew et 

al., 2009), whereas the intrinsic pathway is triggered by various intracellular (mitochondrial) 

stimuli resulting from hypoxia, DNA damage, oxidative stress, and growth factor deprivation, 

which induce outer mitochondrial membrane permeabilization (Galluzzi et al., 2012). In both 
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circumstances, activation of caspases results in mitochondrial membrane permeabilization, 

chromatin condensation and DNA fragmentation, thereby leading to the destruction of the cell 

(Fig. 6) (Green, 2005). Caspases are controlled by IAPs, which bind to and inhibit caspases. 

Despite this, caspases can escape IAP’s inhibitory control through antagonist of IAPs either 

with Smac/DIABLO and HtrA2/Omi, which are released from the mitochondria (Galluzzi et 

al., 2012), or Xaf1 (Xiap-associated factor 1) (Liston et al., 2001). 

 
Figure 6. The complex interplay between autophagy and apoptosis (Source: Nikoletopoulou et al., 2013) 

 

The autophagic pathway works as an adaptive response to cellular stress, however, in the case 

of extreme or prolonged stress, cells are forced to undergo autophagic cell death (Ouyang et 

al., 2012; Bhutia et al., 2013). It has been shown that autophagy and apoptotic cell death are 

induced in response of ER stress; for instance perturbation of either ER calcium homeostasis 

or ER function (Nikoletopoulou et al., 2013). ER-induced autophagy in colon and prostate 

cancer cells has an essential role in eliminating unwanted polyubiquitinated protein 

aggregates, thereby safeguarding the cell from death. However, in normal human colon cells 
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and in non-transformed murine embryonic fibroblasts, autophagy does not mitigate ER stress 

but rather is engaged in ER-induced apoptosis (Ding et al., 2007). 

Searching for a particular binding protein of GABARAP, Lee et al. (2005) identified DEAD 

(Asp-Glu-Ala-Asp/His) box polypeptide 47 (DDX 47), a putative RNA helicase, as a binding 

partner of GABARAP. Co-transfection of GABARAP and DDX47 cDNA into ovarian cancer 

cells was shown to induce apoptosis. Moreover, direct interaction of GABARAP  

and proapoptotic protein Nix/ BNIP3L has been elucidated in mammalian cells (Schwarten et 

al., 2009). Nix belongs to the BH3-only protein group of Bcl-2 protein family, and is known 

to localize to mitochondria and to a lesser extend to the ER and nuclear envelope (Imazu et 

al., 1999; Ohi et al., 1999). Nix induces and contributes to cell death upon transient 

expression in non-neuronal cells (Imazu et al., 1999, Chen et al., 1999, Yussman et al., 2002). 

Nix knockout was shown to enhance tumorigenicity, whereas its transient overexpression in a 

number of cancer cell lines was shown to inhibit colony formation mediated by p53-

dependent apoptosis (Fei et al., 2004). Moreover, autophagy has been induced in tumor cells 

transfected with the Nix homologous gene BNIP3 (Daido et al., 2004). Atg5 overexpression 

increased autophagy in cells overexpressing BNIP3 compared to BNIP3 alone, and this 

autophagy enhancement correlated with reduction in BNIP3-mediated cell death (Hamacher-

Brady et al., 2007). Atg4, a crucial regulatory component of the autophagosome biogenesis 

pathway (Scherz-Shouval et al., 2007), has four assumed Atg4 paralogues (autophagins 

Atg4A-Atg4D) (Marino et al., 2003). Betin and Lane (2009) have shown that caspase-cleaved 

Atg4D acquires increased priming and delipidation activities against GABARAPL1. The 

siRNA silencing of Atg4D expression has suppressed the autophagy by abrogating 

GABARAPL1 autophagosome formation and sensitizes cells to starvation and staurosporine-

induced cell death. These findings favor the hypothesis that caspases stimulate Atg4D-

mediated autophagy to promote the cellular survival under stress (Betin and Lane, 2009). 

Autophagy deficiency or inhibition occurred during knockdown of autophagy related genes or 

during pharmacological block by chloroquine and 3-methyladenine, resulting in accumulation 

of ubiquitinated protein aggregates, reactive oxygen species (ROS), p62 accumulation, 

mitochondrial damage and increased abnormal mitochondrial morphology (Karantza-

Wadsworth et al., 2007; Komatsu et al., 2007; Kim et al., 2008; Mathew et al., 2009; Wei et 

al., 2011). Under cellular stress and anti-cancer therapy, the autophagosome engulfs damaged 

mitochondria and apoptotic proteins to promote cellular survival, whereas under serum 

starvation condition, autophagy protects cells by sequestering ROS-producing mitochondria 

through autophagosome formation (Liu et al., 2012b). Moreover, p62/sequestosome 1 is a 
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multi-functional and multi-adaptor protein and has been implicated in several cellular 

signaling pathways, for example the signaling axis that shuttles ubiquitinated proteins to the 

lysosome during autophagy and the activation of the transcription factor NF-κB (Moscat and 

Diaz-Meco, 2009; Huang et al., 2013). Mathew et al. (2009) showed that the modulation of 

p62 by autophagy is a key factor in tumorigenesis, whereas recently, Huang et al. (2013) 

linked p62 activity to the extrinsic apoptosis pathway. In the setting of autophagy inhibition, 

upregulation of p62 can mediate apoptosis via caspase-8 activation that was Bax-dependent 

and a consequence of mitochondrial amplification (Huang et al., 2013). Moreover, p62 

upregulation and increased level of active caspases-8, in the context of autophagy inhibition, 

can trigger apoptosis in the presence of H2O2 in U87MG cells (Zhang et al., 2013). 

In addition to the relationship between autophagy and apoptosis, autophagy also prevents  

cell death that occurs due to cell detachment from the extracellular matrix (ECM); which is 

called anoikis, in both nontumorigenic epithelial cell lines and in primary epithelial cells 

(Fung et al., 2008). 

 

1.4     Autophagy and immune response 

Autophagy has been implicated in both innate and adaptive immunity. Published studies 

suggested that the autophagy machinery is an innate immunity effector against intracellular 

bacteria and viruses (Nakagawa et al., 2004; Paludan et al., 2005; Yoshimori and Amano, 

2009), whereas other studies showed that autophagy has roles in adaptive immunity functions 

through its impact on MHC (major histocompatibility complex) class II presentation (Dengjel 

et al., 2005; Gannage and Münz, 2010). The importance of the role of autophagy in immunity 

(innate and adaptive) is highlighted in part by the association of defects in autophagy with 

several disease states including metabolic syndrome, inflammatory disorders (Crohn's 

disease), neurodegeneration, aging and cancer (Levine and Kroemer, 2008).  

Autophagy of tumor cell may recruit the immune cells through facilitating of adenosine 5′-

triphosphate (ATP) releases from tumor cells in response to chemotherapy. In turn, ATP 

recruits dendritic cells and a T cell response, thereby stimulating antitumor immune responses 

(Michaud et al., 2011). Furthermore, Michaud et al. (2011) found that inhibiting Atg5 or Atg7 

expression in highly immunogenic allograft mouse tumors blunted the ATP release by the 

tumor cells in response to chemotherapy. The role of autophagy in efficient antigen cross-

presentation in tumor cells has been shown in few studies (Li et al., 2008; 2011). Li et al. 

(2008) found that siRNA-mediated knockdown of Beclin-1 or Atg12 in antigen donor tumor 

cells resulted in less cross-presentation. They postulated a mechanism by which the 

  
 19 

 
  



1. Introduction 
 

autophagosome acted as a carrier of protein antigens from tumor cells (Li et al., 2011). In 

contrast, autophagy can also limit immune-mediated cytotoxicity (Amaravadi, 2011). Noman 

et al. (2011) found that autophagy prevent T cell-mediated cytotoxicity in the context of 

hypoxia in lung cancer cells. Moreover, in the B16-F10 melanoma allograft mouse model, 

inhibition of Beclin-1 resulted in a reduction of tumor growth and increased tumor apoptosis, 

and combination of autophagy inhibition with melanoma peptide vaccination heightened 

tumor regression compared to either treatment alone (Noman et al., 2011). Consistent with 

these results, preclinical data indicated that blocking of autophagy with chloroquine enhanced 

the efficacy of chemotherapy, targeted therapy, and immunotherapy (Amaravadi et al., 2011). 

Furthermore, attenuation of autophagy by Atg5 knockdown in human melanoma cells 

enhanced basal surface exposure of the phagocytosis signal calreticulin, dendritic cell 

maturation, interleukin-6 (IL-6) production and proliferation of antitumorigenic CD8+IFN-γ+ 

and CD4+ IFN-γ + T cells (Garg et al., 2013). 

The tumor stroma consists of tumor cells and tumor-associated cell types including 

fibroblasts, endothelial cells and immune cells. The accepted current view is that the dynamic 

interaction and coevolution between tumor cells and stromal cells dictates tumor progression 

and the response to cancer therapy (Pietras and Ostman, 2010; Maes et al., 2013). 

Accumulating observations suggest that autophagy may play an important 

immunomodulatory role by regulating the tumor stroma and surface proteome (Maes et al., 

2013). Various stress factors are present in the tumor microenvironment due to intratumoral 

hypoxia resulting from insufficient vasculature (blood supply) and lack of growth factors as 

well as tumor acidosis. All of these stress factors stimulate autophagy in the tumor 

compartment. Increased autophagy in tumor cells can support the energy metabolism, but it 

can also act as transporter for dangerous signals, proinflammatory cytokines and chemokines, 

and different intracellular proteins to the extracellular space (Garg et al., 2010; Dupont et al., 

2011; Michaud et al., 2011). 

It has been shown that innate immunity plays an essential role in controlling the maintenance 

of tissue homeostasis and reacts to tissue disruption, for example disruption which occurs 

during breast branching morphogenesis at puberty and pregnancy, and in post-weaning 

involution (Demaria et al., 2011). These processes are regulated mainly by macrophages, and 

are associated with inflammation that resolves once tissue homeostasis is restored (Gyorki 

and Lindeman, 2008). In contrast, carcinogenesis is a chronic process, predominantly 

characterized by disordered proliferation and death of the neoplastic cells, and the releasing of 

damage-associated molecular patterns (DAMP) molecules from dying cancer cells can  foster 
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a state of chronic inflammation (Zeh and Lotze, 2005; Mantovani et al., 2008). Moreover, 

death of epithelial cells during transformation releases tumor-associated antigens  

which activate tumor specific T and B cell responses, and subsequently prevent tumor 

outgrowth. On the other hand, genetically unstable cancer cells can become resistant to the 

recognition and killing by immune effector cells by a process called immunoediting 

(Schreiber et al., 2011). 

There are a wide variety of close interactions between autophagy and the pattern recognition 

receptors (PRRs) of the innate immune response, for example Toll-like receptors (TLRs) and 

Nod-like receptors (NLRs) (Araya et al., 2013). During innate immune signaling, TLRs can 

induce autophagy (Shi and Kehrl, 2010). Disruption of the association between Beclin-1 and 

Bcl-2 is a proposed mechanism of the induction of autophagy mediated by the TLR adaptors, 

MyD88 and TIR-domain-containing adapter-inducing interferon-β (TRIF) (Levine et al., 

2011). NLRs are components of inflammasomes, an integral part of the innate immune 

system’s response to infections and cellular stress. The activation of inflammasome leads to 

recruit the apoptosis-associated speck-like protein that contains a caspase recruitment domain 

and pro–caspase-1, which results in caspase-1 activation. The activation of caspase-1 is 

required to mature interleukin 1β (IL-1β) and IL-18, which are then secreted out of the cells. 

Autophagy has been shown to negatively regulate inflammasome activation by eliminating 

dysfunctional mitochondria (Nakahira et al., 2011; Shi et al., 2012). The disruption of 

autophagy-related genes, including Beclin-1, Atg5, Atg16L1, LC3 and GABARAP, in 

macrophages have been shown to increase ROS production and translocation of 

mitochondrial DNA (mtDNA) into the cytosol upon treatment with lipopolysaccharides 

(LPS), an effective inducer of the inflammatory response, and ATP, an NLRP3 (NLR family, 

pyrin-domain containing 3) inflammasome inducer (Tal et al., 2009; Nakahira et al., 2011; 

Zhang et al., 2013). Thereby, secretions of proinflammatory cytokines such as IL-1β and  

IL-18 are have augmented, which, in the context of sepsis that is associated with massive 

infections, can mediate tissue injury and lethal shock (Hotchkiss and Karl, 2003).  

Several studies using mouse models demonstrated that developing tumors are indeed 

recognized and destroyed by the intact immune systems through anti-tumor immune 

surveillance mechanisms (Shankaran et al., 2001; Bui and Schreiber 2007; Wei et al., 2011). 

It has been shown that interferon gamma (IFN-γ) inhibited cell growth in various cells (Gooch 

et al., 2000; Platanias, 2005), as well as could inhibit growth of mammary tumor cells driven 

by PyMT (Wei et al., 2011). The protumorigenesis function of autophagy has been evaluated 

directly by using loss-of-function approaches directed against the FIP200 gene, a regulator of 
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mammalian autophagy, in a PyMT oncogene driven mouse model of breast cancer in vivo. 

FIP200 knockout halted tumorigenesis by not only affecting cellular energy metabolism and 

proliferation but also by increasing host antitumor immunosurveillance (Wei et al., 2011). 

Moreover, FIP200 deletion in mice enhanced infiltration of antitumorigenic CD8+IFN-γ+ and 

CD4+IFN-γ+ T cells in the tumor microenvironment, triggered by increased production of 

chemokines, such as CXCL9 and CXCL10, from FIP200-null tumor cells (Wei et al., 2011). 

Interestingly, inhibition of cytotoxic T lymphocyte in this model retrieved accelerated 

mammary tumor initiation (Wei et al., 2011). All together, these observations proposed that 

cancer cell-associated autophagy plays a key role in subverting antitumor immunity, thereby 

supporting tumor progression (Maes et al., 2013). 

Interestingly, “no inactivating somatic mutations in any autophagy genes have been reported, 

thus autophagy probably play an essential role in tumorigenesis, and autophagy-deficient 

tumors may be rare” (Amaravadi, 2011). 

 

1.5     Chemical carcinogens 

Carcinogens are a number of agents that can cause tumors in humans and animals. They can 

be divided into three major groups: chemical carcinogens, physical carcinogens, and 

oncogenic viruses. Most of them, single or in combination result in tumor initiation by 

interfering with DNA in cells and thereby impact on cellular function. Chemical carcinogens 

are environmental factors that act through genotoxic and non-genotoxic mechanisms and they 

may require metabolic activation to elicit detrimental effects (Fig. 7). The activation of 

carcinogens is often linked to the activity of ‘xenobiotic metabolizing enzymes’ such as 

cytochrome P450-dependent monooxygenases, glutathione S-transferases, sulphotransferases 

and others (Fig. 7) (Luch, 2005). 

The most used types of chemical carcinogens are polycyclic aromatic hydrocarbons (PAHs), 

nitrosoureas and urethane that have been applied in experimental animals to induce tumors 

(Medina, 1974 and 2007; Uno et al., 2004). Among PAHs, 7,12-dimethylbenz(a)anthracene 

(DMBA) is a reliable, potent and widely used carcinogen. In addition, it is immunotoxic in 

various species, tissues, and cell types (Medina, 2007). N-ethyl-N-nitrosourea (ENU) and  

N-methyl-N-nitrosourea (MNU) are alkylating agents and potent mutagens of the nitrosourea 

carcinogen family (Medina, 2007). The environmental exposure to DMBA comes from 

burning of organic matters, including coal, charred foods, cigarette smoke and car exhaust 

fumes (Gelboin, 1980). DMBA acts at multiple sites and can induce various type of cancer in 

animal models, for instance mammary, skin, lung neoplasms, lymphoma and oral cavity 

  
 22 

 
  



1. Introduction 
 

tumors (de Oliveira et al., 2013). The response of mice to DMBA is strain-dependent with 

DBA2f and Sencar mice being the most sensitive and C57BL/6 being the least sensitive 

(Medina, 2010). Most studies have used DMBA to induce mammary tumors following 

administration by oral gavage in mouse models (Medina, 1974, Currier et al., 2005). 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
Figure 7. Overview of genotoxic and non-genotoxic effects of carcinogens (Source: Luch, 2005) 

 

In general, chemical carcinogens induce molecular changes in target organ, and the most 

frequently involved genes are Ras and Tp53 (Hoenerhoff et al., 2009). Many previous studies 

reported the DNA damaging effect of environmental carcinogens, for example the induction 

of point mutations in genes such as c-H-ras by DMBA (Dandekar et al., 1986; Cardiff et al., 

1988; Qing et al., 1997). Upon DMBA oral gavage treatment, the cellular cytosolic receptor 

for DMBA, the aryl hydrocarbon receptor (AhR) is upregulation and through its translocation 

to the nucleus associates with the cofactor ARNT, the AhR nuclear translocation protein 

(Swanson et al., 1995; Trombino et al., 2000; Denison and Nagy, 2003). Subsequently, the 

AhR/ARNT complex binds to specific DNA recognition sites and induces gene transcription 

(Denison and Nagy, 2003). In addition, cytochrome P450 (CYP1A1 and CYP1B1) is 

upregulated in an AhR-dependent response. Cytochrome P450 has been reported to be 

involved in the metabolism of DMBA. It converts it into a mutagenic epoxide intermediate 

that readily forms DNA adduct (Shimada and Fujii-Kuriyama, 2004). These adducts are 

correlating with DNA mutations and the malignant transformation of PAH-mediated 
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carcinogenesis (Nebert et al., 1990; Rundle et al., 2000). Moreover, Currier et al. (2005) have 

elucidated the oncogenic signaling of DMBA in mouse mammary tumors. DMBA-induced 

mammary tumors demonstrated high expression of AhR, c-myc, Cyclin D1, and 

hyperphosphorylated retinoblastoma (Rb) protein. Moreover, elements of the Wnt signaling 

pathway, the NF-κB pathway, and prolyl isomerase Pin-1 have been up-regulated in the 

tumors when compared to normal mammary glands. They proposed that “environmental 

carcinogens can produce long-lasting alterations in growth and anti-apoptotic pathways, 

leading to mammary tumorigenesis” (Currier et al., 2005).  

 

1.5.1    Immunosuppression and immunotoxicity of carcinogen (DMBA) 

Suppression of immune response by chemical carcinogens has been reported several decades 

ago (Malmgren et al., 1952). Chemical carcinogens, especially DMBA, can suppress both 

cell-mediate immunity and humoral immunity for prolonged periods of time (Prehn, 1963; 

Ward et al., 1986; Burchiel et al., 1990; Gao et al., 2007, 2008). DMBA suppresses immune 

response through inhibition of lymphocyte activation, mainly by depressing the ability to 

generate cytotoxic T-lymphocytes (CTL) and natural killer (NK) cells (Ward et al., 1986; 

Burchiel et al., 1990). It has been proposed that immunosuppression induced by DMBA, 

including CTL and NK cell tumoricidal functions, may act as an important mechanism in 

association with the genotoxic effect, contributing to tumor outgrowth and metastasis (Ward 

et al., 1986). Microsomal epoxide hydrolase (mEH, EPHX1) has been found as a crucial 

enzyme for metabolic activation of DMBA in vivo leading to immunosuppression of spleen 

cells (Gao et al., 2007). Furthermore, Gao et al. (2008) have shown that genotoxicity of 

DMBA is responsible for DMBA-induced immunosuppression in vivo via activation of p53 

and ataxia telangiectasia mutated (ATM) signaling. 

Interleukin-2 (IL-2) is a T cell growth factor that has been discovered in the supernatants of 

activated T cells (Morgan et al., 1976). IL-2 stimulates the growth, differentiation and 

survival of antigen-specific CD4+ T cells and CD8+ T cells (Stern and Smith, 1986; Liao et 

al., 2011). It can modulate effector cell differentiation (T helper type 1 (Th1) cells, Th2, 

Th17, and regulatory T cells (Tregs)) as well as IL-7 via regulation of cytokine receptor 

expression (Liao et al., 2011). Several studies demonstrated that DMBA highly suppressed 

the production of IL-2 from splenocytes in response to mitogenic or allogeneic stimulation  

in vivo and in vitro (House et al., 1987; Saas et al., 1996). Recently, IL-2 has been used for 

the treatment of patients with advanced renal cancer and subsequently of patients with 

melanoma (Clement and McDermott, 2009; Halama et al., 2010), but it was accompanied 
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with toxicity. In an effort to reduce the IL-2 toxicity in cancer patients, Liang et al., (2012) 

provided evidence that inhibition of autophagy by using chloroquine during IL-2 

immunotherapy in mouse model lead to regression of tumor growth significantly and 

prolonged survival. 

The immunotoxicity of DMBA is accompanied by a decrease of the spleen weight as well as 

changes in spleen cellularity (total number of spleen cells reduced) and bone marrow 

cellularity (Miyata et al., 2001; Page et al., 2003). These decreases were associated with cell 

death of splenocytes after DMBA treatment (Miyata et al., 2001; Gao et al., 2007). Moreover, 

it has been reported that DMBA induced pre-B-cell apoptosis (Heidel et al., 1999; Near et al., 

1999). For instance, Page et al. (2003) have shown that bone marrow toxicity in mice is 

dependent on p53 activation in vivo after DMBA exposure. Further, Teague et al. (2010) 

showed that DMBA activates apoptosis in pro/pre-B cells in a bone marrow stromal cell-

dependent manner, via activation of caspase-3. 

 

1.5.2    Carcinogen, autophagy and DNA damage 

Modifications in DNA structure (DNA damage) can happen by exogenous environmental 

agents such as ionizing radiation (IR), ultraviolet (UV) and genotoxic chemicals (for instance, 

carcinogens) or by endogenous byproducts of regular cellular metabolism including ROS 

(Rodriguez-Rocha et al., 2011). In response to genotoxic stimuli or cytotoxic lesions (such as 

double strand breaks (DSB)), cells trigger several processes in order to retain genomic 

stability; these processes include DNA damage response (DDR) to repair or remove the 

lesions and keep DNA integrity, cell cycle checkpoint activation to arrest the progression of 

the cell cycle and to allow DNA repair and thereby prevent the transmission of the  

DNA damage, transcriptional response activation to change the transcription profile, and  

activation of apoptosis pathways in order to remove the damaged or deregulated cells  

(Roos and Kaina, 2006; Rodriguez-Rocha et al., 2011). A key player in DNA damage is p53 

(Caspari, 2000; Hickman et al., 2002), however, the response to genotoxic stress is a complex 

process and requires the activation of several proteins involved in sensing aberrant DNA 

structures and the initiation of subsequent events (Rodriguez-Rocha et al., 2011). 

DNA damage occurs in several tissues of rat following exposure to DMBA (Muqbil et al., 

2006). In general, PAH-DNA adducts may trigger nucleotide excision repair (NER), 

including p53-dependent apoptosis in certain cell types, depending on the degree of the DNA 

lesion and cell cycle progression (Henkler et al., 2012). Ganesan et al. (2013) found that 

DMBA induces DSB with the subsequent activation of DNA repair as potential mechanism  
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to prevent the follicle loss in rat ovaries. Moreover, DNA damage activates ATM and/or ATR 

(ATM and Rad3 related) which in turn phosphorylate a variety of signaling proteins  

such as checkpoint kinases 1 and 2 (CHK1, CHK2), and p53. Phosphorylated p53  

induces transcriptional activation of pro-apoptotic factors such as Fas, Bax and PUMA  

(Roos and Kaina, 2006). Therefore, DNA-repair deficiency sensitizes cells to apoptosis 

induced by DNA lesions, such as bulky DNA adducts (Rodriguez-Rocha et al., 2011). 

Several studies showed that autophagy was induced in response to DNA damage (Klionsky 

and Emr, 2000; Polager et al., 2008; Kang et al., 2009), however, the role of autophagy in 

DDR is still unclear. It has been demonstrated that cells initiate cell cycle arrest and 

autophagy upon treatment with DNA-damaging agents, for example camptothecin (CPT) 

(Abedin et al., 2007; Bae and Guan, 2011), etoposide and tomozolomide (Katayama et al., 

2007), p-anilioaniline (Elliott and Reiners, 2008) and IR (Bae and Guan, 2011). Autophagy 

delayed apoptotic cell death in breast cancer cells treated with CPT (Abedin et al., 2007). The 

interaction of anti-apoptotic proteins Bcl-2/Bcl-xl with Beclin-1 in ER inhibits autophagy 

(Maiuri et al., 2007b). The pro-apoptotic and anti-apoptotic Bcl-2 proteins regulate apoptosis 

induced by DNA damage; this suggests a regulatory role of Bcl-2 family proteins in 

mediating the crosstalk between autophagy and apoptosis signaling (Zinkel et al., 2006). 

Furthermore, doxorubicin induced DNA damage in association with autophagy induction 

which was observed to depend on PARP-1 (poly [ADP-ribose] polymerase 1). Inhibition of 

autophagy enhanced doxorubicin-mediated cell death suggesting that autophagy acts as a 

protective mechanism against DNA damage-induced apoptosis (Munoz-Gamez et al., 2009; 

Huang and Shen, 2009). On the other hand, mitochondrial damage produces ROS which is in 

turn may stimulate mitophagy to remove the damaged organelles, therefore autophagy 

malfunction lead to increased ROS causing DDR (Mathew et al., 2007). DDR insufficiency 

could stimulate genomic instability resulting in tumorigenesis; however, extremely increased 

DNA damage may also result in cell death (Bae and Guan, 2011). Bae and Guan (2011) 

demonstrated that inhibition of autophagy by FIP200 knockout resulted in deficient repair of 

DNA damage produced by ionizing radiation and anticancer agents. In this work, persistent 

DNA damage after CPT treatment was associated with increased apoptosis and reduced 

survival of FIP200 knockout cells. They suggested that accumulation of p62 protein due to 

autophagy insufficiency is responsible for impaired DDR and CPT-induced cell death (Bae 

and Guan, 2011). 
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1.6     Aims of the study 

We previously reported that GABARAP may function as a tumor suppressor in breast cancer 

cells and that the expression of the gene was associated with larger vesicle formation. 

However, the precise role and mechanism that GABARAP plays in tumorigenesis could not 

elucidated so far. Instead, GABARAP was identified in the meantime as one of the 

autophagy-related genes that play a role in the maturation of the autophagosome. In the last 

decade, increasing studies have implicated autophagy in the tumor initiation and progression. 

Recently, autophagy has been involved in cancer therapy by using autophagy inhibitors, for 

instance chloroquine. GABARAP is ubiquitously expressed in all tested normal tissues. Its 

expression has been studied in some cancer types, for example neuroblastoma, breast tumors, 

thyroid tumors and colorectal tumors. Furthermore, autophagic proteins have been involved in 

the regulation of both innate and adaptive immunity. Autophagic gene deletions demonstrated 

an increase in the lethality of sepsis in mouse models and enhanced infiltration of 

antitumorigenic T cells in the tumor microenvironment. 

The primary aim of the study was to explore the role of GABARAP in tumorigenesis by using 

a knockout mouse model. Specifically the following questions were addressed: 

- Does treatment of GABARAP knockout mice with carcinogens or the inoculation of the 

mice with syngeneic tumor cells affect tumorigenesis differently compared to wild-type mice? 

- And if this is the case what are the cellular mechanisms being affected by GABARAP 

deficiency that govern the differences in the tumor phenotype? 
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2.       Materials and Methods 

2.1     Materials 

2.1.1    Chemicals 

Chemical Company 
7,12-Dimethylbenz(a)anthracene (DMBA) Sigma-Aldrich, St. Louis, MO, USA  
Agarose  Serva, Heidelberg, Germany  
Albumin Fraction V (BSA)  Roth, Karlsruhe Germany  
Alum potassium sulfate Merck KGaA, Darmstadt, Germany 
Aqua ad injectabilia  Braun, Melsungen, Germany  
Ammonium chloride ( NH4Cl) Sigma-Aldrich, St. Louis, MO, USA 
Ammonium persulfate (APS)  Sigma-Aldrich, St. Louis, MO, USA  
Camptothecin (CPT) Bio Vision, Milpitas, California, USA 
Carmine Fluka, Bassersdorf, Switzerland 
Citric acid monohydrate Sigma-Aldrich, St. Louis, MO, USA 
Chloroquine (CQ) diphosphate salt Sigma-Aldrich, St. Louis, MO, USA 
Deoxycholate AppliChem, Darmstadt, Germany  
Developer Kodak, Rochester, USA 
Diethylether Otto Fischar, Saarbrücken, Germany 
Diethylpyrocarbonate (DEPC) Sigma-Aldrich, St. Louis, MO, USA 
Dimethylsulfoxid (DMSO)  Sigma-Aldrich, St. Louis, MO, USA  
Ethylenediaminetetraacetic acid (EDTA)  Sigma-Aldrich, St. Louis, MO, USA  
Ethanol  Merck KGaA, Darmstadt, Germany  
Fixer Kodak, Rochester, NY, USA 
Formaldehyde J.T. Baker, Deventer, Netherlands 
GelRED  Biotium, Hayward, USA  
Glacial acetic acid J.T. Baker, Deventer, Netherlands 
Glycin  Roth, Karlsruhe, Germany  
Heparin Roche, Grenzach-Wyhlen, Germany 
Hydrochloric acid (HCl)  J.T. Baker, Deventer, Netherlands  
Hydrogen peroxide solution (H2O2) Roth, Karlsruhe, Germany 
Isopropanol Roth, Karlsruhe, Germany 
Medroxyprogesteron acetate (MPA) Pfizer, Madrid, Spain 
Methanol Merck KGaA, Darmstadt, Germany  
N-methyl-N-nitrosourea (MNU) Santa Cruz, CA, USA 
N-ethyl-N-nitrosourea (ENU) Sigma-Aldrich, St. Louis, MO, USA  
Non-fat dry milk  BD, Sparks, France  
Nonidet P-40 substitute  AppliChem, Darmstadt, Germany  
Ortho-phenylenediamine (OPD) Sigma-Aldrich, St. Louis, MO, USA 
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Permount Fischer Scientific, New Jersey, USA 
Potassium chloride (KCl) Serva, Heidelberg, Germany 
Potassium phosphate monobasic (KH2PO4) Merck KGaA, Darmstadt, Germany 
Rotiphorese Gel40 (Acrylamide) Roth, Karlsruhe, Germany  
Sesame oil Local market 
Sodium azide (NaN3) Sigma-Aldrich, St. Louis, MO, USA 
Sodium bicarbonate (NaHCO3) Merck KGaA, Darmstadt, Germany 
Sodium citrate Merck KGaA, Darmstadt, Germany 
Sodium hydroxide (NaOH) J.T. Baker, Deventer, Netherlands 
Sodium lauryl sulfate (SDS)  Roth, Karlsruhe, Germay  
Sodium phosphate dibasic (Na2HPO4)  Merck KGaA, Darmstadt, Germany  
Sodium phosphate dibasic dehydrate  
(Na2HPO4 x 2 H2O) Merck KGaA, Darmstadt, Germany 

Sodium phosphate monobasic monohydrate 
(Na2HPO4 x H2O) Merck KGaA, Darmstadt, Germany 

Sulfuric acid ( H2SO4) J.T. Baker, Deventer, Netherlands 
Target Retrival Solution, citrate pH 6  DAKO, Glostrup, Denmark  
Tetramethylethylenediamine (TEMED)  Sigma-Aldrich, St. Louis, MO, USA  
Tris-Base  EMD Chemicals, San Diego, CA, USA  
Tween20  Roth, Karlsruhe, Germany  
Xylol  Sigma-Aldrich, St. Louis, MO, USA  

 

2.1.2    PCR and cell culture reagents 

Reagent Company 
10 x buffer S peQlab, Erlangen, Germany 
2.0 mM dNTP mix Thermo Scientific, Rockford, IL, USA 
2.5% Trypsin (10 x) Gibco, Paisley, UK 
2-mercapto-ethanol Sigma-Aldrich, St. Louis, MO, USA 
Adenosine triphosphate (ATP) InvivoGen,  Toulouse, France 
Dulbecco’s MEM (DMEM) Biochrom, Berlin, Germany 
Earle’s balanced salt solution (EBSS) Sigma-Aldrich, St. Louis, MO, USA 
FastStart Universal SYBR Green Master 
(Rox) Roche, Mannheim, Germany 

Fetal calf serum (FCS) Biochrom, Berlin, Germany 
HEPES Invitrogen, Karlsruhe, Germany 
L-glutamine Invitrogen, Karlsruhe, Germany 
Lipopolysaccharide (LPS) Sigma-Aldrich, St. Louis, MO, USA 
Penicillin Invitrogen, Karlsruhe, Germany 
Protease inhibitor cocktail tablets Roche, Mannheim, Germany 
RPMI 1640 Biochrom, Berlin, Germany 
Sodium pyruvate Invitrogen, Karlsruhe, Germany 
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2.1.3    Kits and assays 

 

2.1.4    Laboratory equipment and consumables 

Streptomycin Invitrogen, Karlsruhe, Germany 
Taq-polymerase (HotStarTaq) peQlab, Erlangen, Germany 
Trypsin-EDTA Biochrom, Berlin, Germany 

Kit Company 
BCA protein assay kit Thermo Scientific, Rockford, IL, USA 
DAKO REAL™ Detection System Alkaline 
Phosphatase/RED  Rabbit/Mouse DAKO, Glostrup, Denmark 

DNA Clean & Concentrator™-5 Kit Zymo Research, Irvine, CA, USA 
Horseradish peroxidase-labeled streptavidin Dianova, Hamburg, Germany 
Luminol Reagent (Western Blotting 
Detection Kit) Santa Cruz, CA, USA 

Maxwell® 16 FFPE Plus LEV DNA 
Purification Kit Promega, Madison, WI, USA 

QuantiTect® Reverse Transcription Kit QIAGEN GmbH, Hilden, Germany 
REDExtract-N-Amp™ Tissue PCR Kit Sigma-Aldrich,  Seelze, Germany 
Trizol reagent (peqGOLD TriFast) peQlab, Erlangen, Germany 

Material Company 
0.2 ml flexi-PCR-tubes Kisker Biotech, Steinfurt, Germany 
0.5/1.5/2.0 ml microtubes Sarstedt, Nümbrecht, Germany 
10/100/200/1000 µl pipette tips Sarstedt, Nümbrecht, Germany 
5/10/25 ml glass pipette sterile / cell culture Greiner bio-one, Kremsmünster, Germany 
200 μl gel loading pipette tips round Nerbeplus, Winsen/ Luhe, Germany 
6/12/24/96 well cell culture plates sterile Greiner bio-one, Kremsmünster, Germany 
Accu-jet pipette Integra Bioscience, Fernwald, Germany 
Amersham HyperfilmTM ECL GE Healthcare, Buckingshamshire, GB 

Autoclave SHP Steriltechnik, Schloss Detzel, 
Germany 

Axio Lab.A1 microscope (Zeiss) Zeiss, Oberkochen, Germany 
Camera Power shot A650 IS Canon, Tokyo, Japan 
Cell culture dishes Greiner bio-one, Kremsmünster, Germany 
Centrifuge 5415 R Eppendorf, Hamburg, Germany 
Centrifuge Universal 320R Hettich, Tuttlingen, Germany 
Cleanbench HERA safe Thermo Scientific, Waltham, MA, USA 
CO2 Incubator MCO-17AI Sanyo, Moriguchi, Japan 
Countess automated cell counter Invitrogen, Carlsbad, CA, USA 
Easy-Cast Electrophoresis system Model B2 Owl Scientific, San Francisco, CA, USA 
Electrophoresis Power Supply EV231 peQlab, Erlangen, Germany 

  
 30 

 
  



2. Materials and Methods 
 

 

2.1.5    Immunohistochemistry and Western blot primary antibodies 

Hotplate/Stirrer VWR, Darmstadt, Germany 
Hybaid hybridization oven MWG-Biotech, Ebersberg, Germany 
Imager Fluorchem® FC2 Alpha Innotec,  Minneapolis, MN, USA 
Kodak X-ray Film NEN Life Science Products, MA, USA 
Maxwell 16 instrument Promega, Madison, WI, USA 
Microplate absorbance reader Tecan, Crailsheim, Germany 
Microtome Leica, Nussloch, Germany 
Microtome blades Feather, Seki, Japan 
Mini PROTEAN Tetra System for SDS-
PAGE BIO-RAD, Hercules, CA, USA 

Mini-Vac eco vacuum pump peQlab, Erlangen, Germany 
NanoDrop Spectrophotometer ND-1000 peQlab, Erlangen, Germany 
peQSTAR 96 Universal Gradient cycler peQlab, Erlangen, Germany 
PerfectBlue™ 'Semi-Dry'-Electro Blotter peQlab, Erlangen, Germany 
PerfectSpin 24 centrifuge peQlab, Erlangen, Germany 
pH-Electrode SenTix 81 inoLab, Weilheim, Germany 
Pipettes peQlab, Erlangen, Germany 
Plastic 15 ml and 50 ml falcon tubes greiner bio-one, Frickenhausen, Germany 
Polypropylene cell strainer BD Biosciences, Sparks, MD, USA 
Rotor-Gene Q real-time PCR Machine QIAGEN,  Hilden, Germany 
Scout Pro SPU402 scale Ohaus, Parsipanny, IN, USA 
TELAVAL 31 inverse microscope Zeiss, Oberkochen, Germany 
Thriller thermoshaker peQlab, Erlangen, Germany 
Tissue culture flask Greiner bio-one, Kremsmünster, Germany 
Ultra-Turrax T8 (homogeniser) IKA Labortechnik, Staufen, Germany 
Vasco nitril white Braun, Melsungen, Germany 
Vortex-Genie 2 Scientific Industries, Bohemia, NY, USA 
Water bath typ 1003 GFL, Burgwedel, Germany 
Whatman™ PVDF Membrane Protran BA83 GE Healthcare, Buckingshamshire, UK 

Primary Antibody Species Company Clonality Dilution 
Anti-Cyclin D1 Rabbit Santa Cruz polyclonal 1:200 in 5% TBST-Milk 

Anti-GABARAP Rabbit Abcam monoclonal 1:2500 in 5% TBST-Milk 
Anti-Ki-67 Biotin Rat eBioscience monoclonal 5 µg/ml 

Anti-LC3A/B Rabbit Cell Signaling polyclonal 1:1000 in 5% TBST-BSA 
Anti-p- γH2AX Rabbit Cell Signaling monoclonal 1:1000 in 5% TBST-BSA 

Anti-SQSTM1 (p62) Rabbit Novus 
Biologicals polyclonal 1:4000 in 5% TBST-Milk 

Anti-β-Actin Mouse Millipore monoclonal 1:1000 in 5% TBST-Milk 
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2.1.6    Secondary antibodies 

 

2.1.7    ELISA antibodies 

 

2.1.8    Cytokine standards 

 

2.1.9    Genotype primer sequences 

 

 

Secondary antibody Species Company Dilution 
HRP-conjugated anti-mouse IgG Rabbit DAKO 1:1000 
HRP-conjugated anti-rabbit IgG Goat Santa Cruz 1:1000 

Cytokine Catalog nr. Concentration Marker Buffer Company 

IFN-γ 551216 
554410 

1 µg/ml 
0,5 µg/ml 

none 
Biotin 

Na-Phos., pH 9,0 
- 

BD Biosciences 
BD Biosciences 

IL-17 MAB721 
BAF421 

2 µg/ml 
0,1 µg/ml 

none 
Biotin 

PBS 
- 

R&D Sytstems 
R&D Sytstems 

IL-1β 51-26661E 
13-7112 

4 µg/ml 
0,5 µg/ml 

none 
Biotin 

NaHCO3, pH 9,5 
- 

BD Biosciences 
eBioscience 

IL-2 554424 
554426 

1 µg/ml 
0,5 µg/ml 

none 
Biotin 

Na-Phos., pH 9,0 
- 

BD Biosciences 
BD Biosciences 

IL-6 554400 
554402 

2 µg/ml 
0,25 µg/ml 

none 
Biotin 

NaHCO3, pH 9,5 
- 

BD Biosciences 
BD Biosciences 

TNF-α 551225 
554415 

3 µg/ml 
0,5 µg/ml 

none 
Biotin 

Na-Phos., pH 6,5 
- 

BD Biosciences 
BD Biosciences 

Cytokine Catalog nr. Max. concentration Company 

IFN-γ 485-MI/CF 30000 pg/ml R&D Sytstems 

IL-17 421-ML 10000 pg/ml R&D Sytstems 

IL-1β 51-26666E 2000 pg/ml BD Biosciences 

IL-2 212-12 2000 pg/ml Tebu-bio 

IL-6 216-16 5000 pg/ml Tebu-bio 

TNF-α 554589 1000 pg/ml BD  Biosciences 

Primer pairs Direction Oligonucleotide sequence Size 
(bp) 

Annealing  
temperature 

GRAP23FW1 Forward 5’-GCCACCTTCAGCGTAGAAAC-3’ 
300 62°C 

GRAP23BW1 Reverse 5’-GCCTGCTAACATACGCCACT-3’ 

GRAP23FW Forward 5’-ACTGGATGGAGTCCCTGATG-3’ 
640 62°C 

VICTR23C Reverse 5’-GAGTGATTGACTACCCGTCAGCG-3’ 
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2.1.10    Quantitative reverse transcriptase PCR (qRT-PCR) primer sequences 

* Ta, Annealing temperature (°C) 

 
2.1.11    Primer sequences for mutation analysis 

* F, Forward primer; R, Reverse primer 

* Annealing temperature was 68°C for the first eight cycles, then 60°C for the next 32 cycles 
of exon 1 primers and 62°C for the next 32 cycles of exon 2 primers. 

 
2.1.12    Solutions and buffers 

Western blot & electrophoresis Composition  

10 x electrophoresis buffer (1 l) 250 mM Tris-Base  

1.92 M Glycin  

1% SDS  

→ pH 8.3  

 

Gene Direction Oligonucleotide sequence Accession 
number 

Ta 
(°C) 

Size 
(bp) 

Bax 
Forward 5’-TTGGAGATGAACTGGACAGC-3’ 

NM_007527.3 60 124 
Reverse 5’-CAGTTGAAGTTGCCATCAGC-3’ 

Bid 
Forward 5’-AGACGAGCTGCAGACAGATG-3’ 

NM_007544.3 60 137 
Reverse 5’-GGTCCATCTCATCGCCTATT-3’ 

GAPDH 
Forward 5’-CACACCGACCTTCACCATTTT-3’ 

NM_008084.2 60 67 
Reverse 5’-GAGACAGCCGCATCTTCTTGT-3’ 

p21 
Forward 5’-AGGCCCAGTACTTCCTCTGC-3’ 

NM_007669.4 60 183 
Reverse 5’-CAATCTGCGCTTGGAGTGATA-3’ 

Xaf1 
Forward 5’-TCCAAGTGTGCAGGAACTG-3’ 

NM_001037713 60 144 
Reverse 5’-CAACTTCCATGTGCTCTTTCATC-3’ 

Gene Exon Oligonucleotide sequence Accession 
number 

Size 
(bp) 

H-ras1 1 
5’-CCTTGGCTAAGTGTGCTTCTCATTGG-3’ (F) 

NM_008284.2 214 
5’-ACAGCCCACCTCTGGCAGGTAGG-3’      (R) 

H-ras1 2 
5’-TGTGGATTCTCTGGTCTGAGGAGAG-3’  (F) 

NM_008284.2 269 
5’-CATAGGTGGCTCACCTGTACTGATG-3’  (R) 
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10 x PBS (1 l) 2 g KCl  

2 g KH2PO4  

14.4 g Na2HPO4  

80 g NaCl  

→ pH 7.4  

10 x TBST (1 l) 24.2 g Tris-Base 

80 g NaCl 

14 ml HCl 

→ pH 7.6 

10 ml Tween20 

10 x Western blot transfer buffer (1 l) 30.03 g Tris-Base 

112.6 g Glycine 

→ pH 8.3 

→ for preparing 1 x buffer add 100 ml methanol 

50 x TAE buffer (1 l) 242 g Tris-Base 

57.1 ml Glacial acetic acid 

100 ml 0.5 M EDTA (pH 8) 

Blocking buffer 2.5 g Non-fat dry milk or BSA 

50 ml 1 x TBST 

RIPA buffer (100 ml) 1 ml NP-40 

200 μl 0.5 M EDTA 

10 ml 0.5 M Tris pH 7.4 

15 ml 1 M NaCl 

0.25 g Desoxycholat 

 

RNA isolation Composition 

DEPC-treated H2O 1 l H2O 
1 ml Diethylpyrocarbonate (DEPC) 
 

→ The solution was stirred on a magnetic stirrer 
overnight and autoclaved the next day. 
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Carcinogens dissolvent Composition 

0.2 M dibasic sodium phosphate 
(Na2HPO4) 

3.56 g Na2HPO4 

100 ml H2O 

Citrate-buffered saline 1 g KCl 

0.44 g Sodium citrate 

100 ml H2O 

→ pH 4.5 

Citric acid monohydrate 2.1 g Citric acid monohydrate 

100 ml H2O 

Citric acid-phosphate buffer 36.85 ml Citric acid monohydrate 

63.15 ml 0.2 M Na2HPO4 

→ pH 6.0 

 

ELISA buffers Composition 

Ammoniumchlorid/TRIS, pH 7.2 a) 0.83% NH4Cl (7.47 g at 900 ml H2O) 

b) TRIS (2.059 g at 100 ml H2O), pH 7.65 

mix a) and b) 9:1 

Citrate buffer, pH 4.8 2.1 g Citric acid 

16.2 ml 1 N NaOH 

84 ml Aqua dest 

Na2HPO4-coating buffer, pH 6.5 1.48 g Na2HPO4 x 2 H2O 

1.85 g NaH2PO4 x H2O 

100 ml Aqua dest 

NaH2PO4-coating buffer, pH 9.0 1.38 g NaH2PO4 x H2O 

100 ml Aqua dest 

NaHCO3-coating buffer, pH 9.5 0.84 g NaHCO3 

100 ml Aqua dest 

OPD-solution 2 mg/ml OPD in citrate buffer 

20 μl/ml 3% H2O2 
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2.2     Methods 

2.2.1    Animals 

Female wild-type (Wt) C57BL/6 mice were purchased from Charles River (Sulzfeld, 

Germany). GABARAP knockout (GABARAP KO) mice were obtained from the Max Planck 

Institute for Brain Research in Frankfurt, Germany (O’Sullivan et al., 2005). GABARAP KO 

mice were generated from the Omnibank of embryonic stem cell library by insertion of 

targeting vector 345 bp upstream of exon 1 of the GABARAP locus (Zambrowicz et al., 

1998) (Fig. 8). The heterozygous animals were crossed to produce + ⁄ + (wild-type), + ⁄ – 

(heterozygous) and – ⁄ – (homozygous) mice. Mice were housed in standard cages (10 animals 

per cage) under controlled temperature (22 ± 2ºC) and lighting conditions (monitored 12 h 

light/12 h dark cycles), and supplied with water and food (Altromin, Lage, Germany)  

ad libitum. All animal experiments were approved by the Thuringian commission for animal 

protection (No. 02-018/08 and 02-007/13). 

 

Figure 8. Location of gene-trap vector insertion into the GABARAP gene and primers designed for 
genotyping (O’Sullivan et al., 2005). The PCR fragment sizes for the different GABARAP genotypes are 
indicated in the inset. 

 
2.2.2    Genotyping of GABARAP knockout mice 

Genomic DNA was extracted from the tails of mice by using REDExtract-N-Amp™ Tissue 

PCR Kit (Sigma-Aldrich, Germany) according to the manufacturer's protocol, as follows: 

 
2.2.2.1    Genomic DNA extraction 

First of all, 100 µl of extraction solution was added into 1.5 ml microcentrifuge tube, and then 

25 µl of tissue preparation solution was appended to the tube with pipetting up and down to 
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mix. Fresh mouse tail tips (end down) of about 0.5 cm were cut by using sterile scissors and 

forceps. The piece of mouse tail tip was transfer into the extraction solution and mixed 

thoroughly by vortexing. The sample was incubated at room temperature for 10 minutes, and 

then incubated at 95ºC for 3 minutes. After that, 100 µl of neutralization solution B was added 

to sample and mixed by vortexing. The neutralized tissue extract was used immediately for 

polymerase chain reaction (PCR); if not, the samples were stored at 4°C. 

 
2.2.2.2    PCR amplification 

The following reagents were prepared in duplicate, one reaction for the GRAP23FW1/ 

GRAP23BW1 primer pairs, and the second reaction for the GRAP23FW/VICTR23C primer 

pairs. The PCR fragment sizes for each primer pairs are indicated in the inset of Figure 8. 

 

 

 

 

 

 

 
 

Then, the following PCR program was used for each primer pairs: 

 

 

 

 

 

 

After the program was completed the PCR products were stored at 4°C or loaded directly onto 

an agarose gel. 

 
2.2.2.3    Agarose gel electrophoresis 

PCR products were separated in a 1.5% (w/v) agarose gel. To pour a gel, agarose powder was 

mixed with 1 x TAE buffer to the desired concentration and heated in a microwave oven until 

the agarose was completely molten. After cooling down to about 60°C the solution was 

poured into a casting tray containing a sample comb and allowed to solidify at room 

temperature. The solid gel was inserted horizontally into the electrophoresis chamber, the 

Reagent Volume/reaction 
REDExtract-N-Amp PCR Reaction Mix 10.0 µl 
Forward Primer (100 pmol/μl = 100 μM) 0.08 µl 
Reverse Primer (100 pmol/μl = 100 μM) 0.08 µl 

H2O 5.84 µl 
Tissue Extract 4.00 µl 
Total volume 20 µl 

Step Temperature Duration Cycle 
1 Initial denaturation 94°C 1 minute 1 
2 Denaturation 94°C 30 seconds  

 

35 3 Annealing 62°C 1 minute 
4 Extension 72°C 1 minute 
5 Final elongation 72°C 10 minutes 1 
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comb removed and the gel covered with 1 x TAE buffer. PCR products were mixed with 

loading buffer and pipetted into the sample wells. The gel was run with 100 voltages for  

40 minutes. Thereafter, the gel was incubated with GelRED for 15 - 30 minutes and a 

photograph was taken after placing the gel under the imager FluorChem® FC2. Figure 9 

showed an example of the genotyping results for a group of mice. 
  

 

Figure 9. Genotyping results for the different GABARAP genotype mice, wild-type (+/+), heterozygous (+/-) or 
homozygous (-/-). A) Electrophoresis image for the primer pairs GRAP23FW1/GRAP23BW1 with a band of 
300 bp and GRAP23FW/VICTR23C with a band of 640 bp. B) Table to illustrate the results shown in A. 

 

2.2.3    Carcinogen treatment 

The genetic background of GABARAP KO mice is C57BL/6 mice. Female C57BL/6 wild-

type and GABARAP KO mice at 6 – 8 weeks of age were used in all our experiments for 

carcinogen treatment. Wild-type and GABARAP KO mice were divided each into 2 groups, 

control (vehicle-treated) group and carcinogen-treated group. The treatment regimens used in 

our experiments was according to the literature with some modifications. 

 
2.2.3.1    DMBA treatment 

7,12-Dimethylbenz(a)anthracene (DMBA) was dissolved in sesame oil (5 mg/ml) by 

vortexing for 2 h at room temperature. Several experiments had shown that complete 

dissolution was obtained using this protocol for DMBA dissolving. All steps in the 

preparation were carried out under minimum illumination. DMBA-treated groups of wild-

type and GABARAP KO mice received 6 weekly doses of 1 mg DMBA/mouse in  

200 µl of dissolvent by oral gavage. Control groups received 6 weekly dosed of 200 µl 

sesame oil. The mice were monitored weekly for palpable tumor formation. The tumor-

A B 
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bearing mice were anesthetized and killed by cervical dislocation. The tumor specimens were 

fixed in 5% neutral buffered formalin. 

 
2.2.3.2    ENU treatment 

N-Ethyl-N-nitrosourea (ENU) was obtained from Sigma in Isopac bottles containing 

approximately 1 g of ENU. The desired concentration of ENU was obtained by dissolving it 

in citric acid-phosphate buffer at pH 6.0, because it is highly decomposition in aqueous media 

at pH values above 7.0 (Goth and Rajewsky, 1974). In addition, care was taken to prevent 

decomposition from light during preparation of ENU solution. ENU-treated groups of wild-

type and GABARAP KO mice were administered a single intraperitoneal (i.p.) injection of 

150 mg ENU/kg of body weight. The mice were monitored weekly for palpable tumor 

formation. The tumor-bearing mice were anesthetized and killed by cervical dislocation. The 

tumor specimens were fixed in 5% neutral buffered formalin. 

 
2.2.3.3    Hormone stimulation and MNU treatment 

Medroxyprogesterone acetate (MPA) was used together with N-methyl-N-nitrosourea (MNU) 

in order to increase the incidence of mammary tumors in mice (Pazos et al., 1998). MPA was 

dissolved in sterile injectable water and MNU was dissolved in citrate-buffered saline pH 4.5. 

Female mice were administered at 6 weeks of age the first dose of 40 mg MPA/mouse by 

intramuscular injection. In the next week, i.e. at 7 weeks of age, the mice received a single 

intraperitoneal (i.p.) injection of 1 mg MNU/mouse in 200 µl of dissolvent. Four weeks  

after the first MPA dose, a booster dose of 20 mg MPA/mouse was administered 

intramuscularly. The mice were monitored every other day for lethality and weekly for 

palpable tumor formation. 

 
2.2.3.4    MNU and DMBA treatment 

In attempt to increase the tumor incidence in our mice model, we used the synergistic 

treatment of MNU and DMBA in mice (Shirai et al., 1997), which are already promoted with 

MPA. Female mice at 6 weeks of age were injected with 20 mg MPA/mouse intramuscularly. 

One week later, the mice were administered i.p. injection of 1 mg MNU/mouse. At 8 weeks of 

age, the mice received the booster dose of 20 mg MPA/mouse. After that, the mice were 

given a single oral dose of 1 mg DMBA/mouse at 10 weeks of age. DMBA and MNU were 

dissolved as mentioned in (2.2.3.1) and (2.2.3.3), respectively. The mice were monitored 

every other day for lethality and weekly for palpable tumor formation. 
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2.2.4    Tumor and tissue specimens 

2.2.4.1    Haematoxylin and eosin (H & E) staining 

Tumor specimens of DMBA-treated mice were fixed and embedded in paraffin. Four-µm 

sections were cut from blocks, mounted on glass slides, dewaxed with xylene and gradually 

hydrated. Subsequently, the sections were stained with haematoxylin and eosin, dehydrated 

and cleared with xylene. Then the sections were mounted with aqueous mounting medium. 

The slides were analysed under light microscope and evaluated by Prof. Dr. Iver Petersen. 

 
2.2.4.2    Immunohistochemistry (IHC) 

Immunohistochemistry staining of tissue sections from spleen and mammary glands of 

vehicle-treated (control) and DMBA-treated mice was performed. After 6 weekly oral doses 

of 1 mg DMBA, spleen specimens and mammary glands were fixed in 5% neutral buffered 

formalin. Subsequently, paraffin-embedded tissue blocks were constructed, 3 µm sections 

were obtained by cutting with a rotation-microtome. The sections were mounted on glass 

slides (Superfrost Plus, Menzel GmbH), carefully transported to a 50°C water bath to 

straighten the tissue and dried overnight at 37°C in a heater (Medax). The sections were 

dewaxed with xylene and gradually hydrated before staining. Antigen retrieval was performed 

by pressure cooking the slides in citrate buffer (DAKO Target Retrieval Solution, Citrate pH 

6) for 5 minutes to break up the proteins cross-links due to fixation. The primary anti-

mouse/rat Ki-67 biotin conjugated antibody was incubated at room temperature for  

30 minutes in a humidity chamber. Detection was carried out according to the manufacturer’s 

instructions (DAKO REAL™ Detection System Alkaline Phosphatase / RED). Afterwards the 

slides were briefly counterstained with haematoxylin and aquaeously mounted. 

 
2.2.4.3    TUNEL assay 

The TUNEL reaction was performed on paraffinized sections. Sections were deparaffinized, 

transferred to antigen retrieval buffer (10 mM sodium citrate pH 6.0), heated in a microwave 

until boiling and kept at sub-boiling temperature for 10 minutes and then allowed to cool 

down at room temperature for 30 minutes. The sections were washed three times 5 minutes 

each with PBS and reacted with terminal deoxynucleotidyl transferase mixture (Fermentas, 

St. Leon-Rot, Germany) according to the manufacturer’s instructions for 1 h in a humidified 

chamber. After removal of the reaction mixture, sections were washed for three times  

5 minutes each with PBS and incubated with Streptavidin-Cy3 (Sigma-Aldrich) at a dilution 

of 1:500 in PBS containing 1% BSA for 2 h at room temperature. Thereafter, the sections 
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were washed with PBS three times (5 minutes each) and then mounted with coverslips and a 

DAPI-containing mounting medium (ProLong Gold, Invitrogen). Tissue section images were 

taken using a virtual microscope (BX61VS, Olympus, Japan). 

 
2.2.5    Immunology experiments 

2.2.5.1    Cytokine analysis from lymphocyte cell cultures 

Female wild-type and GABARAP KO mice at 6 - 8 weeks of age were treated with 6 weekly 

oral doses of 200 µl sesame oil (vehicle-treated, control group) or 1 mg DMBA/mouse. For 

analysis of cytokines released from lymphocytes, mice were anesthetized and killed by 

cervical dislocation after one week of the last DMBA dose. Subsequently the spleen was 

removed under sterile conditions, and single cell suspensions were made. Thereafter cells 

were washed with warm cell culture media and erythrocytes were lysed with ammonium 

chloride/TRIS. The lymphocytes were washed again twice and the cell suspension was 

adjusted to 2 x 105 cells/ml. Then, the cells were cultured at 1 ml at 37°C with 5% CO2 in 

Roswell Park Memorial Institute (RPMI) 1640 medium containing 10% FCS, 2 mM sodium 

pyruvate, 10 mM HEPES, 15 µg/ml L-glutamine, 5 µg/ml streptomycin, 5 U/ml penicillin, 

and 5 x 10-5 M 2-mercapto-ethanol in 12-well-cell culture plates with or without 1 µg/ml 

plate-bound anti-CD3 antibodies (from 1452C11 hybridoma cell supernatant) for T cell 

receptor stimulation. Supernatants were harvested after 48 h of incubation and frozen  

at -80°C. To analyse the levels of secreted cytokines a standard sandwich enzyme-linked 

immunosorbent assay (ELISA) was used. Therefore 96-well-plates were coated with the 

primary antibodies (IL-2, IFN-γ or IL-17) in the specific coating buffer over night at 4°C  

(50 µl/well). Then the plates were washed using a wash buffer containing 0.05% Tween 20 in 

PBS and unspecific binding sites were blocked by incubation with a solution of 2% BSA in 

H2O (300 µl/well) for 2 h. In the following, the plates were washed again. The probes  

and standards (recombinant cytokines) were plotted into the wells (100 µl/well) and incubated 

over night at 4°C. The next day the plates were washed again and the biotin-labeled  

secondary antibodies in a solution of 1% BSA were plotted to the wells (100 µl/well). After  

2 h of incubation at room temperature, plates were washed and standard horseradish  

peroxidase-labeled streptavidin (2 µl in 10 ml 1% BSA) was pipetted into the wells  

(100 µl/well). After 30 minutes incubation at room temperature, plates were washed and 100 

µl/well ortho-phenylenediamine (OPD)-solution was plotted into the wells in the dark. The 

enzymatic reaction was stopped by adding 50 µl/well 2N H2SO4 and the extinction was 

measured at 492 nm with a microplate absorbance reader. 
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2.2.5.2    Cytokine analysis from macrophage cell cultures 

The same mice and treatment regimens, which are mentioned above for lymphocytes culture, 

were used for macrophages culture. For analysis of cytokines released from macrophages, 

mice were anesthetized and killed by cervical dislocation after one week of the last DMBA 

dose. Subsequently the peritoneum was exposed under sterile conditions and the abdominal 

cavity was flushed out with a cold solution containing heparin (20 µl/100 ml PBS). The cells 

were collected in centrifuge tubes and washed twice with cold PBS. Then, the cells were 

adjusted to 2 x 105 cells/ml in RPMI cell culture medium. To separate the macrophages from 

other cells, the whole pool of cells was incubated for 2 h at 37°C with 5% CO2 in 24-well-cell 

culture plates (1 ml/well). Then the non-adhering cells were removed by washing the wells 

with warm RPMI medium. The adhering cells are suspected to be > 95% macrophages due to 

former investigations (Yui et al., 1993). In the following the macrophages were stimulated 

with LPS (1 µg/ml RPMI medium) and incubated for 4 h at 37°C with 5% CO2, and then 

either treated or not with ATP (5 mM) for 1 h. At the end of the incubation the supernatants 

were harvested and stored at -80°C. To analyse the levels of secreted cytokines (IL-1β, IL-6 

and TNF-α) a standard sandwich enzyme-linked immunosorbent assay (ELISA) was done as 

previously described in cytokine secretion from lymphocytes (2.2.5.1). 
 

2.2.5.3    Cell surface marker analysis for splenocytes by FACS 

For analyses of splenocytes surface marker, mice were anesthetized and killed by cervical 

dislocation after one week of the last DMBA dose. Subsequently the spleen was removed 

from vehicle-treated (control) and DMBA-treated groups under sterile conditions, and single 

cell suspensions were made. The cells were dispersed by gentle pipetting and filtered through 

a cell strainer to eliminate clumps and debris. Cell suspension was collected in a conical tube, 

centrifuged 5 minutes at 300 x g at 4°C, and the supernatant was discarded. The cell pellet 

was washed once again with PBS. Then the cells were resuspended in PBS and cell count and 

viability analysis was performed. The experiment of cell surface markers was performed in 

the Institute of Immunology, Jena by kindly support of Martin Böttcher. The cells were 

decanted into labeled fluorescence-activated cell sorting (FACS) tubes containing 2 ml PBS, 

centrifuged for 6 minutes at 300 x g (4°C), and the supernatant was discarded. The cell pellet 

was washed once again with PBS. The cells were permeabelized by washing with 1 ml  

PBA-S (0.5% saponin in PBA). PBA is a PBS containing 0.25% bovine serum albumin 

(BSA) and 0.02% sodium azide (NaN3). Thereafter 25 µl of antibody master-mix was added 

and incubated for 20 minutes in the dark on ice. The master-mix was prepared as following: 
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Cell type Antibody Clone Source Dilution factor Fluorochrome  
(diluted in 100 µl PBA) 

B cell B220+ RA3-6B2 
Institute of 

Immunology, 
Jena 

1:200 in PBS Pacific Blue 

CD4 T cell CD4+ GK1.5 
Institute of 

Immunology, 
Jena 

1:200 in PBS Dye647 

CD8 T cell CD8+ 53-6.7 eBioscience 1:300 in PBS PE/Cy7 

Macrophages CD11b+ M1/70 eBioscience 1:800 in PBS Alexa Fluor 700 

Neutrophils 
CD11b+ M1/70 eBioscience 1:800 in PBS Alexa Fluor 700 

Ly6G+ RB6-8C5 eBioscience 1:200 in PBS APC 
 

Thereafter the cells were washed with 1 ml PBA, and resuspended in 200 µl PBA. The 

samples were measured with flow cytometer (BD LSR II). 

An alternative protocol was used for FoxP3 staining according to the manufacturer's 

instruction (eBioscience). The splenocytes were prepared as mentioned above. After the last 

wash with PBS, the supernatant was discarded and the cell pellet was dissociated by pulse 

vortexing. The surface staining for CD4+ and CD25+ was performed as described above. 

 

 
 

 

Then, 1 ml of freshly prepared FoxP3 Fixation/Permeabilization working solution 

(eBioscience) was added to each tube and mixed by pulse vortexing. The samples were 

incubated at 4°C for 60 minutes in the dark. Thereafter 2 ml of PBA was added to each tube, 

centrifuged at 300 x g at room temperature for 5 minutes, and the supernatant was discarded. 

Subsequently, 25 µl of antibody was added and incubated for 30 minutes in the dark on ice. 

Blocking reagent Clone Source Dilution factor 

αCD16/CD32 2.4G2 Institute of Immunology, Jena 1:100 in PBS 

Rat IgG - Jackson Immuno Research 1:200 in PBS 

Blocking reagent Source Dilution factor 

Rat IgG Jackson Immuno Research 1:200 in PBS 

Antibody Clone Source Dilution factor Fluorochrome 
(diluted in 100 µl PBA) 

CD4+ - eBioscience 1:200 in PBS APC/Cy7 

CD25+ PC61.5 Institute of Immunology, Jena 1:200 in PBS Dye647 

Antibody Clone Source Dilution factor Fluorochrome 
(diluted in 100 µl PBA) 

FoxP3 - eBioscience 1:50 in PBS FITC 
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Thereafter, the cells were washed with 1 ml PBA, and resuspended in 200 µl PBA. The 

samples were measured with flow cytometer (BD LSR II). 

 
2.2.6    Whole mount analysis of mammary glands 

Whole mount of mammary gland is a desirable method to visualize the morphology of  

the ductal tree; epithelial cell proliferation and ductal branching. Female wild-type and 

GABARAP KO mice were treated with 6 weekly oral doses of 200 µl sesame oil as  

vehicle (control) or 1 mg DMBA/mouse. Mice were anesthetized and killed by  

cervical dislocation after one week of the last DMBA dose. Whole mount analyses was 

carried out according to the procedure of Banerjee et al. (1976) with small modifications.  

A longitudinal ventral incision along the midline was made in the skin that extended from  

the genital to the thoracic region. Then, an inverted V-shaped cut was made on either side of 

the genitalia and the skin peeled back. The 4th abdominal mammary gland was dissected from 

the pelt by using surgical scissors and forceps. The 4th abdominal mammary gland was 

selected for whole mounting because of the presence of the lymph node for orientation. The 

mammary gland was spread on a glass slide and kept short time (2 - 3 minutes) at room 

temperature then submerged into a mixture of 1 part glacial acetic acid and three parts 100% 

ethanol for 3 h. In the following the glands were washed with 70% ethanol for 15 minutes and 

subsequently rinsed with distilled water for 5 minutes. Subsequently, the glands were stained 

with alum carmine overnight or until the fat pad was a uniform pink colour (at room  

temperature with minimum illumination). Then they were rinsed with 70, 90 and 100% 

ethanol each for 30 minutes. After dehydration, the glands were transferred to xylene for 

clearing and mounted with aqueous mounting medium (permount). The mammary glands 

were analysed and evaluated under stereo microscope. 
 

Alum carmine stain:  

1 g carmine + 2.5 g alum potassium sulfate in 500 ml distilled water.  

Then the mixture were boiled for 20 minutes, the volume adjusted to 500 ml with water, 

filtered with Whatman filter paper and kept at 4°C with minimum illumination. The alum 

carmine stain has stored for not more than one week at refrigerator. 

 
2.2.7    Microarray gene expression profiling analysis of mammary glands 

Female wild-type and GABARAP KO mice were treated with 6 weekly oral doses of 200 µl 

sesame oil as vehicle (control) or 1 mg DMBA/mouse. Mice were anesthetized and killed by 

cervical dislocation after one week of the last DMBA dose. Abdominal mammary glands 
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were isolated and directly fixed in 5% neutral buffered formalin, and subsequently paraffin 

blocks were constructed.  Almost all the procedures of tissue preparation, fixation and storage 

were performed as recommended for successful gene expression profiling analysis of 

formalin-fixed paraffin-embedded (FFPE) samples, as mentioned by von Ahlfen et al. (2007). 

Microarray analysis was carried out by the Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany, using the Agilent Whole Mouse Genome oligo microarrays 8x60K chips according 

to standard protocols of FFPE samples. The workflow for gene expression analysis of FFPE 

samples is illustrated in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10. Workflow for Agilent gene expression profile of FFPE samples. Flowchart indicates the various 
kits and steps involved in the analysis of FFPE samples with the Agilent gene expression microarray 
workflow (Source: Agilent Technologies). 
 

2.2.7.1    Quality control of total RNA 

Eighteen FFPE tissue samples (3 wild-type control (CWt), 3 GABARAP KO control (CKO), 

6 wild-type DMBA-treated (DWt), 6 GABARAP KO DMBA-treated (DKO)), each 

consisting of approximately twenty 10 μm slices, were sent to Miltenyi Biotec. The RNA 

isolation was performed using the Absolutely RNA FFPE Kit (Stratagene). The quality of 

total RNA was checked via the Agilent 2100 Bioanalyzer platform (Agilent Technologies). 

The results of the Bioanalyzer run are visualized in a gel image and an electropherogram 
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using the Agilent 2100 Bioanalyzer expert software. In addition, RNA Integrity Number 

(RIN) was generated by the same software to check the integrity and overall quality of total 

RNA samples. The RIN value is calculated by a proprietary algorithm that takes several 

quality control parameters into account, for example, 28S RNA/18S RNA peak area ratios 

and unexpected peaks in the 5S RNA region. A RIN number of 10 indicates high RNA 

quality, and a RIN number of 1 indicates low RNA quality (Fleige and Pfaffl, 2006). Our 

RNA samples revealed RIN values ranging from 1.4 to 5.9.  

 
2.2.7.2    Library preparation and WTA amplification of RNA 

For the library preparation and Whole Transcriptome Amplification (WTA) step, 200 ng 

RNA were used. To produce cDNA, the RNA samples were amplified using the Complete 

TransPlex® Whole Transcriptome Amplification Kit (WTA2, Sigma) following the 

manufacturer’s protocol. Yields of cDNA were measured with the ND-1000 

Spectrophotometer (NanoDrop). 

 
2.2.7.3    ULS-Labeling 

For the ULS-Labeling step, 500 ng of each cDNA sample was used. To produce Cy3-labeled 

DNA, the DNA samples were labeled using the Genomic DNA ULS Labeling Kit (Agilent 

Technologies) following the manufacturer’s instruction (Gene Expression FFPE Workflow 

protocol, Agilent). Yields of Cy3-labeled cDNA and the dye-incorporation rate were 

measured with the ND-1000 Spectrophotometer (NanoDrop). According to the 

manufacturer’s instruction the optimal degree of labeling is between 1.5% and 3%. All our 

Cy3-labeled cDNA samples revealed an adequate degree of labelling (2.4 - 2.9%). 

 
2.2.7.4    Hybridization of Agilent Whole Genome Oligo Microarrays 

The hybridization procedure was performed according to the Agilent Gene Expression FFPE 

Workflow protocol using the Agilent Gene Expression Hybridization Kit and Agilent 

CGHblock. Cy3-labeled DNA in hybridization buffer and CGHblock were hybridized 

overnight (17 h, 65°C) to Agilent Whole Mouse Genome Oligo Microarrays 8x60K using 

Agilent’s recommended hybridization chamber and oven. Finally, the microarrays were 

washed once with Gene Expression Wash Buffer 1 (Agilent Technologies) for 1 minute  

at room temperature followed by a second wash with Gene Expression Wash Buffer 2 

(Agilent Technologies) 37°C for 1 minute. The last washing step was performed with 

acetonitrile for 5 seconds. 
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2.2.7.5    Scanning results 

Fluorescence signals of the hybridized Agilent Microarrays were detected using Agilent’s 

Microarray Scanner System (Agilent Technologies).  

 
2.2.7.6    Image and data analysis 

The analysis of whole genome expression for 18 samples (belonging to four conditions) was 

kindly performed by the Network Modelling group of Prof. Dr. Rainer König at the Hans-

Knöll-Institute (HKI), Jena, Germany. Limma, R package was used to read out and process 

the microarray image files derived using Agilent's platform (Smyth, 2005). Background 

correction was performed and arrays were normalized using loess method. 23544 probes were 

selected having expression intensities above background at least in 3 samples. Expression was 

averaged for genes having more than one probe set. A total of 15815 genes were finally 

analyzed further. Differential expression was assessed using Limma for four pairs namely 

CWT-CKO, CWT-DWT, CKO-DKO and DWT-DKO. Limma calculates a fold change and 

standard error for each gene by fitting a linear model. Then it calculates empirical Bayes 

moderated t-test statistics for each gene. P-values derived from moderate t-tests were 

corrected using the Benjamin and Hochberg approach (Benjamini and Hochberg, 1995). The 

genes with p-values ≤ 0.05 considered as differentially expressed. 

 

2.2.8    Reverse transcription polymerase chain reaction (RT-PCR) 

2.2.8.1    RNA isolation 

Total RNA was isolated from several organs of wild-type and GABARAP KO mice by using 

Trizol reagent (peqGOLD TriFast, peQlab) according to the manufacturer's instruction. For 

homogenization, the tissue samples (about 100 mg) were lysed directly by addition of  

1 ml TriFast. Subsequently the samples were kept on ice during the process of crushing by 

pestle and power homogeniser (Ultra-Turrax T8). The cell lysate was passed through  

a pipette several times, transferred to a 1.5 ml tube and kept for 5 minutes at room 

temperature for dissociation of the nucleoprotein complexes. After addition of 200 µl 

chloroform, samples were shaken for 15 seconds and kept at room temperature for another  

10 minutes. During centrifugation at 12,000 x g the mixture separated into the lower red 

phenol-chloroform phase, the interphase and the colourless upper aqueous phase. The upper 

aqueous RNA containing phase was transferred to a fresh tube and 0.5 ml isopropanol was 

added to precipitate RNA. Samples were kept on ice for 15 minutes and centrifuged for  
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10 minutes at 12,000 x g (4°C). Supernatant was removed carefully and the RNA pellet was 

washed twice with 75% ethanol (prepared with DEPC-treated water) by vortexing and 

subsequent centrifugation for 10 minutes at 12,000 x g (4°C). RNA pellet was air-dried to 

remove the excess isopropanol and resuspended in RNase-free water. Concentration was 

measured with NanoDrop spectrophotometer. RNA was stored at -80°C or immediately used 

for cDNA synthesis. 

 
2.2.8.2    Complementary DNA (cDNA) synthesis 

For reverse transcription of the whole RNA we used the QuantiTect® Reverse Transcription 

Kit (Qiagen) according to the manufacturer's instruction. Genomic DNA elimination reaction 

was prepared on ice, mixed, incubated for 2 minutes at 42°C and then placed immediately on 

ice. Reverse transcription master mix was prepared, mixed and kept on ice. The appropriate 

volume of master mix was distributed into individual tubes. The template RNA (from gDNA 

elimination reaction) was added, mixed and incubated for 15 minutes at 42°C. To inactivate 

Reverse Transcriptase, the samples were incubated at 95°C for 3 minutes, immediately placed 

on ice and stored at -20°C. 

 
2.2.8.3    Quantitative reverse transcriptase PCR (qRT-PCR) 

To analyse mRNA related gene expression, a master mix was prepared as following: 
 

 

 

 

 

 

 
 

The mixture-containing tubes were closed and put in the 72-well-carousel of a Rotor-Gene Q 

real-time PCR machine. The following program was used: 

 
 

 

 

 

Glycerinaldehyd-3-phosphate-dehydrogenase (GAPDH) served as housekeeping gene and 

was used to normalize gene expression data. 

Reagent Volume/reaction 
FastStart Universal SYBR Green Master (Rox) 6.250 µl 

Forward Primer 0.375 µl 
Reverse Primer 0.375 µl 

H2O 5.000 µl 
cDNA 0.500 µl 

Total reaction volume 12.50 µl 

Cycle(s) Temperature Hold Time 

1 95°C 10 min 

40 95°C 
60°C 

15 seconds 
60 seconds 
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2.2.9    Fibroblasts isolation and treatment 

2.2.9.1    Primary culture of mouse embryonic fibroblasts (MEFs) 

Mouse embryonic fibroblasts isolation was carried out according to the protocols of culture of 

animal cells (Freshney, 2005). Mouse embryos were isolated at day 13th of gestation period 

under sterile conditions. The embryos were transferred into PBS in 10 cm petri dish, rinsed, 

dissected from unwanted tissue, such as fat and placenta, and transferred to a third dish. In the 

following they were chopped with scalpels and scissor, washed with PBS and centrifuged.  

All the pieces were transferred to 500 ml flask filled with 180 ml of PBS plus  

20 ml of 2.5% trypsin. The flask was capped, and stirred in a hybridization oven at 100 rpm 

for 30 minutes at 37°C. In the following the disaggregated cells were collected into a 

centrifuge tube and placed on ice. Then fresh trypsin was added to the pieces that remained in 

the flask, and the same steps were repeated for 3 times. Thereafter the collected cell 

suspensions were centrifuged, resuspended in growth medium (DMEM supplemented with 

10% FCS, 2 mM L-glutamine, 1 mM sodium pyruvate, 100 units/ml penicillin, 100 μg/ml 

streptomycin and 0.1 mM β-mercaptoethanol) and filtered with sterile polypropylene cell 

strainer. Thereafter the cell suspensions were centrifuged, resuspended with growth medium 

and cultured in tissue culture flasks at 37°C with 5% CO2.  

 
2.2.9.2    Mouse embryonic fibroblasts (MEFs) treatment 

Wild-type and GABARAP-deficient MEFs at third passage were seeded in 10 cm petri  

dishes and incubated overnight or until they reached 60 - 70% confluence. To obtain 

starvation conditions, cells were washed three times with PBS and incubated in EBSS 

medium in the presence or absence of 10 µM CQ (to inhibit lysosomal degradation) at 37°C 

for 2 h. For DMBA and camptothecin (CPT) treatment, MEFs were treated with 100 nM 

DMBA for 24 and 48 h, 5 mM CPT for 4 and 20 h, and medium containing vehicle (0.1% 

DMSO) as control and subsequently incubated at 37°C and harvested at indicated time point. 

 
2.2.10    Analysis of proteins 

2.2.10.1    Protein extraction and measurement 

MEFs were harvested after they were washed one time with PBS, trypsinized for 2-5 minutes 

at 37°C and resuspended in medium. The cell suspension was transferred to a 15 ml Falcon 

tube and centrifuged for 10 minutes at 300 x g at 4°C. Supernatant was discarded; the pellet 

washed with 1 ml PBS and centrifuged again at 300 x g at 4°C for 10 minutes. Directly after 
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aspiration of the supernatant the cell pellets were placed on ice. For cell lysis, a reasonable 

volume of radioimmunoprecipitation assay (RIPA) buffer (supplemented with protease 

inhibitors) was added to resuspend the cells, and then incubated for 15 - 20 minutes on ice. 

The amount of RIPA buffer was determined according to the size of cell pellet. Thereafter the 

cell debris was removed by centrifugation for 10 minutes at 13,000 x g at 4°C and supernatant 

was transferred to a fresh 1.5 ml tube. The protein concentration was determined by using the 

bicinchoninic acid (BCA) protein assay kit according to the manufacturer’s instructions. The 

two solutions of the kit were mixed and distributed to 0.5 ml tubes (20 µl/ tube), and then 2.5 

µl of the samples were added and incubated at 37°C for 30 minutes. NanoDrop was used to 

determine the protein concentration by photometric measurement. A standard curve was set 

with bovine serum albumin (BSA) and created by preparing 0.5, 0.75, 1, 2, 4, 8, and 10-µg 

duplicate dilutions of 200 mg/ml stock solution of BSA. Cell lysates were stored in the freezer 

at -20°C. 

 
2.2.10.2    Western blot analysis 

Protein samples were separated by sodium dodecyl sulfate-polyacrylamid gel electrophoresis 

(SDS-PAGE) using the standard Laemmli method. Prior to loading, the samples were 

prepared for electrophoresis by addition of 4 fold loading buffer and denatured at 95°C for  

5 minutes. Equal amounts of proteins were loaded onto 12% gel. Electrophoresis was run in 1 

x electrophoresis buffer for 1-2 hours at 100 V (constant voltage) using Mini PROTEAN 

Tetra System (BIO-RAD). Protein separation was controlled by running a prestained protein 

ladder (PageRulerTM Plus, Thermo Scientific). 

 

Following electrophoresis, the stacking gel was discarded, and the separating gel was 

submerged in transfer buffer for several minutes (10-20 minutes). Then the protein samples in 

separating gel were transferred to a nitrocellulose membrane (0.45 µm pore size) using a 

semidry-transfer method. On a semidry transfer unit (PerfectBlue™ 'Semi-Dry'-Electro 

Blotter, peQlab) 3 sheets of Whatman paper pre-wetted in transfer buffer, the PVDF 

Separating gel: 10 ml of 12% gel Stacking gel: 5 ml of 5% gel 
4.3  ml H2O 3.7   ml H2O 
3     ml 40% Acrylamide 0.63 ml 40% Acrylamide 
2.5  ml 1.5 M Tris-HCL, pH 8.8 0.63 ml 1 M Tris-HCL, pH 6.8 
100 µl 10% SDS 50    µl 10% SDS 
100 µl 10% APS 50    µl 10% APS 
10   µl TEMED 5      µl TEMED 
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membrane, the gel, and 3 sheets of pre-wetted Whatman paper were assembled. The transfer 

was performed at 12 V (constant voltage) for 2.5 h. When the blotting was finished, the 

membrane was submerged in blocking buffer (5% non-fat dry milk powder in TBST or 5% 

bovine serum albumin in TBST) for 1 - 1.5 h to block the non-specific binding sites. Then the 

membrane was transferred into 50 ml tubes containing 5 ml primary antibody solution and 

incubated on a shaker overnight at 4°C. The next day, the membrane was washed with TBST 

(3 x 5 minutes), and incubated with the corresponding horseradish peroxidase (HRP) 

conjugated secondary antibody (diluted in blocking buffer) for 1 hour at room temperature. 

Then the membrane was washed again 3 times in TBST (5 minutes each). For visualization  

of immuno-reactive bands, the chemiluminescent detecting luminol reagent was used 

according to manufacturer’s instructions (Santa Cruz Biotechnology). Detection solution  

was applied to the membrane covering it evenly and after a short incubation time excess 

solution was drained from the membrane. Pictures of the chemiluminescent bands were  

taken by putting a light sensitive x-ray film on the top of the membrane in a darkroom.  

The film was developed after different exposure times and fixed according to the  

standard procedure. 

 

2.2.11    B16 melanoma cell inoculation 

B16 melanoma cell line was kindly provided from the Institute of Pathology, Charité in 

Berlin. Thawing of cells was performed quickly in a 37°C water bath for ~2 minutes.  

Then, the cells were transferred immediately into a culture flask containing pre-warmed 

RPMI culture medium supplemented with 10% FCS and incubated at 37°C with 5% CO2. The 

next day, the medium was replaced with fresh medium to remove traces of DMSO. The cells 

were grown to 60 - 70% confluence and harvested by trypsinization (as explain above for 

MEFs harvesting). The cells were collected in 15 ml centrifuge tubes, pipetted vigorously to 

obtain single cell suspension and washed with cold PBS. Then, the cells were adjusted to  

2.5 x 106 cells/ml in ice-cold PBS and transferred to animal facility while maintaining the 

cells on ice. The inoculation region was wetted with 70% ethanol before inoculation. The 

cells were resuspended by inverting the tube several times and a 1 ml syringe attached with 

27½-G needle was filled with cell suspension. Female wild-type and GABARAP KO mice 

were inoculated subcutaneously with 100 µl of cell suspension (2.5 x 105 cells) in the left 

flank region. After one week of B16 cells injection, we monitored the tumor growth daily and 

started tumor measurement when it became palpable. Tumor volume was measured using a 

caliper every other day. 
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2.2.12    Mutation analysis 

Mutation analysis was performed to screen for H-ras mutation in DMBA-induced tumors of 

wild-type and GABARAP KO mice. 

 
2.2.12.1    DNA extraction 

DNA was extracted by using Maxwell® 16 FFPE Plus LEV DNA Purification Kit (Promega) 

according to the manufacturer's instruction. FFPE blocks were sectioned to 10 µm thickness 

with a rotation microtome. The tumor region within the section was identified by Prof. Dr. 

Iver Petersen and Dr. Masoud Mireskandari (Institute of Pathology, Jena). Thereafter, the 

identified tumor region, corresponding to H & E stained section, was scraped from FFPE 

tissue sections by scalpel. The number of sections for each tumor was determined depending 

on tumor size (~10 - 20 sections). Then the scraped sections were collected in microtube and 

briefly centrifuged at full speed to collect the sample at the bottom of the tube. The pellet was 

resuspended in 180 µl of incubation buffer and 20 µl proteinase K solution. The tumor sample 

was incubated at 70°C overnight. In the next day, 400 µl of lysis buffer was added to the 

sample and mixed by vortexing. Then the sample was prepared for Maxwell® 16 automated 

DNA purification instrument (Promega) as illustrated in Figure 11. The cartridge was placed 

in the rack; the LEV plunger was placed in the last well of cartridge, and elution tube was 

placed in the front of the Maxwell® 16 LEV Cartridge Rack (Fig. 11). Nuclease-free water 

(35 µl) was added the elution tube. Subsequently, the sample was transferred to well #1 of the 

cartridge (Fig. 11). Then the rack was transferred to the instrument and we selected the 

program of DNA extraction of FFPE sample. When the automated purification run was 

completed, NanoDrop was used to measure the DNA concentration and the purity (260 / 280 

nm ratio) of the samples. If not used immediately for PCR the samples were stored at -20°C. 

 

 

 

 

 

 

 
 
Figure 11. Sample preparation for Maxwell® 16 LEV Cartridges of FFPE-DNA purification kit (Promega). 
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2.2.12.2    Polymerase chain reaction (PCR) 

For polymerase chain reaction (PCR) we used the primers shown above in paragraph 2.1.11. 

180 ng DNA were used per run and the master mix was prepared as follows: 

 

 

 

 

 

 

 

 

DNA was added to each tube containing master mix as the final step. Tubes were placed in 

the peQSTAR 96 Universal Gradient cycler (peQlab) and the program was started. The 

annealing temperature of H-ras primers was 68°C for the first eight cycles, then 60°C for the 

next 32 cycles of exon 1 primers and 62°C for the next 32 cycles of exon 2 primers. 

 

 

 

 

 

 

 

After the program was completed the PCR products were stored at 4°C. 

 
2.2.12.3    Agarose gel electrophoresis 

Electrophoresis was performed as described above in paragraph 2.2.2.3. 

 
2.2.12.4    Purification of PCR products for sequencing 

The DNA Clean & Concentrator™-5 Kit (Zymo Research) was used for the purification of 

PCR products for sequencing according to manufacturer’s instructions. Two volumes of  

DNA binding buffer were added to the PCR product and the mixture was transferred to  

Reagent Volume/reaction 
10 x buffer S 5 µl 

2.0 mM dNTP mix 5 µl 
Forward Primer (10 pmol/µl) 2 µl 
Reverse Primer (10 pmol/µl) 2 µl 

Taq-polymerase (HotStarTaq) 0.25 µl 
DNA, 180 ng Variable 

H2O Variable 
Total reaction volume 50 µl 

Step Temperature Duration Cycle 
Initial denaturation 95°C 15 minutes 1 
Denaturation 94°C 1 minute  

 

8 Annealing 68°C 45 seconds 
Extension 72°C 45 seconds 
Denaturation 94°C 1 minute  

 

 32 Annealing 60°C exon1, 62°C exon 2 45 seconds 
Extension 72°C 45 seconds 
Final elongation 72°C 7 minutes 1 
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a Zymo-Spin™ column in a collection tube. Then, centrifugation was carried out for 1 minute 

at 12,000 x g and the flow-through was discarded. Thereafter, 200 µl of DNA wash buffer per 

column were added and centrifugation carried out at 12,000 x g for 1 minute. The washing 

step was repeated once. Ten µl of water were added directly to column matrix and incubated 

for 1 minute at room temperature. Column was transferred to a fresh 1.5 ml tube and 

centrifuged for 1 minute at 12,000 x g to elute the DNA. The concentration of purified DNA 

was measured with NanoDrop. 

 
2.2.12.5    Sequencing and result analysis 

Purified PCR products (100 ng) were applied for direct sequencing by capillary 

electrophoresis (LGC Genomics GmbH, Berlin, Germany), and the sequencing-profiling was 

analyzed by the Finch TV 1.4.0 software program (Geospiza, PerkinElmer, MA, USA). 

 

2.2.13    Statistical analysis 

Data are expressed as mean ± SEM (standard error of the mean). Differences between  

groups were calculated using the two-tailed Student’s t-test for unpaired values. Normal 

distribution of the values was checked using the Kolmogorov-Smirnov test (K–S test). 

Survival analysis was calculated by the Kaplan-Meier method. Statistical significance was 

calculated by the SPSS software package (v.16.0, Chicago, USA), p-values below 0.05 were 

considered as being significant (* p < 0.05, ** p < 0.01, *** p = 0). Statistical analysis for 

gene expression profiling was explained above in paragraph 2.2.7.6. 

 

 

 

 

 

 

 

 

 

 

 

  
 54 

 
  



3. Results 
 

3.       Results 

3.1     GABARAP knockout mice exhibited low tumor formation 

In order to investigate the potential roles of GABARAP in the incidence of tumors, we 

attempted to induce tumors in our transgenic animals by treatment with a reliable potent 

carcinogen 7,12-dimethylbenz(a)anthracene (DMBA). Female GABARAP knockout (KO) 

and C57BL/6 wild-type (Wt) mice were given 1 mg doses of DMBA for 6 consecutive weeks 

by oral gavage beginning at 6 - 8 weeks of age. Mice were checked weekly for the presence of 

palpable tumor masses. Tumors arose in 14 of 29 (48.3%) of wild-type mice within  

35 weeks after the last DMBA dose (Table 2). Surprisingly, the numbers of GABARAP KO 

mice exhibiting tumors were significantly less than their wild-type counterparts  

(4 of 33; 12.1%; p < 0.002) (Table 2). A variety of tumors developed in each group of mice, 

for instance mammary, skin, lymphoma and liver tumors. Figure 12 showed gross 

morphologic and histologic features of tumors induced by DMBA. If only mammary tumors 

are considered, this represents a reduction from 3 of 14 (21.4%) in wild-type mice to 0 of 4  

(0%) in GABARAP KO mice (Table 2). 

 
Table 2. Tumor types and incidence in C57BL/6 wild-type (Wt) and GABARAP KO (KO) mice 

 
Tumor type C57BL/6 (Wt) GABARAP -/- (KO)  

DMBA treatment n = 29 n = 33 
Mammary 3 - 
Skin 7 2 
Lymphoma 2 - 
Liver - 1 
Undifferentiated tumors 2 1 

Total 14 (48.3%) 4 (12.1%)** 
   

Spontaneous tumor n = 30 n = 35 
Mammary 2 - 
Lymphoma - 2 
Liver 1 - 
Undifferentiated tumors 1 - 

Total 4 2 
 
** Significant difference between two groups (p-value < 0.01) calculated by Fisher’s exact test. 
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Figure 12. Gross morphologic and histologic features of mice tumors induced by DMBA. A) Upper panel: 
skin tumor in wild-type mouse, bottom panel: H&E staining of skin squamous cell carcinoma. B) Upper 
panel: skin tumor in GABARAP KO mouse, lower panel: H&E staining of skin sebaceous epithelioma. C) 
Upper panel: undifferentiated tumor mass in abdomen of wild-type mouse, bottom panel: H&E staining of 
histologic section of undifferentiated tumor. D) Upper panel: mammary tumor in wild-type mouse, bottom 
panel: H&E staining of mammary squamous cell carcinoma. E) Upper panel: lymphoma in the neck of wild-
type mouse, bottom panel: H&E staining of histologic section of lymphoma. F) Upper panel: two masses of 
liver tumor in GABARAP KO mouse, bottom panel: H&E staining of liver cell carcinoma. The 
magnifications of all histologic sections were 20X.  
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Regarding the spontaneous tumor incidence in female GABARAP KO and wild-type control 

mice over the period of 2 years, 4 spontaneous tumors out of 30 (13.3%) developed in  

wild-type mice compared with 2 out of 35 (5.7%) in GABARAP KO mice (Table 2). 

Furthermore, no spontaneous mammary tumors developed in GABARAP KO mice in 

comparison with wild-type control mice group which developed 2 mammary tumors  

out of 4 spontaneous tumors (Table 2). 

The low percentage of tumor incidence in C57BL/6 (Wt) mice is approximately consistent 

with the data reported by other authors following DMBA treatment and/or spontaneous 

tumors development, and this is due to the fact that the C57BL/6 mouse strain is less sensitive 

to DMBA-induced tumorigenesis than other rodent strains (DiGiovanni et al., 1993; Hennings 

et al., 1993; Woodworth et al., 2004; Medina, 2007). 

The median onset time and latency period of tumors induced by DMBA were not available 

for all tumor types due to a number of mice that had interior tumors; for example liver tumors 

were difficult to detect by palpation. Figure 13 (A and B) showed the latency periods and 

sizes of tumors induced by DMBA in mice groups. The tumor occurrence started earlier in 

wild-type mice compared to GABARAP knockout animals, at the 9th week after the last 

DMBA dose (Fig. 13 A). The tumor sizes in wild-type mice were obviously larger in most of 

induced tumors compared to the tumors formed in GABARAP KO mice which were smallest 

in general (Fig. 13 B). The age in Figure 13 (B) represented the age of mice when they are 

sacrificed. 

 

 
Figure 13. A) Latency period of palpable tumors (skin, lymphoma and mammary tumors) in  
wild-type (Wt) and GABARAP KO (KO) mice after 6 weekly oral doses of 1 mg DMBA. The latency period 
represented the date after the last dose of DMBA, which was indicated as (0) in figure. B) Size of all the 
tumors induced by DMBA in wild-type (Wt) and GABARAP KO (KO) mice. In figure B, the age of mice 
represented the date when the mice are sacrificed. 
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3.2     GABARAP knockout mice reduced the survival after different carcinogen 
treatments 

Female GABARAP KO and wild-type mice treated with different carcinogen regimens at  

6 – 8 weeks of age in order to increase and improve the tumor incidence. In addition, we 

wanted to investigate the lethal susceptibility of GABARAP KO mice, since the GABARAP-

deficient mice showed a significant survival reduction (p = 0.006) after DMBA treatment 

(Fig. 14 A). In addition to polycyclic aromatic hydrocarbon DMBA, N-ethyl-N-nitrosourea 

(ENU) and N-methyl-N-nitrosourea (MNU), alkylating agents and potent mutagens, were 

used in our investigation. Treatment of mice with a single intraperitoneal (i.p.) injection of 

150 mg ENU/kg of body weight showed substantial reduction (p = 0.022) in survival of 

GABARAP KO mice compared with wild-type mice through the period of 53 weeks  

(Fig. 14 B). There was no tumor formation within the period of ENU treatment in  

GABARAP KO mice, while wild-type mice developed tumors in about 21% of ENU-treated 

mice (n = 14 mice per group). 

Furthermore, it was reported that using of medroxyprogesterone acetate (MPA), a steroidal 

progestin, enhanced the mammary tumorigenesis in BALB/c mice following MNU treatment 

(Pazos et al., 1998). We attempted to increase the mammary tumors incidence in our mice 

groups by using the similar treatment regimen; however, we observed that the survival  

of GABARAP KO mice was significantly decreased (p = 0.002) compared with wild-type 

mice (Fig. 14 C). No tumor formation was observed in both treated groups during the period 

of 27 weeks of MPA plus MNU treatment. Indeed, non-occurrence of tumor within a short 

time period after carcinogen treatment consider normal, since those carcinogens  

(DMBA, ENU and MNU) require more time to initiate and promote tumor development in 

mouse models. 

Moreover, the synergistic effect of MNU and DMBA in mammary carcinogenesis of female 

rats has been reported in the literature (Shirai et al., 1997). The combined treatment of MNU 

and DMBA increased the carcinogenic effect and significantly increased the mean number of 

mammary tumors per rat (Shirai et al., 1997). To further examine tumor susceptibility and 

lethality of GABARAP KO mice by carcinogen treatment, female mice were treated with 

MNU and DMBA, which are already promoted with MPA. This combination treatment 

increased lethality in both mice groups with a faster survival reduction in GABARAP KO 

mice (p = 0.002) than wild-type mice (Fig. 14 D). No tumor formation was observed in both 

animal groups after this combination of treatment. 
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In all carcinogen treatment models, deaths were scored when mice were euthanized because 

of tumors or illness, or were found dead. In our models of carcinogen treatments, almost all 

GABARAP KO mice were dead without any tumor formation. Finally, GABARAP KO mice 

have demonstrated higher sensitivity to reduce the survival and tumors incidence than  

wild-type mice groups after exposure to different carcinogens and treatment regimens.  

 
Figure 14. Kaplan-Meier survival plots of GABARAP knockout (KO) and wild-type (Wt) mice after treatment 
with different carcinogen regimens. (A) DMBA – 6 consecutive weeks of 1 mg/mouse by oral gavage, n = 20 
mice per group. (B) ENU – single i.p. injection of 150 mg/kg of body weight, n = 14 mice per group. 
 (C) MPA 40 mg i.m. + MNU 1 mg i.p. + MPA 20 mg i.m., n = 10 mice per group. (D) MPA 20 mg i.m. + 
MNU 1 mg i.p. + MPA 20 mg i.m. + DMBA 1 mg orally, n = 20 mice per group. Deaths were scored when 
mice were euthanized because of tumors or illness, or were found dead. Almost all GABARAP KO mice were 
dead without any tumor incidence in all models of carcinogen treatments. P values indicated in each figure. 
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3.3     High sensitivity of GABARAP KO mice to immunotoxicity of DMBA 

During the time of experiments, we noticed that the control GABARAP KO mice groups 

were phenotypically indistinguishable from wild-type mice and showed no detectable changes 

in gross anatomy, as reported by O’Sullivan (O’Sullivan et al., 2005). DMBA induced tumors 

in our mice models with significant tumor and survival reduction in GABARAP KO mice. 

For this reasons, we wanted to investigate the impact of GABARAP deficiency on the organs 

cellularity and functions after DMBA treatment. Body weights were monitored at different 

intervals time starting from the day before DMBA treatment. We noticed that the mean  

body weights of GABARAP KO mice after 6 weekly oral doses of 1 mg DMBA/mouse  

were noticeably less than wild-type counterpart group (Fig. 15 A). The body weights 

progressively increased in wild-type mice after DMBA treatment, in contrast there were only 

small and tardy increments of body weights in the GABARAP KO mice treated with DMBA 

(Fig. 15 A). 

An immunotoxic effect of DMBA treatment, mainly on the spleen, has been reported (Dean  

et al., 1985; Miyata et al., 2001; Gao et al., 2005, 2007). In order to explore the immunotoxic 

effect of DMBA in our mice groups, spleen parameters were observed by different means. 

Interestingly, the GABARAP KO mice showed a highly decrease of spleen volume compared 

with wild-type mice after treatment with 6 weekly doses of DMBA (Fig. 15 B). Spleen 

weights of DMBA-treated wild-type mice were decreased to about 40.5% (± 0.7%) of control 

(vehicle-treated) wild-type mice (Fig. 15 B and C). However, substantial decrease was 

observed in spleen weights of GABARAP KO mice group treated with DMBA, 13.6%  

(± 1.8%) of control (vehicle-treated) GABARAP KO mice (Fig. 15 B and C). 

To inspect the changes in the cellularity of spleen components of GABARAP KO and  

wild-type mice after DMBA treatment, splenocytes were harvested, counted and 

differentiated. The alterations in total number of spleen cells were concordant with the spleen 

weights, and this gives indication that the cell death of splenocytes occurs in both groups of 

GABARAP KO and wild-type mice treated with DMBA. However, a significant decrease was 

seen in the total number of GABARAP KO splenocytes after treatment with DMBA; 11.6% 

(± 2.4%) of control splenocytes in GABARAP KO mice compared with 44.7%  

(± 2.8%) of control splenocytes in wild-type mice (Fig. 16). These alterations in total number 

of splenocytes were in agreement with morphological changes in spleen volumes and weights 

(Fig. 15 B and C), with a more profound decrease of GABARAP KO cells compared to  

wild-type cells. 
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Figure 15. A) Body weights of mice at different intervals time before and after treatment with 6 weekly oral 
doses of 1 mg DMBA/mouse. Age at 6 weeks represents the day before starting the DMBA treatment. The 
groups consist of 6 mice per each control (vehicle-treated) group and 16-20 mice for DMBA-treated groups. 
B) Changes in spleen volume of GABARAP KO (KO) and wild-type (Wt) mice at the same age and treatment 
condition. C) Spleen weights for mice untreated (control) or treated with DMBA. Data are representative of 7 
mice per group. Spleen volumes and weights were measured at 13 weeks of age, i.e. after one week of 6 
DMBA doses. All data were shown with means ± SD. 

 

 

 

 

 

 

 

 
Figure 16. Total number of splenocytes in control (vehicle-treated) and DMBA-treated mice groups. Data are 
representative of three mice of each group and shown with means ± SEM. P values shown above each two 
groups, (*) p ˂ 0.05, (**) p ˂ 0.01. 
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Furthermore, the cell surface marker analyses was carried out by using BD™ LSR II flow 

cytometer to detect the alterations in cellular population of splenocytes after DMBA treatment 

of GABARAP KO and wild-type mice in comparison with their vehicle control groups. We 

have detected regulatory T cells (Tregs), B cells, T helper cells (CD4), cytotoxic T cells 

(CD8), macrophages and neutrophils. The results were compatible with the decrease of total 

number of splenocytes in both GABARAP KO and wild-type mice (Fig. 17); i.e. GABARAP 

KO mice showed substantial reduction in populations of splenocytes compared to wild-type 

mice after DMBA treatment. That means there was no discrimination for the effect of DMBA 

on particular cell types in both GABARAP KO and wild-type mice. 
 

 
Figure 17. Cell surface markers expression of splenocytes in control (vehicle-treated) and DMBA-treated 
mice. DMBA treatment was 6 weekly oral doses of 1 mg/mouse. Data are representative of three mice of each 
group and were shown with means ± SEM. 
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These results indicate that the reduced growth of GABARAP KO mice after DMBA treatment 

was not only due to the effect of DMBA immunotoxicity in the spleen, since wild-type mice 

showed also reduced spleen weights but the their body weights slightly altered after DMBA 

treatment. This suggests that DMBA treatment in GABARAP-deficient mice may has impact 

on other organs in addition to spleen. 

 

3.4     DMBA treatment enhanced cell death in splenocytes of GABARAP KO 
mice 

Our results demonstrated considerable alterations in volumes, weights and total cell numbers 

in spleens of GABARAP KO mice after DMBA treatment compared with a parallel group of  

wild-type spleens. In general, it is long believed that autophagy blockade may increase 

apoptosis in cells when expose to stress. For these reasons, we have investigated the 

proliferation and cell death of splenocytes of DMBA-treated and untreated mice. 

Immunohistochemistry staining was used to detect the expression of Ki-67, a cellular 

proliferation marker. Female mice have been treated with 6 weekly oral doses of 1 mg 

DMBA/mouse, and vehicle control groups were given sesame oil orally at the same  

time points as the DMBA treatment. Splenocytes of both DMBA-treated GABARAP KO  

and wild-type mice exhibited less Ki-67 expression than their vehicle-treated  

(sesame oil) groups (Fig. 18 A). Ki-67 expression was obviously decreased at a high level in 

DMBA-treated GABARAP KO splenocytes compared with DMBA-treated wild-type 

counterpart (Fig. 18 A). 

Moreover, the TUNEL assay was carried out on the spleen sections to detect the apoptotic 

cells within the spleens. Microscopic examination of TUNEL-stained sections showed an 

increased number of TUNEL-positive spleen cells after in vivo DMBA treatment of both 

GABARAP KO and wild-type mice (Fig. 18 B). However, the TUNEL-stained sections 

indicated a substantial increase of TUNEL-positive cells in the spleen tissues of DMBA-

treated GABARAP KO mice compared with the DMBA-treated wild-type counterparts  

(Fig. 18 B). 

Our results give an indication that the knockout of GABARAP gene in mice enhanced  

the incidence of cell death and reduce the proliferation of splenocytes in the DMBA-treated 

group. Such findings may explain the high reduction of volume, weight and total splenocytes 

number in GABARAP KO mice after treatment with DMBA by oral gavage. 
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Figure 18. Immunohistochemistry and Immunofluorescence staining for spleen sections of vehicle-treated 
(control) and DMBA-treated wild-type (Wt) and GABARAP KO (KO) mice. A) Immunohistochemistry 
staining for Ki-67. Magnifications 20X. B) Immunofluorescence staining/TUNEL assay. Scale bars =100 µm. 
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3.5     GABARAP-deficient immune cells showed high cytokine secretion 

Cytokines secretion can trigger cell signaling toward anti-tumor effects and/or cell death 

mediated by tissue injury and lethal shock. This capacity of cell signaling relies on a panel of 

cytokines and the accurate assignment of effector cells. Macrophages and lymphocytes are the 

major components of the immune system, and both are involved in cytokine secretion as well 

as effector cells. Many autophagic genes play a role in immunity, and disruption of such 

genes as LC3B, Atg16l1, Beclin1 and GABARAP increased lethality and IL-1β expression in 

sepsis mouse models. For these reasons, we wanted to determine whether GABARAP 

deficiency upon treatment with DMBA plays role in enhancement of cytokines secretion to a 

level that may lead to suppress the tumor formation and/or mice death. 

Peritoneal macrophages and spleen lymphocytes of GABARAP KO and wild-type mice either 

treated with sesame oil as vehicle vector (control group) or treated with DMBA were isolated, 

cultured and stimulated. Lipopolysaccharide (LPS), a component of the outer membrane of 

Gram-negative bacteria, were used to elicit an immune response by interacting with the 

macrophage membrane receptor CD14 to induce the generation of cytokines such as IL-1β, 

IL-6 and TNFα (Akira et al., 1993; Tracey and Cerami, 1994; Kielian and Blecha, 1995; 

Meng and Lowell, 1997). Moreover, LPS-primed macrophages treated with adenosine 

triphosphate (ATP) are an established model for NLRP3 inflammasome-mediated IL-1β 

production in vitro by stimulation the cleavage of caspase 1 (Saitoh et al., 2008; Nakahira  

et al., 2011; Zhang et al., 2013). Isolated peritoneal macrophages from vehicle control or 

DMBA-treated GABARAP KO and wild-type mice were stimulated by treatment with LPS 

for 4 h or pretreated with LPS for 4 h followed by stimulation with ATP for 1 h. The levels of 

IL-1β, IL-6 and TNFα in the medium of cultured macrophages were measured by ELISA.  

In vehicle control groups, IL-1β was highly produced after LPS and ATP stimulation in both 

GABARAP-deficient and wild-type macrophages compared to the macrophages stimulated 

with LPS alone (Fig. 19 A). GABARAP-deficient macrophages; from mice treated  

in vivo with 6 weekly doses of 1 mg DMBA and stimulated in vitro with LPS, generated a 

significant higher IL-1β levels than wild-type macrophages (Fig. 19 A). In addition, the level 

of IL-1β production was increased in macrophages of both DMBA-treated GABARAP KO 

and wild-type mice after stimulations with LPS and ATP compared to stimulation with LPS 

alone (Fig. 19 A). However, the production of IL-1β was significantly higher in macrophages 

of DMBA-treated GABARAP KO mice after stimulation with LPS and ATP compared to 

wild-type counterpart macrophages (Fig. 19 A). Similar results were obtained with IL-6; 

except that IL-6 secretion was increased in the similar pattern after both stimulations; LPS 
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alone or LPS and ATP, for macrophages of DMBA-treated groups (Fig. 19 B). Likewise, the 

production of TNFα in macrophages of vehicle-treated and DMBA-treated GABARAP KO 

mice was slightly higher in both stimulations compared with wild-type macrophages  

(Fig. 19 C). 
 

 
Figure 19. Cytokine secretion from peritoneal macrophages of GABARAP KO (KO) and wild-type (Wt) mice 
treated with 6 weekly oral doses of sesame oil (vehicle) or 1 mg DMBA/mouse. Macrophages of each group 
were stimulated with LPS for 4 h or priming 4 h with LPS followed by stimulation with ATP for 1 h 
(LPS+ATP). A) IL-1β, B) IL-6 and C) TNFα were measured in the supernatants by ELISA. Data are 
representative of triplicate experiments and were shown with means ± SEM. (**) p ˂ 0.01; (***) p = 0.  
n.d., not detected. 
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These results could give an indication for sensitivity of GABARAP KO mice after DMBA 

treatment and could explain the increased lethality in these mice after carcinogen treatment. In 

addition, IL-1β has contradictory roles in tumor growth; some studies have shown stimulatory 

effect on the growth of tumor cells, whereas others have shown that it exerts inhibitory 

activity. These contradictory effects are controlled by the level of IL-1β. High concentrations 

of IL-1β induced cellular apoptosis, whereas moderate or low levels of IL-1β in the same cells 

kept the cell normal or stimulated the cell growth (Roy et al., 2006). 

Moreover, isolated lymphocytes from the spleen of vehicle control or DMBA-treated mice 

were investigated for cytokines secretion. DMBA-treated mice had been reported to be 

persistently immunosuppressed after treatment, mainly through IL-2 suppression (House  

et al., 1987; Thurmond et al., 1987, 1988; Burchiel et al., 1990; Saas et al., 1996; Gao et al., 

2008). Therefore, lymphocytes were cultured in 6 well plates coated with CD3 to generate an 

activation signal to T-lymphocytes through association of CD3 with the T-cell receptor 

(TCR). The stimulation period with CD3 lasted for 48 h, and then the cytokine secretion was 

measured in the medium of cultured lymphocytes by ELISA. Vehicle control groups showed 

slightly increased levels of IL-2 in GABARAP-deficient lymphocytes after CD3 stimulation 

compared with wild-type counterparts (Fig. 20 A). As expected, IL-2 was suppressed in 

lymphocytes of DMBA-treated wild-type mice after CD3 stimulation compared with CD3-

stimulated lymphocytes of vehicle-treated wild-type mice (Fig. 20 A). Surprisingly, 

GABARAP-deficient lymphocytes of DMBA-treated mice produced more IL-2 after CD3 

stimulation than lymphocytes of vehicle-treated GABARAP KO mice (Fig. 20 A). This result 

indicates that DMBA does not induce suppression of IL-2 production in GABARAP-deficient 

lymphocytes, in contrast to the normal consequence of DMBA-treated mice which manifested 

by disruption of T-helper cell function specifically by inhibition of IL-2 production. Likewise, 

IFN-γ showed similar predisposition of IL-2 after CD3 stimulation of lymphocytes from 

vehicle-treated and DMBA-treated mice (Fig. 20 B). Stimulated lymphocytes of DMBA-

treated GABARAP KO mice showed an increased production of IFN-γ compared either with 

stimulated lymphocytes of vehicle-treated GABARAP KO or wild-type counterparts. 

Moreover, the opposite tendency of IFN-γ production was evident between the lymphocytes 

groups; i.e. less IFN-γ production by stimulated lymphocytes of DMBA-treated wild-type 

mice than their vehicle-treated wild-type counterparts, and a contrary trend in case of 

GABARAP-deficient lymphocytes (Fig. 20 B).  

It is well known that IFN-γ serves to limit the IL-17-producing T cell population. We 

measured the IL-17 production from lymphocytes, and we found an antagonist effect between 
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IL-17 and IFN-γ after stimulation of lymphocytes from DMBA-treated groups; i.e. increased 

level of IFN-γ led to diminished levels of IL-17 generated by lymphocytes and vice versa 

(Fig. 20 C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 20. Cytokines secretion from Lymphocytes of GABARAP KO (KO) and wild-type (Wt) mice treated 
with sesame oil (vehicle) or DMBA. Lymphocytes of each group were stimulated with CD3 for 48 h. A) IL-2, 
B) IFN-γ and C) IL-17 were measured in the supernatants by ELISA. Data are representative of triplicate 
experiments and were shown with means ± SEM. (**) p ˂ 0.01. n.d., not detected. 
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Altogether, these results elucidated that the knockout of GABARAP gene has considerable 

impact on the immunity of mice through enhancing the secretion of regulatory cytokines,  

for instance IL-1β and IL-2. Some of these cytokines, especially IL-2 and IFN-γ, have reliable 

anti-tumor effects and may explain why GABARAP KO mice developed less tumor 

formation than wild-type mice after DMBA treatment. 

 

3.6     GABARAP deficiency reduced the growth of mammary glands after 
DMBA treatment 

Our in vivo results proved that female GABARAP KO mice did not develop any mammary 

tumors during the time of experiments whether treated with DMBA or not. DMBA is highly 

carcinogenic when administered to adult female mice by oral gavage and especially relevant 

to the study mouse mammary gland tumorigenesis (Ethier and Ullrich, 1982; Medina, 1996; 

Currier et al., 2005; Klos et al., 2012). For this reason, we explored the mammary epithelial 

cell growth and ductal trees morphogenesis in our experimental mice groups to evaluate the 

gland architecture, proliferation and cell death by means of mammary gland whole mount 

morphology analysis and immunostaining. Female mice were treated with 1 mg doses of 

DMBA or 200 µl sesame oil (as vehicle control) for 6 consecutive weeks by oral gavage 

beginning at 6 - 8 weeks of age. 

The abdominal mammary glands of female GABARAP KO and wild-type mice at 14 weeks 

of age showed normal mammogenesis and there are no obvious phenotypic consequences of 

GABARAP deficiency on mammary epithelial cell growth at this age (Fig. 21 A). 

Furthermore, the mammary glands of female wild-type mice treated with 6 weekly doses of  

1 mg DMBA/mouse showed a phenotypically normal mammary epithelial trees compared 

with their age-matched (14 weeks old) control wild-type group (Fig. 21 A). Interestingly, 

GABARAP deficiency had a significant impact on the mammary epithelial cell growth and 

ductal branching of female mice after treatment with 6 weekly doses of 1 mg DMBA/mouse. 

The mammary glands of DMBA-treated female GABARAP KO mice showed a significant 

reduction of epithelial cell outgrowth and ductal branching compared either with their age 

matched control GABARAP KO mice or DMBA-treated wild-type mice (Fig. 21 A). 

Moreover, analysis of mammary gland whole mount morphology was performed by 

measuring the distance of epithelial growth from the lymph node to the end of epithelial tree 

by using a ruler, according to de Assis et al. (2010). The distances of mammary epithelial 

growth in DMBA-treated female GABARAP KO mice were significant shorter than their age-

matched control GABARAP KO mice or DMBA-treated wild-type mice (Fig. 21 B).  
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Figure 21. A) Whole mount analysis of mammary glands from wild-type (Wt) and GABARAP KO (KO) 
female mice, vehicle-treated (Control) or DMBA-treated. The female mice were either treated with 6 weekly 
oral doses of 1 mg DMBA/mouse or given sesame oil (vehicle) at the same time of DMBA treatment.  
L.N = lymph node, N = nipple; scale bars = 5 mm. B) Mammary epithelial growth of female mice treated as 
described in A. The epithelial growth was determined by measuring the distance from the lymph node to the 
end of epithelial tree (in millimetres = mm), using a ruler. Values are representative of 6 - 9 mice and were 
shown with means ± SEM. (**) p ˂ 0.01; (***) p = 0. 

 
Furthermore, immunostaining for mammary gland sections were done by using Ki-67 and 

TUNEL assay. Similarly to the spleen, mammary glands of DMBA-treated GABARAP KO 

female mice revealed higher reduction in proliferation by decreased Ki-67 expression 

compared to mammary glands of vehicle-treated (control) GABARAP KO or DMBA-treated 

wild-type groups (Fig. 22 A). DMBA-treated wild-type mice showed a slight inhibition of Ki-

67 expression in mammary glands compared with their control wild-type counterparts. 

Moreover, TUNEL staining of mammary gland sections from DMBA-treated GABARAP KO 
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mice showed an increasing number of TUNEL-positive cells compared with other groups 

(Fig. 22 B). Altogether, our results showed that cellular deaths were highly elevated in 

GABARAP KO mice when exposed to genotoxic carcinogen (DMBA) and this may explain 

the inhibition of tumor formation and the increased lethality of mice after DMBA treatment. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 22. Immunohistochemistry and Immunofluorescence staining for mammary gland sections of vehicle-
treated (control) and DMBA-treated wild-type (Wt) and GABARAP KO (KO) mice. A) Immunohistochemistry 
staining for Ki-67. Magnifications 20X. B) Immunofluorescence staining/TUNEL assay. Scale bars = 50 µm. 
Arrows indicate the epithelial cells. 
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3.7     Gene expression profiling indicated differential expression of tumor     
suppressor gene Xaf1 in mammary glands of GABARAP KO mice 

To further investigate the molecular mechanism by which GABARAP deficiency reduced 

tumor formation, spontaneously or after genotoxic carcinogen (DMBA) treatment, the 

workflow of Agilent Whole Mouse Genome expression analysis by microarray gene 

expression detection was employed. GABARAP KO and wild-type mice were either treated 

with sesame oil as vehicle (control group) or with 6 weekly oral doses of 1 mg DMBA/mouse 

beginning at 6 -8 weeks of age. The RNAs from abdominal mammary glands of each group 

were isolated and hybridized with one-color oligo microarrays 8x60K chips. The data was 

computed to identify genes that had a significant modification in the expression level in both 

control and DMBA-treated groups of GABARAP KO and wild-type mammary glands. Four 

comparisons were generated between control wild-type (CWT), control GABARAP KO 

(CKO), DMBA-treated wild-type (DWT) and DMBA-treated GABARAP KO (DKO) groups. 

Next, a subset of genes that had GABARAP-dependent altered expression compared to CWT 

and DWT was derived from this data, and a selected list of the most differentially expressed 

genes is represented in a heat map (Fig. 23). In Figure 23, the heat map showed GABARAP 

gene expression as well as 50 other genes which are exclusively modulated upon GABARAP 

knockdown. GABARAP expression was shown also in a boxplot (Fig. 24 A). The biological 

functions for some genes listed in Figure 23 are so far unknown. For instance, five Mup 

(major urinary protein) family proteins were differentially downregulated in mammary glands 

of GABARAP KO mice. Mups belong to a larger family of proteins known as lipocalins. The 

precise role of these genes is not yet clarified, but some authors propose that Mups have 

beneficial effects on energy metabolism by enhancing mitochondrial function, and also may 

act as a regulator for glucose and lipid metabolism in mice (Hui et al., 2009; Zhou et al., 

2009). Moreover, Rab4a (Ras-related protein), has shown to be upregulated in GABARAP 

KO mammary glands compared to wild-type counterparts. Rab proteins constitute the largest 

subfamily of the Ras family of small GTPases and are involved in the regulation of vesicular 

transport. The encoded protein of this gene is associated with early endosomes and plays a 

role in regulating the recycling of receptors from endosomes to the plasma membrane 

(Olkkonen and Stenmark, 1997; Yudowski et al., 2009). Interestingly, tripartite motif-

containing protein 16 (Trim16) has been significantly downregulated in GABARAP KO 

groups (control and DMBA-treated) compared to their wild-type counterparts (Fig. 23 and 24 

B). Trim16 is a ubiquitously expressed protein and was identified as an estrogen and anti-

estrogen regulated gene in epithelial cells stably expressing estrogen receptor. TRIM proteins 
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have been reported to have important roles in cell growth, differentiation, ubiquitination, 

retroviral immunity and cancer (Cao et al., 1998; Beer et al., 2002; Meroni and Diez-Roux, 

2005; Marshall et al., 2010; Liu et al., 2014). 
 

 
Figure 23. Heatmap of differentially expressed genes in mammary glands of GABARAP KO and wild-type 
mice. The comparison of control wild-type (CWT) and DMBA-treated wild-type (DWT) with their untreated 
(CKO) and treated (DKO) GABARAP KO counterparts identified 50 most distinct genes. The control groups 
included 3 replicates, whereas DMBA-treated groups included 6 replicates. 
 
In our attempt to identify candidate genes related to GABARAP deficiency and interpret our 

phenotypic results, we found that the knockout of GABARAP resulted in highly and 

differentially expression of Xiap-associated factor 1 (Xaf1) gene (Fig. 23). Published 

evidence indicated that Xaf1 functions as a tumor suppressor, and the epigenetic silencing of 

Xaf1 by aberrant promoter methylation was associated with cancer development and 

progression (Fong et al., 2000; Byun et al., 2003; Lee et al., 2006; Tu et al., 2009; Huang  
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et al., 2010; Tu et al., 2010; Sun et al., 2011). GABARAP-deficient mammary glands of 

control and DMBA-treated mice showed significantly high expression levels of Xaf1 

compared with wild-type counterparts (Fig. 23, 24 C and Table 3). Xaf1 was originally 

identified as a novel negative regulator of X chromosome-linked inhibitor of apoptosis protein 

(Xiap) (Liston et al., 2001). Xiap is the most potent member of the family of mammalian 

inhibitor of apoptotic proteins (IAP), and functions through binding to tumor necrosis factor 

(TNF) receptor-associated factors and caspase family and thereby inhibits apoptosis. 

Interestingly, Xiap showed a significant upregulation in mammary glands of wild-type mice 

upon DMBA treatment, whereas mammary glands of DMBA-treated GABARAP KO mice 

exhibited only modest changes in Xiap expression levels compared to their vehicle control 

group (Table 3). These finding indicated that Xaf1 upregulation in mammary glands of 

GABARAP KO mice may contribute to the inhibition of tumor formation and may enhance 

apoptosis induction upon DMBA treatment. 
 

 

 

Figure 24. Boxplots of differentially expressed genes in mammary glands of GABARAP KO and wild-type 
mice. A) GABARAP. B) Trim16. C) Xaf1. Gene expression represents logarithmic fold change in each group. 
CKO = control (vehicle-treated) GABARAP KO, CWT = control (vehicle-treated) wild-type, DKO = DMBA-
treated GABARAP KO, DWT = DMBA-treated wild-type.  
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Moreover, there are dramatic changes in the genes expression levels when DMBA-treated 

groups were compared to control (vehicle-treated) groups. The genes listed in Table 3 have 

been selected according to the phenotypic changes that have been observed in mammary 

glands (Fig. 21). Most of these genes are involved in apoptosis, cell death, cell cycle control, 

DNA replication and autophagy, as indicated in the Table 3. Interestingly, GABARAP 

deficiency boosted the incidence of cell death and cell cycle arrest in mammary glands. The 

global gene expression profiling of mammary glands of control groups in comparison with 

DMBA-treated groups, resulted in the identification of a significantly higher expression of 

pro-apoptotic proteins (Bid, Apaf1 and Bax), tumor necrosis factor receptor superfamily 

(Tnfrsf10b) and receptor (TNFRSF)-interacting serine-threonine kinase 1 (Ripk1) in 

mammary glands of DMBA-treated GABARAP KO mice (Table 3). Furthermore, 

GABARAP-deficient mammary glands of DMBA-treated mice showed a high expression 

level of cyclin-dependent kinase inhibitor p21 (Cdkn1a) and p18 (Cdkn2c) compared to their 

control groups (Table 3). In addition, the mammary glands of DMBA-treated wild-type mice 

exhibited also high expression level of Bax and p21 (Table 3), and this may be due to the 

genotoxic effect of DMBA; however, there was no massive impact on the epithelial growth of 

wild-type mammary glands compared with GABARAP KO counterparts (Fig. 21). In 

contrast, we have found that Cdc7 and Cdk1, essential proteins for G1/S and G2/M phase 

transitions of eukaryotic cell cycle, were significantly higher expressed in mammary glands of 

DMBA-treated wild-type mice compared to their control counterparts. Likewise, Siva1, an 

apoptotic inducer protein (Prasad et al., 1997; Xue et al., 2002; Chu et al., 2005; Du et al., 

2009; Resch et al., 2009), was significantly upregulated in mammary glands of DMBA-

treated GABARAP KO and wild-type mice. Overexpression of Siva1 had been detected to 

inhibit stathmin (Stmn), an important regulatory protein of microtubule dynamics, leading to 

suppression of epithelial-mesenchymal transition (EMT) and metastasis (Li et al., 2011). 

Interestingly, mammary glands of treated GABARAP KO mice showed downregulated 

expression levels of Stmn4, in parallel with high expression of Siva1 (Table 3). 

There are other genes listed in Table 3 that showed differential expression levels, for instance 

genes involved in DNA replication or transcriptional factors as well as autophagic genes. For 

example, NF-κB1 and E2F were significantly upregulated in the mammary glands of DMBA-

treated wild-type mice (Table 3). NF-κB1 had been reported to play a role in mammary 

tumorigenesis. The E2F family of transcription factors plays a crucial role in the control of the 

cell cycle and the action of tumor suppressor genes like pRB (retinoblastoma protein). 
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 Table 3. List of differentially expressed genes in mammary gland of GABARAP KO and wild-type mice  

with known functions 

 

* Significant expression difference between two groups (p-value ≤ 0.05) calculated by moderate t-test. 
- The values in table represent the logarithmic fold change for each gene. 
- CWT = control (vehicle-treated) wild-type, CKO = control (vehicle-treated) GABARAP KO, DWT = DMBA-
treated wild-type, DKO = DMBA-treated GABARAP KO. 

Gene Full name 
CWT  

vs  
CKO 

CWT  
vs  

DWT 

CKO  
vs  

DKO 

DWT 
 vs  

DKO 
Function 

GABARAP gamma-aminobutyric acid receptor  
associated protein -4.05* 0.2 0.09 -4.16* autophagy 

Xaf1 XIAP associated factor 1 3.25* 0.22 0.36 3.39* apoptosis 

Xiap X-linked inhibitor of apoptosis 0.51 0.86* 0.05 -0.31 apoptosis 

Bid BH3 interacting domain death agonist 0.16 0.53 0.76* 0.39 apoptosis 

Apaf1 apoptotic peptidase activating factor 1 -0.33 0.08 0.59* 0.18 apoptosis 

Bax BCL2-associated X protein 0.03 1.79* 2.03* 0.27 apoptosis 

Tnfrsf10b tumor necrosis factor receptor superfamily,  
member 10b -0.02 0.62 0.89* 0.25 cell death 

Ripk1 receptor (TNFRSF)-interacting serine-threonine 
kinase1 0.24 0.29 0.53* 0.48 cell death 

Siva1 apoptosis-inducing factor 0.08 1.3* 1.79* 0.57 apoptosis 

Stmn4 stathmin-like 4 -0.01 -0.51 -1.14* -0.65 microtubule destabilizer 

Il1r1 interleukin 1 receptor, type I -0.41 0.08 0.95* 0.45 cytokine receptor 

Cdkn1a cyclin-dependent kinase inhibitor 1A (P21) -0.1 3.08* 3.73* 0.55 cell cycle control 

Cdkn2c cyclin-dependent kinase inhibitor 2C (p18) -0.16 0.58 0.86* 0.12 cell cycle control 

Rbx1 ring-box 1 0.17 0.49* 0.3 -0.02 cell cycle control 

Cdc7 cell division cycle 7 0.29 0.5* 0.23 0.02 cell cycle control 

Cdk1 cyclin-dependent kinase 1 0.77 1.06* 0.35 0.07 cell cycle control 

Tgfb3 transforming growth factor, beta 3 -0.19 -0.51 -0.86* -0.55 DNA replication 

NF-κB1 nuclear factor of kappa light polypeptide gene  
enhancer in B-cell 1 0.34 0.71* 0.6 0.23 transcription factor 

Smad2 SMAD family member 2 0.42 0.67* 0.38 0.13 transcription factor 

E2f1 E2F transcription factor 1 -0.22 -0.9* -0.62* 0.07 transcription factor 

E2f4 E2F transcription factor 4 0.71 1.24* 0.76 0.23 transcription factor 

Tfdp2 transcription factor Dp 2 0.17 0.68* 0.47 -0.04 transcription factor 

GABARAPL2 GABARAP-like 2 0.09 0.65* 0.62* 0.06 autophagy 

Atg12 autophagy related 12 -0.02 0.53* 0.62* 0.07 autophagy 

Prkaa1 protein kinase, AMP-activated, alpha 1  
catalytic subunit 0.2 0.79* 0.7* 0.11 autophagy 

Atg3 autophagy related 3 0.1 0.79* 1.08* 0.4 autophagy 

Atg4b autophagy related 4B, cysteine peptidase -0.57 -0.65* -0.15 -0.07 autophagy 

Atg5 autophagy related 5 0.33 0.5* 0.28 0.11 autophagy 
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We next performed qRT–PCR analyses to verify the results for a subset of genes using the 

same set of mRNAs that have been used in oligo microarray chips. We found that the relative 

mRNA expression of Xaf1 was upregulated more than twofold in mammary glands of control 

and DMBA-treated GABARAP KO mice in comparison with mammary glands of wild-type 

counterparts (Fig. 25). Consistent with microarray data, we found that the expression levels of 

Bid, Bax and p21 were upregulated in both DMBA-treated groups. The relative mRNA 

expression level of Bid in mammary glands of DMBA-treated GABARAP KO group was 

upregulated more than twofold in relation to control counterparts, as well as in comparison 

with their DMBA-treated wild-type counterparts (Fig. 25). The mRNA expression level of 

Bax was upregulated in mammary glands of both DMBA-treated groups; the level of Bax 

expression was twofold higher in DMBA-treated GABARAP KO group when compared to 

wild-type counterpart (Fig. 25). Interestingly, the expression level of p21 in the mammary 

glands of DMBA-treated GABARAP KO mice was upregulated to 27-fold in relation to the 

GABARAP KO control group, whereas p21 was upregulataed 10-fold in the mammary glands 

of DMBA-treated wild-type mice relative to their control group (Fig. 25). In comparison of 

the DMBA-treated groups, we found that p21 was upregulated threefold in the mammary 

glands of GABARAP KO mice in relation to their wild-type counterparts (Fig. 25).   

Considering that upregulated Xaf1 and apoptosis signaling play an important role in antitumor 

activities (Byun et al., 2003; Brown and Attardi, 2005; Adams and Cory, 2007; Hanahan and 

Weinberg, 2011; Sun et al., 2011; Wong, 2011), these results suggested that GABARAP 

deletion might trigger enhanced antitumor activity through augmentation of cell death and  

cell cycle inhibition, and thus contribute to the suppression of mammary tumorigenesis in 

these mice. 

 

3.8     Xaf1 highly expressed in organs of GABARAP KO mice 

Our results of gene expression microarray analysis showed that the tumor suppressor Xaf1 

was differentially expressed in mammary glands of 14 weeks old GABARAP KO mice 

(control and DMBA-treated). We wanted to check the expression of Xaf1 in different organs 

and ages of wild-type and GABARAP KO mice. RNA was isolated from mammary gland, 

liver, lung, spleen and kidney of 6 weeks old mice. qRT–PCR was employed to screen the 

expression of Xaf1. GABARAP KO organs showed relatively higher mRNA expression  

of Xaf1 compared with their wild-type counterparts (Fig. 26). It is not doubt that the knockout 

of GABARAP gene resulted in differential Xaf1 expression in our transgenic mouse model. 
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Figure 25. Relative mRNA expression of Xaf1, Bid, Bax and p21 in mammary glands of vehicle-treated 
control (C) and DMBA-treated (D) mice measured by quantitative reverse transcriptase PCR (qRT-PCR). The 
groups are divided as: control wild-type (CWT), DMBA-treated wild-type (DWT), control GABARAP KO 
(CKO) and DMBA-treated GABARAP KO (DKO) and each figure is representative of four comparisons as 
indicated. Values are mean ± SEM of 4-6 samples of each group. The relative expression values of each gene 
to GAPDH in each sample were calculated and compared. (*) p ˂ 0.05; (**) p ˂ 0.01; (***) p = 0. 
 

 

 

 

 

 
 

 

 

Figure 26. Relative mRNA expression of Xaf1 in mammary gland, spleen, liver, lung and kidney at 6 weeks 
old of wild-type (Wt) and GABARAP KO (KO) mice measured by quantitative reverse transcriptase PCR 
(qRT-PCR). The relative expression value of Xaf1 to GAPDH in each sample was calculated and compared. 
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3.9     DNA damage repair impaired in GABARAP-deficient fibroblasts 

Fibroblasts are the most ubiquitous cell type within the body and have long been considered 

to be important investigator tool to identify the functional mechanism of gene in different 

signaling pathways. Mouse embryonic fibroblasts (MEFs) were isolated from the embryos of 

GABARAP KO and wild-type mice and cultured for further investigations. Firstly, we were 

tested whether the GABARAP gene has a crucial role in autophagy machinery. GABARAP-

deficient and wild-type MEFs were incubated in starvation medium (EBSS) in the  

presence or absence of the autophagy inhibitor, chloroquine (CQ), and the autophagic  

flux was tested by monitoring the autophagic markers LC3 and p62. As depicted in Figure 27 

A, both LC3A/B-II and p62 accumulated in GABARAP-deficient MEFs and were not 

affected by the CQ treatment indicating an inhibition in autophagic flux. Thus, our data 

suggest that the GABARAP gene has an essential role in the autophagic process in our  

cell model system. 

Furthermore, accumulative evidence indicated that autophagy is involved in DNA damage 

repair. DMBA has been shown to induce DNA damage in several tissues (Muqbil et al., 2006; 

Henkler et al., 2012; Ganesan et al., 2013). In addition, camptothecin (CPT) is considered as 

a DNA damage inducer and showed remarkable anticancer activity in preliminary clinical 

trials. CPT inhibits replication and transcription by trapping DNA topoisomerase I (Top1) 

covalently to DNA in a “cleavable complex” (Hsiang et al., 1985; Hsiang and Liu, 1988; Lin 

et al., 2008; Veloso et al., 2013). To investigate a potential role of GABARAP in the DNA 

damage response, GABARAP-deficient and wild-type MEFs were treated with DMBA and 

CPT to induce DNA damage. At various times after treatment with 100 nM DMBA and  

5 mM CPT, lysates were prepared from control and treated MEFs and analyzed by western 

blotting using antibodies against autophagy markers (LC3, p62 and GABARAP), DNA 

damage repair biomarker (γH2AX) and Cyclin D1, as a cell cycle progression indicator. As 

shown in Figure 27 B, induction of autophagy was detected in MEFs after treatment with 

DMBA and CPT. The conversion of soluble LC3A/B-I to lipid bound LC3A/B-II was shown 

as an indicator of autophagy induction as well as upregulation of GABARAP in wild-type 

MEFs and accumulation of p62 protein in GABARAP-deficient MEFs (Fig. 27 B). 

Moreover, DNA damage repair was detected by upregulating of phosphorylated γH2AX  

(p-γH2AX) in both GABARAP-deficient and wild-type MEFs after treatment for  

24 h (DMBA) or 4 h (CPT) (Fig. 27 B). In wild-type MEFs, p-γH2AX level thereafter 

gradually decreased by 48 h (DMBA) or 20 h (CPT) treatment, indicating repair or at least no 

more accumulation of the DNA damage (Fig. 27 B). In contrast, the protein level of p-γH2AX 
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Figure 27. Analysis of autophagy, DNA damage repair and proliferation of wild-type (Wt) and GABARAP 
KO (KO) MEFs after treatment with DMBA and CPT. A) Wild-type and GABARAP KO MEFs cultured in six 
well plates, then the cells incubated for 2 h in EBSS medium in the absence or presence of 10 µM 
chloroquine (CQ) and subjected to western blot analysis after lysis with RIPA extraction buffer. B) Wild-type 
and GABARAP KO MEFs cultured and treated with 100 nM DMBA for 24 and 48 h or 5 mM CPT for 4 and 
20 h. The cells were then lyzed and analyzed by western blotting using antibodies as indicated in figure. C) 
The cells treated as indicated in B, then the cells photographed after 24 h of DMBA treatment or 20 h of CPT 
treatment. 
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remained high and accumulated more at 48 h (DMBA) or 20 h (CPT) after treatment  

in GABARAP-deficient MEFs, suggesting a defect in the repair of DNA damage induced by 

DMBA and CPT in these cells. Furthermore, Cyclin D1 was used to detect the progression of 

cell cycle. Accumulation of p-γH2AX in GABARAP-deficient MEFs after treatment with 

DMBA and CPT was accompanied with high reduction in Cyclin D1 protein level compared 

with their wild-type counterparts (Fig. 27 B). As depicted in Figure 27 C, GABARAP-

deficient MEFs showed a decreased proliferation rate after DMBA and CPT treatment 

compared with their wild-type counterparts. 

Together, these results indicated that deletion of GABARAP resulted in defective DNA 

damage repair and inhibition of cell cycle progression in our cell model system after DMBA 

and CPT treatments. 

 

3.10    GABARAP KO mice inhibited proliferation of inoculated B16 melanoma 
cells 

To further investigate the potential role of GABARAP gene in tumor progression, 

GABARAP KO and wild-type mice were subcutaneously inoculated with mouse  

B16 melanoma cells. After one week of B16 cells injection, we monitored the tumor  

growth daily and measured the tumor volume every other day beginning from the  

day when the tumor became palpable. All the wild-type mice presented palpable tumors  

at 9th day of cell injection compared with 66.7% of GABARAP KO mice showed  

palpable tumors at this day. The tumor growth increased constantly in wild-type mice.  

In contrast, tumor growth was clearly reduced in GABARAP KO mice (Fig. 28 A and B). 

This result suggests that intact GABARAP function in the host animal was advantageous  

for the growth of the inoculated syngeneic melanoma cells. 

 

3.11    GABARAP-deficient tumors did not exhibit Ras mutation 

Many studies indicated that carcinogens, in general, induce molecular changes in target 

organs (Hoenerhoff et al., 2009). DMBA has been reported to induce point mutations in the 

H-ras gene resulting in an A > T transversion at the middle adenosine nucleotide of codon 61 

(Dandekar et al., 1986; Cardiff et al., 1988; Qing et al., 1997). Recently, the protumorigenic 

function of autophagy has been demonstrated through its ability to increase the glucose 

metabolism and thereby facilitating Ras-mediated cell transformation and promoting Ras-

driven tumor growth. For this reason, we performed H-ras mutation analysis in DMBA-

induced tumors from GABARAP KO and wild-type mice. Our analysis of the hotspot codons 

  
 81 

 
  



3. Results 
 

12 and 13 in exon 1 and codon 61 in exon 2 revealed no mutations in the 4 tumors of the 

GABARAP KO mice compared to 5 mutations in 14 tumors of the wild-type mice (Table 4). 

The mutations included transversion of CAA > CTA or CAA > CAT (Fig. 29). This result 

could explain the importance of GABARAP gene, through its involvement in autophagy, in 

Ras-mediated cellular transformation to induce tumors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 28. Inhibition of B16 melanoma cells growth in GABARAP KO mice. A) Morphologic picture of wild-
type (Wt) and GABARAP KO (KO) mice at the 17th day of 2.5 x 105 B16 melanoma cell inoculations. 
B) Growth curve of B16 melanoma cells in Wt and KO mice after inoculation with 2.5 x 105 B16 cells. Values 
are representative of 12 mice and were shown with means ± SEM. (**) p ˂ 0.01, (***) p = 0. 

 

Table 4. Tumor types and H-ras mutation in C57BL/6 wild-type (Wt) and GABARAP KO mice 

Tumor type C57BL/6 (Wt) GABARAP KO 

DMBA treatment 
n = 29 H-ras mutation n =33 H-ras mutation 

Tumors number 12 13 61 Tumors number 12 13 61 
Mammary 3 - - 2 - - - - 

Skin 7 - - 3 2 - - - 
Lymphoma 2 - - - - - - - 

Liver - - - - 1 - - - 
Undifferentiated tumors 2 - - - 1 - - - 

Total 14 - - 5 4 - - - 
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Figure 29. H-ras mutation analysis of GABARAP KO and wild-type tumors. A) Exon 2 (codon 61) of H-ras in 
GABARAP tumor showed wild type sequences of forward and reverse primers. B) Wild-type tumor showed 
mutation at forward (CAA > CTA) and reverse (TTG > TAG) sequences of exon 2 (codon 61). C) Wild-type 
tumor showed mutation at forward (CAA > CAT) and reverse (TTG > ATG) sequences of exon 2 (codon 61). 
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4.       Discussion 

The main biological role of GABARAP has been previously involved in clustering the 

neurotransmitter receptors GABAA by mediating interaction with the cytoskeleton (Wang  

et al., 1999; Chen et al., 2000). Later on, authors have shown that GABARAP has an essential 

role in the elongation and maturation of autophagosome, a key structure in the process of 

autophagy (Nakatogawa et al., 2007; Xie et al., 2008; Weidberg et al., 2010). GABARAP is 

ubiquitously expressed in all tested normal tissues, and has been explored in primary tumor 

samples and cancer cell lines and showed a diversity of expression levels. We previously 

reported that GABARAP may function as a tumor suppressor in breast cancer (Klebig et al., 

2005). However, the precise role and mechanism that GABARAP played in tumorigenesis 

were not elucidated. Our study considered the first attempt to clarify the role of GABARAP in 

tumorigenesis by using the transgenic mouse model. We used DMBA, a reliable and potent 

carcinogen, as well as other carcinogens to investigate the potential role of GABARAP in 

tumorigenesis. In addition, the spontaneous tumor formation was investigated in this mouse 

model over the period of 2 years. The major findings present in the current study can be 

summarized as follows: 1) GABARAP KO mice exhibited less tumor formation 

spontaneously and after carcinogen treatment. 2) High sensitivity of GABARAP KO mice to 

the toxicity of carcinogens. 3) GABARAP-deficient immune cells enhanced the cytokine 

production. 4) GABARAP-deficient mammary glands showed a significant decrease in 

epithelial growth upon DMBA treatment. 5) The tumor suppressor gene and apoptosis inducer 

Xaf1 differentially expressed in mammary glands of GABARAP KO mice as well as in other 

organs. 6) DNA damage repair impaired in GABARAP-deficient MEFs. 7) B16 melanoma 

cell inoculation and Ras mutation in tumor samples showed the potency of GABARAP gene 

in tumor initiation and progression. 

 

4.1     Less tumor formation in GABARAP KO mice 

The role of autophagy in tumorigenesis is complex and likely tissue and genetic context-

dependent. Contradictory roles of autophagy in tumor initiation and progression have been 

mentioned in several reports. In some instances autophagy may serve as protumorigenic 

mechanism, whereas in others, it contributes to tumour suppression (Levine, 2007; Mathew  

et al., 2007; Wilkinson and Ryan, 2010; Rosenfeldt and Ryan, 2011). Beclin-1 represented the 

first genetic link between autophagy and tumorigenesis (Qu et al., 2003; Yue et al., 2003). 

Heterozygous loss of Beclin-1 promoted spontaneous malignancies in mice. Later on, studies 

showed that the increased rate of tumor formations in mice with heterozygous loss of 
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Beclin-1 is not due to autophagy, since that Beclin-1 has been shown to interact and 

associated with apoptotic protein (Bcl-2) and tumor suppressor p53 (Pattingre et al., 2005; 

Liu et al., 2011; Lorina et al., 2013). Moreover, Atg4C-deficient mice showed increased 

susceptibility to fibrosarcoma induced by the intradermal injection of chemical carcinogen 

MCA in a tissue-specific mode (Marino et al., 2007). In contrast, knockout of FIP200, an 

important regulator of autophagy, suppressed mammary tumor initiation and progression in a 

mouse model of breast cancer driven by the PyMT oncogene (Wei et al., 2011). In our 

investigation, we used the chemical carcinogen (DMBA) in order to enhance the tumor 

induction and to explore the potential role of GABARAP in tumorigenesis. DMBA is a 

widely used carcinogen and can induce various types of cancer in animal models (de Oliveira 

et al., 2013). Most studies have used DMBA to induce mammary tumors following 

administration by oral gavage in mouse models (Medina, 1974, Currier et al., 2005). We 

found that GABARAP KO mice significantly reduced the tumor formation after DMBA 

treatment compared with wild-type mice. In addition, no mammary tumors developed in 

DMBA-treated GABARAP KO mice. Regarding spontaneous tumor formation, GABARAP 

KO mice exhibited less tumors compared with wild-type mice, and also without mammary 

tumorigenesis in GABARAP KO mice. For this reason we concluded that the GABARAP 

gene may play an influential role in the process of tumor development. Based on our 

knowledge, this is the first report providing evidence for the role of GABARAP in 

tumorigenesis in a mouse model. 

 

4.2     High sensitivity of GABARAP KO mice upon carcinogens treatment 

Autophagy occurs at low basal levels in most normal cells to maintain cellular homeostatic 

functions or occurs when the cells need to ‘self-cannibalize’ or to proceed the cell survival 

under stress in order to maintain cellular integrity (Mizushima et al.; 2008). Mice with 

homozygous mutation of Beclin-1 die in early embryonic development (Yue et al., 2003). In 

contrast, mice with homozygous deletion of others autophagy gene showed a normal 

embryonic phenotype (Marino et al., 2007; Wei et al., 2011). During our experiments, we 

noticed that GABARAP KO mice are viable and fertile and do not display any obvious 

abnormalities, as reported by O’Sullivan (O’Sullivan et al., 2005). This indicates that 

GABARAP KO mice are able to develop the autophagic response in demand during the 

embryogenesis and early neonatal period. 

Moreover, administration of genotoxic carcinogens to the mice triggers several processes in 

order to bypass the stress and the damage induced by such chemicals. Autophagy is one of 
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these processes which stimulated under such circumstances to overcome stressful conditions 

(Rodriguez-Rocha et al., 2011; Murrow and Debnath, 2013). In our experiment, we used 

different carcinogens and different treatment regimens in order to enhance tumor formation. 

Unlike our expectation, carcinogen-treated GABARAP KO mice manifested higher 

sensitivity and reduced survival in comparison with treated wild-type mice. Moreover, almost 

all GABARAP KO mice were died without any tumor formation after carcinogens treatment, 

except in DMBA treatment. On the other hand, wild-type mice showed tumor formation 

within the period of some carcinogen treatments, for instance after DMBA and ENU 

exposure. Normally, carcinogen treatment required several months to initiate and promote 

tumor development in mouse models. The non-occurrence of tumors in some carcinogen 

treatment in wild-type mice was due to the shortage of exposure period of carcinogens, 

because we finished the experiment when all GABARAP KO mice were died. Based on these 

results, we propose that GABARAP is not essential for autophagy development under normal 

conditions but may be required for a proper autophagic response under stressful conditions 

such as genotoxic carcinogen treatment. 

DMBA-treated mice have been reported to decrease the spleen weight and cellularity; this 

decrease was associated with cell death of splenocytes (Dean et al., 1985; Miyata et al., 2001; 

Gao et al., 2005, 2007). However, the body weight of mice was not substantially affected by 

DMBA treatment (Miyata et al., 2001; Gao et al., 2005). We found that upon DMBA 

treatment GABARAP KO mice significantly reduced the spleen cellularity as well as 

decreased the spleen volume and weight in comparison to DMBA-treated wild-type mice. The 

body weights of GABARAP KO mice were tardily increased compared to treated wild-type 

mice. The immunohistochemistry staining revealed a considerable decrease in the 

proliferation of splenocytes in DMBA-treated GABARAP KO mice, which occurred together 

with increased cellular death. It seems that GABARAP or “autophagy” deficiency heightened 

the incidence of cell death and reduced the cellular proliferation rate in spleen under 

carcinogenic effect which led to a significant reduction in spleen cellularity. The slower 

growing of GABARAP KO mice upon DMBA treatment may provide insight into the impact 

of GABARAP deficiency on other organs apart from the spleen. Moreover, the cell surface 

marker analysis of splenocytes showed a substantial reduction in all cell populations: 

regulatory T cells (Tregs), B cells, T helper cells (CD4), cytotoxic T cells (CD8), 

macrophages and neutrophils, which were more profoundly affected by DMBA treatment in 

GABARAP KO mice than wild-type mice. The pattern of reduction for the populations of 

splenocytes was consistent with the reduction of the total number of splenocytes, which 
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means that there was no discrimination for the effect of DMBA on particular cell types of the 

spleen in both GABARAP KO and wild-type mice groups. 

 

4.3     Enhancement of cytokine secretion in GABARAP-deficient immune cells  

The interaction between autophagy and innate immune response has been proven through the 

capability of TLRs to induce autophagy as well as the negative regulator role of autophagy for 

inflammasome activation (Shi and Kehrl, 2010; Levine et al., 2011; Nakahira et al., 2011; Shi 

et al., 2012; Araya et al., 2013). The disruption of autophagy genes in macrophages have been 

shown to increase ROS production and translocation of mtDNA into the cytosol upon 

treatment with LPS and ATP, leading to enhance the secretion of proinflammatory cytokines, 

which can mediate tissue injury and lethal shock in the context of a sepsis model (Hotchkiss 

and Karl, 2003; Tal et al., 2009; Nakahira et al., 2011; Zhang et al., 2013). In our results, we 

found that macrophages of DMBA-treated GABARAP KO mice significantly boosted the 

secretion of IL-1β and IL-6 upon stimulation with LPS alone or in the combination of LPS 

and ATP. The high production of proinflammatory cytokines may be responsible for the 

increase the lethality of GABARAP KO mice upon DMBA treatment. The in vivo activation 

of immune cells may happen during the mice handling or by natural pathogens of laboratory 

mice as well as the environmental pathogens in the animal houses (Baker, 1998; Connole et 

al., 2000). Regarding TNFα, the tendencies of secretion from macrophages of DMBA-treated 

GABARAP KO mice; upon stimulation with LPS alone or LPS and ATP, were higher than 

macrophages of treated wild-type mice. There was no significant association between TNFα 

secretion of GABARAP KO and wild-type macrophages upon stimulation possibly due to a 

relatively few number of macrophages that can be obtained from mice after DMBA treatment. 

It was reported that autophagy is required for mitochondrial maintenance and preservation of 

mitochondrial function, as well as the removal of damaged mitochondria by the process called 

mitophagy (Guo et al., 2011; Aung-Htut et al., 2013; Yang and Yang, 2013). DMBA 

treatment causes oxidative stress and mitochondrial dysfunction (Frenkel et al., 1995; 

Arulkumaran et al., 2007; Priyadarsini and Nagini, 2012). It has been shown that 

accumulation of damaged mitochondria could activate the inflammasome and thereby 

increased the proinflammatory cytokine secretion (Tal et al., 2009; Nakahira et al., 2011; 

Zhang et al., 2013). According to these findings we propose that autophagy deficiency, in our 

case by GABARAP deficiency, under a genotoxic stress of DMBA may activate the 

inflammasome in macrophages by increasing the damaged mitochondria and ROS production. 

Thus activation of the inflammasome may be responsible for the increased production of 
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proinflammatory cytokines (IL-1β and IL-6) from macrophages of DMBA-treated 

GABARAP KO mice. 

Furthermore, it is known that DMBA treatment resulted in suppression of immune response in 

mice, both cell-mediated and humoral immunity, for prolonged periods of time (Prehn, 1963; 

Ward et al., 1986; Burchiel et al., 1990; Gao et al., 2007, 2008). DMBA exerts this effect 

through inhibition of lymphocyte activation, mainly by suppressing the production of IL-2 

from splenocytes and depressing the ability to generate CTL and NK cells (Ward et al., 1986; 

House et al., 1987; Burchiel et al., 1990; Saas et al., 1996; Gao et al., 2007, 2008). Thereby, 

this effect of DMBA acts as an important mechanism; in association with its genotoxicity, 

contributing to tumor outgrowth (Ward et al., 1986). On the other hand, tumor-host cell 

interaction and tumor microenvironment play an essential role in tumor initiation and 

progression of breast and other tumor types in vivo (Wiseman and Werb 2002; Luo et al. 

2009; Hanahan and Weinberg 2011). Moreover, the host immune defense mechanisms play a 

crucial role in tumor immune surveillance and removal of cancerous cells (Koebel et al. 2007; 

Finn 2008). For example, De Palma et al. (2008) and Wei et al. (2011) showed effective 

inhibition of PyMT-driven tumor growth and metastasis through upregulation of interferon 

target genes. In our results, lymphocytes of DMBA-treated GABARAP KO mice produced 

higher levels of IL-2 and IFN-γ after in vitro stimulation with CD3 than lymphocytes of their 

untreated control group. In contrast, it was clear that lymphocytes of DMBA-treated wild-type 

mice suppress IL-2 and IFN-γ production after CD3 stimulation. That means our results 

demonstrated immune enhancement, rather than immunosuppression, in GABARAP KO mice 

upon DMBA treatment. The levels of IL-2 and IFN-γ secretion did not reach statistical 

significance possibly due to a relatively few number of lymphocytes that can be obtained 

from GABARAP KO mice after DMBA treatment. 

The high production of some cytokines has a critical mechanism in the inhibition of tumor 

outgrowth and metastasis. For instance, IL-1β was shown to be engaged in different cellular 

signaling pathways. The engagement of IL-1β in specific signaling pathways relies on its 

concentration or level. At high levels, cells received genotoxic insults and triggered cellular 

apoptosis, whereas moderate or low levels in the same cells may keep the cells normal or 

stimulate cell growth (Roy et al., 2006). Moreover, the outcome of antigen-specific T cell 

responses is mainly regulated by cytokines. When a T cell responds to an antigen, its cytokine 

profile engages certain T-helper cell pathway stimulated by the antigen-presenting cell. 

Moreover, the existence of IL-2 and IFN-γ can modulate effector cell differentiation, for 

instance Th1 cells, via regulation of cytokine receptor expression (Liao et al., 2011). Many 
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investigations indicated the importance of IL-2 and IFN-γ in immunological reactions to 

tumor cell growth and promoting innate and adaptive immune responses (Yang et al., 2003). 

IL-2 displayed significant anti-tumor activity for a different type of tumors, for instance 

advanced renal cancer and melanoma (Clement and McDermott, 2009; Halama et al., 2010) 

since it supports the proliferation and clonal expansion of T cells (CD4+T cells and CD8+T 

cells) that specifically attack certain tumor types (Stern and Smith, 1986; Liao et al., 2011). 

However, high doses of IL-2 were found to be accompanied by severe toxicity. To overcome 

the toxicity of IL-2, they found that inhibition of autophagy by using chloroquine during IL-2 

immunotherapy in a mouse model led to significantly regression of tumor growth and 

prolonged survival (Liang et al., 2012). This finding may support our results of tumor 

inhibition in GABARAP KO mice, since autophagy already attenuated in this mouse model 

by GABARAP knockout as well as IL-2 was found to be upregulated in lymphocytes of 

DMBA-treated group upon stimulation with CD3. 

Our finding of immunomodulation upon DMBA treatment represents the first report for 

enhancement of immunity and/or “anti-tumor immunity” in our GABARAP KO mouse model 

of autophagy, which requires further investigation to explore the mechanism by which 

GABARAP executes this modulation. 

 

4.4     Inhibition of epithelial growth in mammary glands of GABARAP KO 
mice after DMBA treatment 

Mouse models have provided information for understanding the biological, cellular and 

molecular alterations involved in mammary tumorigenesis (Medina, 2007). The mammary 

gland is one of dominant target organs for the carcinogenicity of DMBA when administered 

by oral gavage (Medina, 1974, Currier et al., 2005). Terminal end buds (TEB) are specialized 

structures in the mammary gland responsible for duct elongation during the immediate post 

pubertal period of development. TEBs of mammary glands are thought to be the target sites 

for the origin of tumors. Since the presence of TEBs in the time period of 4 - 8 weeks of age, 

the susceptibility of the mammary gland to DMBA carcinogenesis is highly age-dependent 

(Williams and Daniel, 1983 Medina, 2007). For this reason we used the female mice of 6 - 8 

week age in all our investigations. Our results for tumor induction by DMBA revealed no 

mammary tumors in GABARAP KO mice compared to 21.4% mammary tumors in wild-type 

mice. We investigated the mammary epithelial cell growth and ductal tree morphogenesis 

after 6 weekly doses of 1 mg DMBA/mouse in both GABARAP KO and wild-type mice to 

evaluate the gland architecture and proliferation by means of mammary gland whole mount 
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morphology analysis. The impact of DMBA on the epithelial cell growth and ductal 

branching was obvious in mammary gland of GABARAP KO mice. Although the mammary 

glands of DMBA-treated female wild-type mice appeared to have a significant alteration in 

epithelial growth compared to aged-matched control wild-type counterparts, this change could 

be a normal consequence of treatment with genotoxic carcinogen like DMBA. The ability of 

DMBA to induce apoptosis has been indicated in lymphoid organs and bone marrow (Miyata 

et al., 2001; Page et al., 2003). Recently, Stolpmann et al. (2012) showed that activation of 

AhR (aryl hydrocarbon receptor) sensitised the cells to induce apoptosis. We propose that 

DMBA can induce apoptosis in mammary glands, since AhR has been showed to be 

upregulated upon DMBA treatment in mammary glands (Swanson et al., 1995; Trombino  

et al., 2000; Denison and Nagy, 2003; Currier et al., 2005).  

Furthermore, immunohistochemistry staining for Ki-67 revealed inhibition of epithelial cell 

growth in mammary glands of DMBA-treated GABARAP KO mice as well as increased 

incidence of cell death compared to mammary glands of DMBA-treated wild-type mice. In 

general, knockout of GABARAP seems to sensitise the cell to inhibit the proliferation and 

increases cell death induction which was obvious in spleen and mammary gland. 

 

4.5     Gene expression profiling indicated differential expression of tumor 
suppressor and apoptosis inducer genes in GABARAP KO mice 

Microarray analysis is a widely used technology for studying gene expression on a global 

scale that can be used to investigate the molecular mechanisms that contribute to disease. 

Several studies have shown that microarray gene expression profiling results in improved 

diagnosis and risk stratification in cancer (van 't Veer et al., 2002; Jackson et al., 2013). To 

explore the molecular mechanisms by which deficiency of GABARAP led to reduced tumor 

formations, we employed Agilent Whole Mouse Genome expression microarrays to analyse 

mammary glands of vehicle-treated (control) and DMBA-treated GABARAP KO and wild-

type mice. We found a subset of genes that had GABARAP-dependent alterations in both 

control and DMBA-treated groups. Xaf1 is the most important gene that was differentially 

expressed in mammary gland of both control and DMBA-treated GABARAP KO mice. This 

gene has been widely studied in the last decade and characterized as an apoptosis inducer and 

tumor suppressor gene. Xaf1 is expressed ubiquitously in all normal cells (Fong et al., 2000). 

In contrast, extremely low or undetectable Xaf1 expression is a frequent event in several 

cancer cell lines (Fong et al., 2000), as well as in many types of human cancer tissues (Byun 

et al., 2003; Ma et al., 2005; Lee et al., 2006; Tu et al., 2009; Huang et al., 2010). Moreover, 
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Kempkensteffen et al. (2007) found that loss of Xaf1 expression correlated strongly with 

tumor staging, implicating loss of Xaf1 function in tumor progression. The epigenetic 

silencing of Xaf1 by aberrant promoter methylation (hypermethylation) has been associated 

with cancer development and progression (Byun et al., 2003; Lee et al., 2006; Zou et al., 

2006; Huang et al., 2010). The restoration of Xaf1 expression induced cancer cell apoptosis 

and inhibited tumor growth in various types of cancers including gastric, colon, liver, 

pancreatic and prostate cancers, as well as increased cell sensitivity to drug-induced apoptosis 

(Byun et al., 2003; Lee et al., 2006; Arora et al., 2007; Tu et al., 2009, 2010; Huang et al., 

2010). Recently, Zhang et al. (2011) showed that Xaf1 inhibited cell invasion, it interacts with 

and attenuates the trans-activity of Four and a Half LIM protein 2. Moreover, Straszewski-

Chavez et al. (2007) showed that Xaf1 re-localized to mitochondria in response to TRAIL and 

promoted translocation of Bax into mitochondria and cytochrome C release from 

mitochondria, and thereby induced apoptosis. Interestingly, our results demonstrated 

enhancement of pro-apoptotic gene (Bid, Apaf1 and Bax) expression in mammary glands of 

DMBA-treated GABARAP KO mice. Bax expression was elevated also in DMBA-treated 

wild-type mammary glands and this may be due to the genotoxic effect of DMBA. 

Furthermore, Xaf1 has been shown to induce cell cycle arrest in G2/M phase and mitotic 

catastrophe (Tu et al., 2009; Wang et al., 2009a; Zhang et al., 2011). In our results, mammary 

glands of DMBA-treated GABARAP KO mice exhibited differential expression of cyclin-

dependent kinase inhibitors p21 (Cdkn1a) and p18 (Cdkn2c) that could explain the inhibition 

of epithelial cell growth. The results of relative mRNA expression of Bax and p21 by using 

qRT-PCR revealed differences in the expression of these genes when we compared the 

DMBA-treated groups. In addition, Zou et al. (2012) showed recently that Xaf1 is a novel 

target of p53 and that it enhances p53-mediated apoptosis via post-translational modification. 

We proposed that despite the high expression of Xaf1 in mammary gland of GABARAP KO 

mice, its extreme effect as an apoptosis inducer may not detect entirely at the mRNA level. 

Nevertheless, high Xaf1 expression in mammary glands of GABARAP KO mice fits well 

with the observed phenotype, i.e. high Xaf1 expression predisposes mammary gland 

epithelium to undergo apoptosis after genotoxic insult thereby preventing tumor formation 

and favoring inhibition of branching/growth of the glandular tissue. 

Xaf1 was originally identified as a binding partner and a novel negative regulator of apoptosis 

inhibitor protein Xiap thereby acting itself as an apoptosis inducer. Xaf1 directly interacts 

with endogenous Xiap and results in Xiap sequestration to nuclear inclusions, thereby 

antagonizing the anti-caspase activity of Xiap and reverses the protective effect of Xiap 
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overexpression in cell lines (Liston et al., 2001). High relative expression of Xiap compared 

to Xaf1 expression in cancer cells has provided a survival preference through increasing the 

Xiap anti-apoptotic function (Fong et al., 2000). We found that Xiap was significantly 

upregulated in the mammary glands of DMBA-treated wild-type mice. This may be an 

indication that the gene provides a protective mechanism for wild-type mammary glands 

against cellular death signaling. Moreover, Xiap overexpression may confer a possibility  

for mammary tumor formation in wild-type mice. In contrast, the mammary glands of 

DMBA-treated GABARAP KO mice demonstrated insignificant alterations in the expression 

level of Xiap. 

However, Xaf1 have been reported to induce cell death also by Xiap-independent pathways 

(Xia et al., 2006; Yu et al., 2007; Tu et al., 2010). Xia et al. (2006) showed that Xaf1 

activates the mitochondrial apoptotic pathway that was dramatically enhanced by TNFα; they 

found no evidence for an interaction between Xaf1 and Xiap. Thus, Xaf1 induces apoptosis 

through multiple mechanisms. Interestingly, we found that Tnfrsf10b and Ripk1, both are 

TNF receptors, significantly upregulated in mammary glands of DMBA-treated GABARAP 

KO mice. Tnfrsf10b is a member of the tumor necrosis factor (TNF) receptor superfamily and 

contains an intracellular death domain that can induce apoptosis in many physiological 

events, such as autoimmunity and activation-induced cell death (Chaudhary et al., 1997;  

Zhao et al., 2014). 

We screened the expression level of Xaf1 in several organs and found that Xaf1 was highly 

expressed in the investigated organs of GABARAP KO mice compared to the wild-type mice. 

This indicates that Xaf1 is a general event of GABARAP deficiency, and may explain the 

reduction of tumor formation in general and the cytotoxic effect of DMBA in the spleen of 

GABARAP KO mice. 

Expression profiles displayed several differentially expressed genes upon GABARAP 

deficiency. We reviewed most of these genes to identify the biological functions that may 

provide an interpretation for the phenotypic changes in the mammary glands as well as the 

reduction in tumor formation of GABARAP KO mice. Many of these genes are with 

unknown functions so far, but some of them have been reported to play a role in 

tumorigenesis and/or cell death or may function as a transcription factor. For instance, we 

found Trim16 significantly downregulated in mammary glands of both control and DMBA-

treated GABARAP KO mice. Trim16 is a ubiquitously expressed protein and was identified 

as an estrogen and anti-estrogen regulated gene in epithelial cells stably expressing estrogen 

receptor. The family of this protein play essential roles in cell growth, differentiation, 

  
 92 

 
  



4. Discussion 
 

ubiquitination, retroviral immunity and cancer (Cao et al., 1998; Beer et al., 2002; Meroni 

and Diez-Roux, 2005; Marshall et al., 2010; Liu et al., 2014). The expression of Trim16 is 

induced by estrogen in breast cancer cells and keratinocyte growth factor in keratinocytes, 

when the cells are forced to proceed into a differentiation pathway (Beer et al., 2002; 

Marshall et al., 2010). There is evidence that Trim16 reduced the cell viability in retinoid-

sensitive neuroblastoma cells and retinoid-resistant breast and lung cancer cells, however the 

viability of non-cancer cells was unaffected by Trim16 overexpression (Cheung et al., 2006; 

Raif et al., 2009; Marshall et al., 2010). Recently, Liu et al., (2014) showed that inhibition of 

one protein of the Trim family, Trim24, promoted apoptosis in hepatocellular carcinoma by 

increasing the protein levels of p53, Bax, and caspase-8, and decreasing the expression of 

Bcl-2, Survivin, Cyclin D1, and CDK4. They also proved the involvement of Trim24 in EMT. 

These findings provide an indication for the essential role of the Trim family in tumor 

initiation and progression. However, the exact role of Trim16 in our studies is not clear and 

requires further investigations to clarify it. 

Moreover, Siva1 has been proven as an apoptotic inducer protein (Prasad et al., 1997; Xue  

et al., 2002; Chu et al., 2005; Du et al., 2009; Resch et al., 2009). Li et al., (2011) showed 

that overexpression of Siva1 inhibited stathmin (Stmn), an important regulatory protein of 

microtubule dynamics, leading to suppression of EMT and metastasis. In our results, Siva1 

was upregulated in DMBA-treated groups; GABARAP KO and wild-type mice, but the 

expression level of Stmn4 was significantly downregulated in DMBA-treated GABARAP KO 

mice. This finding may explain the inhibition of mammary gland proliferation and 

tumorigenesis of GABARAP KO mice upon DMBA treatment, since EMT is an essential 

process for epithelial cells to develop, migrate, invade and initiate metastasis and tumor 

progression (Yang and Weinberg, 2008; Kalluri and Weinberg, 2009; Thiery et al., 2009). 

Furthermore, several transcription factors have been shown to be upregulated in mammary 

glands of wild-type mice upon DMBA treatment, for instance NF-κB1, Smad2, E2f4 and 

Tfdp2. NF-κB is an important regulator of mammary gland development, where it controls 

proliferation and branching (Brantley et al., 2001; Cao et al., 2001), and also protects the 

epithelial cells during apoptotic alveolar involution (Clarkson et al., 2000). These findings 

support our results of the occurrence of mammary tumorigenesis in wild-type mice upon 

DMBA treatment in contrast to GABARAP KO mice. Mammary glands of wild-type mice 

can develop protective mechanisms upon DMBA treatment against cellular death represented 

by a significant upregulation of NF-κB as well as Xiap. In addition, constitutive activation of 

NF-κB factors have been demonstrated in breast cancer; high nuclear NF-κB levels were 
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found in the majority of specimens from DMBA-induced rat mammary tumor and primary 

human breast tumor, carcinogen transformed human mammary epithelial cells and breast 

cancer cell lines (Sovak et al., 1997). Kim et al. (2000) and Currier et al. (2005) showed that 

NF-κB upregulation occurs as an early event and can precede DMBA-induced mammary 

tumor formation in rats and mice. Moreover, overexpression of NF-κB family member c-Rel 

in the mammary gland promotes breast cancer in transgenic mice (Romieu-Mourez et al., 

2003). Thus, the expression profile analysis is consistent with our experimental observation 

that wild-type mice exhibited mammary tumor formation in contrast to GABARAP KO mice. 

Tumor development is a result of aberrant cellular proliferation and failure to undergo 

apoptosis in response to normal signaling cues (Green and Evan, 2002). One “hallmark” of 

cancer is the dysregulation of cell death pathways (Igney and Krammer, 2002), and this 

dysregulation is required for tumor initiation and progression (Hanahan and Weinberg, 2011). 

Autophagy and apoptosis are both well-controlled biological processes and play fundamental 

roles in development, maintenance of tissue homeostasis and diseases. Accumulating 

evidence revealed that autophagy and apoptosis can cooperate, antagonize or assist each 

other, for subsequently determining the fate of cells. Recently, many studies have delineated 

pathways that mediate the complex interplay between autophagy and apoptosis providing 

molecular insight into the signaling network that regulates both processes, as we showed in 

Figure 6. Indeed, there are many crucial factors governing the cross-talk between autophagy 

and apoptosis, several autophagic proteins showed essential roles in apoptosis and vice versa, 

as elucidated in Table 1 (Mukhopadhyay et al., 2014). Autophagy has been well established 

as an important cell survival mechanism, especially in cells under stress conditions (Cecconi 

and Levine, 2008; Kroemer and Levine, 2008). Elliott and Reiners (2008) showed that 

suppression of autophagy enhanced the cytotoxicity of DNA-damaging agents. This let us to 

propose that attenuation of autophagy, or GABARAP deletion, deprives the cells from 

essential survival mechanisms leading to an increase of sensitivity against exposure to stress 

like genotoxic carcinogens.  

Finally, the mechanisms linking autophagy and apoptosis are not fully defined. However, our 

results demonstrated a unique interaction between GABARAP and Xaf1 expression. The high 

expression of Xaf1 was not only detectable in mammary glands but also in different organs of 

GABARAP KO mice. This observation requires further study to clarify how GABARAP 

knockout influences Xaf1 expression. We propose two possibilities of interaction; one could 

be by direct genetic interaction of GABARAP and Xaf1 and the second by indirect 

interaction. Indeed, several regulatory pathways of Xaf1 expression have been reported. 
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Wang et al. (2006a) demonstrated heat shock factor 1 (Hsf1) as a negative regulator of Xaf1. 

Moreover, Xaf1 has been recognized as an interferon-stimulated gene and its expression has 

been promoted by both IFN and TNFα (Leaman et al., 2002). The mechanism by which IFN 

induced Xaf1 expression was either through interaction with the interferon regulatory factor 

1-binding element (Irf-E) or demethylation of CpG sites within the Xaf1 promoter (Wang  

et al., 2006b; Micali et al., 2007; Wang et al., 2009b). Micali et al. (2007) showed that Xaf1 

knockdown in cancer cells led to complete loss of IFN-β-mediated TRAIL-induced cell death. 

It has been reported that IFN-β-induced Xaf1 expression was mediated by Stat1 through the 

interaction with IFN stimulated response element-Xaf1. Stat1 knockdown and blocking its 

phosphorylation decreased IFN-β-induced Xaf1 expression (Sun et al., 2008). Recently,  

Qiu et al. (2014) showed that Irf-1-enhanced Xaf1 gene activation in glomerular mesangial 

cells in a rat nephritis model. Therefore, Xaf1 appears to be a mediator or effector of 

cytokine-induced apoptosis. Interestingly, we found that GABARAP deficiency modulated 

cytokine secretion, for instance IFN-γ (Fig. 20 B). According to our findings we would like to 

promote the idea of cytokines being involved in the enhancement of Xaf1 expression thus 

pointing to an indirect mechanism of Xaf1 regulation by GABARAP knockout. 

 

4.6     Impairment of DNA damage repair in GABARAP-deficient MEFs 

There are many factors that can cause DNA damage and DNA damage response (DDR). 

These factors are either exogenous environmental agents, like genotoxic chemicals and 

chemotherapeutic drugs, or endogenous byproducts of regular cellular metabolism 

(Rodriguez-Rocha et al., 2011). Recently, autophagy has been showed to be induced in 

response to DNA damage; however the precise role of autophagy in DDR is still unclear 

(Klionsky and Emr, 2000; Polager et al., 2008; Kang et al., 2009). We observed that 

autophagy was induced after treatment of GABARAP-deficient and wild-type MEFs with 

DMBA and CPT, both are DNA-damaging agents. Autophagy induction after treatment with 

DNA-damaging agents may represent a pro-survival function to maintain cellular integrity. 

However, GABARAP-deficient MEFs have been shown to accumulate p62 as an indicator of 

autophagy impairment; p62 is associated with the autophagosome membrane and in case of 

intact autophagy p62 undergoes degradation by the action of the lysosome. 

One important event in DDR activation is phosphorylation of histone H2AX (termed γH2AX) 

which leads to recruitment of DNA repair molecules to the site of damage. Therefore it is 

considered as a marker for DNA double-strand break (DSB) formation (Kinner et al., 2008; 

Svetlova et al., 2010). After DSB re-joining γH2AX foci are eliminated from the nucleus and 
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this elimination can serve as a useful marker of DSB repair in normal cells and tissues 

(Svetlova et al., 2010). We found that γH2AX was accumulated in the GABARAP-deficient 

MEFs in a time-dependent manner after treatment with DMBA and CPT; in contrast wild-

type MEFs showed no change or decrease in amount of γH2AX protein at 48 h (DMBA) or 

20 h (CPT) treatment. These findings denoted that GABARAP deficiency resulted in the 

impairment of the DNA damage repair mechanism induced by the genotoxic chemical DMBA 

and the chemotherapeutic agent CPT. Moreover, lack of DNA damage repair in GABARAP-

deficient MEFs was accompanied with decrease in cell survival and reduction in Cyclin D1 

protein expression. 

The mechanisms underlying GABARAP deficiency leading to defective DNA damage repair 

are not well understood at present. However, Bae and Guan (2011) showed that p62 

accumulation may be responsible for defective DDR and reduced cellular survival in FIP200-

deletion MEFs upon CPT treatment. In addition, inhibition of autophagy by heterozygous loss 

of Beclin-1 or homozygous deletion of Atg5 in apoptosis-defective tumor cells induced p62 

accumulation which led to increased DNA damage (Karantza-Wadsworth et al., 2007; 

Mathew et al., 2009). Interestingly, we also observed accumulated p62 in GABARAP-

deficient MEFs upon DMBA and CPT treatment. Furthermore, Bae and Guan (2011) 

indicated that direct inhibition of p62 expression by using RNA interference suppressed 

accumulation of γH2AX in FIP200-deficient MEFs and rescued the increased sensitivity of 

CPT-induced cell death. We suggest that upregulation of p62 in GABARAP-deficient MEFs 

may mediate the reduction of DNA damage repair and the inhibition of cell proliferation. 

Indeed, it is known that p62 is localized primarily in the cytoplasm as a cargo protein of 

ubiquitinated proteins for autophagic degradation (Moscat and Diaz-Meco, 2009). However, 

Pankiv et al. (2010) showed that p62 contains two nuclear localization signals and a nuclear 

export signal. It is required for polyubiquitinated protein interaction with promyelocytic 

leukemia (PML) nuclear bodies. PML nuclear bodies are implicated in DNA damage repair, 

they contain several DDR proteins such as TopBP1 (Lallemand-Breitenbach and de Thé, 

2010). Despite this, Moscat and Diaz-Meco (2009) pointed out that accumulation of p62 in 

the cytoplasm also impact on DNA damage repair through its indirect interaction with 

multiple other proteins. The other possibility of defective DNA damage repair is increased 

production of ROS in autophagy-deficient cells (Mathew et al., 2007; Liu et al., 2010). 

Finally, our results showed that DNA-damaging agents extremely increased inhibition of 

proliferation of GABARAP-deficient cells. This is consistent with the observed increased 

vulnerability of autophagy-defective cell to DNA damage and the rationale for using drugs 
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like camptothecin in chemotherapy together with autophagy inhibitors in cancer therapy. 

However, further investigations are required to explore the exact mechanisms of GABARAP 

in this process.  

 

4.7     In vivo inhibition of B16 melanoma cells growth in GABARAP KO mice 

Using the GABARAP KO mice we also addressed the question whether the genetic 

background may affect the in vivo tumor growth of inoculated tumor cells. To address this 

issue, we used the transplantable murine melanoma B16 cell line. The subcutaneous 

inoculation of melanoma B16 cells is widely used for the evaluation of gene deletion 

consequences and/or therapy (Overwijk and Restifo, 2001). Several studies have shown a 

significant decrease of tumor cells growth, in vivo and in vitro, treated with autophagy 

inhibitor chloroquine (Fan et al., 2006; Zheng et al., 2009; Noman et al., 2011). Our 

investigation of tumor cells inoculation in GABARAP-deficient mice model represents the 

first inspection for the role of the in vivo effect of autophagy-related gene deletion on tumor 

growth. Noman et al. (2011) showed that targeting Beclin-1 in B16 melanoma cells reduced 

tumor growth, which was associated with an increase in apoptotic cells. In the same study, 

they found that autophagy prevented T cell-mediated cytotoxicity in the context of hypoxia in 

lung cancer cells (Noman et al., 2011). Our in vivo results showed that GABARAP knockout 

reduced B16 melanoma cells growth. 

The molecular mechanisms how autophagy-related gene deficiency in the mouse model could 

influence the growth of the inoculated tumor cells is unknown so far. GABARAP-deficient 

immune cells demonstrated modulation in the cytokine secretion upon CD3 stimulation. It 

might be speculated that this effect may influence the growth of B16 melanoma cells by 

increased anti-tumor immunity. However, the precise role of tumor growth reduction in 

GABARAP KO mice needs to be clarified by studying microenvironment factors which 

represent an essential demand for tumor growth in vivo. Tumor microenvironment can 

enhance tumor cell growth by recruitment of angiogenesis-promoting factors, in addition to 

the role of immune system as a key determinant in the regulation of tumor growth or rejection 

(Witz and Levy-Nissenbaum, 2006). 

 

4.8     Absence of Ras mutation in DMBA-induced tumors of GABARAP KO 
mice 

Many chemical carcinogens induce molecular alterations in target organ, and the most 

frequently involved genes are Ras and Tp53 (Hoenerhoff et al., 2009). It is well known  
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that DNA damaging effect of DMBA mostly induced point mutations in genes such as  

c-H-ras (Dandekar et al., 1986; Cardiff et al., 1988; Qing et al., 1997). Ras oncogenes play a 

fundamental role in regulation of cell growth and survival and they are frequently activated in 

cancer (Schubbert et al., 2007). Previous studies showed that active oncogenic Ras induced 

autophagy to promote and facilitate oncogenic transformation by maintaining and improving 

cell metabolism (Guo et al., 2011; Kim et al., 2011; Lock et al., 2011). Indeed, Ras-

transformed cells have been shown to enhance glucose uptake, whereas autophagy-deficient 

counterparts have decreased rates of glycolysis (Lock et al., 2011). Moreover, Wei et al. 

(2011) observed that FIP200-null mammary tumor cells and transformed MEFs had reduced 

glycolysis and suppressed mammary tumor initiation and progression in a mouse model of 

breast cancer driven by the PyMT oncogene. These findings elucidated the essential role of 

autophagy-related genes in tumorigenesis induced by oncogenic signaling. Since DMBA has 

been reported to induce point mutations in H-ras gene leading to A > T transversion in codon 

12, 13 and 61 (Dandekar et al., 1986; Cardiff et al., 1988; Qing et al., 1997), we wanted to 

investigate the H-ras status in the tumors obtained from GABARAP KO and wild-type mice 

after treatment with 6 weekly oral doses of DMBA. Interestingly, we did not find any 

mutations within the hot spots of exon 1 (codon 12, 13) and exon 2 (codon 61) of H-ras in the 

tumors of GABARAP KO mice. In contrast, tumors of wild-type mice were shown to harbour 

H-ras mutation within codon 61 of exon 2 in about 36% of total tumors number. 

We suggested an essential role of GABARAP gene in tumorigenesis, and this role may be 

through its involvement in the autophagy process. Furthermore, the non-occurrence of  

H-ras mutations in the tumors of GABARAP KO mice may indicate the involvement of 

autophagy/GABARAP in Ras-mediated cellular transformation. 

 

4.9     Conclusions 

By using a mouse model, we have identified a novel role of GABARAP in tumor formation 

and progression. GABARAP knockout (KO) mice showed less tumor formation, 

spontaneously and after carcinogen treatment. The tumor inhibition of GABARAP knockout 

mice was characterized by absence of mammary tumors in the both conditions. We found that 

GABARAP plays a role in immunomodulation after carcinogen treatment and that the gene 

knockout induced alterations of the gene expression profile. 

Treatment by chemical carcinogens was accompanied by less tumor formation and increased 

lethality of GABARAP KO mice. Moreover, DMBA showed a massive impact to decrease 

the cellularity of splenocytes of GABARAP KO compared to the wild-type counterparts. This 
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effect was due to decreased proliferation rates and increased cellular death of GABARAP-

deficient splenocytes. The in vitro stimulation of macrophages and lymphocytes from 

GABARAP KO mice resulted in a high increment in cytokine secretion. Proinflammatory 

cytokines, IL-1β and IL-6, were significantly produced by macrophages of DMBA-treated 

GABARAP KO mice compared to wild-type counterparts. Lymphocytes of DMBA-treated 

GABARAP KO mice showed immune enhancement by increasing the production of IL-2  

and IFN-γ. In contrast, lymphocytes of DMBA-treated wild-type mice demonstrated 

immunosuppression represented by repression of IL-2 and IFN-γ production. 

Mammary epithelial cell growth of GABARAP KO mice showed an inhibition in the growth 

and branching of the glandular tissue upon DMBA treatment compared to wild-type 

counterparts. This inhibition was accompanied by a decreased proliferation rate and increased 

cellular death of mammary gland epithelium. Gene expression profiling analysis indicated 

high and differential expression of the tumor suppressor gene Xaf1 in mammary glands of 

GABARAP KO mice. Studies on expression of Xaf1 in several cancer cells identified it as an 

apoptosis inducer and tumor suppressor gene as well as a potential inhibitor of invasion. In 

addition, several cell death/apoptosis genes were found to be upregulated in mammary glands 

of DMBA-treated GABARAP KO mice compared to wild-type counterparts. In our view the 

high Xaf1 expression predisposed the mammary gland epithelium to undergo apoptosis after 

genotoxic insult thereby preventing tumor formation. 

Mouse embryonic fibroblasts (MEFs) revealed impairment of DNA damage repair and 

reduction in proliferation rate after genotoxic agents (DMBA and camptothecin (CPT)) 

treatment in GABARAP-deficient cells. Failure of DNA damage repair has evidenced by 

accumulation of histone H2AX (γH2AX) protein in a time-dependent manner in association 

with downregulation of the Cyclin D1 protein. 

The growth of mouse B16 melanoma cells inoculated subcutaneously in GABARAP KO mice 

was inhibited. Furthermore, the mutation analysis of H-ras in DMBA-induced tumors 

revealed no mutation within the hot spots of exon 1 and 2 in tumors of GABARAP KO mice 

which may indicate that these neoplasms develop in an alternative way compared to the 

classical, DMBA-induced, Ras-mediated activation of tumorigenesis. 

Altogether, our results demonstrated different aspects for the role of GABARAP in 

tumorigenesis. The challenge of future investigations will be to explore the molecular 

mechanisms of GABARAP in the regulation of gene expression, more specifically of Xaf1 

expression, and immunomodulation after genotoxic stress. Figure 30 summarizes our working 

model for the potential mechanisms of tumor inhibition in GABARAP KO mice. 
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Figure 30. Working model summarizing the potential mechanisms of tumor suppression in GABARAP KO 
mice subjected to genotoxic stress (DMBA). GABARAP deletion results in impairment of autophagy in the 
cells. In non-immune cells, knockout of GABARAP gene leads to over- and differential expression of tumor 
suppressor gene Xaf1 that may trigger cell death events under stress leading to the inhibition of tumor 
formation. Under genotoxic stress, GABARAP-deficient immune cells highly produce several cytokines which 
could suppress tumor formation and/or may trigger cell death. Similarly, tumor cell inoculation might induce 
inflammasome activation and cytokine secretion leading to inhibition of tumor growth by the enhancement of 
antitumor immunity. 
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