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Abstract. We study the initial interaction of adsorbed H2O with P-rich and
Ga-rich GaP(100) surfaces. Atomically well defined surfaces are prepared by
metal-organic vapour phase epitaxy and transferred contamination-free to ultra-
high vacuum, where water is adsorbed at room temperature. Finally, the surfaces
are annealed in vapour phase ambient. During all steps, the impact on the
surface properties is monitored with in situ reflection anisotropy spectroscopy
(RAS). Photoelectron spectroscopy and low-energy electron diffraction are
applied for further in system studies. After exposure up to saturation of
the RA spectra, the Ga-rich (2 × 4) surface reconstruction exhibits a sub-
monolayer coverage in form of a mixture of molecularly and dissociatively
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adsorbed water. For the p(2 × 2)/c(4 × 2) P-rich surface reconstruction, a new
c(2 × 2) superstructure forms upon adsorption and the uptake of adsorbate
is significantly reduced when compared to the Ga-rich surface. Our findings
show that microscopic surface reconstructions of GaP(100) greatly impact the
mechanism of initial interface formation with water, which could benefit the
design of e.g. photoelectrochemical water splitting devices.
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1. Introduction

Harvesting solar energy and storing it in the form of hydrogen can be achieved in a single device,
a photoelectrochemical solar cell [1]. In such a device, the light-absorbing semiconductor
is brought in contact with an electrolyte so that the photo-generated electrons or holes can
directly reduce or oxidize water, respectively. In such a device, several challenges have to be
addressed that do not arise in photovoltaics, such as corrosion and proper energetic alignment
to the redox potentials of the aqueous electrolyte [2]. III–V semiconductors are a promising
absorber material class for this application due to a high flexibility in opto-electronic properties,
with energy gap as well as band alignment tunable via the growth of ternary (quarternary)
compounds [3, 4]. Devices however, which are simultaneously efficient and (photo)chemically
stable, have yet to be realized.

A microscopic understanding of both morphology and electronic structure at the
solid–liquid interface is essential for the design of the semiconductor surface at this phase
boundary. Initial oxide formation induced upon contact with the electrolyte, for example, can
either hinder charge-transfer to the electrolyte [5] or favour it due to proper band alignment,
when formed in a controlled manner [6]. The oxidation of InP, a semiconductor closely related
to GaP, was for instance found to be very sensitive to the surface reconstruction [7]. The question
arises to what extent different surface reconstructions impact the interaction between water and
the semiconductor, and if this could benefit device designs, as was shown for heteroepitaxial
growth of tunnel junctions [8].

Model experiments in the literature involved water adsorption in ultra-high vacuum
(UHV) to gain insight into the surface modifications of semiconductors induced by H2O
[9, 10], as typical surface science tools such as photoelectron spectroscopy (PES) cannot be
applied in a fully realistic liquid environment. The initial contact between water and the III–V
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Figure 1. Ball-and-stick model of the considered surface reconstructions of
GaP(100). The left side shows the Ga-rich, (2 × 4) mixed dimer reconstruction,
the right side the P-rich p(2 × 2)/c(4 × 2) reconstruction. Blue represents Ga
atoms, red P atoms and grey H atoms; size increases for atoms that are closer to
the top.

semiconductors InP and GaP has been subject of several theoretical investigations [11–13], but
experimental data only exists for InP(110) [14, 15] and not for GaP to our knowledge.

Wood et al [12] studied chemisorbed oxygen and hydroxyl groups on GaP and InP
(100) surfaces with density-functional theory, identifying the most probable structural motifs
to be Ga–[OH]–Ga, Ga–OH, Ga–O–P and Ga–O–Ga. The latter is thought to create traps for
holes and to initiate corrosion of the semiconductor photocathode under working conditions.
For adsorbed hydroxyl on the Ga-rich (2 × 4) surface reconstruction, Ga–[OH]–Ga bridge
configurations and Ga–OH atop configurations are expected to be energetically most favourable,
with neighbouring OH groups stabilized further by hydrogen bonding [12]. The stability of the
chemisorbed states are expected to depend on the bond topology, which should in principle be
visible to surface-sensitive surface science tools. At room temperature, however, the surfaces
will probably exhibit not only the energetically most favourable state, but also other states due
to dynamical interconversion. Jeon et al [13] have modelled the interaction of a single H2O
molecule with the Ga-rich (2 × 4) surface reconstruction of GaP(100). They found a three-step
process to be most likely, where H2O is initially adsorbed in a molecular state, then dissociated
into HO/H and finally forms Ga–O–Ga bridges desorbing molecular hydrogen.

The well-defined P-rich, p(2 × 2)/c(4 × 2) and the Ga-rich, (2 × 4) mixed dimer surface
reconstructions [16, 17], which are typical for films grown by metal-organic vapour phase
epitaxy (MOVPE) in hydrogen ambient, are the initial points of our experiments and juxtaposed
in figure 1. The Ga-rich surface reconstruction features a mixed Ga–P dimer on top of a layer
of Ga atoms. The P-rich surface reconstruction is formed of buckled P–P dimers on top, which
are stabilized by one hydrogen atom per dimer. The orientation of the H atom in adjacent rows
of P dimers leads to a mixture of p(2 × 2) and c(4 × 2) phases, which can inter-convert due to
a flipping motion of the P dimers at room temperature [18].

In this paper, we combine PES and low-energy electron diffraction (LEED) in model
experiments with in situ reflection anisotropy spectroscopy (RAS) [19] to investigate water-
induced modifications of the surface regarding electronic structure and morphology. We find a
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distinctly different interaction of the P-rich and the Ga-rich surface reconstructions with water,
identifying adsorbate-related signatures in RAS and potential reaction mechanisms.

2. Experimental

Investigations on the semiconductor–liquid interface in adsorption experiments necessitate
well-defined and clean semiconductor surfaces as a point of reference for the subsequent
adsorbate-induced surface modifications. MOVPE was used here to prepare two different
surface reconstructions in hydrogen atmosphere at near-ambient pressure. Optical in situ growth
control was achieved with RAS enabling a clear distinction between the P- and the Ga-rich
surface already in the MOVPE reactor (Aixtron AIX 200) during growth and thereby well-
defined preparation [20].

RAS is an optical spectroscopic method sensitive to dielectric anisotropies of for example
two perpendicular crystal directions in cubic semiconductors [19]. RAS can be applied in both
UHV and liquid environments and has previously been applied to semiconductor–adsorbate
interfaces as well as to metal–liquid interfaces [7, 21, 22]. The sample is irradiated with linearly
polarized light at near-normal incidence and the difference 1r in reflection along the two axes—
[01̄1] and [011] for (100) surfaces—is measured and normalized to the arithmetic mean of the
total reflection, r :

1r

r
= 2

r[01̄1] − r[011]

r[01̄1] + r[011]
, r ∈ C. (1)

A commercial spectrometer (LayTec EpiRAS 200) was used for both the measurements in
the MOVPE reactor and in the UHV setup, for details, see [23].

Initial surface preparation in the MOVPE reactor consisted of deoxidation of a GaP(100)
wafer under hydrogen atmosphere, followed by homoepitaxial growth of an about 200 nm
thick GaP buffer layer with the precursors tertiarybutylphosphine (TBP) and triethylgallium.
After buffer growth, either the P-rich or the Ga-rich surface reconstruction was prepared by
dedicated annealing steps applying optical in situ control with RAS [20, 24]. The P-rich surface
reconstruction was achieved by cooling down the sample after growth to 300 ◦C (temperatures
were corrected for an offset of approximately 10 K) under TBP supply and finally annealing
it for 10 min at 410 ◦C without TBP, while the Ga-rich surface preparation necessitated an
annealing for 5 min at 700 ◦C [25]. The subsequent, contamination-free transfer from the
MOVPE reactor to the UHV setup employed a dedicated transfer system [26] with a mobile
UHV shuttle and base pressures in the low 10−10 mbar range.

The PES system includes a He discharge lamp, a monochromated x-ray source (Specs
Focus 500 with monochromated Al Kα and Ag Lα sources) as well as a hemispherical analyser
(Specs Phoibos 100). The surface sensitivity of x-ray photoelectron spectroscopy (XPS) was
increased by tilting the samples to create a take-off angle of 60◦ against normal emission,
decreasing the information depth of the photoelectrons via their inelastic mean free path.
Furthermore, a LEED system (Specs ErLEED 100-A) and an adsorption chamber with an
optical viewport for RAS are attached. Adsorption of ultra-pure water in a dedicated UHV
chamber (base pressure lower 10−8 mbar) was realized through a leak valve at room temperature
and H2O partial pressures in the order of 10−5 mbar. Adsorbate dosages were measured in
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Figure 2. (a) RA spectra of the Ga-rich (2 × 4) surface before (black) and after
(blue) H2O exposure with the critical point energies Ei (grey lines) [27]. The
peaks in the RA spectra are labelled G i . The red curve shows the spectrum of
an epi-ready GaP(100) wafer before deoxidation. Insets show LEED images of
the clean (I) and exposed (II) surface measured at E = 80 eV. (b) Colourplot
showing the evolution of the RA spectrum during H2O exposure.

Langmuir (L) employing the uncorrected pressure rise in the chamber. Cleanliness of the water
vapour was checked with mass spectrometry. During the exposure, the sample surface could
be monitored continuously with RAS allowing in situ observation of water-induced surface
modifications. Afterwards, samples were again inspected in system with LEED and PES.
A transfer back to the MOVPE reactor via the UHV shuttle enabled annealing in ultra-pure
hydrogen and nitrogen at p = 100 mbar with RAS in situ control.

3. Results

We will first present our findings for the Ga-rich surface of GaP(100), as its behaviour
with respect to H2O exposure has been subject of several theoretical studies [12, 13]. The
P-rich surface, which can only be prepared under more specific conditions due to its hydrogen
stabilization, will be the subject of section 3.2.

3.1. Ga-rich, mixed dimer surface reconstruction

Ga-rich samples were prepared with MOVPE under RAS in situ control before they were
transferred to UHV. At first, the clean surface was characterized by ultraviolet photoelectron
spectroscopy (UPS) and XPS as well as LEED. The diffraction patterns are typical for a (2 × 4)

surface reconstruction (cf figure 2(a)) [20]. PES confirmed a clean surface free of oxygen and
carbon. Afterwards, an RA spectrum of the pristine surface was recorded in the adsorption
chamber (figure 2(a)), agreeing with the spectrum recorded in MOVPE ambient. The prominent
negative anisotropy signal, labelled G1, around 2.4 eV originates from the Ga–Ga bonds in
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Figure 3. (a) XPS overview spectrum of the clean Ga-rich surface. The inset
shows the region around the O1s line before and after exposure, as well as a
deconvoluted difference spectrum. (b) He II spectrum of the Ga-rich surface
before and after exposure to H2O with a difference spectrum and the positions of
the orbitals of molecular H2O, 1b1,2 and 3a1 [28].

the [011] direction, the maximum G2 from transitions between anion-dimer states and surface
resonances, and the higher-energetic features G3, G4 around the critical points E1 and E |

0 [27]
arise from surface-modified bulk transitions [17].

Figure 2(b) shows colour-coded, continuously measured RA spectra during exposure to
H2O. A gradual suppression of the spectral features and partly a shift in energy can be observed
with increasing dosage. The maximum exposure was defined by a saturation of changes in the
RA spectrum, which was 11 kL in this case. A spectrum measured with higher resolution after
exposure (figure 2(a), blue line) reveals that the negative anisotropy G1, typical for the surface
Ga–Ga bonds of the surface reconstruction, is largely suppressed and has transformed into a
weak, broad minimum around 2.8 eV. The negative peak G3 near E1 has shifted ∼80 meV to
higher energies and at E |

0, the peak G4 was conserved.
X-ray photoelectron spectra of the O1s line are plotted in figure 3(a). The take-off angle

of the photoelectrons was 60◦ against normal emission to increase surface sensitivity. An
overview spectrum shows no signal of carbon or oxygen contamination of the unexposed
surface. After exposure, a weak oxygen signature containing two components can be detected.
Since the background involves a Ga LMM Auger line for the monochromated Al Kα

x-ray source, a difference spectrum was used for further analysis. The intensity of the two
spectra was normalized, the spectrum after exposure was shifted in energy to account for the
shift of the whole spectrum (see paragraph below) and finally, the first spectrum was subtracted.
A deconvolution revealed two contributions of the signal centred at 533.0 and 532.0 eV. We
could, however, not detect any changes of the phosphorous or gallium emission lines. A
quantitative analysis applying the inelastic mean-free paths of GaP and H2O [29, 30] results
in a coverage in the order of 0.25(±0.2) monolayers of oxygen on the surface. LEED patterns
of the exposed surface (inset of figure 2) mainly exhibit the signature of the (1 × 1) bulk with
very weak residual spots, probably stemming from the original (2 × 4) reconstruction.
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Figure 4. (a) RA colourplot (top view) while annealing the exposed surface in H2

ambient at a temperature ramp of 5 K min−1. The spectrum at t = 0 corresponds
to the blue spectrum in figure 2. After reaching 300 ◦C, the temperature was held
constant. (b) RA spectra directly after preparation, after annealing the water-
exposed surface in hydrogen to 300 ◦C, and finally after annealing to 410 ◦C,
measured at 300 ◦C, respectively. Insets show XP spectra of the O1s line after
water exposure and after annealing in hydrogen as well as a LEED image after
annealing at E = 60 eV.

He II valence band spectra of the pristine and the exposed surface are given in figure 3(b).
In general, significant features of the valence band are conserved, with major additional
contributions between 5 and 12 eV binding energy. The difference spectrum was calculated
in analogy to the XP spectrum. Intensities were normalized (to the first prominent peak), the
spectrum of the surface with 11 kL H2O shifted in energy to match the unexposed spectrum and
finally the latter was subtracted. In this difference spectrum, we observe two main peaks at the
binding energies 6.8 and 10.9 eV, a small peak at 9.1 eV, and a shoulder at 5.3 eV. Furthermore,
a reduction of the emission near the valence band maximum can be observed. Binding energies
EB of the spectrum were shifted by 1EB ≈ 250 meV to higher binding energies after exposure,
while the secondary electron cut-off, ESC, was shifted by 1ESC ≈ 170 meV (not shown here).

To obtain information about the reversibility of the H2O adsorption, samples were
transferred back to MOVPE to anneal them with RAS monitoring. Figure 4(a) shows a
colourplot of a Ga-rich sample, which was annealed in H2 atmosphere without precursor supply
applying a temperature ramp of 5 K min−1 from room temperature up to 300 ◦C. As the spectra
were still indicating a change of the surface, temperature was held constant for another 50 min
until we could not observe any more changes. Afterwards, a spectrum with higher resolution was
acquired (figure 4(b), blue line) and the sample was annealed further to the temperature typical
for the removal of excess phosphorous after growth, 410 ◦C. At this temperature, precursor
fragments desorb from the surface, leaving the P dimers intact. A preferential desorption of
P from the surface would require temperatures >470 ◦C [20]. Back at 300 ◦C, a spectrum
for comparison to the initial MOVPE-prepared Ga-rich surface was recorded. The negative
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Figure 5. (a) RA spectra of the P-rich surface before (black) and after (blue) H2O
exposure with the critical points Ei and peak labels Pi . (b) Colourplot acquired
during exposure.

anisotropy in the low-energetic region typical for the surface reconstruction could almost be
restored as well as the LEED patterns (inset of figure 4(b)). The higher-energy features of the
surface-modified bulk transitions are fully and more quickly restored. After annealing to 410 ◦C,
we still find a very weak oxygen signal at EB = 532.7 eV with roughly a third of the integrated
signal intensity compared to the exposed surface, see inset of figure 4(b).

3.2. P-rich, buckled dimer surface reconstruction

The P-rich surface reconstruction features a sequence of a negative anisotropy P1 around 2.5 eV
and a strong positive peak P2 around E1. The former signature is most characteristic for this
surface geometry and its lower-energy part originates from the hydrogen termination of the P
dimers [16, 31], see figure 5(a). P2 stems from a surface-modified bulk transition, according
to the observations made on the corresponding RAS signal of P-rich InP(100) [32]. Similarly
to the Ga-rich surface, water exposure leads to a suppression of most RA signatures, yet the
required exposure leading to a saturation is four times higher (cf figure 5(b)). After exposure,
we observe a broad and weak minimum between the critical points E0 and E1, similar to the
Ga-rich surface after exposure. In the higher energetic part, however, the spectrum exhibits a
second, broad and intense minimum, P3, around E |

0.
Before water exposure, LEED patterns display spots at half-order, typical for the

p(2 × 2)/c(4 × 2) surface reconstruction (figure 6(a)). The streaks at half order along [01̄1]
originate from a mixture of p(2 × 2) and c(4 × 2) domains [33]. XPS—again tilted 60◦—does
not reveal any clear signature of oxygen (cf figure 7(a)). In contrast, the LEED features change
significantly upon exposure. Instead of the p(2 × 2)/c(4 × 2) reconstruction, a (1 × 1) structure
with an additional, blurry c(2 × 2) superstructure can be observed (figure 6(b)).

Figure 7(b) shows He II UP spectra before and after exposure. For the difference spectrum,
the spectrum of the exposed surface had to be shifted again in energy. Unlike for the Ga-rich
surface, we cannot observe a clear signature of H2O here. Four very weak contributions can
be found at the energies 6.1, 6.9, 8.9 and 10.9 eV. The characteristic peak associated to the
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Figure 6. LEED images of the clean (a) and the exposed (b) and the nitrogen-
annealed (c) P-rich surface at E = 103 eV.

Figure 7. (a) XPS overview spectrum of the clean P-rich surface. The inset shows
the region around the O1s line before and after exposure, as well as the difference
spectrum. (b) He II spectrum of the P-rich surface before and after exposure to
H2O with difference spectrum.

surface state of the P-rich reconstruction [3] around 2.9 eV has disappeared, which would be
expected for a modification of the surface reconstruction. Binding energies were shifted by
1EB ≈ 180 meV and the secondary electron cut-off by 1ESC ≈ 240 meV to higher binding
energies after exposure.

Samples were again transferred back to VPE ambient employing the UHV transfer
chamber. Annealing in purified nitrogen allows for a recovery of most of the initial RA
spectrum, setting in at temperatures between 200 and 250 ◦C as displayed in figure 8(a). At the
same time, the high-energetic peak P3 between 4 and 4.5 eV disappears. Figure 8(b) compares
spectra at 300 ◦C after specific annealing steps. Most of the spectrum could be recovered
after annealing up to 300 ◦C in N2. The low-energetic part of the negative anisotropy around
2.5 eV, however, fails to be recovered in nitrogen even at temperatures of 410 ◦C. By contrast,
it can be—mostly—restored upon supply of H2 at this temperature. The LEED patterns of
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Figure 8. (a) Colourplot (top view) while annealing the exposed surface in N2

ambient at a temperature ramp of 18 K min−1. The spectrum at t = 0 corresponds
to the blue spectrum in figure 5. After reaching 300 ◦C, the temperature was held
constant. (b) RA spectra at 300 ◦C directly after preparation and after specific
annealing steps.

the p(2 × 2)/c(4 × 2) reconstruction, including the half-order streaks, are regenerated after
annealing in either process gas, see figure 6(c).

4. Discussion

4.1. Ga-rich, mixed dimer surface reconstruction

The Ga-rich, (2 × 4) surface reconstruction is clearly more reactive than the P-rich,
p(2 × 2)/c(4 × 2) surface reconstruction as indicated by the RA spectra during exposure and
the resulting coverage observed with PES. The RA signatures related directly to the specific
surface reconstruction, i.e. the peaks G1 and G2, as well as the LEED patterns of the (2 × 4)

reconstruction mostly disappear (cf figure 2). This diminished signal can in principle be caused
by the establishment of an isotropic adsorbate layer suppressing the RAS (LEED) signal or the
breaking of chemical bonds initiated for example by the formation of Ga–O–Ga or Ga–[OH]–Ga
bonds. The latter scenario, in form of a modification of the Ga–Ga bonds in [011] direction, is
supported by the finding that the RAS peak G1, which is related to these bonds [17], disappears
most quickly. This would also conform to the models proposed for this surface [12, 13] and in
case of the closely related InP, the lower-energetic feature is indeed most sensitive to surface
chemistry [34]. A complete loss of surface ordering, however, would lead to a loss of most
features of the spectrum, as observed e.g. for the oxidation of the In-rich InP(100) surface [7],
which is clearly not observed here. The weak negative anisotropy around 3 eV, observed after
exposure, could be a remainder of the original anisotropy G1. Very weak residual LEED spots
support this view. No new superstructure is visible, which would suggest that the remaining RAS
features are surface-modified bulk transitions or another anisotropic modification not visible to
LEED.
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Above 4.5 eV, the RA spectrum follows quite closely the signal of an oxidized, ‘epi-
ready’ wafer (figure 2(a)). Especially G4 is almost conserved, both in position and magnitude,
emphasizing its nature as a surface-modified bulk transition. A clear shift of G3 in the region
around E1 can be observed, which could be a manifestation of the linear electro-optic effect [35]
due to the dipole at the surface, that also causes the shift of PE spectra, or doping induced by
chemisorbed species. Between 3.7 and 4.5 eV, the (2 × 4) surface exhibits a negative anisotropy
previously absent, but also present in a similar form for the wafer. This indicates that there
exists some similarity to the oxide, the increased magnitude of this feature (as well as G4) for
the exposed surface could be explained by a higher grade of ordering or a reduced roughness of
the MOVPE-prepared surface when compared to the wafer.

XPS confirms the presence of two species of oxygen on the exposed Ga-rich surface. The
contribution with the higher binding energy at 533 eV stems probably from molecular H2O [28],
while we ascribe the weaker peak at 532 eV to surface hydroxyl species. The weakness of
the signal (see figure 3(a)), however, indicates that the coverage is in the order of 0.25(±0.2)
monolayers (two atoms per unit cell of the surface reconstruction), which is in line with the
absence of any detectable chemical shift of the P or Ga lines within the given surface sensitivity
of our setup. Effective coverages in the literature were significantly higher, as either low-
temperature adsorption was applied [15, 36], resulting in a high sticking coefficient, or very
high dosages in the order of 109–1010 L [37]. The O1s emission becomes significantly stronger
upon tilting the sample, which indicates that the adsorption happens at the very surface and
that oxygen is probably not diffusing into the bulk creating Ga–O–P bonds as suggested in one
scenario of Wood et al [12]. This is also in line with our finding that an annealing at already
300 ◦C can restore most of the RA spectrum, while the deoxidation of an oxidized wafer requires
temperatures in the order of 600 ◦C [18].

UPS displays the appearance of four additional contributions superimposed on the valence
band structure of the Ga-rich surface. The higher-energetic peaks fit quite well to the valence
band structure of molecular water found for similar systems [15, 28], their absolute energetic
positions depending on the semiconductor surface [28]. The shoulder at 5.3 eV could, in
analogy to studies of the InP(110) surface by Henrion et al [15], be ascribed to Ga–OH
bonds, which supports the XPS interpretation above. These findings suggest a combination
of chemisorbed hydroxyl groups and molecularly (co)adsorbed water on the surface, similar
to GaAs surfaces [37]. The final step of a dehydrogenation of the hydroxyl groups, as found
for GaAs(100) surfaces at temperatures in the order of 330–430 ◦C [36] and which was also
proposed for GaP(100) in [13], therefore seems to be not the dominant reaction path at room
temperature. The coverage in [13] is kept at 0.125 monolayers (one molecule per surface unit
cell), though basically five adsorption sites were identified for molecular H2O, of which two
pairs are symmetric. Our rather high exposures result in higher coverages, possibly occupying
two of these symmetric sites per unit cell.

A change of band bending, 1eVBB, shifts both the binding energy, EB, and the secondary
electron cut-off, ESC [9]. This can be either a downward band bending or the reduction of an
existing upward band bending (neglecting charge-transfer, which would have the same effect).
The work function/secondary electron cut-off, on the other hand, can be shifted by a change of
the surface dipole, 1χs, as well as a change in band bending, 1eVBB:

1ESC = 18 = 1χs − eVBB. (2)

The observed shifts 1EB and 1ESC suggest a downward change of band bending by
1eVBB ≈ 250 meV. The shift 1ESC ≈ 170 meV, however, differs slightly towards a higher work
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function, pointing to the existence of a positive dipole at the surface after exposure. We assume
that this change of the work function originates from the dipole component of water molecules
perpendicular to the surface implying an orientation of the molecules with the hydrogen towards
the surface. In summary, we presume that the adsorbed water causes a downward change of
band-bending and creates a positive dipole on the surface.

After annealing in hydrogen (figure 4), we still find a very weak oxygen signal, which
exhibits about one third of the original intensity and is shifted in energy. This could indeed
be the remaining oxygen after dehydrogenation of the hydroxyl groups, without the molecular
H2O. Peak G1 of the RA signal can, unlike G2, not be fully restored by annealing up to 410 ◦C,
which is another evidence for an attack on the Ga–Ga bonds at the surface in [011] direction.
The oxygen could be inserted into those bonds, which is thought to be the configuration with
the lowest formation energy [12]. LEED shows again the symmetry of the original surface
reconstruction, so most of the original surface symmetry is restored.

4.2. P-rich, buckled dimer surface reconstruction

The P-rich surface is clearly more stable towards water-induced surface modifications as
indicated by the significantly higher H2O dosage required to saturate the RA signal and the
lower resulting coverage evidenced by PES. This is probably due to the quite inert P dimer
stabilized by an additional hydrogen atom, similar to the hydrophobic properties of hydrogen-
terminated Si [38]. Saturation exposures for water adsorption on very inert TiSe2 surfaces [39]
are in the same order of magnitude as for our experiments on the P-rich surface, emphasizing
that the surface exhibits a very low reactivity. As for the Ga-rich surface, the RA features P1

and P2, specific for the reconstruction, are greatly reduced. A negative anisotropy between E0

and E1 remains, which is stronger and at higher energies when compared to the Ga-rich surface
(figure 5(a)). The signal is less structured in the high-energetic region, but exhibits a very intense
negative anisotropy P3. This feature is probably related to the c(2 × 2) superstructure observed
in LEED (figure 6(b)). The disappearance of the RAS peak P3 during annealing is accompanied
by the reappearance of P1, P2 and also restores most of the original LEED signature (figure 6(c)).
The slightly diffuse, but reproducible c(2 × 2) LEED diffraction patterns are a distinct feature
of the exposed P-rich surface prior to annealing.

With XPS, we cannot detect any oxygen signal after 44 kL H2O exposure at room
temperature (figure 7(a)). This is similar to results for InP(100) surfaces that were exposed to
molecular oxygen, where the authors did not find a significant oxygen coverage for exposures
in the order of 105 L at ambient temperature for the P-rich surface, in contrast to the In-rich
surface [7]. The presence of any carbon can impact the oxygen uptake of the P-rich surface
significantly. However, in most cases we could not detect any carbon on the surfaces after
exposure. In the few cases, where carbon was detected due to deficient UHV conditions, a
relatively strong oxygen signal was indeed observed.

Essential features of the He II UPS valence band spectrum of the P-rich surface are retained
after exposure. Apart from the disappearance of the peak around 3 eV (figure 7(b)), which we
tentatively attribute to charge-transfer from a phosphorous-related surface state [14], the three
higher-energetic additional peaks could in principle be attributed to molecular water. However,
the intensity ratios do not fit well, which could indicate a different state of the adsorbate (see
below). Together with XPS analysis, the weak signal suggests a very low coverage (below 0.1
monolayers) of H2O(/OH) on the surface.
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Figure 9. P-rich, p(2 × 2) surface reconstruction with adsorption spots (×) in
different configurations creating a c(2 × 2) superstructure. The sites (b), (c) and
(e) represent different realizations of a bridge configuration.

The c(2 × 2) superstructure is in principle compatible with three configurations of the
adsorbate: a four-fold hollow, a bridge or an on-top configuration (with respect to the Ga atoms)
as depicted in figures 9(d)–(f) and which is also a scenario taken into account by Wood et al [12],
albeit for a relaxed (2 × 2) surface. If every adsorption spot was occupied, this would result in
a coverage of half a monolayer. Taking into account the findings of PES quantification suggests
that only a small fraction of the spots is occupied.

An analysis of the shifts 1EB and 1ESC suggest again a change in band bending,
either downward band bending or reduction of an existing upward band bending. The value
1EB ≈ 180 meV, however, is only slightly smaller than for the Ga-rich surface, though the
coverage is significantly lower. The work function is reduced more than would be expected
for a change in band bending. The dipole change on the surface 1ESC,χ is therefore
negative, suggesting an orientation of the water molecule with its oxygen end towards the
surface.

Annealing the surface in hydrogen can recover the LEED patterns, including the half-
ordered streaks, and also largely the RA spectrum. The latter is recovered in the general features,
but lacks some intensity. This suggests that some ordering of the surface is lost during annealing.
Interestingly, the finding that P3 disappears simultaneously with the reappearance of P1 and
P2 suggests that this feature is related to the adsorbate causing the c(2 × 2) superstructure.
The temperature associated with this desorption, 200–250 ◦C, shows that the bonding is not
very strong. The same annealing procedure in nitrogen process gas recovers most of P2 and
the LEED patterns as well. The low-energetic part of P1, however, is not restored at all, as
shown in the difference spectrum in figure 10. This is exactly the feature that becomes very
intense at low-temperature RAS [40] and is related to the hydrogen atom at the P dimer [31].
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Figure 10. RA spectra in the reactor of the freshly grown sample and after
annealing of the water-exposed surface in nitrogen.

A likely interpretation is that the annealing in nitrogen leaves an intact, buckled P dimer, which
is not hydrogen-stabilized. The P–H bond can only (partly) be restored upon the exposure to
hydrogen in VPE ambient. This would not contradict the restored half-ordered streaks of the
p(2 × 2)/c(4 × 2) LEED signature: before the discovery of the involvement of hydrogen in the
surface reconstruction, it was explained by naked, buckled P dimers [33]. Annealing of pristine
surfaces with intact P–H bond in nitrogen at these temperatures does, however, not change the
RA signal. This means, that the bonding of the hydrogen atoms is weakened by the adsorbate
and that they desorb together with the adsorbate or are already removed during the adsorption
process at room temperature.

In summary, we assume that only the topmost atomic layer, not involving Ga atoms,
participates in the reaction during exposure of the P-rich surface. In the following, we will
discuss possible reactions paths based on the findings outlined above that could lead to the state
of the P-rich surface observed after exposure. (I) A first path could be the dissociative adsorption
of water resulting in one P–H and one P–OH bond per dimer. The desorption during annealing
in form of H2O would leave a P dimer without H. This does, however, not fit to the molecular
water-like UPS signature. (II) An alternative reaction path would involve molecular water that
creates a hydrogen bond with the lone electron pair of the P-atom, which is buckled upwards,
either in an on-top or a bridge configuration, see figure 9. The hydrogen bond could then weaken
the original P–H bond leading to a desorption of molecular H2 already during exposure. This
mechanism would, however, result in a positive dipole on the surface contrasting our findings
above. (III) A third adsorption path would be a hydrogen bond between the oxygen atom of the
water molecule and the hydrogen atom of the P dimer, in agreement with the negative dipole
we found for the P-rich surface. The latter two mechanisms could also explain the c(2 × 2)

superstructure. For possible bridge configurations, one would also have to take into account
the possibility of dimer-flipping [18] at room temperature, where one P dimer could flip to
increase the interaction with the H2O molecule. (IV) Finally, molecular water could form a kind
of coordination compound with the P dimer, weakening the original P–H bond. This fourth path
would fit best to our findings.
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5. Summary and conclusion

We have investigated the interaction of adsorbed water with the Ga-rich, (2 × 4) and the
P-rich, p(2 × 2)/c(4 × 2) reconstructions of GaP(100) surfaces prepared by MOVPE. The
behaviour of the surfaces was found to differ significantly, both in reactivity and reaction
path. The experimental results found for the Ga-rich surface are similar to other III–V
semiconductors [15, 37], with our findings pointing towards a mixture of dissociatively and
molecularly adsorbed water. The saturation coverage, defined via the RA spectrum, is in the
order of 0.25 monolayers. P-rich surfaces, on the other hand, exhibit an even lower adsorbate
coverage forming a c(2 × 2) superstructure on the surface. Observations with RAS during
the annealing of exposed P-rich surfaces suggest a removal of the hydrogen atom of the P-
dimer induced by the adsorbate during exposure or a significant weakening of the P–H bond
resulting in facilitated desorption. Only the Ga-rich surface exhibits a partial oxidation after
annealing and both surfaces can be largely restored without supplying gallium or phosphorous
precursors. These observations show that RAS is a highly sensitive in situ tool for the
monitoring of semiconductor surfaces modified by adsorbates and potentially also in liquid
environments.

Our findings could also benefit the design of GaP-based photoelectrochemical water
splitting devices, as band bending and surface dipoles impact charge separation as well as
the charge transfer rate for reduction (or oxidation) of water. Due to the position of valence-
and conduction band relative to the water oxidation and reduction potentials, GaP, in a single
junction device, can only be used for the reduction of water. The conduction band, however,
is located substantially above the water reduction potential, resulting in energy losses [5].
A downward band bending, which is beneficial for the transfer of electrons to the aqueous
electrolyte, is found for both surface reconstructions. A positive dipole, increasing the electron
affinity, is observed, however, for the Ga-rich surface reconstruction. As this results in a
downward movement of the band edges, the Ga-rich surface could therefore be more suitable
for water splitting in single junction structures. Also in tandem applications with GaP as
photocathode, this shift would be beneficial because the offsets are large enough to enable the
reaction at a sufficient rate, but not too large causing excessive energetic losses. Hence the
observed increase of the electron affinity of GaP on the Ga-rich surface would reduce the large
offset of the conduction band, benefiting a photocathode application for hydrogen evolution.
A photoanode application would profit from an increase of the originally small valence band
offset with respect to the water oxidation potential and from the fact that water is partially
dissociatively adsorbed, facilitating oxidation.

Future work will apply these findings for the development of GaP-based tandem structures
for light-induced water splitting with surface functionalization for stability and efficiency using
protective layers and electrocatalysts.
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[3] Döscher H, Supplie O, May M M, Sippel P, Heine C, Muñoz A G, Eichberger R, Lewerenz H J and
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