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1 INTRODUCTION

1 Introduction

1.1 Numerical General Relativity

Around one hundred years ago, in 1915, Albert Einstein published his theory of Gen-

eral Relativity [45, 46]. It describes gravity as the curvature of spacetime, generated

by the energy content of the universe. This fundamental relationship is expressed

by the famous Einstein’s equations

Gab = 8πTab . (1.1)

On the left side, the Einstein tensor Gab represents the geometry of spacetime,

whereas on the right side the stress-energy tensor Tab contains the matter sources.

Solutions to this set of equations are spacetimes describing a diverse set of inter-

esting physics such as blackholes, neutron stars and gravitational waves. However,

only few exact solutions to Einstein’s equations, derived by the aims of analytical

methods, are known [42, 67, 89, 90]. Additionally these solutions only describe

idealized, highly symmetric systems. Solutions for more general scenarios, such as

binary systems of compact objects or highly dynamical collapse scenarios cannot

be provided by analytical methods. For many weak field scenarios, approximation

methods, such as post-Newtonian methods [24, 87], are powerful tools to study the

physics of General Relativity. But in strong field cases, such as the merger of binaries

of compact objects, also these methods fail. Nowadays, the availability of supercom-

puters allows for a third approach namely that of Numerical Relativity [10, 21]. It

uses numerical methods to simulate solutions of Einstein’s equations on a computer.

However, this is not an easy task. It is necessary to have an understanding of many

different topics to be successfully master this challenge. In the context of this thesis

such topics are:

Mathematics provides the necessary understanding to recast Einstein’s equations

in a form which is suitable for numerics.

Numerics is needed to have stable and accurate methods to approximate and sim-

ulate solutions of Einstein’s equations on a computer.

Technology is essential to implement numerical methods in software and run sim-

ulations in a reasonable amount of time.
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Figure 1: Many different topics have to be understood in order to successfully solve
Einstein’s equations on a computer using the methods of Numerical Relativity.

Physics is the motivation and also the goal of all numerical studies of Einstein’s

equations.

In its relatively short time of existence, Numerical Relativity has already produced

many important results which contributed significantly to the understanding of the

theory of gravity. It allowed the study of the physics of blackholes, neutron stars,

merging binary systems, gravitational wave signals and collapsing spacetimes.

1.2 Collapsing gravitational waves

The main topic of this work is the simulation of gravitational waves, which are

solutions to the vacuum Einstein equations1

Rab = 0, (1.2)

where Rab is the Ricci tensor. In the history of numerical relativity, gravitational

waves have always played an important role, especially in the context of gravitational

detection. The numerical simulation of binary systems allows the production of wave

form templates [8] which will be a crucial component in the possible future detection

measured by experiments such as LIGO [1], KAGRA [2] or VIRGO [3].

The focus of this thesis, however, is on the simulation of strong gravitational

waves which are acting in a highly nonlinear way and which can even collapse to

a blackhole. There are two primary questions which motivate this work. The first

is: Can two popular setups of Numerical Relativity, the BSSN and the GHG setup,

be successfully used to simulate the collapse of gravitational waves? There have

been several studies about the evolution and collapse of gravitational waves, which

1Note that in the following work always the vacuum Einstein equations are considered.
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Authors Year Data type Slicing and gauge References Comments

Eppley 1978 Brill maximal slicing/quasiisotropic [47] small amplitude waves only
Abrahams & Evans 1992 Teukolsky maximal slicing/quasiisotropic [6, 7] reported critical behavior
Alcubierre et.al. 2000 Brill maximal slicing/zero shift [11]
Garfinkle & Duncan 2001 Brill maximal slicing/quasiisotropic [49]
Santamaria 2006 Brill multiple choices [85]
Rinne 2008 Brill maximal slicing/quasiisotropic [79]
Sorkin 2011 Brill family of gauge source functions [94] reported critical behavior

Table 1: Summary of published results on numerical simulations of nonlinear waves.
This table was created by Thomas Baumgarte and is taken from [Wey2].

are summarized in table 1. However, evolving strong gravitational waves has al-

ways turned out to be difficult. In this work a fresh attempt is made to study

the evolution and collapse of gravitational waves, using the BSSN setup including

moving-puncture coordinates and finite-differences and in a second study, the GHG

setup with generalized harmonic coordinates and a multi-domain pseudospectral

method.

The second question is raised in the context of critical collapse [52]. In gravity,

critical collapse was first reported in 1993 by Choptuik [37]. In his study he simulated

numerically the collapse of scalar fields in spherical symmetry. He evolved waves of

different strength, parametrized by the wave amplitude A, and made the following

discoveries: for small A the waves finally dispersed and left behind flat space. For

big A the waves collapsed and formed a blackhole. Studying the transition region

between dispersion and collapse, he made the amazing discovery that there is a

dividing critical amplitude A� which marks the threshold of blackhole formation.

Approaching this amplitude, he found critical behavior known from other fields of

physics. This means:

1. The mass M of the blackhole can be made arbitrary small and scales as

M ≈ (A− A�)
γ. (1.3)

2. The scaling exponent γ is universal with respect to the initial data.

3. Tuning A to the threshold of blackhole formation, a critical self-similar solution

is approached. This solution is independent from the chosen family of initial

data.

Shortly afterwards, similar critical behavior was found by Abrahams and Evans [6,

7], who reported critical phenomena in the collapse of axisymmetric gravitational
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waves. Unfortunately it has proven difficult to reproduce these results. Since then,

in all of the published work about the evolution of gravitational wave initial data,

summarized in table 1, only Sorkin [94] has been able to identify critical behav-

ior. However, his study found qualitative differences from the earlier work about

gravitational wave collapse. For example, he reports that, at least for part of the

parameter space, the waves collapse to form a singularity on a ring in the equatorial

plane, whereas Abrahams and Evans [7] found the singularity forming at the origin.

Sorkin also found a significantly larger value for the critical amplitude than in earlier

studies of the same data. This topic motivates the second question for this work:

How close can the threshold of blackhole formation be approached with the setups

considered in this work and what findings can be made in this regime?

This thesis presents the work which has been carried out to answer these two

questions. According to the guidelines of the Physics faculty of the University of

Jena it is restricted to 100 pages. Its content is structured in the following way:

Section 2 starts with presenting the two setups of Numerical Relativity which will

be used within this work. Section 3 summarizes the results of the study of collapsing

gravitational waves using the BSSN setup with moving puncture coordinates. Its

conclusion is that, even though there are cases in which collapsing waves can be

successfully evolved, this setup is not good enough to study the collapse of gravi-

tational waves in satisfying detail. Therefore, a second approach is taken with the

GHG setup. For this purpose a new 3d numerical relativity code, bamps, has been

developed. The specific formulation of GHG and the numerical method the code

implements are derived and presented in section 4. All gravitational waves which

are evolved in this work are axisymmetric. Therefore section 5 discusses different

aspects of axisymmetric reductions. In particular this includes the discussion of

an axisymmetric apparent horizon finder, AHloc, which is the second code devel-

oped within this work. After having discussed all implementation details, different

aspects of the bamps code such as convergence, accuracy and performance are care-

fully tested in section 6. Evolutions of single blackholes with bamps are subject of

section 7. These are necessary components for the study of gravitational waves col-

lapsing to blackholes which are presented in section 8. Furthermore, in this section

results of Brill wave evolutions in bamps are compared with earlier work on this topic

and an attempt is made to approach the critical amplitude for this data. Finally, in

section 9 this work is concluded and future considerations are discussed.
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2 SETUPS OF NUMERICAL RELATIVITY

2 Setups of Numerical Relativity

In this section two setups of Numerical Relativity, the BSSN setup and the GHG

setup are presented. Each setup is a configuration consisting of a set of variables de-

scribing the spacetime, evolution equations to evolve the spacetime, a gauge choice,

and a numerical method which implements the system numerically. The two setups

are perhaps the most popular configurations in Numerical Relativity and will be

used later in this work to study the evolution and collapse of gravitational waves.

Both methods make use of the 3+1 decomposition of spacetime to recast Einstein’s

equations as a initial value problem [50]. Therefore the basic idea of it will be

sketched here. The spacetime metric is written in the form

ds2 = gabdx
adxb = −α2dt2 + γij(dx

i + βidt)(dxj + βjdt), (2.1)

where α is the lapse function, βi the shift vector, and γij the spatial metric. Ein-

stein’s equations split into a set of constraint equations, the Hamiltonian and the

momentum constraint

R +K2 −KijK
ij = 0, (2.2)

DjK
ij −DiK = 0. (2.3)

and evolution equations

∂tγij = −2αKij + Lβγij,

∂tKij = α
(
Rij − 2KikK

k
j +KKij

)
+ LβKij. (2.4)

Here, the Ricci tensor Rij, its trace R and the covariant derivative Di are associated

with the spatial metric γij. Kij is the extrinsic curvature and K = γijKij is its

trace. These equations are often referred to as the ADM equations [17]. In numerical

simulations typically a free evolution scheme is applied. This means that an initial

slice of constraint satisfying data is evolved forward in time using the evolution

equations. The constraint equations are only used to monitor the error during the

evolution.
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2.1 The BSSN setup

The BSSN setup consists of the BSSN evolution equations [20], the moving-puncture

gauge [34] and the finite-differences method [75]. It has been used in the majority

of the relevant simulations in Numerical Relativity and played an important role in

astrophysical relevant simulations of binary blackholes [34] and neutron stars [98],

as well as in collapse scenarios of stars [100]. The popularity of this setup is predom-

inantly based on two facts. Firstly, it recasts Einstein’s equations as a well-posed

evolution system and secondly, the moving-puncture coordinates allow to simulate

blackholes without the need to excise the blackhole inside its horizon from the nu-

merical domain.

BSSN evolution equations

In the BSSN formulation the spatial metric γij is conformally decomposed

γ̄ij = e−4φγij , (2.5)

and the conformal metric γ̄ij is constrained to have a unit determinant. The extrinsic

curvature is split into its trace-free part and its trace

Kij = e4φÃij +
1

3
γijK . (2.6)

Furthermore, an auxiliary variable, the contracted conformal Christoffel symbol

Γ̄i = γ̄ij γ̄kl∂lγ̄jk , (2.7)

is introduced. The evolution of this set of variables is given by the BSSN equations

∂tγ̄ij = −2αÃij + Lβ γ̄ij ,

∂tφ = −1

6
αK + Lβφ ,

∂tÃij = e−4φ
[
−DiDjα + α

(
R̄ij +Rφ

ij

)]TF

+ α(KÃij − 2ÃikÃ
k
j ) + LβÃij ,

∂tK = −DiDiα + α
(
ÃijÃ

ij +
1

3
K2

)
+ LβK ,

∂tΓ̄
i = −2α

(2
3
γ̄ijDjK − 6ÃijDjφ− Γ̄i

jkÃ
jk
)
− 2ÃijDjα + γ̄jk∂j∂kβ

i

− 4

3
(Γ̄i − γ̄jkΓ̄i

jk)∂lβl +
1

3
γ̄ij∂k∂jβ

j − Γ̄j∂jβ
i +

2

3
Γ̄i∂kβ

k + βj∂jΓ̄
i . (2.8)
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2 SETUPS OF NUMERICAL RELATIVITY

Here, Di is the covariant derivative compatible with γij. The label TF denotes the

trace-free part of the expression it is attached to. Quantities with a bar, such as R̄ij

and Γ̄i
jk, are associated with the conformal metric and it is

Rφ
ij = −2D̄iD̄j − 2γ̄ijD̄

lD̄lφ+ 4(D̄iφ)(D̄jφ)− 4γ̄ij(D̄
lφ)(D̄lφ) . (2.9)

The definition of the Lie derivatives acting on tensor densities can be found for

example in [10]. This system of partial differential equations is a first order in time

and second order in space-system. Still to be determined is the choice of the gauge

variables α and βi.

Moving-puncture coordinates

The standard gauge choice used in combination with the BSSN evolution equation

is the puncture gauge. It consists of the 1+log slicing condition [25]

(∂t − βj∂j)α = −2αK , (2.10)

and the Gamma-driver shift condition [14, 107]

(∂t − βj∂j)β
i = μSΓ̄

i − ηβi, (2.11)

with freely specifiable scalars μS and η. This gauge together with the BSSN equa-

tions are proven to be a strongly hyperbolic initial value problem and are therefore

suitable for the treatment with numerical methods [53, 66, 86].

Finite-differences

Although the BSSN formulation has been evolved with different type of numerical

methods [104, 105], the most common approach for solving the BSSN system numer-

ically is using finite-differences in combination with the method of lines. The basic

idea of this method is to treat the spatial and the time discretization separately.

First all evolution fields f are discretized on a spatial grid at N grid points xα,

f(x) −→ f(xα) ≡ fα, α = 0, . . . , N − 1 . (2.12)

9



2 SETUPS OF NUMERICAL RELATIVITY

The spatial derivatives are approximated on this grid using finite difference stencils.

For example, second order accurate finite difference stencils in 1d are given by

∂xf −→ (∂xf)α =
fα+1 − fα−1

2Δx
+O(Δx2) ,

∂2
xf −→ (∂2

xf)α =
fα+1 − 2fα + fα−1

(Δx)2
+O(Δx2). (2.13)

Second, after the spatial discretization, a standard ODE integrator, such as a Runge-

Kutta-scheme, is applied to evolve the equations forward in time

fn+1 = fn +Δt
s∑
i

ciki . (2.14)

Here ci depends on the specific Runge-Kutta-scheme and ki is determined by eval-

uating the right hand side of the evolution equations at appropriate in-between

times.

2.2 The GHG setup

The generalized harmonic gauge (GHG) system is based on the idea of using har-

monic coordinates in which Einstein’s equations are manifestly hyperbolic. It was

first introduced in [48] and played a major role in the binary blackhole evolutions

of [76–78]. The GHG setup which will be presented in this section is based on a

fully first order evolution system and is numerically solved using a pseudospectral

method. It was proposed by [70] and has been successfully implemented with the

SpEC code [4].

Fully first order GHG evolution equations

Generalized harmonic coordinates xa evolve according to the inhomogeneous wave

equation

∇b∇bxa = Ha(x, g) = −Γa, (2.15)

where Γa is the contracted Christoffel symbol and Ha is a freely specifiable gauge

source function that only depends on the coordinates and the metric but not on

derivatives of the metric. In these coordinates the principal part of the Einstein’s

10



2 SETUPS OF NUMERICAL RELATIVITY

equations is the wave operator

gcd∂c∂dgab = −2∇(aHb) + 2gcdgef (∂egac∂fgbd − ΓaceΓbdf ). (2.16)

Introducing the variables

Πab = −nc∂cgab, Φiab = ∂igab , (2.17)

the system can be reduced to be first order in time and space. In [70] the following

set of evolution equations was proposed

∂tgab = βi∂igab − αΠab + γ1β
iCiab ,

∂tΦiab = βj∂jΦiab − α∂iΠab + γ2αCiab +
1
2
αncndΦicdΠab + αγjkncΦijcΦkab ,

∂tΠab = βi∂iΠab − αγij∂iΦjab + γ1γ2β
iCiab − 1

2
αncndΠcdΠab − αncγijΠciΦjab

+ 2αgcd
(
γijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdf

)
+ αγ0

[
2δc(anb) − gabn

c
]
Cc

− 2α∇(aHb) . (2.18)

This system of partial differential equations is symmetric hyperbolic. It includes the

constraints

Ca = Γa +Ha = 0 , Ciab = ∂igab − Φiab = 0 , (2.19)

and constraint damping parameters γ0, γ1, and γ2. The constraint subsystem will

be studied in more detail in section 4. The system also makes use of several 3 + 1

quantities such as the inverse of the spatial metric γij, the lapse α and the shift βi

and the normal vector na = −αδ0a.

Pseudospectral method

The idea of the pseudospectral method [51, 61, 68] is to expand all evolution fields f

in space into a finite series of suitable basis functions Tl at N collocation points xα

fα ≡ f(xα) =
N−1∑
l=0

clTl(xα) . (2.20)

For simplicity it is assumed here that x ∈ [−1, 1]. Otherwise an appropriate coor-

dinate transformation has to be applied. In the context of the GHG setup Gauss-

11



2 SETUPS OF NUMERICAL RELATIVITY

Lobatto collocation points,

xα = − cos(
π

Nx − 1
α), α = 0, . . . , N − 1 , (2.21)

in combination with Chebyshev polynomials,

Tl(x) = cos
[
l arccos(x)

]
, (2.22)

are used. The first derivatives of the fields are computed at the collocation points

by means of a matrix multiplication,

(∂xf)α =
N−1∑
l=0

Dαlfl , (2.23)

with the Gauss-Lobatto derivative matrix

Dαβ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2(N−1)2+1
6

α = β = 0

qα
qβ

(−1)α+β

xα−xβ
α �= β

−xβ

2(1−x2
β)

α = β = 1, · · · , N − 2

2(N−1)2+1
6

α = β = N − 1

(2.24)

Here it is qα = 2 at boundary points and qα = 1 elsewhere. For the time integration,

again a standard ODE integrator can be used to evolve the fields forward in time.

The pseudospectral method is known to provide fast convergence of the numerical

to the continuum solution, in the case of smooth solutions to the partial differential

equation. This convergence behavior is often called exponential convergence. In the

case of the Einstein equations, solutions in vacuum are indeed smooth. However,

spectral methods are very sensitive regarding errors on the numerical domain, which

makes their successful implementation more tricky compared to the robust finite-

difference method.

12



3 EVOLUTION OF COLLAPSING GRAVITATIONAL WAVES WITH THE BSSN SETUP

3 Evolution of collapsing gravitational waves with

the BSSN setup

In this section the evolution of gravitational waves with the BSSN setup is studied.

The primary question is how well the moving-puncture gauge allows one to follow

the collapse of gravitational waves to a blackhole. In the context of stellar-collapse,

previous work by [18] and [95, 100] found that moving-puncture coordinates can

lead to stable evolutions, with the newly-formed blackhole expressed in a trumpet

geometry [56]. However, in the context of collapsing gravitational waves, it is not

obvious that the moving-puncture coordinate also lead to successful simulations.

The results of this section have been published in [Wey2].

The BAM code: All simulations of this section have been carried out with the

BAM code, which is described in [28, 29, 64, 99]. The evolutions were performed

with an explicit 4th-order Runge-Kutta method and 4th-order finite-differences for

the spatial derivatives. Mesh refinement is provided by a hierarchy of cell-centered

nested Cartesian grids and Berger-Oliger time stepping. Metric variables are inter-

polated in space by means of 6th-order Lagrangian polynomials. Interpolation in

Berger-Oliger time stepping is performed at 2nd order.

3.1 Evolution of Brill waves

A Brill wave is an axisymmetric gravitational wave solution of Einstein’s equations.

They are constructed by writing the spatial metric in a conformal form

dl2 = γijdx
idxj = ψ4

[
e2q(dρ2 + dz2) + ρ2dφ2

]
, (3.1)

where ρ, z and φ are cylindrical coordinates, ψ is the conformal factor, and q =

q(r, θ) is an arbitrary axisymmetric seed function. Assuming a moment of time-

symmetry, the extrinsic curvature vanishes and the momentum constraint (2.3) is

solved identically. The Hamilton constraint (2.2) reduces to a linear elliptic equation

for the conformal factor ψ,

∇2ψ = −ψ

4

(
∂2q

∂ρ2
+

∂2q

∂z2

)
, (3.2)
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3 EVOLUTION OF COLLAPSING GRAVITATIONAL WAVES WITH THE BSSN SETUP

with ∇2 being the flat, three-dimensional Laplace operator. In the following the

seed function q is taken to be

q(ρ, z) = A
[ρ
σ

]2
e−[(ρ−ρ0)

2−z2]/σ2

. (3.3)

Here A is a measure of the resulting wave amplitude, σ of the wavelength, and ρ0 of

the center of the initial wave. Throughout it is σ = 1, which determines the units

of all dimensional results. For a given set of parameters equation (3.2) is solved

for ψ using a spectral elliptic solver, described in [44]. Initial data for Brill waves

evolution with BAM is then set up setting the extrinsic curvature to zero and setting

up the spatial metric according to (3.1) using the numerical solution for ψ, together

with the associated seed function q. The following simulations focus on “central”

Brill waves with ρ0 = 0 for different choices of amplitude A. As a measurement for

the strength of curvature typically the Kretschmann scalar,

I = CabcdC
abcd, (3.4)

where Cabcd is the Weyl tensor, is stated.

Evolution of A = 1.0 centered Brill wave: Brill waves with small amplitude A

represent linear perturbations of flat space. They will propagate to spatial infinity

and leave behind flat space. As an example, an evolution of a centered wave withA =

1 is studied. In this simulation the maximum of the curvature in spacetime is reached

at the center, with the Kretschmann scalar reaching the value I ≈ 216. For this run

the parameters of the puncture gauge are set to be μS = 1 and η = 3 ≈ 1/(10M).

The evolution of the lapse function decreases initially and reaches its mininum at

around the same time as the curvature of the peaks. Afterwards it quickly moves

back towards unity. In Fig. 2 this behavior with that for other amplitudes is shown.

The initial pulse in the Kretschmann scalar disperses away and leaves behind I = 0,

indicating that the space is flat.

Evolution of A = 2.5 centered Brill wave: For larger, but still subcritical A,

the waves will interact nonlinearly before dispersing, but ultimately they still leave

behind flat space. Again, the Kretschmann scalar for centered Brill data with A =

2.5 takes its maximum at the origin, but now with value of ≈ 2320. The gauge

parameter for this data is μS = 1 and η = 2 ≈ 2/(5M). The lapse at the origin

again decreases at early times, this time to smaller values than for A = 1, and then
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Figure 2: The central value of the lapse as a function of time for differently strongly
centered Brill waves. The waves are evolved using the puncture gauge conditions.
For weak-field initial data with A = 1, the wave disperses to spatial infinity and
leaves behind flat space, as expected. For larger values of A, however, the simulations
lead to discontinuities in the metric functions, which spoil the further evolution of
the wave.

returns to unity. The Kretschmann scalar also disperses to infinity, as before.

Evolution of A = 5.0 centered Brill wave: For simulations of amplitudes which

are larger than some critical A� it is expected that the Brill waves will collapse to a

blackhole. However, for these amplitudes the carried out BAM simulations are not

successful. This means that it is not possible to track the formation of an appar-

ent horizon as it settles down to a Schwarzschild blackhole. More detailed results

for A = 5 are shown in Fig. 3, where profiles of the lapse function α, the metric com-

ponent γxx and trace K are plotted at different instants of time. The lapse collapses

in the central region and develops a minimum along a ring of radius r ≈ 2.0 in the

equatorial plane in a simulation with η = 11.4 ≈ 8/M . The metric simultaneously

develops an increasingly large gradient across this ring, which ultimately turns into

a discontinuity if in the gamma-driver condition (2.11) η = 0 is used. Associated

with this gradient is a large numerical error which can be seen, for example, in the

violation of the constraints. A pulse in the lapse then approaches the origin, so that

the region with nearly-vanishing lapse becomes smaller. As this happens the trace

of the extrinsic curvature at the incoming lapse pulse becomes large, negative and

sharp, ending in a numerical failure that looks like a coordinate singularity. Similar

behavior has been observed with the 1 + log gauge elsewhere, for example in [15].
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Figure 3: Snapshots of the lapse function α (left panel), the ADM metric component
γxx (center panel) and the trace of the extrinsic curvature trKij at different instants
of time, for A = 5. All quantities are shown along the x axis, with time indicated
by hot-to-cold colors. The lapse develops a minimum on a ring of radius r ≈ 2.0,
which then travels towards the origin. The spatial metric develops a large gradient
around the same ring. A sharp feature at radius r ≈ 1.5 appears in the lapse, and K
diverges around the same place. The latter feature is not visible in the metric.

Furthermore, this failure can be reproduced in the spherical code used to develop the

Z4c formulation [22, 35, 64, 84, Wey1] by evolving flat space with a perturbed initial

lapse with precisely studying evolutions of the gauge of the Brill wave evolutions.

This feature causes the numerical approximation to fail at around t = 5.5. Curiously

here, in preliminary tests, it was found that mesh-refinement can cause problems.

Often coarser grids are used to push the outer boundary far away inexpensively. But

it turns out that the solutions being constructed are so extreme that if the grids

are too coarse then they will fail during the single Runge-Kutta time-step needed

before the data from the finer boxes can be used to overwrite coarse grid data.

Summary: The simulations considered in this section showed that moving-puncture

coordinates are not suitable for the evolution of the Brill waves. For several other

coordinate choices, including maximal slicing for the lapse, as well as quasi-isotropic

or zero shift, it also appears to be difficult to obtain sufficiently reliable simulations

that allow the study of critical phenomena in the vicinity of the critical amplitude.

However, other studies proved that moving-puncture coordinates can be used in

other collapse scenarios. So rather than altering the gauge choice different initial

gravitational wave data will be chosen in the following section.
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3.2 Comparing Brill with Teukolsky wave evolutions

In [Wey2] it was found by Thomas Baumgarte, Pedro Montero and Ewald Müller

that with a similar type of gravitational wave initial data, Teukolsky waves, it is

possible to evolve the collapse of the waves in moving-puncture coordinates. At least

for amplitudes that are not too close to the critical point, they have been able to

detect the formation of apparent horizons and evolve the blackhole spacetime until

it settled down to spherical symmetry. The simulations of section 3.1 showed that

this was not possible with Brill wave data. While it is difficult to pin-point what

exactly creates this difference in behavior, in this section some possible reasons on

these differences are discussed. An obvious set of questions present themselves. The

Brill data was centered at the origin, whereas the Teukolsky data was not. Could

this be the cause of the difference? Are the two types of data somehow geometrically

different? If so, would this difference be maintained in time evolution, and can the

Brill wave data be modified to make it more amenable to numerical evolution with

the moving-puncture gauge?

Off-center Brill wave evolutions

Small data: Two sets of weak, off-center Brill wave initial data with offset ρ0 = 4

in (3.3) are evolved. Specifically, the waves have the amplitudes A = 0.053 and

A = 0.0815, which have ADM masses ≈ 0.59 and ≈ 1.4 respectively. For the

weaker A = 0.053 data the shift damping is set to η ≈ 1/M , while for the A =

0.0815 data η ≈ 2/M is chosen. As for the earlier weak, center Brill data, both

waves disperse after a brief interaction around the origin. For the weaker data,

the Kretschmann scalar takes a maximum value ≈ 48 at the origin, while for the

stronger data the maximum is ≈ 200, again at the origin.

Large data: Now the amplitude is increased to A = 0.12, which makes the ADM

mass ≈ 3.15. The shift damping is set to η = 8/M . As in the “small data” tests,

the lapse initially decreases most rapidly around the peak of the seed function in

the xy-plane. It then decreases to zero near the origin. Then an incoming gauge

wave travels along the z-axis towards the origin. Since the speed of the gauge wave

is ∼ √
2α, and travels from a region with α ∼ 1 to one with α ∼ 0, there is a

rapid blueshift effect; the solution becomes badly resolved. At some point in time,

around the interface of these two regions, the trace of the extrinsic curvature becomes

negative, which leads to an increase in the lapse (see eq. (2.10)). Ultimately, this

results in a coordinate singularity causing the code to fail at t ≈ 16. There is a
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Figure 4: Profiles of the lapse at different instances of time along the z axis for a
off-centered Brill wave with A = 0.12 and ρ0 = 4.0. Initially the lapse collapses at
the center. At late times of the evolution, a gauge pulse is traveling in and gets
blue-shifted. At the interface between the collapsed lapse and the gauge pulse, a
coordinate singularity appears. This leads to a failure of the simulation.

remarkable similarity between the lapse profile obtained in this simulations, shown

in Fig. 4, and that shown in Fig. 2 of [15] where such coordinate singularities were

studied in evolutions of flat-space. This leads to the conclusion that for sufficiently

large amplitudes, moving-puncture coordinates fail even for off-centered Brill wave

initial data.

Axisymmetric twist-free, time symmetric data

Harmonic spatial coordinates: As the different behavior of Brill and Teukolsky

data is not caused by the different offset, now the difference in the geometry of Brill

and Teukolsky waves is studied. In cylindrical coordinates, the conformally related

metric for Brill wave initial data is given by

γ̄ij =

⎛
⎜⎝ eq 0 0

0 eq 0

0 0 ρ2

⎞
⎟⎠ (3.5)
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(see eq. (3.1)), whereas for Teukolsky waves the conformally related metric takes

the form

γ̄ij =

⎛
⎜⎝ γ̄ρρ γ̄ρz 0

γ̄ρz γ̄zz 0

0 0 γ̄φφ

⎞
⎟⎠ . (3.6)

Evidently, the two data sets are given in different coordinate systems, and a mean-

ingful comparison can only be made once they have been expressed in the same

coordinates. However, any axisymmetric, twist-free metric can be brought into the

form

γ̄ij =

⎛
⎜⎝ eq 0 0

0 eq 0

0 0 ρ2V

⎞
⎟⎠ , (3.7)

in some coordinate system (�, ξ, φ). Broadly speaking, this is possible because the

two-metric in the ρ-z subspace can always be brought into an explicitly conformally

flat form [108, Ch. 3, Ex. 2].

Geometrically oblate and prolate initial data: Any spherically symmetric

metric can be brought into the form (3.7) with V = eq. For the gravitational wave

initial data used in this work, which is not spherically symmetric, V will, in gen-

eral, be different from eq. Evidently, deviations of V from eq can be produced in

two ways: either V > eq or V < eq. In the following data with V > eq is called

geometrically oblate and data with V < eq geometrically prolate. Here, the word

‘geometrically’ is used to distinguish the terminology from that normally used with

Brill waves, where the word oblate or prolate applies to the seed function. Clearly,

both V and eq are functions of the coordinates, so that data may be geometrically

oblate in some region and prolate in another. Also it is important to notice that this

characterization is only applied to the initial data; it is not evident whether or how

this characterization is maintained during a time evolution, even if the data is glob-

ally geometrically oblate or prolate initially. The characterization as geometrically

oblate or prolate may nevertheless be a useful distinction between the geometries

of Brill and Teukolsky data evolved earlier. An example of initial data of a certain

character which is maintained is given in [38].
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Figure 5: On the left profiles of the lapse at different instances of time for a centered
Brill wave with A = −5 are plotted. These profiles should be compared with (a)
those of a positive-amplitude Brill wave in the top panel in Fig. 3, and (b) those for
a Teukolsky wave which are plotted on the right (Figure taken from [Wey2]).

Geometric oblateness of Brill and Teukolsky data: For the Brill wave initial

data of Section 5.3 it is V = 1; moreover the positive A in the seed function (3.3)

results in eq ≥ 1. This means that the Brill wave initial data of Section 5.3 is

geometrically prolate everywhere except on the z-axis. For Teukolsky waves the

classification is less obvious, because it requires an additional coordinate transfor-

mation. Interestingly, however, Fig. 3 in [7] shows that the geometry close to the

center is geometrically oblate. (The quantity eη used by [7] is a measure of the

ratio eq/V ; the fact that their η is negative in a region around the origin implies

that the geometry is oblate there.) This observation could point to a fundamental

difference in the geometries of A > 0 Brill and Teukolsky waves.

Discussion: These arguments are neither rigorous nor complete, but they lead

to an immediate suggestion: if it were true that geometrically oblate data is better

behaved in dynamical evolutions than prolate data – for example in the sense that it

forms a singularity at the center rather than on a ring – then it would be of interest

to produce geometrically oblate Brill wave initial data. Such data will be considered

next.

3.3 Brill waves with A < 0

In this section the evolution of geometrically oblate Brill wave data is studied. Such

data can be produced in exactly the same way as the prolate data in Section 5.3,

by adopting “negative amplitudes” A < 0 in the seed function (3.3).
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t = 36.4 t = 51.2 t = 67.4 t = 142.2

Figure 6: Snap-shots of the apparent horizon for supercritical off-center geometri-
cally oblate Brill waves. The apparent horizon is first discovered at t = 36.4 and has
a peanut-like shape, where in the plots the z-axis runs vertically. The subsequent
frames show the oscillations of the horizon, which jumps at t ≈ 65.

Centered geometrically oblate Brill waves: Three sets of initial data with ρ0 =

0 and A < 0, namely A = −1, −2.5 and A = −5 are evolved, with ADM masses of

approximately 0.61, 1.37 and 3.15 respectively. As in the geometrically prolate case,

the first two data sets just allow the Kretschmann scalar to propagate away, taking

maximal values of about 56 and 1072 appearing at the origin. For the stronger field

evolution the numerics again eventually fail, although now at around t = 22.5. On

the left of Fig. 5 profiles of the lapse at different instances of time for such a Brill

wave with A = −5 are shown. Interestingly, these profiles are qualitatively different

from those for the geometrically prolate, positive-amplitude Brill waves shown in

the top panel of Fig. 3. While for geometrically prolate Brill waves the lapse always

takes a minimum at finite radius, which coincides with the development of increas-

ingly large gradients in the spatial metric, for A < 0 Brill waves the lapse ultimately

reaches a minimum at the center. This is the same behavior that was found in the

Teukolsky waves, which is shown in Fig. 5 on the right. In these simulations it

was possible to follow the collapse of geometrically oblate Brill waves past blackhole

formation, and in contrast to positive-amplitude Brill waves also apparent horizons

have been located. However, at least with the chosen setup, the BAM apparent

horizon finder did not give reliable results. At late times, steep gradients in the

metric functions again appeared, but this time well inside the horizon, close to the

center. Ultimately, these gradients spoil further numerical evolution.

Off-center geometrically oblate Brill waves: Again three sets of initial dataA =

−0.044,−0.061 and A = −0.08125, all with ρ0 = 4, are evolved. The ADM masses

of these spacetimes are approximately 0.61, 1.36 and 3.15 with peak values of the

Kretschmann scalar initially around 64, 108, and 88 respectively. It is interesting

that the “larger” initial data does not have the largest initial Kretschmann, but the

21



3 EVOLUTION OF COLLAPSING GRAVITATIONAL WAVES WITH THE BSSN SETUP

evolution leaves no doubt that the A = −0.08125 data is indeed the stronger one.

As in the previous results the two weaker data sets leave behind I = 0, with greater

oscillations in the Kretschmann scalar in the A = −0.061 case. The maximum of

the Kretschmann scalar in the evolution of the A = −0.044 is around 19 and occurs

at the origin at t � 7.4. Likewise with the A = −0.061 data, the maximum occurs

at the origin, with a value around 373 at t � 12. In both the A = −0.044 and

the A = −0.061 evolutions the Kretschmann scalar propagates away predominantly

along the symmetry axis. The strongest data A = −0.08125 evolves in the BAM

code until t = 150. It collapses to form a blackhole similarly to the Teukolsky data

presented in [Wey2]. An apparent horizon was first discovered at t = 36.4. In Fig. 6

some snapshots of the evolution of the horizon are plotted. The apparent horizon

mass eventually settles down to M = 1.73. So by choosing the parameters in the

Brill wave data carefully, evolutions comparable to those with Teukolsky initial data,

presented in [Wey2], are possible.
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4 A pseudospectral method for gravitational wave

collapse

The previous section led to the conclusion that with the BSSN setup the collapse

of Brill waves cannot be studied in a satisfying manner. The two main difficulties

were the formation of coordinate singularities and a lack of accuracy. Therefore

the focus is now shifted to the GHG setup, which uses different coordinates and

provides the more accurate pseudospectral method. In order to study the collapse

of Brill waves within this work, a new 3d numerical relativity code, bamps, was

developed [Wey3]. It is based on the idea of the SpEC code but with different

improvements towards the evolution of strong gravitational waves in mind. This

section gives several implementation details of bamps. The focus is first on the

specific GHG formulation which is implemented in the code. Special care is taken

at the formulation of constraint preserving boundary conditions which work well in

the case of close outer boundaries. Later in this section the actual implementation

details are discussed. This includes the grid setup, the numerical method and the

patching boundary treatment.

4.1 Formulation setup

4.1.1 GHG evolution equations, constraints and boundary conditions

The evolution system: The bamps code implements the fully first order GHG

equations of motion as

∂tgab = βi∂igab − αΠab + γ1β
iCiab ,

∂tΦiab = βj∂jΦiab − α∂iΠab + γ2αCiab +
1
2
αncndΦicdΠab + αγjkncΦijcΦkab ,

∂tΠab = βi∂iΠab − αγij∂iΦjab + γ1γ2β
iCiab − 1

2
αncndΠcdΠab − αncγijΠciΦjab

+ 2αgcd
(
γijΦicaΦjdb − ΠcaΠdb − gefΓaceΓbdf

)
+ αγ0

[
2δc(anb) − gabn

c
]
Cc

− 2α
(∇(aHb) + γ4 Γ

c
abCc − 1

2
γ5 gabΓ

cCc

)
. (4.1)

The formulation here agrees with that of [70], which was also presented in section 2.2,

except for the inclusion of the γ4 and γ5 parameters. These control whether or not

the constraint addition made in the construction of the formulation is done either

with the covariant or the partial derivative, or some combination. The latter choice

has the effect of simplifying the constraint subsystem. In the following work they
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are either set to vanish, or chosen to be γ4 = γ5 = 1/2. The terms involving γ0 are

included so as to damp away high-frequency constraint violations [54]. In matrix

notation this system can be written as

∂tu
μ = Akμ

ν∂ku
ν + Sμ , (4.2)

with

uμ =

⎛
⎜⎝ gab

Πab

Φiab

⎞
⎟⎠ , Akμ

ν =

⎛
⎜⎝(1 + γ1)β

k 0 0

γ1γ2β
k βk −αγik

γ2αδ
k
i −αδki βk

⎞
⎟⎠ , (4.3)

and Sμ containing all source terms of the right hand side. This compact notation

will be used in the following calculations of this work. In the first order reduction

the Christoffel symbols are shorthands for

Γabc = γi
(b|Φi|c)a − 1

2
γi

aΦibc + n(bΠc)a − 1
2
naΠbc , (4.4)

As described in section 2.2, the system is symmetric hyperbolic, having the same

principal part as a particular first order reduction of the wave equation. Its charac-

teristic variables are given by

u0̂
ab = gab , u±̂ab = Πab ∓ siΦiab − γ2 gab , uβ̂

Aab = qiAΦiab , (4.5)

with the projection operator qj i = δj i − sjsi, and speeds

v0̂ = (1 + γ1)β
s , v±̂ = βs ± α , vβ̂ = βs , (4.6)

respectively. A convenient way to transform from the evolution variables to the

characteristic variables is to write uα̂ = T−1αβ uβ, where again the matrix notation

has been used, in which the characteristic variables are combined as

uα̂ =

⎛
⎜⎝ u0̂

ab

u±̂ab
uβ̂
Aab

⎞
⎟⎠ , (4.7)
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and the similarity matrix is

T−1 α̂μ =

⎛
⎜⎜⎜⎜⎝

1 0 0

−γ2 1 −si

−γ2 1 si

0 0 qij

⎞
⎟⎟⎟⎟⎠ , (4.8)

It has the left inverse

T μ
α̂ =

⎛
⎜⎝ 1 0 0 0

γ2 1/2 1/2 0

0 −si/2 si/2 δij

⎞
⎟⎠ , (4.9)

but note that T−1 α̂μ T μ
β̂ 	= δα̂β̂. The strength of this particular representation in

practical terms is the avoidance of special cases in the numerical implementation,

like for example sx = 0, in the characteristic decomposition.

Gauge source functions: The gauge source functions Ha are chosen to be

Ha = ηL log

(
γp/2

α

)
na − ηS

α2
γaiβ

i. (4.10)

This convention differs from that of both [96] and [94] in a trivial normalization of

the spatial part with respect to the lapse function. In terms of the lapse and the

shift this gauge choice is

∂tα = −α2K + ηLα
2 log

(
γp/2

α

)
+ βi∂iα ,

∂tβ
i = α2 (3)Γi − α ∂iα− ηSβ

i + βj∂jβ
i , (4.11)

with K being the trace of the extrinsic curvature and (3)Γi the contracted Christoffel

symbol of the spatial metric. Before blackhole formation in simulations of collapsing

gravitational waves, the scalar functions ηL, ηS are set to

ηL = η̄Lα
q , ηS = η̄Sα

r , (4.12)

with η̄L, η̄S, q, r being some constants. The default choice is p = 1 and q = r = 0,

which naturally maintains the shift damping term even if the lapse function is close to

zero, in contrast to the standard condition employed in SpEC [96], which takes r = 1.
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Since the plan is to study near-singular gravitational effects in the computational

domain and run-away growth of the shift vector needs to be avoided this seems

reasonable. Adjustments to these choices when evolving near-critical data will be

reported later in this work. Following [96], in simulations of blackholes using excision

the parameter r is set to be r = 1. However, it was not found to be necessary to

use the log2 form of ηL proposed by [96].

The constraint subsystem: The first order reduced harmonic constraints are

Ca = Ha + γijΦija − 1
2
γa

igcdΦicd + nbΠab − 1
2
nag

bcΠbc . (4.13)

The terms without Ha are simply Γa. In these variables the vacuum ADM Hamil-

tonian 2.2 and momentum constraints 2.3 can be expressed as

2Gnn = γijγkl
(
∂kΦijl − ∂kΦlij + Γa

jkΓail − Γa
ijΓakl

)
,

−γa
i Gna = γjk

(
∂[jΠi]k +

1
2
djΦkin − 1

2
diΦjkn − 1

2
Πj[iΦj]nn

+ γlmΦmk[jΦi]ln + 2Γan[i Γ
a
k]j

)
. (4.14)

Here the subscript n denotes the contraction with the normal vector na, with the

convention that di stands for the partial derivative, but with any such contraction

outside of the derivative. The Hamiltonian and momentum constraints can be put

together as a four-vector of constraints

Ma = Gan . (4.15)

Working with the first order system creates the reduction and closely related ordering

constraints

Ciab = ∂igab − Φiab = 0 ,

Cijab = ∂iΦjab − ∂jΦiab = 2∂[jCi]ab = 0 . (4.16)
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The constraints Ca and Ciab evolve according to

∂tCa = (1 + γ1)β
i∂iCa − γ1β

i∂̄iCa + αGa + (γ4 − γ5)αnaΓ
bCb − α(2γ4 − 1)Γb

anCb

+ 2γ0αn
bn(aCb) + αγijγklΦiknCljnna − α γi

aCijn

[
1
2
gbcΦj

bc + Φj
nn

]
− γ1γ2β

i
(
1
2
gcdCicdna − Cina

)
,

∂tCiab = βj
(
∂jCiab + γ1∂iCjab

)
+ α

[
(1 + γ1)digjn C

j
ab

− γ2Ciab + Φj
ab Cijn +

1

2
CinnΠab

]
, (4.17)

with the introduction of the constraint

Ga = 2Ma + (naγ
ib − γi

an
b)(∂̄iCb − Γc

ibCc) + γ2(δ
c
aγ

ib − 1
2
gbcγi

a)Cibc , (4.18)

and where the notation ∂̄i means taking the partial derivative, and afterwards re-

placing all first derivatives of the metric with the reduction variable Φiab. Up to

lower derivatives in the constraints it is

∂tGa ≈ βi∂iGa + αγij∂i∂jCa − αγjkγli∂lCijka +
1
2
αγj

aγ
ilgcd∂lCijcd , (4.19)

where ≈ denotes equality up to non-principal terms, the remainder having been

suppressed for brevity. The equation of motion for Cijab is readily derived by taking

derivatives of that of Ciab. Notice that the parameter γ2 serves to damp the reduction

constraint. In the description of [70] the equivalent reduction variable is called Fa,

with, including γ4 and γ5 in the natural way

Fa = Ga − (1− γ4)(na Γ
b − 2 Γb

an)Cb − γ5 naΓ
b Cb , (4.20)

in terms of the variables used in this work. The difference is not substantial, be-

ing only that Ga appears slightly more naturally in the second order form of the

equations. Note that in (4.20), the final term contains a piece which is simply the

Harmonic constraint in the pure harmonic case, but will act as a non-zero coefficient

otherwise.

First order reduction of the constraint subsystem: Following [70], a first

order reduction of the constraint subsystem is formally introduced by defining the
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new variable Cia with

Cia = γjk∂jΦika − 1
2
γj
ag

cd∂jΦicd + diΠan − 1
2
nag

cd∂iΠcd

+ ∂iHa +
1
2
γj
aΦj

cdΦicd +
1
2
γjkΦjc

cΦiknna

− γjkγlmΦjlaΦikm + 1
2
ΦicdΠbena(g

cbgde + 1
2
gbencnd)

− ΦicnΠba(g
bc + 1

2
nbnc) + 1

2
γ2(nag

cd − 2δcan
d)Cicd . (4.21)

The principal part of this formal reduction is given by

∂tCa ≈ 0 ,

∂tGa ≈ βi∂iGa + α γij∂iCja ,

∂tCia ≈ βj∂jCia + α ∂iGa ,

∂tCiab ≈ (1 + γ1)β
j∂jCiab ,

∂tCijab ≈ βk∂kCijab . (4.22)

The characteristic variables of the constraint subsystem are then found to be

c±̂a = Fa ∓ Csa , c0̂a = Ca ,

cβ̂Aa = qiACia , cγ̂1iab = Ciab ,

cβ̂ijab = Cijab , (4.23)

with speeds βs ∓ α, 0, βs, (1 + γ1)β
s and βs respectively. A suitable norm of the

constraint violation is given by the constraint monitor which is defined as

Cmon =

∫
d3x

√
γ
(
δabFaFb + δabCaCb + γijδabCiaCjb

+ γijδacδbdCiabCjcd + γijγklδacδbdCikabCjlcd

)
. (4.24)

The gravitational wave degrees of freedom: In vacuum theWeyl scalars Ψ0,Ψ4

can be expressed as

Ψ0 = mAmB[⊥(P )bd
ABl

alcRabcd] ,

Ψ4 = mAmB[⊥(P )bd
ABk

akcRabcd] , (4.25)
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respectively. Here a null tetrad

la = 1√
2
(na + sa) , ka = 1√

2
(na − sa) ,

ma = 1√
2
(va + iwa) , m̄a = 1√

2
(va − iwa) , (4.26)

was used with sa, va and wa mutually orthogonal unit spatial vectors. Furthermore

the projection operator

⊥(P )cd
ab = qc(aq

d
b) − 1

2
qcdqab = m(amb)m̄

(cm̄d) + m̄(am̄b)m
(cmd) , (4.27)

has been introduced. In terms of the first order GHG variables the principal part

of the Riemann tensor can be expressed as

Rabcd ≈ γj
a∂iΦjb[cγd]

i − γj
b∂iΦja[cγd]

i + na∂iΠb[cγd]
i − nb∂iΠa[cγd]

i + γi
a∂iΠb[cnd]

− γi
b∂iΠa[cnd] − naγ

ij∂iφjb[cnd] + nbγ
ij∂iφja[cnd] − γ1γ2nan

k∂kgb[cnd]

+ γ1γ2nbn
k∂kga[cnd] − γ2γ

i
a∂igb[cnd] + γ2γ

i
b∂iga[cnd] . (4.28)

Of course this expression is unique only up to constraint additions. Note that

upon contraction with ⊥(P ) and l to form the Weyl scalar Ψ0, and after a single

addition of Cijab, naturally a projection of the incoming characteristic variable dsu
+̂
ab

is formed. This is used in the construction of the boundary condition. Again the

spatial vector si is taken to be the unit normal to the boundary.

Boundary conditions: At the outer boundary the incoming constraint violation,

gauge perturbations and physical radiation need to be controlled. By default initially

Fa + Csa +
1
r
Ca =̂ 0 , (4.29)

is imposed on the constraint subsystem assuming that the characteristic variable c+̂a

is always incoming. These conditions are essentially those of [70], with just the

additional 1/r term. Other conditions for this variable will be motivated and tested

in what follows. The remaining constraint subsystem characteristic variables may or

may not be incoming, and are dealt with on this basis as described in section 4.2.5,

but always according to the same prescription. For the gravitational wave degrees

of freedom

Ψ0 =̂ q0 , (4.30)
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is imposed. This is the lowest order member of a cascade of conditions on incoming

radiation [30, 31], with given data q0. Examining (4.25) it is obvious that this is

equivalent to setting

⊥(P )bd
AB(l

alcRabcd) =⊥(P )bd
AB q

(P )
bd , (4.31)

which is in practice how the conditions are implemented in bamps. For the remaining

gauge degrees of freedom either the improved gauge boundary conditions of [82],

⊥(G)cd
ab ∂t

[
u+̂
cd + (γ2 − r−1)gcd

]
=̂ 0 , (4.32)

or the alternative

⊥(G)cd
ab

[
dsu

+̂
cd − 2d̄s[n(cHd)] + γ2Φscd + r−1(u−̂cd − 2n(cHd) + γ2gcd)

]
=̂ 0 , (4.33)

are set. Here, the gauge projection operator

⊥(G)cd
ab = l(akb)l

(ckd) + kakbl
cld − 2k(aqb)

(cld) (4.34)

was used. The overbar derivative notation has the same meaning as in equa-

tion (4.18). The given data q
(G)
cd will often be chosen to vanish. These conditions are

similar to the ‘freezing’ gauge boundary conditions employed in [70], but taking into

consideration the discussion of gauge reflections given in [82]. Furthermore, they

are constructed so that the conditions are naturally applied to metric components

(in ADM form) and their derivatives, but excluding contributions from the gauge

sources. In the bamps simulation typically it is tried to choose the given data to be

fixed in time, and such that initially the time derivatives vanish for these quanti-

ties. The above boundary conditions are implemented in bamps using the Bjørhus

method [23] as in SpEC. Details of the method are explained in section 4.2.5. For

completeness here the constraint projection ⊥(C)= I− ⊥(P ) − ⊥(G) is

⊥(C)cd
ab = 1

2
qab q

cd − 2 l(aqb)
(ckd) + lalbk

ckd , (4.35)

It plays an important role in the implementation of the boundary conditions, as they

are again naturally written in the form ⊥(C)cd
ab dsu

+̂
cd =

(
transverse derivatives

)
ab
.
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4.1.2 Constraint preserving boundary conditions and damping

Generalized harmonic constraint subsystem: The constraint subsystem of

the first order reduction of the GHG system was already presented in the previous

section. In order to get a better idea of the effect of the different constraint preserving

boundary conditions now the subsystem without the reduction is considered. It is

∇bYba = −RabC
b ,

Yba = ∇bCa + 2γ4Γ
c
abCc − (γ4 − γ5)gabΓ

cCc − 2γ0n(aCb) . (4.36)

The shorthand Yab and the variable Ga that follows will be related to quantities

present in the first order reduction of the GHG formulation shortly. Equivalently

this can be express as

nb∂bCa = Ga − (2γ4 − 1)Γc
abn

bCc − (γ4 − γ5)naΓ
cCc + 2γ0n

bn(aCb) ,

nb∂bGa = γbc∇b

[∇cCa + 2γ4Γ
d
acCd − (γ4 − γ5)gacΓ

dCd − 2γ0n(aCc)

]
+ (nb∇bn

c)
[∇cCa + 2γ4Γ

d
acCd − (γ4 − γ5)gacΓ

dCd − 2γ0n(aCc)

]
+ Γc

abn
bCc +RabC

b , (4.37)

where the variable

Ga = nbYba = 2Ma + (naγ
ib − γi

an
b)∇iCb , (4.38)

is used to allow for the most convenient form of these expressions. Different choices

of the constraint addition parameters γ4, γ5 result in different behavior in terms of

growth of the constraint fields. It is also obvious that different choices of these

parameters can simplify the constraint subsystem, the natural choice seemingly be-

ing γ4 = γ5 = 1/2.

Linearization: Now the behavior of a set of fields that satisfies the linearized

equations on a fixed constraint satisfying background is considered. First, in equa-

tion (4.36) the tetrad consisting of the null vectors la, ka,ma, m̄a defined in (4.26) is

used to decompose the first index of Yba. From this the condition

∇b

(
kb l

cYca + lb k
cYca −mb m̄

cYca − m̄b m
cYca

)
= 0 , (4.39)
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for the linearization is obtained. Here the notation Ca for the linearized violation

can be used because the constraints are satisfied in the background.

Boundary conditions: Taking the standard setup at the outer boundary, so

that sa, used in the construction of the tetrad, denotes the outward pointing spa-

tial unit vector normal to the boundary. Restricting the attention to boundary

conditions that contain at most one derivative of the constraints, geometrically the

most natural choice seems to be lb Yba =̂ 0 . In the first order GHG language these

conditions are

Ga +∇sCa + 2γ4Γ
c
asCc + (γ4 − γ5)saΓ

bCb − γ0naCs =̂ 0 . (4.40)

Whereas, discarding the first order reduction, those of (4.29) are instead

Ga +∇sCa + Γc
asCc − (2γ4 − 1)Γc

anCc − (γ4 − γ5)naΓ
bCb +

1
r
Ca =̂ 0 . (4.41)

With either conditions one might guess that the choice γ4 = γ5 = 1/2 reduces re-

flections from the boundary, especially when using a non-harmonic Γa = −Ha 	= 0

gauge. Incidentally this choice also makes the two conditions almost coincident.

Suppose, all derivatives of Ca , Ga tangent to the boundary vanish, and that the

background is flat. Then the solutions can be analyzed in the same type of approx-

imation.

Mode solutions on flat-space: When linearized around flat-space this system

takes the form

�Ca − 2 γ0 ∂
b
(
n(aCb)

)
= 0 . (4.42)

The right-travelling mode solutions are

Cn = ρ1 e
s+1 t+i ωx + ρs2 e

s+2 t+i ωx , C i = ρi2 e
s+2 t+i ωx , (4.43)

with eigenfrequencies

s+1 = −1
2
γ0 − i

2

√
4ω2 − γ2

0 , s+2 = −γ0 − i
√
ω2 − γ2

0 . (4.44)

A very desirable property for the boundary conditions would be that they absorb

outward going waves perfectly, that is, without reflection. With this motivation high-
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order derivative boundary conditions on the gravitational wave degrees of freedom

have been studied [30, 31], and implemented in the SpEC code [81] in order to absorb

higher spherical harmonics of the Weyl scalar Ψ4. In the current context absorption

means that outgoing mode solutions, those associated with an s+, lie in the kernel

of the boundary conditions. This is only the case if the damping γ0 = 0 is switched

off. Since the low order spherical harmonics might be expected to dominate in the

gauge and constraint subsystems, optimizing against this phenomena may be more

important than using high-order conditions for the gauge and constraint subsystems

whilst neglecting the damping terms.

Remainder of mode solutions: Substituting these mode solutions into the

boundary conditions (4.41), or the natural geometric conditions (4.40), each af-

ter appropriate linearization, and expansion at large frequency ω gives remainders

of order O(γ0 Ca), indicating that neither is the optimal that can be obtained by

adding source terms to the constraint boundary conditions. Taking instead

(
∂t + ∂s + γ0

)
Cn +

1
2
γ0Cx =̂ 0,(

∂t + ∂s +
1
2
γ0
)
Ci =̂ 0 , (4.45)

the remainder is rather of order O(γ0 Ca ω
−1). There is some freedom in expressing

these conditions in the first order GHG language

Ga +∇sCa + 2γ4Γ
c
asCc + (γ4 − γ5)saΓ

bCb

+
1

2
γ0γa

bCb − γ0 na

(
Cn +

1
2
Cs

)
+ 1

r
Ca =̂ 0 . (4.46)

The conditions (4.40) can be similarly rewritten. A similar analysis can be performed

using the pure gauge subsystem presented in [65], but simulations with bamps show

that the existing gauge boundary conditions are so far sufficient. Tests with the

various boundaries are presented in section 6.

4.2 The bamps code

4.2.1 Grid setup

Grid types: The numerical domain on which the evolution equations 4.1 are

solved in bamps is either a cubed-ball or a cubed-shell grid. Each type is built

up of multiple deformed cubes. Two dimensional sketches of both setups are shown

in Fig. 7. A patch is described by two fundamental overlapping charts. In local
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Figure 7: In this figure 2d sketches of the bamps grid setups are shown. On the left
is the cubed-ball grid, on the right the cubed-shell grid. The grids are built up of
several coordinate patches which are deformed cubes.

coordinates x̄, ȳ and z̄ it is a rectangular box [x̄0, x̄1] × [−1, 1] × [−1, 1]. In global

Cartesian coordinates x, y and z the cubes are transformed and rotated in such a

way that when added together they build the desired domain. A more detailed

description of the applied coordinate transformation is given in the following. The

cubed-ball grid includes the origin and has a spherical outer boundary. It consists

of 13 coordinate patches:

The central cube is centered around the origin and ranges from −rcu to rcu in the

global Cartesian coordinate directions.

The transition shell transfers the grid from the inner cube grid to a spherical

shell with radius rcs. It is contains six patches.

The outer shell consists of six patches which extends the grid with additional

cubed-shells up to the outer grid boundary at rss.

The cubed-shell grid is an excision grid, meaning that it does not include the origin.

It is a special case of the cubed-ball grid, consisting only of the six outer shell

coordinate patches.

Cubed sphere coordinate transformation: The coordinate transformation

used in bamps to construct the grids introduced above relies on the so-called “cubed
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sphere” construction. It was introduced by [83] and first applied in the context of

numerical relativity in [101, 102]. Since then this idea was implemented in multi-

patch approaches [69, 74, 88, 109]. In contrast to many of the earlier examples,

the numerical method of bamps does not require overlapping grids, which simpli-

fies the discussion. In [83], the coordinates are constructed by considering great arcs

parametrized by equidistant angles. Such angle coordinates are used in [74, 101, 102],

while [69, 109] use an intermediate set of coordinates also given in [83] that does

not have the equidistant angle property. In bamps the latter type of coordinates is

applied. The concrete coordinate transformation is the following. First, the local

coordinates of each patch are transformed to temporary coordinates

xtemp =
x̄

s̄
, ytemp =

x̄

s̄
ȳ, ztemp =

x̄

s̄
z̄. (4.47)

This patch, which is orientated in positive x direction, will later be referred to as the

master patch. From here, cyclic permutation by some 90 degrees is used to rotate

the patches from their temporary position to their final location in the sphere. The

denominator s̄ depends on where the coordinate transformation happens. For the

patches of the outer shell it is

s̄ ≡ (1 + ȳ2 + z̄2)1/2, (4.48)

In the transition shell its definition includes a transition function λ,

s̄(λ) =
( 1 + 2λ

1 + λ(ȳ2 + z̄2)

)1/2

, λ =
x̄2 − x̄2

0

x̄2
1 − x̄2

0

. (4.49)

This coordinate transformation is constructed to transition from the inner cube to

the outer shells. Note that this transformation is uniform along the 3d diagonals,

where the distance between inner and outer shell boundary is smallest. This signif-

icantly improves the maximum possible timestep in the transition shell.

Subpatches: Each coordinate patch can be further divided into subpatches. Sub-

patches are helpful for increasing resolution, and form the backbone of the paral-

lelism of bamps. Each master patch can be split into Nx×Ny ×Nz subpatches with

coordinates

x̄i ∈ [x̄i
0 + kiΔx̄i, x̄i

0 + (ki + 1)Δx̄i] , (4.50)
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Figure 8: The left part of the diagram gives a two dimensional sketch of the bamps
cubed-ball grid layout. The ball is built up of several transformed cubes. These
patches can further be divided into subpatches. In the example shown it is Ncu = 3,
Ncs = 2 and Nss = 1. On the right is shown that each subpatch is covered by
Gauss-Lobatto grids ranging from −1 to 1 in local coordinates.

with Δx̄i = ( x̄1−x̄0

Nx
, 2
Ny

, 2
Nz

) and ki = 0, . . . ,Ni − 1. In practice the subdivisions

are made in such a way that subgrids of two neighboring patches match, and that

neighboring patches and subpatches share grid-point positions on their respective

boundaries. This is necessary because the current implemented patching boundary

treatment relies on the fact that the grid points match. Concretely the inner cube

is split into Ncu ×Ncu ×Ncu subpatches. The transition and outer shell are divided

in Ncs or Nss subpatches in the radial direction. For the angular direction the

number of subpatches is chosen to be Ncu ×Ncu. In Fig. 8 a 2d sketch of the bamps

cubed-ball grid subdivided into subpatches is illustrated.

4.2.2 Numerical method

Spatial discretization: In bamps the spatial right hand sides of the evolution

equations are approximated using a pseudospectral method (also see section 2.2). A

linear transformation is used to map the local coordinates of each subpatch x̄i into

a unit cube x̃i = (x̃, ỹ, z̃)T ∈ [−1, 1]3. A subpatch is discretized by Gauss-Lobatto
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collocation points in each dimension,

x̃α = − cos
[ π

Nx − 1
α
]
with α = 0 , · · · , Nx − 1 , (4.51)

and similarly in the other directions. The number of grid points N depends on the

patch location in the grid. The central cube is discretized with Ncu × Ncu × Ncu

points. The radial directions of the transition and outer shell are filled with Ncs and

respectively Nss points. The number of angular points are chosen to be the same as

in the central cube. This assures that the grids are matching. In Fig. 8 on the right

the Gauss-Lobatto discretization of a subpatch is shown.

Basis expansion: On the collocation points all evolution fields u are expanded in

each dimension in a spectral basis using Chebyshev polynomials Tn(x). For example,

in the x̃ direction it is

uαβδ = u(x̃α, ỹβ, z̃δ) =
Nx−1∑
n=0

cxn(ỹβ, z̃δ)Tn(x̃α) , (4.52)

and analogously in the remaining two directions. Here the pseudospectral approach

is used. This means that not the expansion coefficients cx, cy, cz are stored but the

function values uαβδ at the collocation points x̃i
αβδ.

Derivatives: The spatial derivatives of the evolution fields are computed by a

matrix multiplication. For example in the x̃-direction it is

(∂x̃u)αβδ =
Nx−1∑
n=0

Dαnunβδ , (4.53)

with the Gauss-Lobatto derivative matrix (2.24). Afterwards the derivatives are

transformed to global Cartesian coordinates with the appropriate Jacobian. In bamps

the diagonal terms of the derivative matrix are not computed by the analytic for-

mulas stated above but the identity

Dαα = −
Nx−1∑

n=0,n �=α

Dαn (4.54)

is used. This negative-sum-trick maps a constant function explicitly to zero and

is known to give the derivative matrix better stability with regards to rounding

errors [19].
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Time integration: The evolution fields are integrated forward in time using a 4th

order Runge-Kutta scheme. Unless otherwise stated in the following the time-step

is set to Δt = 1
4
Δxmin, with Δxmin being the minimal Cartesian spatial grid spacing

of the whole domain. Empirically it was found within the following simulations that

this choice always leads to stable numerical evolutions, in the sense that increasing

resolution results in smaller errors. A stability analysis of the fully discrete system

has not been carried out within this work.

Filtering: A crucial ingredient for numerical stability of the following simulations

is the use of a filter against high-frequency growth. Following [96] exactly, after every

full time-step the filter is applied in each dimension. The filter is easily implemented

as a matrix multiplication. For example, in the x̃ direction, the function values are

filtered by

(Fu)αβγ =
Nx−1∑
n=0

Fnαunβγ , (4.55)

with the filter matrix

Fαβ =
Nx−1∑
n=0

Sαne
−36(n/nmax)64Anβ. (4.56)

where nmax = Nx − 1 and Sαβ and Aαβ are the Chebyshev synthesis and analysis

matrices respectively (also see [26, 106]).

4.2.3 Imposition of octant symmetry

bamps octant grid: When evolving octant symmetric data in bamps, it is possible

to only evolve one eighth of the cubed-ball grid. This saves computational and

memory costs. In the bamps octant mode an odd number of subpatches Ncu and an

odd number of grid points Ncu has to be chosen. The numerical domain is reduced

to x ≥ 0, y ≥ 0 and z ≥ 0, as sketched in Fig. 9. This means that all subpatches

containing one of the Cartesian axes are cut in half along them. In these patches

the symmetry is used to construct special matrices which compute the derivatives

and filters.

Matrix construction: Consider discrete function values uk on a Gauss-Lobatto

grid with an odd number of N collocation points. The function should be defined
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Figure 9: For octant symmetric data the symmetry is used to evolve only one
eighth of the full domain. An odd number of subpatches Ncu is taken and the
subpatches containing the axis are cut in each symmetry direction. The figure
shows the remaining grid in the xz plane.

from −xmax to xmax and be symmetric around x = 0. Then,

un∗−i = ±un∗+i, (4.57)

where n∗ = (N − 1)/2 and i = 1, . . . , n∗. The sign obviously depends on the parity

function around x = 0. Because of this symmetry it is only necessary to store half

the function values, for example n = n∗, . . . , N − 1, without losing information. For

taking derivatives or filtering the data it is possible to either reconstruct the full

vector of N points by copying the function values with the correct parity, or to

construct special matrices using the symmetry condition. In bamps the latter choice

is made. The matrices of dimension N ×N are of the form,

M =

⎡
⎢⎣Aij 2ai Bij

bj 2c dj

Cij 2ei Dij

⎤
⎥⎦ , (4.58)

where i and j run from 0 to n∗− 1. Out of this “full” matrix two “octant” matrices

are constructed which operate on the reduced data,

M± = ±
[
c bn∗−1−j
ei Ci,n∗−1−j

]
+

[
c dj

ei Dij

]
. (4.59)

For even functions M+, for odd functions M− is taken.
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βs > α > 0 α > βs > 0 βs = 0 −α < βs < 0 βs < −α < 0

u0̂
ab 0 zero zero zero zero zero

u−̂ab βs − α incoming outgoing outgoing outgoing outgoing

u+̂
ab βs + α incoming incoming incoming incoming outgoing

uβ̂
Aab βs incoming incoming zero outgoing outgoing

Table 2: Incoming and outgoing characteristic variables to a subpatch boundary
with spatial normal vector si depending on the gauge variables.

4.2.4 Patching boundary conditions

In order to glue all subpatches together appropriate conditions at the connecting

boundaries of the subpatches have to be imposed. For this the penalty method is

applied as described in [60, 61, 97]. The main idea of this method is to add penalty

terms for each incoming characteristic variable at the boundary to the right hand side

of the evolution equations. On the boundary surface the outward pointing spatial

normal vector si is defined. The characteristic variables of the evolution system

are given in equation (4.5) with speeds (4.6). Incoming characteristic variables to

the subpatch boundary have positive speeds. On these the condition that they are

equal to the outgoing characteristic variables of the neighboring subpatch has to

be imposed. Table 2 summarizes all incoming and outgoing characteristic variables

depending on the lapse function α and the shift in si direction, βs. As an example,

now the boundary between two subpatches, subpatch L and subpatch R, and the

case −α < βs < 0, is considered. With respect to the spatial normal vector si at the

boundary pointing outwards of subpatch L and inwards in subpatch R, the incoming

characteristic variables of L are the outgoing ones of R. In the chosen case, u+̂
ab are

incoming to L and outgoing of R. The condition to be imposed is

u+̂L
ab =̂ u+̂R

ab . (4.60)

Multiplying the evolution equations 4.2 from the left with the matrix of eigenvectors

T−1 α̂β, the evolution equations for the characteristic variables are obtained,

dtu
α̂ L = T−1 α̂μAkμ

ν∂ku
ν L + T−1 α̂μSμ . (4.61)

Here, the d denotes that the transformation T−1 α̂μ stands outside the partial deriva-

tive. At the boundary a penalty to the right hand side of the evolution equation

of the incoming characteristic is added, which is often called weakly imposing the
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boundary condition

dtu
+̂L
ab =̂T−1 +̂μA

kμ
ν∂ku

ν L
ab + T−1 +̂μS

μ + p
(
u+̂R
ab − u+̂L

ab

)
. (4.62)

Afterwards the inverse transformation is used to get back to the evolution equations

enhanced with the necessary penalty terms at the boundary. These are also the

equations which are implemented in the code. All six boundaries of the subpatches

are treated independently from each other. This means that on the edges penalty

contributions from two on the corner from three directions have to be considered.

The size of the penalty parameter p can be derived from an energy estimate of the

semi-discrete evolution system. This is presented in section 4.3.

4.2.5 Outer boundary implementation

At the spherical outer boundary of the domain the Bjørhus method [23, 70] is used

to impose the constraint, physical and gauge conditions given in section 4.1. As for

the patching boundaries, the conditions are imposed on the incoming characteristic

variables. However, this time no penalty terms are used but instead the right hand

side of the evolution equations is modified at the boundary in such a way that the

boundary conditions are satisfied. On the boundary surface the outward pointing

spatial normal unit vector si is defined. The projection operator qj i = δj i − sjsi

is used to split the principal part of the evolution equation in a part normal and

tangential to the boundary surface

∂tu
μ ≈ Akμ

ν(sks
j + qjk)∂ju

ν = Asμ
ν∂su

ν + AAμ
ν qBA∂Bu

ν . (4.63)

Expressed in characteristic variables the normal part is

dtu
α̂ ∼ T−1 α̂μAsμ

νT
ν
β̂T

−1β̂
ξ∂su

ξ = Λsα̂
β̂dsu

β̂ . (4.64)

Again the straight d derivative symbol denotes that the transformation matrix

stands outside the partial derivative. The matrix Λsα̂
β̂ is a diagonal matrix con-

taining the characteristic speeds. At the outer boundary it is reasonable to assume

that the absolute value of the shift βs is always smaller than the size of the lapse α.

This leads to two cases to be considered.

Case −α < βs < 0: In this case the incoming characteristic at the outer boundary

condition is u+̂. According to section 4.1 the following boundary conditions, which
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are repeated schematically, have to be imposed:

1. One of the constraint preserving boundary conditions (4.29), (4.40) or (4.46),

⊥(C) dsu
+̂ + P (C) +NP (C) =̂ 0 . (4.65)

2. One of the gauge boundary conditions (4.32) or (4.33), which become either,

⊥(G) dtu
+̂ + P (G) +NP (G) =̂ 0 ,

⊥(G) dsu
+̂ + P (G) +NP (G) =̂ q(G) . (4.66)

3. The physical boundary condition (4.30),

⊥(P ) dsu
+̂
ab + P (P ) +NP (P ) =̂ q(P ) . (4.67)

Here the principal terms with derivatives tangent to the boundary are labeled with

P (x) and the non-principal terms with NP (x). At the boundary surface the normal

part of evolution equation of the incoming characteristic u+̂ is projected into the

constraint, the physical and gauge part

dtu
+̂
ab ≈ v+̂(⊥(C)

ab
cd+ ⊥(P )

ab
cd+ ⊥(G)

ab
cd)dsu

+̂
cd . (4.68)

All three parts have to be replaced using the boundary conditions. This is done by

subtracting the conditions from the bulk right hand side, which is denoted as Dtu
+̂
ab,

dtu
+̂
ab=̂Dtu

+̂
ab − v+̂(Conditions)ab . (4.69)

The special case (4.32) treated in the obvious way. Transforming back this modified

right hand side leads to modified GHG evolution equations at the boundary.

Case 0 < βs < α: In this case also the characteristic uβ̂
Aab is incoming. As de-

scribed in [70], the additional constraint preserving boundary condition

dsu
β̂
Aab − siqBA∂BΦibc =̂ 0 (4.70)

has to be imposed by subtracting it from the evolution equation, of uβ̂
Aab

dtu
β̂
Aab = Dtu

β̂
Aab − vβ̂(Condition)Aab. (4.71)
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Figure 10: On the left an overview of the modular design of the bamps code is
presented. The figure on the right lists the tools used within the bamps tool chain.

With this modified right hand side at the boundary the system is transformed back

to the evolution equations for the evolution fields.

4.2.6 Code implementation details

Code structure: The bamps code is written in the C programming language in

a modular fashion. The code is designed in such a way that the technical layer is

separated from the actual projects for solving physics problems. Fig. 10 shows the

code structure and names the tools used within the bamps infrastructure. Inside

physics projects a Mathematica script, MathToC, translates equations written in

tensor notation into C code. As a standalone program an axisymmetric apparent

horizon finder, AHloc, has been developed. It is typically used to search for apparent

horizons in bamps generated data at the post-processing step. It is also possible to

run the finder in a daemon-like mode in which it searches horizons in data of a

running instance of bamps. The apparent horizon finder is explained in more detail

in subsection 5.2.

Computational method: The dominant computational methods within a sim-

ulation is dense matrix-matrix multiplications on a 3d data array. For this bamps

relies on a handwritten function for all the simulations carried out within this work.

Further details on the actual method can be found in [27].

Parallelization: bamps is programmed to run in parallel on several computing

nodes using the message passing interface (MPI). The Nsub subpatches of a bamps

grid are distributed on M MPI processes as evenly as possible. This means that

each process has to handle at least, n = Nsub

M
� , subpatches. As in general the total

number of grids is not divisible by the number of MPI processes without remainder,

Nsub mod M processes have to take care of one additional grid. In practice the

number of MPI processes is chosen in such a way that the number of processes
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which have to compute one grid less is minimized.

4.3 Energy estimate for the penalty factor

In this section an estimate for the right choice of penalty factor at the patching

boundaries of the bamps domains is derived. The actual technical implementation

of the patching condition is explained in subsection 4.2.4. The calculation is based

on the one presented in [97]. However, here it is presented for a general hyperbolic

system in curvilinear coordinates, albeit under rather restrictive assumptions.

4.3.1 The continuum case

In the following calculation the evolution equations are written in the matrix nota-

tion as presented in (4.2), but with all non-principal terms Sμ and all state vector

indices μ, ν suppressed. Furthermore, the calculation is carried out within the linear,

constant coefficient approximation.

As the GHG system is symmetric hyperbolic, there is a symmetrizer H such

that HApsp is Hermitian for every unit spatial vector sp [62]. The energy of the

system is

E2 =

∫
V

dV u†Hu , (4.72)

with the volume form dV = dx dy dz
√
γ. As discussed in section 4.2, each subpatch

of bamps has a set of global Cartesian coordinates xi = (x, y, z) and a set of local

coordinates x̃i = (x̃, ỹ, z̃) in which the subpatch is a unit cube. The Jacobian

J i
ĩ
= ∂xi

∂x̃i transforms between the two charts. To formulate boundary conditions

at the patching boundaries which control the energy in the subpatch, the time

derivative of the energy is studied. Using the evolution equations to replace the

time derivatives by spatial derivatives gives

∂tE
2 =

∫
dV ∂p

[
u†HApu

]
. (4.73)

In the constant coefficient approximation the determinant of the three metric in the

volume form can be commuted with the partial derivative. This leads to a divergence

in flat Cartesian coordinates

∂tE
2 =

∫
dx dy dz ∂p

[
u†HApu

√
γ
]
. (4.74)
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Switching to the subpatch local coordinates gives

∂tE
2 =

∫
dṼ

1

det J i
ĩ

∂p̃
[
u†HAp̃u

√
γ det J i

ĩ

]
=

∫
dx̃ dỹ dz̃ ∂p̃Φ

p̃ . (4.75)

Here it is
√
γ̃ :=

√
γ det J i

ĩ
and the flux Φp̃ = u†HAp̃u

√
γ̃ has been defined. Inte-

grating over all boundary surfaces of the subpatch results in

∂tE
2 =

1∫
−1

1∫
−1

dỹ dz̃Φx̃
∣∣∣1
x̃=−1

+

1∫
−1

1∫
−1

dx̃ dz̃ Φỹ
∣∣∣1
ỹ=−1

+

1∫
−1

1∫
−1

dx̃ dỹΦz̃
∣∣∣1
z̃=−1

. (4.76)

At a boundary surface, for example x̃ = const, the unit normal vector can be written

as,

s̃i = (γ̃ j̃k̃∂j̃x̃∂k̃x̃)
−1
2︸ ︷︷ ︸

≡l

γ̃ ĩk̃∂k̃x̃ = l ∂ ĩx̃ . (4.77)

The spatial metric γ̃ij is 2 + 1 split,

γ̃ĩj̃ =

(
l2 + γ̃x̃Ãγ̃

Ã
x̃ γ̃x̃Ã

γ̃x̃B̃ q̃ÃB̃

)
. (4.78)

The relationship between the determinant of γ̃ĩj̃ and the metric in the boundary

surface q̃ÃB̃ is,
√
γ̃ = l

√
q̃ . Rewriting

Φx̃ = Φp̃∂p̃x̃ = u†HAp̃u l
√
q̃ ∂p̃x̃ =

√
q̃ u†HAsu︸ ︷︷ ︸

Φ̃s

, (4.79)

and expressing the time derivative of the energy as the sum of boundary surfaces

integrals over the outward pointing fluxes Φ̃s leads to

∂tE
2 =

1∫
−1

1∫
−1

dA ỹz̃ Φ̃
s
∣∣∣1
x̃=−1

+

1∫
−1

1∫
−1

dA x̃z̃ Φ̃
s
∣∣∣1
ỹ=−1

+

1∫
−1

1∫
−1

dA x̃ỹ Φ̃
s
∣∣∣1
z̃=−1

. (4.80)

The area element is dA ỹz̃ =
√
q̃ dỹ dz̃ . The fluxes can be expressed in terms of in-

coming and outgoing characteristic variables at the boundary surface. The system is

symmetric hyperbolic, therefore it has a full set of eigenvectors (see 4.1.1). With the

transformation matrix, T−1s , the characteristic variables of the system are computed
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as v = T−1s u. The flux expressed in the language of characteristic variables is,

Φ̃s = u†(T−1s )†︸ ︷︷ ︸
v†

T †sHTs︸ ︷︷ ︸
H̃

(Ts)
−1AsTs︸ ︷︷ ︸
Λs

T−1s u︸ ︷︷ ︸
v

= v†H̃Λsv . (4.81)

The diagonal matrix Λs contains all the speeds of the characteristic variables

Λs =

(
ΛI 0

0 −ΛII

)
. (4.82)

Here, the characteristic variables are ordered in such a way that all incoming with

positive speeds ΛI and outgoing with negative speeds −ΛII are grouped. In this

partition it follows that

v =

(
vI

vII

)
, H̃ =

(
H̃I 0

0 H̃II

)
, (4.83)

and with this

Φ̃s = v†IH̃IΛIvI − v†IIH̃ΛIIvII . (4.84)

If all integrands in (4.80) are negative semi-definite, the energy of the system does

not grow over time. For the boundary conditions the ansatz vI = κvII + g is used.

This means that at the boundary surface the incoming characteristic variables are

set equal to a linear combination of the outgoing characteristic variables plus some

given data g. The triangle inequality gives

Φ̃s = (g† + v†IIκ
†)H̃IΛI(κvII + g) ≤ g†HIΛIg + v†II

[
κ†H̃IΛIκ− H̃IIΛII

]
vII .

(4.85)

The first term only depends on the given data which can be chosen freely. The

second can be made negative by choosing κ sufficiently small.

4.3.2 The semi-discrete case

In this subsection the energy estimate for the semi-discrete system is carried out.

Of special interest is the question: How can penalty terms at the boundary be used

to control the energy in the subpatch? Strictly speaking, the calculation is only

true if the pseudospectral expansion is done using Legendre polynomials. In bamps
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the more convenient Chebyshev polynomials are used. Nevertheless, it was empir-

ically found that the values for the penalty parameters obtained by the following

calculation lead to robust and stable patching boundaries in bamps.

The semi-discrete evolution equations are

∂tuαβδ = Ap[∂pu]αβδ = Ap[J p̃
p ]αβδ[∂p̃u]αβδ . (4.86)

The energy of this system is defined using Gauss-Lobatto quadrature with the ap-

propriate integration weights ωα, ωβ, ωδ,

E2 =
∑
αβδ

ωαωβωδ

√
γ̃αβδu

†
αβδHuαβδ . (4.87)

Again the time energy of the system is computed. Defining ω̃αβδ = ωαωβωδ[
√
γ̃]αβδ

and using the inverse product rule to write

∂tE
2 =

∑
αβδ

ω̃αβδ∂p

[
u†αβδHαβδA

puαβδ

]
. (4.88)

Transforming to local coordinates and assuming that ∂p̃
√
γ̃αβδ = 0 leads to

∂tE
2 =

∑
αβδ

ωαβδ∂p̃

[
u†αβδHαβδA

puαβδ

√
γ̃αβδ

]
. (4.89)

Using the summation by parts property of the assumed expansion in Legendre poly-

nomials gives

∂tE
2 =

∑
βδ

ωβδ u
†
αβδHαβδA

x̃uαβδ

√
γ̃αβδ

∣∣∣Nx−1

α=0
+
∑
αδ

ωαδ u
†
αβδHαβδA

ŷuαβδ

√
γ̃αβδ

∣∣∣Ny−1

β=0

+
∑
αβ

ωαβ u†αβδHαβδA
ẑuαβδ

√
γ̃αβδ

∣∣∣Nz−1

δ=0
. (4.90)

As in the continuum case the normal outward pointing si vector at the boundary is

introduced to write

∂tE
2 =

∑
βδ

ω̃βδ u
†
αβδHαβδA

p̃[sx̃p̃ ]αβδuαβδ

∣∣∣Nx−1

α=0
+
∑
αδ

ω̃αδ u
†
αβδHαβδA

p̃[sŷp̃]αβδuαβδ

∣∣∣Ny−1

β=0

+
∑
αβ

ω̃αβ u†αβδHαβδA
p̃[sẑp̃]αβδuαβδ

∣∣∣Nz−1

δ=0
, (4.91)
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with ω̃βδ ≡
√
q̃ωβδ. The flux is defined as

Φ̃αβδ = u†αβδHαβδA
p[sp]αβδuαβδ , (4.92)

and the equations are transformed to characteristic variables in the obvious way.

This gives for the semi-discrete case the analogue expression for the time derivative

of the energy at the boundary. In case of patching the boundaries between two

subpatches the penalty method is used to impose boundary conditions. For simplic-

ity reason the following calculation is restricted to the a = 0 boundary. For each

incoming characteristic variable a penalty term is added to the right hand side of

the evolution equations

∂tuαβδ = AP [J p̃
p ]αβδ[∂p̃u]αβδ + δα,0[Ts]βδPβδδvαβδ , (4.93)

with the penalty matrix

Pβδ =

(
pβδ 0

0 0

)
, (4.94)

and δvαβδ = [vBC ]αβδ − [vRI ]αβδ. The time derivative of the energy splits into two

parts

∂tE
2 = ∂tE

2
bulk + ∂tE

2
pen . (4.95)

The first part is the contribution from the bulk

∂tE
2
bulk =

∑
βδ

ω̃βδ[v
†
I ]0βδ[H̃I ]0βδ[Λ

s
I ]0βδ[vI ]0βδ −

∑
βδ

ω̃βδ[v
†
II ]0βδ[H̃II ]0βδ[Λ

s
II ]0βδ[vII ]0βδ .

(4.96)

The second part changes the time derivative of the energy because of the additional

penalty terms in the evolution equation at the boundary

∂tE
2
pen =

∑
βδ

ω̃0βδ([u0βδ]
†H0βδT0βδPβδδv0βδ + [δv0βδ]

†P †βδT
†
0βδH0βδu0βδ) . (4.97)

By inserting the identity TT−1 = I into the appropriate places the state vector u

is transformed to the vector of characteristic variables. Then multiplying out the
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penalty matrix and rearranging leads to

∂tE
2
pen =

∑
βδ

pβδω̃0βδ([v
BC ]†0βδ[H̃I ]0βδ[v

BC ]0βδ

− [vI ]
†
0βδ[H̃I ]0βδ[vI ]0βδ − [δv]†0βδ[H̃I ]0βδ[δv]0βδ) . (4.98)

In total the change of energy at the boundary surface is

∂tE
2 =

∑
βδ

[vI ]
†
0βδ(ω̃βδΛ

s
I − pβδω̃0βδ)[H̃I ]0βδ[vI ]0βδ −

∑
βδ

ω̃βδ[v
†
II ]0βδ[H̃II ]0βδ[Λ

s
II ]0βδ[vII ]0βδ

+
∑
βδ

pβδω̃0βδ[v
BC ]†0βδ[H̃I ]0βδ[v

BC ]0βδ −
∑
βδ

pβδω̃0βδ[δv]
†
0βδ[H̃I ]0βδ[δv]0βδ .

(4.99)

Now two neighboring subpatches are considered. They are labelled L (for left) and R

(for right) and have a common boundary at a = N−1 for the left patch and a = 0 for

the right patch. The change of energy in each subpatch is given by an expression as

in equation (4.99). Setting the boundary conditions that the incoming characteristic

variables of one subpatch have to be the outgoing one of the neighboring grid

vRBC=̂vLII , vLBC=̂vRII , (4.100)

and demand that the change of energy of the sub patches in time due to the patching

boundary is not growing. Sufficient conditions for this are given by

pRβδ =
ω̃βδΛ

s
I

ω̃0βδ

, pLβδ =
ω̃βδΛ

s
I

ω̃(N−1)βδ
. (4.101)

These are the penalty parameters used in bamps. However, as previously mentioned,

the actual discretization in bamps is made with Chebyschev rather than Legendre

polynomials, which do not fulfill the needed summation-by-parts property. Further-

more the equations which are solved are not linear with constant coefficients and the

Jacobians mapping from the master coordinates to our global Cartesian coordinates

are not constant. As will be shown in the upcoming section 6, the implemented

method is in an appropriate sense stable. However, these facts may contribute to

the necessity of employing the filter (4.56).
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5 Axisymmetric considerations

One of the disadvantages in the study of collapsing gravitational waves with the

BAM code was the fact that 3d grids were employed to evolve axisymmetric data,

making the simulations unnecessarily expensive and less accurate. In this section

different considerations are presented for the case that axisymmetric spacetimes

are evolved in bamps. First the Cartoon method [13] is discussed which is used to

reduce the standard bamps 3d domains to a plane, by using the Killing vector to

evaluate any angular derivatives. Then a detailed description of the formulation of

the apparent horizon conditions in axisymmetry is given. Here, special care is taken

on the regularity conditions on the symmetry axis. The apparent horizon search

in the numerical data was implemented in a program called AHloc, which will also

be discussed. Finally two types of axisymmetric, moment-of-time-symmetry initial

data and their numerical construction are presented.

5.1 The analytic Cartoon method

Here the implementation of the so-called Cartoon method [13] for axisymmetry in

the bamps code is discussed. Assuming that the 3d system is given in a Cartesian

coordinate system xi in which all variables are smooth, T ∈ C∞, the basic idea of

the Cartoon method is to apply wherever possible the same coordinates and dis-

cretization that lead to stable evolutions in 3d. Hence the axisymmetrically reduced

system is computed in Cartesian coordinates and with Cartesian tensor components,

without adapting coordinates and thereby avoiding the coordinate singularity at the

axis.

Concretely, the computational domain is chosen to be the xz-plane defined by

y = 0. Partial derivatives ∂x and ∂z are computed as for the 3d system. What is

missing are the points and the numerical data in the y-direction for the computation

of ∂y. However, the y-derivative can be obtained by invoking axisymmetry, since the

fields in the y = 0, xz-plane determine the fields for y 	= 0 by the rotation symmetry.

Similarly, it suffices to consider only the half-plane x ≥ 0 and y = 0 while still using

the same stencils for ∂x and ∂z as in 3d.

The Cartoon method was first introduced for a Cartesian BSSN [20, 73, 91] code

using finite differencing [13]. The ∂y derivative was computed by adding ghost points

in the y direction, so that identical 3d stencils could be used for 3d and axisymmetric

2d calculations. For a spectral collocation method, the same could be done by

populating a 3d spectral element by rotation. There would still be significant gains
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in efficiency since only a 2d subset of a 3d spectral grid consisting of many patches

needs to be populated. However, it is also possible to derive analytical formulas for

∂y in terms of quantities in the y = 0 plane only, so this is clearly the preferred way

to proceed. This was first implemented in [77], in that case for finite differences and

the second order GHG system. For an arbitrary smooth tensor T , axisymmetry is

given by the vanishing of its Lie derivative along the rotational vector, LφT = 0 .

Off-axis, x 	= 0. In the following various tensor types of interest are considered,

suppressing their t and z dependence. For a scalar it is

∂yu(x, 0) = 0 . (5.1)

The second derivative does not vanish in general. For vectors and covectors (x 	= 0)

it is

∂yv
x(x, 0) = −1

x
vy(x, 0) , ∂yv

y(x, 0) =
1

x
vx(x, 0) ,

∂ywx(x, 0) = −1

x
wy(x, 0) , ∂ywy(x, 0) =

1

x
wx(x, 0) . (5.2)

the derivative is equal to the components of the vector divided by radius, with x

and y components interchanged. For a symmetric (0, 2) tensor (say, the four-metric

gab), at y = 0, x 	= 0 it is

∂ygtt = 0, ∂ygtz = 0, ∂ygzz = 0,

∂ygtx = −1

x
gty, ∂ygty =

1

x
gtx,

∂ygxz = −1

x
gyz, ∂ygyz =

1

x
gxz,

∂ygxx = −2

x
gxy, ∂ygyy =

2

x
gxy,

∂ygxy =
1

x
(gxx − gyy). (5.3)

Some components behave like scalars, some like covectors, and some show the two

terms occurring in the Lie derivative, which may result in a factor two due to

symmetry.

On-axis, x = 0. Axisymmetry by itself does not imply differentiability on the

axis, for example, u(x, y) = ρ. Axisymmetry and the condition that in Cartesian

coordinates T ∈ C∞ are combined in two ways. First, consider parity under (x, y) →
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(−x,−y), which corresponds to a rotation by π around the z-axis. Because of

axisymmetry, it is T (ρ, 0) = ±T (−ρ, 0) and ∂yT (ρ, 0) = ∓∂yT (−ρ, 0). Since ∂yT is

continuous, the limit ρ → 0 exists. Hence for tensors that are even under this type

of parity, the derivative vanishes, ∂yTeven(0, 0) = 0. For tensors that are odd, the

tensor vanishes, Todd(0, 0) = 0, and ∂yTodd(0, 0) is a regular, finite value. Therefore

it is imposed that ∂y vanishes on the axis for even quantities. The question is how

the value for the odd quantities can be computed.

From vanishing of the Lie derivative, relations for the tensor components them-

selves can be obtained, but not for their derivative. For a scalar, there is no extra

condition. Examples for relations obtained from (5.2)–(5.3) are

vi(0, 0) = 0, wi(0, 0) = 0 ,

gtx(0, 0) = gty(0, 0) = gxz(0, 0) = gyz(0, 0) = 0,

gxy(0, 0) = 0, gxx(0, 0) = gyy(0, 0). (5.4)

Although some of the same information was obtained that has been already discussed

for (x, y) → (−x,−y) parity, for even parity quantities with two or more indices there

are additional relations. For the metric components these are related to covariance

under rotation by π/2, or (x, y) → (−y, x).

To find the derivative ∂y at (0,0), the l’Hopital’s rule is used. Basically, in (5.2)–

(5.3) the 1
x
factors become a partial derivative in x because the other terms vanish.

For example,

∂yv
x(0, 0) = −∂xv

y(0, 0), ∂yv
y(0, 0) = ∂xv

x(0, 0). (5.5)

Axisymmetry for partial derivatives of tensors. There also are objects like Φiab =

∂igab, which are not tensors, but partial derivatives of tensors. The Lie deriva-

tive Lφ∂igab is in general not defined for non-tensors, and a priori it is not clear

whether Lφ∂igab = 0 implies axisymmetry. However, the required formulas can be

derived by computing

∂iLφgab = L̂φ∂igab + gcb∂a∂iφ
c + gac∂b∂iφ

c, (5.6)

where L̂φ is introduced to collect those terms that correspond to the Lie derivative

of a tensor, and the remaining terms are the deviation from the tensor formula.

The last term in ∂i(φ
c∂cgab) = φc∂c∂igab+ ∂cgab∂iφ

c provides precisely the term that
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would otherwise be missing in the sum over index locations in L̂φ∂igab.

The key observation is that in the case of a rigid rotation in adapted coordinates

generated by φa = (0,−y, x, 0)T , the second derivatives of φa vanish

∂a∂bφ
c = 0 . (5.7)

Therefore, in this special case the correct result is obtained by using the tensor

formula

∂iLφgab = L̂φ∂igab, (5.8)

as was also noted in [13]. This generalizes immediately to partial derivatives of ar-

bitrary tensors, and also includes the case of the Christoffel symbol required for the

BSSN or Z4c system, compare [13]. Eqn. (5.7) furthermore simplifies the computa-

tion of second derivatives.

5.2 Apparent horizons

Formulation of the AH conditions: An apparent horizon is a closed two surface

in the spatial slice with expansion

H = Dis
i −K + sisjKij = 0 , (5.9)

where si is the unit normal to the surface. The approach to the apparent horizon

search used in this work is based on that of [12] as also presented in [10, 103]. First

given the spatial metric γij and extrinsic curvature Kij in Cartesian coordinates,

they are transformed to work in spherical polar coordinates defined by

r2 = x2 + y2 + (z − z0)
2 , θ = arccos

(z − z0
r

)
. (5.10)

Here it is θ ∈ [0, π] and the z-axis is taken to be the symmetry axis. In axisymmetry

without twist, the spatial metric and extrinsic curvature then takes the form

Sij =

⎛
⎜⎝ Srr r sin θSrT 0

r sin θSrT r2SθT 0

0 0 r2 sin2 θSφT

⎞
⎟⎠ , (5.11)
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in the φ = 0 plane. Local flatness on the axis implies that the components Srr, SrT , SθT

and SφT are even functions of θ around the symmetry axis, with SθT − SφT ∼ θ2

around θ = 0, and similar dependence around θ = π. Working in the ρz plane an

apparent horizon can be parametrized by the level set s = 0 of

s = r − F (θ) , (5.12)

The apparent horizon condition (5.9) can be rewritten as a first order ODE system,

F ′ = G ,

G′ = (sin2 θ γ2
rT − γrrγθT )F

2L2qij(Γk
ijDks+ LKij) . (5.13)

for F (θ) and G(θ), where the unit spatial vector si and magnitude L are given by

si = γijLDjs , L−2 = γij(Dis)(Djs) , (5.14)

and qij = γij − sisj is the induced metric in the level set. These expressions are

evaluated in spherical polar coordinates. As noted elsewhere (for example in [10])

this parametrization is not completely general, only being sufficient if the apparent

horizon is a ray-body containing the point z0. Regularity of an apparent horizon

means that G(0) = G(π) = 0.

Search strategy: Given the metric and extrinsic curvature the search strategy

for an apparent horizon is the following:

First, z0, r0 are chosen. From this point the ODE (5.13) is integrated from θ = 0

to θ = π/2, with initial conditions F (0) = r0 and G(0) = 0. Simultaneously

the ODE is integrated backwards from θ = π to θ = π/2 taking as initial condi-

tions F (π) = r0 and G(π) = 0. If there is an apparent horizon the forwards (F+, G+)

and backwards (F−, G−) solutions will satisfy,

ΔF = F+(π/2)− F−(π/2) = 0 , ΔG = G+(π/2)−G−(π/2) = 0 . (5.15)

This gives a non-linear root finding task on the function S : R2 → R
2 defined by

S(z0, r0) = (ΔF,ΔG). (5.16)

One complication is that the ODE system (5.13) needs to be regularized on the
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axis to impose the initial conditions. This is straightforwardly done by using the

regularity conditions above, resulting in

G′ =
(
γθT
2γrr

− γrT
2γrr

)
F +

(
∂rγθT
4γrr

− KθT

2
√
γrr

)
F 2 (5.17)

at θ = 0 and similarly at θ = π. To arrive at this expression the regularity condi-

tion SθT − SφT ∼ θ2 has been used explicitly. The numerical implementation uses a

transformation from Cartesian components, so this condition is automatically sat-

isfied and instead the condition in a slightly more complicated form involving γφT

and KφT can be used.

The second step of the search is to iterate on (z0, r0) until a solution is found, or

until the method fails. As an alternative strategy, it is normally proposed to integrate

the ODE from θ = 0 to θ = π then to perform a bisection search on G(π). It was

not possible to obtain satisfactory results this way because every surface except

the apparent horizon itself diverges near θ = π, making the bisection hopeless.

Reasonable first guesses for z0 would seem to be the position of the maximum of

the Kretschmann scalar, or, if an apparent horizon was already found in a previous

time-slice, the coordinate center of the previous horizon.

Horizon mass: In twist-free axisymmetry the apparent horizon mass MH is re-

lated to the area of the apparent horizon AH as,

M2
H =

AH

16π
. (5.18)

The area of the apparent horizon can be computed as a simple integral,

AH = 2π

∫ π

0

L−1
√
γ r2 sin θ dθ . (5.19)

where the fact that the apparent horizon is a surface of revolution was used. Here γ

is the determinant of the spatial metric in Cartesian coordinates.

Simplifying assumptions: In many simulations the focus is on finding apparent

horizons centered at the origin in spacetimes that are additionally reflection sym-

metric about the z = 0 plane. In this case the root-finding search can be traded

above for a bisection search by simply fixing z0 = 0 and integrating the ODE (5.13)

from θ = 0 to θ = π/2. Here the integration is started from different initial radii r0

until points are found about which G(π/2) changes sign. Then a bisection in r0 is
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Figure 11: In the left hand panel the apparent horizon for a centered A = 12 Brill
wave, as found by the apparent horizon finder AHloc and a bespoke Brill wave
apparent horizon finder, are plotted. This data has been used as a standard test
case elsewhere in the literature [12, 43]. The computed ADM mass is MADM = 4.67,
which compares perfectly with MADM = 4.67 ± 0.01 given in [12]. The horizon
mass is MH = 4.66, again in agreement with the literature. The right panel shows
pointwise self-convergence labelled byN = 25, 100, 400 and 800, withN+1 being the
lowest number of points in the series, and 2N+1 and 4N+1 points were used to make
the plot. Very few points are needed to show clean convergence because the surface
varies slowly in θ. This also means that one cannot reliably test convergence at high
resolutions because the differences between the computed surfaces are essentially at
the level of round-off.

carried out to find the apparent horizon, where G(π/2) = 0. Typically the crite-

rion G(π/2) < 10−8 to end the search is chosen. As in the more general case, if

multiple such surfaces are found the outermost is taken as the apparent horizon.

Numerical implementation: In practice the apparent horizon search is carried

out in the AHloc code as follows. During a bamps evolution the necessary components

of the spatial metric and extrinsic curvature are outputted in the y = 0 plane at

different coordinate times. For the integration of the ODE, various ODE integrators

of the GSL [5] are used. To determine the apparent horizon accurately as fast

as possible the explicit embedded Runge-Kutta Prince-Dormand (8, 9) method is

chosen, a high-order adaptive step integrator. When convergence testing a simple

fourth order Runge-Kutta integrator has been used. To evaluate the metric and

extrinsic curvature at each point (r = F, θ) along the level set a barycentric Lagrange

interpolation inside each bamps subpatch is carried out. For the root-finding again

the GSL is used, now choosing one of the ‘hybrid’ algorithms that do not need the

Jacobian of the system of equations being solved.
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Figure 12: The apparent horizons for centered Brill data with A = 11.82 and A =
−5.3 and for pure plus polarization data with A = 2.381 and A = −2.28.

5.3 Initial data

Brill wave data

Brill wave initial data has already been described in section 3.1. In the context

of bamps, a pseudospectral elliptic solver is used to generate Brill initial data for

evolutions. The method is discussed in section 5.3. In this section the results of the

apparent horizon search with AHloc is presented. In the positive amplitude Brill

data, an apparent horizon can first be found at A = 11.82 with horizon mass MH =

4.8, which is in agreement with earlier work by [12]. This comparison was also taken

as a standard testcase for the apparent horizon finder. On the left, Fig. 11 shows

the found horizons for this case. For geometrically oblate data an apparent horizon

can first be found at A = −5.30 with mass MH = 4.4. This horizon is plotted in

Fig. 12.

Pure plus polarization wave data

Metric ansatz: Observers distant from a compact object see gravitational waves

in the form

dl2 = dr2 + r2(1 + h+)dθ
2 + r2 sin2 θ(1− h+)dφ

2 + 2r2 sin θ h×dθdφ , (5.20)

with the wave polarizations h+ and h× small perturbations of the Minkowski metric.

This suggests modifying the ansatz (3.1) to

dl̃2 = dr2 + r2(e2qdθ2 + e−2q sin2 θdφ2) , (5.21)
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so that if the seed function is chosen to be small and centered far from the origin the

initial data will represents a pure plus polarization gravitational wave. One could

similarly make an ansatz for pure cross polarization waves, or indeed make other

choices completely like [92] which have also implemented and tested.

The constraints: Starting with moment of time symmetry initial data, the re-

maining constraint takes the form

Δ̃Ψ =
1

8
ΨR̃ . (5.22)

The conformal Ricci scalar is

R̃ =
2

r2
[
e−2q − 1− (r ∂rq)

2
]− 1

r2 sin3 θ
∂θ(sin

3 θ∂θe
−2q) , (5.23)

and the Laplacian of the conformal metric is

Δ̃Ψ =
1

r2
∂r
(
r2∂rΨ

)
+

e2q

sin2 θ
∂θ
(
e−2q sin2 θ ∂θΨ

)
. (5.24)

Once more the obvious boundary conditions for asymptotic flatness at spatial infinity

are imposed. The seed function is chosen to be

q(r, θ) = Ar4 sin2 θ e−[r
2−2rρ0 sin θ+ρ20] , (5.25)

which makes the conformal metric regular on axis.

Apparent horizons: Taking centered data with A < 0 an apparent horizon is

first found at around A = −2.28, with mass MH = 5.47. Looking for appar-

ent horizons in centered data when A > 0, the curious result was found that

there is a region [2.381, 2.568] in which apparent horizons are first found. In the

range [2.569, 3.006], the data again seemed to be horizonless. Continue at A = 3.007

horizons were found again up to A = 3.750 where the search was stopped. The res-

olution of the search was ΔA = 0.001. A closer look at the data at the boundaries

of the ‘horizonless’ region shows that the shape of the horizon is very nearly not a

ray-body, and it is expected that the method used simply cannot find the horizons

in this range of amplitudes. Very likely this could be remedied by implementing an

offset in ρ in the parametrization of the surface similar to that in z which is already

implemented. However, this is left for further improvements in the future. The first

apparent horizon for this data, found at A = 2.381, is plotted in Fig. 12. It has a
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mass of MH = 4.8.

Solving the constraints

Compactified coordinates: To solve for moment of time symmetry initial data,

the spatial metric is written in spherical polar coordinates (r, θ, φ), and compactified

in the radial coordinate, resulting in coordinates (A, θ, φ). The compactification is

defined either by,

r =
mA

2 (1− A)
, (5.26)

as suggested in [16], and used in [63] in the same elliptic solver employed here, or

r =
mA

2 (1− A2)
, (5.27)

similar to that employed for example in [33]. The parameter m partially controls

the rate of compactification, but in either case spatial infinity corresponds to A = 1.

Numerical solution: A Chebyschev discretization is employed in the radial A

direction, and a Fourier grid in the angular directions. Since the Hamiltonian con-

straint in this context is linear, solving the constraints amounts to a matrix inversion.

With the particular method used in this work it was found that the choice (5.26)

leads slightly worse constraint violations at a fixed resolution. One cause for this

could be that the coordinates (5.26) are irregular at the origin.
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Figure 13: The left panel plots |α − 1| in the outer boundary as a function of time
for a evolution of a gauge pulse on flat space, initially centered at the origin. The
coordinates eventually seem to settle on, or very close to Minkowski slices. The right
panel plots the magnitude of the shift in the outer boundary using the harmonic
damped wave gauge to evolve the same gauge pulse with either the gauge boundary
condition (4.32) or (4.33). In the former case the shift rapidly grows, causing the
code to crash.

6 Code validation

In this section a set of numerical experiments is presented, performed in order to

test the code and to obtain an optimal setup for the gravitational wave collapse

simulations that follow later in this work. These tests include evolutions with the

proposed boundary conditions, runs comparing the fully 3d, octant symmetry and

Cartoon evolutions, as well as convergence and performance tests.

6.1 Gauge boundary

Gauge wave initial data: Minkowski spacetime is evolved with a perturbation

initially placed in the lapse, so that

α(t = 0) = 1 + Ae−[x
2+y2+z2]/σ . (6.1)

In the following set of experiments it is A = 0.01 and σ = 10, with a fixed grid setup.

The standard GHG formulation used in the SpEC code, namely γ0 = −γ1 = γ2 = 1,

and γ4 = γ5 = 0, is employed. The outer boundary is set to a coordinate radius

of r = 16. The evolutions are carried out in 3d with octant symmetry imposed.

Harmonic gauge: Starting with the pure harmonic gauge Ha = 0, the outgoing

gauge wave is harmlessly absorbed using either the gauge boundary condition (4.32)

or (4.33). At the particular resolution and grid-setup that is chosen for this test, the

60



6 CODE VALIDATION

harmonic constraint violation at the end of the evolution, at t = 100, is around 10−14

and shows no sign of increasing with either choice of gauge boundary condition.

The difference between the results with the two gauge boundary conditions is rather

small, the maximum difference in the shift being around 10−7 at the end of the run.

But here the initial pulse is very weak, and this is of no concern. In the left panel

of Fig. 13 the quantity |α− 1| in the outer boundary is shown to demonstrate how

the coordinates settle down.

Generalized harmonic gauge: Switching now to use the generalized harmonic

gauge condition (4.11) with ηL = 0.4, p = 1 and ηS = 6. Using then the gauge

boundary condition (4.32) the shift starts to grow at the boundary, and the numerics

fail at t ∼ 42. This behavior is perhaps not surprising given the large damping

coefficients and the understanding obtained for the constraint preserving subsystem

with damping in section 4.1.2. The gauge source functions have the same effect on

the gauge as the damping terms on the constraints, namely they cause reflections

from the boundary. It is expected that this will be suppressed as the outer boundary

is placed further out so that the gauge sources are smaller where the boundary

condition is applied. Using instead the gauge boundary conditions (4.33) this growth

is completely absent. This behavior is demonstrated in the right panel of Fig. 13

where one sees the magnitude of the shift vector in the outer boundary in each case.

With the gauge boundaries (4.33), at the end of the run the harmonic constraint

violation Cx is around 10−14 and appears not to be growing. Looking at the shift

however, it does seem that some further improvement may be possible in the future,

as its peak lies at the outer boundary, with a value around 10−11.

6.2 Constraint experiments

Simplified subsystem: Some of the experiments of the previous section are now

repeated with the choice γ4 = γ5 = 1/2, and with different choices of γ0, using always

the gauge boundary condition (4.33). With the pure harmonic gauge Ha = 0, the

constraint violation at t = 100 is again around 10−14 if taken γ0 = 1, and slightly

larger, but still less than 10−13 in the case γ0 = 0.02, the value suggested by

the experiments in [Wey1] for a related formulation. Moving to the generalized

harmonic choice (4.11) once more, again the violation at the end of the experiment

is of the same order as when using the pure harmonic gauge. The result is plotted

in Fig. 14. These results may not be representative when evolving different initial

data, but cautiously γ4 = γ5 = 1/2 and γ0 = 1 are taken as the default setting
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Figure 14: The plot shows the Cx component of the harmonic constraint along the
x at time t=100 for two different choices for the constraint damping parameter
γ0 in the evolution of a gauge pulse on flat-space as in Fig. 13. The formulation
parameters have been set to γ4 = γ5 = 1/2 and the generalized harmonic gauge has
been used. On this basis γ0 = 1, γ4 = γ5 = 1/2 are taken as the standard choice in
bamps.

for the following work. Periodically different other choices are tested, most often

playing with γ0 in such experiments.

Constraint preserving conditions: The same experiments, with the general-

ized harmonic gauge and the new default formulation parameters, are repeated with

changing to the alternative constraint boundaries (4.40) or (4.46). The constraint

violation throughout the evolutions is very similar to the initial choice (4.29). Al-

though initially the violation with the reflection reducing condition is slightly smaller

than with the ‘geometric’ condition, later on there is practically nothing to choose

between them. Considering that the violations are in the round-off regime 10−14 it is

hard to judge from this experiment which of the conditions behaves most favorably.

6.3 Lapse power in constraint damping

Setup and initial data: A centered Brill wave with ampliutde A = 2.5 is evolved.

This data is subcritical and has a ADM mass of MADM = 0.19. The same grid setup

as in the previous section is used, but with a slightly higher resolution (193 rather

than 153 points per cube). It is γ0 = 0.2αl with l = 0, the standard choice elsewhere,

or l = −1, a modification which might reduce constraint growth in the strongest

field region. As above, the generalized harmonic gauge (4.11) is used. At the outer

boundary the gauge boundary condition (4.33) is imposed.

Basic dynamics: The Kretschmann scalar initially has a peak at the origin, eval-

uated around 2300 on the bamps grid, slightly less than in the previous study of
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section 3 and [Wey2]. This peak oscillates at the origin, peaking after an initial

bounce with value around 500. The feature then rapidly propagates away and by

a coordinate time t = 10, the peak value on the grid is less around 10−2. The

lapse initially decreases at the origin, this feature then propagating out to the outer

boundary, behind which the lapse drifts back towards its initial value, unity.

Constraint violation: Examining the Cx constraint for the A = 2.5 data along

the x-axis, only very small differences in the constraint violation between the l = 0

and l = −1 evolutions can be observed. The small differences are not surprising

because the lowest value the lapse function takes is around 0.78 having started

from 1. The peaks of the Cx constraint in the l = −1 evolution are about 2-5%

smaller than in the l = 0 run. Increasing the amplitude of the initial data to A = 4,

one might expect the improvement to be more significant as the lowest value of lapse

decreases to 0.37, but the difference still amounts to between 2-5% at the peaks of

the violation.

6.4 BAM vs. bamps comparison

Another validation strategy for bamps is to compare the numerical results with those

of an independent code. For this again the BAM [28] code is used, evolving identical

initial data with the same gauge conditions. In this comparison a centered z0 = 0

Brill wave with A = 1 is evolved. This weak amplitude is chosen because evolving

the Brill data accurately with BAM rapidly becomes expensive as A increases in

magnitude. For the gauge either pure harmonic slicing ηL = 0 with either harmonic

shift ηS = 0 or the damped harmonic shift ηS = 1 is used. Note that in this test

neither the spherical shells nor the constraint preserving boundary conditions of [64]

have been used. Since the outer boundaries were placed at x = y = z = 12, the

solutions to the continuum PDEs being solved are not identical. Therefore there

is not much hope for perfect agreement for long. Fig. 15 shows the spatial metric

component γxx at t = 1.625, when the agreement is still very good for either choice

of the shift, being practically indistinguishable by eye. In practice the main source of

disagreement at the resolution of these runs comes from mesh-refinement boundaries

in the BAM grid setup.

6.5 Octant and Cartoon

Initial data and grids: To test the implementation of symmetry reduced ex-

pressions, either octant, Cartoon, or their combination, weak A = 1 centered pure
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Figure 15: Comparison of the results of a Brill wave A = 1 evolution with BAM
and bamps. Shown are snapshots of the metric component γxx along the x axis at
t = 1.625. In the left panel the pure harmonic gauge was used, on the right the
damped wave gauge with ηL = 0 and ηS = 1.0. The results of the codes are in good
agreement in either case.

plus polarization initial data, as described in section 5.3, is evolved. Once again

the generalized harmonic gauge (4.11) and the gauge boundary condition (4.33) are

used. The starting point was a base cubed-ball 3d grid with N = 15 points per di-

rection, and the number of subpatches derived from Ncu = 5, Ncs = 4 and Nss = 3.

The outer boundary was placed at r = 12 in the units of the code. For ease of

comparison, the breakdown of the grids was:

N total
cu N total

cs N total
ss N total N total

3d 125 600 450 1175 4× 106

octant 27 (12, 6, 1) 48 (48, 12) 81 (36, 9) 216 5× 105

Cartoon 25 80 60 165 4× 104

cart. oct. 9 (4, 1) 24 (8) 18 (6) 51 104

The numbers in parentheses denote the number of those grids that were cut in half

(at the axis) once, twice, or three times respectively, for the 3d grids, and once or

twice for the Cartoon grids. Note that the current non-octant Cartoon implemen-

tation is not optimal because the whole x-z plane is evolved, wasting effectively a

factor of two. Currently the code is most often used in Cartoon octant mode, so

fixing this does not have a high priority. Looking at the table the main observation

is that the expected reduction factor of eight (four) in the total number of grid

points is present between the 3d (Cartoon) and octant grids, but that this number

is not so closely reflected in the grid breakdown, where only a factor six (three) in

the total number of grids is reached. This is obviously because there are many grids
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with fewer points. Since the parallelization does not take this fact into account, it

is possible that one MPI process is given all non-cut grids, and so it cannot be ex-

pected that the speedup rate is determined to a large extent by ratio in the number

of grids. As the domain is made larger the relative number of cut grids decreases,

so asymptotically the full speedup factors of eight or four might be attained.

Basic dynamics: Although irrelevant for the octant Cartoon comparison, since

these data has not been used before, a brief description of their evolution is given

here. Initially the peak of the Kretschmann scalar occurs at ρ = ±0.65 with a

value 1.18. This profile then oscillates about three times at the origin, attaining

a peak value of 7.25 before rapidly dispersing. Looking at the lapse the familiar

behavior that at the origin it oscillates slightly before presenting a longer decrease,

although at the minimum is only 0.995, having started from α(t = 0) = 1 every-

where. Afterwards this pulse propagates out, roughly following the disturbance in

the Kretschmann. Looking at the shift component βx along the x-axis, early on there

is a growth which peaks at x = 1.06, with value 0.0027. The development of the

shift looks more like a slowly oscillating standing wave than a localized propagating

feature.

3d, octant, Cartoon and octant-Cartoon comparison: Taking first the 3d

and octant evolutions, the agreement throughout the evolution is nearly perfect.

There are small differences however, starting from the beginning of the simulation

at the level of round-off; differences of 10−15 in metric components, which slowly

drift as the evolution goes on. This behavior is expected because the derivative

approximation differ at this level. Similar differences were found between the other

setups. These differences are never larger than the constraint violation, in for exam-

ple Cx. The convergence (see section 6.6 for more discussion) with each setup has

been tested, although not for this data, with no indication of a problem. For the

speed comparison the code has been run with each setup on 24 cores (with hyper

threading) of our local cluster Core12 with Intel Xeon X5650 processors. The octant

run was a little more than 6 times faster than the 3d run, as expected given the

foregoing discussion. The octant Cartoon run was about 2.4 times faster than the

pure Cartoon test, which is a little disappointing. Going from Nss = 3 to Nss = 6

radial subdivisions in the outer shells, this value increases to 2.9, demonstrating the

expected dependence. Comparing the full 3d and octant Cartoon runs, there was a

gratifying speed up of nearly a factor 400.
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Figure 16: Evolution of a gauge wave with A = 0.01 and σ = 1.0. In the upper
panels a spatial resolution of N = 21 is used on a grid with N = 1 subpatches. The
upper left panel gives a snapshot of gtt along the x axes at t=3.55. The upper right
shows the Chebyshev expansion coefficients at the same time with the same color
coding. The lower panels show convergence of the constraints for the same initial
data; on the left the number of points N in each grid, on the right the number of
subpatches N is increased.

6.6 Convergence

The numerical method of bamps allows two options for increasing resolution. The

first is to add grid-points in every domain, the second is to subdivide grids further,

keeping the number of points inside each subpatch fixed. Given fixed finite com-

putational resources it is not obvious what is the optimum strategy to achieve the

smallest possible error, because although adding points might give spectral conver-

gence, it also comes with a N−2 dependence in the allowed time-step, whereas on

the other hand, as presented shortly, adding more subpatches allows the code to

scale up to a large number of processors. Probably the optimal strategy relies on a

balance between each. To examine the effect of each strategy in the simplest possi-

ble way, gauge wave initial data on the Minkowski spacetime is evolved. It is set up

by choosing α = 1 + A exp[−(r/σ)2], βi = 0, with r =
√
x2 + y2 + z2 as usual, and

otherwise the flat spatial Cartesian metric and vanishing extrinsic curvature. The
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Figure 17: Influence of the filter at example of a A = 1 Brill wave evolution. On the
left the time evolution of the constraint monitor Cmon is shown. In the simulation
using a filter the constraint violation settles down to 10−10. Without using a filter
the constraint violation grows and leads to a failure of the simulation at t ≈ 150.
On the right the evolution of the fourth highest Chebyshev expansion coefficient is
shown. It is the highest mode which is not affected by the filter. Without the filter
the high frequencies grow over time and cause the simulation to fail. The filter sets
the highest frequency to zero which avoids the growth of the high frequency modes.

results are plotted in the four panels of Fig. 16 and confirm the expectations.

6.7 Filtering

To demonstrate the necessity of the filter (4.56) a centered A = 1 Brill wave is

evolved. The results are plotted in Fig. 17. The left panel shows that without

filtering the constraint violation starts to grow exponentially in time, whereas with

filter the growth is completely absent and the norm of constraints remains steady

at a very low value. The right panel plots the magnitude of the fourth highest

spectral coefficient of gxx in the transition shell as a function of time. This coefficient

is the first that is directly unaffected by the filter. It shows that the growth in

the constraints seems to be associated with an explosion in the higher spectral

coefficients. Interestingly the same experiment was repeated with gauge wave initial

data, and this effect was not observed, at least in the same time-frame. It is expected

that the same behavior would manifest if evolved for long enough. The obvious

conclusion drawn from this is that it is important to test these methods with several

data types to get a reliable picture of their properties.
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6.8 Performance

Profiling: To evaluate the performance of the code, simple timing functions have

been used throughout an evolution on a grid withN = 21 points per cube andN = 1

subpatches running in serial mode. For this test all output has been switched off,

but obviously in production runs the amount of time spent there is determined by

the user. Thus care is needed in balancing output against performance. Particularly

expensive in the context of collapse simulations is the data necessary for the appar-

ent horizon searches, which requires 2d output of the spatial metric and extrinsic

curvature. The result of this test is plotted in Fig. 18. Very little time was spent in

the ‘analyze’ routines, which compute the auxiliary quantities needed in postprocess-

ing, such as the constraints, the Kretschmann scalar, or in principle gravitational

wave-forms. This is determined by the user, but in this case the small 1% value

is likely to be representative because the ‘analyze’ routines are called very rarely,

roughly every ∼ 50 timesteps. Calling the filter should cost as much as computing

derivatives once, since it involves matrix multiplication for each direction. Since

this is done only at the end of each full time-step it seems reasonable that the com-

putation is dominated by the ‘evolve’ function, which contains the time sub-steps.

The evolve step is divided primarily between the boundary computation (∼ 10%)

and evaluating the equations of motion ‘right hand side’ (∼ 90%). The boundary

timer includes both the time spent computing the outer boundary and that in in-

terpatch communication. It is perhaps surprising that so much time is spent on

the boundaries, given the lower dimensionality of the surfaces, but of course this

value depends on the particular grid being computed. When running with MPI,

network communication is required in this part of the code so it is in danger of

becoming the bottleneck. But representative MPI experiments show that the time

spent in ‘boundaries’ decreases to about 4%, because grids with more points have

been used. Therefore network communication is unlikely to prevent scaling of the

code. In the serial test there are a total of 120393 points in the domain vs. 34398

in the boundaries. The outer boundary computation is expensive because of the

evaluation of the number of operations needed to evaluate the constraints (4.29)

and the incoming curvature characteristics (4.30). Finally the ‘right hand sides’ are

split between computing derivatives and the algebra necessary to evaluate the equa-

tions of motion, most of which is spent computing the former. This also suggests a

starting place for optimizing the code further in the future.
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Figure 18: Relative time spent in different parts of bamps during GHG evolution in
serial mode. Within one timestep the dominant part is the evolution routine where
almost 90% of the time is spent. The evolution routine is further divided, and spends
time evaluating the right-hand-sides. The right-hand-sides are split roughly equally
between computing derivatives and pure algebra.
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Figure 19: Strong scaling of bamps. On the left the scaling behavior on the local
Quadler cluster is shown. For this a grid with N = 3 was used. In total this grid
consists of 1625 patches. The plot on the right shows the strong scaling of a grid
with N = 5 on the SuperMUC cluster. Here a grid with N = 5 sub patches was
used. In total this grid consists of 4459 patches.

Strong-scaling: The current bamps parallelization strategy is to obtain perfect

scaling using many subpatches, and splitting these subpatches across many proces-

sors. The key is that, in contrast to buffer zones required in the decomposition

of a finite differencing grid, only 2d surfaces of points need to be passed by net-

work communication, making the relative time spent there negligible. In a finite

differencing approach the relative size of the buffer zones decreases with resolution,

but in practice it can still be significant in production runs, especially when higher

order stencils are applied. Fig. 19 presents strong scaling plots performed on local

resources, the Quadler cluster with Intel Xeon E5430 processors, and on the Super-

MUC cluster located in LRZ Garching, with Intel Xeon E5-2680 8C processors. In

each test the code was run in 3d. In the former a grid with 1625 patches in total was

set up, dividing these amongst the available cores; perfect scaling can be observed.
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Since the first test is for a small number of processors, in the latter a grid with a

total of 4459 subpatches was set up. The number of cores used was increased until

one patch was assigned per core. Again perfect scaling was observed. On the other

hand bamps is currently not parallelized whatsoever at the subpatch level, which

means that the maximum number of points per subpatch is in principle determined

by the amount of memory available to one core. At least when running the code

in Cartoon mode however, in practical terms this does not seem to be problematic.

Instead the N−2 restriction in the time step makes increasing the number of points

infeasible long before being close to filling the available memory. In 3d this may no

longer be the case.
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7 Evolution of single blackholes with bamps

The main thrust of the bamps development has been towards treating collapsing

axisymmetric gravitational waves accurately. For super-critical data the cubed-

ball grid is unsuitable after the formation of an apparent horizon. Therefore the

strategy for long-term evolution is to take the data and interpolate onto a cubed-

shell (excision) grid, with the excision surface suitably positioned, changing the lapse

and shift to be sure that the excision surface is a true outflow boundary. A necessary

requirement for this is to treat a single blackhole, which will be discussd here.

7.1 Initial data

Kerr-Schild coordinates: A Schwarzschild solution in Kerr-Schild coordinates

was evolved as was done in [27] where a preceding version of the bamps code was

used. Although the current numerical method is not particularly close to that used

previously, some components of the older code were inherited. Importantly evolving

this data allows a simple comparison with the previous method and results. In

spherical polar coordinates the metric and extrinsic curvature takes the form

gabdx
adxb = −

(
1− 2M

r

)
dt2 +

4M

r
dt dr +

(
1 +

2M

r

)
dr2 + r2dΩ2 , (7.1)

with dΩ2 the flat metric on the two-sphere, and

Kijdx
idxj = − 2M√

1 + 2M
r

[
1

r2

(
1 +

M

r

)
dr2 − dΩ2

]
, (7.2)

respectively. Inside the code the line-element is written in Cartesian coordinates in

the standard way. More discussion of Kerr-Schild coordinates can be found in [40,

72].

Harmonic Killing coordinates: Evolutions starting from the harmonic Killing

slicing described in [41], serve as a convenient starting point when transitioning from

one generalized harmonic gauge to another. For this initial data, in spherical polars,

the metric and extrinsic curvature are

gabdx
adxb = −

(
1− 2M

r

)
dt2 +

8M2

r2
dt dr +

(
1 +

4M2

r2

)(
1 +

2M

r

)
dr2 + r2dΩ2 ,

(7.3)
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and

Krr = −4M2

r6
4M3 + 4M2r + 3Mr2 + 2r3√

1 + 2M
r

√
1 + 4M2

r2

, Kθθ =
4M2r2√

1 + 2M
r

√
1 + 4M2

r2

,

(7.4)

with the remaining components vanishing. For this data spatially harmonic coordi-

nates are obtained by building Cartesians according to

x = (r −M) sin θ cosφ , y = (r −M) sin θ sinφ , z = (r −M) cos θ , (7.5)

The resulting metric has a coordinate singularity at r = M , with r implicitly defined

in the obvious way from the new coordinates. The coordinate singularity is not a

principle problem as the excision surface can be pushed outside this radius. But

bamps relies on standard Cartesian coordinates in several places. So in the code one

could transform in the standard way but then choose the gauge source function

Ha = 2(J̃∂J̃)(ab)b . (7.6)

with Ja
a′ the Jacobian between the standard a-index Cartesians and harmonic

Cartesian a′ index coordinates (7.5), the compound object (J̃∂J̃) is defined by,

(J̃∂J̃)abc = (J̃−1)a
′

b ∂cJ̃
a
a′ . (7.7)

with J̃a
a′ =

√|J |Ja
a′ and where indices are manipulated in the obvious way with gab

to obtain (7.6). Instead the gauge source function is just chosen to be fixed at its

initial value, as will momentarily be discussed. In this section the code exclusively

was run in Cartoon mode, on a cubed-shell grid. If not stated otherwise, the excision

surface is at r = 1.8M , and the outer boundary at r = 31.8M . In the base setup it

is N = 3 radial subpatches each with N = 25 points per direction. The runs were

performed on a desktop machine with an eight-core intel i7 CPU, which was able to

compute at about 250M/hour, the base run requiring about 14 MB of RAM.

7.2 Freezing gauge source functions

Killing gauge sources: Given initial data which admit a time-like Killing vector

and neglecting the effect of outer boundary conditions, the evolution can be made

trivial at the continuum level by choosing the Killing lapse and shift, and taking the
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gauge source functions Ha so that ∂tα = ∂tβ
i = 0 initially. In particular it has to

be

Ha = −Γa(t = 0) , ∂tHa = 0 . (7.8)

Kerr-Schild evolutions with SpEC GHG: First, the Kerr-Schild initial data

was evolved with the standard formulation parameters of [70], namely γ4 = γ5 = 0

and γ0 = 1 on the base grid as just described, using the gauge boundary condi-

tions (4.32). Immediately the innermost subpatch has the largest constraint viola-

tion, peaked at around 10−6 in the Cx component of the harmonic constraint. This

is not surprising because the innermost subpatch contains the part of the solution

with the largest derivatives. The evolution successfully continues until the final

time t = 1000M . But after the initial expansion to 10−6, a slow expansion in Cx

is visible, and this growth becomes more rapid as the simulation continues. By the

end, the maximum value of Cx is around 10−3, with peaks appearing at the inner and

outer boundary of roughly the same size. The resolution is increased from the base

grid to N = 27, 29 and N = 31. The N = 27 point grid runs at about 178M/hour,

and the initial peak in the Cx constraint violation is reduced by a factor of about

two, with this ratio of improvement slowly declining until the end of the evolution.

The N = 29 grid runs at 129M/hour, with both the initial magnitude of the vi-

olation and the ‘slow expansion’ of the Cx constraint quashed, the peak being a

factor 2.8 smaller than in the base run at the end of the simulation. The highest

resolution N = 31 point grid ran at 96M/hour, with the final improvement in Cx

against the base run being a factor of 5.3. Since the largest constraint violation oc-

curs in the excision subpatch an obvious question is whether or not the excision and

outer boundaries would interact badly if they were on the same grid. Although the

issue is of little practical concern for production runs, for development it deserves

a little attention, and therefore the base grid from before was evolved, but cutting

the outer two subpatches so that the outer boundary lies at 11.8M . This test is

not completely fair because the outer boundary conditions are expected to perform

better as they are applied further out. With this the initial peak in the violation of

the Cx constraint is about five times greater than in the base run at t = 200M . At

the end of the evolution again at t = 1000M by coincidence the constraint violation

in the restricted domain is smaller, but this is just because the slow oscillations in

each simulation are out of phase.
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Kerr-Schild incoming wave evolutions with SpEC GHG: Next the same

initial data and gauge were evolved, but this time with a similar domain as in Fig. 3

of [70]. For this N = 2 radial subpatches have been taken, with the same base

resolution as before, so that the outer boundary is placed at r = 21.8M . Exactly

the same gravitational wave data was injected at the outer boundary as in that

study, taking in particular,

∂thab = ḟ(t)(x̂ax̂b + ŷaŷb − 2ẑaẑb) , (7.9)

with the vectors here the coordinate vectors defined in the obvious way. It is

f(t) = A exp[−(t− tp)
2/ω2] , (7.10)

with A = 10−3, tp = 60M and ω = 10M . In Fig. 20 shows the results from

these experiments, obtained with a sequence of different resolutions. The Weyl

scalar Ψ4 (4.25) is plotted averaged over the outer boundary,

4π〈RΨ4〉2 =
∫

|Ψ4|2 dA . (7.11)

The surface area of the outer boundary is 4π R2. Fitting the highest resolution data

between t = 100 and t = 200 the ring-down frequency was found to be �[ωM ] ∼
0.372 as expected [36]. In this evolution it was found that the apparent horizon oscil-

lates slightly as the gravitational wave is absorbed, increasing the horizon mass (5.18)

by about 6× 10−7 M , with M the ADM mass of the analytic initial data. Note that

the gauge boundary condition being employed here is not identical to that used

in [70], so the agreement is remarkable. The effect of much larger pulses of gravita-

tional radiation falling onto a blackhole using similar gauge conditions was studied

in [39].

Discussion of and comparison with [27]: The prior bamps study focussed on

obtaining numerical stability in the evolution of a single Schwarzschild blackhole

with the Kerr-Schild slicing. The numerical method used a Chebyshev-Fourier-

Fourier spatial discretization on a single shell with a spin weighted spherical har-

monic filter to prevent high frequency growth of the error. In that study the

outer boundary condition employed simply fixed the incoming characteristic vari-

ables (4.5) to some given data, namely their initial values. This approach is possible

only when the analytic solution is known, otherwise incoming constraint violations
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Figure 20: The right panel shows the average over the Weyl scalar Ψ4 in the outer
boundary for the evolution of Schwarzschild perturbed by a small gravitational wave
injected through the boundary. The left panel demonstrates the convergence of the
constraints as resolution is increased. At lower resolutions a drift is present in
the ring-down. There is good agreement with Fig. 3 of [70], and the ring-down
frequency agrees well with the analytical computation [36]. At the end of the test
there is some disagreement with [70], but since square-roots of very small quantities
are being taken it is expected that this is caused by round-off error. It seems that
on the cubed-shell grid more resolution is needed to obtain clean results than with
the spherical harmonic discretization used in [70]. This is perhaps not surprising,
since the latter discretization is well-suited to the given data.

are generated. Placing the inner boundary at r = 1.8M and the outer boundary

at r = 11.8M , very long evolutions, say until at least t = 200 000M , could be per-

formed with little resolution, in accordance with [70]. On the other hand, using this

method, the naive boundary conditions rapidly deteriorated as the outer boundary

was pushed out, and, crucially resolution did not help but rather made the prob-

lem worse. A possible explanation for the latter effect is that no filter was being

applied in the radial (Chebyshev discretized) direction, which is a crucial ingredient

for stability with the current method. The likely cause of the boundary problem is

that, as explained in [82], boundary conditions that just freeze the incoming GHG

characteristic variables are orders of magnitude more reflecting than the Sommerfeld

like choice contained in (4.32). Evidence for this is obtained in the current code by

changing from the gauge boundary condition (4.32) to use instead,

⊥(G)cd
ab

[
∂tu

−̂
cd

]
=̂ 0 , (7.12)

evolving once more the Kerr-Schild initial data on the base grid. Placing the outer

boundary further out then results in greater reflections which, once the domain is

sufficiently large, causes the code to fail. However rather than trying to improve a
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Figure 21: Comparison of the evolution of Schwarzschild with Killing-Kerr-Schild
gauge sources with either the gauge boundary condition (4.32) or the alterna-
tive (4.33) at the end of the simulation t = 1000M . The left panel shows the
logarithm of the constraint violation Cx. In the latter case the violation is greatly
reduced. In right two panels the lapse and shift are plotted; the drift present when
using (4.32) is practically absent with (4.33).

condition only suitable for evolving known data, immediately the outer boundary

conditions in bamps were switched to the constraint preserving, radiation controlling

conditions. In these conditions that issue is completely absent.

Kerr-Schild evolutions with simplified constraint subsystem: Using the

standard choice for the formulation parameters γ4 = γ5 = 1/2, and taking γ0 = 0.2,

returning to the base resolution from the SpEC GHG tests, by t = 200 the Cx

constraint is about 5 times larger than that obtained before, and by the end of the

simulation the new run has accrued a Cx constraint violation with a sharp peak at

the outer boundary of order 10−1. This result seems to be in contradiction to those

of section 6.2, however there the gauge boundary condition (4.33) was employed.

Increasing the constraint damping to γ0 = 1, the initial violation is comparable to

the SpEC GHG evolution previously described throughout the evolution, and the

spike at the outer boundary is suppressed by roughly an order of magnitude. At the

end of this run the maximum of the Cx constraint occurs at the excision boundary

with a value around 10−3. This experiment thus highlights that the choice of the

damping parameters and boundary conditions can be rather subtle.

Kerr-Schild evolutions with alternative boundary conditions: In this sec-

tion again the base grid was used. The outer boundary conditions were switched to

the alternative gauge boundary conditions (4.33), with γ4 = γ5 = 1/2 and γ0 = 1.

With this setup the aforementioned growth in the constraints is completely eradi-

cated, and the drift in the lapse and shift is also suppressed. Evolving the same data
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with the same formulation and gauge boundary condition, but using the modified

constraint preserving boundary condition (4.40) gives almost identical results. Using

instead the reflection reducing conditions (4.46) a small improvement in the viola-

tion throughout the simulation can be observed. Repeating the experiment with

the incoming gravitational wave injected through the boundary with the standard

constraint preserving condition (4.29) and the gauge boundary conditions (4.33),

the growth visible in Fig. 20 is also completely absent, even on the base resolu-

tion N = 25 grid.

Harmonic Killing slice evolutions Now the formulation parameters are taken

to be γ4 = γ5 = 1/2, and γ0 = 1, and the Harmonic Killing slice with the gauge

boundary condition (4.32) is evolved. The test successfully runs to t = 1000M .

Comparing with the equivalent evolution of Kerr-Schild data, initially near the ex-

cision boundary the Cx constraint violation is significantly greater in the Harmonic

Killing test. By t = 200M this difference has accrued to around two orders of mag-

nitude. Later however, as the violation in the Kerr-Schild Killing evolution starts to

grow, it overtakes that of the Harmonic Killing evolution. At t = 1000M the peak

of the constraint violation in the Harmonic Killing run is about an order of magni-

tude smaller than in the earlier test. As remarked before, in the Kerr-Schild test the

inner and outer boundaries have roughly the same magnitude in the Cx constraint

violation. Interestingly the twin peaks are not present in the Harmonic Killing data

because the outer boundary is hugely improved. This finding is consistent with the

gauge wave tests presented in section 6.1, although this test is somewhat easier for

the gauge boundary conditions because of the complete lack of dynamics present

in the gauge wave test. In the Harmonic Killing evolution pure harmonic slicing

is used, and some non-zero spatial gauge source functions, which suggests perhaps

that the growth at the outer boundary is predominantly caused by the use of a

non-trivial gauge source function for the lapse function, as it interacts with the

boundary. Indeed looking once more at the lapse function towards the end of the

Kerr-Schild evolution it can be seen that it is drifting from its initial value, but that

this effect converges away with resolution. In any case, the peak in the constraint

violation at the outer boundary in the Killing Kerr-Schild data is suppressed as the

outer boundary is placed further out.

Harmonic Killing slice with gauge perturbation: A desirable property for

a set of dynamical coordinates is that in the presence of a, perhaps approximate,

timelike Killing vector they quickly asymptote to a time-independent state. For
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an arbitrary physical or gauge perturbation there is no hope that this will occur,

and nor can any finite set of numerical experiments prove that that there is a basin

of attraction to a stationary state. However one can look for some indication of

this behavior. To do so initial data for the Killing harmonic coordinates is taken

and then perturb the initial lapse function by Gaussian as in the previous gauge

wave evolutions. In terms of the first order GHG variables this is a slightly fiddly

procedure, as compared with the use of lapse, shift and spatial metric. Therefore a

quick summary is given here:

• Set spatial metric and extrinsic curvature from the exact solution.

• Take the Killing lapse and shift. Use the conditions ∂tα = 0 and ∂tβ
i = 0 to

set the gauge source functions Ha.

• Add the desired perturbation to the lapse (or shift) and then transform to the

first order GHG variables.

The lapse is perturbed by a Gaussian,

Δα = A exp
[− 2 (r − r0)

2
]
, (7.13)

with A = 0.3M and r0 = 4M . A similar experiment was made in [71], but start-

ing from a Maximal slice of Schwarzschild to test the gauge driver system. The

perturbation in the lapse propagates away, rapidly leaving behind the solution with

the harmonic Killing data with unperturbed spatial coordinates, or at least negligi-

bly perturbed. The greatest danger to the evolution is probably that the excision

boundary fails to be outflow, but at least with this perturbation that does not occur.

Harmonic evolutions with incoming gravitational wave: Giving the same

gravitational wave data (7.9) as previously, evolving with the standard boundary

conditions (4.29) and (4.32) but using the harmonic Killing gauge source functions.

It is not obvious how, if at all the spacetime computed is related to that considered

before, but in any case a very similar decay was observed in Ψ4. Remarkably the

growth present in Fig. 20 is absent even in this low resolution N = 25 test.

7.3 Phasing-in the damped wave gauge

The transition function: As elsewhere, [96] is followed in transforming from

one generalized harmonic gauge H1
a to another H2

a . The composite source function
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is simply,

Ha(t) = T (t)H1
a + [1− T (t)]H2

a . (7.14)

The transition function is,

T (t) =

{
0 , t < td ,

exp
(− (t− td)

2/σ2
d

)
, t ≥ td .

(7.15)

In the following experiments it is td = 0 and σd = 10M . Note that care must

be taken to construct the time and space derivatives of Ha with the transition

function. This choice results in gauge source functions that are only C1 at t = td,

which could be avoided with a different transition function. It is not clear if this

finite differentiability will have a large effect on extracted physical quantities from

a simulation.

Kerr-Schild initial slice: For the first phase-in test, a Kerr-Schild slice of Schwarz-

schild is taken and evolved with γ4 = γ5 = 1/2 and γ0 = 1, on the base resolution

grid. The outer boundary conditions was set to either the gauge boundary condi-

tion (4.32) or the constraint preserving condition (4.40) (including a 1/r term). The

wave gauge parameters were set to p = r = 1 and ηL = ηS = 0.1M . The value

of ηS here is much smaller than in our wave collapse evolutions. The reason for this

is that when evolving a blackhole it is crucial that the excision boundary is pure

outflow in the PDEs sense. In other words the characteristic speeds must all have

the same outward pointing sign. Since the speeds in the si direction are like −βs±α

this means that the shift cannot become too small or else the excision boundary will

fail, which in turn means that ηS cannot be chosen too large. Therefore the excision

boundary is placed deeper into the blackhole so that rmin = M and carefully mon-

itor the coordinate lightspeeds at the inner boundary. Note that this requirement

is likely to cause difficulties when computing extreme gravitational waves, because

on the one hand large shifts can result in poor resolution of important features,

but on the other hand they may be required in some other region to successfully

excise the blackhole region. The evolution immediately shows significant dynamics.

The peak of the Cx constraint violation along the x-axis is two orders of magnitude

greater than in our initial Kerr-Schild base run with Killing gauge sources. The

reason for this is presumably the presence of non-trivial dynamics, plus the fact

that the excision boundary is nearer to the physical singularity, similar to the effect

79



7 EVOLUTION OF SINGLE BLACKHOLES WITH BAMPS

0 20 40 60 80 100
Coordinate time t

1.2

1.4

1.6

1.8

2.0

2.2
rH
rc+= 0

Figure 22: The radius of the apparent horizon rH , and the radius at which the
outward lightspeed vanishes rc+=0, computed on the base grid with inner boundary
at r = 1.2M . To successfully excise, the speed must be negative at the inner
boundary. The figure shows that excision exactly on the apparent horizon is not
possible throughout all of the run.

seen with the harmonic Killing slice. Regardless, by t = 100M the data seems very

close to stationary. The simulation then evolves to the target time t = 1000M , and

remarkably at the end of the simulation the constraint violation in Cx along the

x-axis has a maximum value which is an order of magnitude smaller than in the

base run. At no point does the excision boundary fail to be outflow. As a check of

the axisymmetric apparent horizon finder the results obtained are compared with

the simpler algebraic condition,

H =
1√
grr

∂r log(γθθ)− 2Kθ
θ = 0 . (7.16)

which characterizes the position of the apparent horizon in spherical symmetry.

Near perfect agreement was found throughout. The apparent horizon moves from

its initial radius rH = 2.00 inwards until it reaches rH = 1.44 around t = 25.

From there the horizon starts to grow again and seems to settle down to rH = 1.48.

However in our lowest resolution run, a small drift of the horizon outwards is visible.

At late time of the simulation, around t = 800, this drift accelerates and the horizon

becomes aspherical. Higher resolution runs show that this effect converges away.

Harmonic initial slice: Since the stationary fully harmonic coordinates are sin-

gular at r = M , one might guess that the stationary spatial generalized harmonic

coordinates with gauge source functions (4.11) are also singular at some radius on

the Killing slice, at least for some range of the parameters ηL, ηS. Given the broad
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experience in using these coordinates in binary blackhole simulations, the naive ex-

pectation would be that, if present, this coordinate singularity is pushed further

towards the physical singularity rather than out towards the event horizon for stan-

dard choices of the gauge source functions. But this behavior is not clear. To

truly resolve the issue one could simply solve for such coordinates along the lines

of [57], however this was not considered in this work. Instead simulations have

been performed varying the initial excision surface from the base grid excision ra-

dius rmin = 1.8M down to rmin = 1.0M in steps of 0.2M . Unsurprisingly, the

initial constraint violation is greater in the excision subpatch as the inner boundary

is placed closer to the singularity, amounting to about an order of magnitude in

the Cx constraint between the rmin = M and rmin = 1.2M boundary runs by t = 50.

Besides this there is little to distinguish between the five runs, and at least down

to this excision radius no sign of a coordinate singularity forming. By eye the lapse

function in the shared part of the domain agrees very well throughout the evolution.

Although a slight drift between them is present towards the end of the test, this is

acceptable since the outer boundary conditions are being imposed at different radii,

the solutions need not agree everywhere. There is however a time around t = 20

above which the runs with inner boundary r ≥ 1.4M fail to be outflow at the

excision surface. Assuming that this is not caused by numerical error this means

that boundary conditions are required at the surface. It furthermore means that

convergence of the numerical scheme as resolution is increased is impossible. The

fact that this does not correspond to a catastrophic failure of the code is perhaps

inconvenient, because it indicates that great care must be taken in monitoring the

excision surface. On the other hand, since placing the excision boundary very far in

has a large cost in accuracy, a careful balance must be struck. In the SpEC code this

is taken care of dynamically of by a control mechanism [59] which bamps does not

yet have. In Fig. 22 the relationship between the character of the excision boundary

and the apparent horizon is examined. Comparing the initially harmonic and Kerr-

Schild slice evolutions with excision radius rmin = M it was found that although

the lapse functions initially disagree, by about t = 125M they have exactly the

same profile and lie almost on top of one another. After this time the agreement is

maintained.
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8 Evolution of collapsing Brill waves with bamps

In this section bamps is used to evolve centered Brill wave data with positive A.

First, the focus is put at previous work on Brill data evolutions. It is studied if the

results obtained with bamps are in agreement. Afterwards the dynamical excision

strategy of bamps is discussed and proven to work well at the example of a simulation

of a supercritical Brill wave with A = 8. In the last part the supercritical regime is

approached. The results of this section will be published in [Wey3, Wey4].

8.1 Agreement with earlier work

Alcubierre et. al.: In [9] Brill waves were evolved numerically for the first time

in 3d. The BSSN formulation was used in combination with maximal slicing and

vanishing shift. Using the initial data (3.3), it was found that the critical point

lies between A = 4 and A = 6, and furthermore that this finding could be refined

to A = 4.85 ± 0.15, although the data for this latter claim was never presented.

Super-criticality was diagnosed by finding an apparent horizon, which occurred for

the A = 6 data at t = 7.7. In [53] it was shown that BSSN combined with this gauge

choice results in an ill-posed PDE system, meaning that this approach should be

abandoned if s the goal is to achieve accurate results that converge to the continuum

solution as resolution is increased.

Garfinkle and Duncan: In [49] it was found, evolving Brill wave initial data

with q as in (3.3), taking z0 = 0, that the critical amplitude A∗ lies between A = 4

and A = 6. The data was classified either by evolving until the spacetime was

close to flat and subsequent collapse seemed implausible, or by explicitly finding

an apparent horizon. The formulation employed was explicitly axisymmetric, and

consisted of a mixed elliptic-hyperbolic system with maximal slicing K = 0, well-

posedness of which, to the best of our knowledge, has not been studied. The results

obtained in this work agree with the findings of both [9] and [49]. Evidence for

this agreement is given in what follows; because the method of this work employs a

different gauge it is difficult to make a side-by-side comparison, beyond classifying

the spacetimes as sub or supercritical. The effect of changing the shape of the initial

data parameters σρ and σz was also studied in [49], but this has not been considered

within this work.

Rinne: In the PhD thesis [80] evolutions of Brill waves with z0 = 0 were presented,

with a free-evolution and partially constrained scheme, both in explicit axisymmetry.
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Figure 23: The left plot shows the central value of the Kretschmann scalar in a
centered Brill wave A = 1 evolution, with BAM and bamps. BAM was used with
moving puncture coordinates (data taken from [Wey2]) and bamps was run with
pure harmonic slicing. This figure is meant to be directly compared to Fig. 9.2
of [80]. The fact that bamps employs a different spatial gauge does not matter here
because harmonic lapse is a pure slicing condition, so values of the lapse function
can be compared one-to-one at the symmetry axis. On the right is shown a snapshot
of ∂rα in the xz plane at t ≈ 1.72, which should be compared with Fig. 9.3 of [80].
Although the spatial coordinates differ, there is an obvious qualitative agreement.

The focus at this point is on the free-evolution scheme, the Z(2+1)+1 formulation,

since that is where the clearest comparison with the bamps results are possible. In

that case harmonic slicing was taken with vanishing shift. This choice is convenient

for the comparison with bamps results because although it is not possible to choose

the same shift condition, harmonic lapse is a pure slicing condition, which means that

bamps evolutions should obtain the same foliation of the same spacetime (starting

from the same initial lapse) albeit with different spatial coordinates. Since there is

a preferred observer, namely that at the origin, this allows to compare quantities

explicitly there. Fortunately the work [80] contains several such plots. In the left

panel Fig. 23 shows the Kretschmann scalar at the origin as a function of time

for A = 1 centered Brill wave data, which should be compared with Fig. 9.2 of [80].

The evolution for this test uses harmonic slicing η̄L = 0 and the damped harmonic

shift η̄S = 6 and otherwise the standard setup. The agreement is, at least by

eye, extremely good. Taking A = 4 it was found that with sufficient resolution

a sharp peak in the gradient of the lapse could be resolved and the data was, in

agreement with [49], subcritical. Using the same parameters as in the previous test,

the results are in agreement. The right panel of Fig. 23 shows ∂ρ lnα at t = 1.72.

This is the time at which Rinne finds the largest peak in this quantity. A similar
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plot is Fig. 9.3 in [80], which cannot be directly compared because of the differing

spatial coordinates, although the qualitative agreement is very clear. In the bamps

results the largest peak appears at around t = 2.08, but the magnitudes in ∂ρ lnα

differ by less than 5% across these times. In Fig. 25, to be compared with Fig. 9.9

of [80], the left panel shows the logarithm of the lapse at the origin as a function of

coordinate time for amplitudes A = 4, 5, 6. In the right hand panel the value of the

Kretschmann scalar at the origin is plotted. At lower resolutions the Kretschmann

scalar exhibits high-frequency oscillatory behavior, but these wiggles converge away

rapidly. The most challenging data evolved in Rinne’s experiments was the A = 5

wave, for which sub- and super-criticality was not discerned using the free-evolution

algorithm, partially because the data was still oscillatory at the time the method

failed at around t = 6. All of the different resolutions tried with A = 5 in this

suite of tests crashed at coordinate time t � 12. The results of an apparent horizon

search on this data are plotted in the left panel of Fig. 24. The apparent horizon was

first found at t � 6.2 and subsequently until the evolution fails. Rinne concluded

that the critical amplitude lies below A = 6, although no apparent horizon could

be found inside his data. Instead the classification was made by observing that

the Kretschmann scalar was blowing-up. This diagnostic is flawed because as one

approaches the critical point it is expected to generate arbitrarily large curvature

even in subcritical data. In the absence of an apparent horizon or event horizon

however, other diagnostics may be similarly flawed, and the Kretschmann is at least

a spacetime scalar, so one might prefer it as a diagnostic to ‘collapse of the lapse’.

Running the apparent horizon finder on the A = 6 data an apparent horizon was

found at t � 2 and later. The result is plotted in the right hand panel of Fig. 24.

Studies with BAM: In 2005 [85] the BAM finite differencing code [28, 64, 99] was

used to evolve centered geometrically prolate Brill waves with the BSSN formulation

combined with several different gauge conditions, maximal slicing, harmonic slicing,

and the moving puncture gauge condition. The main complications were reported to

be constraint violation, which was likely caused by lack of resolution, and which did

vary significantly from one gauge to another. In section 3, see also [Wey2], the BAM

code was used again to understand how much further, if at all, standard modern

numerical relativity methods can go beyond those previously discussed. This time

with the focus purely on the moving puncture gauge. Now the findings with BAM are

compared with those of bamps. Starting in BAM with weak A = 1 data, it was found

that the lapse initially decreased, but rapidly returned back to unity; qualitatively
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Figure 24: The left panel shows the development of the apparent horizon for Brill
waves with amplitude A = 5, evolved with pure harmonic slicing and damped har-
monic shift. The horizon is first found at t = 5.82, with area AH = 15.7. At the end
of the evolution at t = 11.9 the area has increased to AH = 16.7. The right panel
shows the same for the A = 6 evolution. The initial area at t = 2.1 is AH = 33.7
and the final is AH = 40.6 at t = 8.24.

the same behavior can be found with bamps despite the different gauge used and

although the lapse function decreases by a smaller amount. The Kretschmann scalar

was found to be peaked initially at the origin with a value around 216. The maximum

value of the Kretschmann scalar in the domain immediately decreases and never

grows beyond the initial peak as the wave propagates away. The left panel of

Fig. 23 also plots the central value of the Kretschmann scalar obtained in this BAM

experiment. Since different time coordinates are being used the values should not

agree, but the size of the second peak should. The BAM value is about I0 ∼ 75

which agrees extremely well with the bamps experiment. The Hamiltonian constraint

violation in this particular BAM run is of the order 10−3 at the the time of the second

peak, whereas the roughly corresponding Ft constraint inside bamps is less than 10−6.

This is not a fair comparison, but indicates that the bamps data is superior in this

case. Therefore one expects that as more resolution is added to the BAM grid

the result would converge to the bamps result. Taking data that is stronger, for

example A = 5, the BSSN setup failed as an incoming pulse in the lapse became

evermore sharp, resulting in what seemed to be a coordinate singularity. This would

be acceptable if an apparent horizon could be found before the code crashed, but

this was not the case. Going to to higher amplitudes still, similar failures occurred,

and the conclusion was drawn that moving puncture coordinates were not suitable

for managing this initial data. In the comparison with [80] if was found that that

using bamps the A = 5 data can be classified supercritical. No sign of a coordinate
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Figure 25: Comparing bamps results with the work of Rinne [80]. In these runs brill
waves are evolved using harmonic lapse and η̄S = 6.0 for the shift. On the left the
logarithm of the central lapse over time forA = 4, 5 and 6 is shown. These results
should be compared with Fig. 9.9 in [80]. The line for A = 4 agrees quite well. The
others disagree. On the right the central value of the Kretschmann scalar is plotted.

singularity was seen before an apparent horizon was discovered despite the two lapse

functions appearing qualitatively similar initially.

8.2 Disagreement with Sorkin

The most puzzling result to reproduce was the one presented by Evgeny Sorkin

in [94]. He used an axisymmetric generalized harmonic code with an adaptive finite-

differences method [93]. In his studies he reported critical behavior in positive,

centered Brill wave data. However, he surprisingly stated a significantly larger value

for the critical amplitude than in earlier studies of the same data. Furthermore, he

found that the waves collapse to form a singularity on a ring in the equatorial plane,

in, whereas Abrahams and Evans [7] found the singularity to form at the center. This

section is an attempt to understand these findings by studying centered, positive

Brill data evolutions with bamps. Firstly, it is demonstrated that with bamps it can

also be observed that the peak of the Kretschmann scalar appears off-axis. Even

more, it is shown that the position of the peak of the Kretschmann can be controlled

by the choice of gauge source function. For this fact a geometric interpretation is

given. Secondly, it will be demonstrated explicitly that the amplitude A = 6.073

evolved in [94] is supercritical by locating an apparent horizon in the evolution. The

simulations of this subsection have been carried out on a cubed-ball grid with the

following setup: The inner cube extends from −0.5 to 0.5 and is divided intoNcu = 9

subpatches with Ncu = 21 grid points in each dimension. For the transition shell
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from 0.5 to 1.0 only one shell Ncs = 1 with Ncs = 35 points in the radial direction is

used. From here Nss = 22 outer shells with Nss = 35 radial collocation points have

been used to go to the outer boundary at 12. All simulations have been carried out

in 3d using the octant symmetry mode of bamps.

Position of the peak curvature: Consider a collapse spacetime which has a

causal structure similar to that depicted in Fig. 5 of [55], but rather in vacuum.

Furthermore consider different foliations through the spacetime, in which the time

coordinate tends to tick more or less slowly in a region of high curvature depending

on some singularity avoidance parameter. Suppose now a given a patch of this

spacetime up to a finite time coordinate, as in a numerical relativity simulation.

Naturally then which observer encounters the largest curvature will depend upon

the singularity avoidance parameter. In context of bamps such a parameter is given

by η̄L. To demonstrate this with bamps, a centered Brill wave with A = 6.073 has

been evolved. This amplitude is shown to be supercritical in the next paragraph.

The evolution has been carried out with fixed η̄S = 6, p = 1 and one of η̄L = 0, 0.2

or η̄L = 0.4. The left plot of Fig. 26 shows the lapse in the evolutions at coordinate

times t = 1, which demonstrate the effect of the singularity avoidance parameter η̄L.

The pure harmonic slicing case η̄L = 0 is the strongest singularity avoiding. There

the peak of the Kretschmann appears at ρ = 0.88, where it simply grows until the

numerics fail. Increasing the parameter to η̄L = 0.2, 0.4 the peak of the Kretschmann

appears at a coordinate radius of ρ = 0.73 and ρ = 0.64 respectively, before the

numerics fail.

Apparent horizon formation: Again centered A = 6.073 Brill data is evolved.

The gauge parameters are η̄S = 0.4, p = 1 and η̄S = 6, which is the largest choice

of η̄L from above. Evolving with different resolutions, with 213, 253 and 293 points

in the inner cubes, rapid convergence of the constraints is found. For example,

the maximum of the Cx component of the Harmonic constraints along the x-axis

are approximately 5 × 10−5, 9 × 10−6 and 8 × 10−7 respectively at t ≈ 1.25. The

apparent horizon is searched using the method described in Section 5.2. It is first

found at around t = 1. On a fixed numerical spacetime data set perfect fourth

order convergence in the apparent horizon data is found. Comparing the apparent

horizons discovered on the different resolution data, perfect qualitative agreement

is found. The apparent horizon at different times is plotted in Fig. 26, where the

expansion of the horizon can clearly be seen.
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Figure 26: In the left panel the lapse for the centered A = 6.073 Brill wave is plotted
with the three generalized harmonic gauges η̄L = 0, 0.2 and η̄L = 0.4 at coordinate
time t = 1.0. The more “singularity avoiding” the gauge choice, the smaller the lapse
becomes around the origin. In the right hand panel the apparent horizons Brill wave
initial data is plotted. The initial horizon mass is MH = 0.84 and has increased to
around MH = 0.90 before the code fails. These values are to be compared with the
ADM mass, MADM = 1.02.

8.3 Evolution of supercritical waves

In this section the numerical evolution of a centered Brill wave with A = 8 is

presented. This highly supercritical initial data is used as a test case for our excision

algorithm for a dynamically forming blackhole.

Dynamical excision strategies

The dynamical excision method of bamps currently consists of the following steps:

1. Evolve to collapse: Evolve on cubed ball grid, running the apparent horizon

finder in ‘daemon’ mode. The finder then triggers a bamps checkpoint once a horizon

is found.

2. Go-to excision grid: Next, interpolate the checkpoint data onto a cubed-

shell grid. In this step the excision boundary is placed just inside the apparent

horizon. However, the single blackhole evolutions already showed that this may not

always be possible, as some wiggle room is needed to allow for dynamical behavior

of the horizon. This can require some experimentation, although fine-tuning does

not seem necessary.

3. Regauge: Adjust the lapse and shift to ensure that the excision boundary

is pure outflow. As a particular choice, the lapse and shift from Kerr-Schild slicing
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of Schwarzschild is taken,

α =
(
1 +

2m

r

)−1/2
, βr =

2m

r

(
1 +

2m

r

)−1
, (8.1)

and translated to Cartesian components in the obvious way. It is desirable that the

radial coordinate light-speeds are close to zero, preferably positive, at the apparent

horizon, since this determines the direction of motion of the horizon. Therefore

the m parameter is set to satisfy this condition reasonably well, although again

without particular fine tuning.

4. Safety-net evolution: From here, the single blackhole gauge source param-

eters p = 1.0, q = 0.0 and r = 1.0 are used. During the evolution a safety net is

employed. If any coordinate light-speed on the excision boundary reaches a given

threshold, typically c∗ = −0.05, bamps regauges to guarantee the outflow character

is maintained. The apparent horizon is monitored. If it falls off of the numerical do-

main the simulation returns to an earlier checkpoint and a regauge with a smaller m

is carried out to avoid this behavior. As the horizon expands its position is tracked

and periodically the Go-to step from above is executed with excising further out

and regauging with a greater m.

Discussion: As currently implemented this procedure requires that some steps

have to be performed by hand. The numerical results in the following subsection

serve to demonstrate ‘proof of principle’ of this algorithm. On the other hand it

seems at least clear how those steps should be automated. At the regauge step

the use of the first order GHG variables is again a little fiddly. It would be much

more convenient if the lapse and shift were readily available as variables. But the

procedure is similar to that described in the gauge perturbation tests in section 7.2,

so the full details are not given here. Also at the regauge step, it might be good

to choose lapse and shift by abandoning the spherical ansatz and imposing that

the coordinate light-speeds at the apparent horizon vanish. The SpEC approach

to controlling the excision surface is much more sophisticated, employing a control

mechanism [59]. However, the main focus of bamps is on the collapse of waves

to form, presumably, a single blackhole. Therefore it seems reasonable to stick

with this simple approach if at all possible. One aspect of the method that is

not very aesthetically appealing, is that by changing the lapse and shift in discrete

steps a patch of spacetime is computed in coordinates that are not globally smooth.

Another issue associated with this is that of geometric uniqueness, which for the
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initial boundary value problem is an open question. Nevertheless one expects that

the differences to the computed spacetime with one choice of regauging parameters

or another will be rather small in practice, so this does not represent an immediate

practical concern.

Supercritical Brill wave evolutions

Initial data and grid setup: A centered Brill wave with amplitude A = 8 is

chosen as initial data. It has a ADM mass of MADM = 1.77. The maximum of the

Kretschmann scalar in the initial data occurs at the origin, taking the value 1.7×104.

Following the algorithm just outlined, the evolution was started on a cubed-ball

grid with Ncu = 11, Ncs = 13, Nss = 20, and 553 points per cube, with internal

boundaries rcu = 1.5, rcs = 6.5 and the outer boundary placed at r = 30 � 17M .

The code was run in Cartoon mode on the local cluster Quadler on 240 cores. The

evolution was carried out with the generalized harmonic gauge, as in section 6 in the

evolution of a much weaker A = 2.5 Brill wave, now with the gauge parameters η̄L =

0 and η̄S = 6. At coordinate time t = 1.95 the first apparent horizon was found

with mass MH = 1.59 � 0.9M .

Continuation to code crash: If continuing this evolution without going to an

excision grid after the apparent horizon forms, the constraints inside the apparent

horizon rapidly grow along with the Kretschmann scalar. The run then crashes at

roughly t = 3.9. This gives the clear signal that if one wants to examine the final

masses of blackholes formed during collapse, using the GHG formulation, a robust

excision algorithm will be essential. In fact at t = 3.85 the horizon has a mass

of MH = 1.64 on the cubed-ball grid. At the end of the excision simulation, to

be described momentarily, at 40M after apparent horizon formation, the mass has

grown to MH = 1.70. In the first critical gravitational wave collapse paper [6], the

blackhole masses were evaluated roughly t = 17M after apparent horizon forma-

tion, according to a prescription based on the quasinormal modes of Schwarzschild.

Comparing those values with the ones obtained by bamps is difficult because here

different time coordinates are used. But the basic expectation is that the maximal

slicing condition is more “singularity avoiding” than one of the generalized harmonic

gauges, and therefore one might expect to obtain comparable results if it is possible

to evolve for a similar coordinate time after the appearance of a horizon. This is,

however, not clear and deserves further investigation. In any case without excising

the blackhole region, the meager ∼ 2M after collapse is clearly insufficient. The
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simulations of section 3 using the BSSN setup with moving-puncture method were

also not able to successfully evolve this type of data beyond apparent horizon forma-

tion. But here at least a concrete improvement has been made, in that an apparent

horizon was found before the method fails.

Evolution on excision grid: Checkpointing the solution at t = 3.6 the data was

then interpolated onto a cubed-shell grid. Here, again the barycentric Lagrange

interpolation was used as in the apparent horizon finder. The excision radius was

set to r = 0.73M with the outer boundary position fixed. The grid was setup

with with Nss = 27 radial and 9 angular subpatches, having a resolution of 353

points per cube. The evolution were carried out in Cartoon mode. In the first

regauge step the mass parameter was set to m = 0.4. As shown in Fig. 27 on

the right, this step immediately removes most of the constraint violation from the

computational domain, and the largest spatial derivatives, so that the constraint

monitor is ∼ 10−8 as compared to ∼ 103 on the original cubed-ball. This difference

seems very troublesome until taking into account that, for example the peak of the

Kretschmann scalar on the cubed ball grid is ∼ 103 whereas on the cubed-shell

it is ∼ 1. So the reduction in the constraints obviously occurs because the most

extreme part of the domain has been removed. Note also that the definition of

the constraint monitor in this work does not include a normalization by the size

of the solution, as in for example [70] and subsequent papers. In view of this our

reduction in resolution is justified. The evolution then proceeded, now on 120 cores

using η̄L = η̄S = 0.1. The regauge safety-net was triggered 3 times up to t = 5.9M ,

having fixed c∗ = −0.05, but the apparent horizon remains on the computational

domain throughout the calculation. At t = 5.9M a “Go-to” step of the algorithm

was triggered again, this time excising at r = 1.0M choosing m = 0.8. After this

the regauge safety-net was not called before t = 17M , when the cubed-shell grid was

changed once more, keeping the same grid parameters but excising at r = 1.12M ,

and regauging with m = 1. The evolution continued t = 24.7M , at which time

the grid was changed for the final time, before which the safety-net was again not

called. In the last grid the excision radius was r = 1.24M and the regauge was

done with m = 1.2. After this the safety-net was not called, and the evolution

was terminated at t = 50M after apparent horizon formation. Note that in this

evolution the “Go-to” step also employed the phase-in for the generalized harmonic

gauge, as described in our single blackhole evolutions in section 7.3, taking the same

parameters employed in those earlier tests, but now with the initial source functions
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Figure 27: On the left is plotted the constraint violation at example of Ct at the time
of the checkpoint t = 3.6. When interpolating from the cubed-ball to the cubed-
shell grid, the area with highest constraint violation is removed. On the right the
dynamic of the apparent horizons for two simulations are shown. The intersecting
green planes denote the “Go-to” steps at which the mass parameter m is changed.
In the simulation which horizon is plotted at the outer right in the last “Go-to”
the mass is set too big which causes the horizon to move inwards. It finally falls off
the grid and the simulations fails.

chosen so that the lapse and shift were frozen as the evolution starts on the new grid.

Other experiments show that this procedure is not strictly necessary. It may be that

some refinement is required for this method to allow the evolution of supercritical

data indefinitely after the collapse, but examining the mass of the apparent horizon,

it seemed that the solution has mostly settled down, which should be good enough

to diagnose a final mass of the blackhole.

Dynamics of the apparent horizon: In the computation described above, as

can be seen on the left of Fig. 27, the apparent horizon is always present on

the computational domain. The horizon mass initially rapidly grows to a value

around MH = 1.7 where it remains roughly constant. Throughout the simulation

whenever the regauge safety-net is triggered a slight oscillation in the horizon mass

follows. When changing the grid the horizon mass exhibits a more prominent kink.

On the right of Fig. 27 the apparent horizon is plotted which is obtained when, less-

wisely, the parameter m = 1.4 is chosen in the last “Go-to” at t = 24.7M . With

this choice the apparent horizon rapidly contracts, although the code fails before

it leaves the domain. The safety-net is called ever-more frequently as the method

insists on forcing the inner boundary to remain pure outflow, until eventually the
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Sweep A range ΔA A� ∈ N Ncu, Ncs, Nss rcu, rcs, rss Notes

#1 [4.6, 5.0] 10−1 [4.6, 4.7] 21 15, 11, 13 1, 7, 20 Non-cartoon runs
#2 [4.61, 4.70] 10−2 [4.69, 4.70] 21 15, 11, 17 1, 7, 24 p = 0, q = −2 for A = 4.69
#3 [4.691, 4.999] 10−3 [4.696, 4.698] 33 15, 11, 18 1, 7, 25 p = 0.5 for A = 4.696

Table 3: This table summarizes the sweeps of simulations that have been carried
out in order to bracket the critical amplitude in Brill wave evolutions with positive
A.

code crashes at t = 31.6M . The physical interpretation of this is that the excision

boundary is falling off of the domain, which starts to drift outside the blackhole

region, and that the safety-net then forces the worldline of the excision boundary

to be spacelike. This interpretation would be clearer if an event horizon finder was

available, but is given credence by performing evolutions of a Schwarzschild black-

hole with the m gauge parameter similarly poorly chosen. These tests show that the

areal radius of the excision boundary can indeed fall outside of the event horizon

at r = 2M .

8.4 Going to the critical regime

After having reproduced and compared results of previous work with those obtained

with bamps, a first attempt was made to study the near critical region of centered

Brill waves with positive A. Therefore several simulations with bamps have been run,

trying to bracket the critical amplitude as narrowly as possible. Simulations which

settle down to flat spaces are classified as being subcritical, simulations in which

an apparent horizon is detected are classified as being supercritical. At the time

this study was done, the excision technique of subsection 8.3 was not fully available.

Simulations of a blackhole on the cubed-ball grid do not last long enough to evolve

until the blackhole settles down and its final mass can be determined. Therefore, it

was not possible to study scaling in the blackhole mass within this attempt. Instead,

following [55, 94] it was tried to observe critical scaling of the maximum value of the

Kretschmann scalar when approaching the critical point from the subcritical side.

In total three sweeps of runs have been carried out, which will be discussed in the

following. If not stated otherwise, the gauge parameters are set to p = 1.0, q = 0 and

r = 1.0 and η̄L = 0.4, η̄S = 6.0. The grid setup for each sweep is given in table 3.
’

Sweep #1: Based on previous experiments, the amplitude range for the first sweep

of runs was set to A = [4.6, 5.0]. Evolving in steps of ΔA = 0.1, the critical

amplitude was bracketed to A� ∈ [4.6, 4.7]. The basic dynamics of each of the initial
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Figure 28: On the left the global maximum of the Kretschmann scalar for subcritical
evolutions of Brill waves with positive A is plotted. The blue line assumes the critical
value slightly above the highest subcritical amplitude, the green line slightly below
the lowest supercritical amplitude found. For this ε = 10−14 was used. The plot
shows that up to this accuracy no exponential scaling can be observed.
The plot on the right shows the apparent horizons at different times in A = 4.698
centered Brill initial data. Evidently two apparent horizons appear in the data,
centered around z ≈ ±0.9,indicating the likelihood that the family results in head-
on binary blackhole spacetime near the critical amplitude.

data sets are initially rather similar. At first a pulse in the Kretschmann scalar

propagates out from the origin predominantly out in the ρ direction. The pulse

then propagates more slowly, eventually turning around and traveling towards the

origin. As it propagates in, the pulse is smeared out parallel to the z-axis. As the

pulse hits the axis, there is a rapid growth resulting in a maximum at some ±z0.

Sweep #2: In the next set of runs Brill waves in the range A = [4.6, 4.7] in steps

of ΔA = 0.01 have been evolved. These simulations found that all Brill waves with

amplitude A = 4.68 or less can be classified as subcritical. Again, A = 4.70 was

found to be supercritical. The simulation of A = 4.69 crashed around t = 15 with

a spike in the lapse occurring and no sign of apparent horizon formation. Further

studies of this amplitude led to the result that when evolving this amplitude with the

gauge parameters changed to p = 0, q = −2, the spike in the lapse disappears and

the simulation settles down to flat space. Therefore, this amplitude was classified

as being subcritical. The reason that with this changed gauge choice the simulation

is successful can be found by recalling the evolution equation for the lapse again,

∂tα = −α2K + η̄Lα
q+2 log

(
γp/2

α

)
+ βi∂iα . (8.2)
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In the strong field region the lapse approaches zero, causing the second term in

the lapse evolution equation to vanish. However in subcritical evolution this term

is needed to drive the lapse back to one. Choosing this term q = −2 this terms

does not disappear if the lapse approaches zero, allowing the subcritical evolution to

settle down to flat spacetime again. Taking p = 0 removes the γ within the log term.

In preliminary studies it was found that the γ term is responsible for the occurring

spikes in the lapse function. From now on, for all supercritical runs this changed

choice of gauge parameter is chosen. In supercritical runs, the default values are

used.

Sweep #3: A third set of runs was set up to study the amplitudesA = [4.691, 4.699]

with resolution ΔA = 0.001. Using the gauge parameters q = −2, p = 0, the am-

plitudes 4.691 − 4.696 were found to settle down to flat space. With q = 0, p = 1,

A = 4.498 and A = 4.697 could be classified as supercritical. It was necessary

to change the gauge parameter again to q = −2, p = 0.5 to determine the status

of A = 4.696. With this choice, it was found to be subcritical. However, still unclear

is the Brill data with A = 4.697. Experimenting with different gauge choice and

resolutions, no clear conclusion could be made. With this sweep of runs, the critical

amplitude was bracketed to A� ∈ [4.696, 4.698].

Discussion: With the performed simulations stated above, two major findings

were made: The first finding is that in the simulations carried out, no critical scal-

ing has been observed. According to [55], if critical phenomena are present during

gravitational collapse, then one expects to see power-law scaling of curvature in-

variants in the subcritical regime A � A�. Fig. 28 shows on the left, as a log-log

plot, the peak of the Kretschmann scalar in the spacetimes as a function of A� −A,

assuming the most optimistic and pessimistic bounds on A� obtained by taking ei-

ther A� = 4.696+ ε or A� = 4.698− ε, with ε = 10−14. With the obtained data, this

quantity seems to level off when approaching the critical point. Of course, this state-

ment can only be made up to the highest subcritical amplitude evolved, A = 4.696.

It could be that the critical amplitude has to be approached much closer in order to

observe exponential scaling.

The second finding was made in the evolution of the lowest supercritical ampli-

tude, A = 4.698. At t = 1.68 two disjoint apparent horizons appear in the data.

They are centered around z ≈ ±0.9, which is roughly the location at which the

Kretschmann scalar starts to grow ever more rapidly before the simulation fails.

The apparent horizons are shown on the right of Fig. 28. This indicates that evolv-
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ing centered, positive A Brill data results in a head-on binary blackhole spacetime

near the critical amplitude. The simulation has been rerun with increased resolu-

tion, N = 39, and it was found that the constraints are converging and the same

apparent horizon can be found in the higher resolution simulation data. Even though

this finding is certainly very interesting, as bamps does not provide the necessary

excision grids for two black holes and furthermore does not have a moving-excision

setup with an appropriate control mechanism, this unfortunately means that it is

not possible to evolve the resulting spacetime to a final end-state with bamps.
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9 Conclusions

Summary

In this thesis two common setups of Numerical Relativity have been used to study

the collapse of gravitational waves.

The first setup considered was the BSSN setup. In this context the BAM code

was used to evolve Brill wave data. In the case of Brill waves with positive A, the

evolutions have not been successful, except for very weak waves. During evolutions

steep gradients in the metric functions appear and spoil the simulation. Comparing

this feature with previous studies, the gradients seem to be caused by appearing

coordinate singularities. This led to the conclusion that the gauge choice of the

BSSN setup, the moving-puncture gauge, is not suitable for the evolution of this

data.

Successful evolutions of Teukolsky waves which have been carried out in [Wey2]

raised the question about the differences between Teukolsky and Brill initial data.

For this a characterization of twist-free, axisymmetric data as either geometrically

oblate or prolate has been discussed. Based on this consideration an attempt was

made to set up Brill wave data which is as close as possible to Teukolsky wave data.

This resulted in the evolution of off-centered, negative A Brill waves. With this data

it was possible to successfully evolve the collapse of the waves to blackhole formation

and furthermore to track the apparent horizon from its formation up to the time

when the blackhole settled down.

Even though it was possible to evolve the collapse of the waves in this setup, the

simulations began failing when approaching the critical amplitude too closely. One

of the main reasons for this seemed to be the lack of accuracy of the simulations.

Therefore, a second approach was taken in this work to develop an improved setup

which provides higher accuracy for the goal of studying the collapse of gravitational

waves. For this bamps, a 3d pseudospectral numerical relativity code implementing

the GHG setup, has been developed. The idea for this code was based on the ap-

proach taken in the SpEC code with several improvements for the study of collapsing

gravitational waves in mind.

Different aspects of the GHG formulation, in particular the outer boundary con-

ditions and the treatment of the patching boundary conditions have been discussed.

Furthermore the code implementation details, including the cubed-sphere grid setup

and the numerical methods have been presented. A main component in order to
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obtain a stable grid setup in bamps was the derivation of the correct value for the

penalty parameter which is necessary for the treatment of the patching boundaries.

As all data considered within this work is axisymmetric, different axisymmetric

considerations for bamps have been discussed. One major performance boost was

gained in implementing a Cartoon method in bamps which reduces the numerical

domain two a 2d plane. Also in the context of axisymmetry apparent horizon finding

has been discussed. Here special care has been taken in deriving regularity conditions

on the symmetry axis. A second code, the apparent horizon finder AHloc, has been

developed to study axisymmetric apparent horizon in the data evolved with bamps.

Before the actual simulations of relevant spacetimes, a set of carefully performed

experiments has been carried out in order to test the code. These tests include

evolutions of gauge waves, convergence tests, the use of different constraint damping

and GHG formulation parameters, scaling and performance tests. They led to the

conclusion that the bamps code is working accurately, efficiently, scales up to a

large number of processors, and works on a sufficiently general grid setup to evolve

interesting initial data.

Before studying the collapse of waves to blackholes, it was necessary to test single

blackhole evolutions with bamps. Using Kerr-Schild initial data it was found that it

is possible to have sufficiently long and accurate blackhole evolution with bamps. It

was also possible to evolve a blackhole perturbed by an injected gravitational wave

and to observe its ring-down. This evolution made it possible to directly compare

bamps with published results of the SpEC code.

After the single blackhole tests the focus was shifted to evolutions of Brill wave

data. Several simulations were performed in order to compare the bamps results with

either published work or independent evolutions with the BAM code. In almost all

those cases it was possible to not only reproduce the results but also to successfully

evolve amplitudes which have been found troublesome before. The only disagree-

ment was found with the work of Sorkin, where the bamps simulations showed that

many of the amplitudes of this work considered subcritical are actually supercritical.

For the simulation of supercritical Brill waves an algorithm has been presented

which excises the blackhole in bamps simulation after apparent horizon formation and

controls that the excision boundary stays outflow. This method allowed a successful

evolution of a strongly supercritical Brill wave with A = 8 through collapse until

over t = 50M . Using the apparent horizon finder AHloc, it was possible to track the

horizon from its formation until the end of this simulation.
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In the final part of this thesis the critical region for positive A Brill wave data was

approached. It was possible to bracket the critical amplitude to A� ∈ [4.696, 4.698].

Approaching the critical amplitude, it turned out that the simulations became more

difficult to handle. Not only is increasing resolution needed in order to resolve

all features, but in some of these evolutions it was crucial to adjust the gauge

parameters to gain a successful simulation. However, two interesting findings have

been made. In the subcritical simulations no exponential scaling of the maximum of

the Kretschmann scalar was observed. To make a final conclusion to this statement,

it is necessary to approach the critical point closer. In the evolution of the A = 4.698,

which is the lowest supercritical amplitude evolved, the spacetime approaches a

head-on binary blackhole spacetime with two horizons.

Future Prospects

One of the main drawbacks in the evolution of positive amplitude Brill waves near

the critical point with bamps is its rigid grid setup. While it allows to run highly

accurate simulations which can be distributed effectively to parallel working com-

puting cores, for very high resolutions it ultimately makes the runs too expensive.

For example, one of the runs carried out in subsection 8.4 costs up to 30, 000 core

hours. Therefore a future step for the development of bamps will be an implementa-

tion of more flexible grid setups. For this it would be helpful to drop the restriction

that the boundaries of subpatches have to match. This can be realized by deriving

a penalty method including interpolation at boundary points. With this improve-

ment it would be possible to put high resolution on the grid where it is needed while

having lower resolution anywhere else. As the Brill evolution with bamps revealed

that the location of blackhole formation is not predictable it would furthermore be

good to have adaptive grids which can change their resolution locally during the

simulation at places where the error is largest. Implementing such a method will in-

troduce the additional question of load balancing which is not trivial to implement

effectively. Therefore it might be reasonable to rely on existing libraries such as

p4est [32]. Additional performance improvement might also be gained by extending

the exiting MPI parallelization to the use of accelerators such as GPUs. Another

useful change in the grid setup of bamps is the implementation of a “sphere-to-cube”

transition shell. With this missing building block a grid with two excision bound-

aries can be realized. Such a grid setup might allow to evolve the supercritical Brill

data in which two blackholes form until a stationary state. However, this includes
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the appropriate adjustment of the algorithm presented in Sec. 8.3 which guarantees

that the excision surfaces stay outflow.

While the suggestions above are all of a technical kind, the existing version of

the bamps code can already be used for future studies of interesting scenarios of

numerical relativity. Obviously, compared with the BAM results of section 3, a next

step in this direction would be the evolution of Brill waves with negative A and

Teukolsky waves. While the first is straight forward to start with, for the second

choice the initial data solver has to be extended to compute such data. Another idea

for studying collapsing gravitational waves would be to start with flat spacetime and

inject gravitational waves through the boundary. In the case of blackhole spacetimes

this has already been successfully tested (see Fig.20). The advantage of this method

would be that there would basically be no initial constraint violation caused by

interpolated initial data. Besides the collapse of gravitational waves one might

also consider evolving collapsing scalar fields with bamps, which has already been

successfully considered, for example in [58]. All these ideas summarized lead to the

conclusion that the bamps code already turned out to be helpful for studying the

physics of collapsing gravitational waves, and it also is a perfect basis for future

development and a source of inspiration for many interesting ideas to be studied.
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rich, Bernd Brügmann, Pedro J. Montero, and Ewald Müller. Collapse of

nonlinear gravitational waves in moving-puncture coordinates. Phys.Rev.,

D88(10):103009, 2013.

[64] David Hilditch, Sebastiano Bernuzzi, Marcus Thierfelder, Zhoujian Cao, Wolf-
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D ABBREVIATIONS AND NOTATIONS

D Abbreviations and Notations

Throughout this work geometrized units have been applied. In continuum equa-

tions latin letters from the beginning of the alphabet a, b, c . . . are used for four

dimensional indices, Latin letters i, j, k . . . are used for spatial indices.

An exception are the indices n and s. The first means contraction with the timelike

normal unit vector na, the second denotes a contraction with the spatial normal

unit vector si.

Greek indices are used to refer to the position in a state-vector, grid indices, or

where otherwise needed.

Within the following abbreviations have been used:

ADM Arnowitt-Deser-Misner

BAM Bi-functional Adaptive Mesh

BSSN Baumgarte-Shapiro-Shibata-Nakamura

CPBC Constraint Preserving Boundary Conditions

CPU Central Processing Unit

GHG Generalized Harmonic Gauge

GPU Graphics Processing Unit

HDWG Harmonic Damped Wave Gauge

LIGO Laser Interferometer Gravitational Wave Observatory

MPI Message Passing Interface
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H Zusammenfassung

In dieser Arbeit wurde die Evolution von Gravitationswellen mit Hilfe von zwei

populären Konfigurationen der Numerischen Relativitätstheorie studiert.

Hierzu wurde als erstes die BSSN-Konfiguration mit
”
Moving-Puncture“-Ko-

ordinaten und Finiten-Differenzen verwendet. Es hat sich herausgestellt, dass es

nicht möglich ist, mit diesem Setup starke Brill-Wellen erfolgreich numerisch zu si-

mulieren. Auftretende Koordinatensingularitäten während der Evolution führen zu

einem Fehlschlagen der Simulationen. Es wurde festgestellt, dass Brill-Wellen mit

’
negativer Amplitude‘ sich geometrisch von Brill-Wellen mit positiver Amplitude

unterscheiden und es möglich ist, den Kollaps dieser Daten zu einem Schwarzen

Loch mit der BSSN-Konfiguration zu simulieren. Nahe der Schwelle zwischen dem

Kollaps zu einem Schwarzen Loch schlagen auch diese Simulationen fehl. Es wurde

daher geschlussfolgert, dass das BSSN-Setup sich nicht eignet, um den Kollaps von

Gravitationswellen im Detail zu studieren.

In zweiten Ansatz wurde die GHG-Konfiguration verwendet. Hierzu wurde ein

Computerprogramm – bamps – entwickelt. Es implementiert das GHG-Setup mit

Hilfe einer pseudospektralen Methode auf einer
”
Cubed-Sphere“-Domäne. Für den

äußeren Rand des Gebiets wurden verbesserte
”
Constraint-Preserving“-Randbe-

dingungen hergeleitet und implementiert. Die Zwischenränder werden mit einer

Penalty-Methode realisiert. Über eine Energieabschätzung konnte ein geeigneter

Wert für den Penalty-Parameter gefunden werden, welcher für stabile Zwischen-

ränder notwendig ist.

Spezielle Betrachtungen wurden für die Evolution von achsen-symmetrischen

Daten in bamps angestellt. In diesem Fall erlaubt es die analytische Cartoon-Me-

thode, die 3d Domäne auf eine 2d Ebene zu reduzieren. Der Horizontfinder – AHloc

– wurde entwickelt, um in achsen-symmetrischen bamps-Daten nach scheinbaren

Horizonten zu suchen.

Durch verschiedene numerische Experimente wurde gezeigt, dass die in bamps

implementierte numerische Methode zu stabilen Simulationen führt, einschließlich

exponentieller Konvergenz der numerischen Lösung und einer reduzierten Verlet-

zung der Zwangsbedingungen am äußeren Rand. Weiterhin besitzt bamps eine

hervorragende Recheneffizienz mit Geschwindigkeitssteigerungen von bis zu zwei
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Ordnungen bei der Evolution von achsen- und oktant-symmetrischen Daten und

einem nahezu perfekten Skalierungsverhalten auf bis zu mehreren tausend parallel

rechnenden Computerkernen.

Das bamps Programm erlaubt stabile numerische Simulationen von einzelnen

Schwarzen Löchern auf der bamps-
”
Excision“-Domäne. Hierzu können verschiedene

Anfangsdaten und Eichbedingungen verwendet werden. Ebenfalls ist es möglich,

das Schwarze Loch durch eine einlaufende Gravitationswelle zu stören.

Im letzen Abschnitt der Arbeit wurden zentrierte Brill-Wellen mit positiver

Amplitude in bamps evolviert. Hierbei wurden die Ergebnisse mit allen bisher

veröffentlichten Arbeiten verglichen. Die meisten Ergebnisse konnten erfolgreich

reproduziert werden. Darüber hinaus war es möglich, den Status von Simulationen

zu klären, die bisher in numerischen Simulationen fehlgeschlagen sind. Die Ergeb-

nisse, welche von Sorkin im Jahr 2010 publiziert wurden, konnten nicht bestätigt

werden. Stattdessen haben die bamps-Simulationen gezeigt, dass der Kollaps auf

einem Ring ein Koordinateneffekt ist und Amplituden, die von Sorkin als subkri-

tisch eingestuft wurden, in Wirklichkeit superkritisch sind.

Es wurde demonstriert, dass bamps in Kombination mit AHloc verwendet wer-

den kann, um den Kollaps einer superkritischen Brill-Wellen zu einem Schwarzen

Loch zu evolvieren. Hierfür wurde ein dynamischer Excision-Algorithmus imple-

mentiert, welcher garantiert, dass der innere Rand der Domäne wohlgestellt bleibt.

Der kritische Bereich von zentrierten Brill-Wellen mit positiver Amplitude

konnte auf A� ∈ [4.696, 4.698] eingegrenzt werden. Hierbei konnte im subkriti-

schen Bereich noch kein exponentielles Skalierungsverhalten beobachtet werden.

Im superkritischen Bereich konnte festgestellt werden, dass zwei voneinander ge-

trennte Horizonte entstehen, die resultierende Raumzeit also zwei Schwarze Löcher

enthält.
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