On Channel Modelling For Land Mobile
Satellite Reception

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt der Fakultat fiir Elektrotechnik und Informationstechnik der
Technischen Universitat IImenau

von Dipl.-Ing. Daniel Arndt
geboren am 28.03.1982 in Dresden

vorgelegt am: 17.10.2014
Gutachter: 1. Prof. Dr.-Ing. Albert Heuberger
2. Univ.-Prof. Dr. rer. nat. Jochen Seitz

3. Prof. Dr. Fernando Pérez-Fontan

Verteidigung am: 14.09.2015

urn:nbn:de:gbv:ilm1-2015000358






Abstract

Modern digital satellite broadcasting systems combine time diversity (i.e. information is
spread over a certain time interval) with angle diversity (i.e. information is received from
multiple satellites in different orbital positions) to ensure uninterrupted service for mobile
receivers over large areas. For assessing propagation effects of the land mobile satellite (LMS)
channel and to study the efficacy of diversity, statistical models are required which generate
time series of the received fading signal.

In this thesis a narrowband LMS channel model for multi-satellite reception is developed
focusing on accurate coverage prediction under consideration of angle- and time diversity.
Basis is an existing single-satellite model, which describes large-scale signal variations of the
channel by ’good’ and ’bad’ states, and models slow- and fast signal variations according
to a versatile Loo distribution, which parameters are selected randomly when the channel
enters a new state.

For dual-satellite state modelling, a semi-Markov model for correlated state sequences is
developed. It provides an accurate state probability and state duration modelling by con-
sidering the statistics of separate channels and their correlation coefficient. For the state
modelling with three satellites, a new Master-Slave concept is introduced. Therefore, state
sequences of slave satellites are conditioned by an existing master state sequence. The great
advantage is that Master-Slave makes the parametrisation of a triple-satellite model feasi-
ble.

To address slow- and fast variations for multi-satellite reception, the fading interdependence
between synchronously received satellite signals is analysed from high-resolution measure-
ment data. Hence additional correlations besides the state correlation are identified and
firstly considered in the new multi-satellite LMS model.

The modelling results are compared with the measurements in terms of first- and second
order statistics, where improvements in describing diversity become visible when compared
to existing models.

Model parameters are derived from large-scale measurement campaigns to enable a time
series generation for different environments and various constellations of satellites. The
applicability of the new model is finally demonstrated by comparing the performance of
different satellite constellations with diversity.
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Kurzfassung

In modernen Satellitenrundfunksystemen werden Methoden wie Zeitdiversitdt (Empfang von
zeitlich verteilter Information) und Winkeldiversitat (Empfang von mehreren Satelliten mit
unterschiedlichen Positionen) angewandt, um die geforderte Dienstequalitit fiir den mo-
bilen Empfang zu gewéhrleisten. Zur Untersuchung der Ausbreitungseffekte des landmo-
bilen Satellitenkanals sowohl der Wirksamkeit von Diversitdt werden statistische Modelle
benotigt, die den zeitlichen Signalschwund des Empfangssignals nachbilden.

In der vorliegenden Arbeit wird ein Kanalmodell fiir den Mehrsatellitenempfang entwickelt,
welches genaue Versorgungsvorhersagen mit Zeit- und Winkeldiversitit erlaubt. Grundlage
ist ein Einsatellitenmodell, welches grofiraumige Schwankungen im Kanal durch die Zustdnde
‘gut’ und ’schlecht’ definiert, und den langsamen und schnellen Signalschwund gemaf einer
variablen Loo-Verteilung beschreibt, deren Parameter nach jedem Zustandswechsel stocha-
stisch bestimmt werden.

Fiir die Zustandsmodellierung mit zwei Satelliten wird ein ’semi-Markov Modell fiir korrel-
lierte Zustandssequenzen’ erarbeitet. Damit konnen, unter Beriicksichtigung der Statistiken
der Einzelkanéle und deren Korrelationskoeffizient, die Zustandswahrscheinlichkeiten und
-lingen exakt simuliert werden. Fiir die Zustandsmodellierung mit drei Satelliten wird ein
"Master-Slave’-Ansatz entwickelt. Dabei sind die Zustandssequenzen zweier ’Slaves’ bedingt
abhéngig zur 'Master’-Sequenz. Der 'Master-Slave’-Ansatz ermoglicht die Parametrisierung
eines Dreisatellitenmodells.

Zur Beschreibung des langsamen und schnellen Signalschwunds im Mehrsatellitenkanal wird
die Wechselbeziehung zwischen synchron gemessenen Satellitensignalen nédher untersucht. Es
stellt sich heraus dass weitere Signalkorrelationen beriicksichtigt werden sollten, die erstmalig
im neuen LMS-Kanalmodell implementiert werden.

Die Simulationssergebnisse werden in Statistiken erster und zweiter Ordnung den Mess-
daten gegeniibergestellt. Im Vergleich zu bestehenden Modellen werden Verbesserungen
nach Berticksichtigung von Diversitat deutlich.

Die Parameter fiir das Mehrsatellitenkanalmodell wurden aus umfassenden Messkampagnen
abgeleitet und gewéhrleisten die Signalsimulation fiir verschiedene Umgebungen und Satel-
litenpositionen. Abschliefend wird das Kanalmodell fiir einen ersten Vergleich verschiedener
Satellitenkonfigurationen mit Zeit- und Winkeldiversitiat angewandt.
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1. Introduction

In July 1962, the first television satellite Telstar 1 was launched and it transmitted in the
same month a TV program reached by 200 Million subscribers in USA and Europe. It was the
beginning of a new era for satellite broadcasting and communications. The transmitter and
receiver of these early satellite communication systems were exclusively stationary. [Pun02]

The era for mobile communications started about 20 years later. INMARSAT established
in 1982 a system of satellites in a geostationary orbit providing voice, telex, fax and data
services to maritime terminals [Inm09]. At the end of the 80’s, land mobile satellite reception
began in terms of a messaging-service for long-distance road haulage by Qualcomm [AP95].

Today, satellites have a consolidated role in digital communication- and broadcasting sys-
tems. Whether they are used as ’back hauling” component between transmitter and cellular
network, they are directly linked to the terminal, or they transmit a signal via a terrestrial
repeater to the receiver, satellites enable flexible solutions to provide multimedia content
(e.g. audio and video streaming) to stationary, portable, and mobile receivers world wide.
Besides the ability to meet coverage and high Quality-of-Service (QoS), the use of satellites
have economic advantages as they help to minimize the number of terrestrial transmitters
and reduce the deployment and operational costs in broadcasting and communication net-
works [Cou01].

For satellite communication services, a number of frequency bands (UHF, L, S, Ku and Ka
bands) ranging from 300 MHz to 30 GHz have been allocated [KP99]. In these frequency
bands, satellite signal reception is limited due to shadowing or blocking objects (e.g. build-
ings, trees, tunnels) in the transmission path. While for stationary receivers (e.g. antennas
on buildings) or partly for hand-held terminals a continuous line-of-sight connection to the
satellite can be established, this is not realistic for moving terminals. Hence, signal fading
can not be avoided. To mitigate fading and to increase the satellite signal availability, a
number of active and passive techniques are applied in commercial systems, such as high-
elliptical satellite orbits (e.g. Sirius Satellite Radio [Akt08]), increased satellite transmission
power, satellite diversity from multiple satellites (e.g. XM Satellite Radio [Mic02]), time in-
terleaving (e.g. WorldSpace [SANS08]). For coverage studies in the planning process of new
systems, statistical channel models are frequently used that are able to generate timeseries of
the received fading signal. Besides giving statements about expected signal availabilities for
mobile terminals, those timeseries are basis to evaluate and select the required modulation
and coding techniques for communication or broadcasting systems.

1.1. Land Mobile Satellite Channel Models - Overview and Motivation

Statistical (or generative) channel models for land mobile satellite (LMS) reception describe
the fading processes of the received signal: Slow variations of the signal are caused by ob-
stacles between the satellite and the receiver, which induce varying shadowing conditions
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of the direct signal component. Fast signal variations are caused by multipath effects due
to static or moving scatterers in the vicinity of the mobile terminal. For short time peri-
ods these two components (slow and fast variations) are usually modelled by a stationary
stochastic processes. Distribution functions from Loo [Loo84], Corazza& Vatalaro [CV94],
and Suzuki [Suz77] are well known to describe satellite signal propagation. For longer time
periods the received signal can not be assumed as stationary. Therefore, different receive
states are introduced for statistical LMS modelling to assess the large dynamic range of the
received signal. The states correspond to slow varying environmental conditions (lines of
trees, buildings, line-of-sight) in the transmission path. The number of states to describe a
single satellite path range from two ('good’ and ’bad’) [LCD"91], three (’line-of-sight’, ’shad-
owed’, and ’blocked’) [KMM95] to models with higher or variable state number [SAHE]. The
temporal sequence of states is usually described by Markov or semi-Markov chains.

While several LMS channel models for single-satellite systems are available and consoli-
dated [LCD'91, PFVCC*01, PCPFB*10], models for multi-satellite propagation are rather
rare in literature and thus subject of recent and ongoing research activities.[mil] A crucial
element in multi-satellite modelling is the correlation of the fading between different paths.
Early multi-satellite studies of camera-based measurements [REE92] show that a high corre-
lation is expected if the angular separation between satellites is low. Especially for azimuth
angle separations below 30° a correlation can not be neglected, otherwise a coverage predic-
tion for a multi-satellite system with diversity would be too optimistic. Later contributions
report similar satellite correlation studies by emulated satellite signal measurements [JL94]
or by theoretical analyses of physical models from the terminals environment [TSE98]. To
apply the correlation information into a statistical generative model, a first-order Markov
model for correlated channels was developed in 1996 [Lut96] to correlate two satellite se-
quences consisting of 'good’ and ’'bad’ states. Due to its simplicity this modelling approach
is frequently used to this day. However, those first-order Markov chains have limitations in
state duration modelling, as their state durations inherently follow an exponential distribu-
tion. Authors in [MHEHO09] [BT02] found that this condition is not necessarily correct for
the LMS channel. Nevertheless, a correct state duration modelling is of high interest for
the configuration of physical layer and link layer parameters for modern broadcasting stan-
dards with long time interleaving (e.g. for physical layer interleaver size, link layer protection
time). Therefore, different concepts to improve the state duration modelling were introduced:
semi-Markov chains [BT02] and dynamic Markov chains [MHEHO09]. For these approaches
some exemplary analyses including model parameters for the single-satellite reception are
published. However, a feasible concept for multi-satellite state duration modelling does not
exists so far.

A further limitation of available dual- or multi-satellite LMS approaches is the consideration
of correlation only for the states between the satellite signals. Since a separation in two
or three states is a raw quantisation of the received signal, it is questionable if the actual
correlation of the signals is sufficiently described to make an accurate prediction of the joint
availability of combined satellite signals.
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1.2. Overview of this Work and Own Contributions

The goal of this work is to develop an LMS channel model for multi-satellite reception to
provide accurate coverage prediction under consideration of satellite diversity (also denoted
as angle diversity) and time diversity.

This target requires

e the development of an appropriate state model for two- and more than two satellites
to accurately describe the correlation and state duration.

e the analysis of the correlation between two satellite signals and the development of a
suitable model implementation.

e the analysis of measurement data to derive the model parameters for different envi-
ronments and satellite positions.

e the evaluation of the new model and a comparison with available models.
This work is organised as follows:

Chapter 2 firstly describes propagation effects of the signal from satellite to mobile and sta-
tionary receivers. Afterwards, different approaches to characterise the land mobile satellite
channel are briefly introduced. Amongst a number of empirical, statistical, or physical mod-
els to describe single-satellite reception, also available approaches for multi-satellite reception
are presented. Their possible weaknesses in terms of describing correlation effects between
satellites and in terms of describing the signals temporal composition are identified.

Chapter 3 deals with a basic element for describing mobile reception: the receive states.
Starting with the description of existing Markov models to provide state sequences for single-
satellite reception, new state models for dual- and multi-satellite reception are introduced.
To assess the performance of existent and new state models, correlation coefficients, state
probabilities and state duration statistics are gained from re-simulated state sequences and
are compared with measurement data. Further on, the reliability and feasibility of these
state models for predicting the mobile reception at different locations and environments
from different satellite positions is discussed. To improve the readability of Chapter 3, the
major part of mathematics related to the state model analyses are found in Appendix B.

For short time intervals the mobile fading signal can be described by a stationary stochastic
process, for which the Loo distribution is found as appropriate and commonly used for
LMS modelling. In Chapter 4 correlation effects of such Loo fading processes between two
satellites are analysed, and a corresponding implementation of the LMS model is developed.
The detailed implementation of the new multi-satellite channel model is presented at the
end of Chapter 4.

In Chapter 5 a comprehensive evaluation of the LMS model output, the complex envelope
of the fading signal from multiple paths, is done. For this purpose the re-simulated signals
of the proposed LMS model and of alternative approaches developed in this work and from
literature are compared with measurement data in terms of first- and second-order statistics.
Evaluation criteria are cumulative distribution functions (CDFs), average fade durations
(AFD), level crossing rates (LCR), and CDFs under consideration of time interleaving with
variable lengths. The model evaluation is done under two aspects:
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e A given measurement sequence is parametrised and (immediately) re-simulated by the
model. It indicates if the LMS model architecture appropriately describe all important
characteristics of fading.

e Exemplary signals from measurements are compared with re-simulated signals based
on model parameters from similar receive scenarios, i.e. a combination of environment
type, elevation angle, and angular separation. It verifies the representativeness of
the model parameter sets to describe fading for multiple environments and satellite
constellations.

As a first application for the new multi-satellite LMS model, a coverage study for satellite
broadcasting applications under consideration of satellite diversity and time diversity is
performed in Chapter 6. Starting with a joint analysis of satellite- and time diversity
based on measured signals along the U.S. East Coast, the reception of

e a high-power satellite in geostationary orbit,
e a dual-satellite constellation with small azimuth separation, and
e a dual-satellite constellation with large azimuth separation

is compared for selected locations in the USA. Therefore, the required margins for 99% signal
availability are derived from the first-order statistics of the channel model output for different
types of environments. The results demonstrate the performance of alternative geostationary
satellite constellations to serve coverage areas between 30 and 45 degrees latitude and show
achievable gains with satellite diversity and time diversity.

Basis for this work are measurement data from existing satellite systems with a quality and
resolution that is not previously reported in literature: over a travelled distance of 3700 km
the power levels of four satellites were measured synchronously with a sampling rate of
2.1kHz for a large variety of environments and for different elevation and azimuth angles
of the satellites. This data were captured right before this work in 2008 in the context
of the project MiLADY [EHHO8][HEAT10]. The campaign is described in Appendix A.
Preprocessing and data analysis of these measurements is an important part of this work.

Appendix C presents tables of parameters for the new multi-satellite channel model. In
combination with the implementation guideline in Chapter 4 it allows to generate timeseries
of the signal fading in dependency on the environment type an the satellite constellation.

Parts of this thesis were published in 7 international conferences ([ATHT09] [ATH*10] [ATH"11]
[AHK"12] [AIHE11Db] [AIHE11a] [AHH"12]) and within two journals ([ATHE12][ATHT]).



2. Land Mobile Satellite Channel Characterisation and Modelling

Land mobile satellite (LMS) systems play an essential role in third and fourth generation
wireless communication systems. They provide wide area coverage by low operational costs
in comparison to terrestrial systems. For LMS communication and broadcasting services,
a number of frequency bands have been allocated. Signals are transmitted either in UHF-
band (300-1000 MHz) ! | L-band (1-2 GHz), S-band (2-4 GHz), Ku-band (12-18 GHz) or
Ka-band (27-40 GHz) and have each characteristical propagation impairments limiting the
signal reception at the receiver.? To ensure the QoS for mobile receivers, a sound knowledge
of the LMS propagation channel is essential. Therefore, accurate statistical channel models
for LMS reception are required.

This chapter focuses on state-of-the-art of LMS channel models. For this purpose, firstly
in Section 2.1 the main impairments for radio wave propagation for LMS reception are de-
scribed. Different methods to mitigate the impairments and to ensure the QoS, such as
diversity, are given in Section 2.2. Afterwards, in Section 2.3 and Section 2.4 the funda-
mentals and the state-of-the-art for LMS channel modelling are introduced incorporating
one and multiple satellites, respectively. Finally, in Section 2.5 open aspects in terms of
multi-satellite modelling with diversity are identified.

2.1. Propagation Impairments of the Land Mobile Satellite Link

The radio waves transmitted from satellite to the receiver on earth undergo different kinds
of propagation impairments: free-space attenuation, atmospheric effects in the ionosphere
and the troposphere, and local effects in the near environment of the receiver, as depicted
in Figure 2.1.

Effects in Ionosphere

The ionosphere is the greatest part of the atmosphere (from 50km to 2000 km altitude)
including a large quantity on ions and free electrons. Radio waves on the way through the
ionosphere activate the free electrons to resonate which causes scintillation, Faraday rotation,
propagation delays, and dispersion. lonospheric scintillation are changes in the refraction
of radio waves and hence of the signal levels due to rapid variations of the electron density.
Faraday rotation denotes the rotation of linearly polarised electromagnetic waves, resulting
in attenuation losses due to polarisation mismatches between transmit and receive antenna.
Propagation delays and phase shifts of radio waves are due to the ionospheric refractivity and
can cause uncertainties for satellite navigation systems. As propagation delays are frequency
dependent, a transmitted impulse arrives the receiver over its bandwidth with a certain time
dispersion, which limits the possible maximum signal bandwidth. [SAZ07]

The upper bound for UHF is actually 3000 MHz, but in context of satellite communications 1000 MHz are
commonly used.
2The frequency ranges and frequency bands for telecommunications are found in [ITU00].
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Figure 2.1.: Propagation impairments for land mobile satellite reception.

The intensity of ionospheric effects depend on the path-length through the ionosphere, ge-
omagnetic field strength, electron density and the radio frequency. Most effects - except
Faraday rotation - are already negligible in L-Band and can be ignored in Ku- and Ka-
bands, as they deteriorate inversely proportional to the radio frequency [ITU03a]. In case
of Faraday rotation, polarisation losses can be easily eliminated by employing circular po-
larisation for the transmitted waves [KP99]. Prediction models and experimental data for
ionospheric effects are found in the ITU recommendations [ITU12] and [ITU03a].

Effects in Troposphere

The troposphere is the deepest layer of the atmosphere from ground to 8-15km height.
In this so called 'weather zone’, the signal is influenced by clouds, rain, ice particles and
atmospheric gases. In general, signal impairments become relevant if the wavelength is in the
range of the size of the disturbing structures. Thus, the dominant tropospheric impairment
‘rain attenuation’ has some impact for frequencies above 10 GHz, i.e. for Ku- and Ka-band,
where wavelengths are smaller than few centimetres. Empirical formulas to calculate rain
attenuation depending on the path length of radio waves through rain are found in [ITU03a].
For Ku- and Ka-bands it is in the range of several dB per kilometre. Gas attenuation
due to water vapour and oxygen is between 0.01dB and 0.1dB for frequencies between 10
and 30 GHz (Ku- and Ka-band) and can be neglected [ITU09]. Tropospheric scintillation
have major impact above 20 GHz [ITU03a]. For lower frequency bands applied for satellite
communications (UHF, S, L), tropospheric impairments can be neglected.[KP99][ITU03b]

Effects in Receiver Environment

For a land mobile receiver, the majority of propagation impairments are found in its local
environment. Solid objects like buildings, bridges, and tunnels cause signal blockages, reflec-
tion and diffraction of the signal. Vegetation causes shadowing, diffraction, and scattering
losses due to different densities of foliage and branches in the transmission path. The de-
gree of these impairments depends on the path length of the signal through the vegetation
mass [GV98]. Shadowing and blockage effects are mainly related to the mobile channel.
While stationary receivers are typically dimensioned with line-of-sight connection to the
satellite (e.g. antennas are mounted on the roof-top of buildings), this can not be ensured
for moving receivers (such as vehicular or hand-held terminals).
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2.1.1. Features of the Mobile Channel

The received satellite signal can be characterised as a superposition of three components:
the direct signal, specular reflected signals, and diffuse multipath [KP99][Dav87].

The direct signal may experience shadowing attenuation due to vegetation, may blocked
by solid obstacles (buildings, bridges) in the transmission path, or may arrive unshadowed at
the receiver in case of line-of-sight. Travelling through zones with those different shadowing
conditions leads to large-scale variations of the received signal, as sketched in Figure 2.2.
Shadowing effects are particularly frequent in case of low elevation angles of the satellite from
the terminals point of view, where a high number of obstructing objects are in the trans-
mission path. For the same reason, the shadowing probability depends on the environment.
Thus, in urban areas, for example, more shadowing is expected than on open highways.

Diffuse multipath origins from multiple reflections and scattering of the transmitted signal
on surrounding objects and arrive the receive antenna from different directions with different
propagation delays and phases. Vehicle movement through regions with constructive and
destructive interferences of multipath rays cause fast variations of the received signals’ am-
plitude and phase. The multipath power depends on the distribution of scattering objects
in the vicinity of the receiver.

Specular rays are generated by signal reflections from the ground, from car-roofs, or build-
ing surfaces, whereat their received power dominate over the diffuse components. In case of
vehicular antennas, the contribution of specular reflections from ground is mitigated by the
antenna pattern, which is usually directed to the upper hemisphere.

line_of-sight | | shadowed ' blocked

signal level [dB]
I
>

-30
012345670123456701234567
time [s]

(b)

Figure 2.2.: (a) Different categories of shadowing conditions (states) for the land mobile satellite
reception. (b) Received signal samples for different shadowing conditions.

Specular and diffuse components arrive at the receiver with a round-trip detour and a delay
with respect to the undisturbed direct signal (time dispersion). In case these delays are
significantly larger than the symbol duration, the received signal may experience significant
distortion such as frequency selectivity or intersymbol interference [SAZ07]. Due to the
mobility of the receiver and the satellite, Doppler phenomena further affect the channel:
Doppler frequency spread is due to the vehicle movement with respect to the scattering
objects; satellite movement provides additionally a Doppler shift of the whole received signal
spectrum. The dispersion of the received signal in time and frequency domain are subject
of next Section 2.1.2. Doppler effects are further discussed in Section 2.3.6.
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2.1.2. Characterisation of Time-Variant Multipath Effects

From the previous section it is concluded that the received LMS signal is a superposition of
the direct signal, specular reflected rays, and diffuse multipath induced by direct signal and
of specular rays illuminating nearby scatterers. All paths sum up at the receive antenna and
have different attenuations, phase shifts, and propagation delays with respect to the trans-
mitted signal. These propagation effects are characterised by the time-variant impulse
response. By assuming a discrete number of paths N, the time-variant impulse response
of the channel can be written

h(t,T) = i a;i(t)e??®) 5t — 1) (2.1)

i=1

with amplitude a;(t), phase ¢;(t), and delay 7; of the i-th signal component, respectively,
and the Dirac delta function §(t).

Assuming a transmitted signal after modulation sy g (t) = Re{s(t)e/?™/e!} the received signal
y(t) at a time ¢ is found by the convolution of sy (t) and the channel impulse response
(neglecting thermal noise):

y(t) = sgp(t) * h(t,7) (2.2)

The time-variant transfer function 7'(f,¢) describes the channel in frequency domain.
It is defined by the Fourier transform of the time-variant impulse response with respect to
the delay 7:

T(f,t) = F{h(t,7)} = /: h(t, 7)e 92" dr (2.3)

The signal spectrum at a time ¢, Y'(f,t), is found by multiplying the signal spectrum with
the transfer function.

Y (f,t) = Sur(f)T(f,1) (2.4)

Both functions, A(t,7) and T'(f,t), give information about the time dispersion of the chan-
nel. Time dispersion is due to multipath rays arriving the receiver with different propagation
delays which results in a certain spread of a transmitted impulse over time at the receiver.
A parameter to describe time dispersion is the delay spread T,,. According to [SAZ07],
the delay spread can be determined from the power delay profile (PDP), which is calculated
from the time-variant impulse response by

_ Blpe )P
2

The PDP describes the mean power of the impulse response with respect to the delay 7. The
delay spread T, is then defined as the range of 7 over which the PDP is essentially nonzero.
As for the LMS channel multipath rays arrive with significant attenuation compared to the
direct signal, the more meaningful parameter would by the RMS delay spread Trys to
appropriately characterise the time dispersion. It takes into account the power and delay of
impulses within the PDP and is defined by [SAZO07]

P(7) (2.5)

1
S ¢ Y P, (2.6)
n
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where Pr = ", P, is the total power of the channel and 7 = (1/Pr) Y, P,y is the mean
delay of the PDP.

If Trars is small with respect to the symbol duration, the channel can be assumed as nar-
rowband. Otherwise, if Trysg is great with respect to the symbol duration, then wideband
conditions are assumed.

Large time dispersion of the channel comes along with frequency selectivity. It means that
the vectorial sum of multipath waves with multiple phases is frequency dependent. Thus,
the signal in frequency domain is distorted over its bandwidth. A parameter for frequency
selectivity is the coherence bandwidth B.. It describes the frequency separation Af, for
which two components in the channel transfer function have a correlation coefficient of 0.5
for a time separation At = 0. According to [Pro00], the coherence bandwidth depends on
the delay spread with

B.~1/T,, (2.7)

If the coherence bandwidth B, is large with respect to the signal bandwidth, then the
frequency selectivity can be neglected and narrowband propagation can be assumed.

Due to movement of the terminal or of surrounding objects in the receiver environment,
Doppler phenomena affect the channel resulting in time selectivity and frequency dis-
persion. Time selectivity occurs if the channel changes its properties whilst the signal is
travelling in it. The longer the signal is in the channel (the longer the signal duration), the
more probably the channel properties can change. This effect is related to the coherence
time T, which describes the time over which the channel can be assumed constant. Fre-
quency dispersion denotes the positive and negative Doppler frequency shifts of reflected
radio waves in the transmitted spectrum. Frequency dispersion is described by the Doppler
spread By, which is related to the maximum Doppler shift due to vehicle movement (cf. also
Section 2.3.6). According to [Pro95], the coherence time and the Doppler spread are related
by the expression

T.~1/By (2.8)

The channel parameters Doppler spread and coherence time can be analysed through the
delay Doppler spread function S(7,v) and the output Doppler spread function
H(f,v), where v is the Doppler shift. This set of four functions, h(t,7), T(f,t), S(,v),
and H(f,v) are coupled by Fourier-relationships and were worked out by Bello [Bel63] to
closely describe time-variant propagation channels. A comprehensive description of the radio
propagation channel is further found in [SAZ07] and [Pro00].

2.1.3. Narrowband and Wideband Propagation

In LMS environments, where the propagation delay spread is small with respect the symbol
duration of the system, or equivalently, the coherence bandwidth is larger than the signal
bandwidth, then narrowband conditions can be assumed. Within narrowband channels
it is considered that the time dependent fading attenuation affects all frequencies in the
modulated signal equally. The channel is frequency non-selective or frequency flat and time
dispersion is negligible.
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Wideband conditions, on the other side, have to be considered if the propagation delays
can not be neglected and the signal bandwidth of the LMS system is great with respect to
the coherence bandwidth. The time dispersion of the signal results in frequency selectivity,
i.e. the channel varies in dependency on frequency and the received signal spectrum is
distorted.

Several measurement campaigns have been carried out to characterise wideband effects in
the LMS channel. In [PSE97], average RMS delay spreads for the LMS channel in L- and S-
bands between 30 and 90 ns were reported. They were estimated for different environments
(open, suburban, urban, tree-shadowed) and for different elevation angles. According to
Equation (2.7), coherence bandwidths are between 10 and 30 MHz. In [Jah99], delay spreads
for L-band between 500ns and 2 us are reported for different environments and elevation
angles, resulting in coherence bandwidths between 0.5 and 2 MHz.

When comparing the coherence bandwidths mentioned above with typical transmission band-
widths of satellite systems from Table 2.1, it is seen that for a number of satellite communi-
cation systems narrowband conditions can be assumed. In literature, narrowband conditions
are considered as appropriate even for bandwidths of 5 MHz (e.g. [PCPFB*10] for DVB-SH),
although this assumption is not necessarily correct in any LMS environment. For transmis-
sion systems with larger bandwidths, however, a wideband characterisation of the channel
is required.

Table 2.1.: Examples for mobile satellite transmission systems and their bandwidths.

l system [ frequency band [ carrier bandwidth [ reference ‘
Iridium L-band 31.5kHz [Eva97]
Globalstar L-band 1.25kHz [Eva97]
ICO-Global L-band 25.2kHz [Eva97]
XM S-band 1.84 MHz Mic02]
Sirius S-band ~4 MHz Akt08]
DVB-SH S-band subbandwidths can have 1.7 MHz; 5 MHz; | [DVB]

6 MHz; 7 MHz and 8 MHz
S-UMTS L/S-band 5MHz [SUMOO]
Inmarsat BGAN system | L-band 630 channels @ 200 kHz [FHS00]

The goal of this thesis is to contribute for a narrowband channel model for multiple satellite
systems with diversity. It is shown that the narrowband condition is an appropriate assump-
tion for a number of existing satellite communication and broadcasting systems. Thus, the
description of fading mitigation techniques in next Section 2.2 as well as the state-of-the-art
survey for channel models in Section 2.3 will focus on the narrowband case.

2.2. Approaches for Mitigation of Propagation Impairments

Fading due to shadowing and blocking objects in the transmission path causes severe lim-
itation of signal reception for mobile digital satellite services. It results in high bit error
rates and temporary link unavailability. To meet quality of service requirements, satellite
systems combine different coverage improvement techniques (e.g. the choice of appropriate
satellite orbits, usage of active or passive repeaters) with different diversity techniques (e.g.
satellite diversity, time diversity, receive antenna diversity) to avoid and mitigate fading,
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respectively. Coverage improvement methods are further explained in Section 2.2.1, while
diversity techniques are considered in Section 2.2.2.

2.2.1. Coverage Improvement

Satellite orbits and elevation angles

The probability of satellite signal outages due to obstacles in the transmission path highly
depends on the satellite elevation. Therefore, the orbit of satellites plays an essential role in
system planning aspects:

e Satellites in a geostationary orbit (GEO) are positioned approx. 36000km above the
equator. They are ideal for wide-area broadcasting, as they can cover up to 30% of the
earth surface. Due to their high operating distance in comparison to other orbits, long
round-trip delays (greater than 250 ms) are indispensable. GEO satellites are therefore
less attractive for interactive applications such as telephony or low-delay internet ap-
plications. Additionally, the visibility at high latitudes is limited (e.g. elevation angles
range from ~ 20° to 50° from southern to northern regions of Europe or USA). To meet
the coverage requirements for mobile services, a GEO system may require supplemen-
tary terrestrial repeaters and/or the use of diversity techniques. Examples for GEO
based systems are Inmarsat [Inm09], MSAT [Nor90], and XM Satellite Radio [Mic02].

e Satellites in low and medium earth orbit (LEO, MEO) move 500-2000 km and 10000-
12000 km above ground, respectively. They provide a low round-trip delay (e.g. 10-
40 ms for LEO) and are therefore feasible for low-latency bi-directional communication
applications. By realising a high visibility due to high elevation angle restrictions,
the coverage areas are rather small. Therefore, a great number of satellites is nec-
essary which increases the system costs. LEO systems are, e.g. Iridium [Leo91] and
Globalstar [Die97], and a MEO system is ICO [Pos98].

e High-elliptical orbits (HEO) allow coverage of entire continents by providing high eleva-
tion angles with a small number of satellites. For example, the U.S. broadcaster Sirius
Satellite Radio [Akt08] operates three satellites moving in the same high-elliptical or-
bit, where at least one satellite provides the service from an elevation angle of more
than 60°.

Transmission power

Stationary and mobile terminals require a certain signal-to-noise ratio (SNR) to provide the
QoS. Consequently, systems with high link margins admit signal fading up to a certain
threshold. To increase the available SNR and to improve coverage, high power geostationary
satellites (e.g. Thuraya system, ACeS system [MNG™'02]) as well as multiple satellite spot
beams providing higher equivalent isotropic radiated power (EIRP) than global beams (e.g.
third generation of Inmarsat [Spi94]) are in common use.

Terrestrial gap fillers

In heavy built-up areas, where satellite diversity techniques and other coverage improvement
methods fail to provide the required QoS, terrestrial gap fillers are applied to re-transmit
the satellite signal to the users. These hybrid networks, i.e. satellites supplemented by a
terrestrial repeater network, are used in the Sirius [Akt08], XM [Mic02], MBSAT [SP05], and
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the DVB-SH [DVBO07] system. In contrast to a satellite signal, the transmit power of terres-
trial repeaters is high enough to provide reception without having line-of-sight connection to
the receiver. Multiple reflections are utilisable therefore. However, as terrestrial gap fillers
need additional power supply by comparably small coverage areas, system planners aim to
minimise the number of (uneconomic) gap-fillers by using diversity schemes and optimised
satellite orbits.

Passive repeaters

Also passive repeater techniques without power supply are reported in literature for cov-
erage improvement. Those are plane reflectors to guide the satellite signal to shadowed
areas [Yan57|[SWT92], and back-to-back antennas transmitting the signal without amplifi-
cation [HYZ04].

2.2.2. Diversity Techniques

In order to ensure high QoS with limited transmit power in the presence of deep fading for
mobile satellite reception, different diversity techniques and combinations of it are attrac-
tive, such as satellite diversity, receive antenna diversity, and time diversity. The principle of
diversity is to increase the service availability by transmitting the information through mul-
tiple paths that are subject to statistically independent fading and combining the signals in
the receiver [Heu06]. Thus, by taking the random nature of fading effects into account, signal
degradations from one of the transmission paths can be compensated by another path.

satellite 1 E satellite 2

mobile receiver

Figure 2.3.: Concept of satellite diversity and time diversity. Multiple transmission paths can be
separated in time or in space. If one path is not available, another one is selected.

In the receiver the multiple signals are combined to regain the original information. For this
purpose, various diversity combining schemes are available in literature:

e Switch/selection combining (SC) selects the link with the highest SNR [Pro95].
It reduces the fading variance of the combined signal, leading to a lower probability
of deep fades. A practical implementation is that one link is used until its quality is
unacceptable. SC is the simplest form of diversity combining and attractive for mobile
antennas, when simplicity of implementation is of primary concern [AS03].

e Within equal gain combining (EGC) the received signals are summed after apply-
ing a phase-synchronisation. Thus, in contrast to SC, all received signals synchronously
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contribute to the output. EGC provide in practice higher gains than SC, i.e. for in-
dependently Rayleigh-fading and locally coherent signals with locally incoherent noise
and with constant local rms values [Bre59).

e Maximal ratio combining (MRC) provides the highest diversity gain and is the
most effective combining method for narrowband systems [MSL*09]. It requires per-
fect channel knowledge at the receiver, as the received signals are summed with phase-
synchronisation, and weighted according to their SNR [Pro95]. The additional estima-
tion of the signal strength at the receiver makes MRC much more complicated than
EGC. Compared to EGC, MRC maximises SNR instead of signal power.

In case of transmitter diversity, such as satellite diversity, additional space-time coding or
space-frequency coding must be applied. It is mandatory to separate the incoming signals
from different paths by the receiver. By applying space-time coding techniques an additional
coding gain can be achieved. Investigations of coding gains for multi-satellite transmission
are found in [Heu08] and [MTTKO02].

Satellite diversity

Within satellite diversity (also known as angle diversity), the information is transmitted
simultaneously from multiple satellites located at different orbital positions. If one of the
satellites is shadowed, there is still some probability that the other satellite has line-of-sight
conditions. A high diversity gain is expected when both paths are uncorrelated. This holds
for satellites with a certain angular separation in azimuth and elevation from the terminals
point of view. In [MPTE98] and [GV98] it is concluded that uncorrelated shadowing of
satellite signals can be assumed for azimuth angle separations above 30°. Further details on
analyses for multi-satellite correlation are found in Section 2.4.

Satellite diversity is an attractive solution for broadcasting systems such as XM [Mic02],
communication systems such as Globalstar [WV93] and ICO [Ber94], and navigations such
as GPS [Las75]. It is suitable for low-cost receivers (e.g. in case of selection combining),
for time-critical applications and works well under stationary and mobile receive conditions.
However, costs for the satellite infrastructure and for reserving different frequency bands
have to be taken into account. Performance studies of satellite diversity for LMS reception
are found in [Heu08] and [ATHT10].

Time diversity
Time diversity means the spreading of information over time to compensate time-varying or
spatial varying signal outages in case of mobility.

A simple method is to repeat the transmitted information with a time delay and to combine
the signals at the receiver. This kind of time diversity (repetition code) is applied in
the Sirius satellite radio system, where two satellites transmit the same signal at different
frequencies with four seconds delay [Akt08]. However, repetition coding reduces the power
efficiency of the channel and is therefore not the most effective approach.

In case of time interleaving, the order of transmitted symbols is rearranged according to a
pre-defined pattern. Thus, the information is spread over an interleaver length ;. Interleaver
are proved to be effective if the duration of signal unavailability is below /;/2 [Heu06].

As time diversity relies on the time variability of the transmission channel, it is effective
for moving receivers only. Long interleaver sizes of several seconds are especially attractive
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for broadcasting applications, which have no real-time requirements. Typical interleaver
lengths between 100 ms and 30s are reported in [DVB] for DVB-SH systems. Time diversity
techniques come along with increased costs of the terminals due to increased memory and
power requirements.

Receive antenna diversity
Multiple antennas may be applied at the receiver site. Three gains contribute to the overall
receive antenna diversity gain.

e Fading reduction gain: In contrast to satellite diversity providing a kind of shad-
owing gain through uncorrelated direct signal paths, a dual-antenna terminal takes
advantage from uncorrelated multipath rays. Therefore, a spatial separation of at
least one wavelength between the receive antennas is required.

e Linear combining methods, such as MRC and EGC, provide a further power gain.
In case of MRC, the effective SNR is the sum of the SNR from single pathes.

e Modifications of the received antenna pattern and beamforming techniques are
possible by phase-synchronised summation of signals incoming from direct path. It
improves the available SNR at the receiver.

A detailed overview on multiple-antenna techniques is given in [MSLT09]. Performance stud-
ies for multi-antenna systems in context of LMS reception are found in [EAHT10] [ATHE11a]
[ATHE11D].

2.3. Statistical Channel Models for Land Mobile-Satellite Communications

For the design and implementation of satellite communication systems an accurate under-
standing of the radio propagation channel is of paramount importance. Therefore, different
types of propagation models are distinguished in literature:

Empirical models are usually given in a form of more or less complex expressions to
determine the signal attenuation for a given percentage of locations relating to the satellite
elevation angle, the frequency range or other input parameters. These models are derived
by fitting mathematical expressions to measurements to find a set of parameters that fits
best to the measurements, whereat they fail to give any indication to the physical processes.
Empirical channel models are suitable for coverage predictions over large-scale areas with just
few input parameters and short calculation time. A comparison between different models
for LMS reception is found in [KC96].

Deterministic models describe the composition of the received signal exclusively on pure
mathematics for signal and wave propagation. These models are most accurate to describe
the signal propagation, but also require a detailed representation of the receive environment,
such as a building database. Complex algorithms like ray-tracing or ray-launching techniques
are used for signal propagation calculations, such as described in [SM99]. Examples for ray-
tracing applied to LMS channels are given in [DJDWO01]. The deterministic approach is
suitable for propagation studies in urban areas and for indoor reception. However, because
of the need for detailed three-dimensional models of the receive environment and the high
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calculation time of the wave propagation algorithms, the application of wide-range coverage
prediction is limited.

Statistical approaches combine analyses of real propagation data with physical assump-
tions. For this purpose, several fading processes of the LMS channel are identified: Slow
variations of the signal are caused by obstacles between the satellite and the receiver, which
induce varying shadowing conditions of the direct signal component. Fast signal variations
are caused by multipath effects due to static or moving scatterers in the vicinity of the mo-
bile terminal. Over short time periods of mobile reception these two components (slow and
fast variations) are usually modelled by a stationary stochastic process. Depending on the
interaction and correlation of slow- and fast varying signal components, different so-called
single-state models are found in literature describing the incoming signal for certain environ-
mental conditions (see also Section 2.3.3). For longer time periods the received signal can
not be assumed as stationary. Therefore, advanced LMS channel models consider different
receive states (multi-state models, Section 2.3.4) to assess the large dynamic range of the
received signal. The states correspond to slow varying environmental conditions (e.g. line
of trees, buildings, sections with line-of-sight) in the transmission path. Besides information
about phase and signal strength of the summation of received signals, statistical LMS mod-
els incorporate the temporal composition of the fading signal as well. Thus, time series of
the received signal can be generated for various receive conditions in different environment
types. Statistical approaches are most favourable for the characterisation and modelling of
LMS communication links and are therefore focused in this thesis.

2.3.1. Introduction to Narrowband Channel Modelling

Besides the classification of channel models as summarised above, statistical channel models
are further distinguished into narrowband and wideband models. The decision for a corre-
sponding modelling type depends on the duration of multipath propagation delays and the
signal bandwidth of the satellite system, as described in Section 2.1.2. By taking LMS propa-
gation delays and coherence bandwidths estimated from several measurements into account,
in Section 2.1.3 it was concluded that satellite communication and broadcasting systems up
to a bandwidth of approx. 5 MHz are appropriately described with narrowband conditions,
which is fulfilled by a number of satellite communication and broadcasting systems in L-
and S-bands. Thus, in this work, narrowband channel modelling is in focus and wideband
conditions are out of scope.

For a narrowband system, where delay spread is negligible, the channel response can be
expressed with

h(t) = a(t)e 790 (2.9)
with a(t) and ¢(t) denote the envelope and phase at time ¢, respectively.

The received signal y(t), by neglecting thermal noise, is the multiplication of the channel
response and the modulated transmitted signal sgp:

y(t) = h(t)SHF<t) (2.10)

Narrowband channel models target to describe the envelope of the complex fading coeffi-
cient |h(t)|. Fading of the received signal is a result of reflection, diffraction, and absorption
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of radio waves on man-made or natural obstacles in the environment of the receiver. This
fading process is traditionally described by a set of statistical distributions, which are subject
of the following Sections 2.3.2 and 2.3.3.

2.3.2. Probability Distribution Functions for Different Types of Fading

Various statistical distributions are available in the literature which are suitable to describe
fading in different receive environments. In the following, some frequently used distribu-
tions are presented to characterise the individual components of the LMS signal: direct
signal and multipath. The superposition of these signal components and consequently of the
distributions is described by the statistical narrowband LMS models in Section 2.3.3 and
2.3.4.

Rayleigh Distribution

In non-LOS situations and blockages, the received signal of a mobile channel is assumed
to be the sum of infinite multipath rays with Gaussian distributed amplitudes, different
delays and phase shifts. The phases of multipath components are assumed to be uniformly
distributed in the interval [0;27). The envelope of the received signal r = |h(t)| thus follows
a Rayleigh distribution, which probability density function (PDF) can be expressed with

r —r2
PRayleigh(r) = ﬁ exXp (W r > 0, (2.11)

where o2 is the average power of multipath rays. [Jak74]

Rice Distribution

In LMS scenarios with LOS conditions between transmitter and receiver, the received signal
is the sum of one dominant direct signal component and a number of uncorrelated multipath
components. In addition to the Rayleigh distributed multipath rays, a direct signal with
constant amplitude « is assumed. The PDF of the received signals’ envelope r has a Rician
distribution [Ric48] and is given by

ro

r [M Io ((ﬂ) r>0, (2.12)

Price(r) = 3 OXP 557

where o2 is the average multipath power, a?/2 is the mean power of the LOS component,
and Iy is the modified Bessel function of first kind and order zero. With o = 0, a special case
of the Rice distribution is the Rayleigh distribution, assuming no direct path between the
transmitter and receiver. A Rice distribution is often expressed by a Rice factor k = a? /202,
which is the ratio of the average direct signal power to the average multipath power.
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Lognormal Distribution

Vegetation and foliage by trees with irregular pattern of branches and leaves with different
densities cause scattering and absorption of radio waves. Consequently, the power of the
received direct signal varies about its mean power. In several statistical models the fading
of the direct signal component is described by a lognormal distribution. The corresponding
PDF is given by

]Dlogn(r) - (213)

ropV 2T 20l2n

1 and oy, are respectively the mean and standard deviation of the lognormally distributed
signal.

1 Inr — )2
exp [_Wﬂ)

Nakagami Distribution

After extensive experiments on long-distance multipath propagation via ionosphere or tro-
posphere, Nakagami [Nak60] proposed the so-called m-distribution to describe the received
signal statistics. It covers the condition that two paths have comparable power and are
stronger than the others. The PDF of the Nakagami m-distribution is given by:

2 m _ 2 1
Pakagami(7) = =—— (m) p2m=1 exp < mr ) m>—,r>0 (2.14)

I'(m) \Q Q

where ) is the average power of the signal (2 = E(r?)), I'(.) represents the Gamma function,
and m defines the fade depth. The Nakagami m-distribution contains other distributions
as special cases. Depending on m, the distribution is modified: for m = 1 a Rayleigh
distribution results; m = 0.5 results in a one sided Gaussian distribution; for large m a
lognormal distribution can be approximated. The Nakagami distribution is proposed in
[ALAKO3] as alternative for the lognormal distribution, because of its better applicability
for closed-form analytical description of fading when combined with other distributions like
Rice or Rayleigh.

2.3.3. Single-State Models
Loo Model

Based on LMS propagation measurements (satellite signal was emulated by helicopter) along
tree-shadowed rural roads, Loo proposed in 1984 [Loo84] the first statistical LMS model with
different behaviour of two signal components: the direct signal (LOS signal) and diffuse mul-
tipath. Fading of the LOS component under foliage attenuation is described by a lognormal
distribution, whereas diffuse multipath components are described by a Rayleigh distribu-
tion conditioned to the LOS power. Between both components a correlation is introduced,
following the assumption that foliage not only attenuates but scatters radio waves as well.

The proposed distribution of the received signals’ envelope is given by

Tz
I (02> dz, (2.15)

r % 1 (Inz—p)? 12422
P e — . _
oo l) = /o fy zew l 202, 207
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where o2 is the average scattered power due to multipath and p and oy, are the mean and
standard deviation of the lognormal distribution, respectively. Iy(.) is the modified Bessel
function of zeroth order. In limiting cases the values of r are lognormally distributed (r > o)
or Rayleigh distributed (r < o).

From measurements, the distribution parameters were extracted by curve-fitting. A compari-
son of first-order statistics (PDF, CDF) and second-order statistics (level crossing rate (LCR)
and average fade duration (AFD)) between measurements and model have shown a good
agreement [Loo84]. A high correlation (0.5 < p < 0.9) between the rate of change for multi-
path and shadowing components has been obtained, which proved the initial assumption.

In some newer LMS models [PFVCCT01][PCPFB*10] (cf. also Section 2.3.4), the Loo
distribution is described by three parameters M4, ¥ 4, MP given in dB, denoting the mean
and standard deviation of the lognormal distribution, and the multipath power, respectively.
The corresponding Loo-PDF was therefore converted into the form

o2

r-2010g(e)/°°1 l_(2010gz—MA)2_7’2+z2
0oz

P - = ©9) /
Loo (’r) O'QEA /27[_ 22?4 20_2

Iy (m> dz,  (2.16)

with o = 1/10MP/10 /2 This notation of Loo parameters will be used for the multi-satellite
LMS model developed in this thesis, and continues therefore the notation from the single-
satellite model which is taken as basis.

Suzuki Model

Suzuki [Suz77] introduced first a mixture of two distributions to suitable characterise the
mobile channel. He proposed a combination of Rayleigh and lognormal processes to describe
the terrestrial signal propagation in urban environments. It is assumed that local scattered
multipath components around the receiver have Rayleigh characteristic, whereas the signal
from transmitter to local area undergo lognormal variations due to refractions. Although this
model is designed for terrestrial reception, several multi-state LMS models (cf. Section 2.3.4)
use this distribution for shadowed or blocked conditions of the direct signal. The PDF is
given by

00 2 1 1 _ )2
Posuzuki(r) = / % exp ! - exp —M do, (2.17)
0 20

o0V 2T n

where o is the average received power of the Rayleigh process, and i and oy, are the mean
and standard deviation of the lognormal process.

Corazza-Vatalaro Model

Corazza& Vatalaro [CV94] presented in 1994 a further combination of Rice and lognormal
distribution to characterise LMS reception. It is assumed that shadowing takes an effect
on both, the direct signal and the multipath. For comparison, the Loo model assumes an
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2.3. Statistical Channel Models for Land Mobile-Satellite Communications

influence of shadowing for the direct signal only. The PDF is the product of two independent
processes, lognormal and Rice:

Prin(r) = /OOO Price(r|5) Piogn(s)ds, (2.18)

where PRrice(r|s) is a Rice PDF conditioned on a certain shadowing s

2

Prico(r|s) = 2(k + 1)% exp | —(k + 1)2—2 - k] Iy (2; k(k + 1)) r>0  (2.19)

with Rice factor k and Pign(s) is the lognormal PDF of shadowing s. Combining the condi-
tioned Rice distribution and the lognormal distribution, the PDF of the Corazza& Vatalaro
model (in literature also known as Rice-lognormal (RLN) model) is given by

72 T
exp [—(k + 1)5—2 - k} Iy (25 k(k + 1)> ds
(2.20)

where h = In(10)/20, p and (ho) are the mean and standard deviation of the lognormal
process, respectively, and Rice factor k.

2+ 1Dr [~ 1 (Ins — p)?
P _ AT Sk o/
RLN(T) hovae Jo 3 ex [ 22

Corazza& Vatalaro verified their RLN model in [CV94] with measurement data from rural
tree-shadowed environment for a wide range of elevation angles. The corresponding set of
model parameters (u, o, k) are given in [CV94] as well.

Abdi Model

To simplify the analysis of statistical models, Abdi et al. [ALAKO03](2003) proposed an
alternative to the Loo model. As with the Loo model the multipath component is Rayleigh
distributed, but the amplitude of the LOS signal is described by a Nakagami distribution
instead of a lognormal distribution. Abdi pointed out that an analytic manipulation of
lognormal-based models (incorporating data fitting and parameter extraction) is challenging.
Therefore, the Nakagami distribution is proposed as alternative to lognormal distributions,
leading to mathematically closed forms for the combined description of direct signal and
multipath. The PDF of the Abdi model can be written as

202m \ 1 r? Qr?
Papai(r) = [ =22 ) . L )R (m, >0,
Abdi(7) (202171 + Q) o2 P ( 202> te (m 202(202%m + Q) "

(2.21)
where o2 is the average power of the multipath component, €2 is the average power of the
LOS component, m is the Nakagami parameter, and 1F} is the confluent hypergeometric
function.

The Abdi model provides similar fit to Loo model but with less computational effort.
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Other Single-State Models

Further, more sophisticated single-state models for LMS reception have been introduced, as
seen in Table 2.2. In most cases the primary concepts of additive or multiplicative combina-
tion of a lognormal characteristic for the direct signal and a Rice or Rayleigh characteristic
for multipath as proposed by Loo and Corazza& Vatalaro are modified or extended.

Paetzold et al. [PKLI8] proposed an extension of Suzuki’s model by incorporating Doppler
phenomena to the fading characteristics. An extension of the Loo model is presented in
[HKAWO7], where the multipath components are subjected to own lognormal variations
which are different from the direct signals variations. An extension of the Corazza& Vatalaro
model is given in [Vat95], called generalized Rice-lognormal model. It adds a Rice distributed
multipath component with constant power. The model in [XF00] is based on the RLN model,
but uses a more general form of the Rice distribution (Beckmann distribution) for multipath
based on scattering theory.

Comparitive studies of various single-state models are found in [KP99] and [PFBA108].

Table 2.2.: Available single-state models for the narrowband LMS channel. (Notation: S corresponds
to the direct signal and slow fading processes, R corresponds to the multipath component.)

proposed by year |complex channel process comments
r =1y + jry (cf. [KP99])

Suzuki [Suz77] 1977 |r = RSexpljg] terrestrial propagation
R: Rayleigh

S: lognormal

¢: uniform

Loo [Loo84] 1984 |r = Rexp[jén] + Sexp[jdo]
R: Rayleigh

S: lognormal

dm, po: uniform

Corazza& Vatalaro 1994 |r = RS exp[jo] also known as RLN
[CV94] R: Rice model
S: lognormal
0: uniform
Vatalaro [Vat95] 1995 |r = RSexp[j0] + z1 + jy1 RLN + multipath com-
R: Rice ponent with constant
S: lognormal power

z1, y1 : Gaussian
Hwang et al. [HKAWO97](1997 |r = AS: exp[jd]+ RS2 exp[j(0+ ¢)]|RLN with extra lognor-

R: Rayleigh mal fading for multipath
A: constant components
S1,52: lognormal

Pétzold et al. [PKLI8] 1998 |r = Sexp[jf] + z1 + jy1 Doppler phenomena in-
S: lognormal cluded
1, y1 : Gaussian

Xie&Fang [XF00] 2000 |r = RS exp[j6] modification of RLN by
R: Beckmann general form of Rice dis-
S: lognormal tribution

Abdi et al. [ALAKO3] |2003 |r = Rexp[jonm]+ Sexpljoo] alternative to  Loo’s
R: Rayleigh model  with  simpler
S: Nakagami mathematics
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2.3. Statistical Channel Models for Land Mobile-Satellite Communications

2.3.4. Multi-State Models

To cope with the large dynamic range of the received signal due to terminal mobility, statis-
tical LMS models describe different states that correspond to slow changes of environmental
conditions (e.g. line of trees, buildings, regions with line-of-sight) in the transmission path.
The temporal sequence of states can be described by Markov processes. The number of
states for such LMS models range from two states to concepts with five and more states.
In contrary to single-state models, the distribution of amplitudes within multi-state models
are composed by a weighted mixture of single statistical distributions (e.g. Rice, Rayleigh)
as well as of certain single-state models itself (e.g. Loo, Nakagami). Different multi-state
models are listed in Table 2.3. Selected models are briefly described in this section.

Table 2.3.: Available multi-state models for the narrowband LMS channel.

’proposed by ‘year ‘structure of the model ‘comments

Lutz et al. [LCD"91] 1991 |Rice + Suzuki

Wakana [Wak91] 1991 |Rice + Rice/Rice different attenuations for
non-LOS states are as-
sumed

Barts&Stutzmann [BS92] 1992 |Rice + Loo

Karasawa et al. [KMM95] 1995 |Rice + Loo + Rayleigh

Akturan&Vogel [AV95] 1995 |Rice + Loo + Loo or Rayleigh photogrammetric ap-
proach for state extrac-
tion

Perez-Fontan et al. [PFVCB"98][1997 |Loo + Loo + Loo reference  model  for
DVB-SH [DVB]

Rice&Humpherys [RH97] 1997 |Rice/Rice + Suzuki extension of two-state
Lutz model for K-band
with two ’line-of-sight’
states regarding antenna
de-pointing

Mehrnia&Hashemi [MH99] 1999  |Rice + Hoyt

Perez-Fontan et al.[PFSLCn07] |2007 |Loo + Loo enhanced version of ear-
lier three-state model

Ming et al. [MDY " 08] 2008 |Rice/Rice 4+ Loo + Rayleigh/Rayleigh

Two-State Models

The first LMS model considering different states was presented by Lutz et al. in 1991
[LCD'91]. Tt is based on measurement campaigns of satellite signals with a mobile terminal
in different European areas for elevation angles between 13° and 43°. As a result of the data
analyses an LMS model with two states was developed: ’good’ to cover line-of-sight, and
'bad’ to cover shadowed areas in the mobile reception. The ’good’-state is characterised by
a Rice distribution, which defines a constant power of the direct signal (which is 0 dB in case
of LOS), and diffuse Rayleigh distributed multipath components. In ’bad’-state no direct
signal is assumed. The multipath components are modelled by a Rayleigh process which
mean power underlie slow lognormal distributed variations due to slow changing shadow-
ing conditions in the environment. Both components, Rayleigh and lognormal fading, are
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fully correlated and are combined by multiplication (this process was proposed originally by
Suzuki [Suz77] for the terrestial reception). The PDF of the envelope of the received signal
is described by

& r
PLUtZ(r) = (1 - A) ’ PR1C6<T) + A/O PRayleigh (TO> Plogn(ro)dro . (2-22)

Parameters are Rice factor k, mean u and standard deviation o of the lognormal distribution,
and time share of shadowing A.

The state transitions between ’good’ and ’bad’ state are described by a first-order Markov
chain (cf. Figure 2.4). Thus, the time share of shadowing A corresponds to the ’'bad’-
state probability. To allow a time series generation with this Lutz model, state transition
probabilities p;; with 4,j € {g,b} can be estimated by analysing the mean state durations
Dg and Dy, with:

1 1
Pgb = by Pgg = 1 — Dgby  Phg = Do Pbb = 1 — Phg (2.23)

pbg
_ good bad -1
pgg_1'pgb © (o) Peo= 1+ Pro
Pgo

Figure 2.4.: First-order Markov model with two states

Similar models are presented by Barts&Stutzmann [BS92] and later by Mehrnia&Hashemi
[MH99]. In contrast to Lutz, the authors in [BS92] characterised the ’bad’-state by a Loo
distribution and in [MH99] by a Hoyt (or Nakagami-Q) distribution, which is a special
case of the Nakagami m-distribution. Rice&Humpherys [RH97] presented an extension of
the Lutz model using two LOS states to cope with antenna de-pointing effects in K-band
communications.

Three-State Models

To refine the description of shadowing conditions, enhanced LMS models were developed
incorporating three states from Karasawa et al. [KMM95], Perez-Fontan et al. [PFGF197],
Akturan& Vogel [AV97]. These models distinguish line-of-sight and two degrees of shadowing,
such as

e line-of-sight,
¢ moderate shadowing, which is induced by trees and small obstacles, and

e heavy shadowing or blockage, which is due to solid object like buidings, bridges,
and tunnels.?

3Please note that the exact vocabulary for state description differs in the literature.
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In all models the received signal within the states is composed of a direct signal and diffuse
multipath components. Some differences are found in the statistical characterisation of the
signal within the states. In [KMM95] as well as in [AV97] the states are described by Rice
distribution in LOS state (i.e. direct signal power is constantly 0dB), Loo for moderate
shadowing (i.e. direct signal has lognormal fading) and Rayleigh for blockage conditions
(i.e. direct signal is absent).

A greater flexibility is achieved with the model from Perez-Fontan et al., where a Loo distri-
bution (lognormal + Rice) is assumed in each state. Thus, three different rates of fading (very
slow, slow, fast) can be described with the LMS model (cf. Figure 2.5). Fast variations are
due to multipath propagation and are present in each state. They are superimposed by slow
variations of the direct signal described by lognormal fading, and very slow variations
of the direct signal described by states. Very slow variations correspond to different gross
shadowing conditions due to changing environmental conditions. Slow variations in shad-
owed states correspond to different degrees of attenuation produced from the same obstacle:
e.g. different densities of foliage when passing a group of trees; signal variations behind
buildings due to different diffraction zones. In the LOS state, slow variations of the overall
signal originate from, e.g. non-uniform receive antenna patterns which affects the direct
signal power; specular components reflected from obstacles behind the vehicle affects the
overall signal power.

The fading rate of slow variations is described by a correlation distance, which was found to
be in the range of 1m and 2m for L- and S-bands, respectively. The update rate of states
(very slow variations) is defined by a state frame length, for which 3-5m is assumed. This
value corresponds to the minimum state length and is related to the size of obstacles in the
transmission path, which induce a state transition. The sequence of three states is generated
by a first-order Markov model.

A fast variations slow variations very slow variations = states
‘ J line-of-sight

* \ (Ma, Za, MP)jine-of-sight
% \//\\/ \J moderate shadowing
c e (Ma, Za, MP)moder. shad.
2 correlation length, leor /\
e R e mza 1117111 | I S deep shadowing
(2]
@ state frame length, lrrame 1< | (Ma, Za, MP)qeep shad

»
-

travelled distance [m]

Figure 2.5.: Received signal components with different rates of fading from the three-state LMS
model proposed in [PFGF*97].

In [PFVCCT01] the authors presented parameters sets of the Perez-Fontan model for differ-
ent elevation angles in five different environments estimated from measurements in the UK,
Germany, and Austria. Each set include three Loo parameters (M4, ¥4, MP, cf. Equa-
tion (2.16)) for each state and nine state transition probabilities 4 for the Markov model. Due
to its flexibility in terms of received signal dynamics and the availability of parameter sets
for various receive scenarios, the three-state model from Perez-Fontan is used as reference

model for the DVB-SH standard [DVB].

4A first-order Markov model with N states is described by N? state transition probabilities.
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Besides a time series generation of the received signal amplitudes, the Perez-Fontan model
considers also the Doppler effect on direct and multipath signal components. It is separately
described in Section 2.3.6.

Further Concepts With Respect to the Number Of States

Narrowband LMS models with five receive states [MDY 08| and six states [DJYT05] are
also found in literature. In both contributions the authors analysed a signal of only 150 m
length, which is just a scan of an exemplary measurement signal presented in [LCD"91]. The
number of states origins from a quantisation of this timeseries in five or six states, for which
the state transitions are determined. The conclusions from the authors, a good match with
‘measurement data’, origins just from an over-trained Markov model. Besides that there is
no novelty, both models are not suitable for LMS applications due to the required number
of parameters.

In [SAHE] and [ASHEO8] a new methodology for the analysis of the LMS channel is proposed.
There, in contrast to fixed-state models, no prior assumptions on the number of states is
done. The state sequence is estimated by a Reversible Jump Monte Carlo Markov Chain (RJ-
MCMC) algorithm, which is an unsupervised process. After detecting N states of Gaussian
distributions with variable means, these states are classified by means of a scalable clustering
technique according to [WP93]. In this iteratively working algorithm, local clusters (i.e.
fading around a certain mean value) are merged together iteration by iteration to greater
clusters when they belong to the same cluster centre. The final number of states corresponds
to the longest period of iterations where the algorithm have a constant cluster number. State
transitions are described by a first-order Markov model. In [ASHEO08] the model is validated
by urban and highway measurements in the area of Munich and show good agreement with
measurement data. Although this approach accurately re-simulates single-satellite signals,
from the authors point of view the undefined number of states complicates the applicability
of Markov models with multiple satellites.

Advanced Concepts on State Duration Modelling

The state transitions of the previously mentioned multi-state models are described by so
called first-order Markov chains. A property of these first-order Markov chains is that
state probabilities and mean state durations that are derived from measurements can be
re-modelled accurately. Further on, the probability of the time being in the same state
always follows an exponential distribution. Results in [ITU03b], [BT02], and [MHEHO09]
have shown that this behaviour does not accurately model the LMS channel. However, an
accurate characterisation of state durations (which affects also the fade durations) is crucial
for system planning aspects, such as synchronisation, symbol timing, and framing [BT02].

To improve the state duration modelling, two different concepts where introduced: semi-
Markov chains are proposed by Braten et al. [BT02], and dynamic Markov chains are
introduced by Milojevic et al. [MHEHO09].

Within semi-Markov models the time of staying in the same state is defined by a certain
state duration probability density function (SDPDF). Arbitrary distribution functions and
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curves can be defined therefore. To force the duration of each state following its SDPDF,
state transitions of a semi-Markov model are only allowed from state ¢ to j with ¢ # j.
The recommended SDPDFs in [BT02] are a power law distribution for LOS states, and
a lognormal distribution for non-LOS states (it is the ’bad’-state in two-state models, or
'moderate shadowed’ and ’blocked’ in three-state models). These results were adapted from
fade distribution measurements in [VGH92] and [ITUO03b].

In contrast to the semi-Markov model, the update rate for state transitions to the same or
another state in the dynamic Markov model is equidistant and equal to first-order Markov
chains. The new aspect is that state transition probabilities are described as a function of the
current state duration. Depending on the model parametrisation, arbitrary state duration
distributions are possible to simulate.

Due to their potential for LMS modelling, dynamic Markov models and semi-Markov models
are described, evaluated and compared in detail in Chapter 3.

2.3.5. Versatile Two-State Model

With the development of high link margin systems a more precise description of the received
signal became important. Besides uninterupted service availability under LOS conditions,
these systems are designed to maintain QoS under partially obstructed links with moderate
shadowing conditions. In DVB-SH systems for vehicular reception, for example, the link
margins go up to 10-15dB [DVB]. For the dimensioning of such systems a better under-
standing of the received signal over the whole dynamic range is essential.

Perez-Fontan et al. [PFSLCn07][PCPFBT10] proposed a new concept which allows a more
realistic modelling of the signal than their earlier developed three-state model. The new
model is denoted as enhanced or versatile two-state LMS model.

The versatile two-state model distinguishes the states ’good’ and 'bad’, where this nota-
tion doesn’t necessarily match LOS and non-LOS conditions such as in [LCD*91], but
corresponds to the range of LOS-to-moderate shadowing and moderate-to-deep shadow-
ing. Within each state, a Loo distributed fading signal is assumed, which is described by
three Loo parameters M4, ¥4, and MP (cf. Equation (2.16)). In contrast to traditional
multi-state models, the Loo parameters are randomly generated after each state transition
following a certain distribution, as shown in Figure 2.6 and Figure 2.7 (Remember that tra-
ditional multi-state models have a fixed assignment of Loo parameters to a state). Thus, the
versatile model allows to take different Loo parameters for each new state, which increases
the overall dynamic of fading.

The authors propose following Loo parameter distributions:

e The mean of the lognormal fading M4 is generated according to a Gaussian distribu-
tion:

F(Ma) ~ N (a1, 0%) (2.24)
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O GOOD STATE
BAD STATE

Figure 2.6.: Distribution of Loo parameters assigned to states ’'good’ and ’bad’ for a constant receive
environment (image source: [PFSLCn07]).
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Figure 2.7.: Signal components of the versatile two-state LMS channel model. This model is taken
as basis for the new multi-satellite narrowband model developed in this thesis.

e The standard deviation of the lognormal fading ¥ 4 has a conditional Gaussian distri-
bution to My4:
f(BalMa) ~ N(uz,03)  with
Ho = al-Mi+a2-MA+a3 (2.25)
02 by - M3 +by- My + b3

e The multipath power is Gaussian distributed and independent from the other two
values:

F(MP) ~ N (3, 03) (2.26)

To facilitate a realistic fade- and state duration modelling with the versatile two-state model,
the semi-Markov concept is proposed for state series generation (cf. previous Section Ad-
vanced Concepts on State Duration Modelling). Therefore, for both states 'good’ and 'bad’

the state durations are proposed to be lognormal distributed, which result from analyses of
the authors [PFSLCn07].

As for the earlier three-state model, the model parameters sets have to be derived depending
on the environment type and the elevation angle. This enhanced two-state model has been
validated by using data from L-band and S-band measurements in [PCPFB*10] .
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The versatile Loo parameter selection of the newer model allows a more realistic modelling
over the full dynamic range of the received signal. Therefore, the two-state model from Perez-
Fontan et al. [PFSLCn07] is basis for the new multi-satellite narrowband model developed
within this thesis.

2.3.6. Modelling of Doppler Effects

All received signal components, i.e. direct signal and multipath components, are affected
by Doppler phenomena due to terminal movement and satellite movement. The combined
impairments are separately described in the following.

- __
>
Vsat 4

=
3Vrel,sat

direct ray

s

Figure 2.8.: Geometry for Doppler effects.
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Multipath components are usually considered to have a uniformly distributed angle of arrival.
By vehicle movement the rays incoming from the front have increased frequency, and the
rays incoming from the back have decreased frequency with respect to the carrier frequency
fe- Thus, the multipath Doppler spectrum is approximately symmetric to f.. The maximum
Doppler frequency fpmax depends on the mobile speed vyobile:

fDmax = Umobile/)\ca (227)

with A. is the wavelength of the carrier. The Doppler spectrum induced by multipath is
independent from the driving direction of the vehicle. Different shapes for the Doppler
spectrum are proposed in literature:

1. The Jakes spectrum [J.D00] considers a uniformly distributed angle of arrival between
0 and 27 for multipath components which impinge from zero degree elevation. The
Doppler power spectral density (PSD) is described with

—/B—a for < max
SDoppler(f) = 1=(f/pmax)? ‘f‘ = /v (2'28)
0, for | f| > fDmax

B is a constant to normalise the filter energy equal to one, so that the standard
deviation of multipath fading is not changed after filtering.

2. A more realistic case is the assumption that incoming multipath components are dis-
tributed in elevation angle as well. This alternative Doppler PSD is described in
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[J.D00][KC00]:
24 _1_ 2
Fowas 5 507 [ B ) 1S Jomaccosm
B 1
SDoppler(f) = 4sindm \ fomax / J Dmax €OS P,

S ‘f‘ S fDmax
07 |f| > fDmax
(2.29)

where +¢,, describes the maximum and minimum elevation angle of multipath contri-
butions, and B is the normalisation parameter.

3. Also a Butterworth filter is proposed in [PFSLCn07] for the use as Doppler PSD

B
= | H 2 _
SDoppler(f) - | Doppler(f)| - 1 (f/f0>2k (230)

with cut-off frequency fy which is dimensioned according to fpmax, filter order k, and
constant B for normalisation. Analyses of LMS measurement data in the context of
this thesis confirm the Butterworth filter as appropriate to describe the Doppler PSD
in the new LMS model.

The direct signal component experiences a Doppler shift which depends on the relative
velocity of the vehicle to the satellite. Considering vehicle movement only while the satellite
is stagnant with respect to an earth observation point (which is in the case of geostationary
satellites), the Doppler frequency of the direct signal component depends on the vehicle
speed Umobile, the elevation angle of the satellite ¢ and the driving direction with respect to
the satellite 6:

[Ddir = Umobile/ Ac - €OS ¢ - cos § (2.31)

The overall contribution due to vehicle movement is found in the literature as Doppler
spread (cf. Figure 2.9) and can be several hundred Hertz wide.

Finally, the satellite movement causes a complete Doppler shift of the Doppler spectrum
(including direct and multipath components). The important parameter is the relative speed
of the satellite vyl sat to a fixed observation point in the area of the vehicle, which depends

direct ray
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I
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I
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fc'fDmax fc fc"'fDdir fc'*'fDmax fc stat + (fc'fDmax fc fc"'fDdir fc"'fDmax)

Figure 2.9.: Doppler effect on the mobile channel. Left: The Doppler spread of multipath rays (with
equally distributed angle of arrival) origins from terminal movement only. Therefore, the Doppler
spectrum is approximately symmetric to the carrier frequency f.. The Doppler shift of the direct
signal fpqir depends on the mobile speed vyobile, the driving direction 6, and the elevation angle ¢.
Right: In case of satellite movement, a Doppler shift fpgat of the whole spectrum is present.
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on its orbit (LEO, MEO, HEO). The additional Doppler shift due to satellite movement
is

[Dsat = 'Urel,sat/)\c . (232)

For GEO satellites vyl gat and consequently fpsas is zero. The relative speed of LEO satellites
is approximately vielgat ~ 7.4km/s [AADH98]. Thus, fpsat can be in the order tens of
thousands or hundreds of thousands Hertz for L-band or K-bands, respectively.

2.3.7. Wideband LMS Channel Modelling

The received LMS signal is characterised by a superposition of the direct signal and multipath
rays which are reflected by scatterers in the mobile environment. The incoming rays sum up
at the receive antenna and have different attenuations, phase shifts, and propagation delays
with respect to the transmitted signal. By assuming a discrete number of paths N, the
time-variant impulse response of the channel can be written as

N
h(t,7) = ai(t)e! D . 5(t — ;) (2.33)
i=1
with amplitude a;(t), phase ¢;(t), and delay 7; of the i-th signal component, respectively,
and the Dirac delta function ().

Wideband channel models are required, when the multipath propagation delays (delay
spread) are significantly larger than the symbol duration and the resulting coherence band-
width is small with respect to the signal bandwidth (cf. Section 2.1.2). Large delay spread
results in frequency-selectivity, i.e. the channel varies in dependency on frequency and the
received signal spectrum is distorted.

A general approach of wideband models is the implementation of the channel impulse re-
sponse Equation (2.1) by a filter structure with discrete delay taps, as seen in Figure 2.10.
Each tap represents a single beam, which can consist of individual rays or a group of rays
with same delay.

s(t) YT | YT T L. -

(I
Tap gain .
processes @‘ @-

| 5 =) v

Figure 2.10.: Wideband channel model with n fixed delays.

x

Such a wideband model for LMS reception was proposed by Jahn et al. [JBH96]. Based on
measurement data from L-band, the authors defined a channel impulse response divided into
direct path, near echoes (with exponential increasing delay to a maximum of 7. ~ 600ns),
and far echoes (with uniformly distributed delays) as depicted in Figure 2.11.
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Figure 2.11.: Definition of the echo characteristics for the wideband LMS channel proposed by
[JBHI6].

2.4. LMS Channel Models with Multiple Satellites

While a number of LMS models for single satellite reception are available and are consolidated
for various receive situations, channel models for multi-satellite reception are more or less
sporadic and are of ongoing interest. This section gives an overview on contributions for
land mobile satellite modelling with at least two satellites in chronological and categorical
order.

2.4.1. Empirical Model

Approaches for multi-satellite channel modelling were firstly introduced about 20 years ago.
In 1992, Robet et al. [REE92] presented an empirical model for the shadowing probability
in dependency on the azimuth angle separation of two satellites.Therefore, images from a
camera pointing in driving direction of a vehicle were captured in urban, suburban and
countryside areas in the UK.

1—A:b+c[1—exp (;OA:)] (2.34)

with
b= (1~ Ag) + (1~ A1)(A1 — A) (2.35)

and
¢— %(1 A1) (445 — A)) (2.36)

A, A1, Ay denote the joint shadowing probability, and the single shadowing probability of
satellite 1 and 2, respectively. The authors in [REE92] indicated a good agreement of the
empirical model with measured curves from urban environment. Amongst others, it has
been pointed out that in city environments for azimuth separations Af > 30° the diversity
gain is close to the maximum.

30



2.4. LMS Channel Models with Multiple Satellites

2.4.2. (Statistical) Markov Model for Correlated State Sequences

Based on his LMS model with two states 'good’ and ’bad’ [LCDT91], Lutz [Lut96] pre-
sented in 1996 a method to calculate joint state transition probabilities for a four-state
Markov model to realise correlated state sequences of two satellites. Starting from indi-
vidual state transition probabilities of two satellites (e.g. pgge, Pep) and only one correla-
tion coefficient, a matrix with combined state transitions (such as pgg_sge = p11) can be
calculated (cf. Figure 2.12). With this method, state transition probabilities (and there-
fore state probabilities and mean state durations) of the individual satellites are not influ-
enced. The advantage is that model parameters are easily to derive and are available in
literature, i.e. state transitions of satellites for different elevation angles and environments
[PEFVCCT01][PCPFB™10], correlation coefficients between two satellites in dependency on
the azimuth separation [REE92][TSE98]. The mathematics for this correlated Markov model
from Lutz are found in Section B.2.2.

Figure 2.12.: First-order Markov model for two satellites.

2.4.3. Correlation Measurements Combined with Statistical Models

Shortly after the introduction of the correlated Markov model, the straightforward combi-
nation of the two-state 'Lutz’ model and the correlated Markov model is introduced in 1996
in [BWLY6]. It is the generation of two correlated state sequences according to their corre-
lation coefficient, whereas the fading distributions of both satellites depend on their current
state, their elevation, and the environment. In [BWL96] this statistical dual-satellite model
is used to evaluate the performance of real satellite systems with diversity (Globalstar/LEO
and ICO/MEO) for different environments. For this purpose, the correlation coefficients be-
tween two satellites were captured from RF measurements with circular flights of a plane
[JL94]. The correlation coefficients are derived as a function of the azimuth angle separation
and the elevation angle separation, as seen in Figure 2.13.

Similar analyses from other authors were carried out in 1998 [MPTEO98|. Again, the diversity
gain of ICO and Globalstar satellite system was analysed. In this contribution the shadowing
statistics as well as correlation coefficients between two satellites are derived from image-
based analyses taken by a fisheye-camera. It is pointed out that the satellite correlation
is significant for azimuth separations below 30°. The results are shadowing probabilities
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(b)

Figure 2.13.: Correlation coefficients between two satellites in dependency on their azimuth angle
separation (left and right) as well as their elevation angle separation (right) in the urban environment.
(image source: [JBH96])

in terms of first-order statistics with and without satellite diversity for urban environments
in Guildford, Southampton, London (England), Los Angeles (USA). Therefore, the authors
merged the two-state "Lutz’ model with the correlated Markov model.

Satellite diversity analyses based on three-state models (LOS/shadowed/blocked) with even
more than two satellites are presented in 1997 in Karasawa et al. [KKM97] and Akturan et
al. 1997 [AV97]. In the first contribution the satellites are assumed to be uncorrelated. As a
result, satellite diversity gains are estimated higher than in reality. In the latter contribution
([AV97]) the correlation is considered by measuring relevant joint state probabilities of up
to four satellites. These joint probabilities were derived by tracking path angles of multiple
satellites within fish-eye camera images (cf. Figure 2.14). By using an own model for
fade distributions of each satellite, i.e. Rice distribution for clear state, Loo distribution
for shadowed and urban blocked state, Rayleigh distribution for non-urban blocked state,
the overall fade distribution statistics incorporating satellite diversity with one, two, three,
and four satellites are calculated. It should be noted that for such signal availability studies
based on first-order statistics it is not relevant which satellite belongs to which state, i.e.
the combination ’clear blocked’ is the same as 'blocked clear’.

2.4.4. Physical-Statistical Correlation Model

A physical-statistical propagation model for dual-satellite correlation is presented by Tzaras
et al. in 1998 [TSE98], which is an extension of a physical-statistical model for single satellite
reception in [SE96]. These kind of models are based on computer generated environments,
that are constructed by physical parameters such as street widths, distribution of building
heights and building widths. By analysing the canonical street canyon geometry, LOS and
non-LOS-paths can be determined by placing the satellite at a defined elevation and azimuth
angle with respect to the vehicle position. In [TSE98], a simple geometry with constant
building heights and street width is assumed, as seen in Figure 2.15. The result is an

32



2.4. LMS Channel Models with Multiple Satellites
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Figure 2.14.: Probabilities of state designations (Clear/Shadowed/Blocked) of one, two, three
and four satellites derived from fish-eye image analyses in an urban environment (Japan) (image
source [AV97]). Correlation effects between the satellites are indirectly considered by analysing these
relevant state probabilities. Note that for fade distribution calculations, a complete assignment of
satellite to states is not required. Thus, it holds for example CBBB=BBBC.

expression for the correlation coefficient p in dependency on A# considering two elevation
angles (¢1, ¢2), the street width w, the building height hs, receive antenna height h,,, and
the distance of the vehicle to the building face d,,. Some exemplary correlation curves are
shown in Figure 2.16 according to the implementation in [TSE9S].

satellite

street

building
face

mobile

Figure 2.15.: Street geometry for a physical-statistical model. A street canyon with constant
building height on both sides is assumed.

A similar model is presented from Vazquez-Castro et al. in 2001 [VCPFISBF01], also based
on the street geometry according to Figure 2.15. For analysis, masking angles (MKA) are
introduced, which characterise the elevation angles of the top edge of buildings from the
terminals point of view. The result is a three-segment model to describe the correlation
coefficients in dependency of Af within the range 0° < Af < 90°. Figure 2.16 shows the
three-segment model with its four special cases:

e special case 1: both elevation angles are above the MKA for all azimuth angles
e special case 2: only one of the satellites is always above the MKA for all azimuth angles

e special case 3: ¢1 = ¢

33



2. Land Mobile Satellite Channel Characterisation and Modelling
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Figure 2.16.: Cross-correlation coefficients p in dependency on the azimuth separation A6 according
to a street canyon from Figure 2.15. The parameters are hy, = 20m,h,, = 2m,w = 14m. Two
physical-statistical models from [TSE98] and [VCPFISBF01] provide equal results in case of d,,, =
w/2. The first model allows additionally the definition of d,.

e special case 4: ¢1 # ¢Po

The three-segment model assumes that the vehicle position is in the middle of the street.
Thus, the correlation curves p = f(Af) are symmetric to 90°. Please note that the three-
segment model [VCPFISBFO01] and the model from [TSE98] provide equal results for the
case d, = w/2. However, the previous model ([TSE98]) allows to define the position of
the vehicle on the street (parameter d,;,), which is from the authors point of view the more
flexible approach.

In 2002, Vazquez-Castro et al. [VCPFS02] extended the physical-statistical correlation model
towards 'real’ environmental conditions. Therefore, a street canyon is generated with random
building heights and building widths on left and right street site following characteristic
distributions determined from different cities (London, Guildford, Madrid). Then the street
canyon is transformed into skyline masking angles (MKA®). The result of the MKA® analysis
is a function of the satellite correlation coefficient in dependency of the elevation angles and
the azimuth angle separation: p = f(¢1, 2, Af). Multiple correlation coefficient curves for
different elevation combinations are further analysed resulting in a mathematical expression
for the "positive correlation coefficient’, which corresponds to point B from the three-segment
model in Figure 2.16. The ’'positive correlation coefficient’ characterises the mean azimuth
separation angle where two satellites become uncorrelated and can be calculated for different
cities with parameters given in [VCPFS02]. From the author’s point of view, this 'positive
correlation coefficient’ has an abstract meaning and is itself of limited use for statistical
channel modelling. The function p = f(¢1, p2, Af) that was initially derived from MKA®
analysis is of greater importance.

2.4.5. Latest Statistical Approaches on Dual-Satellite Modelling

Milojevic et al. [MHEHO09] (2009) presented a novel approach for accurate state duration
modelling of a single satellite, namely ’dynamic Markov model’ as mentioned in previous
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Section 2.3. An extension of this dynamic Markov model for multiple satellites is proposed as
well in [MHEHO09] by using a multi-state model including all permutations of states from mul-
tiple satellites. However, this multi-satellite approach based on the dynamic Markov model
is not evaluated by the authors. Nevertheless, in [MHEH09] parameters for a first-order
Markov model with two satellites (9 combined states, each with 'LOS/shadowed/blocked’)
as well as Loo parameters for the individual satellites are presented.

In 2011, Perez-Neira et al. [PNIST11] presented a dual-satellite model for MIMO applica-
tions. For the LMS modelling part, the correlated Markov model by Lutz is combined with
the newer ’versatile two-state LMS model’ [PFSLCn07|[PCPFB*10]. Besides correlated
Markov sequences, the authors introduced also fading correlation for lognormal distributed
slow variations and fast variations in their calculations for MIMO performance analysis. As
the intention of the authors in [PNIST11] is to compare different MIMO schemes, a detailed
validation of these additional fading correlation for a LMS model is not performed.

From the author’s point of view, the fading correlation introduced in [PNIST11] works well
for time periods between two state transitions. However, due to a random Loo parameter
generation for new states, this fade correlation is expected to be eleminated over longer time
periods.

2.5. Open Issues To Be Addressed

Various approaches and contributions are available for LMS channel modelling with multi-
ple satellites. The correlation between two satellite paths is identified thereby as the crucial
parameter. As channel models are intended to simulate critical reception cases to optimise
fading mitigation, satellite constellations with high correlation of the transmission paths
are of closer interest. Therefore, the dependency of the correlation coefficient on the angu-
lar separation in azimuth and elevation is described in various ways by empirical formulas,
physical-statistical models, and measurements of image- or RF data. However, these corre-
lation coefficients between two satellite signals are mainly considered in terms of only two
Markov states: 'good’ and 'bad’. As two states are a raw characterisation of the signals
dynamic range, correlation of the whole signal is only partly introduced. In this work, the
correlation of two satellite signals over the whole dynamic range is therefore analysed and
a corresponding implementation for a multi-satellite LMS model is developed (Chapter 4).
Furthermore, the required parameters are derived for multiple receive scenarios.

For the study of time diversity techniques (cf. Section 2.2.2) an accurate modelling of the
signals temporal composition is crucial. Therefore, advanced concepts for state duration
modelling (semi-Markov chains, dynamic Markov chains) are introduced in literature and
accepted already for single-satellite LMS modelling. However, existing LMS models for dual-
satellite reception rely (only) on the correlated first-order Markov model from Lutz [Lut96],
which duration modelling is inaccurate. In this work, new state models for dual-satellite re-
ception are therefore developed incorporating an improved state duration modelling. They
are compared with available concepts from literature for a large variability of satellite con-
stellations in Chapter 3.
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Besides some suggestions in [Lut96] and [MHEHO09] for a model with more than two satellites,
a suitable approach for multiple satellites is not available in literature. Hence, state models
for more than two satellites are addressed in this thesis in Chapter 3.
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The common statistical approach of generating time series for the LMS propagation channel
includes two processes: First, the very slow fading components of the channel due to varying
shadowing conditions between the satellite and the receiver are modelled in terms of channel
states. In a second process the amplitudes of direct and indirect signal components are
generated according to statistical distributions such as Rice, Rayleigh, or lognormal. The
corresponding parameters depend on the current state and the receive environment.

In this work, the versatile two-state model from Perez-Fontan et al. [PFSLCn07][PCPFB*10]
is taken as basis (cf. Section 2.3.5). This model describes two states: a ’good’ state (corre-
sponding to line-of-sight /light shadowing), and a "bad’ state (corresponding to heavy shad-
owing/blockage). Within each state a Loo-distributed fading signal [Loo84] is assumed,
which parameters are randomly generated after each state transition. The versatile two-
state model allows a realistic modelling of fading over the full dynamic range of the received
signal.

This chapter focuses on state sequence modelling for single-, dual-, and multi-satellite sys-
tems (Sections 3.1, 3.2, 3.5) assuming the ’good’ state and ’bad’ state for each satellite. For
this purpose, different state modelling methods are compared with measurement data in
terms of the state probability, state duration probability, and correlation coefficient between
multiple satellites. Moreover the practicability of various state generation methods in terms
of generating comprehensive parameter sets, e.g. for different environments and elevation
angles, is assessed (Section 3.4). Parts of this chapter are published in [ATH'], [ATHE12]
and [AHH'12].

3.1. Channel State Modelling for Single-Satellite Systems
Three types of state modelling approaches to describe the LMS channel are found in the
literature:

e First-order Markov model [PFVCCT01]

e Semi-Markov model [BT02]

e Dynamic Markov model [MHEHO09]

In the following the main characteristics of these models are described for single-satellite
case by focusing on two states. An elaboration of these models for N states including
additional mathematical expressions for an analytical evaluation is found in Appendix B.1.
A performance comparison between the state models is found in Section 3.3.

37



3. Statistical Modelling of the LMS Channel, Part I: States

3.1.1. First-Order Markov Model

A Markov model is a special random process for generating discrete samples corresponding
to channel states s of a predefined sample length. For a first-order Markov model, each
state depends only on the previous state. The conditional probabilities of state s,41 given
the state s, are described by state transition probabilities p;; (cf. Figure 3.1). Therefore,
the only parameter of the Markov chain is the state transition probability matrix (STPM)

Pirans € RéVJFXN with NV being the number of states.

b1 ... PIN
Ptrans — e (31)
PN1 ... PNN

The main characteristic of a first-order Markov chain is, that it enables an exact modelling
of the state probability and the average state duration. It holds

p- [Ptrans - I] =0 (32)

with p is the row vector of the equilibrium state probabilities, the identity matrix I, and the
zero vector 0.

The average state duration of state ¢ is calculated as

_ 1 1
Di: YR
1—pi Ad

(3.3)

where p;; is the state transition probability between two equal states, and Ad denotes the
sampling distance (frame length).

The probability that the Markov chain stays in state ¢ for ¢ consecutive samples is given
by

Pi(D =qAd) =pl " (1-p;), neN. (3.4)
In this thesis the function P(D) will be further denoted as state duration probability density

function (SDPDF). The SDPDF of the first-order Markov chain follows an exponential distri-
bution. The first-order Markov model is used in early LMS models [PFVCCT01][LCD*91].

P11 P22

P12

Figure 3.1.: First-order Markov model with two states for single-satellite reception.

3.1.2. Semi-Markov Model
Results in [MHEHO09] [BT02] have shown that an exponential SDPDF is not an accurate

approximation for the LMS channel. To improve the state duration modelling, semi-Markov
chains were proposed in [BT02]. In contrast to the first-order Markov model, the state
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state duration PDF
of good state

state duration PDF
of bad state

Figure 3.2.: Semi-Markov model for single-satellite reception.

transitions do not occur at concrete time intervals. In fact, the time interval of the model
staying in state ¢ depends directly on its SDPDF, as indicated in Figure 3.2.

The semi-Markov model allows some options to describe the SDPDF of each state (cf. Fig-
ure 3.3):

e no fit: The measured state duration statistic is used without any approximation for

re-modelling, i.e. the state duration is a random realisation of the measured SDPDF.

P(D) = P(Dmeasured) (3.5)

lognormal fit: The measured SDPDF is approximated with a lognormal distribution, as
proposed in [BT02] and [PCPFB*10] individually for the single-satellite states "good’
and ’bad’. The lognormal PDF describing the state duration probability P(D) can be
written

P(D) (3.6)

K 201og(D) — tpyr)?
_ xp | - 20108(D) = poue)?]
DopueV/2m 200 ur

where opy, is the standard deviation of 20log(D) and ppy, is the mean value of
20log(D) and K = 20loge =~ 8.686. L Only two parameters per state are required to
describe the SDPDF. The mean state duration D can be calculated with

_ 2
D = exp [“D‘“ +0.5 (UD‘”> 1 . (3.7)

K K

piecewise exponential fit: In [MHEHO09] a piecewise exponential curve fit of the SDPDF
with four segments is proposed:

aye 1l Dy <D< D
—boD
) age ; D1 <D< Dy
PIDI=1 ayemp.  p,<D <D, (3:8)
ase P D3 <D< Dy

Clearly, this requires more parameters than the lognormal curve fit (e.g. 12 parameters
for four segments), but it provides a more flexible description of the state duration
statistic.

From the SDPDFs, the mean duration of state ¢ can be generally calculated with

D; = /0 D - P(D)dD. (3.9)
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Figure 3.3.: Curve-fits of the state duration PDF for semi-Markov models. For comparison, the
exponential SDPDF resulting from a first-order Markov model is shown.

As with the Markov models, the state transitions are described with the state transition
probability p;;, but with i # j. Thus, in any case the diagonal elements (p;;) of the semi-
Markov STPM are zero.

0 pi2 ... pIN
. pa1 0 ... pon
Pyt — | . . (3.10)
PN1 ... 0

In case of a single-satellite model of only two states, the state transition probability is p;; = 1
(cf. Figure 3.2). In case the semi-Markov model has more than two states, the state transition
probabilities have to be determined from the referenced or measured state sequence, which
are independent from the SDPDF approximation.

It is also possible to determine the semi-Markov STPM from the first-order Markov STPM.
Assuming pf}- with (¢ # j) are the transition probabilities of a semi-Markov model and pf\f
are the transition probabilities of a first-order Markov model, it holds

p o
P = —%%  iF7 (3.11)

On SDPDF approximation for semi-Markov chains: An approximation of the state
duration PDF possibly changes the mean state duration D and consequently the equilibrium
probability P of the states. To enable an exact description of D and P in accordance to the
measurements, a correction of the curve-fit can be implemented. In case of a lognormal fit
the parameter up,, has to be modified according to

_ 1
HDur, corrected = K In Dyeasured — ﬁa%)ur (3'12)

with K = 20loge. To best knowledge of the author, this correction is firstly considered in
the context of this work and is presented in [AIHE12].

'The notation of the lognormal PDF with parameters in dB is used for the LMS model in [PCPFB" 10]
which is taken as basis in this work.
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3.1.3. Dynamic Markov Model

A further method to improve the state duration modelling are dynamic Markov chains
introduced in [MHEH09]. For dynamic Markov chains the state transition probability
depends on the current state duration ¢ (cf. Figure 3.4)

pij = f(q). (3.13)

For this purpose, the two-dimensional STPM is extended to a three-dimensional state tran-

sition probability tensor (STPT) Pirans € Rév fNqu‘“, where gmax corresponds to the maxi-

mum state length obtained from the measurements with Dyax = @maxAd.

pn(Q) cee PlN(Q)
Ptrans - q € {1727'--7qmax} (314)
le(Q) <. pNN(Q)

Using the dynamic Markov model, the probability that the state duration is equal to D is

q—1
Pi(D = qAd) = (1 — pii(¢Ad)) - H pii(rAd), qeN (3.15)
r=1
and the state duration CDF is given by
q—1
Pi(D < gAd) =1 - [] pis(rAd), ¢eN. (3.16)
r=1

If the values for the STPT are directly derived from the measured state sequence (assuming
a sampling distance of, e.g. Ad = 1m), the dynamic Markov model enables an exact repro-
duction of the state probabilities and also an exact re-modelling of the measured SDPDF.
As a disadvantage, a large number of parameters are required to describe the STPT.

In [MHEHO09] some model approximations are proposed to reduce the number of required
parameters of the STPT:

e partial dynamic Markov model: From Equation (3.15) it is derived that an exact
state duration modelling requires only a subset of the STPT. Only the transition
coefficients p;;(q) need to be described as a function of the current state duration.
For a two-state model the remaining values p;;(¢) with ¢ # j can be re-calculated
easily with p;;(q) + pii(¢) = 1. For a multi-state model it is proposed to change the
transition probabilities p;;(q) (¢ # j) together with the coefficients p;;(q) by keeping
the respective relative ratios S between them constant [MHEH09]. The relative ratios
S are derived from p;;(Ad), which are the elements of a first-order Markov chain. The
relative ratios as described in [MHEHO09] are valid only for a model with three states.
Thats why a new definition is introduced in this work: The coefficients S;; (i # j)
are determined from the transition probabilities of a first-order Markov model p;; with
Sij = pij(1 — pi) "' and are therefore equal to the state transition probabilities of a
semi-Markov model.
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For re-simulation, the calculation of the elements p;;(q) of the STPT is done with

Pij(@) = (1 = pii(q)) - Sij - (3.17)

The parameters of the partial dynamic Markov model are the diagonal elements of the
STPT (pii(q)) and N(N — 1) coefficients S;; (with N is the number of states).

e approximated partial dynamic Markov model: For a further reduction of the model
parameters, the function p;;(¢) can be approximated by a curve fit. In [MHEHO09] a
piecewise linear approximation of p;;(¢) with 7 intervals is proposed. Therefore p;;(q) is
estimated at 8 predefined values of ¢. Taking this assumption, a two-state model would
require 8 -2 parameters for state sequence generation. A multi-state model would need
8 - N parameters to describe the functions p;;(q) (with IV is the number of states) and
further N (N — 1) parameters to describe the coefficients S;.

p21(02)

p11(qs) P22(02)

P12(d1)

Figure 3.4.: Dynamic Markov model for single-satellite reception.

3.1.4. Relation Between Dynamic Markov Model and Semi-Markov Model

The partial dynamic Markov model provides equal modelling results to the semi-Markov
model without SDPDF approximation (no fit), which is demonstrated later in Section 3.3.
It is indicated since the parameters of the partial dynamic Markov model can be completely
estimated from the semi-Markov model parameters and vice versa: According to Equa-
tion (3.15) the transition probabilities p;;(q) of Pirans describe the SDPDF, which is also
parameter of the semi-Markov model. The other elements p;;(q) of Pirans of the partial dy-
namic Markov model are calculated from the coefficients .S5;;, that equals the state transition
probabilities p;; with ¢ # j of the semi-Markov model. The similarity of the algorithms
is also confirmed in the modelling process: After the simulation of a state ¢ with duration
D = gAd, which probability is determined by the SDPDF P;(D) or by the tensor element
pii(q), the transition probabilities of the semi-Markov model are considered to find the next
state j with (i # j).

To realise an ’approximated partial dynamic Markov model’;, Milojevic et al. [MHEHO09]
proposed a curve-fit of the function p;;(¢). By using Equation (3.15), the elements p;;(¢q) can
also be derived from an approximated SDPDF of state i (with lognormal fit or piecewise
exponential fit)

It is concluded that parameters of partial dynamic Markov models can be completely es-
timated from semi-Markov model parameters and vice versa. The selection of a partial
dynamic Markov model or a semi-Markov model for simulation is left to the operator. The
full’ dynamic Markov model, however, provides some additional information if the number
of states is greater than two.
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3.1.5. Higher Order Markov Model

In the context of the development of the dynamic Markov model, Milojevic et al. verified in
[MHEHO09] also Markov models of higher order to accurately describe state duration distri-
butions. It was found to be not feasible for LMS modelling. For the sake of completeness,
however, it is described here as well.

A Markov model of higher order N > 1 works similarly to the first-order Markov model
(order N = 1): In a Markov model of order N = 2, each state s,, depends on the previous
state s,_1 as well as on its predecessor s,_s. In case of a Markov model of order N = k, the
state s, depends on k previous states. Thus, the number of transition coefficients within the

STPM for an N-th order Markov model would be MV *1 where M is the number of states.
It is seen that the number of parameters grows exponentially with the order N.

In Section 3.1.1 it is stated that a first-order Markov model is able to correctly re-simulate
the state transition probability vector and the mean state durations. A Markov model of
order N additionally describe accurately the SDPDFs for each state up to a duration of
N —1 samples. For an exact representation of a SDPDF the order N = guax should be used,
where gmax denotes the maximum state duration in samples. Assuming a sampling length
of Ad = 1m and a state duration of, e.g. 300m (which is obtained for the 'bad’-state in
a rural environment in Section 3.3), 230! coefficients are required to accurately re-simulate
the SDPDF with the corresponding Markov model. Due to the related computational com-
plexity, a Markov model with such a high number of required parameters is not a feasible
solution for LMS state modelling.

3.2. Channel State Modelling for Dual-Satellite Systems

In this section different state modelling concepts are presented focusing on two satellites. Just
as for single-satellite case, the dual-satellite models can be assigned to first-order Markov,
semi-Markov, or dynamic Markov chains. In addition to state probabilities and state du-
ration statistics, the correlation coefficient between two satellites is the crucial parameter.
Besides dual-satellite modelling concepts that are known from literature, new approaches
are introduced that are developed in the context of this work.

This section aims to describe different dual-satellite state models and their required param-
eters. A performance comparison including all models, extensions and subversions from this
section is subject of next Section 3.3.

3.2.1. Straightforward Method: Extension to a Multi-State Model

The first-order Markov model, the semi-Markov model, and the dynamic Markov model can
be easily extended for dual-satellite modelling. This is by substituting the states ’good’
and ’bad’ from single-satellite reception by joint states ’good good’, ’good bad’, ’bad good’,
and 'bad bad’, which result from the combination of the states from two single satellites.
Therefore, Figure 3.5 exemplarily shows a semi-Markov model for two satellites. Parameters
are a 4 x 4 semi-Markov STPM and four separate state duration statistics, that have to be
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3. Statistical Modelling of the LMS Channel, Part I: States

derived from a joint state sequence. Analogously, a dual-satellite first-order Markov model
requires a 4 x 4 STPM. For the dynamic Markov model a 4 X 4 X guax STPT is required
for the state series simulation. Once the joint state sequence of four states is generated, it
can be decomposed to extract two separate single-satellite state sequences.

An obvious problem with this straightforward approach is the exponential growth of the
number of parameters with the number of satellites. A multi-satellite model has N* combined
states with IV being the number of states per satellite and k being the number of satellites.

P21

good good
#1 . D ’ #2
bad good bad bad
#3 #4
Paa

Figure 3.5.: Semi-Markov model for two satellites.

state duration PDF
of state #1

state duration PDF
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state duration PDF
of state #4

state duration PDF
of state #3

Approximation of joint state duration statistics for semi-Markov chains

The lognormal distribution is accepted for single-satellite state duration modelling in the
literature [BT02] [PCPFB*10]. Taking this assumption, the following two examples show
expected shapes for a joint SDPDF. In both examples, state series of the single satellites
where simulated with a simulation length sufficiently to gain a static SDPDF for the single
and joint states.

Example 1: Two satellites are modelled independently. Figure 3.6 (left) shows a lognormal
distribution of the 'bad’ state from satellite 1 and satellite 2 and the resulting distribution
of the combined state ’bad bad’.

Example 2: Assuming two satellites having the same elevation and a marginal azimuth
separation. The state sequence from satellite 2 is assumed to be equal to the state sequence
from satellite 1, but with a delay of 5 metres. As a result, the joint state duration distribution
for 'good bad’ or ’bad good’ is limited to the range of [0 m; 5m] and has a peak at 5 metres,
as seen in Figure 3.6 (right).

Both examples show that a curve-fit for a joint SDPDF requires some degree of flexibility. A
good fit would be a piecewise approximation. Nevertheless, when analysing real measurement
data it is obtained that already a (simple) lognormal fit provides a good approximation of
state durations (cf. Sections 3.3 and 3.4.2).
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Figure 3.6.: Two examples for the expected distribution of the joint states with the assumption,
that single satellite states are lognormal distributed.

3.2.2. Lutz Approach

In [Lut96] an effective method is introduced to calculate a joint STPM for a first-order
Markov model with two correlated state sequences. Based on the STPMs of two satellites
(each with 2 x 2 elements) and only one correlation coefficient, a joint STPM (4 x 4 elements)
is calculated without influencing the transition probabilities of the individual satellites. The
high flexibility of this algorithm becomes clear, since it requires only single-satellite param-
eter sets (in form of 2 x 2 STPMs), that are easy to derive from measurements and are
already available in literature for different elevation angles and a number of environments.
Databases for correlation coeflicients are available as well for different environments, eleva-
tion angles, and angular separations of the azimuth and elevation angle [REE92]. In contrast
to this Lutz model, the above mentioned ’straightforward methods’ (cf. Section 3.2.1) need
complete datasets for any combination of elevation angles, azimuth angle separations and
environments to achieve the same variability. The Lutz model accurately re-simulates the
state probabilities and mean state durations of each single satellite, as well as the probabili-
ties of the combined states. A limitation is that there is no flexibility in describing the state
duration distribution. Furthermore, a Lutz approach for more than two satellites and with
more than two states per satellite is not available yet. The calculation procedure is given in
detail in Appendix B.2.2.

In the context of this work two extensions of the Lutz approach are developed:

1. A modification of the Lutz approach providing correctly the average value of the joint
durations.

2. A combination of the Lutz approach (first-order Markov) with a semi-Markov model.

Both approaches are described in the next two subsections 3.2.3 and 3.2.4.

3.2.3. Modification of Lutz Approach for Correct Mean Joint Durations

The Lutz approach as described in [Lut96] provides correct state probabilities of the single
satellites of combined states as well as correct mean state durations of both satellites. How-
ever, with the only information ’correlation coefficient’ the Lutz approach can not correctly
predict the mean durations of joint states.
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3. Statistical Modelling of the LMS Channel, Part I: States

With a modification of the Lutz approach, additional information for joint state durations
can be included. The procedure starts with the basic expression of the Lutz approach. It is
the addition of a correlation matrix to a joint STPM of two uncorrelated channels:

X —T —T X

joint __ pjoint,uncorrelated y -y -y y
Ptrans - ]':)trans7 + v — —v v (318)

w —-—w —w w

The calculation of PJonhuncorrelated 5o oiyon in Equation (B.29) in Appendix B.2.2.

According to Equation (3.3), the mean durations of the joint states depend on the diagonal
elements of P{fgg: Thus, taking the mean joint durations D; (i € {1,2,3,4}, denoting

‘good good’, 'good bad’, bad good’, "bad bad’) as parameter, the elements of the correlation
matrix from Equation (3.18) would be:

zp = (1-1/D1)—py
vp = (=1+1/D3)+ph, '
wp = (1-1/Dy)—pyy

joint,uncorrelated
trans .

where p;; (i,7 € {1,2,3,4}) are the joint state transitions of P

If all values z,y,v,w are calculated according to the previous terms, i.e. = zp, y = yp,

. . . . . int
v =vp, w = wp, then a certain correlation coefficient could not be provided with P" .

To consider a certain correlation coeflicient in the correlation matrix, the following expression
(derived from Equation (3.2)) must be solved

Py = Pi(py + x) + Pa(pyy + y) + P3(p3y + v) + Pa(plyy + w) (3.20)

where P; (i,€ {1,2,3,4}) are the joint state probabilities of the correlated channel. They
are to calculate with Equation (B.26) from Appendix B. Knowing P;, P>, P3, and Pj,
Equation (3.20) has four variables z,y, v, w.

case 1: considering three joint durations * = zp, y = yp, and w = wp

In ’best’ case, the Lutz approach can be modified such that the correlation coefficient and
three of four mean durations are correctly provided. Assuming x = xp, ¥y = yp, and w = wp,
we got from Equation (3.20):

v=—{Pi(phy +2p) + Pa(phs + yp) + Paplyy + Ps(ply + wp — 1)}/ P (3.21)
Knowing v, it may happen that the resulting elements of P27 (cf. Equation (3.19)) are

negative and this modification is not possible. As there are some restrictions for z,y, v, w for
non-negative elements of P/%"™ (cf. Appendix B.2.2, Equation (B.31)), we propose to focus

only the states with high priority, ’bad bad’ and 'good good’, which is described in case 2.

case 2: considering two joint durations x = zp, and w = wp
With w = wp (related to 'bad bad’) and = xp (related to 'good good’) Equation (3.20)
can be written:
v = Ay+ B , with
A = —P/P; (3.22)
B = —{Pu(py+ D)+ Paphy + Psp3y + Pa(phy +wp — 1)}/ Ps
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3.2. Channel State Modelling for Dual-Satellite Systems

A solution by considering the restrictions ymin < ¥ < Ymax and Vmin < v < Umax is to calculate
the intersection point between the straight line from Equation (3.22) and a straight line s
going through points (Ymin, Vmin)’ and (Ymax, Vmax)® as drafted in Figure 3.7.

The straight line s is given by:

s — (Umax - 'Umin> Y+ (Uminymax - Umaxymin) (323)

Ymax — Ymin Ymax — Ymin

For the intersection point P results

VminYmax —VmaxYmin—B (ymax _ymin)
( y — Umin_vmax+A(ymax_ymin) (3 24)

v A(Uminymavamaxymin)+B('Umin*Umax)
Umin *vmax“l’A(ymax *ymin)

where A and B are given in Equation (3.22). If the calculated values v and y are outside of
their limits (e.g. if Ymin < ¥ < Ymax is false), then a realisation of case 2 with = zp and
w = wp is not possible.

[(xq

X

Figure 3.7.: Left: Sketch for modified Lutz approach, case 2. The marked section on straight
line g are valid parameters of v and y to calculate the Lutz matrix with non-negative elements. A
recommended solution is the intersection point P; between g and s. If P; is outside of the parameter
range, then case 2 is not viable. Right: Sketch for modified Lutz approach, case 3. Possible solutions
for x, v, and y are found within the marked intersecting plane. A recommended solution is the
intersection point P; of plane F and line s.

case 3: considering one joint duration w = wp
If case 2 fails, the modification of ’bad bad’ only is of interest. Assuming w = wp, Equa-
tion (3.20) is:

= Piz+ Py+ Psv , with

K (3.25)
K = —{Pip\y + Paphy + Papyy + Pa(plyy +wp — 1)} '
With variables x, y, and w, Equation (3.25) represents a plane FE in a three-dimensional co-
ordinate system (Figure 3.7). Analogously to case 2, to find a solution for iy < < Zyax,
Ymin < Y < Ymax, and vpin < v < vnpax, it is appropriate to calculate the intersection
point of that plane with a straight line s going through points (xmm,ymin,vmin)T and

(‘Tmaxa Ymax Umax)
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€ Lmin Tmax — Tmin
St y = ymin + t N ymax - ymin (326)
% Umin Umax — Umin

The intersection of E and s is found at
K — Pixmin — PQymin — P3umin

+—
P (SUmax - :Emin) + PQ(ymax - ymin) + PS(UmaX - Umin)

(3.27)

3.2.4. Lutz Approach Combined With a Semi-Markov Model

Knowing that the Lutz approach can be modified such, that the mean value of a joint state
duration can be correctly described, then it could be possible to include complete joint
SDPDFs as a parameter in the model.

It is mentioned that the Lutz approach is based on a first-order Markov model, which has
limitations in modelling of state duration distributions. Semi-Markov models are on the
contrary efficient for correct state duration modelling. However, the parametrisation of a
semi-Markov model for two satellites is quite challenging. Problems occur especially when
different satellite constellations are compared, e.g. for the evaluation of the diversity gain in
dependency on the azimuth angle separation (cf. Section 3.4.2).

A solution would be the combination of a semi-Markov model with the Lutz approach. The
approach is as follows:

1. First of all, the joint STPM from the Lutz approach PL%Z considering the single satel-
lite parameters and the correlation coefficient (cf. Appendix B.2.2) has to be calculated.
PLutz describes correctly the state probabilities of single and combined satellites, the
mean durations of single satellites and, by using the modified Lutz version, the mean

durations of 'bad bad’ and ’good good’.

2. Further on, the SDPDFs of the combined states are derived from measurement data
and are approximated with, e.g. a lognormal fit.

3. It should be noted that the mean state duration after SDPDF curve-fitting doesn’t
match the mean state duration given by PL%Z. The solution is to modify the SDPDF
curve-fits such, that their mean durations equal the mean durations according to PL%z.
A modification of the lognormal fit is given in Equation (3.12).

For the special case that the Lutz approach is prepared for correct mean duration
modelling of ’bad bad’ and ’good good’ as shown in previous section, there is no need
to additionally modify the corresponding SDPDFs. Thus, also SDPFDs of 'bad bad’
and 'good good’ without approximation can be used. Only the mixed states ’'good bad’

and 'bad good’ need to be adapted.

4. Finally, the diagonal elements of P£UZ are set to zero and the STPM is normalised

thereafter. The results are the semi-Markov transitions PgemiM .

The simulation is done by a semi-Markov model using the modified joint SDPDFs and

semiM
Ptrans
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3.2.5. Master-Slave Concept

Various state models for a single satellite are found in literature which model parameters are
consolidated for a number of receive situations. The Master-Slave concept (first proposed in
[EHHO08]) follows the idea, that a multi-satellite model is realised by extending these consol-
idated single-satellite models. Thus, the master sequence and its channel characteristics are
not influenced, when an additional slave satellite is modelled. In contrast, the 'traditional’
concepts (straightforward approach, Lutz approach) simulate multiple sequences jointly.

The challenge within Master-Slave is the generation of a slave state sequence by providing
certain characteristics of the combined system, such as the correlation coefficient between
the satellites. For this purpose, the conditional state transition probabilities of the slave in
dependency on the master behaviour, e.g, the current state or state transition, have to be
analysed. Various realisations of Master-Slave are possible. Thus, the term 'Master-Slave’
describes a concept — not a concrete implementation.

In the context of this work the first Master-Slave realisations for LMS modelling are devel-
oped and evaluated. In the following, two Master-Slave realisations are described, namely
the Conditional Assembling Method (Section 3.2.6) and Adaptive Slave Transition Matriz
based on Master State Transitions (Section 3.2.7). The former method is also described and
evaluated in [ATHE12].

Master-Slave has some advantages for multi-satellite modelling, i.e. with more than two
satellites. An elaboration on this topic is subject of Section 3.5.

3.2.6. Master-Slave with Conditional Assembling Method

One possible realisation of Master-Slave we define as Conditional Assembling Method
(cf. Figure 3.8). For parametrisation, the principle of the Conditional Assembling Method
is first to concatenate all parts of the slave state sequence for which the master is in ’good’
state. Afterwards, this state sequence is parametrised following an arbitrary Markov model
(e.g. first-order Markov, semi-Markov). The same procedure is followed for the slave state
sequence in case the master is in ’bad’ state.

sample state transition

Existing State Sequence of Master bad W

i concept of ,conditional assembling method*:
{ master transitions are ignored H

-~

d .
State Sequence of Slave | Master = bad goo \ /_.\._’ N
bad -

v N A

Figure 3.8.: Realisation of Master-Slave with the Conditional Assembling Method: Given a
master sequence, two independent conditional slave sequences are generated for the cases 'master
is good’ and 'master is bad’. Different state models (1st-order Markov, semi-Markov, etc.) can be
chosen individually therefore. Finally, the slave sequence is composed by piecewise assembling the
two conditional sequences according to the master sequence. In this way the correlation coefficient
between master and slave, the individual state probabilities, and the combined state probabilities can
be accurately described.

49



3. Statistical Modelling of the LMS Channel, Part I: States

The simulation is done in reverse order: First, the master state sequence is modelled. Sec-
ond, two conditional slave state sequences with respect to the master state are generated
independently (i.e. the conditional slave sequence for master is 'good’, and the conditional
slave sequence for master is ’bad’). For master and conditional slave states an arbitrary
Markov model can be used. The final state sequence of the slave is composed of parts from
both conditional sequences according to the current master state.

The Conditional Assembling Method provides

e accurate modelling of state probabilities of the master and of the slave, and

e accurate modelling of joint state probabilities and consequently the correlation coeffi-
cient between the satellites.

Both results are under the condition that the chosen Markov model accurately describes the
state probabilities of the master as well as the conditional state probabilities of the slave in
case of a constant master state.

Furthermore, the state durations of the master sequence can be modelled with high accuracy
(by, e.g. taking a complex model such as dynamic Markov). However, the Conditional
Assembling Method has some limitations in state duration modelling of the combined states
(’'good good’, ’good bad’ etc.) and of the slave states. This will be further investigated in
Section 3.3.

3.2.7. Master-Slave with Adaptive Slave Transition Matrix based on Master
Transitions

Master-Slave implementations can be generally described by means of an adaptive state
transition probability matrix of the slave (further denoted as adaptive slave transition matriz
— ASTM) with respect to a certain master characteristic. Different variants are possible
where the slave is modelled as a Markov chain and its state transition probabilities are a
function of, e.g. the master state, the master state transition, or the current state length of
the master.

The previously described Conditional Assembling Method could be understood as a realisa-
tion of an ASTM being a function of the master state sys:

Polave — f(s) (3.28)

As the state sequence generation for the slave is interrupted in case of a master transition,
the Conditional Assembling Method offers no control on the state lengths of the slave as well
as on the state lengths of the joint states.

To improve the state duration description, an ASTM which is a function of the master state
transitions is addressed in this section:

Pplave = f(phlester), i j € {g,b} (3.29)

For further use this concept is referred to as adaptive slave transition matrix based on
master transitions (ASTM-MT).
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sample state transition
Existing State Sequence of Master bad W
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State Sequence of Slave | Master b—>b 9 \ /_.\._‘ N
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Figure 3.9.: Master-Slave approach with adaptive slave transition matrix based on master
transitions (ASTM-MT). The state transitions of the slave depend on the current state transition

of the master Pglave = f(plfester).

Figure 3.9 shows a sample-by-sample simulation of an ASTM-MT. Depending on the current
master state transition, a corresponding slave STPM is selected to find the next slave state.
Assuming ’good’ and ’bad’ states, four STPMs of the slave with each four transitions are
required (=16 parameters).

Special attention has to be paid on the parametrisation for Master-Slave approaches. While
for traditional discrete state models (first-order Markov, dynamic Markov) a sample-by-
sample parametrisation by counting and normalising of state transitions is possible, it fails
for Master-Slave concepts. In fact, to introduce model characteristics such as state proba-
bilities or mean state durations, the Master-Slave parameters have to be calculated, which
complicates the parametrisation.

For the concept ASTM-MT the joint state characteristics depend on the applied state model
of the master. If the master satellite is simulated according to a first-order Markov
model, then the joint state transition probabilities of master and slave are the product of
the master transition probabilities with the corresponding ASTM. It holds

Master Slave|gg Master Slave|gb
Pgg ) Ptrans Pgp, ’ Ptrans

piomnt — (3.30)

frame Slave|b Slave|bb
Master ave|bg Master ave
Ppg ) Ptrans Dby ’ Ptrans

Two options are identified to calculate the state transition probabilities of the slave:

e Option 1: Calculation of Py!% by considering the mean joint state dura-

tions. It enables an accurate re-simulation of

— joint state probabilities,

— single satellite state probabilities,

— and mean durations of the combined states.
For this version, the diagonal elements p;; (i € {1,2,3,4}) of P{f;g; are calculated first

by taking the mean joint durations as parameter following Equation (3.3). Then, the

Slave|gg and PSlave\bb

transitions p;; and p;; from P are found with

trans trans
Slavelkk joint Master
ii = Phioski/ Pkk
(3.31)
Slavelkk 1 Slave|kk
ij - — Dy
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with i, 7, k € {g,b}.

With knowledge of Pil;f:lgg, Pﬂfﬁflbb, and the joint state probabilities, the missing

elements of P7%™ and finally the slave ASTMs can be calculated.

trans

e Option 2: Calculation of Pfﬁgﬁg by using the Lutz approach. The simulation

results are identical to the original Lutz approach [Lut96] (Section 3.2.2), but with
Master-Slave functionality. It enables an accurate re-simulation of

— joint state probabilities,

— single satellite state probabilities,

— mean state durations of the single satellites.

— mean durations of the joint states ’good good’ and 'bad bad’, if the modification
of the Lutz model from Section 3.2.3 is applied.

The model parameters are determined as follows: First, the correlated Lutz-STPM
(PI%") is estimated by considering the individual state transition probabilities of
master and slave and a correlation coefficient. Second, the ASTMs are estimated

by dividing the joint transition probabilities with the master transition probabilities

according to Equation (3.30). For example, the ASTM Pfrfrfse‘gg is found with:
PSlave|gg _ pll/pMaSteT plZ/pMaSteT (3 32)
trans pa1 /pggaster p22/pggaster '

where p;; (with 4,5 € {1,2} = {gg,gb}) are elements of the Lutz correlation matrix.
The rows of the Slave ASTMs are already normalised (}° = 1). It is due to an
important characteristic of the correlated Lutz-STPM:

P11+ P12 = P21+ P22
P13+ P4 = p23+ P2 (3.33)
P31+ D32 = p4a1+ P42
P33+ D34 = P43+ P44

When the Master is modelled by a semi-Markov or dynamic Markov algorithm, then Equa-
tion (3.30) is only approximately valid. By applying ASTMs from the parametrisation above
with a semi-Markov or dynamic Markov master sequence, an accurate re-simulation of the
joint probabilities as well as the correlation coefficient between the satellites is nevertheless
possible.

3.2.8. Master-Slave with Adaptive Slave Transition Matrices based on State
Durations

The concept Master-Slave for dual-satellite state modelling and a possible realisation was
first drafted in [EHHOS8]. The initial idea is to implement the master chain with a dynamic
Markov model, and to describe the transition probabilities of the slave as a function of the
master state sz, the current state length of the master ¢s, and the current state length of
the slave ¢g:

Py = f(su, g qs) (3.34)

52



3.3. Comparison of State Models on a Dual-Satellite Scenario

As already stated for the concept ASTM-MT, a sample-by-sample parametrisation by simply
counting and normalising the slave transitions is not an option to find appropriate parame-
ters. The required expression for this concept ASTM based on state durations to calculate
state probabilities and correlation coefficients, from which the model parameters are derived,
is not determined in the context of this thesis. This complex task could be topic of activities
beyond this work.

3.3. Comparison of State Models on a Dual-Satellite Scenario

In this section the different dual-satellite state models from previous Section 3.2 are compared
considering a realistic scenario with two geostationary satellites. Specificially, a measurement
sample from a mixed rural environment from the SDARS campaign (cf. Appendix A for
details) of 23 km length is chosen. The satellites are seen at elevations ¢ = 23° and ¢o = 38°
and have an azimuth angle separation of Af = 34°.

17 different approaches are applied to re-simulate this scenario, including versions of first-
order Markov models, semi-Markov models, dynamic Markov models and Master-Slave ap-
proaches. Before starting the comparison, the evaluation criteria are described.

3.3.1. Evaluation Criteria

To evaluate state algorithms for dual-satellite reception, the following criteria are chosen:

e probabilities of single satellite states and joint states (Pingic, Pjoint). The
probability of the single-satellite states influences the overall fading probability statis-
tics at the output of the LMS model. It weights the contribution of the signal from
’good’ and 'bad’ state to the overall signal.

The probability of the joint states is directly coupled to the correlation coefficient
between two satellite signals (see also Equation (B.25) in Appendix B.2.1). An inac-
curately described correlation coefficient can lead to false performance predictions for
a satellite diversity system.

e mean durations of single- and combined states (Dsmgle, D]-Omt). An analysis of
mean state durations indicate as a first approximation, if the time variability of the
channel is correctly simulated. They affect also the average fade durations of simulated
LMS timeseries.

e number of parameters. The number of parameters of state models ranges from
four to tens of thousands. Although a model with a high number of parameters is
no problem for the simulation process and storage, it is rather challenging to find
appropriate model parameter sets.

e state duration statistics (P(D)singie; P(D);joint). The state durations are analysed
in terms of complementary cumulative distribution functions (CDF). Figure 3.10 (left)
shows exemplarily a statistic of the ’bad’ state from one satellite. The ordinate de-
scribes the probability of the state exceeding a certain length. A quality measure for
the performance of state models is the mean squared error (MSE) between measured
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and re-simulated state duration PDF, not its CDF. It is due to the fact that state
duration distributions are captured from SDPDFs (e.g. the lognormal distribution).
The MSE between simulated SDPDF Ps;,,, (D) and referenced or measured SDPDF
P,c¢(D) is calculated:

1 k
MSE = gPsim(Dq) — Pref(Dyg))?, (3.35)

where P(D,) is the probability of the duration D equals ¢ samples, and k is the
maximum state duration for the comparison. In this thesis, the SDPDFs are compared
to a fixed length of 500 m, with a sample length of 1 m (k = 500). This limitation
seems appropriate, since the SDPDFs of first-order Markov and semi-Markov models
are unlimited in theory.

state duration statistic blockage ratio
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Figure 3.10.: Evaluation methods of the temporal composition of state sequences. Left: Comple-
mentary state duration CDF of the 'bad’ state. Right: complementary CDF of the blockage ratio
over 100 metre window length. The figures show corresponding curves from a measured state se-
quence, from a re-simulated sequence with a state model, and from a manipulated state sequence to
demonstrate the purpose of the new proposed blockage ratio statistic.

e blockage ratio statistic. This evaluation criteria is gathered in the context of this
thesis for LMS modelling and is therefore described in a separate passage below.

Blockage Ratio Statistic

To describe the behaviour of the state sequence over time, the state duration statistic is
well accepted in literature as evaluation criterion. Indeed, the SDPDF gives information
about state-length probabilities, but not about the time-based correlation of these lengths
within the entire sequence. For an extended evaluation of the signal’s time composition, the
blockage ratio statistic over a certain window is introduced in this thesis.

The difference between state duration statistic and blockage ratio statistic is demonstrated by
two curves in Figure 3.10: the statistics from a measured state sequence and a manipulated
sequence. In the latter case the measured sequence is reconstructed such, that all state
durations are sorted with increasing length. Although the state duration distribution of
both sequences is equal (Figure 3.10 left), significant differences of the signals are detected
within the blockage ratio statistic (Figure 3.10 right). It shows that a state model that is
optimised in terms of state duration modelling may still have limitations in describing the
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signals composition over time, which affects the analysis of fading mitigation techniques such
as time interleaving (cf. Section 2.2.2).

Two values are exemplarily derived from the curves in Figure 3.10 and can be interpreted
as follows: The measurements indicate, that in 40% of the obtained 100-metre intervals the
blockage ratio exceeds 80%. The state model, however, predicts a blockage ratio above 80%
in only 20% of observations. For critical receive conditions, the state model prediction would
be more optimistic than the reality (measurements).

3.3.2. Comparison of State Models on a Dual-Satellite Scenario: Results

17 different state models are applied to re-simulate a measured scenario as described at the
beginning of this Section 3.3. A full list of algorithms is given in Table 3.1, including each
the re-simulation performance in terms of joint and single satellite state probabilities, mean
durations, duration statistics as well as the required number of parameters.

Figure 3.11 shows the state duration statistics for the combined ’bad bad’-state and the ’bad’-
states of the individual satellites derived from the measurements and after re-simulation with
different algorithms. Due to better visibility the 17 algorithms are arranged in four groups
(and therefore four figures) according to their modelling process: first-order Markov, semi-
Markov, dynamic Markov, Master-Slave. The MSE between measured and re-simulated
SDPDF from Figure 3.11 are given for selected states in Table 3.1.

The blockage ratio statistics within 100 metre window length from measurements and after
re-simulation are presented in Figure 3.12. They are depicted for the combined satellites
(ratio of 'bad bad’) as well as for the individual satellites.

The following results are obtained from Table 3.1, Figure 3.11, and Figure 3.12:
First-order Markov models

e The probabilities of single- and combined states are accurately re-modelled with all
first-order Markov algorithms.

e The multi-state first-order Markov model (according to straightforward method) accu-
rately re-simulates the mean durations of single and combined states. The first-order
Markov & Lutz’ approach, on the contrary, has no information about the mean joint
durations. An exact re-simulation is not possible therefore. However, with additional
information, the Lutz approach can be modified such that mean durations of 'good
good’ and ’bad bad’ are generated correctly (’first-order Markov & Lutz modified’).

e The SDPDF of first-order Markov models follows an exponential distribution. It devi-
ates highly from the measured duration statistics as obtained in Figure 3.11. The MSE
of the SDPDF is high when compared with other algorithms. The limited performance
of first-order Markov models for temporal aspects is also reflected by the blockage ratio
statistic.

Semi-Markov models
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3. Statistical Modelling of the LMS Channel, Part I: States

Semi-Markov models offer an accurate modelling of the state duration statistic. Their
re-modelling accuracy depend on the applied curve-fit. If the full SDPDF of the joint
states is parametrised (no fit), then the joint SDPDFs are accurately re-modelled. A
good approximation of the joint SDPDF is provided with a lognormal fit or a piecewise
exponential fit.

A curve fit of the SDPDF may change slightly the mean state duration. The changed
mean state duration affects further the state probabilities. Therefore, in case of 'semi-
Markov, logn. fit’ and ’semi-Markov, piecewise exponential fit’ the mean durations and
the state probabilities are well, but not accurately, re-modelled.

A correction of the curve-fit with respect to a correct mean duration of joint states
(’semi-Markov, logn. fit (corrected)’) provides an accurate re-simulation of state prob-
abilities as well as the mean durations of the individual satellites.

The semi-Markov model can be combined with the Lutz approach (’semi-Markov,
logn. fit & Lutz modified’). Although it provides less good performance than the
algorithm ’semi-Markov, logn. fit (corrected)’, this algorithm has great advantages in
terms of the LMS model parametrisation (cf. Section 3.4.2).

The re-simulation of the measured blockage ratio statistic with semi-Markov models is
significantly better than with first-order Markov models. For critical receive scenarios,
it is when the blockage ratio is high, the semi-Markov models are still too optimistic.
The difference between ’semi-Markov, no fit’ and 'semi-Markov, approximated’ in terms
of blockage ratio is marginal.

Dynamic Markov models

e The full dynamic Markov model (i.e. no approximation) accurately re-simulates the

state probabilities and mean durations of the combined states and the single satel-
lite states, and the joint SDPDFs. However, the SDPDF of the single satellites is
only approximately re-simulated. Despite the full dynamic Markov model has more
information and requires a multiple of parameters than the ’partial dynamic Markov
model’, the performance is quite similar.

The 'partial dynamic Markov’ model provides exactly the same results as ’semi-Markov,
no fit’. Despite different algorithms, the decision processes during simulation are equal
(cf. Section 3.1.4).

The ’approximated partial dynamic Markov’ model provides similar results as semi-
Markov models with approximated SDPDFs. The relation between these algorithms
is described in Section 3.1.4.

Similarities between semi-Markov and dynamic Markov models are also seen in the
blockage ratio statistics.

Nth-order Markov model

o6

e The best re-simulation performance is provided by the Nth-order Markov model. It

allows to accurately re-simulate the duration statistics of joint states AND from single
satellite states as well as the blockage ratio. However, in terms of LMS modelling this
approach is highly impractical due to the high number of parameters. Nevertheless,



3.3. Comparison of State Models on a Dual-Satellite Scenario

re-simulation results of a 25th-order Markov model are presented in Figure 3.11 and
Figure 3.12. In comparison to the other models, the better performance in terms of
blockage ratio and state duration statistics (up to 25m) is clearly seen.

Master-Slave models

e The Conditional Assembling Method provides an accurate description of the probabil-
ities of combined states and single satellite states. Further on the duration statistics
of the master satellite can be accurately re-modelled. However, the Conditional As-
sembling Method offers no control on the state duration statistics for slave and for
combined channel.

e The Master-Slave method with ’adaptive slave transition matrix based on master tran-
sitions (ASTM-MT)’ enables an accurate re-modelling of mean state durations. As this
approach is similar to a first-order Markov model, it has limitations in modelling the
SDPDF's and the blockage ratio.

e The approach ’ASTM-MT, option 1: Lutz’ is the original Lutz model re-used for
Master-Slave functionality. In case the master is generated with first-order Markov,
the results are exactly the same.

Note that the ’re-simulation’ results of the LMS models in terms of state probabilities and
mean state durations (Table 3.1) and state duration statistics (Figure 3.11) are all analyti-
cally derived. It represents a simulation of state series with infinity length. Corresponding
mathematical expressions are partly developed in this work and are found in Appendix B. For
the blockage ratio statistics, a state series simulation over 1000 km is performed to minimise
a statistical spread of results.
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(d) Master-Slave approaches.
Figure 3.11.: State duration statistics of the combined ’bad bad’-state (left) and single satellite

"bad’-states (center, right) derived from the measurements and re-simulated with different modelling
approaches.
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(d) Master-Slave approaches.
Figure 3.12.: Complementary CDF of the blockage ratio over 100 m window length of the combined

'bad bad’-state (left) and single satellite "bad’-states (center, right) derived from the measurements
and re-simulated with different modelling approaches.
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3.4. Measurement Results and State Modelling Statistics for Single- and Dual-Satellite
Reception

3.3.3. Conclusions for Dual-Satellite Models

The best re-modelling performance in terms of state probabilities and state duration statistics
is provided with the algorithms Nth-order Markov model, dynamic Markov model,
partial dynamic Markov model, and semi-Markov model, no fit. However, due to
their required number of parameters, they are not feasible to generate a dual-satellite model
database representing arbitrary receive situations.

Models based on first-order Markov have limitations in terms of describing the state dura-
tion distribution and therefore the temporal composition of the channel. Although they are
easy to parametrise, especially in combination with the Lutz approach, these models would
not provide an accurate channel representation for optimising physical layer and link layer
parameters of satellite broadcasting systems with high quality-of-service requirements.

The semi-Markov models with approximated SDPDF as well as the approximated
partial dynamic Markov model achieve good modelling results of the state duration
statistics and of the blockage ratio by using an acceptable number of parameters. By small
modifications, they enable an accurate description of state probabilities and mean durations
as well. In order to decide for an appropriate state model for the final LMS channel emulator,
in Section 3.4 these state models are compared on a large number of receive scenarios.

All of the presented Master-Slave algorithms are accurate in terms of state probability
modelling, but have limitations in terms the time-based description of the channel. Of course
the general concept "Master-Slave’ may have potential for accurate state duration modelling
as well. However, due to the mathematical complexity only a limited set of Master-Slave
realisations are developed within this thesis providing an acceptable performance. It can
be concluded that in terms of dual-satellite modelling the given Master-Slave approaches
have a minor role, since other concepts (e.g. semi-Markov) provide better performance.
However, for multi-satellite systems with more than two satellites the Master-Slave concept
has some advantages. The preferred Master-Slave algorithm for dual- and multi-satellite
modelling would be the ASTM-MT with Lutz parametrisation. It combines the performance
and flexibility of a 'first-order Markov & Lutz’ model with the Master-Slave functionality.

3.4. Measurement Results and State Modelling Statistics for Single- and
Dual-Satellite Reception

The LMS channel presents significant differences depending on the kind of the environment
the mobile traverses. Several environmental categories have been used in the planning of
satellite transmission systems, including urban, suburban, rural, forest, and open. Further-
more, the orbital position of the satellite has an impact on the LMS channel. In case of
single-satellite reception, the dominant parameters to describe the channel are thus the en-
vironment type env, the elevation angle of the satellite ¢, and the azimuth of the satellite
relative to the driving direction 6. The dual-satellite (and multi-satellite) reception addi-
tionally depends on the angular separation in azimuth Af and elevation A¢ between the
satellites, which affects the correlation of the received signals.
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In this section results of measurement analyses are presented in terms of state probabilities
and state duration statistics for different environments and orbital positions of the satel-
lites. Data from two campaigns are analysed therefore: SDARS measurements and GNSS
measurements (cf. Appendix A). In the following two subsections the characteristics for
single-satellite reception and dual-satellite reception are addressed. Furthermore, the pa-
rameters for different state models are derived to compare the re-modelling results with the
measurements. On this basis, an appropriate state modelling approach is identified and
recommended for the final LMS model.

3.4.1. Results for the Single-Satellite Channel

The single-satellite LMS channel depends on the kind of the environment, the elevation
angle of the satellite ¢, and the azimuth of the satellite relative to the driving direction 6.
For a detailed analysis of the single-satellite state characteristics, the SDARS- and GNSS
measurement data are divided into

e five environment types 'Urban’, ’Suburban’, ’Forest’, ’‘Commercial’, ’Open’.

e different elevation angles from 10° to 90° in segments of 10°. The mean elevation
angles represented by these datasets are therefore 15°, 25°, ... | 85°, respectively.

o four classes of driving directions (for GNSS data, only) with the intervals [0°, 10°],
[10°, 30°], [30°, 60°], and [60°, 90°]. 2

The available amount of measurement data for the different segments (further denoted as
receive scenarios) is given in Appendix A.6.

For the defined receive scenarios, Figure 3.13 shows the probabilities of the "bad’-state (F,),
and Figure 3.14 shows the mean durations of the 'bad’-state (Dy) for single-satellite re-
ception. The corresponding ’'good’-state results are calculated with P, = 1 — B, and
Dg = Py/P, - Dy, respectively. The following observations are made in Figure 3.13 and
3.14:

e In general, P, and D}, decrease with increasing satellite elevation. The slope of the
curves depends on the driving direction.

e P, and Dy, increase with increasing angle between satellite azimuth and driving direc-
tion € within the interval [0°,90°]. Except, for high elevation angles (¢ > 70°) the
influence of the driving direction is low. For system planning and the study of effective
fading mitigation techniques it is important to consider the worst case (6 ~ 90°).

e Comparing different environments, the 'bad’-state probability in urban and forest areas
is on average higher than in other environments. Also the discrepancy between the
worst (# = 90°) and best (6 = 0°) reception case is higher than in suburban, commercial
and forest.

2By analysing the driving direction it is assumed that the vehicle moves in the middle of the street. Thus,
the reception is symmetric in four quartals within [0, 27) (e.g. 8go = 61500; Ogp0 = Oa7go; O300 = O1500 =
02100 = B3300). This assumption is made due to the limited amount on RF measurement data. To analyse
the influence of driving directions in detail, camera based measurement data would be an convenient basis.
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Reception

e In case of GNSS, for elevation angles above 70° the 'bad’-state probability in urban
environments is lower than in suburban and forest environments. A reason could be
shadowing from trees reaching above the streets in suburban environments and forests,
which is minor probable in urban areas.
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Figure 3.13.: ’bad’-state probabilities derived from the GNSS and SDARS measurements for single-
satellite reception as a function of the elevation angle and the azimuth angle relative to the driving
direction.
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Figure 3.14.: Mean durations of the 'bad’ state derived from the GNSS and SDARS measurements
for single-satellite reception as a function of the elevation angle and the azimuth angle relative to the
driving direction.

By comparing SDARS and GNSS measurements, similar results are obtained for urban
areas only.? In suburban, forest, commercial, and open environments, the probabilities and
durations of the 'bad’ state obtained from SDARS are significantly lower than from GNSS.
A reason could be mainly wider streets in the U.S. than in Europe. Furthermore, the driving
direction may affect the SDARS results, which cannot be considered in any case as equally
distributed between 0° and 360°. Please note that also different methods of environment
classification may have an influence to the results.

Nevertheless, similar tendencies of P, and Dy, in dependency on the satellites’ elevation are
obtained. Therefore, it can be concluded that differences of P, and Dy between SDARS

3 A basis for comparison between SDARS and GNSS measurements are the values for 6 € [0°,360°].
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and GNSS originate mainly from differences within the environment classes. It may be
worth noting that the definition of environment classes is highly subjective due to manual
annotation. An objective environment classification, e.g. based on image data, would be a
very interesting field of research. However, it is out of scope of this thesis.

Different state modelling approaches, including the recommended state model for the new
LMS channel model, accurately re-simulate the measured state probabilities and state du-
rations. Thus, the graphs from Figure 3.13 and 3.14 represent the channel model output as
well. The representativeness of the channel model parameters consequently depend on the
quality of the measurements. It is concluded that due to the available amount of SDARS-
and GNSS measurement data (cf. Appendix A), both campaigns allow to derive reliable
model parameter sets for realistic single-satellite receive scenarios. Therefore, two model
parameter sets for single satellite reception are represented by the results in Figure 3.13 and
3.14:

e The MiLADY SDARS state parameter set allows a state sequence generation
for five different environments and seven elevation angles (¢ € [20°,90°] in intervals of
10°). The parameters are found in Table C.2 in Appendix C.

e The MiLADY GNSS state parameter set allows a state sequence generation for
five different environments, eight elevation angles (¢ € [10°,90°]), and four driving
directions. The parameters are found in Table C.3.

3.4.2. Results for the Dual-Satellite Channel

The dual-satellite (and multi-satellite) LMS channel depends on the kind of the environment,
the elevation angle of each satellite (¢), and the azimuth of each satellite relative to the
driving direction (#). Especially the angular separation of the satellites of elevation (Ag)
and azimuth (A#) is crucial, since it affects the correlation of the received signals. To
investigate this in detail, dual-satellite parameters are derived for 5 different environments,
the combination of 8 different elevation angles from two satellites, and 7 intervals of the
azimuth angle separation between the satellites (cf. Appendix A). A total of 5-8-8-7 = 2240
segments of measurement data are defined.* Due to limited measurement data, a further
division into driving directions is omitted. Displaying the results of dual-satellite modelling
is much more complex than in the single-satellite case. Therefore, in this section only the
urban results are presented for only a subset of receive scenarios which are obtained from
GNSS measurements. Additionally, the parameters for different state modelling approaches
are derived from GNSS data. The re-simulation results are compared with the measurements
in terms of correlation coefficients, state probabilities and state duration statistics.

The Correlation Coefficient Between Two Satellites

Figure 3.15 shows the correlation coefficient between the states pgates 0f two satellites in
dependency on the azimuth separation Af derived from the measurements and after re-
simulation with dual-satellite state models for the urban environment. Each subplot shows

4For single-satellite analysis only 160 segments (8 elevation angles, 5 environments and 4 driving directions)
are required.
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a certain combination of two elevation angles. As this matrix of subplots is symmetric, only
the lower triangle is shown. For a better visibility, only the elevation angles ¢ < 50° are
shown to focus on the critical receive scenarios.

Additionally the results from an empirical model from Robet et al. [REE92] are shown in Fig-
ure 3.15. This empirical model allows to calculate the shadowing probability in dependency on
the azimuth separation and the shadowing probabilities of the individual satellites (cf. Chap-
ter 2.4.1). By taking the ’bad’-state probabilities (P, Py2) from the single-satellite GNSS
measurement database (Figure 3.13) as parameter, the correlation coefficient pgiates can be
calculated from the resulting joint state probability (Py},) according to Equation (B.26) from
Appendix B.2.1.

The following observations can be made in Figure 3.15:

e In case of small azimuth separations, both state sequences are highly correlated (up
t0 pstates = 0.9). (Note: For two exactly co-located satellites pgates = 1 is expected,
this special case is not covered in the results.) The correlation has a minimum within
the range 60° < Af < 120°. It can reach values pgtates < 0. Towards 180° azimuth
separation, psiates slightly increases.
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Figure 3.15.: Correlation coefficients of the state sequences from two satellites (pstates) in depen-
dency on the azimuth separation (A#) and for different elevation angle combinations (¢1, ¢2) derived
from the measurements and re-calculated with different channel models.
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e In case of small azimuth separation, the correlation coefficient further depends on the
elevation angle separation between two satellites.

e The correlation coefficient is accurately re-simulated by algorithms which provide accu-
rate state probability modelling (cf. Table 3.1: algorithms with accurately re-modelled
Pjomt)- These are: Ist-order Markov, semi-Markov, no-fit and semi-Markov, logn. fit
(corrected), dynamic and partial dynamic Markov, Nth-order Markov, Conditional As-
sembling Method, ASTM-MT when Master is modelled as 1st-order Markov. Due to
visibility, these algorithms are denoted with ’perfect algorithms’ in Figure 3.15.

e A good fit of the correlation coefficients is also achieved with the semi-Markov ap-
proaches assuming a lognormal fit or a piecewise exponential fit of the SDPDF. For
only a small number of receive scenarios the correlation coefficient deviates by +0.1
from the measurements. This is acceptable, as the variation of the correlation coeffi-
cients between different elevation angles and azimuth separations is much higher.

o After a modification of the lognormal fit according to Equation (3.12), the coefficients
Pstates generated with the semi-Markov model are equal to the measured values (rep-
resented by ’'perfect algorithms’).

e Comparing the empirical model from Robet et al. [REE92] with the GNSS results, a
good agreement of the correlation coefficient is obtained for ¢; = ¢ = 15°, only. For
other elevation angle combinations, the slope of curves pgates = f(A6) from GNSS
measurements is greater than from the empirical model.

State Probabilities for Dual-Satellite Reception

The ’bad bad’-state is the critical system state and requires special attention for LMS mod-
elling. Therefore, Figure 3.16 shows exemplarily the probabilities of the ’bad bad’-state
(Pyp) as well as the "bad’-state probabilities of the single satellites (P}, Py2) in dependency
on the azimuth angle separation (Af) in the urban environment.

For each receive scenario, i.e. a combination of Af , ¢1, and ¢o, GNSS data is taken from
different parts of the measurement route. As a consequence, from measurements different
values of P,; and P2 are obtained for different values of A#, although Af should have no
influence to P,; and Pyo. This fact is the main problem of estimating adequate parameter
sets for dual- and multi-satellite state models according to the straightforward method (cf.
Section 3.2.1). Whether a dynamic Markov, semi-Markov, or first-order Markov model with
four combined states is used, they all re-simulate accurately the measured state probabilities
of the current dual-satellite receive scenario (represented by ’straightforward models’ in
Figure 3.16). A challenge with these models would be, e.g. a comparison of the dual-satellite
gain for different satellite constellations: the fluctuations of single satellite state probabilities
may have a higher influence to the satellite diversity gain than Af. Although a large amount
of RF measurement data is analysed, it has limitations to generate consistent state parameter
sets for dual-satellite reception. A promising solution would be the analysis of image-based
data, e.g. from fish-eye cameras [TAT*11], or the analysis of three-dimensional environmental
databases.
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Figure 3.16.: Probabilities of the combined state 'bad bad’ (P,p) and of the single satellites’ state
'bad’ (Py1, Py2) in dependency on the azimuth separation (Af) derived from the measurements and
re-calculated with different channel models. For comparison, the state probabilities derived from the
single-satellite measurement database are given (measured (single-sat)). For better visibility they are
shown in the corner at Af = 180°.

Another alternative to gain consistent LMS parameter sets is the use of the Lutz approach for
parametrisation (Section 3.2.2). The principle is to derive the probability and mean duration
of the combined states from single satellite parameters and the correlation coefficient between
the satellites. The Lutz approach presented in [Lut96] parametrises a first-order Markov
model for two satellites (cf. Figure 3.16, "1st-order Markov & Lutz’). In this work, a method
is introduced to derive also dual-satellite parameters for a semi-Markov model with the
Lutz approach. Firstly, a joint STPM is calculated by using single-satellite parameters and
a correlation coefficient.® Next, the semi-Markov parameters are adjusted to provide the
mean durations, which are given in the joint STPM (cf. Section 3.2.4). As a result, the
dual-satellite parameter sets for the semi-Markov model represent the characteristics of the
single satellite parameter sets (Section 3.4.1) and include additional information obtained
in dual-satellite case. Consequently, no fluctuations of single satellite state probabilities are
obtained for different values of Af in Figure 3.16 (’semi-Markov, logn.fit & Lutz’).

To analyse a greater number of receive scenarios, Figure 3.17 shows the probabilities of com-
bined and single satellite states (Ppy, Po1, Pp2) in dependency on the azimuth separation
(Af) and for different elevation angle combinations (¢1, ¢2) in the urban environment. The
layout of elevation angles and azimuth separations is equal to Figure 3.15. Since differ-
ent state models provide equal results in terms of state probabilities, Figure 3.17 shows two
groups: the measurement results of dual-satellite scenarios (also representing the straightfor-
ward models) and the re-simulation results of Lutz-based models. The following observations
can be made from Figure 3.17:

e The ’bad bad’-state probability (measured) strongly depends on the elevation angles

5 As the driving direction is not analysed for dual-satellite reception, the dual-satellite parameters are derived
from single-satellite parameters with driving direction 6 € [0°, 360°].
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Figure 3.17.: Probabilities of the combined state 'bad bad’ (P,p) and of the single satellites’ state
'bad’ (Pp1, Po2) in dependency on the azimuth separation for different elevation angle combinations
derived from the measurements and re-calculated with different channel models. For comparison, the
state probabilities derived from the single-satellite measurements are given (measured (single-sat), cf.
Figure 3.16). Note: in case of ¢1 = ¢o, the single-satellite results are overlaid.

¢ of the single satellites (cf. Figure 3.13). Assuming small elevations ¢; = ¢ = 15°,
Py, is between 0.6 and 0.8 with respect to the azimuth angle separation. For the
combination ¢1 = 45° and ¢o = 15°, Py, is between 0.20 and 0.25. When both
satellites have 45° elevation, Py, is only between 0.05 and 0.20.

e P further depends on the azimuth angle separation Af. It is related to the state
correlation coefficient psiates between the satellites (cf. Figure 3.15), whereas a low
correlation coefficient results in a low ’bad bad’-state probability and provides therefore
a high signal availability.

e A large variance of P, due to Af is seen when the elevation angle separation A¢ is
small. In case A¢p = 0 (both satellites have same elevation), between Af = 5° and
A6 ~ 90° a reduction of Py, of 20% is obtained. In contrast, for ¢1 = 45° and ¢ = 15°
only a reduction of 5% is obtained from Af = 5° to Af =~ 90°.

e Although for each dual-satellite receive scenario approximately 30 km measurement
data is analysed, the single satellite probabilities P, and P,y at a constant elevation
angle have high variations of £0.1. On the contrary, the Lutz method provides stable
results for B,; and Pyy. A further fact, that becomes visible for the Lutz models at
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constant elevation angles, is that Py} is proportional to pstates (cf- Equation (B.26)
from Appendix B.2.1).

e The empirical model from Robet et al. [REE92] provide plausible results as well. Due
to the relation Ppp ~ pstates, the ratio between Py, of the Lutz-based model and of
the empirical model is analogue to the ratio between the measured values of pgiates
and of the empirical model from Figure 3.15: A high agreement is obtained for the
constellation ¢1 = ¢o = 15°. For constellations ¢1 = ¢po = 25° or ¢1 = ¢o = 35° with
Af = 45°, the probability P, of the empirical model is up to 0.1 greater than from
the Lutz model and the measurements. Considering constant elevations, the empirical
model provides the minimal value of Py, at A = 180°, whereas from the GNSS data
the minimum is found around Aé = 90°.

Of course, the empirical model does not accurately represent the characteristics of the
GNSS data, since it was dimensioned with data from other environments. However, the
parametrisation of an LMS model for a large variety of satellite positions usually makes
a merge of parameters from different measurements and/or from different environments
necessary (cf. Chapter 5.3; Appendix A.3). Thus, the correlation coefficients of the
empirical model are a feasible alternative to the correlation coefficients derived from
GNSS measurements.

Mean State Durations for Dual-Satellite Reception

The mean durations of the state 'bad bad’ (Dyp) as well as the mean ’bad’ durations of
the individual satellites (Dbl,Dbg) are depicted in Figure 3.18. Similar to Figure 3.17,
measurement results for dual-satellite scenarios (representing also results of straightforward
algorithms) as well as results for Lutz-based algorithms are presented. Additionally, the
results of the modified Lutz approach (cf. Section 3.2.3) are shown. It allows an accurate
re-simulation of the measured mean durations for the combined state 'bad bad’, whereas
the characteristics of the single satellite states are unchanged. The modified Lutz approach
is not applicable for each receive scenario (cf. Section 3.2.3, case 1, case 2, case 3), which
leads to gaps in Figure 3.18.

The mean duration of the single satellites for Lutz-approaches in Figure 3.18 equals in all
cases the mean durations from Figure 3.14 for GNSS data with driving direction 0°- 360°.

The results show that for small azimuth separations the mean duration of ’bad bad’ is close
to the mean duration of ’bad’ from the single satellite with the higher elevation. In worst
case (15° elevation, small azimuth separation) the 'bad bad’ duration is about 150 metres in
urban environments. If only one of the satellites has a higher elevation, the mean duration
of ’bad bad’ is significantly lower. Values are Dy, ~ 50m, Dpp ~ 40m, and Dy, ~ 20m for
elevations 25°, 35°, and 45°, respectively.

A conspicuous fluctuation is seen for the measured single satellite durations Dy at ¢g = 15°.
The reason is on the one hand less available measurement data for the 'bad’ state due to
longer state lengths. On the other hand the great influence of driving directions to the mean
duration at low elevation angles may affects the results. Please remember that the dual-
satellite measurements include data from driving directions between 0° and 360°. However,
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Figure 3.18.: Mean durations of the combined state "bad bad’ (Dyy,) and of the single satellites’ state
bad’ (Dbl, Dbg) in dependency on the azimuth separation for different elevation angle combinations
derived from the measurements and re-calculated with different channel models. For comparison, the
mean ’bad’-state probabilities from the single-satellite measurement database are depicted at position
A0 = 180°. In case of ¢; = ¢2, the single-satellite results are overlaid.

the actual driving direction within the receive scenarios could not be considered as equally
distributed in that range.

The empirical model from Robet et al. [REE92] is not further regarded in Figure 3.18 and in
subsequent state duration analyses, since it provides no information about state durations.

Evaluation of State Duration Modelling for Dual-Satellite Reception

While several state models provide equal results in terms of state probabilities and mean
state durations (e.g. they re-simulate exactly the measurements), their performance in terms
of state duration modelling is quite different. Therefore, an evaluation of state duration
modelling is performed for dual-satellite and single-satellite reception by using the following
algorithms:

o first-order Markov & Lutz
e semi-Markov, logn. fit
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e semi-Markov, logn. fit (corrected)
e semi-Markov, logn. fit & Lutz modified

e semi-Markov, logn. fit & Lutz, empirical: Based on the availability of measure-
ment data for numerous dual-satellite constellations, an empirical add-on is developed
for the model semi-Markov, logn. fit & Lutz. A detailed description is found in next
Section 3.4.3.

e semi-Markov, piecewise exponential fit
e semi-Markov, no fit (represents also the results of partial dynamic Markov)

First of all, the state duration evaluation is exemplarily demonstrated in Figure 3.19 for
one receive scenario. It shows the duration statistics of the ’bad bad’-state (left) and of
the 'bad’-state (right) from measurements and after re-simulation with a four-state semi-
Markov model (lognormal fit) for dual-satellite reception. For comparison, the 'bad’-state
duration is re-simulated with a two-state semi-Markov model (lognormal fit) for single-
satellite reception. It is obtained that the dual-satellite algorithm (using four states) and
the single-satellite algorithm (using two states) provide different statistics for the "bad’-state.
A quality measure of the state models performance is the MSE between the measured and
re-modelled SDPDF (cf. Equation (3.35)). Clearly, the MSE of the 'bad’-state is smaller
after re-simulation with the single-satellite model, as the curve-fit is directly applied on the
'bad’-state statistic. The only state model which is able to accurately re-simulate the SDPDF
of the ’bad bad’-state and the SDPDF of the 'bad’-state with one state series simulation is
the Nth-order Markov model (with N ~ 500). An accurate composition of state lengths
over time is required therefore. It demonstrates that the quality of the duration modelling
from dual-satellite algorithms can be evaluated also on their capability to re-simulate the
single-satellite duration statistics. Thus, the evaluation based on the blockage ratio statistic
(cf. Section 3.3.1) is not necessarily required.
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Figure 3.19.: Evaluation of state duration modelling: Left: ’bad bad’-state duration statistics (com-
plementary CDF) of the measurements and after re-simulation with a semi-Markov model for dual-
satellite reception. Right: 'bad’-state duration statistics of the measurements and after re-simulation
with a semi-Markov model for dual-satellite reception as well as for single-satellite reception. Data is
taken from: urban environment, elevation ¢; = ¢o = 45°, azimuth separation A8 = 105°. The qual-
ity measure of the curve-fits is the MSE between measured and re-simulated state duration statistic.
Results for different state models are given in Figure 3.20 and 3.21.

Figure 3.20 shows the MSE for the 'bad bad’-state re-simulated with dual-satellite algorithms
for different satellite constellations (A€ , ¢1, ¢2) in the urban environment. Figure 3.21
depicts their performance for the single-satellite case.
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Starting with the evaluation of ’bad bad’-modelling, the following is obtained from Fig-
ure 3.20:

e State durations simulated with first-order Markov chains follow an exponential distri-
bution. Already in Figure 3.11 it is seen that the exponential distribution doesn’t fit
the measured state durations in an accurate manner. Therefore, the MSEs for single-
and for dual-satellite case are large when compared with other algorithms.

e Semi-Markov chains have high flexibility in state duration modelling. The MSEs in
Figure 3.20 indicate that the piecewise exponential fit as well as the lognormal fit well
approximate the measured state durations.

e Although a piecewise exponential function has higher flexibility in curve-fitting, the
lognormal fit provides similar results. Due to the less number of lognormal parameters
per SDPDF (2 lognormal parameters instead of 11 parameters for piecewise exp. fit
with 4 segments, cf. Equation (3.8)), the lognormal fit is suggested as the preferred
semi-Markov approximation.
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Figure 3.20.: Evaluation of the state duration fit for the ’bad bad’-state: The MSE of the state
duration PDF is calculated for seven different dual-satellite state modelling approaches. For compar-
ison, the MSEs of the ’bad’-state statistic of satellite 1 and satellite 2 are calculated for two different
single-satellite models and are depicted at position Af = 180°.
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e The lognormal parameters are modified for the semi-Markov algorithms: ’..logn. fit
(corrected)’, ...logn. fit & Lutz, empirical’, ’...logn. fit & Lutz modified. In terms of
the state ’bad bad’, this correction of lognormal parameters has no noticable influence
on the quality of the SDPDF curve-fit, when compared with to the original lognormal
fit (’semi-Markov, lognormal fit").

e Comparing dual-satellite with single-satellite results in Figure 3.20, a lognormal fit
approximates the 'bad’ state better than the ’bad bad’ state. Nevertheless, a curve-fit
with more flexibility and a higher number of parameters is minor feasible for dual-
satellite scenarios.

The evaluation of the ’bad’-state duration modelling of a single satellite with a dual-satellite
state algorithm (Figure 3.21) leads to following conclusions:

e For semi-Markov models, the MSEs for the 'bad’-state vary for different azimuth sepa-
rations. It is due to the fact that the re-simulated 'bad’-duration statistic of a satellite
with elevation ¢ changes with the azimuth angle separation to a second satellite. In
contrast, the model ’first-order Markov & Lutz’ provides always the same duration
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Figure 3.21.: Evaluation of the state duration fit for the 'bad’-state: The MSE of the state duration
PDF for satellite 2 is calculated with seven dual-satellite algorithms. For comparison, the MSEs for
two single-satellite algorithms are depicted at position Af = 180°.
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3. Statistical Modelling of the LMS Channel, Part I: States

statistic for a satellite at a constant elevation. However, this state duration statistic is
not realistic.

e In general, a semi-Markov model dimensioned for single-satellite reception re-simulates
the "bad’-state statistic more accurate than a semi-Markov model dimensioned for two
satellites (Same holds for dynamic Markov models). It is independent from the curve-
fit.

e The dual-satellite model 'semi-Markov, no fit” has similar performance as ’semi-Markov,
logn. fit’ in terms of single-satellite state duration modelling. Certainly it is true that
"semi-Markov, no fit’ describes accurately the duration statistics of combined states,
but the composition of the combined states in time is not better described than from
approximated models.

e Semi-Markov models combined with Lutz have similar performance as ’semi-Markov,
logn. fit’ (dual-sat. model) for single-satellite case. It indicates, that a combination
with the Lutz approach can be applied without performance deficits. Further on, a
correction of mean joint durations (semi-Markov, logn. fit €& Lutz modified) doesn’t
improve the state duration modelling for single-satellite case.

3.4.3. Empirical Analysis of Lognormal Parameters

Previous results show, that a dual-satellite semi-Markov model with lognormal fit well ap-
proximates the combined and single satellite SDPDFs. Therefore, two parameters (pupy, and
opur) Per joint state duration statistic are required. However, to gain model parameter sets
for different environments and satellite constellations, thousands of state duration statistics
have to be analysed.

To avoid a lognormal parameter extraction for that amount of dual-satellite receive scenarios,
an alternative is the estimation of lognormal parameters for combined states from single-
satellite parameters. For this purpose, the Lutz approach provides information about the
combined state probabilities Pjyin; and makes an estimation of mean state durations Djoint
for dual-satellite reception. To estimate the lognormal parameters for joint state durations,
Figure 3.22 shows the dependency of upy on the mean state duration, as derived from all
obtained joint states and dual-satellite receive scenarios from GNSS measurements.

It is seen that the relation between ppy: and D can be well approximated by a logarithmic
function:

fpur = 1 - In(D) + 1o (3.36)
with 1 = 6.48 and rg = 0.75.

The great advantage becomes clear as all required parameters for a dual-satellite semi-
Markov model can be estimated from single-satellite parameter set and a correlation co-
efficient. Of course this parameter extraction is already possible with the Lutz approach
in combination with first-order Markov model. However, results in Figure 3.20 and Fig-
ure 3.21 show that the duration modelling is significantly improved by the new algorithm
‘semi-Markov, logn. fit & Lutz, empirical’.
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Figure 3.22.: Dependency of lognormal parameter jipy, to the mean joint state duration D. These
lognormal parameters are derived for all states from various dual-satellite receive scenarios (environ-
ment, ¢1, ¢z, Af) from GNSS measurements. The dependency between pipy, and D can be well
approximated by a logarithmic expression.

The parameters for this ‘semi-Markov, logn. fit & Lutz, empirical’ model can be extracted
with following procedure:

1. The STPM for a single satellite is given by:

1—(1/D,) 1/D
sat  __ /g g
Ptrans - 1/Db 1— (1/Db) (337)
The mean durations for 'good’ and "bad’ state can be derived from the single satel-
lite parameter sets with D = exp[upu /K + 0.5(0pur/K)?], where K = 20loge and
{tDur,g, ODur,gs Dur,b> TDur,b } = f(env, ¢, 0) (env denotes the environment type). These
parameter sets are given in Table C.2 and Table C.3 in Appendix C.

2. A correlation coefficient between two satellites is found in the dual-satellite parameter
sets (Table C.4) in the form pgtates = f(env, @1, P2, AB).

3. Considering two satellites with P21  P$42 and correlation coefficient Pstates, the cor-

trans’ * trans
relation matrix P2 is calculated according to the Lutz approach (Appendix B.2.2).

4. From PEYZ the mean durations of state i are estimated with

-1
ol pa

i € {gg, gb, bg, bb} (3.38)

5. The lognormal parameter pipy,,; of state ¢ is calculated with the empirical expression:

fDuri = 6.48 - In(D;) + 0.75 (3.39)
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3. Statistical Modelling of the LMS Channel, Part I: States

6. After calculating opy,; by taking the relation

ODur,i — \/QK(K In DZ - MDur,i) ) (340)

with K = 20loge, the lognormal parameters for all joint states are available.

7. Finally, the diagonal elements of PLutZ

such that the sum of each row equals 1. So we get the semi-Markov transitions P

are set to zero and the STPM is normalised
semiM

trans
The resulting parameter set is valid for a certain constellation of [env, ¢1, ¢2, 01, 602], where
the driving direction of the vehicle is included as well.

To get dual-satellite parameters independent from the vehicles driving direction, the driving
direction 6 must be ensured to be uniformly distributed within [0, 27) while extracting the
single-satellite parameters f(env, ¢, 0).

3.4.4. Interpolation of State Model Parameters

For single-satellite reception, state model parameters (fipyr, Opur) are derived from five en-
vironment types for different elevation intervals with centre values ¢ € {15,25, 35, 45,55, 65,
75,85}° from GNSS measurement data. To consider dual-satellite reception, the ’‘semi-
Markov, logn. fit & Lutz, empirical’ model requires a correlation coefficient pgates Which
is available for five environments, for combinations of elevations ¢; and ¢o with ¢1, ¢ €
{15,25,35,45,55,65,75,85}°, and for different intervals of the azimuth angle separation Af
with centre values A6 € {5,20,45,75,105,135,165}°. For some applications of the LMS
model, such as the performance comparison between different multi-satellite constellations
in Chapter 6, it would be useful to have model parameters for a finer gradation of satellite
positions. This can be facilitated by interpolation.

In case of a single-satellite model, a parameter interpolation over the elevation ¢ is suitable.
Important characteristics for a single-satellite state model are the probability P and the
mean duration D of ’good’ and ’bad’ state. The mean state duration is related to the
lognormal parameters by (cf. Equation (3.7))

1
D=
8.686/Dur T

2
L S 41
150.889 7 Dur (3.41)

It is seen that In D is proportial to pupyr and a%ur. Thus, to achieve smoothed curves of
characteristics P and D in dependency on ¢, a linear interpolation of upy,, and U%ur over ¢

is found to be appropriate. It results in an exponentially interpolated mean duration D (i.e.
a linear interpolation of In D), as indicated in Figure 3.23 for the urban environment.

The parameters pup,, and a%ur at elevation ¢ are determined with

fDur(®) = burg,, + e EDwOn (g ) (3.42)
¢n - ¢m
ot ur — o ur
Ul%ur(¢) = Ul%ur,¢>m + 2 7;))” — ¢D Om (¢ - ¢m)7 (343)
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Figure 3.23.: To refine the state model parameter set with respect to the elevation ¢, a linear inter-
polation of the lognormal parameters ppy, and o%ur over ¢ is proposed. It results in an exponential
interpolation of the mean state duration D. The state probabilities P depend on D.

where pipur,¢m s ODur,ém a0 fDur,¢, > ODur,s, are estimated from measurements at elevations

¢m and ¢, respectively. After calculating D, and Dy, from interpolated parameters, the
state probabilities for ’good’ and ’bad’ are determined finally with

D7 b
g7
Pep = = =

_Pab (3.44)
Dg + Dy,

To refine the model parameters for dual-satellite reception, a joint linear interpolation of
the state correlation coefficient pgtates Over three dimensions ¢1, ¢o, and Af is proposed
(=trilinear interpolation). It is demonstrated exemplarily in Figure 3.24 for the constellation
¢1 = 35°, ¢ = 32°, and A = 35° in the urban environment.
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Figure 3.24.: A trilinear interpolation of the state correlation coefficient pgtates Over the dimensions
o1, P2, and A is used to determine pgates for the constellation ¢y = 35°, po = 32°, and Af = 35°.
For better visualisation, this interpolation is only bilinear and ¢; is constant.
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3. Statistical Modelling of the LMS Channel, Part I: States

3.4.5. Conclusions on Dual-Satellite State Modelling

Dual-satellite reception depends on the kind of the environment (env), the elevation angle
of each satellite (41, ¢2), and the azimuth of each satellite relative to the driving direction
(01, 02). In this section different state models are compared to cope with the high number
of dual-satellite scenarios.

A widely accepted approach is the Lutz model which is based on first-order Markov chains.
The Lutz model accurately describes state probabilities and mean durations of two individual
satellites, as well as the correlation coefficient between them. Due to the low complexity, it is
easy to parametrise for different combinations of env, ¢1, ¢o, and Af. However, a weakness
of the Lutz model is the capability of correct state duration modelling. For the optimisation
of physical layer and link layer parameters for satellite broadcasting systems with high QoS
requirements it has some limitations, as it describes system blockage lengths or line-of-sight
durations with insufficient accuracy.

Semi-Markov models and dynamic Markov models accurately describe the state durations of
the LMS propagation channel. Due to the large number of parameters, such models without
any approximation are not feasible for the application for dual-satellite receive scenarios.
To reduce the complexity, two variants of SDPDF approximations are analysed: a piecewise
exponential fit and a lognormal fit. It has been shown that both approximations describe
well the state duration distributions. Further on, the curve-fits can be modified such that
measured state probabilities and mean durations of single and combined states are accurately
re-simulated. Due to the smaller number of required parameters, the lognormal distribution
is the preferred curve-fit for the joint SDPDFs.

It has been shown that measurement data from different dual-satellite scenarios can not
provide stable results for single-satellite reception. In order to provide consistent model
parameters, a combination of a semi-Markov model with the Lutz approach is introduced.
Parameters for dual-satellite reception are derived from single-satellite parameters, a correla-
tion coefficient for dual-satellite scenarios, and an empirical expression. The result is denoted
semi-Markov, logn. fit & Lutz, empirical model, which accurately re-simulates the state
probabilities and mean durations of the single satellites, the correlation coefficient between
the satellites, and approximates well the state duration distribution of single satellite states
and of combined states.
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3.5. On Channel State Modelling for Multi-Satellite Systems

The straightforward method to realise a multi-satellite model is to parametrise a multi-
state model including all permutations of single satellite states, such as ’good good good’,
'good good bad’, ’bad bad bad’ (cf. Section 3.2.1). Assuming two states per satellite, a
three-satellite constellation is thus described by eight joint states. The performance of a
‘straightforward’ state model for three satellites is analogue to the dual-satellite case: a first-
order Markov model accurately describes the state probabilities and mean state durations of
single and joint states; a dynamic Markov model additionally describes accurately the joint
SDPDFs (cf. Table 3.1). However, the parameters for a three-satellite model according to the
straightforward method can only be derived, if a corresponding joint state sequence with eight
states is available. As the state parameters depend on the environment type, the elevation
angle of each satellite and the azimuth separation between the satellites, a straightforward
parametrisation of a three-satellite model from RF measurement data including a suitable
set of satellite positions on the hemisphere is not feasible in practice.

A solution for that parametrisation problem is to use the Master-Slave concept for multi-
satellite modelling. Within Master-Slave it is assumed that each slave satellite depends only
on a master satellite, whereas the correlation between the slaves is not described. Possible
implementations for the concept Master-Slave with two satellites, i.e. one master and one
slave, are described in Section 3.2.5. A Master-Slave constellation with three satellites is
shown in Figure 3.25. It is built of two independent dual-satellite channels, which parameters
are available in the dual-satellite state database. Thus, Master-Slave allows a state series
generation for arbitrary constellations of three satellites.

Master (1)

012 P13
Slave (2) Slave (3)
)23 M

Figure 3.25.: Master-Slave concept for three-satellite modelling. The slave satellites are modelled
according to the correlation to one master satellite, while neglecting the correlation between the slave
satellites. The Master-Slave concept has advantages in terms of model parametrisation compared to
the conventional approach, where each individual correlation is described.

It is not surprising that ignoring the correlation between the slaves could be a reduction of
relevant information in case of multi-satellite modelling. Therefore, this section focuses on
a performance analysis of Master-Slave with three satellites.

3.5.1. Exemplary Evaluation of Master-Slave With Three Satellites

Figure 3.26 shows an exemplary constellation of three satellites including correlation coeffi-
cients as obtained during SDARS measurements from the project MiLADY (cf. Appendix A).
Since the Master-Slave concept only considers the correlations between the master and slaves,
the simulation results depend highly on the definition of the master satellite. For this pur-
pose, two mappings (Mapping 1 and Mapping 2, as shown in Figure 3.26) are defined with
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3. Statistical Modelling of the LMS Channel, Part I: States

different positions of master and slave satellites. For these two mappings Figure 3.27 shows
re-simulation results of a Master-Slave approach in terms of correlation coefficients, state
probabilities and mean state durations. The approach ’ASTM-MT with Lutz parametrisa-
tion’ is selected as Master-Slave realisation (cf. Section 3.2.7). For comparison, the results
of a first-order Markov model (using a 8 x 8 STPM for 8 joint states) are also presented in
Figure 3.27.

It is obtained that the first-order Markov model allows an accurate description of correlation
coefficients between all satellites, of state probabilities, and of mean state durations for single
satellites states and combined states. The Master-Slave algorithm ASTM-MT is based on
the first-order Markov model as well (i.e. the conditional transition probabilities of the
slaves are modelled with first-order Markov chains). The result is that for Mapping 1 and
Mapping 2 the state probabilities of the individual satellites, the correlation coefficients
between master and slaves, and the mean state durations of the individual satellites are
modelled accurately.

Slaves are modelled independently within Master-Slave. The correlation coefficient between
the slaves pglaves depends on the individual correlation coefficients between master and slaves
(cf. Equation (B.74) in Appendix B.3) and minor on the applied Master-Slave realisation.

Mapping 1 is defined such that the correlation between the slaves is low (with pglayes =
p23 = 0.06). The larger correlation coefficients between master and slaves (p12 = 0.15 and
p13 = 0.40) provide some correlation of the slaves as well. Thus, in Mapping 1 the correlation
Pslaves, and consequently the joint state probabilities ("good good good’,...,’bad bad bad’) are
remodelled with high accuracy.

In Mapping 2 the correlation between the slaves is high (with pgaves = p13 = 0.40). Due
to small correlation coefficients between the master and the slaves (p12 = 0.15, p23 = 0.06),
Pslaves after remodelling is approx. zero and deviates strongly from the measurements. For
the application of system planning it should be noted that in case of describing an insufficient
correlation a higher diversity gain for the multi-satellite constellation will be predicted.
Hence, Mapping 2 suggests a lower probability of the combined state ’bad bad bad’ than
obtained from measurements. The corresponding probability error is AP,pp = 0.0247 in
this example, which falsifies the signal statistics of satellite diversity by several dB (cf. also
Chapter 5.2). Such a modelling error should be avoided. A solution to minimise the Master-
Slave error is an appropriate definition of master and slave satellites, which is focused in
Section 3.5.2 and Section 3.5.3.

The mean duration of the single satellites are accurately re-modelled with the selected
Master-Slave approach "ASTM-MT with Lutz parametrisation’. It holds for both mappings.
For the mean durations of the joint states some deviations are seen with respect to the
measurements for Mapping 1 and Mapping 2. The advantage of the appropriate mapping
(Mapping 1) is not seen for mean joint durations. As the Master-Slave implementation al-
ready does not accurately describe the mean joint durations of a dual-satellite constellation
(it is due to the Lutz approach, cf. Section 3.3), it does not work for three satellites.
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Figure 3.26.: Left: Appropriate mapping of a three-satellite constellation for the Master-Slave
approach (Mapping 1: master is on satellite position 1) — the correlation between the slaves is low.
Right: Inappropriate mapping of the three-satellite constellation (Mapping 2: master is on satellite

position 2) — the correlation between the slaves is high.
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Figure 3.27.: Correlation coefficient (left), state probability (middle), and mean state duration
(right) for the three-satellite constellation mappings (Mapping 1 and Mapping 2) from Figure 3.26.
Data is taken from measurements of 5.4km length in a suburban environment. Re-simulation with
Master-Slave gives the following results: Clearly, the resulting correlation coefficient between the
slave satellites deviates for Mapping 2. The joint state probability is modelled accurately in case of
Mapping 1, while Mapping 2 shows deviations. The mean state duration shows deviations for all
joint states. (notation of states: g../good’; b...bad’; ggg ... ’good good good’, etc.)
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3.5.2. State Probability Analysis of a Three-Satellite System

This section focuses on the performance of the Master-Slave approach for three satellites.
Quality criterion is the deviation of the joint ’bad’ state probability (APup), depending on
the azimuth- and elevation constellation. Basis of the analysis is a three-satellite constellation
according to Figure 3.28. In the sequel, the master satellite is always referred to as index 1,
while indices 2 and 3 refer to the slaves. The constellation (and the mapping) is described
by the elevation angles ¢1, ¢2, and ¢3 and the azimuth angle separations A6, Afy3, and
Afs3. According to the Master-Slave approach, only the correlations between master and
slave are described (p12 and p13), while the correlation between the slaves (pa3) is neglected.
In the following, the consequences of neglecting the correlation pog are investigated.

Figure 3.28.: Three-satellite constellation for the Master-Slave analysis with elevation angles ¢,
azimuth angle separations Af, and correlation coefficients p.

Influence of the Azimuth Angle Separation

Figure 3.29 shows the state correlation coefficient pgiates between two satellites in depen-
dency on their azimuth angle separation A# in the urban environment with elevation angles
¢1 = ¢o = 15°. For the subsequent analysis, the measured pgates known from dual-satellite
analysis (Section 3.4.2) are extrapolated to the interval 0° < Af < 180° and are extended
to A < 360° due to a symmetry at A0 = 0° and Af = 180°. This extension is appropriate
as the driving direction can be assumed as equally distributed between 0° and 360°. In Fig-
ure 3.29 it is indicated that the Master-Slave approaches Conditional Assembling Method and
ASTM-MT accurately re-simulate the correlation coefficients for the two-satellite constella-
tion master & slave. This result for dual-satellite reception is basis for the three-satellite
analysis of Master-Slave.

Figure 3.30 shows the correlation coefficient p3 from measurements and from Master-Slave
in dependency on the azimuth angle separations Af15, Af3, and Afss. The calculation of
the slave correlation coefficient pgaves = p23 with ASTM-MT is given in Equation (B.73)
in Appendix B.3.2. The correlation error is given by psiaves = |023,measured — P23 Master-Slave| -
Clearly, this correlation error is large when the two slaves come close to each other (Af2 ~
Af13) — except one slave is close to the master.

Besides the state correlation, for designing mobile satellite communication systems an im-
portant parameter is the probability of all satellites being in ’bad’ state, that is Pypp. It char-
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Figure 3.29.: State correlation coefficient psiates between two satellites in dependency on the azimuth
angle separation Af derived from measurements and re-calculated with Master-Slave for the urban
environment with ¢1 = ¢o = 15°. The Master-Slave implementations Conditional Assembling Method
as well as the ASTM-MT approach accurately re-simulate the correlation coefficients for the two-
satellite constellation master & slave.
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Figure 3.30.: Correlation coefficients between the slaves (po23) in dependency on the azimuth angle
separations Afq2, Af13, and Af>3 from measurements and re-calculated with Master-Slave. A3 is
kept constant in each subfigure. The elevation angles are ¢ = ¢o = ¢3 = 15°.

acterises the probability of service unavailability for the entire system and requires special
attention, therefore. In contrast to the reference value for the slave correlation pa3 measured,
which is available in the dual-satellite measurement database, the probability Pipb measured
can only be analytically estimated for various satellite constellations. In Appendix B.3.3 the
reference joint probability Pypb reference 18 calculated such, that the individual state proba-
bilities of three satellites and the correlation coefficients p12, p13, and pog are fulfilled. The
result is a small range of valid joint probabilities Pybh, min < FPobb, reference < Fobb, max- AS
final reference probability Ppp, reference the average of minimum and maximum is selected.
A quality measure of the three-satellite analysis with Master-Slave is the probability error
APypb = |Pobb, reference — Pbbb, Master-Slave|, Where the calculation of Pypp, Master-Slave 1S given

in Appendix B.3.2.

The reference probabilities and re-simulated probabilities Py, in dependency on the az-
imuth separation are given in Figure 3.31 for the urban environment. Additionally the
minimum and maximum curves of the reference probabilities are shown. The uncertainty of
the Pibp, reference 18 Up to ~ 0.05. It is seen a reference joint probability of Py, ~ 0.8 if all
three satellites are co-located (i.e. Af = 0°, A¢p = 0°) and Pypp ~ 0.6 if two of the three
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satellites are co-located. Using the Master-Slave approach, the highest probability error of
APy, &~ 0.15 is obtained when the azimuth separation between the slaves is zero.
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Figure 3.31.: 'bad bad bad’-state probabilities (Pypp) of three satellites for different azimuth angle
separations A6 derived from theoretical analysis and re-modelled with Master-Slave. The elevation
angles are ¢1 = ¢ = ¢3 = 15°, where the ’bad’-state state probability of each individual satellite is
P, =0.77 (cf. Figure 3.13, urban, measurements GNSS).

Influence of the Elevation Angles

Figure 3.32 shows the probability error AP, with Master-Slave in dependency on the
azimuth separations Af15 and Afi3 in the urban environment for three selected elevation
angle combinations of master, slave satellite 2 and slave satellite 3:

e The elevation angles of master and slaves are equal.

e The elevation angles of the three satellites are different, whereas the master is at the
lowest elevation.

e The elevation angles of the three satellites are different, whereas the master is at the
highest elevation.

For one elevation angle combination (one subfigure in Figure 3.32) all possible azimuth
separations of a three-satellite system are displayed. The following observations are made:

e Assuming constant elevation angles (represented by one subfigure), the error APy, is
maximal for a low azimuth separation between the slaves, while some azimuth separa-
tion to the master exists. If the elevation angles of three satellites are equal, this error
can be avoided by redefinition of the system such that the low azimuth separation is
between the master and one of the slaves.

e A great performance difference is seen between the constellations ¢1 = 15°,¢o =
25° ¢35 = 35° and ¢1 = 45°,¢9 = 45° ¢35 = 15°. Although the elevation angles
are equal, for the second Master-Slave elevation mapping the probability errors are
significantly smaller with respect to the azimuth angle constellations. It is concluded
that a high elevation of the master is beneficial.
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Figure 3.32.: Difference between measured and resimulated 'bad bad bad’-state probability (A Pybp)
for different elevation angles (¢1, @2, ¢3) and azimuth angle separations (A6, Aby3). The master
is satellite 1.

3.5.3. Optimal Mapping of Three-Satellite Constellations for Master-Slave

Based on the previous results, in this section a strategy is derived to find an optimal mapping
of master and slave satellites. It is found that constellations are appropriate when:

e there is a small azimuth separation between master and one of the slaves (A g 10°).
e a small azimuth separation between the slaves is avoided (Af Z 30°).
e the master has a higher elevation than the slaves.

An optimal Master-Slave mapping targets the definition of the master. The definition of
the slave-order has no effect. Given the three-satellite constellation from Figure 3.28, three
options to define the optimal master are relevant:

1. The optimal master is found by maximising the azimuth separation between the slaves
Abg)aves Within the range [0°; 180°]:

mgx{AHSlaves(master = Sx)} (3.45)

with
Abss master = S1
Abglaves = § Ab13, master = S2 (3.46)
Abqo, master = S3

This method allows a fast decision if all satellites have similar elevation. However, if
the satellites have some noticeable elevation separation, this mapping criterion fails.

2. The optimal master is found by detecting the constellation with lowest probability
error AP, pp.
mmin{APbbb(master =Sx)} (3.47)

3. The optimal master is found by the constellation providing the minimal correlation
error between the slaves Apglaves:

nlgn{Apslaves(master = Sx)} (3.48)
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with
P23 — P23,MasterSlave » master = S1
Apsiaves = { P13 — P13,MasterSlave ; master = S2 (3.49)
P12 — P12,MasterSlave » master = 53

For the two latter mapping criteria the probability error AP, is analysed for different
azimuth and elevation angle combinations in Figure 3.33. Using the mapping with minimised
APy, it is seen that still constellations exist with a probability error of APy, ~ 0.035.
For a great number of constellations the error is APy, < 0.015. If the correlation error is
minimised, the probability errors are generally greater. There are constellations with errors
APypp = 0.04 and a great part of constellations with error APy =~ 0.02.
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Figure 3.33.: AP, from Master-Slave with optimised mapping for a three-satellite constellation
in dependency on the azimuth separations Afi5 and A#,3 for different elevation combinations. An
optimal mapping of the Master-Slave constellation is found by either minimising A Py (top), or min-
imising Apglaves (bottom). For a comparison with Figure 3.32 (results without optimised mapping),
note that the color scaling is different and a further elevation combination is added.

It is not surprising that the mapping criterion 'minimum of AP’ provide the lowest proba-
bility error after optimised mapping. However, the Master-Slave mapping with lowest prob-
ability error AP}, does not necessarily provide the minimal probability error for other joint
states, such as Pyge — all satellites are in 'good’ state. When the correlation error Apgayes
is minimised, then it is ensured that the error of all (eight) joint probabilities are jointly
reduced. For this purpose, the minimisation of Apgaves 1S the more robust and therefore
preferred method for the Master-Slave mapping with three satellites.

Also with optimised mapping it is noteworthy that the error with Master-Slave is not zero. To
assess the consequence of the Master-Slave error in context of an LMS model implementation,
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the fading statistics of a three-satellite model using Master-Slave are analysed in Chapter 5.2.
The author recommends to interpret the results for three-satellite diversity with caution, if
the probability error AP,,p is greater than the regarded signal unavailability. To analyse,
for example, a signal availability of 99%, the probability error should be APy, < 0.01.

3.5.4. State duration modelling with Master-Slave

Two implementations are developed and described in Section 3.2.5, the Conditional Assem-
bling Method and the method ASTM-MT. The main difference is found with respect to
the state duration modelling. For two satellites, the recommended Master-Slave approach is
ASTM-MT, option Lutz (cf. Section 3.2.5). It allows an accurate description of the mean
state durations of the single satellites. If the master is modelled by a semi-Markov chain,
also accurate state duration statistics of the master are provided. In this section the state
duration modelling of ASTM-MT, option Lutz for three satellites is addressed.

Figure 3.34 shows the state duration statistics of the joint states ’good good good’ and
'bad bad bad’ and of the single satellites’ ’bad’-states derived from measurements and re-
simulated with different state algorithms. Measurement data is taken from a mixed rural
environment of 23 km length with satellite positions ¢; = 38°, ¢9 = 23°, ¢35 = 62°, Abo =
34°, Af13 = 132°. (Satellite 1 and satellite 2 are equal to Section 3.3).

Two variants of a three-satellite model with Master-Slave are proposed to re-simulate this
scenario:

e 21 Master-Slave: After an appropriate Master-Slave mapping, the master satellite it is
modelled by a first-order Markov chain. Two slaves are modelled independently using
ASTM-MT (option: Lutz).

e Dual-Sat € Master-Slave: The state series of two satellites are jointly modelled by the
recommended dual-satellite approach ’semi-Markov, lognormal fit & Lutz, empirical’.
Therefore, it must be ensured that one of the satellites is the optimal master. The
second satellite can be arbitrarily chosen. The remaining satellite (slave) is modelled
with respect to the master using the approach ASTM-MT.

The optimal master in Figure 3.34 is satellite 1 and found by minimising the correlation error.
For comparison, the results of the straightforward first-order Markov model are presented as
well.

The following results are gained from Figure 3.34:

e Since the variant 2 x Master-Slave uses a first-order Markov model for master and for
the conditional slave transitions, the state duration statistics of the single satellites
from 2 x Master-Slave are in high agreement with the statistics of the straightforward
first-order Markov model. Also the joint duration statistics for ’good good good’ and
'bad bad bad’ are similar between 2 x Master-Slave and the first-order Markov model.

e With the variant Dual-Sat € Master-Slave two satellites are modelled by a semi-Markov
chain which provides a well-approximated description of the single-satellite state du-
ration statistics. This is obtained for satellite 1 (master) and satellite 3 (exemplarily
selected) in Figure 3.34. The duration statistics of the remaining satellite 2, it is the
slave, are similar to the first-order Markov model due to similar implementation.
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Figure 3.34.: State duration statistics of the joint ’good good good’ and "bad bad bad’-state and the
single satellite ’bad’-states derived from the measurements and re-simulated with different modelling
approaches.

e The dual-satellite semi-Markov model provides an accurate re-simulation of the joint
duration statistics of two satellites, satellite 1 and satellite 3 (not depicted in Fig-
ure 3.34). This changes the joint state duration statistics of three satellites as well. It
is obtained that the constellation Dual-Sat & Master-Slave is able to simulate longer
joint state durations than the first-order Markov model. For the joint state 'good good
good’ the variant Dual-Sat & Master-Slave provide therefore a better approximation
of the SDPDF than the approach 2 z Master-Slave. However, both simulation variants
of Master-Slave are not able to accurately describe the joint duration statistics of three
satellites.

Analogue to the dual-satellite case, the most accurate model in terms of state duration
modelling is the straightforward dynamic Markov model. However, due to challenges in terms
of LMS model parametrisation, alternatives to the straightforward methods are required. For
dual-satellite modelling, alternative approaches based on the Lutz method are found. For
state series generation of three satellites, the only available alternative to the straightforward
methods is Master-Slave.

An accurate state duration modelling becomes relevant, amongst others, if time diversity of
a satellite system is analysed. A corresponding evaluation of Master-Slave in context of the
complete LMS model considering different interleaver lengths is presented in Chapter 5.2.
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3.5.5. Conclusions on Multi-Satellite State Modelling

In this Section 3.5 a performance evaluation of Master-Slave for a three-satellite system is
carried out with a focus on state probability modelling. Therefore, measured correlation co-
efficients between the satellites are compared with re-calculated correlation coefficients from
Master-Slave in dependency on the elevation angles and the azimuth angle separations of
the three-satellite system. The difference between the measured and re-simulated correlation
coefficient between the slaves is defined as correlation error. Furthermore, the probability
of the state 'bad bad bad’ (Pypp,) resulting from Master-Slave is compared with a theoretic
estimation of Py, from measurements. The difference of Py, from Master-Slave and from
measurements is defined as probability error.

It is obtained that Master-Slave has a high probability error in case of a low azimuth sepa-
ration and therefore a high correlation between the slave satellites. Furthermore, a master
satellite with a high elevation provides a lower probability error compared to a master with
low elevation. The probability error with Master-Slave can be mitigated by an appropriate
definition (mapping) of master and slave satellites. To find the master, it is proposed to
select the mapping with the lowest correlation error between the slaves.

Master-Slave is a generic name for a modelling concept, for which different realisations can be
applied. Two implementations are developed and described in Section 3.2.5, the Conditional
Assembling Method and the method ASTM-MT. Based on a dual-satellite scenario, it is con-
cluded in Section 3.3 that these Master-Slave implementations are indeed accurate in terms
of state probability modelling, but are less accurate in terms of state duration modelling
than other dual-satellite algorithms. Therefore, to improve the state duration modelling it
is beneficial to use Master-Slave in combination with another state algorithm:

e First, one of three satellites are selected to be master (by considering the mapping
guidelines).

e Second, state series of two satellites are generated with the recommended dual-satellite
model ’semi-Markov, lognormal fit & Lutz, empirical’, whereas one of the satellites is
the master.

e Third, the remaining slave satellite is generated with a Master-Slave approach. The
recommended algorithm is ASTM-MT, which provides correct state probabilities and
correct mean durations for the slave satellite.

The combination of ’dual-satellite & Master-Slave’ has the advantage, that the duration
statistics from at least two of three satellites are accurately modelled. However, the joint
duration statistics are only roughly estimated, and an accurate description of joint duration
statistics is not possible.

The necessity of the Master-Slave approach depends on the purpose of the LMS model. For
an accurate re-simulation of synchronously measured signals of three satellites, the straight-
forward dynamic Markov model is the recommended state model. For coverage studies of
three-satellite diversity systems for satellite positions and environments, where measurement
data is not available, the Master-Slave approach is required. To the best knowledge of the
author, there is no other three-satellite model available for this task.
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4. Statistical Modelling of the LMS Channel, Part Il: Slow- and
Fast Variations and Model Implementation

For a new multi-satellite channel model the versatile two-state model from [PFSLCn07]
[PCPFBT10] is taken as a baseline (cf. Figure 2.7, Chapter 2.3.5). It describes two states
'good’ and 'bad’ to assess the large-scale environmental features in the transmission path,
which is focused in the previous Chapter 3, and Loo distributed fading to describe the slow-
and fast signal variations within the states.

In this chapter the Loo distributed fading within the states is addressed. It includes a
slow fading component (lognormal fading) due to varying shadowing conditions of the direct
signal, and a fast fading component (Rice fading) due to multipath effects. The Loo model is
described by three parameters M4, ¥ 4, and MP (Equation (2.16)), denoting the mean and
standard deviation of the lognormal component (on a dB scale) and the multipath power,
respectively. Following the versatile two-state model, after each state transition a random
Loo parameter triplet is generated. The statistical distribution of Loo parameter triplets
depends on the current state and the receive environment of the terminal.

In the first part of this chapter, a verification of the basic LMS model architecture for single
satellite reception (i.e. the versatile two-state model) is performed based on the satellite
propagation data which is available for this work. In the second part, dependencies of slow-
and fast variations between two satellites are identified. Finally, a model structure and a
generator implementation for multi-satellite reception is proposed.

4.1. Analysis of Slow- and Fast Signal Variations for a Single Satellite

When the channel model enters a new state, a new Loo parameter triplet (My, ¥4, and
MP) is generated following a statistical process. For this purpose, Loo parameters are
estimated from measurement data by curve-fitting within intervals of a state duration (cf.
Appendix A.5). Figure 4.1 shows the distribution of the Loo parameters for an exemplary
scenario. In general the modelling approach as observed in [PCPFB™10] can be confirmed:

e The distribution of M4 can be approximated by a normal distribution with mean g
and standard deviation o7:

My ~ N1, 0?) (4.1)
e Y 4 has a conditional normal distribution with respect to parameter M 4:
YalMy ~ N(MQ,O'%) with

Ho = al-Mf‘—l—ag-MA—i—ag (4.2)
bl'Mi+b2'MA+b3

02
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e The distribution of MP can be approximated by a normal distribution and is indepen-
dent from M, and ¥ 4:

2
MP ~ N (3, 03) (4.3)
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Figure 4.1.: Joint distributions and marginal distributions of Loo parameters. MP versus M4 (left).
Y4 versus M, (right).

4.1.1. Dependency of Loo Parameters on the State Length

For the description of the signals temporal evolution, the dependency of Loo parameters on
the current state duration is analysed. Exemplary, but representative results for multiple
receive scenarios are shown in the Figures 4.2, 4.3, 4.4.

It is obtained that the spreading of parameters M4, ¥ 4, and MP is greater for short state
durations than for long state durations. As long events dominate the overall signal statistic,
it is found to be effective to capture the distribution for M4, ¥ 4, and MP by considering the
weight of the current state duration. Thus, it makes firstly no difference if Loo parameters are
estimated within equidistant intervals or intervals with variable length. Secondly, statistical
outliers resulting from the Loo-fitting are compensated.

For the mean of the lognormal fading M4 a dependency on the current state length Dgiate is
obtained in Figure 4.2 for ’good’ as well as for the 'bad’ state. For the 'bad’-state a long state
length has a deeper fading than short shadowing events. This effect is expected due to the
terminal being deeper in the diffraction zone behind large objects. Short shadowing events
on the other hand due to foliage and trees lead to only light shadowing. As a threshold (5dB
below LOS, cf. Appendix A.4) is defined to separate ’good’ from ’bad’ states, it is rather
random if short and light shadowing events are assigned to ’good’ or 'bad’. To include this
state duration dependency for short events into the model, the following modification for
the Loo parameter generation is proposed (cf. Figure 4.5):

F(Ma) ~ N(i,o?)  with

/

_ 4.4
/1/1 — ao + bo . CO Dstate ( )
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Figure 4.2.: Loo parameter M4 versus state length for the 'good’ and ’bad’ state
’bad’ state

’good’ state

z, [dB]

40 60 80 100 20 40 60 80 100
state length [m]

0 20
state length [m]

Loo parameter X 4 versus state length for the 'good’ and ’bad’ state.

Figure 4.3.:
‘good’ state ’bad’ state

10

MP [dB]

80 100

20 40 60 80 100 0 20 40 60
state length [m] state length [m]

Figure 4.4.: Loo parameter M P versus state length for the 'good’ and ’bad’ state

To reduce the number of additional parameters, it is proposed to set a9 = p1 according to
Equation (4.1), (ap + bo) is the mean value of y1, and pyp, and ¢ is globally defined and
valid for all receive scenarios. (cog = 2.0 and ¢op, = 1.1 are found to be appropriate)

ao+b0 —

aog —

state length [m]

Figure 4.5.: Dependency of M4 on the state length: Modelling approach.
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As those effects, observed for My, are minor significant for ¥4 and MP (Figure 4.3, Fig-
ure 4.4), no further dependencies to the state duration are considered.

4.1.2. Analysis and Implementation of Doppler Phenomena

In the project MIMOSA [EBW ' 11] that ran parallel to this work, measurements were carried
out in the area of Erlangen (Germany) to capture channel impulse responses in S-Band
(2.2 GHz) from a geostationary satellite located at 10° East. Goal of these measurements was
to characterise the dual-polarised MIMO LMS channel. Amongst others, Doppler spectra
were analysed and are provided for this work.

Figure 4.6 shows exemplarily the power spectral density of the measured series and the
Doppler spectrum after normalisation to the direct signal. The latter case represents the
spectrum for constant mobile speed and driving direction. The normalised spectrum is
the interesting one, since the mobile speed and the driving direction are intended to be
parameters of the LMS model. The following conclusions for the implementation of Doppler
phenomena in the LMS model can be drawn:

e Multipath components, that arrive the receive antenna equally distributed between
0 and 27, experience a Doppler spread in case of vehicle movement. This Doppler
spread can be appropriately described by using a Butterworth filter, whose bandwidth
depends on the vehicle speed. It is proposed in [PCPFB*10] and also confirmed by
the measurement results in Figure 4.6.

e The location of the direct signal component within the Doppler spectrum depends on
the driving direction relative to the satellite 0, the satellite elevation ¢, and the vehicle
speed Umobile- 1t holds

[Ddir = Vmobile * fe/c - cos ¢ - cosd (4.5)

with carrier frequency f., and speed of light ¢. This fact was already described
from Fontan et al. in [PFBAT08]. However, the implementation of the direct sig-
nal’s Doppler shift is missing in the proposed model generators in [PFSLCn07] and
[PCPFB*10].

e A joint Doppler shift of all signal components is induced by satellite movement. In
this case, the speed of the satellite relative to a fixed earth observation point in the
area of the vehicle is important.
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Figure 4.6.: Power spectral density of measured and re-simulated signals for a suburban environ-
ment. The Doppler shift of the direct signal component within the spectrum depends on the driving
direction with respect to the satellite (). A Butterworth filter is used for multipath Doppler spread.
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Parameters are ¢ &~ 35°, 0 =~ 12°, vyopite & 7.5m/s, f. = 2.2 GHz.

4.2. Single-Satellite Model Implementation

To generate timeseries of the complex envelope of the received signal, Figure 4.7 shows an
implementation diagram of the narrowband LMS channel model for single satellite reception
proposed from this work. A separation into three generator types is found to be appropri-

ate:

1. The state sequence generator (SSG) simulates series of 'good’ and ’bad’ states

by using a semi-Markov model [BT02]. This approach provides an accurate modelling
of the state duration and the state probabilities. In the context of this work it has
been shown that a lognormal distribution is a good approximation to describe the
state duration distributions for both states. A detailed comparison for different state
modelling approaches in terms of LMS modelling is done in Chapter 3.

Parameters for the SSG are mean and standard deviation of the lognormal state du-
ration distribution pp,; and opy for 'good’ and ’bad’ state. A momentary output of
the SSG is a state @ (i € {g,b}) of a certain duration D;.

. The propagation parameter generator (PPG) generates random Loo triplets
(M4, ¥4, and MP) after each state transition according to Equations (4.1)-(4.4).
For M4 a statistical dependency on state durations is proposed. This modification
with respect to the initial literature model [PCPFB*10] is indicated in Figure 4.7. An
evaluation of the overall signal output with respect to this modification is done in next
Chapter 5.

. In the small-scale fading generator (SSFG) Loo distributed timeseries including
Doppler shaping are generated. Two modifications with respect to the Loo generator
implementation in the literature [PFSLCn07][PCPFB*10] are found to be necessary:
Firstly, the interpolation of the normally distributed samples (block "Rate conversion &
interpolation’) is done before a conversion into lognormal distributed samples (block
104/ 20%) is performed. Thus, a lognormal distribution for the slow signal variations
is ensured after interpolation as well. Secondly, an additional Doppler shift of the
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lognormal varying direct signal is included, which is related to the vehicle speed and
depends on the driving direction of the vehicle. After summation of lognormal fading
and Rice fading, a Doppler shift due to satellite movement is done.

Figure 4.8 shows the simulation chain including the SSG, PPG and SSFG. Output of
this generator is the complex envelope of the received signal. It follows a stationary Loo
distribution for the time of a state length and switches to another Loo distribution after
a state transition. To avoid sharp changes of the signal between ’good’ and ’bad’ states,
a smooth state transition is implemented allowing a maximum slope of 5dB/m for the
lognormal signal, as proposed in [PCPFBT10]. An overview on required parameters for a
single-satellite model is given in Table 4.1.

State Sequence Propagation Parameter Generator (PPG)
Generator (SSG)
,,,,,,,,,,,,,,,,, N(Hhﬁwz)
i i Ma
! 1= (Dstate, @0, bo, C) = B A~ >
Lo
Ma
Hpur, Opur Y N(p2,627)
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Figure 4.7.: Implementation of State Sequence Generator, Propagation Parameter Generator, and
Small-Scale Fading Generator for LMS timeseries generation. Modifications with respect to the
existing two-state literature model are indicated in blue.
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Table 4.1.:

Model parameters for single satellite narrowband LMS model.

(adapted

from [PFSLCnO07|[PCPFB*10]). Bold printed values are to be estimated from measurement data
and accordingly are required for simulation. Other parameters are calculated.

parameter secondary parameter | description values
(in SSFG)
Ma H1,071 O mean of lognormal fading and distribution pa- | Table C.1,
ag, bo, co, 01 (Eq.4.4) rameters
Ya ai,az,a3,by,bs,bs standard deviation of lognormal fading and dis- | Table C.1
tribution parameters
MP U3, 03 multipath power and distribution parameters Table C.1
D UDurs ODur state duration and distribution parameters Table C.2
or Ta-
ble C.3
Dinin a minimum state duration of 1m is assumed in | 1m
this work
feshe carrier frequency, carrier wave length
Vmobile constant mobile speed
fo Umobile, Ac minimum sampling rate 8Umobile /e
Leorr correlation distance = lognormal fading sam- | 2m for S-
pling period band
fpair &, 0, Viobiles fe Doppler shift of direct signal
fDmax Umobiles fe maximum Doppler shift
Doppler Butterworth filter with a maximum ripple of
spread filter 3dB up to 0.9Umobile/Ac and an attenuation of
100dB at 3vmobite/Ae [PCPFBT10]

4.3. Correlation of Fast- and Slow Variations Between Two Satellites

Correlation between two satellite signals is not only expected in terms of LOS and non-LOS
conditions (states), but also for the specific attenuation of the direct signal or the amount
of multipath propagation in the local area. Therefore, with respect to the given LMS model
architecture, the interdependency between Loo parameters of two satellite signals has been
analysed and presented in [KATH12]. They are derived from synchronous and equidistant
intervals of 30 A. length (=~ 3.8 m) from two measured satellite signals.

Figure 4.9 shows exemplarily the conditional dependency of the Loo parameters M4, X 4,
and MP between two satellites for an urban environment. For comparison the mean power
for same statistical intervals is given. Measurement data from two geostationary satellites
with ¢1 ~ 37°, ¢9 = 24°, and Af =~ 34° have been analysed. To assess additional correlation
effects besides the state correlation, a separation into four joint states is performed. In case of
My as well as for the signals mean power, for the joint state 'bad bad’ a correlation between
two satellite signals is obvious in Figure 4.9. For this purpose, correlation coefficients for
the Loo parameters have been derived in [KATH12] for all joint states and three different
environment types. Results are depicted in Figure 4.10. In urban and highway environments,
the correlation coefficients of M4 and MP for state ’bad bad’ go up to ~ 0.75 and ~ 0.5,
respectively. Hence, for LMS modelling the correlation for M4 and MP can not be neglected.
Also for mixed states ("bad good’, ’good bad’) correlation coefficients above 0.25 are obtained
in Figure 4.10. Since the signals have different shadowing conditions (states), a correlation
for mixed states is not expected and a statistical significance has to be checked therefore.
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Correlation coefficients for X 4 are rather low with p < 0.2 and need not to be considered. As
> 4 is modelled by conditional distribution to parameter M4, a dependency between X 4 sq11
and Y 4 sqs2 is indirectly provided in case of introducing a correlation of M 4.

For a dual-/multi-satellite LMS model, the relation between Loo parameters of two satel-
lites can be introduced by either defining conditional distributions, or in terms of correlation
coefficients. The latter approach is recommended, as only one additional parameter is re-
quired.
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Figure 4.9.: Joint distribution of statistical parameters (from left to right: mean normalised power,
M4, ¥4, MP) between two satellites for an urban environment. Joint states are indicated by different
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Figure 4.10.: Correlation coefficients according to Pearson (*) and Spearman (o) for mean power
and Loo parameters for different environment types urban (U), suburban (S), and highway (H)
separated into four joint states. The Spearman’s coefficient is more robust against statistical outliers
and proposed for further analyses.

On Extraction of Loo Parameter Correlation Coefficients From Measurement Data

In [KATH12] and [ALAKO3] it was stated that the Loo parameter estimation from mea-
surement data is a complicated process. As a separation of a slow and fast varying signal
component, e.g. by filtering, is not possible from field strength data, the curve fitting pro-
cedure is found as the only reliable approach. However, different triplets of Loo parameters
provide very similar statistical distributions [KAIH12], which avoids a precise estimation of
My, ¥4, and MP.

Nevertheless, Loo parameters are commonly used to describe the single satellite reception.
As indicated above, for multi-satellite reception a correlation coefficient for M4 between
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two satellite signals needs to be derived. Results in [KAIH12] indicate, that the mean
values of the overall signals provide similar correlation coefficients as the Loo parameters
My (see also Figure 4.10), although their absolute values are different. Consequently, pas,
can be estimated alternatively by using pmean signal and makes a complicated Loo parameter
estimation for the parametrisation of numerous dual-satellite receive scenarios unnecessary.
In practice, an estimation of pys, is also possible with measurement data of low resolution

and dynamic range (such as GNSS signals, cf. Appendix A), where multipath fading is not
obtained and a Loo parameter estimation is not possible.

Figure 4.11 shows the correlation coefficients of the mean signal power in dependency on the
azimuth angle separation and for selected elevation angle combinations derived from GNSS
data. It is obtained that high correlation coefficients with p ~ 0.9 occur for states ’'good good’
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Figure 4.11.: Correlation coefficients of mean C/N values from two satellites within the joint states

in dependency on the azimuth separation and for different elevation angle combinations derived from
GNSS measurements.

and ’bad bad’ in case of low angular separation in azimuth and elevation (A6, A¢ < 10°).
For azimuth separations above 10° these values fall rapidly to p < 0.4. At high elevations it
is noticeable that pge has a constant high level. The reason could be that the dynamic range
of the signal at high elevations is rather small, whereas short shadowing events, e.g. from
a bridge or a foliage over the street influence both signals synchronously. A further fact is
that the effective angular separation for, e.g. ¢1 = ¢po = 75° is significantly lower than for
¢1 = ¢o = 15° for constant Af. The statistical parameters for mixed states ’good bad’ and
'bad good’ are uncorrelated for all constellations and need not to be considered for LMS

99



4. Statistical Modelling of the LMS Channel, Part II: Slow- and Fast Variations and Model
Implementation

modelling.

By deriving these values from GNSS data, it is found that the correlation coefficients par,
are similar for different environment types. To consolidate the parameters with respect to
the satellite constellations, it is appropriate to omit a separation into different environments
at this point. Thus, the given values in Figure 4.11 are valid for all environment types. A
complete list for correlation coefficients pps, is given in Appendix C, Table C.5.

4.4. Introduction of Correlation Effects in the LMS Model

Signal correlation can be introduced at several stages in a dual-satellite LMS model:

e Correlation of states in the SSG: A correlation of state sequences is defined by com-
bined state probabilities and can be introduced by a state transition matrix of a Markov
model. This part of an LMS model is explicitly analysed in Chapter 3.

o (Correlation of Loo parameters in the PPG: The versatile two-state model assumes
random Loo parameters after a state transition. As a multiple of that triplets are
generated over the entire simulation distance following a statistical distribution, a
correlation of Loo parameters can be implemented.

o (Correlation of lognormal samples in the SSFG: Slow lognormal variations of the direct
signal and of the multipath components over several meters (defined by correlation
distance lcorr) are modelled in the SSFG. It corresponds to fading variations under
quasi-stationary conditions. A correlation of lognormal distributed samples between
two satellites can be realised before rate conversion as seen in Figure 4.7.

4.4.1. Implementation of Dual-Satellite SSG and PPG

An implementation of the SSG and the PPG for dual-satellite reception is shown in Fig-
ure 4.12.

In the SSG, a semi-Markov model generates a sequence of four joint states: 'good good’,
good bad’, 'bad good’, and 'bad bad’. Required parameters are the lognormal distribu-
tion parameters (upyr, 0pur) Of four joint states, and a state transition probability matrix.
The joint state sequence is decomposed into two state sequences to trigger the PPG of the
individual satellites.

Resulting from the analysis in previous Section 4.3, a correlation of Loo parameters M4 and
MP between two satellites is task of the PPG. As this Loo parameter generation must be
time synchronous for both satellites, a Master-Slave configuration is proposed. In case of
the master, the single-satellite LMS implementation from Figure 4.7 is used without any
modifications. It means, Loo parameter updates are done after state transitions between
good’ and "bad’. For the slave, a new Loo parameter triplet is generated after a joint state
transition of master and slave, as indicated in Figure 4.13. In an additional correlator
block within the slave-PPG, the normal distributed values of (My)slave and (MP)glave are
forced to be correlated to normal distributed values of (M4)master and (MP)master, respec-
tively, without changing their statistical mean and standard deviations (cf. Figure 4.12 and
explanation below).

100



4.4. Introduction of Correlation Effects in the LMS Model
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Figure 4.12.: Implementation of SSG and PPG for dual-satellite time series generation. A Master-
Slave configuration is used for the PPG.

Task of the Correlator

Assuming X7 and X5 are two sequences of uncorrelated normal distributed numbers with
X1 ~ N (p1,0%) and Xo ~ N (g, 03). A new sequence Ys calculated with

X1 — X9 —
o o () i (R,

o1 02

(4.6)

consists of normal distributed numbers with mean us and standard deviation o2 and have a
correlation coefficient p to sequence X;.
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Figure 4.13.: Realisation of a Loo parameter correlation between two satellites using a Master-Slave
configuration. The Loo parameters (here exemplarily only My) of the master are updated with its
state transitions, whereas Loo parameters of a slave are updated with joint state transitions of master
and slave. Each random slave value after a state change is correlated to the current master value.

4.4.2. Implementation of Dual-Satellite SSFG

In the SSFG a correlation of the lognormal variations between two satellites is introduced
over the time interval between two state transitions, where the individual fading mean and
standard deviations are constant. Assuming a Master-Slave configuration, a correlator in
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the slow-fading branch of the slave-SSFG realises a target correlation coefficient between
normal distributed master- and slave-samples (Figure 4.14). The conversion into lognormal
distributed samples as well as the sampling rate conversion is done afterwards.

It should be noted that the correlation coefficient between two lognormal series piogn is
different from the correlation coefficient of the corresponding normal series pnormar before
normal-to-lognormal conversion. The calculation piogn = f(pnormal) is described below.
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Figure 4.14.: Implementation of slave-SSFG (only slow-fading branch) for dual-satellite time series
generation. Lognormal samples of the slave are correlated with lognormal samples of the master.

Conversion of Correlation Coefficient Between Lognormal and Normal Series

Assuming two normal distributed series X7 ~ N(M7,%?) and Xy ~ N(My,¥3) and the
corresponding lognormal series z; = 1051729 and 2y = 10X2/29) " Ty realise a certain cor-
relation coefficient between the lognormal series (pz, z,), the following correlation coefficient
for the normal series (px, x,) is required:

I ( puyas - \/ (exp(0F) — 1) - (exp(c3) — 1) + 1
. P10z -/ (exp 1>m> (exp(03) — 1) +1) )

with
o1 = (31/20) - In(10), o9 = (32/20) - In(10) (4.8)

4.4.3. Dual-satellite LMS Model Parameters

Previous analyses result in the parameters in Table 4.2 required for a dual-satellite LMS
model. They are valid for the ’versatile LMS model’ and are to be applied in combination
with the parameters for single-satellite reception from Table 4.1.

4.4.4. Modelling Results for Different Types of Signal Correlation

To demonstrate the necessity of Loo parameter correlation and lognormal sample correla-
tion on top of state correlation, simulation results with five LMS model configurations are
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Table 4.2.: Required LMS model parameters in addition to Table 4.1 for the simulation of multiple
satellite signals.

l parameter [ description [ values ‘
Pstates correlation coefficient for state sequences Table C.4
PMy,gg 5 PMy,bb correlation coefficients for Loo parameter M4 in case of | Table C.5, denoted
joint state 'good good’ and 'bad bad’ with pge and pub
PMP,gg ; PMP,bb correlation coefficients for Loo parameter MP in case of | not available
joint state 'good good’ and 'bad bad’
Plogn,gg ; Plogn,bb correlation coefficients for lognormal fading samples for | Table C.5, denoted
the time of a state duration with pgg and ppb
(same values as for
pu, are used)

presented and analysed in this section. The following correlation configurations are consid-

ered:

1.
2.

independent: Two satellite signals are modelled independently.

corr. states: The state sequences — with 'good’ and ’bad’ states — of two satellites are
correlated (parameter pgiates). The state correlation (only) is used in almost every of
the dual-satellite channel models found in literature. For this purpose, the correlated
Markov model from Lutz is combined with independently modelled fade distributions
for ’good’ and ’bad’ state.

corr.statesédM 4: This configuration denotes the correlation of states as well as the
correlation of the Loo parameter M4 (parameter pys,). Therefore, correlated normal
distributions of the parameter M4 for both satellites are generated in case of ’good
good’ and ’bad bad’. It can be realised only if the state transitions of both satel-
lites are synchronised, e.g. by a Master-Slave configuration (cf. Figure 4.13). This
configuration considers the fact that satellite signals with a small azimuth separation
undergo same large-scale shadowing conditions due to similar or identical obstacles in
the transmission path.

corr. states€IM 4 Elogn.: This configuration denotes the correlation of states, the cor-
relation of Loo parameter M4, and the correlation of lognormal distributed samples
(parameter piogn). Such a full correlation has to be considered for very small angu-
lar separations, where the direct signal from both satellites is not only attenuated by
the same obstacles, rather the direct signal undergo synchronously same small-scale
variations of the same obstacle.

corr. states€IM o EMP Elogn.: Additionally to configuration 4, a correlation of the Loo
parameter MP (parameter pyp) is considered.

Figure 4.15 shows the CDF of the channel model output (C/N normalised to LOS-level) of
two single satellite channels simulated with equal model parameters (i.e. they have same
elevation) and of a maximal-ratio combined (MRC) signal such as in case of satellite diversity
after considering the five correlation configurations. From Figure 4.15 it is seen that the
highest diversity gain is achieved if both satellite signals are modelled independently. The
diversity gain is the difference between the CDF's of single satellites and the CDF of the MRC
signal at a constant ordinate. A state correlation (corr. states) reduces the satellite diversity
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gain. Obviously this gain reduction is smaller for deep fades ((C/N)yrc < —10dB) than
for medium fades (—10dB < (C/N)yre < —3dB). For deep fades ((C/N)yrc < —10dB)
a remarkable reduction of the diversity gain is obtained when states and Loo parameters are
jointly correlated in comparison to ’state correlation only’. A further diversity gain reduction
is achieved with additional lognormal fading correlation (corr. states€éSM 4€9logn.). The
additional multipath correlation (corr. stateséM 4 EMP €logn.), however, minor influences
the first-order statistic of the MRC signal and can be neglected. Amongst others it has the
advantage that the complicated MP estimation, and consequently the ppsp estimation, for
multiple dual-satellite environments is not necessarily required.

10°

sat1
sat2
********* sat1&sat2 (MRC), independent
— — — sat1&sat2 (MRC), corr. states
————— sat1&sat2 (MRC), corr. states & MA
( )s
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sat1&sat2 (MRC), corr. states & MA & logn.
— % — sat1&sat2 (MRC), corr. states & MA & MP & logn.
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Figure 4.15.: CDF of the channel model output including satellite diversity. An urban environment
with two satellites at 25° elevation is assumed. The correlation of signals is introduced at several
stages in the generator. To evaluate the contribution of different types of correlation, the correlation
coefficients are all set to p = 0.5 (i.e. pstates = PM4 = Plogn)- The dual-satellite simulations does not
influence the single-satellite statistics, as verified by the overlaid curves for satl and sat2.

The results indicate that a correlation of two satellite signals, as in case of small azimuth
separation, not only have to be considered in terms of states, but also in other parts of the
model. The additional contribution of Loo parameter and lognormal samples correlation
is as high as a state correlation in comparison to independent signals. By ignoring these
characteristics, a satellite diversity gain would be predicted too optimistic.
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This chapter targets to compare the performance of the new multi-satellite model with other
LMS models from literature. A comparison is done in two categories:

e Evaluation of the model architecture: Parameters for the proposed LMS model and
for other LMS models are derived from an exemplary measurement sequence. The re-
simulated signals of these LMS models are compared with the measurement sequence
in terms of first- and second-order statistics.

e Validation of model parameter sets: For some LMS models in literature comprehensive
parameter sets are given for different receive scenarios (environments, elevation angles,
etc.). A ’channel model & parameters’ comparison gives statements on the representa-
tiveness of the model. Furthermore, the feasibility and consistency of model parameter
sets are verified by, e.g. obtaining the model output for different elevation angles.

5.1. Evaluation of Model Architecture

In Chapter 2 different generative multi-state LMS models from literature have been pre-
sented. The structure of each can be composed of a state modelling part (e.g. Markov
model, semi-Markov model) and a fading modelling part (e.g. Rice, Loo, Suzuki with con-
stant or variable parameters). Considering a certain combination of state and fade modelling
concept, four architectures are compared in this section:

e 3-state model € constant Loo parameters: This architecture represents the three-state
model from Perez-Fontan et al. [PFVCC'01], which is used as reference for DVB-
SH analyses. The three states describe line-of-sight, moderate shadowing and heavy
shadowing conditions, whereas the fading in each state is characterised by a constant
set of Loo parameters.

e 2-state model & constant Loo parameters: Two-state approaches (with ’good’ and ’bad’
states) are commonly used for multi-satellite case [MPTE98] [BWL96] [PNIST11].
Different distributions are proposed to characterise the fading within the states (Loo,
Rice, Suzuki). For the subsequent comparison, a model architecture with constant
Loo parameters for both states is assumed, equivalent to the three-state Fontan model
above.

e 2-state model & wvariable Loo parameters: This model architecture is proposed in
[PFSLCn07] and [PCPFB*10] and is taken as basis for the LMS model in this work.
It assumes a random generation of Loo parameters after a state transition.

o 2-state model & wvariable Loo parameters considering state duration: In this work a
dependency of the Loo parameter M4 on the current state duration is found (cf.
Section 4.1.1), which is evaluated in this section.
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The four models are intended to re-simulate two dual-satellite scenarios that are exemplarily
derived from SDARS measurements (cf. Appendix A), which are

e an urban route with 10km length in Portland (Maine). Signals are taken from two
geostationary satellites with elevations ¢ =~ 24°,¢9 =~ 37° and azimuth separation
Af = 34°. In this section the short notation sat! and sat2 is used for the two satellites.

e a suburban route with 8.9km length in Portland. Satellite positions are same as for
urban.

Output of the channel models are time series of the carrier-to-noise ratio (C/N) at the mobile
terminal, which are compared with measured C/N data in terms of first- and second-order
statistics.

5.1.1. Model Parameters

The SDARS measurements are preprocessed to have LOS-normalised C/N series with a
spatial resolution of 1 cm per sample. The states are derived by thresholding of the low-pass
filtered series by using a sliding window of 5m length (cf. also Appendix A.4). Thresholds
are 5dB below LOS for the two-state models and 3dB and 10dB for the three-state model,
respectively. Similar values have been used in the literature in [BT02] and [PFVCB*93].

In case of the “3-state-’ and ’2-state model with constant Loo parameters’, global Loo triplets
are derived once for each state by fitting theoretical Loo distribution functions to the mea-
sured signal distribution. Parameters for two satellites for the selected urban and suburban
route are given in Table 5.1 for the three-state model and in Table 5.2 for the two-state
model.

Table 5.1.: Parameters of the ’3-state model & constant Loo parameters’ (in dB) for the urban route
(left) and the suburban route (right).

env | ¢ [°] | State Ma | Xa MP env | ¢ [°] | State My | X4 MP
U 23° 1 -1.25 | 0.79 | -15.13 S 23° 1 -1.06 | 0.52 | -14.22
2 -5.53 | 0.22 | -11.16 2 -6.51 | 0.13 | -10.96
3 -16.59 | 5.37 | -46.00 3 -13.89 | 3.78 | -33.18
U 37° 1 -1.20 | 0.65 | -13.83 S 37° 1 -1.39 | 0.54 | -13.64
2 -6.67 | 1.61 | -10.00 2 -6.80 | 2.18 | -10.00
3 -16.78 | 5.59 | -46.00 3 -13.19 | 4.36 | -20.32

Table 5.2.: Parameters of the 2-state model & constant Loo parameters’ (in dB) for the urban route
(left) and the suburban route (right).

env | ¢ [°] | State My Ya MP env | ¢ [°] | State Ma YA MP
U 23° 1 -1.78 | 0.76 | -12.74 S 23° 1 -1.92 | 0.64 | -11.32
2 -15.03 | 6.26 | -46.00 2 -10.89 | 5.25 | -46.00
U 37° 1 -1.54 | 0.61 | -12.36 S 37° 1 -1.73 | 0.68 | -12.69
2 -13.96 | 6.93 | -46.00 2 -13.17 | 3.80 | -10.00

In case of the models with variable Loo parameters, curve-fitting is applied within intervals
of a state duration to get multiple Loo-triplets for the 'good’ and the 'bad’ state. Finally, the
statistical distribution of M 4, ¥ 4, and MP for the ’2-state model € variable Loo parameters’
is parametrised according to Section 4.1. For the ’2-state model & variable Loo parameters
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Table 5.3.: Parameters of the ’2-state model & wvariable Loo parameters’ and the ’2-state model
& wvariable Loo parameters considering state duration’ for the urban route (top) and the suburban
route (bottom). The models differs in the description of parameter M,4. The former model uses
parameters p; and o1, whereas the latter model uses ag, by, cog and o; instead. Additionally the
correlation coefficients for Loo parameter Ma (par, ) and for the lognormal fading (piogn) are given
for combined states ’good good’ and ’bad bad’.

env My Y a(p2) Ya(o2) MP

=U S | u1 = ao bo Co o1 ai a as b1 ba b M3 g3

¢1=| 1 -1.75 | -6.82 | 2.00 | 1.10 | -0.01 | -0.21 0.65 0.02 0.03 | 0.30 | -18.72 5.91

23° 2 -15.39 6.82 | 1.10 | 4.52 | -0.02 | -0.61 | -0.99 | -0.00 0.06 | 2.00 | -37.50 | 10.47

P2 = | 1 -1.58 | -6.56 | 2.00 | 1.03 0.02 | -0.22 0.59 0.02 | -0.02 | 0.29 | -16.94 4.35

37° 2 -14.71 6.56 | 1.10 | 4.50 | -0.03 | -0.82 | -2.30 | -0.00 0.04 | 1.81 | -31.75 | 12.59
PMy g = Plognge = —0.21  pary,bb = Plogn,bb = 0.52

env Ma Y a(p2) Y a(o2) MP

=S s |1 =ao bo co o1 ai az as b1 ba bs "3 o3

¢1=| 1 -1.84 | -4.81 | 2.00 | 1.39 | -0.02 | -0.21 0.62 | -0.04 | -0.29 | 0.07 | -19.43 7.57

23° 2 -11.46 4.81 | 1.10 | 2.89 | -0.06 | -1.63 | -6.37 0.00 0.15 | 1.88 | -30.18 | 12.49

¢p2= | 1 -1.78 | -4.64 | 2.00 | 1.08 0.03 | -0.15 0.58 0.02 | -0.09 | 0.18 | -18.51 6.87

37° 2 -11.06 4.64 | 1.10 | 2.39 | -0.05 | -1.23 | -4.16 0.01 0.27 | 2.46 | -19.43 | 12.15
PM4,gg = Plognge = —0.08  pary bb = Plogn,bb = 0.19

constdering state duration’, the distribution parameters for M4 are estimated according to
Section 4.1.1. Parameters of both approaches are given in Table 5.3 for the selected routes.

State parameters for a semi-Markov model and a first-order Markov model and the corre-
sponding correlation coefficient are given in Table 5.4. They allow to generate dual-satellite
state series according to the ’first-order Markov & Lutz’ model (cf. Section 3.2.2) or the
'semi-Markov, logn. fit & Lutz, empirical’ model (cf. Section 3.4.3).

Further on, the correlation coefficients for the Loo parameters M, between two satellites
(par,) are derived in case of joint states 'good good’ and ’bad bad’ and are given in Ta-
ble 5.3. They are used again to correlate the lognormal distributed samples (piogn) within
the duration of a joint state.

Table 5.4.: First-order Markov parameters, semi-Markov parameters, and the state correlation
coefficient for the urban route (left) and the suburban route (right). The semi-Markov parameters are

given in dB (cf. Equation (3.6)). For the first-order Markov model, a state frame length of Ad = 1m
is assumed.

MDur,1 ODur,1 P11 P12 MDur,1 ODur,1 P11 P12
env=U HDur,2 ODur,2 P21 D22 env=>S HDur,2 ODur,2 P21 D22
¢1 = 23° 24.4924 | 12.9135 0.9803 0.0197 @1 = 23° 21.2042 | 11.3314 0.9629 0.0371

25.6407 | 11.1681 0.0228 0.9772 21.0838 | 11.6360 0.0360 0.9640
P2 = 37° 24.3232 | 12.0637 || 0.9768 0.0232 ¢po = 37° 24.4033 | 11.8197 || 0.9762 0.0238
21.6651 | 10.2973 0.0408 0.9592 18.5592 8.8108 0.0706  0.9294

Pstates = 0.3316 Pstates = 0.2885
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5.1.2. Model Validation in Terms of First-Order Statistics

Figure 5.1 shows the CDF of the line-of-sight-normalised C/N of two satellites from measure-
ments and from the re-simulated signal by applying four modelling concepts. To evaluate
satellite diversity, maximal-ratio combining (MRC) of the satellite signals is assumed. There-
fore, the C/Ns from both satellites are added. The MRC gain depends on the correlation of

the satellite signals, where a high correlation leads to a small MRC gain.
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Figure 5.1.: CDFs of measured and re-simulated normalised C/N from two satellites (¢ ~ 24°,
¢o ~ 37°, Af =~ 34°) and of the combined signal using MRC. Measurement data is taken from an
urban and suburban environment. Four LMS models are intended to re-simulate these dual-satellite
scenarios. For better visibility, the four models are split to the upper and lower figure.

Comparing the statistics for single satellites in Figure 5.1, the measurements are accurately
re-simulated by all three- or two-state models with constant or variable Loo parameter sets.
Deviations are below +1dB over almost the complete dynamic range for the urban and the
suburban test scenario.

For multi-satellite case, available LMS models assume a state correlation only. However,
simulation results with models 2-state / 3-state & constant Loo’ and '2-state € variable Loo
in Figure 5.1 demonstrate that the MRC gain is still too high when only state correlation is
considered. In the context of this work it has been found that also fading correlation within
the joint states 'good good’ and ’'bad bad’ exists (cf. Section 4.3). It holds also for the
selected urban route, where a non-negligible fading correlation coefficient in 'bad bad’-state
of ppp ~ 0.52 is derived (cf. Table 5.3).

2

In models with variable Loo parameters an additional fading correlation is introduced for
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Loo parameter M4 and for the lognormal samples as described in Section 4.4. In case
of algorithms with constant Loo parameters, this additional correlation is introduced while
generating the lognormal distributed samples. The improvement of the additional correlation
it is clearly seen in Figure 5.1, as the MRC curves for ’2-state & const. Loo’ and ’2-state
& wvar. Loo’ are clearly closer to the measurement results than the corresponding curves
considering ’state correlation only’.

Although the new multi-satellite LMS model has an improved description of fading corre-
lation, the re-simulated MRC signal in the selected urban scenario has still deviations from
the measurements. A possible reason is that correlation of multipath-fading exists, which is
not considered in the current model. Even though a correlation coefficient of the multipath
power (Loo parameter MP) is considered, the multipath (Rayleigh) fading generators of two
satellites are independent. A detailed analysis of such a multipath correlation requires a
clear separation of multipath fading, the fading of the direct signal component and the ther-
mal noise, which is very limited from the available field strength data and therefore out of
scope of this work. A further improvement for the MRC re-simulation in the urban scenario
may be achieved if more variability of the fading correlation between two satellite signals is
considered. The developed LMS model considers one average correlation coefficient between
the fading signals in case of the state '’bad bad’ In the reality, however, there may be ’bad
bad’-state sections of the route with high fading correlation (e.g. in case of two completely
blocked signals in tunnels) and sections with lower fading correlation (e.g, tree-shadowing).
The advanced modelling of the signal correlation requires further modifications of the LMS
model implementation and is task of future activities.

It can be concluded that the correlation of further signal elements in the LMS model besides
the states is essential to describe satellite diversity. Furthermore, all given models provide
similar performance in terms of first-order statistics and there is no preference. Differences
are expected by analysing the signals in time-domain (second-order statistics).

State Model and First-Order Statistics

The results in Figure 5.1 are independent from the selected state model, whether a first-order
Markov model, semi-Markov model, or dynamic Markov model is selected. In fact, the PDF
(and CDF) of the simulated signal depends on the state probabilities P and the PDF of the
signal P(r) within the states:

PModel(r) = Pstate1 - P(T)statel + Pitate2 - P(T)state2 + ...+ PstateN : P(r)stateN (51)

In Chapter 3 it has been shown that different state models provide to re-simulate exactly
the state probabilities for single satellites or combined satellites. With

Pstate7 Markov = 1 state, semi-Markov — 4 state, dynamic Markov (52)

follows

]DModel7 Markov(r) = ]DModel7 semi-Markov (T) = PModel, dynamic Markov(r) . (53)

109



5. Simulation Results and Model Validation

5.1.3. Model Validation in Terms of Second-Order Statistics
Average Fade Duration and Level Crossing Rate

The LCR and the AFD are common methods to statistically evaluate the signals development
over time, for which the term ’second-order statistics’ is equivalently used. They are shown
for the measurements and the re-simulated signals with four LMS models in Figure 5.2 and
Figure 5.3.

For urban and suburban test scenarios it is obtained that models with variable Loo parameter
generation more accurately re-simulate the LCR and the AFD of experimental data from
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Figure 5.2.: Level crossing rate from measurement data and from different LMS models for satellite 1,
satellite 2, and from the MRC signal of two satellites in an urban and suburban environment.
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Figure 5.3.: Average fade durations from measurement data and from different LMS models for
satellite 1, satellite 2, and from the MRC signal of two satellites in an urban and suburban environ-
ment.

a single satellite than constant Loo models. This better fit is also true for the combined
satellite signals.

The reason for greater second-order deviations for ’constant Loo parameters’ is possibly
caused by parameter estimation. A curve-fit alone may not be the best option for Loo
parameter estimation, as it does not consider the ratio of the statistical variation for slow
and fast fading components. As a consequence, a good Loo distribution curve-fit does not
necessarily lead to a good representation of the fading in time domain. In case of parameter
estimation for 'variable Loo models’ multiple curve-fits are applied. Thus, inappropriate Loo
parameter triplets (which cause mismatches for second-order statistics) are only a part of
the Loo parameter space and are possibly statistical outliers. In consequence, besides better
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performance for second-order statistics, 'variable Loo models’ are more robust in terms of
parameter extraction than the constant Loo models.

From the proposed model with “wariable Loo parameters considering state duration’ no re-
markable enhancement to the earlier ’2-state model & variable Loo parameters’ is gained for
AFD and LCR statistics.

For the results in Figure 5.2 and Figure 5.3 the first-order Markov approach is selected
as state model. As the first-order Markov approach as well as other state models (e.g.
semi-Markov, dynamic Markov) accurately re-simulate the average state duration, similar
AFD and LCR statistics are expected by applying different state models. Nevertheless, the
influence of the state model becomes apparent when time interleaving is evaluated.

Validation of Time Interleaving and Influence of the State Model

Besides the AFD and LCR, the temporal composition of the signal can be effectively vali-
dated by obtaining the CDF's when considering time interleaving. It is realised by a low-pass
filter (moving average) of the measured and/or simulated signal with a certain window size.

By evaluating the LMS models in time domain, performance differences between different
state models (providing a characteristic state duration distribution) are expected. The fol-
lowing three state models are of closer interest:

1. The semi-Markov model in combination with the Lutz approach (notation: semi-
Markov, lognormal fit € Lutz, empirical), as it is developed in the context of this
work and proposed for accurate state probability and state duration modelling and
feasible for multiple dual-satellite scenarios (cf. Chapter 3.4.3).

2. The Lutz approach (notation: first-order Markov € Lutz), as it is widely used in
literature and the current reference for dual-satellite models.

3. The dynamic Markov model, as it is the algorithm with best possible state duration
accuracy for dual-satellite modelling. For a comparison with other state models it is
adequate to take the dynamic Markov model as reference, as it accurately re-simulates
the state probabilities and joint duration statistics of the measurements. In Section 3.3
it is shown that the Nth-order Markov model (Chapter 3.1.5) provides better perfor-
mance in theory. However, it is highly impracticable due to the related computational
complexity.

The three state models are applied with the ’2-state model & variable Loo parameters’ which
provided best fits for CDFs, LCRs and AFDs. Figure 5.4 shows the CDF's of the effective
normalised C/N from measurements and after re-simulation with three different state models
after time de-interleaving with different interleaver lengths.

It should be noted that, without interleaving, the state models provide equal CDFs for
single and combined satellites. These results are given in Figure 5.1 (represented by 2-state
€ variable Loo).

By considering a short time interleaver of 10m length, a performance difference between
different state models is still negligible, as seen in Figure 5.4. The suburban scenario is well

112



5.1. Evaluation of Model Architecture

re-simulated by the LMS models, whereas their CDFs deviate by up to 1dB. However, for
the urban scenario significant differences between the measured and re-simulated statistics
are obtained for 10 m interleaving.

As this deviation holds for all applied state models (same effect has been obtained with a
25th-order Markov model), an inaccurate modelling of a state sequence can be excluded as
possible cause. The difference between measurements and re-simulation is already present
for the single-satellite channel. To cope with that problem, the consideration of a correlation
between Loo parameters, or the inclusion of further state length dependencies on the Loo
parameters might be a solution. In this thesis an existent single-satellite LMS model is
taken as basis for multi-satellite modelling. Fundamental changes of its architecture are out
of scope of this work. The short interleaver demonstrate that the urban scenario is still
challenging for LMS modelling.

By considering interleaver lengths of 25 m and 100 m, the re-simulated statistics vary with
respect to the state model, as seen in Figure 5.4. The interleaver gains achieved with the first-
order Markov & Lutz model are generally greater than the interleaver gains from the semi-
Markov and dynamic Markov model, whereat the semi-Markov and dynamic Markov model
are closer to the measurements. A reason is that first-order Markov models not accurately
describe long state durations, i.e. the probability of modelling long blockages is lower than
from semi-Markov or dynamic Markov models (cf. also Figure 3.11 in Chapter 3.3). Thus,
a greater percentage of signal blockages due to a first-order Markov chain are compensated
by an interleaver. The lognormal SDPDF approximation of the semi-Markov model has the
opposite effect in the current urban example: state durations are described and re-simulated,
which are longer than the measured durations. Thats why the interleaver gains are smaller
in comparison to the dynamic Markov model.

Significant differences between the state models are obtained for 100 m interleaving in Fig-
ure 5.4. Due to the limited length of the measured sections, the CDFs from measurements
after 100 m interleaving are bumpy curves, which complicates a comparison between mea-
surements and re-simulation. For the urban scenario, the dynamic Markov model (which is
the reference model) most likely matches the measurements. With respect to the dynamic
Markov model, the interleaver gains from first-order Markov € Lutz model are greater and
the gains from semi-Markov, logn.fit € Lutz, empirical are smaller. For example, the in-
terleaver gains with MRC are +3dB for Lutz and -2dB for semi-Markov at 99% signal
availability with respect to the dynamic Markov model. For the suburban scenario the
differences between the CDFs for the three state models are smaller with ~1dB. In both
environments, the MRC statistics of the semi-Markov, logn.fit & Lutz, empirical model are
closer to the dynamic Markov model and the measurements than first-order Markov & Lutz
anyway.
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Figure 5.4.: Effective CDFs after time de-interleaving for measured and re-simulated signals of
two satellites and the MRC signal. For re-simulation, different state models are combined with the
versatile Loo model. Interleaver lengths are 10 m, 25 m, and 100 m. The re-simulation results without
interleaving for the given state models are identical and are represented by ’2-state & var. Loo’ in

Figure 5.1.
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5.1.4. Conclusions on Model Architecture

In Chapter 4 a channel model implementation for dual-satellite reception has been developed
based on observations from experimental data. It consists of a ’four-state semi-Markov
model’ to generate state sequences, and a 'variable Loo model’ to generate the fading signal
within the states. Signal correlation is introduced for states and for slow fading components
as well. In this section this new channel model architecture is compared with measurement
data and with other reference LMS modelling concepts in terms of first- and second-order
statistics.

It following conclusions are drawn:

The new dual-satellite model more accurately describes satellite diversity than existent
multi-satellite models from literature. It is due to the additional correlation of slow
fading when both satellites are in same state. In contrast, existing models provide state
correlation only. However, the model validation on an urban scenario demonstrates
that the current implementation need further to be optimised for challenging scenarios.
The first-order statistics of the individual satellites are accurately described with the
proposed model. Same holds for other existing single-satellite LMS models.

The AFD and LCR statistics indicate the improvement of a model using ’variable
Loo parameters’ with respect to models using 'constant Loo parameters’. 1t is already
stated in [PCPFB™10] for single-satellite reception and confirmed in this section for
single- and dual-satellite reception as well.

The model extension ’variable Loo parameters considering state duration’ has no en-
hancement to ’variable Loo’. Thus, with respect to the number of parameters, the
earlier 'variable Loo’ model is recommended for the single-satellite channel. It is ex-
tended for dual-satellite reception in this work.

By considering time interleaving there are still challenges for LMS modelling. The
re-simulation of an urban environment with a short time interleaver (of, e.g. 10 m)
has shown differences between measurements and re-simulated signals already for the
single-satellite case. This result is independent of the chosen state model. For a possible
correction the fading model or the corresponding model parameters within the states
have to be adapted.

By considering long time interleaving, it is shown that a semi-Markov model have per-
formance benefits for dual-satellite modelling over the state-of-the-art approach, the
Lutz approach based on first-order Markov chains. In the context of this work, the
semi-Markov model is modified to make it feasible for parameter extraction for mul-
tiple dual-satellite constellations. This semi-Markov, lognormal fit € Lutz, empirical
approach is successfully evaluated in this section.

Nevertheless, the best performance with long time-interleaving is provided by using the
dynamic Markov model without any approximation of parameters. For re-modelling
sporadic scenarios, where timeseries of fading satellite signals are available, the dynamic
Markov model is thus the recommended selection. However, the dynamic Markov
model has strong limitations for the parametrisation of an LMS model able to com-
pare mobile reception from different satellite positions or between different coverage
areas.
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5.2. Evaluation of Three-Satellite Modelling with Master-Slave

Analogue to the dual-satellite model, the challenge of LMS modelling with three satellites
is to find model parameters for satellite constellations, for which measurement data is not
available. A solution is the Master-Slave approach, where parameters of a three-satellite
constellation are completely derived from dual-satellite parameters. Thus, timeseries for
arbitrary constellations of three satellites can be generated with Master-Slave. Within a
three-satellite constellation, two slaves depend on one master. Since the correlation coeffi-
cient between the slaves is not considered, a certain correlation error and a probability error
of the combined signal of three satellites have to be taken into account with Master-Slave.
Although these errors are minimised by an appropriate definition of the master satellite (cf.
Section 3.5.3), they are not zero.

In this section the state approach 'Master-Slave’ is evaluated in the context of the complete
LMS model implementation. The modelling results are compared with measurement data
and with results of a reference state model for three-satellite reception in terms of first-
and second-order statistics. The reference is the straightforward dynamic Markov model,
which accurately describes the correlation coefficients between three satellites as well as the
state duration distributions. By comparing the Master-Slave approach with the reference
model, the influence of the correlation error of the Master-Slave approach (considering an
appropriate mapping) is visible. For improved state duration modelling, the three-satellite
Master-Slave model is implemented by a combination of the dual-satellite semi-Markov,
logn.fit € Lutz, empirical model and the Master-Slave approach ASTM-MT (cf. Chap-
ter 3.5.4 for details). In the following, a three-satellite Master-Slave-constellation with a
small correlation error and a constellation with a great correlation error is presented.

Master-Slave with Small Correlation Error

Two LMS models with different state approaches are intended to re-simulate satellite signals
obtained within the urban and suburban scenario known from previous Section 5.1. The
measured statistics of satellite 1 (short notation: satl) and satellite 2 (sat2) are equal to
Figure 5.1. Now a third satellite (sat3) is considered, which is located at ¢3 ~ 65° for
the urban scenario. The azimuth angle separations are Af;s =~ 34°, Af;3 =~ 99°, and
Afs3 ~ 133°. For the suburban scenario the positions are ¢3 ~ 69°, Af15 =~ 34°, A3 =~ 4°,
and Afy3 ~ 30°. The different positions of sat3 between urban and suburban are due to the
high-elliptical orbit of the satellite and the ordering of the constellation for small- and great
correlation error.

The CDFs of the measurements and after re-simulation considering Master-Slave and the
dynamic Markov model are compared in Figure 5.5. Results without interleaving are pre-
sented as well as results with interleaver lengths of 25 m and 100 m for sati, sat2, sat3
and for MRC of the three satellites. After an optimised Master-Slave mapping, in which
master is sat2, the remaining correlation error for the urban scenario is Ap = 0.0477 and
the probability error of 'bad bad bad’ is APy, = 0.0023. For suburban it is Ap = 0.0628
and APbbb = 0.0036.

The following results are obtained in Figure 5.5:
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Figure 5.5.: Effective CDFs without interleaving and after time de-interleaving for measured and
re-simulated signals of three satellites and the MRC signal in an urban and suburban environment.
For re-simulation, the versatile Loo model is combined with two different state models: a dynamic
Markov model, and the Master-Slave approach ASTM-MT. Interleaver lengths are 25 m, and 100 m.

e Without time interleaving, the simulation results of the Master-Slave approach are close
to the results of the reference state model. It holds for the single-satellite channels as
well as for the MRC signal in the urban and the suburban scenario. Both models

accurately re-simulate the measurements.

e Considering time interleaving of 25 m, the LMS simulation of sat! and sat2 in the
urban environment have some deviations to the measurements. It holds for both state
models and is already discussed in previous Section 5.1.3. For sat3, the re-simulated
statistics have a high agreement with the measured statistics. As sat3 dominates the
reception and mainly contributes to the MRC signal, the good re-simulation of sat3
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leads to a good re-simulation of the combined signal. The differences between the state
models are small with < 1dB.

e With 100 m interleaving, the statistics of the Master-Slave approach diverge from
the dynamic Markov model in the urban environment. Sati and sat2 are generated
with the dual-satellite semi-Markov, logn.fit €& Lutz, empirical model, which partly
considers too long state durations. The results for sat! and sat2 are already discussed
in Section 5.1.3. The results for sat3 as well as the MRC signal re-simulated with
Master-Slave is in a high agreement with the dynamic Markov model as well as with
the measurements. Also in the suburban environment the Master-Slave model provide
similar results as the reference dynamic Markov model at 100 m interleaving. However,
the time diversity gains are up to 2 dB greater than from the measurements.

Master-Slave with Great Correlation Error

For certain satellite constellations Master-Slave provide a high error even with optimised
mapping, as shown in Section 3.5.3. For the subsequent analysis a third satellite in urban is
considered with elevation ¢3 ~ 57°, and azimuth separations Afio = 34°, Af3 =~ 47°, and
Afy3 ~ 13°. For the suburban scenario the positions are ¢3 ~ 70°, Af15 ~ 34°, Af3 ~ 85°,
and Afy3 ~ 119°.

The CDFs of the measurements after re-simulation with Master-Slave and with a reference
state model are shown in Figure 5.6. Time interleaving of 0 m (no interleaving), 25 m,
and 100 m is considered. After Master-Slave mapping, the correlation- and probability
errors are Ap = 0.1138 and AP, = 0.0198 for the urban scenario, and Ap = 0.128 and
APypp = 0.0064 for the suburban scenario, respectively.

The following observations are done in Figure 5.6:

e The Master-Slave approach accurately describes the state probabilities of the single-
satellite channels. Without interleaving, there is no difference between Master-Slave
and another state model therefore.

e The probability error of Master-Slave influences the MRC signal. Without interleav-
ing it is seen that the MRC gain with Master-Slave is greater than with a reference
state model, which accurately describes the joint state probabilities. It is due to the
smaller state correlation considered with Master-Slave. However, accurate modelling
of joint probabilities does not necessarily result in an accurate modelling of the satellite
diversity signal, as obtained for the urban environment and discussed in Section 5.1.2.

e For 25 m time interleaving, the resulting CDFs of Master-Slave and the reference state
model are similar for the single satellite channels in urban and suburban. For the MRC
signal, the deviation between Master-Slave and the reference model is increased due
to the probability error.

e Assuming 100 m time interleaving, in the suburban scenario the performance of Master-
Slave is similar to the dynamic Markov model. In the urban scenario, the dual-satellite
semi-Markov model provide the deviation of sat! and sat2 in comparison to dynamic
Markov. Also the slave satellite sat8 modelled with ASTM-MT has more signal at-
tenuation than the reference model, although it is modelled by a first-order Markov
algorithm. Obviously this result is influenced by the master sat2. The correlation
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Figure 5.6.: Effective CDF's without interleaving and after time de-interleaving for measured and
re-simulated signals of three satellites and the MRC signal in an urban and suburban environment.
For re-simulation, the versatile Loo model is combined with two different state models: a dynamic
Markov model, and the Master-Slave approach ASTM-MT. Interleaver lengths are 25 m, and 100 m.

Note that satellite 3 is different than in Figure 5.5.

error and probability error of Master-Slave is indicated again with the MRC signal:
Although the single satellites have more signal attenuation than the reference, the

MRC signal has less attenuation anyway.

The results in Figure 5.5 and in Chapter 3.5.3 demonstrate, that Master-Slave is an ap-
propriate state model to generate timeseries for three-satellite reception and feasible for a
great variability of satellite positions. However, also different satellite constellations exist
where the Master-Slave approach provides a state probability error which leads to inaccu-
rate predictions of satellite diversity with three satellites. As the Master-Slave error can be
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calculated, critical satellite constellations can be identified and the Master-Slave results can
be properly handled.

5.3. Validation of Model Parameter Sets

In the context of this work parameters sets have been derived for a single-satellite LMS
model and a new dual-satellite LMS model, describing the fading for

e five different environments: Urban, Suburban, Forest, Commercial and Open

o different elevation angles for each satellite between 20° and 90°, that are interpolated
from elevation segments of 10° range

e different azimuth angle separations interpolated from intervals: 0-10°, 10-30°, 30-60°,
60-90°, 90-120°, 120-150°, 150-180° (for dual-satellite case)

e different driving directions with intervals: 0-10°, 10-30°, 30-60°, 60-90°

To achieve this variability, models parameters are jointly derived from two measurement
campaigns:

e State parameters and correlation coefficients are derived from GNSS measurements
(L-band at 1.6 GHz), which provide a high variability of satellite constellations.

e Loo parameters are derived from SDARS measurements (S-band at 2.3 GHz), which
have the required signal resolution in time and amplitude to obtain fast and slow
fading parameters. From SDARS measurements, also state parameters can be derived
for single-satellite case.

Details of the measurements are found in Appendix A.

In this section the channel model parameter sets are validated by comparing SDARS mea-
surement data with the channel model output. For the model implementation, state param-
eters are derived either from GNSS measurements (L-band) or from SDARS measurements
(S-band), and the Loo parameters from SDARS measurements (S-band). Hence, two pa-
rameter sets are available from the project MiLADY::

1. MiLADY SDARS parameter set. (Parameters are found in Table C.1 and Table C.2.)

2. MiLADY SDARS Loo- & GNSS state parameter set. (Parameters are found in Ta-
ble C.1 and Table C.3.)

For dual-satellite case, correlation coefficients are exclusively derived from GNSS measure-
ments. This additional GNSS correlation parameter set is found in Table C.4 and Ta-
ble C.5.

As the frequency band mainly affects the fast fading characteristics, which parameters are
derived from the SDARS (S-band) measurements, the simulation results are all valid for
S-band. An influence of the frequency difference between L-band and S-band onto the state
parameters can be neglected. Output of the channel model is a timeseries of the LOS-
normalised C/N at the mobile terminal, which is compared with measured C/N data.
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5.3.1. Validation of Model Parameter Sets in Terms of First-Order Statistics

In Figure 5.7 the CDFs of the new LMS model output for single-satellite reception are
compared with the SDARS measurement data and with the three-state model from Fontan et
al. ([PFVCCT01], S-band parameters) for a suburban environment. For first-order statistics,
it should be mentioned that the output of the single-satellite models equals the outputs of
the corresponding dual-satellite model. The following results are obtained:

e Taking the state parameters from SDARS, a high agreement between (SDARS) mea-
surements and modelling results is seen. This indicates a correct model parameter
estimation for slow- and fast variations and states. However, the amount of SDARS
measurement data is too small for conclusions about different driving directions.

e The GNSS state parameters allow a simulation of four sections of driving directions
for single-satellite reception. The statistic considering all driving directions (0°-360°)
has a similar characteristic as 30°-60° driving direction. The worst case is obtained
when the satellite azimuth is approximately 90° to the street orientation.

e The MiLADY SDARS parameter set simulates less signal attenuation than the Mi-
LADY SDARS Loo € GNSS state parameter set. It is already indicated by the bad’-
state probabilities in Figure 3.13 from Chapter 3.4.1. A reason could be typically
smaller streets in European environments and therefore a higher shadowing probabil-
ity than in U.S. environments.

e The DVB-SH reference model at ¢ = 40° is similar to the SDARS measurements at
¢ = 35° in the suburban environment. The deviation between the CDF's is below
2dB. At ¢ = 60° the DVB-SH reference model is more optimistic than the SDARS
measurement statistics and our modelling results. The SDARS measurements at ¢ =
75° are in turn more optimistic than the DVB-SH reference at ¢ = 80°.
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Figure 5.7.: Comparison of first-order statistics between the channel model simulation, the SDARS
measurements, and the DVB-SH reference model (3-state model from Fontan et al. [PFVCCT01])
for three elevation angles in the suburban environment. For simulation, the Loo parameters from
SDARS measurements are combined with the state parameters from GNSS (Model GNSS) or from
SDARS measurements (Model SDARS). The GNSS state parameters provide to distinguish four
driving directions, which are denoted in the legend.
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For a comprehensive analysis of modelling results for multiple receive scenarios, the required
margins for 90% and 99% signal availability are derived from the CDFs. It is the difference
between the C/N at LOS (0dB) and the C/N, which is exceeded in 90% or 99% of driven
distance, respectively. Figure 5.8 shows the required margins for different environments
and elevation angles after simulation. A good agreement between SDARS measurements
and the model simulation with the MiLADY SDARS parameter set is seen (with most
deviations below 2dB), which indicate that the parameter set well represents the SDARS
measurements. By using the merged MiLADY SDARS Loo & GNSS state parameter set
an LMS timeseries simulation of more challenging scenarios can be performed, since the
required margins for Suburban, Forest, Commercial and Open are larger in comparison to
the SDARS measurements. Both parameter sets provide plausible simulation results with
respect to the environment type, the elevation angle, and the driving direction.
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Figure 5.8.: Required margins for 90% signal availability (top) and 99% signal availability (bottom)
from SDARS measurements and after simulation using the MiLADY SDARS parameter set (Model
SDARS) or the MiLADY SDARS Loo- & GNSS state parameter set (Model GNSS). The parameter
sets are found in Table C.1, Table C.2, and Table C.3.

5.3.2. Re-modelling of Satellite Diversity

For dual-satellite reception the correlation between the satellites needs to be considered.
Correlation coefficients for states (pstates) are derived from GNSS measurements for different
azimuth separations Af and for pairs of elevations ¢; and ¢9 in a certain environment. By
applying the correlation coefficients with further parameters of the proposed semi-Markov,
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logn. fit €& Lutz, empirical model, simulation results in terms of state probabilities and state
duration statistics are presented in Chapter 3 for various satellite constellations in the urban
environment.

Additional correlation effects between two satellites are found for fading within the states.
Therefore, correlation coefficients are derived for signals within the combined states ’good
good’ (pge) and ’bad bad’ (p,) in Chapter 4 for same satellite constellations as with the
states. They are applied to the slow lognormal variations twice for the versatile Loo param-
eter generation and for the lognormal samples generation in the proposed model.

In the following the dependency of the dual-satellite fading on the correlation of two satellite
signals is demonstrated. Figure 5.9 shows the signal correlation coefficients in dependency
on the azimuth angle separation Af of the satellites in the suburban environment. These
values are parameters of the dual-satellite LMS model and are found in the GNSS correla-
tion parameter set. Based on these correlation coefficients, Figure 5.10 shows CDFs of two
satellites and the MRC signal for different values of Af from the LMS model output. The
driving direction of the vehicle is assumed to be equally distributed. Each subfigure include
statistics resulting from seven dual-satellite model simulations (due to seven different values
of Af) with constant parameters of the single satellites due to same elevation angle. The
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Figure 5.9.: Correlation coefficients from the GNSS correlation parameter set for three elevations
¢1 and ¢o and different azimuth separations A#.
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Figure 5.10.: CDFs from the channel model output for single satellite signals and MRC signals
considering different elevations ¢ and azimuth angle separations Af. The MiLADY SDARS Loo-
& GNSS state parameter set is used for simulation. The driving direction is assumed to be equally
distributed.
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overlaid CDFs of the single satellites demonstrate that the single satellite channels are not
affected by variable correlation coefficients and therefore by variable dual-satellite model
parameters.” Thus, meaningful and comparable analyses of satellite diversity between dif-
ferent satellite constellations are possible. From the CDFs the required margins for 99%
signal availability are derived in Figure 5.11. As expected, the MRC gain has inversely pro-
portional behaviour to the satellites correlation from Figure 5.9. For example, the MRC gain
for 99% signal availability in case of Af =~ 100° is 4 dB greater than for Af = 5°, as obtained
from Figure 5.11 for the suburban environment at ¢ = 35°. It corresponds to correlation
coefficients of p ~ 0.1 (X pstates = Pgg =~ pbb) and p = 0.9, respectively.
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Figure 5.11.: Required margins for 99% signal availability derived from the channel model output
for single satellite signals and MRC signals considering different elevations ¢ and azimuth angle
separations Af. The MiLADY SDARS Loo- & GNSS state parameter set is used for simulation.

To compare the dual-satellite model output with SDARS measurements, Figure 5.12 shows
the CDFs for the selected urban and suburban dual-satellite scenario from Section 5.1 and
after re-simulation using the MiLADY SDARS parameter set as well as the MiLADY SDARS
Loo- € GNSS state parameter set.

For single-satellite reception, the MiLADY SDARS parameter set provide more optimistic
results (i.e. less attenuation) than the exemplary urban and suburban scenario. It is due
to the fact that the model parameter set represents the average of all observations in urban
or suburban environments from the SDARS measurements within an elevation interval of
10°. Thus, the MiLADY SDARS parameter set for single-satellite reception represent a
medium dense urban environment and a suburban environment with medium shadowing,
respectively. The MiLADY SDARS Loo- € GNSS state parameter set more accurately
describes the selected scenarios in case of single-satellite reception.

Looking at the MRC statistics in the suburban environment, a high agreement between
measurements and re-simulation is seen for the MiLADY SDARS Loo- & GNSS state pa-
rameter set. From the MiLADY SDARS parameter set a deviation between the measured
and re-simulated MRC statistics is seen. Nevertheless, this result is acceptable, since the
MRC offset is similar to that from satellite 1 and satellite 2.

Looking at the MRC statistics in the urban environment, it is seen that the re-modelled
MRC gain from both parameter sets is significantly greater than from the measurements.
Different effects contribute to this deviation: Firstly, in Section 5.1.2 it is shown that this

!Small differences between the single-satellite statistics are due to limited simulation length.
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urban scenario is challenging for diversity modelling, also when model parameters are di-
rectly estimated from the corresponding measured sequence. Secondly, the state correlation
coefficient in the GNSS correlation database is lower (pstates = 0.1894) than in the current
selection (pstates = 0.3316, cf. Table 5.4). A possible reason for this difference is that pstates
not only depends on the azimuth separation between the satellites, but also on the vehicles
driving direction. A corresponding analysis is found in [RAIG13]. In this work, pstates iS
derived assuming an equally distributed driving direction of the vehicle.

It can be concluded that the correlation coefficients pgtates in the GNSS correlation database
are in general too small for the urban environment. An alternative is to use the empirical
model of Robet et al. [REE92] to calculate greater pstates in urban (cf. also Section 3.4.2),
which are pstates = 0.34 for the MiLADY SDARS parameter set and pstates = 0.28 for the
MiLADY SDARS parameter set and the given constellation.
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Figure 5.12.: CDFs from the dual-satellite LMS model output using the MiLADY SDARS parameter
set (Model SDARS) and the MiLADY SDARS Loo- & GNSS state parameter set (Model GNSS) in
comparison with the exemplary urban and suburban measurements from Section 5.1.

5.3.3. Re-modelling of Time Diversity

By changing only the correlation coefficients between two satellites, the developed dual-
satellite model provides different statistics of the combined signal of two satellites, while the
first-order statistics of the individual channels remain constant. However, it holds not for
the second-order statistics of the individual channels by applying the proposed semi-Markow,
lognormal fit € Lutz, empirical model for state sequence generation. Figure 5.13 shows
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the state duration PDFs of a single satellite at elevation ¢; = 35° simulated by the dual-
satellite state model with parameters from multiple satellite constellations. In detail, the
constellations are all permutations of ¢1 = 35° and ¢o = {15, 25, 35,45, 55,65, 75,85}° and
A = {5,20,45,75,105,135,165}°. Two effects are obtained in Figure 5.13: Firstly, by using
the dual-satellite semi-Markov, lognormal fit & Lutz, empirical model, the state duration
statistics of satellite 1 are influenced by the position of satellite 2. Secondly, these SDPDFs
are different from the comparable single-satellite semi-Markov model with lognormal fit,
whose curve-fit is closer to the measurements. Both limitations are generally valid for semi-
Markov models as well as for dynamic Markov models for multi-satellite reception.

Suburban, ¢‘=35°, good state Suburban, ¢‘ =35°, bad state
0.035 T T 0.06
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semi-Markov, logn.fit & Lutz, empirical,
MSE=[0.08 ... 0.13] 107° o
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Figure 5.13.: State duration PDFs for good state (left) and bad state (right) for a satellite at
¢ = 35° obtained from GNSS measurements and re-simulated by the semi-Markov, logn.fit & Lutz,
empirical state model using multiple selections from the MiLADY SDARS Loo- € GNSS state pa-
rameter set. Parameters are taken from ¢; = 35° and ¢2 = {15,25,35,45,55,65,75,85}° and
Af = {5,20,45,75,105,135,165}°. For comparison, the simulation results for the single-satellite
semi-Markov model (logn. fit) and a first-order Markov model are depicted.

Nevertheless, despite of these limitations of the semi-Markov, lognormal fit € Lutz, empirical
model, the SDPDF's are more accurately described than the traditionally used first-order
Markov € Lutz model. It is indicated by the MSE between measured and re-simulated
"bad’-state duration statistic given in Figure 5.13.

To evaluate the consequence of different SDPDF fits from the given state models above,
Figure 5.14 presents the required margins for 99% signal availability incorporating differ-
ent interleaver lengths after LMS channel simulations using the MiLADY SDARS Loo- &
GNSS state parameter set. To have a reference, the state model with best possible perfor-
mance is selected for single-satellite case. It is the dynamic Markov model (or alternatively:
the semi-Markov model without any approximation), in which the measured state duration
statistics are applied as model parameter. Note that this reference is not availalbe for dual-
satellite reception due to missing measurement data. Without time interleaving, i.e. Om
interleaver length, the results are equal, since the selected models provide the same equilib-
rium state probability. The influence of different state duration approximations (exponential
fit , lognormal fit, no fit from Figure 5.13) for single-satellite reception is noticeable for time
interleaving over 25m of travelled distance. For greater interleaver lengths the two semi-
Markov models with lognormal fit predict an up to 1dB lower 99% margin (= higher signal
availability) than the reference model, whereas the margins for the first-order Markov model
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5.3. Validation of Model Parameter Sets

are 3dB lower. This difference between semi-Markov and first-order Markov is by tendency
obtained for MRC combined signals of two satellites as well. It is obtained that the four-
state semi-Markov, lognormal fit € Lutz, empirical model has quite similar performance on
the single-satellite channel as the two-state semi-Markov model with lognormal fit, which
is the recommended model in literature for single-satellite reception. The difference of the
required margins is below 0.5dB for all interleaver lengths. Thus, the dual-satellite model
developed in this work is appropriate to describe single-satellite reception in case of time
interleaving. It indicates an appropriate description of satellite diversity in combination with
time interleaving.
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Figure 5.14.: Required margins for 99% signal availability after LMS channel simulation with Mi-
LADY SDARS Loo- & GNSS state parameter set and three state models incorporating satellite
diversity and different interleaver lengths.
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6. Diversity Studies and First Application of the LMS Model

Signal reception of mobile digital satellite broadcasting services is limited by shadowing or
blocking objects within the transmission path. To meet availability, continuity and quality
of service requirements, commercial broadcasting systems combine angle diversity with time
diversity, e.g. the Satellite Digital Audio Radio Services (SDARS) system [Mic02][Akt08].
Using time diversity, the information is spread within a certain time interval by an interleaver
and additional redundancy by means of channel coding is added. As time diversity relies
on the time variability of the transmission channel, it is effective only for moving receivers.
In case of angle (or satellite) diversity, the information is transmitted simultaneously from
multiple satellites in different orbital positions. Even though angle diversity is also effective
for slow moving or even static receivers, it requires additional effort in the infrastructure.

GEO1 GEO3 (high power)

Figure 6.1.: Typical configurations for satellite broadcasting, with and without angle diversity.

The choice of a diversity configuration impacts the service availability and the cost of the
satellite network. To facilitate a decision, different satellite configurations are compared in
this chapter for broadcasting applications:

e One high power satellite is used to serve the complete coverage area. The required
QoS is provided by time interleaving.

e Two satellites at separate orbital positions are used where the coverage area is com-
pletely overlapped. The required QoS is provided by angle- and time diversity. To
ensure equal transmission power for both satellite configurations, both satellites have
50% of the power of the high power satellite.

e The performance of a dual-satellite system depends on the angular separation between
the satellites. Indeed a high angular separation provides a high diversity gain, but lower
elevations to the coverage area have to be taken into account. A detailed analysis of
this fact is required.
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Scope of this chapter is to compare these configurations by statistical analysis of the fading
signal and to point out achievable gains of time and/or angle diversity in selected receive
scenarios.

6.1. Diversity Analysis Based on Measurement Data

Right before this work in 2008 an LMS measurement campaign in the S-band has been carried
out with a quality and resolution that is not previously reported in literature: the power
levels of four satellite signals were measured synchronously with a sampling rate of 2.1 kHz
along a travelled distance of 3700 km through different environments. These measurements
of the SDARS satellites were carried out in the context of the project MiLADY [HEAT10] (cf.
Appendix A for details). Based on this data, a joint analysis of satellite- and time diversity
is presented in this section. It is also focused in the contributions [ATHT09], [ATH"10] and
[ATHT11].

For the subsequent analysis, the signals from two geostationary satellites are selected. The
satellites are located over the west coast and east coast of the USA, and are denoted with
GEO1 and GEO?2 in the following. A corresponding sketch of satellite positions, measure-
ment route and coverage area is given in Figure 6.4.

The characteristics of the signal fading process strongly depends on the satellite positions
from the receivers point of view. The elevation angle of GEO1 (located at 115° west) varies
between 25° and 40° and GEO2 (located at 85° west) varies between 38° and 54°. As both
elevations encompass a rather small interval of 15°; a finer division of elevation angles is out
of scope for the diversity analysis in this section (for comparison, the LMS model parameters
are derived within elevation intervals of 10°). The azimuth angle separation between GEO1
and GEO2 is Af ~ 40°. The driving direction is assumed to be uniformly distributed
between 0° and 360°.

The characteristics of the signal fading further depends on the environment around the
mobile receiver. As a current method, environment classes are defined and each section of
the measurement route is assigned to one of these classes. The environment types are "Urban’,
"Suburban’, *Forest’, ’"Commercial’, and "Highway’ and are described in Appendix A.

To determine the performance improvements due to angle diversity and time diversity, Fig-
ure 6.2 shows the CDFs of the normalised C/N of the 'GEO’ signals in suburban environ-
ments. A MRC of two signals is used for the evaluation of angle diversity. The resulting gain
consists of a power combining gain (due to increased overall signal because of the second
satellite) and a diversity gain due to fading reduction. For further validation the power com-
bining gain is removed, such that the pure diversity gain is remaining. Thus, two different
network configurations from Figure 6.1 can be approximately compared:

1. One 100% power satellite. Since no measurement data is available from a satellite at
location GEQO3, the satellite GEO1 or GEO2 is assumed to be a high-power satellite.

2. Two satellites, each with 50% power. !

IIt holds (C/N)MR,C,SO% =0.5- [(C/N)1 + (C/N)Q] in linear domain.
— (C/N)mre,50%[dB] = (C/N)mrc,100% — 3dB
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6.1. Diversity Analysis Based on Measurement Data

As criterion for the comparison in the subsequent analysis, the required margins for a signal
availability of 99% are derived from the CDFs. It can be found as the difference between the
C/N at LOS (0dB) and the C/N, which is exceeded with a probability of 99%. Based on the
required margin, the gains using MRC and/or time interleaving are extracted, as indicated
in Figure 6.2. The angle diversity gain is related to the single satellite with the higher signal
availability. It is clearly GEO2 having a ~15° higher elevation than GEO1.

For evaluating the influence of time diversity, an interleaver with a fixed length is assumed
(i.e. a constant time interleaver with a constant receiver speed). It may be noted that the
term ’time diversity’ is not correct, since the interleaver size is given in distance. But for
simplicity we will continue to refer to the term ’time diversity’. The diversity gain is related
to the static reception.

Suburban

- GEO1&GEO2 (MRC)
= = 50% [GEO1&GEO2] (MRC) o
50% [GEO1&GEO2] (MRC) 7
with 100 m interleaver

X)

P(G/N=(GIN) og<

.
B
'
N . .
interleaver gain

i i is i i i i i i

angle diversity gain
VA
-24 -22 -20 -18 -16 -14 -12-10 -8 -6 -4 -2 0 2 4
C/N—(C/N), o [dB]

Figure 6.2.: Exemplary CDF of the normalised C/N in a suburban environment. The required
margins for 99% signal availability and the diversity gains due to MRC and time interleaving are
indicated.

Figure 6.3 presents the required margins for a signal availability of 99% for the "GEO’
configurations in different environments by using different interleaver lengths. The following
observations are made:

e The required margins to provide 99% signal availability for GEO1 are greater than
for GEO2. It is an expected result, as the probability of obstacles being between the
satellite and the receiver reduces with increasing elevation.

e Different environments exhibit varying obstacle density. For example, in urban or
suburban environments, the required margins are greater than for open environments

like Highway.

e Both angle diversity and time diversity offer significant gain when employed as single
means of availability improvement. Consequently, the incremental increase of the di-
versity gain is smaller for the combination of diversity methods (i.e. for angle diversity
and time diversity). It can be seen by steeper slope of the required margins from GEO2
with increasing interleaver length in comparison to the slope of the MRC signal.
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Figure 6.3.: Required margins for 99% signal availability incorporating angle diversity and various
interleaver lengths considering two GEO satellites with mean elevations ¢; ~ 30° and ¢o ~ 45°.

e A long interleaver with GEO2 is more effective than the combined half-power satellite
signals with the same interleaver length. This can be mainly obtained for interleaver
lengths of 10m and more.

Note that MRC of two signals never result in a loss. To point out the diversity effect,
the transmission power of both configurations is normalised.

The analysis from measurement data show that angle diversity as well as time diversity are
effective methods to increase the signal availability. Angle diversity has significant advan-
tages for short interleavers and for the static reception. In urban environments, where a
low receiver speed and stops are common, the required margin can be reduced by 2dB in
comparison to single-satellite reception. In suburban, forest and commercial environments
the static reception is improved by = 3 dB with angle diversity of two GEO satellites. How-
ever, the effective angle diversity gain decreases for long interleaver lengths when comparing
single- and dual-satellite reception.

Time diversity has some gain for short interleavers. With time interleaving over 10 m length,
the required margin could be reduced by 3-4 dB for the dual-satellite system and 3-7dB for
single satellites in comparison with the static reception (i.e. no interleaving), as seen in Fig-
ure 6.3. To double these interleaver gains an interleaver length of at least 100 m is required.

Results in Figure 6.3 indicate that a single high-power satellite with interleaving over a
long distance provides higher signal availability than two (half power) satellites using MRC.
Note that the position of the high power satellite (=GEO2) is optimistic regarding a fair
comparison with a dual-satellite angle diversity constellation. A real alternative to this angle
diversity constellation GEO1&GEQO2 would be the high-power satellite positioned between
them, which elevation angle and signal availability is consequently lower. This alternative
high-power satellite is denoted as GEO3 in Figure 6.4 and a constellation comparison is task
of next section.
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6.2. Diversity Analysis Based on LMS Model

The new multi-satellite LMS model allows diversity studies for satellite constellations and
locations, where measurement data is not available. In this section, three alternative config-
urations of geostationary satellites are compared to provide the required QoS. To compare
the results with SDARS measurements from previous Section 6.1, the USA is selected as
coverage area (cf. Figure 6.4).

1. One high power satellite (GEO3) is located at 100° west above the centre of the
coverage area.

2. Two satellites (GEO1&GEQO2) are located at 85° west and 115° west. It is the con-
stellation used by XM Satellite Radio.

3. Two satellites (GEO4&GEOQO5) are located at 70° west and 130° west. Although this
constellation provides lower elevation angles to the coverage area, a higher satellite
diversity gain is expected than constellation 2 due to a higher azimuth separation.

1300y

o R o°W
1150 100°W gsWw 10
\

GEO4 GEO1 GEO3 GEO2
(high power)

Figure 6.4.: Three alternative satellite configurations (GEO3 vs. GEO1&GEO2 vs. GEO4&GEO5)
to serve the coverage area. For comparison, the expected signal availability is evaluated from six
selected locations (areal-6).

A performance comparison of the constellations is carried out at six different locations in the
USA, as sketched out in Figure 6.4. These locations differ with respect to elevation angles
¢ and azimuth angle separations Af of the satellites. The corresponding values are given in
Table 6.1. The driving direction of the terminal within the observation areas is assumed to
be equally distributed.

For each area and satellite constellation, timeseries of the normalised C/N are generated with
the LMS model by taking the MiLADY SDARS parameter set. Therefore, Loo parameters
for the five satellites GEO1-5 are found in Table C.1, which elevation angles are closest to
the values given in Table 6.1. The corresponding state model parameters are derived from
Table C.2. By following the guidelines in Section 3.4.4, the state parameters are interpolated
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Table 6.1.: Position of satellites from three constellations as seen from different areas.

GEO3 GEO1&GEO2 GEO4&GEO5
area | centre position || s 7] || ¢1 [°] | ¢ 7] | Aoy ) || @4 ] | 65 [°) | A []
1 | 30.0°N 100.0°E 55 51 51 56 42 42 98
2 | 37.5°N 100.0°E 47 44 44 48 36 36 87
3 | 45.0°N 100.0°E 38 36 36 42 30 30 78
4 | 30.0°N 82.5°E 50 40 55 47 28 52 89
5| 37.5°N T77.5°E 41 32 46 39 21 46 7
6 | 45.0°N 70.0°E 30 22 36 34 12 38 68

with respect to the elevation angles given in Table 6.1. Additionally, for the dual-satellite
constellations GEO1&GEO2 and GEO4&GEQOS5, correlation coefficients have to be selected
according to the azimuth angle separations from the GNSS correlation parameter set in
Table C.4 and Table C.5. They are interpolated with respect to the azimuth separations
from Table 6.1 as well.

From the timeseries, the required margins for 99% signal availability are derived from the
high-power satellite (GEO3) signal and the MRC combined signals of GEO1&GEO2 and
GEO4&GEQO5 by considering different interleaver lengths. Simulation results for suburban
environments and forested roads in areas 1-6 are shown in Figure 6.5.

Comparing single-satellite with dual-satellite reception with results shown in Fig-
ure 6.5, leads to the conclusion that:

o for stationary reception as well as for mobile reception with short interleaver lengths,
a dual-satellite system with angle diversity clearly provides higher signal availability
than one high-power satellite. This even holds for areas 1, 2, 3, where the single
satellite GEO3 has a higher elevation than the satellites of the dual-satellite systems.
The angle diversity gains for stationary reception are between 2 and 5dB in suburban
environments and up to 6dB in forested environments for different locations in the
coverage area.

e the incremental improvement due to time interleaving is greater for the single satellite
than for the dual-satellite configuration (as obtained from the measurement-based di-
versity analysis). Consequently, when long time interleaving (> 100m) is considered,
a single high-power satellite provides similar signal availability to a dual-satellite con-
figuration. However, as a satellite broadcasting system has to be dimensioned for slow
and fast moving receivers as well, a dual-satellite configuration is the preferred one.

Comparing the dual-satellite constellations GEO1&GEO2 (small azimuth sep-
aration) and GEO4&GEOS5 (high azimuth separation) with results shown in Fig-
ure 6.5, leads to the conclusion that:

e the required margins for 99% signal availability in case of stationary dual-satellite
reception vary between 9 and 14dB for suburban and 6 and 14dB for forest envi-
ronments, depending on the receive area. Time interleaving with, e.g. 100 m length
reduces further the required margins by ranges from 6 to 9.5dB and from 2 to 8 dB in
suburban and forested environments, respectively.
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e the time interleaver gains with respect to no interleaving for GEO1&GEO2 and GEO4&
GEOb5 are very similar. It is obtained that the constellations have a similar incremental
decrease of the required margin with increasing interleaver length.

e the dual-satellite configuration with small azimuth separation (GEO1&GEO2) provides
slightly a better performance than the configuration with high azimuth separation
(GEO4&GEO5). In seven of ten areas and environments the required margins are
smaller with GEO1&GEO2 (area 6 is ignored) for short and for long time interleaving
compared to GEO4&GEQOb5. In three cases the required margins with GEO1&GEO2
are even clearly smaller with g 2dB, whereas in other three cases the required margins
are only =~ 1dB greater than for GEO4&GEOS5.
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Figure 6.5.: Required margins for 99% signal availability incorporating angle diversity and various
interleaver lengths for three satellite constellations. The results are calculated for suburban environ-
ments (top) and forest (bottom) located in six different areas of the USA.

Note that GEO4 could not be simulated for area6, since the required model parameters for elevation
¢ = 12° (cf. Table 6.1) are not available.
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7. Summary and Conclusions

In this work LMS models for single-, dual-, and triple-satellite reception are developed with
a special attention on the performance analysis of satellite broadcasting systems using time
diversity and satellite diversity. The focus lies on an accurate description of the signals
temporal composition, the correlation between the satellites, and the capability to describe
fading for multiple environments and variable satellite positions.

In Chapter 2 basics for satellite radio wave propagation focusing on mobile reception are
introduced. In two parts, modelling of single-satellite reception and contributions for multi-
satellite LMS models are described. It is found that available multi-satellite models lack the
correct description of correlations between satellite signals, since the correlation is imple-
mented only in terms of the two states ’good’ and 'bad’. Furthermore, the available multi-
satellite models do not include the state duration modelling improvements (semi-Markov and
dynamic Markov models), which are already developed for the single-satellite case. These
potential weaknesses of describing time diversity and satellite diversity effects motivate this
work.

A comprehensive study of state modelling approaches and their application for
single-, dual-, and triple-satellite time series generation are presented in Chapter 3.
Three basic groups of existing models are distinguished: first-order Markov models, semi-
Markov models, and dynamic Markov models. Based on these groups, the following concepts
for dual-satellite modelling are derived:

o Straightforward methods extend the known Markov models for all permutations of
combined states. An exponentially increasing number of model parameters has to be
taken into account. A reference state series is required for the parametrisation.

e The Lutz approach allows to calculate parameters for a multi-state Markov model,
including the permutations of combined states by simply considering the correlation
coefficient between two satellites. Parameters and modelling algorithm are similar to
the straightforward method, but only an application for a first-order Markov model is
available in literature. As the Lutz approach has great advantages is terms of model
parametrisation, a solution is found in this work to combine it with a semi-Markov
model.

e A new Master-Slave concept is presented, which targets the conditional state sequence
modelling of a secondary satellite (slave) based on an existing state sequence (master).
In this work the first state modelling approaches are developed, which successfully
realise the Master-Slave concept. Due to its related complexity, only efficient imple-
mentations of conditional first-order Markov chains are considered in the context of
this work.

Criteria for the evaluation of straightforward models, Lutz models, and Master-Slave mod-
els are state probabilities, correlation coefficients, mean state durations, and state duration
distributions, which are compared with measurement data as a reference. For this purpose,
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expressions for new state models as well as for existing state models are developed to de-
rive the results analytically. They are given in Appendix B. Depending on the individual
parametrisation, it is shown that all modelling concepts are able to accurately re-simulate
the measured state probabilities and correlation coefficients. For semi-Markov models and
dynamic Markov models with SDPDF approximations, necessary corrections are introduced.
In the context of a complete LMS model simulation equal fade probability distributions (first-
order statistics) are thus provided for different state models. The best re-simulation of state
duration distributions based on reference measurement data is provided by the straightfor-
ward dynamic Markov model without approximations. However, this method is not feasible
to parametrise a multi-satellite model describing multiple receive scenarios, such as different
environment types, different elevation angles, and different azimuth separations, as it re-
quires the same variability of dual-satellite measurements. The alternative developed in this
work, a Lutz approach combined with a semi-Markov model, is able to accurately
describe state probabilities and well approximates the state duration distributions by simply
relying on the single-satellite parameters and a correlation coefficient. This approach is suc-
cessfully evaluated in terms of state-based evaluation criteria (Chapter 3) and in the context
of the full LMS model (Chapter 5). It introduces an improvement of the state-of-the-art.

Regarding state modelling with three satellites, the Master-Slave approach is iden-
tified as a practicable method and is evaluated in the last part of Chapter 3. Although
the Master-Slave approach does not describe the correlation between the slave satellites, an
appropriate definition of the master satellite provides an accurate description of the overall
system. Implementations in combination with a dual-satellite approach are further developed
to improve the state duration modelling for a three-satellite system. The great advantage of
the Master-Slave approach is the feasibility of parametrising a three-satellite model.

Chapter 4 focused on the analysis of slow- and fast signal variations within the states.
By taking an existent single-satellite LMS model as baseline (the ’versatile Loo’ model in
[PCPFB™10]), correlation effects between the fading of two satellites are analysed from high-
resolution measurement data. As a result, additional correlation coefficients between
mean values of the direct signal (Loo parameter M4) and between the lognormal variations
of the direct signal are introduced and implemented in the new multi-satellite LMS model.

In Chapter 5, simulation results of the newly developed LMS model and of alternative
LMS models developed in this work and from literature are compared with measurement
data. Dual-satellite reception with diversity is assessed by assuming MRC of two satellite
signals. Evaluation criteria are CDFs, average fade durations, level crossing rates, and CDFs
under consideration of time interleaving with variable lengths. It is shown that due to the
incorporation of additional correlation effects between satellites, the new model describes
satellite diversity with higher accuracy than available models from literature.

In the second part of Chapter 5 the model parameter sets for multiple user-scenarios are
evaluated. It is shown that the new dual-satellite model allows to simulate representative
timeseries for five different environments, each combination of elevation angles between 15°
and 85° per satellite in 10° intervals, and different azimuth angle separations between 0° and
180° (7 intervals). By optional interpolation of model parameters, which is applied in the
last Chapter 6, a refined resolution of the elevation angle and the azimuth angle separation
is possible.
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As first application for the new multi-satellite LMS model, a coverage study for satel-
lite broadcasting applications under consideration of satellite diversity and time
diversity is carried out in Chapter 6. As a reference, a joint analysis of satellite- and
time diversity for a system with two geostationary satellites is performed based on high-
resolution measurement data. This high-resolution data represents the basis for the statisti-
cal analyses and the model development in this work and was captured within the MiLADY
project [EHHO8]. As the diversity study with measurement data is limited by the satellite
constellation and the measurement route, the channel model offers to compare alternative
satellite constellations for variable coverage areas. A comparison between

e a high-power satellite in geostationary orbit (GEO),
e a dual-satellite GEO constellation with low azimuth separation (A(longitude) = 30°),

e and a dual-satellite GEO constellation with high azimuth separation
(A(longitude) = 60°)

have shown that a dual-satellite constellation has advantages over a single satellite, even if
the single satellite has higher power or longer time interleavers. Further it is shown that
the dual-satellite GEO constellation with low azimuth separation provides a slightly better
signal availability than the dual-satellite GEO constellation with high azimuth separation for
coverage areas between 30 and 45 degrees latitude. This first application can be understood
as verification of the new LMS model in practice.
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7. Summary and Conclusions
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A. Satellite Signal Measurements

To derive the parameters for a new multi-satellite LMS model, two measurement campaigns
were carried out in the context of the project MiLADY [EHHO8][HEA10]. In this chapter,
the measurement campaigns and the preprocessing of measurenment data are described in
detail.

Figure A.l.: Measurement campaigns within the project MiLADY. Left: SDARS measurements
along the U.S. east coast. Right: GNSS measurements in area of Erlangen, Germany. The colours
indicate three parts of the GNSS measurements with a van (red), and two city buses (green and
yellow).

A.1. SDARS Measurements, U.S. East Coast

In a first campaign S-band measurements at 2.3 GHz were carried out in September 2008
along the east coast of the USA. In Figure A.1, the measurement route from Jacksonville
(Florida) to Portland (Maine) is indicated. Over a total distance of 3700 km and a measuring
time of 75 hours the power levels of four satellites were recorded simultaneously with a
sampling rate of 2.1kHz, specificially, two geostationary (GEO) satellites of XM Satellite
Radio [Mic02] and two of three highly elliptical orbit (HEO) satellites of Sirius Satellite
Radio [Akt08]. The antenna noise power was measured simultaneously to the signal in a
quiet band. Supplementary data about the exact measurement time and vehicle position
were captured by two GPS receivers. The GPS location information is further improved by a
wheel sensor, producing an impulse every 2 cm of travelled distance. Moreover, two cameras
were mounted on the van capturing image material to derive information about the current
environment.
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Appendix A. Satellite Signal Measurements

Signal Preprocessing

To prepare the data for analysis, the following preprocessing tasks are performed:

1. From the receivers point of view, the effective C/N is relevant rather than the
measured signal power (C+N). The noise power level depends on the receiver system
noise and the temperature of the environment as seen by the antenna. Since an antenna
with an omnidirectional characteristic was used for measurements, the noise power is
increased close to obstructing objects like buildings or trees. In open environments the
noise power is reduced. Variations of the noise power level as large as 2dB are found
in the data. From the signal power and the noise power the effective carrier-to-noise
level is calculated.

2. The measurement vehicle travelled from north to south along the U.S. east coast over
a linear distance of about 2000 km. Along this route, the line-of-sight (LOS) signal
level varies, e.g. according to the satellite antenna footprint. To compare the received
signals from different locations over the complete measurement route, the C/IN is
normalised to the expected C/N at line-of-sight.

3. The signal fading speed is determined by the speed of the mobile receiver. During
measurements, it cannot be ensured that the speed of the measurement van is typical
for the current type of environment. Although representative moving speeds can be
assumed for various environments, they involve factors like the daytime, traffic condi-
tions, etc. For a comprehensive treatment studies of user mobility these considerations
would have to be incorporated. This is out of scope in this thesis. Therefore, we char-
acterize the fading process independently from the receiver’s speed by resampling it
from time domain to travelled distance units.

Environment Classification

The signal fading process strongly depends on the nature of obstacles between the satellite
and the receiver. As a current method, environment classes are defined [GV98][PFVCB™98].
Using the image material from the cameras (cf. Figure A.2), the following six environment
types are identified:

e Urban environments cover typical city centers with buildings with at least three floors.

o Suburban environments cover residential areas of cities and greater villages. The build-
ing height is limited to three floors, also foliage on both sides of the roads is usual.

e Commercial areas include business parks and industrial parks with wide roads (often
four lanes) in the outskirts of a city. The buildings aside the roads are often flat and
the foliage is light.

o Highways, freeway and interstates are characterized by wide highspeed roads with at
least two lanes. Vegetation asides the road is usual.
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A.2. GNSS Measurements, Erlangen, Germany

o Intermediate tree shadowed rural areas (ITS) include two-lane roads in the countryside
with a mixture of line-of-sight conditions and sections with groups of trees beside the
road.

e Forested rural areas include two-lane roads in the countryside with forests aside the
road.

The amount of data in each environment available for the statistical analysis is given in
Table A.1.

Table A.1l.: Available data depending on environment.

Environment class ‘ ‘Measurement length
Urban 98 km
Suburban 200 km
Commercial 170 km
Highway 2144 km
Rural (Forest) 238 km
Rural (Intermediate Tree Shadowed) 216 km

(d) Highway (e) Rural (Forest) (f) Rural (Intermediate Tree
Shadowed)

Figure A.2.: Example images of the defined six different environment types.

A.2. GNSS Measurements, Erlangen, Germany

A second measurement campaign was carried out around Erlangen (Germany) to record
the carrier-to-noise spectral density ratio (C/Ng) from Global Navigation Satellite System
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(GNSS) satellites in the L-band. Due to a permanent availability of at least 8 satellites
on the hemisphere, a comprehensive analysis of fading effects for a wide range of elevation
and azimuth angle combinations of multiple satellites is possible. Because of the low C/Ng
resolution in time (20Hz) and in amplitude (1dB quantisation), only parameters for slow
variations can be derived.

The GNSS campaign were split in two parts:

e The first part of the campaign has been carried out in July 2008. The GNSS antenna
was mounted on a measurement van at a height of 2m. A measurement round-trip
of 38km length was driven 10 times, covering several environments (suburban, forest,
open, commercial) in and around Erlangen (cf. Figure A.1, red line).

e The second part of the measurements was done in late September and early October
2010 by mounting the setup in two city buses, driving on different routes. The GNSS
antenna was mounted at a height of 3.1m. The city buses drove for three days an
identical route. The covered environments were urban, suburban and partly open rural
areas. The individual routes of the two buses spanned 7km and 6 km in North-South
direction and 6km and 5km in West-East direction, respectively. (cf. Figure A.1,
green and yellow line)

The trials were carried out in summer and in autumn months, where leaves were on the
trees.

For the measurements a professional GNSS receiver (built by Fraunhofer IIS by using a
Javad receiver core) was used. Beside information of vehicle speed and positioning data,
the GNSS signal includes a C/Ng estimation of the GPS L1 carrier at 1575.420 MHz. It
has a dynamic range of 20dB and a quantisation of 1dB. The time resolution of the C/Ng
estimation is 20 Hz. At lower signal levels of a specific satellite (e.g. during deep blockages),
the GNSS receiver loses the satellites signal synchronisation and the C/Nj estimation of this
satellite is no more available. In terms of state detection it will be defined as ’bad’ state.
Additional information of azimuth and elevation of the individual satellites were captured
with 1° resolution.

The characteristics of the environments covered by the GNSS measurements are:

e Urban: The urban centre of Erlangen is characterized by narrow roads and dense
buildings with mainly 4-5 floors.

o Suburban: Measurement cars drove through several suburban areas in and around
Erlangen. Depending on the area, the separated buildings have between 1 and 2
(family houses) and 2-3 floors (apartment buildings).

e Forest: The selected forests for the trials consist of homogeneous dense mixed trees
w/o clearances.

o Commercial areas: are characterized by wide roads and buildings of various heights
aside the road. Usually these roads cross commercial and industrial areas.

e (Open areas were passed on rural roads along fields and meadows on both sides.
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A.3. Summary and Comparison of Measurement Campaigns

For the channel model parametrisation, data from both measurement campaigns are anal-
ysed. Table A.2 summarises the main aspects.

Table A.2.: Overview on two measurement campaigns for the parameter extraction of a multi-
satellite LMS model.

l SDARS measurements (USA, East Coast)

‘ GNSS measurements (Germany, Erlangen) ‘

high sample rate (2.1 kHz)
— reliable for Loo parameter extraction and state
parameter extraction

low sample rate (20 Hz)
— reliable for state parameter extraction

4 satellites (2 GEO from XM, 3 HEO from Sirius)
— limited combinations of orbital positions

>20 satellites (MEO from GPS, GLONASS)
— many combinations of orbital positions

environments: Urban, Suburban, Tree-shadowed,
Forest, Commercial, Highway (Open)

environments: Urban, Suburban, Forest, Commer-
cial, Open

model validation for a limited set of orbital posi-
tions

preliminary state parameters for many orbital po-
sitions which need refinement and validation

A.4. State ldentification

The procedures for analysis of both SDARS and GNSS data are similar. First, the signal
is normalised to the LOS level [ATHT09]. Afterwards, the timeseries are re-sampled into
travelled distance units. As resolution, 1 cm and 10 cm is chosen for the SDARS and GNSS
data, respectively. State identification is performed by global thresholding (threshold 5dB
below LOS) of the low-pass filtered signal (sliding window over 5m), similar to [BT02].

Figure A.3 shows example measurement sequences from GNSS and SDARS trials, which are
separated into two states.

SDARS measurements (USA, East Coast) GNSS measurements (Germany, Erlangen)
T T T

T 10 T T T

* good state * good state
5r e badstate [] 5 bad state |1
¥ 5 i
3 y

normalised C/N [dB]
normalised C/N0 [dBHz]

I I i I I I I I
1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
travelled distance [m] travelled distance [m]

Figure A.3.: Exemplary measurement signals from two campaigns separated into ’good’ state and
'bad’ state. Left: normalised C/N from SDARS measurements in the USA. Right: normalised C/Ng
estimation at the GNSS receiver from measurements in Germany.

A.5. Loo Parameter Extraction

Once the measurement data is separated into the states, the Loo triplets are derived to
characterise the signal behaviour within each state. Loo triplets are found by comparing
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the distribution of the measured signal within a state with theoretical Loo distribution
functions. Finally, the Loo parameter triplet is selected, where the theoretical statistic fits
best the measured one [KAIH12]. As mentioned before, only the SDARS measurements are
feasible for Loo parameter extraction.

A.6. Separation of Data into Environments and Satellite Positions

Single-satellite reception depends on the kind of the environment, the elevation angle of
the satellite, and the azimuth of the satellite relative to the driving direction. For a detailed

analysis of the single-satellite state characteristics, the SDARS- and GNSS measurement
data are divided into:

e different environment types 'Urban’, ’Suburban’, "Forest’, 'Commercial’, and ’Open’
(Note that the 'Highway’ environment from SDARS measurements is assigned to
'Open’). The environment classification for the SDARS measurement data is per-
formed by visual inspection of the image material from two cameras. For the GNSS

measurement data the Land-Usage data from the European Corine project [Cor] is
used.

o different elevation angles from 10° to 90° in segments of 10°. The mean elevation
angles represented by these datasets are therefore 15°, 25°, ... | 85°, respectively.

e four classes of driving directions (for GNSS data, only) with the intervals 0-10°, 10-30°,
30-60°, and 60-90°.

Figure A.5 shows the amount of data from SDARS and GNSS measurements for single-
satellite analysis. Due to the limited amount of SDARS data (except open environments),
different driving directions are excluded from the analysis.

Urban Suburban Forest Commercial Open
500 1200 500 | 500; 1200
o & ﬁ % GNSS, driving direction 0°-10°
450 ok 450 I - GNSS, driving direction 10°~30° A
400 kS 1000 5 400 ? 1 | %~ GNSS, driving direction 30°-60° 1000 & ¢
P | - GNSS, driving direction 60°-90° 1% h |
350 (V1) | —0— sDARS, driving direction 0°-360 ;o\ \
800f - v 800 (W |
®own 300 Il Vil \\ s00f v o
600 : g 250 g I § 250}k 600 1
9 AL bl
% § 2001 4" of g a0\ 200 e # |
awop : 1s0r $ o ?‘ sof o\ 400} ¢ 1
Bree 100 “‘I\a =T 100 A3 Tgig ‘
200 B i [ AR \: o) DERAS 3 200} he FiE !
by k] 5 o\l ; o BB
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i g b, | Pl
04 0« \/ 0= < 0—=& v 0% S
10720 30 40 50 60 70 80 90 10720 30 40 50 60 70 80 90 10720 30 40 50 60 70 80 90 10720 30 40 50 60 70 80 90 1020 30 40 50 60 70 80 90
elevation [°] elevation [°] elevation [°] elevation [°] elevation [°]

Figure A.4.: Amount of data from SDARS measurements and GNSS measurements for different
environments and elevation angles. Please note that the values are connected only for better visibility.

The dual-satellite (and multi-satellite) reception depends on the kind of the environ-
ment, the elevation angle of each satellite, and the azimuth of each satellite relative to the
driving direction. Especially the angular separation of the satellites of elevation and azimuth
are crucial, since it affects the correlation of the received signals. For a detailed analysis of

state characteristics for dual-satellite reception, the measurement data from SDARS and
GNSS measurements are divided into:
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A.6. Separation of Data into Environments and Satellite Positions

e five environments (the same as for single-satellite case).

e combinations of eight elevation angles as used for single-satellite analysis. Thus, the
elevation angle separation is included as well.

e seven intervals of the azimuth angle separation between the satellites (0-10°, 10-30°,
30-60°, 60-90°, 90-120°, 0-150°, and 150-180°).

This adds up to a total of 5-8-8-7 = 2240 segments (further denoted as receive scenario) of
measurement data. A further division into driving directions is omitted. For a reliable dual-
satellite state analysis (especially in terms of state duration analysis) and parametrisation of
the Markov models, a minimum number of states is required. For this purpose, we define a
receive scenario as 'valid’ if each combined state (’good good’, ’good bad’, ’bad good’, bad
bad’) is visited at least 50 times'. It corresponds to a state sequence with more than 200
state transitions. Based on this condition, Figure A.5 presents the available receive scenarios
for the SDARS and GNSS measurements. The dual-satellite state analysis in this work is
based on GNSS data. A dual-satellite analysis of the SDARS data is omitted, since the
limited SDARS constellations restricts conclusions for dual-satellite reception in dependence
on azimuth angle separation or elevation.

Figure A.6 presents the amount of data within the proposed 2240 receive scenarios sorted
by measurement length, and by number of visits of the combined states. From GNSS data,
about 2000 scenarios are valid for analysis (with >50 visits per combined state). In the
SDARS data only 200 valid receive scenarios are found. Taking the condition of >50 visits
per combined state, the shortest measurement length is ~4 km for GNSS and SDARS. From
GNSS, about 50% of the scenarios include more than 100km of data. Even 1% of the
scenarios have more than 1000 km. It allows to draw reliable statistical conclusions for dual-
satellite reception. Note that the available measurement length for analysis does not directly
correspond to the driven distance. It rather describes the available length after combining
any of the visible satellites.

Lthe state duration statistic of a combined state include > 50 elements
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Figure A.5.: Available orbital constellations of two satellites from SDARS measurements (coloured
diamonds) and from GNSS measurements (coloured fields) quantised to 7 sections of the azimuth
separation angle (Af), 9 elevation ranges per satellite (¢1, ¢2) and 5 environments. The colour
indicates the measurement length. The GNSS data is further used for dual-satellite state analysis.
A dual-satellite state analysis from SDARS is omitted, since conclusions for dual-satellite reception
in dependency on the azimuth angle separation or the elevation are rather limited.
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Figure A.6.: Amount of data for dual-satellite analysis within 2240 receive scenarios (5 environments
- 8 X 8 elevation angles - 7 azimuth separations) sorted by measurement length (left) and by number
of visits per combined state (right). The criterion for 'valid’ scenarios is that >50 visits for each joint
state are achieved.
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B. Calculation for State Models

This chapter is a survey on state models for single-, dual-, and multi-satellite reception,
arranged in three parts Appendix B.1, Appendix B.2, and Appendix B.3. It targets to
improve the readability of Chapter 3, as supplementary formulas are presented to describe
and analytically evaluate the state approaches that are investigated in Chapter 3.

B.1. Single-Satellite and Multi-State Modelling

In this section the available Markov approaches for single-satellite state modelling are sum-
marised: first-order Markov, semi-Markov, and dynamic Markov. Expressions for state
probabilities, mean state durations, and state duration distribution functions are given for
up to IV states, which are required for studies in Chapter 3. The expressions are also valid
for the multi-satellite ’straightforward’ methods, in which all permutations of single-satellite
states are considered.

B.1.1. First-Order Markov Model
Concept and Parameters

A Markov model is a random process for generating discrete samples corresponding to chan-
nel states s. For a first-order Markov model, each state depends only on the previous state.
The conditional probabilities of state s,41|s, are described by state transition probabili-
ties pi; (4,7 € {1,2,3,...,N}), which are elements in a state transition probability matrix

Ptrans .

p1i1 ... DIN
Ptrans — e (B1>
PN1 ... PNN

N denotes the number of states.

For a first-order Markov model further holds:
p- [Ptrans - I] =0 (BQ)

with p is the row vector of the equilibrium state probabilities, the identity matrix I, and the
zero vector 0.
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State Probability

The equilibrium state probability (row) vector p is calculated by
pP= 1(1 — Ptrans + U)_l (B3)
where 1 is a row vector with ones, and U is a matrix with all elements are ones. Alternatively,

the state probabilities can be derived by

lim (u- P )y =p (B.4)

trans
k—o00

where p is an arbitrary probability vector with », u; = 1. The latter method is only valid
for aperiodic, irreducible, and homogeneous Markov chains [Rab89].

State Duration Probability Density Function

The probability that the Markov chain stays in state ¢ for n consecutive samples is given
by
Pi(D=nAd) =pl - (1-py), neN, (B.5)

where p;; is the state transition probability between two equal states, and Ad denotes the
sampling distance (frame length). The SDPDF P(D) follows an exponential distribution.

Mean State Duration

The mean duration D of state i is calculated by

— 1 1
D: — -
Y l—pu Ad

B.1.2. Semi-Markov Model

Concept and Parameters

A semi-Markov model generates a random sequence of N states. In contrast to the first-
order Markov model, the state transitions do not occur at constant time intervals. In fact,
the time interval of the model staying in state i follows a certain state duration probability
P(D;). Therefore, the model parameters are N SDPDFs. State transitions are described by
state transition probabilities p;;, but with 7 # j.

0 pi2 ... ;N
. pa1 0 ... pon
M
i o (B.7)
PN1 .- 0
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B.1. Single-Satellite and Multi-State Modelling

State Duration Probability Density Function and Mean State Duration

The semi-Markov model allows some options to describe the SDPDF of each state. From
the SDPDF, the mean duration is further derived.

e The SDPDF is arbitrary and could be, e.g. the SDPDF of the reference data or the
measurements.

P(D) = P(Dreference) (B.S)

The corresponding mean duration of state ¢ is
_ 00
D= / D- P(D)dD (B.9)
0

If the SDPDF is described with discrete values ¢, the mean state duration is

dmax

D=)Y q-P(D=q), (B.10)
q=1

where ¢max corresponds to the maximum state length.

e The SDPDF is described by a lognormal PDF

P(D)

K exp [_ (2010g(D)—uDur)2] 7 (B.11)

" DopuyV/27 203 .
where ppyy and opyr are respectively the mean value and the standard deviation of

20log(D), and K = 20loge =~ 8.686. The mean state duration D can be calculated
with

~ HDur ODur 2
D = exp 7 +0.5( K) . (B.12)

State Probability

The equilibrium probability P; of the state ¢ is calculated as the product of the normalised
mean state duration D; ,,orm and the probability of entering a state P;:

P = Pz‘/ : Di,norm (Bl?))
_ D;
Di,norm = Zk ZDk (B14)
P! is element of the state probability vector p*™M and is calculated analogously to Equa-
tion (B.4):
Jlim (- P ) = premit! (B.15)
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B.1.3. Dynamic Markov Model
Concept and Parameters

The dynamic Markov model was introduced from Milojevic et al. in [MHEHO09]. It is
a random process for generating discrete samples corresponding to channel states s. In
contrast to first-order Markov chains, the state transition probability depends additionally
on the current state duration q.

pij = fla). (B.16)

The model parameter is a three-dimensional STPT Pirans € RéVfoq"‘ax, where ¢max cor-

responds to the maximum state duration obtained from the measurements with D,y =

GmaxAd.

pu(g) ... pin(g)
Ptrans = qc {1)27"'>Qmax} (B17)
pni(q) ... pan(q)

State duration PDF

The probability that the duration of state i is equal to D is

q—1
Pi(D = qAd) = (1 — pi(¢Ad)) - [] pi(rAd), qeN. (B.18)
r=1

The corresponding state duration CDF is given by

qg—1
P(D < gAd)=1—[] pii(rAd), g€N. (B.19)

r=1

State Probability and Mean State Duration

The state probability and the mean state duration are crucial factors to evaluate the perfor-
mance of state models. Expressions to calculate these factors from a dynamic Markov model
are missing in the contributions from Milojevic et al. [MHEHO09][MHEHO8]. Therefore, in
context of this thesis the calculation of state probability and mean state duration from a
dynamic Markov model is worked out.

To calculate the equilibrium state probabilities, first the equivalent of the state transition
probability matrix according to the first-order Markov model Pf,,, . is derived from the state
transition tensor Pirans. The elements p;; of Py,  are calculated with:

dmax

Pérans : p;j = Z pij(Q) ’ KZ(Q) (B20)
q=1
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pij(q) are elements of Peans. The factor Kj(q) is related to the complementary CDF of the
state durations P;(D > q). The complementary state duration CDF is given by

P(D > q) = ﬁpz‘z‘(TAd) (B.21)

r=1

The sum of all elements of P;(D > q) equals the mean state duration D;. K;(q) is the
normalised CCDF":

Ki(q) B(D>q) _ P(D=>q)

(B.22)

- X" PR(D 29 D;

The equilibrium state probabilities (and again the mean state durations) can be derived
from P}, . according to Equation (B.3) or Equation (B.4).

trans

B.2. Dual-Satellite Modelling

In this section the state modelling approaches for dual-satellite case are described: straight-
forward approach, Lutz approach, Master-Slave approach. Expressions for correlation coef-
ficients, state probabilities, mean state durations, and state duration distribution functions
for the combined states and for the states from individual satellites are given.

B.2.1. Correlation Coefficient Between Two Satellites

The Pearson’s correlation coefficient between two channels is given by

R CIOREICOR) B.23)

0102

When only two states per satellite are assumed, the phi coefficient ¢ [Crad6] can be used
to describe the correlation coefficient of the state sequence from two satellites. The phi

coefficient is defined as
n11 - N2 — N2 - N2

V(nix)(nax)(nx1)(nxz)’

where n;; is the number of samples where sequence 1 has state ¢ and sequence 2 has state
j. For state modelling this formula can be adapted by using the single- and joint state
probabilities of two satellites

¢ =

(B.24)

Peg - Po, — Py - Phg
Py1 Po1 PeoPoz

(B.25)

Pstates =

where g stands for 'good’-state, b for ’bad’-state, bb for 'bad bad’ etc.
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Taking the condition that each single state probability is the addition of two combined states
(e.g. Py1 = Pyg + Pyp), the combined states can be also expressed as a function of single
satellite probabilities and the correlation coefficient:

Py +v + Py1 Py + Py — By
joint(satl,sat2) _ Pgb _ —v— Py1 P + P B.26
P Py —v — Py1 Py + Py ( )
Py, +v + Pp1Poo

with

V=p" \/Pglpblpggpbg (B27)

B.2.2. Lutz Approach

In [Lut96] a method is introduced to realise correlated state sequences of two satellites with
a first-order Markov model. It is valid for two states per satellite. Based on the state
transition probabilities of two satellites (P{%L. P£42 ) and one correlation coefficient (p), a

correlated joint STPM P{f;ﬁz is calculated without influencing the transition probabilities

of the individual satellites. For purpose of completion, it is described here in detail.

The STPMs of two single satellites are given. By exchanging the notation of the state
transitions to pLg = ¢, Peb = b, Pbb = (1 — g), Pegg = (1 — b), the STPMs are:

1—-0b; b1 1—1bo ba
e N PP B

In case that two satellites are uncorrelated (i.e. p = 0), the joint STPM of these two satellites
can be estimated by the product of each of two state transition probabilities from the single
satellites:

joint,uncorrelated ¢ (_1bl)l§1)_ ’2) (1 (lb_)?i)bz ) bl(bl e b (ilbz )

, _ —b1)g2 —b1)(1 — g2 192 1(1—g2

Ptrans - g1(1 = b2) g1b2 (1 —g1)(1 —b2) (1 —g1)b2 (B29)
9192 g1(1 — g2) (1 —-g1)92 (1 —91)1 —g2)

An important fact is that P{f;ﬁé’uncormlated include all characteristics of the two individual

satellites (state probability, mean state duration, SDPDF).

Concept of the Lutz approach is to add values to Piomtuncorrelated o) that a certain

correlation coefficient is achieved and the characteristics of single satellites remain unaltered.
Thus, the following modification is proposed:

x —X —Xr X

joint joint,uncorrelated y -y -y y
pioint _ pjoint, N B.30
trans trans v —v —v 0 ( )

w o —-—w —-w w
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With the requirement 0 < p;; < 1 for the elements of P{%"  and the reasonable assumption

that g1, b1, g2, b2 < 0.5, the possible ranges of the variables =, y, v, and w are:

Tmin = —bib2

Lmax = min{bl; bQ} — blbg

Ymin = bige — min{bi; g2}

Ymax = b192

Umin = g1bz —min{g1; b2} (B:31)
Umax = gle

Wmin = —Y9192

Wmax = min{gi;g2} — 9192

The variables z, y, v, and w can be chosen freely within their possible ranges. To have one
final variable, Lutz propose to couple these variables by a scaling coefficient c.

T = cxo
Yy = CYo
v o= cu
w = cwp (B.32)
with
20, Y0, V0, Wo = Tmax, Ymax; Umax; Wmax » p = 0 (B33)
Lmins Ymin, Umin, Wmin » p<0

In the context of this work also alternatives without this scaling coefficient ¢ are analysed. It
has the advantage that additional information, such as the mean duration of the combined
states, can be taken into account (cf. Section 3.2.3).

Finding the scaling coefficient c

By using the relation for first-order Markov chains (p = p - Pyrans, ¢f. Equation (B.2)), the
following expression can be adapted from Equation (B.30).

Py = Pi(ply + cxo) + Pa(phy + cyo) + Ps(p34 + cvo) + Pa(ply + cwo) (B.34)
joint

with P; are the equilibrium state probabilities of the correlated matrix Py, ¢

and p;; are the

joint lated __ .
joint,uncorrelate with

elements of the uncorrelated matrix Py, ¢

p:14 = biby
A ®
Piu = (1=91)(1-g2)
By solving Equation (B.34) for the parameter ¢, it holds
o= —P1(b1b2) — Pa(bi(1 — g2)) — P3((1 — g1)ba) — Pa((1 —g1)(1 —g2) — 1) (B.36)

Pixg + Poyo + Psvg + Pywg
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The joint state probabilities have to be substituted by known values g1, b1, g2, b2, and p.

Introducing the correlation coefficient

In Equation (B.26) in previous Section B.2.1 it is already shown that the joint state proba-
bilities are a function of the correlation coefficient p and the state probabilities from single
satellites. By expressing the single satellite probabilities with parameters b and g

g1 by g1 by

Py = ———, Py = , Py = ———, Py = , B.37
B g+ b T gD 7 g2+ b T gt (B.37)
the (correlated) joint state probabilities can be written as
Pro= [g192+ pQl/[(91 + b1)(g2 + b2)]
Py = [giby — pQ]/[(91 + 1) (g2 + b2)] (B.35)
Py = [biga — pQl/[(g91 4 b1)(g2 + b2)]
Py = [biby + pQ]/[(g1 + b1)(g2 + b2)]

with

Q = V91920102 (B.39)

Inserting the state probabilities from Equation (B.38) to Equation (B.36) result in

. pQ(1 — (1 — g1 —b1)(1 — g2 —b2)) (B.40)

(919270 + 9192y0 + b1gavo + bibawo) — pQ(—z0 + Yo + vo — wo)

The parameter c is used to calculate z,y, v, w according to Equation (B.32) and to achieve
finally the correlation matrix from Equation (B.30).

B.2.3. First-Order Markov Model for Two Satellites: Single-Satellite Characteristics

A first-order Markov chain for two satellites is described by a joint state transition probability

matrix P9 Assuming two states (‘good’ and 'bad’) per satellite, it is denoted with

P11 P12 P13 DPi4
P joint _ | P21 P22 P23 P24 B4l
frans P31 P32 D33 P34 ( )
P41 P42 P43 P44

The equilibrium state probabilities are

p’ot = [P Py P3Py (B.42)

According to Equation (B.5), the diagonal elements of P%"™ give information on the SDPDF

rans gl
of the four joint states, which follows an exponential distribution.
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B.2. Dual-Satellite Modelling

The joint STPM include characteristics of the individual satellites as well. Therefore, the
STPMs of satellite 1 and satellite 2 (P{%l  P$42 ) are derived from the joint STPM.

trans» trans

1 — Pgg1) Pgg2 (1 — pgg2)
psatl _ | Pegi ( g, psat2 _ | Pee g8, B.43
trans Pbg,1 (1 — Pog,1) trans Pbg2 (1 — pob2) ( )
The state transitions for satellite 1 are:
Dgg,1 = _h (p11 + p12) + 2 (p21 + p22) (B.44)
g8 P+ P P+ P
P P,
_ F o)+ (pay + B.45
Db, 1 Pt P (p31 + p32) 71 P, (a1 + pa2) ( )
The state transitions for satellite 2 are:
Dgg,2 = B (p11 +p13) + — (p31 + p33) (B.46)
g8 P+ P3 P, + P3
Py Py
— + + —_— + B.47
Pbeg,2 o (p21 + p23) B P, (pa1 + pa3) ( )

From the resulting state transition matrices the equilibrium state probabilities and the mean
state durations for the single satellites can be calculated according to Equation (B.4)
and Equation (B.5), respectively.

Although the transition probabilities in P{%l and P{%2  are valid, the actual SDPDFs for
satellite 1 and satellite 2 are not exactly exponentially distributed as expected for first-
order Markov models (c.f. Equation (B.5)) in any case. Therefore, a method to calculate
the single-satellite SDPDFs from semi-Markov chains is given in next section and can be

adapted for first-order Markov models as well.

B.2.4. Semi-Markov Model for Two Satellites: Single-Satellite Characteristics

A semi-Markov model is mainly described by SDPDFs for each state. For a single-satellite
semi-Markov model, the SDPDFs of the ’good’ and ’bad’ state are parameters of the model.
For a dual-satellite semi-Markov model, the SDPDFs of the joint states (’good good’, "good
bad’, bad good’, ’bad bad’) and a STPM are the parameters. However, the SDPDFs of the
single satellites (i.e. ’good’ and ’bad’ for satellite 1 and satellite 2) have to be determined
in case of a dual-satellite model. In this section, a calculation of single-satellite SDPDFs is
introduced. To the best knowledge of the author, this calculation has not been considered
in the literature, so far.

Assuming a semi-Markov model for two satellites, which is described by four SDPDFs P(D)
for combined states 'good good’, 'good bad’, ’bad good’, ’bad bad’, and a joint STPM
PsemiM with diagonal elements are zero. In the following, the calculation of the single-

satellite SDPDFs is exemplarily presented for the 'good’ state of satellite 1.
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The SDPDF of state 'good’ for satellite 1 (P(D*ggaﬂ)) depends on the SDPDFs for ’good
good’ and ’good bad’, the transition probabilities p12 = pgg—gb and p21 = pgh—sge and the
probability of entering the combined states P| and Pj.

P(DF"") = f(P(Dygg), P(Dgb), 12, p21, P1, Py) (B.48)

In the following expressions it is assumed that the SDPDFs of single and combined states
are given by probabilities of durations with discrete sample length: P(D = k) with k €

{]-a 27 37 ceey Qmax}~

Starting with the probability of the 'good’-state having duration D = 1: This case is valid
if one of the combined states (gg or gbh) have a duration of D = 1 and there is no state
transition between gg and gb. The exact expression is:

P(Dgaﬂzl) = P{~P(Dgg:1)~(1—p12)
+ PQI . P(ng = 1) . (1 —pgl) (B49)
A ’good’ state duration of D = 2 is achieved, if whether one of the joint durations is D = 2

and there is no transition between gg and gb or the joint durations are D = 1 and there is
a transition between gg and gb.

P(Dgaﬂ:2) = P{'P(Dgg:2)‘(1_pl2)
+ P{'P(Dggzl)'plz P(Dgp, = 1) - (1 = pa1)
+ Py P(Dg, =2)- (1—p21)
+ Pé . P(ng =1) pa P(Dgg =1)-(1—p12) (B.50)

A ’good’-state duration of D = 3 is calculated with:

P(Dy"' =3) = P{-P(D1=3)-(1—p)
+ P{-P(Dy=2)-pi2- P(Dy=1)-(1—pa1)
+ P{-P(Dy=1)-pi2- P(Dy=2)- (1 —pa1)
+ P -P(Dy=1)-pia- P(Dy=1)(p21) - P(D1 =1)- (1 —p12)
+ P3-P(Dy=3)-(1—pa)
+ Py -P(Dy=2)-py1-P(D1=1)-(1—p12)
+ Py-P(Dy=1)-pa-P(D1=2)-(1—p12)
+ Py-P(Dy=1)-pa-P(D1=1)(p12) - P(D2=1)- (1 —pa)

(B.51)
The three examples demonstrate that the alternative paths to achieve a certain ’good’-state
duration grow with increasing state length. However, parts of Equation (B.51) are found in

Equation (B.50) and parts of Equation (B.50) are found in Equation (B.49). Thus, the re-
maining probabilities of ’good’-state durations can be calculated by an iterative algorithm.

P(Dy*' =1)=P[- A(1) + P; - B(1) (B.52)
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with

B(1) = P(Dg,=1)(1—pn) (B.53)

The remaining elements are calculated with:
P(Dy*' = k) =P - A(k) + P; - B(k) (B.54)

with

k-1
A(k) = P(Dgg=k) - (L—=p12)+ > (P(Dgg =k —q)-p12-B(q))

B(k) = P(Dgy=k)-(1—pu)+ S (P(Dgy=k—q) pn - Alg)  (B.55)
q=1

P and Pj (with P| + Py = 1) are the probabilities of starting the iteration with the com-
bined states gg and gb, respectively. In other words, P| and P} are the effective transition
probabilities from one of the other states (i.e. bb and bg) to the states of interest (gg or gb).
Therefore, the joint transitions ppg_sge, Pbb—sges Phg—sgbs Pbb—sgh are important:

Pl = P31 + P41 P, = P32 + P42 (B.56)
P31 + P41 + P32 + P42 P31 + P41 + P32 + P42

The SDPDFs P(Dj*), P (Dg“tz), and P(D{%?) are calculated analogously to the given
example. From the SDPDF's the mean state durations for the individual satellites are derived

according to Equation (B.10). The results are valid for semi-Markov models with arbitrary
joint SDPDF's.

With a small modification the calculation method above can be used for dual-satellite first-
order Markov chains. Therefore, all diagonal elements of P72 must be set to zero and
the remaining transitions have to be normalised such that the sum of each row equals 1.
Knowing the SDPDFs for joint states (Equation (B.5)), the SDPDFs for single satellite

states are derived.

B.2.5. Dynamic Markov Model for Two Satellites: Single-Satellite Characteristics

Similarly to the dual-satellite semi-Markov model from previous section, the calculation of
single-satellite SDPDFs on the basis of a dual-satellite dynamic Markov model is introduced
in this section.

A dynamic Markov model for two satellites is described by a three-dimensional state tran-
sition probability tensor. Assuming the joint states for 'good’ and ’bad’, the STPT is of
dimension ng;gst € Réi4xqmax, where gmax corresponds to the maximum joint state dura-
tion. The SDPDFs of the joint states are estimated with Equation (B.18), which is found

also in [MHEHO09]. In the context of this work analytic expressions are developed to derive
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the SDPDFs of the two individual satellites. An iterative algorithm is used similar to the ap-
proach for semi-Markov models from previous section. The calculation of the ’good’-SDPDF
for satellite 1 is taken as example again.

Required parameters to derive the 'good’-SDPDF for satellite 1 are:
1. the SDPDFs of the combined states ’good good’ and ’good bad’ P(Dyg) and P(Dygt,)

2. a modified STPT which is similar to a semi-Markov model. Therefore, the diagonal
elements of ng;g; must be set to zero for each value of the current state duration gq.

Afterwards, the STPT have to be normalised such that the sum of each row equals 1.

/0 P12(q) p:13() p:14(Q)
join joint’ 0 p () p (Q)
p]ranst _ P]ranst _ P (q) 23 24
¢ ¢ p3(q) Pialq) 0 piy(q)
pu(a) Pie(q) pis(e) 0

q
q
qc {17 2a ~'-7qmax}

(B.57)
Important vectors to get P(Dg“tl) are plo(q) and phy(q).

3. the probabilities (P; and Pj) of entering the states of interest (gg or gb) after beeing
in one of the other states (bg or bb). For this purpose, first the equivalent of the
STPM according to the first-order Markov model Py, . must be derived from the state

Y trans
transition tensor P9 as described in Section B.1.3. Then, the diagonal elements of

P .. must be set to zero and the remaining transitions are normalised (P}, —
P!..s)- P and P} are calculated with
1= 1 1 7 2= 7 1 " :
P31+ Pa1 P32 + Pao P31+ Pa1 + P32+ Pap
The probability of a ’good’-state duration of D =1 is given by
P(Dy* =1) =P - A1)+ P5- B(1) (B.59)
with
A1) = P(Dg=1)-(1-pl5(1))
B(1) = P(Dg,=1)(1-ph(1)) (B.60)
The probabilities for durations D > 1 are calculated iteratively with:
P(Dy* = k) = P{- A(k) + P; - B(k) (B.61)
with
k—1
A(k) = P(Dgg=k) (1= phy(k)) + ) (P(Dgg =k —q) - pia(k — q) - B(q))
k-1
B(k) = P(Dg,=k) (1-py(k))+ ) (P(Dgp=k—q) pu(k—q) Alg)) (B.62)
q=1

The main difference to the algorithm for semi-Markov chains from previous section is that
the transition probabilities are a function of the state duration. The SDPDFs P(Dj%1),
P(D§*?), and P(D§"?) are calculated analogously to the given example. From the SDPDFs
the mean state durations for the individual satellites are derived according to Equation (B.10).
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B.3. Multi-Satellite Modelling

This section describes two Master-Slave approaches including the state probability calcu-
lation for two- and three satellites, as well as the calculation of state probabilities in a
three-satellite system, which is taken as reference in Section 3.5. All expressions from this
section are developed in the context of this thesis. (cf. also Section 3.2.5 and Section 3.5)

B.3.1. Master-Slave with Conditional Assembling Method

The Conditional Assembling Method developed in this work is one possible realisation for
the Master-Slave concept. In this section the calculation of joint state probabilities and
correlation coefficients for two and more satellites are given. They are derived from the
equilibrium state probabilities of the master (pM ), of the conditional slave states when
master is in good state (p%1*=999) and the conditional slave states when master is in bad
state (pSIM=bad),

pM — [ PgM Pﬁ”]T, pS|M=good _ [ Pgs|g Pﬁglgr’ pSIM=bad _ [ Pgs\b Ptﬁb]T
(B.63)

PZ*?] defines the probability of the slave state ¢ in case of the master state is j.

Calculation of State Probabilities (one Master, one Slave)

From the master probabilities and conditional slave probabilities the combined probability
vector p/°™ is calculated:

M S
Pyy P g P %g
o= | T | = | T oy
P TR, | T PP o '
M
Py, B PRy
The state probabilities of the slave are:
P2 Py + P
S=| &= 2" B.65
P [Pf} [Pngerb} (B.65)

Calculation of State Probabilities with one Master and Multiple Slaves

Analogously to the two-satellite case, the combined probability vector p/?™ for multiple
satellites (with k satellites) is the product of master probabilities and multiple conditional
slave probabilities.
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- - T pM . pS2 . pS3 Sk
Prse.s P P%g P%g,.., P%g
P PM . ps2. .
ggg..b g glg g\g LR b\g
ioint _ _ M pS2 . pS3. Sk
P = | Ppgr | =| B Pbblg P%g Pkgg (B.66)
Pbb PM . . .
gbb--8 g Dilg Pojg o Bl
P M. pS2 . pS3 Sk
| Lbbb.b | 5 Pb‘b Pb‘b s e Pg‘b |

Correlation coefficient between Master and Slave

Based on combined probabilities of master and slave, the correlation coefficient pyrastersSiave
is found with Equation (B.25).

Correlation coefficient between two Slaves

The correlation coefficient between two slaves depends on the combined state probabilities
P/; of the slaves:

Peg - Ply, — Pay, - Py
(Pgg + Pa) (P, + Bp) (Pag + Py ) (P, + )

(B.67)

Pstates, Slaves — \/

The combined state probabilities P/; of the slaves can be calculated from the joint state

probabilities of the whole system Master(1)-Slave(2)-Slave(3). According to Equation (B.66)
it holds:

M S3 M S2 S3
P, Prge + Pogs PP %g P+ P P%b P o
pjoint(SlaUGQ&SlaveS) _ Pgb _ ngb + Pbgb — Pg]\/[ %g P % + Pb %b lgb
= > = =
ol B ool B R o o R
Pl Pabb + Pobb A Pb|g +R PR B
(B.68)

By inserting Equation (B.68) in Equation (B.67) the correlation coefficient between the slaves
Pstates, Slaves can be described as a function of the correlation coefficients between master and
slave(2), and master and slave(3):

Pstates, Slaves — Pstates, Master&Slave2 * Pstates, Master&Slave3 (B'69)

B.3.2. Master-Slave with Adaptive Slave Transition Matrix based on Master
Transitions (ASTM-MT)

A further realisation of the Master-Slave concept is denoted as Adaptive Slave Transition
Matrix. It means in general that state model parameters of the slave depend on one or more
state model parameters of the master. A relevant approach is found in this work, when the
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state transitions probability matrix of the slave (Pl%v¢) is a function of the master state
transition probabilities:

Piane = folj ™), i € {g)b} (B.70)

If the master satellite is described by a first-order Markov model, then the joint STPM of

master and slave is the product of the master transition probabilities with the corresponding
STPM of the slave:

Master Slave|gg Master Slave|gb
Pgg ) Ptrans Pgp, ’ Ptrans

joint __
Ptrans - g | s | (B71)
Master lave|bg Master lave|bb
Ppg ) PtTaHS Dby ’ Ptrans

P{fgg include all information for equilibrium state probabilities, mean state durations, and
SDPDFs for single satellite states and combined states. The information can be estimated
as described in Section B.1.1 for first-order Markov chains.

If the master satellite is described by a semi-Markov or a dynamic Markov model, Equa-
tion (B.71) is approximately valid.

State Transition Probability Matrix with Three Satellites

The joint STPM for a three-satellite constellation using the ASTM-MT approach is deter-
mined by the product of transition probabilities from master(1), the conditional transition
probabilities of slave(2), and the conditional transition probabilities of slave(3).

M18&S28&S3 __
Ptrans -
[ 52 S3lgg | 52 S3|gg [ 52 S3lgb 52 S3lgb T 7
M Pggleg * Pga‘ﬂs Pgblgg ° P'ga|ns pM . Pggleb * PtSra‘nsb Pgblgb - Pgafsb
88 S2 3lgg 52 3lgg g S2 3lg S2 3lg
pbg|gg : Ptrans pbb|gg : Ptrans i pbg|gb : Ptrans pbb|gb : Ptrans
52 S3lbg 52 S3|bg 52 S3|bb 52 S3|bb
M pgg|bg : Ptrans pgb|bg : Ptrans M . pgg|bb : Ptrans pgb|bb : Ptrans
Dhg S2  pS3be 52 pS3be Doy, S2  pS3bb g pS3lbb
L pbg|bg "L trans pbb|bg "L trans L pbg|bb "L trans pbb|bb "L trans ]
(B.72)

pf‘f (1,7 € {g,b}) are state transition probabilities of the master, pflzlij are transition prob-
abilities of slave(2) from state k to [ (k,l € {g,b}) under the condition of master goes from
state ¢ to j, and Pfrilflé is the STPM of slave(3) under the condition of master goes from ¢
to j.

From PM1&52853 the joint state probabilities can be derived according to Equation (B.3),

and the mean joint state durations are calculated according to Equation (B.6), respec-
tively.
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The correlation coefficient between the slaves pgiates, Slaves can be calculated from the
joint state probabilities with
Pstates, Slaves — \/(1 — A1)<1 — Ag)AlAQ )

(B.73)

where
P!, = Pebb + Pobb
Ay = Pyyg + Pavb, + Pobg + Pobb ,and
Ao = Pypg + Pabb + Pogh + Pobb -

By evaluating pstates, Slaves for a number of constellations with three satellites it is found

that

Pstates, Slaves = Pstates, Master&Slave2 * Pstates, Master&Slave3 (B74)

B.3.3. State Probabilities of a Three-Satellite System

The joint state probabilities of a three-satellite system are given by:

P, ggg Py
Pygty P
Pypg P3
joint(satl&sat2&sat3) __ Pgbb _ Py
P =l A, = | p (B.75)
Pygy, Py
Pyg Py
| Pobb | | Py |

To analytically derive the combined state probabilities from dual-satellite measurement data,
we consider the state probabilities of the individual satellites, and the correlation coefficients
between the satellites:

P11 P12 P13
P P P
p**! = [ A 1 , P = l &2 ] , pP= l £ ] , p=| pu p2 ps |, (B.76)

P31 P32 P33

with py, = 1, and pzy = pye-

The sum of two combined probabilities from p/oint(satl&sat2&satd) oqyals the combined prob-
abilities of two satellites:

Pagx Pogg + Pagp

ploint(satidsat2) _ Pgvx | _ | Pebg + Fabb (B.77)
Png Pbgg + Pbgb
Poux Piopg + Popp
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Pyxg [ Pagg + Pabg
pjomt(saﬂ&sats) _ Pyxn — DPegb + Pabp (B.78)
Py xg Pogg + Pobg
| Poxb | | Pogb + Pobb |
_Png— —ngg"‘Pbgb—
pjoint(satQ&sat?:) _ ngb _ ngb + Pbgb (B79)
Pxtg Pobg + Pobg
| Pxvb | | Papb + Pobb |

It is assumed that the combined probabilities p/oint(satl&sat2) 'pjoint(satl&satd) oy 4 pioint(sat2&sat3)

include already the single satellite probabilities and the correlation coefficients according to
Equation (B.26).

By denoting pjomt(satl&sat2) —a pjoint(satl&sat3) - b pjomt(sat2&sat3) = ¢, the Equations
(B.77), (B.78), (B.79) are written in matrix form:

Ay 11000000
Ay 00110000
As 000011 00]| [P]
Ay 000O0O0OTO0TI11 Py
B 1 0100000 P
B, 01010000 Py
Bs| |000O0OT1O0T1F0 P (B.80)
B, 000O0O0T1TU0°1 P
Cy 1 0001000 Py
Cy 01000100]| |Ps]
Cs 00100O0T1U0

| Cs] 0001000 1]

Equation (B.80) has an infinite number of solutions for P;. With assumption Py = n it
holds:

PgZTL

P7:A4—n

P6:B4*’I’L

Ps=B3—As+n

Pi=Ci—n (B.81)

P;=C3—As4+n
P,b=Cy—Bs+n
P=Ci—B3s+A4y—n

All solutions of Equation (B.81) provide the state probabilities of the individual satellites as
well as the correlation coefficients between two pairs of satellites. By considering 0 < P; < 1,
the range of valid probabilities is found with
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n<1 n>0
n§A4 n2A4—1
n§B4 TLZB4—1
n<1l-—Bs+ Ay n> Ay — Bs
TLSC4 77,204—1 (B.82)
n<1l-—Cys+ Ay n> Ay —Cs
n<1l-—Cy-+ By n > By — Oy
n<Ci— Bsg+ Ay n>Cy—Bs+A,—-1
It can be further reduced to
Nmax = min{ A4; By; Cy; (A4 — B3+ Cq) } (B.83)

Nmin = max{ 0; (A4 — B3); (A4 —C3); (B4 —Ch) }

To evaluate the probability error of Master-Slave approaches with three satellites in Chap-
ter 3.5, the mean probability of Py, is taken as reference: Phpbref = 1/2(Phbbmin +

Pbbb,max) = 1/2(nmin + nmax)
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C. LMS Model Parameters

In this chapter the LMS model parameters for single- and dual-satellite reception for multiple
receive scenarios (including different environments, elevation angles, azimuth angles) are
listed. The model parameters are derived from SDARS measurements as well as from GNSS
measurements in the context of the project MiLADY, which are described in Appendix A.

The meaning and application of LMS model parameters are described in Chapter 4.

Table C.1.: Two-state model parameters for S-band derived from MiLADY SDARS measurements
for different environments env (Urban (U), Suburban (S), Forest (F), Commercial (C), Open/Highway
(O), intermediate tree-shadowed (T)), elevation angles ¢, and states (1...good, 2...bad). The param-

eters are representative for a uniformly distributed driving direction within [0;27}.

M EA(N/Q) EA(O'Q) MP
env | ¢ [°] | State 1 o1 a1 as as by bo b3 13 o3
U 15 1
2
U 25 1 -1.25 | 1.53 0.03 | -0.09 0.60 0.02 | -0.04 0.49 | -16.04 4.62
2 -12.92 | 3.88 | -0.01 | -0.41 0.18 0.00 0.07 1.83 | -24.78 8.39
U 35 1 -1.30 | 1.21 0.00 | -0.21 0.48 0.03 | -0.01 0.43 | -15.69 3.71
2 -13.18 | 4.30 | -0.01 | -0.42 0.20 0.00 0.07 1.75 | -22.84 9.06
U 45 1 -1.39 | 1.34 0.00 | -0.13 0.61 0.03 | -0.05 0.44 | -16.28 4.59
2 -13.42 | 4.36 | -0.02 | -0.72 | -1.83 0.00 0.02 1.73 | -20.03 8.45
U 55 1 -1.15 | 1.21 0.03 | -0.01 0.55 0.04 | -0.06 0.19 | -18.89 4.92
2 -13.15 | 4.85 | -0.02 | -0.67 | -2.03 0.00 0.06 1.91 | -20.93 8.53
18] 65 1 -0.78 | 1.04 0.02 | -0.07 0.52 0.05 | -0.06 0.16 | -22.52 5.91
2 -13.41 | 5.05 | -0.02 | -0.62 | -1.54 | -0.00 | -0.09 1.02 | -22.90 8.05
U 75 1 -0.87 | 0.88 0.00 | -0.11 0.48 0.02 | -0.19 0.02 | -23.19 4.72
2 -14.30 | 6.12 0.00 | -0.07 0.91 0.01 0.21 2.68 | -23.44 8.79
U 85 1
2
S 15 1
2
S 25 1 -1.23 | 1.53 0.00 | -0.18 0.57 | -0.01 | -0.12 0.47 | -16.08 4.42
2 -11.34 | 3.48 0.00 | -0.04 2.03 0.01 0.17 2.11 | -22.38 8.20
S 35 1 -1.60 | 1.32 | -0.00 | -0.17 0.53 0.02 | -0.07 0.33 | -16.64 3.97
2 -10.26 | 3.06 | -0.00 | -0.26 0.94 0.01 0.05 1.22 | -18.21 7.13
S 45 1 -1.34 | 1.18 0.01 | -0.14 0.52 0.01 | -0.08 0.39 | -16.84 4.03
2 -10.79 | 3.26 | -0.01 | -0.53 | -0.98 | -0.01 | -0.20 0.34 | -15.94 6.42
S 55 1 -1.30 | 1.25 0.03 | -0.02 0.53 0.03 | -0.02 0.28 | -19.44 5.04
2 -10.18 | 2.68 0.00 | -0.23 0.52 | -0.01 | -0.30 | -0.39 | -14.70 4.74
S 65 1 -0.88 | 1.12 0.02 | -0.05 0.45 0.01 | -0.16 0.13 | -20.51 5.02
2 -9.65 | 3.06 | -0.00 | -0.32 0.12 | -0.01 | -0.33 | -0.60 | -16.30 6.44
S 75 1 -1.04 | 1.25 0.03 | -0.03 0.38 0.02 | -0.19 0.06 | -21.07 6.13
2 -8.95 | 2.85 0.01 0.07 2.36 | -0.01 | -0.28 | -0.43 | -15.93 5.19
S 85 1
2
F 15 1
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My Ea(pe) Ya(o2) MP
env | ¢ [°] | State L1 o1 a1 a2 as by bo b3 13 o3
2
F 25 1 -2.77 | 1.38 0.01 | -0.13 0.63 0.00 | -0.07 0.59 | -16.74 5.47
2 -10.13 | 2.20 | -0.01 | -0.45 | -0.64 | -0.00 | -0.10 0.45 | -19.20 6.90
F 35 1 -2.92 | 1.29 | -0.00 | -0.21 0.63 | -0.00 | -0.15 0.47 | -15.34 5.16
2 -9.60 | 1.92 | -0.00 | -0.29 0.15 | -0.00 | -0.17 0.19 | -17.51 6.53
F 45 1 -2.76 | 1.33 | -0.00 | -0.25 0.39 0.00 | -0.17 0.38 | -15.24 5.20
2 -10.38 | 2.53 | -0.00 | -0.30 | -0.04 | -0.01 | -0.36 | -0.63 | -15.43 5.77
F 55 1 -0.90 | 0.91 0.00 | -0.15 0.59 | -0.00 | -0.08 0.35 | -19.41 5.51
2 -9.60 | 2.22 0.01 | -0.11 0.78 | -0.01 | -0.38 | -0.84 | -16.39 6.18
F 65 1 -0.89 | 0.78 | -0.00 | -0.23 0.44 | -0.01 | -0.07 0.30 | -20.75 5.25
2 -11.51 | 2.82 | -0.02 | -0.54 | -1.10 | -0.02 | -0.43 | -0.90 | -16.92 7.36
F 75 1 -0.66 | 0.54 0.03 | -0.19 0.37 | -0.06 | -0.20 0.20 | -22.71 4.45
2 -6.19 | 7.74 | -0.00 | -0.41 | -0.40 | -0.01 | -0.51 | -0.72 | -17.19 7.78
F 85 1
2
C 15 1
2
C 25 1 -1.31 | 1.30 | -0.01 | -0.17 0.49 0.00 | -0.05 0.37 | -18.56 5.76
2 -11.47 | 4.10 | -0.01 | -0.54 | -1.36 0.01 0.10 1.54 | -23.08 8.52
C 35 1 -1.37 | 1.30 0.01 | -0.03 0.58 0.00 | -0.04 0.36 | -18.48 4.67
2 -10.70 | 4.17 | -0.02 | -0.65 | -1.76 0.00 0.02 1.14 | -21.16 7.86
(@) 45 1 -1.06 | 1.30 0.03 | -0.01 0.54 0.01 | -0.10 0.29 | -18.14 4.61
2 -10.89 | 4.42 | -0.02 | -0.74 | -2.47 | -0.01 | -0.32 | -0.55 | -17.83 7.92
C 55 1 -0.62 | 0.60 0.00 | -0.00 0.52 | -0.02 | -0.22 0.11 | -20.87 3.09
2 -12.28 | 4.95 | -0.02 | -0.82 | -2.90 | -0.02 | -0.54 | -1.54 | -19.65 9.39
C 65 1 -0.59 | 0.89 | -0.03 | -0.20 0.40 0.04 0.02 0.12 | -23.71 3.85
2 -13.53 | 5.56 | -0.02 | -0.73 | -2.74 0.00 0.14 2.70 | -24.59 9.53
C 75 1
2
C 85 1
2
(@) 15 1
2
O 25 1 -1.70 | 1.50 0.00 | -0.10 0.56 0.01 | -0.03 0.40 | -20.14 6.13
2 -10.30 | 4.40 | -0.00 | -0.36 | -0.24 0.00 | -0.05 0.57 | -20.42 7.54
O 35 1 -1.22 | 1.08 0.00 | -0.12 0.57 0.02 0.01 0.39 | -20.88 6.74
2 -7.50 | 4.78 | -0.00 | -0.33 0.06 0.00 | -0.09 0.47 | -20.54 8.34
O 45 1 -1.17 | 1.14 | -0.00 | -0.19 0.50 0.00 | -0.08 0.40 | -18.98 6.25
2 -9.31 | 5.47 | -0.00 | -0.38 | -0.17 0.00 | -0.09 0.73 | -18.05 8.40
O 55 1 -1.04 | 1.05 | -0.03 | -0.17 0.46 | -0.00 | -0.01 0.32 | -23.92 7.47
2 -6.51 | 6.15 | -0.00 | -0.35 | -0.05 | -0.01 | -0.30 | -0.12 | -20.59 | 10.15
O 65 1 -0.52 | 0.75 0.00 | -0.14 0.34 0.00 | -0.08 0.20 | -25.52 6.19
2 -12.52 | 7.99 | -0.00 | -0.33 0.48 | -0.01 | -0.34 0.16 | -20.79 9.85
O 75 1 -0.61 | 1.05 0.01 | -0.12 0.30 | -0.00 | -0.04 0.17 | -26.68 5.65
2 -10.56 | 9.43 | -0.00 | -0.36 0.27 | -0.01 | -0.38 0.09 | -21.64 | 10.12
O 85 1
2
T 15 1
2
T 25 1 -1.02 | 1.50 0.04 | -0.02 0.51 | -0.01 | -0.15 0.30 | -17.62 4.31
2 -11.09 | 2.81 | -0.01 | -0.40 | -0.35 0.01 0.24 2.28 | -22.83 7.77
T 35 1 -1.32 | 1.27 0.04 | -0.02 0.49 0.03 | -0.00 0.38 | -17.68 4.61
2 -10.24 | 2.85 | -0.00 | -0.37 | -0.06 0.00 0.01 1.17 | -18.15 717
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MA ZA(/,LQ) ZA(UQ) MP

env | ¢ [°] | State 1 o1 a1 as as by bo b3 13 o3
T 45 1 -0.81 | 1.42 | 0.02 | -0.08 | 0.49 | 0.03 | -0.11 0.30 | -18.37 6.56

2 -10.40 | 2.77 | -0.00 | -0.26 | 0.86 | 0.00 | 0.06 1.39 | -14.74 4.92
T 55 1 -0.93 | 1.21 | -0.00 | -0.12 0.46 | -0.01 | -0.19 0.13 | -21.60 6.35

2 -10.03 | 2.54 | -0.01 | -0.52 | -0.85 0.01 0.24 2.20 | -15.43 4.99
T 65 1 -0.90 | 0.93 | 0.02 | -0.07 | 0.46 | -0.00 | -0.29 | -0.00 | -21.16 4.66

2 -9.84 | 2.71 | -0.01 | -0.60 | -1.65 | -0.00 | -0.14 0.42 | -15.72 5.48
T 75 1

2
T 85 1

2

Table C.2.: Semi-Markov parameters for state sequence modelling derived from Milady SDARS
measurements for different environments (Urban (U), Suburban (S), Forest (F), Commercial (C),
Open/Highway (O), intermediate tree-shadowed (T)) and elevation angles. The driving direction
is assumed to be uniformly distributed, but it is given anyway to equalise the format with next
table. The parameters are mean and standard deviation of the lognormal distribution for ’good’

state (4pur,1,0Dur,1) and for 'bad’ state (pur,2, ODur,2) given in dB.

Environment | Elevation [°] | Driving Dir. | gpur,1 | 6Dur,i | ADur,2 | ODur,2

U 15 all
25 all 25.92 27.13 11.78 11.13
35 all 27.51 23.58 12.70 11.38
45 all 28.28 21.59 12.65 10.89
55 all 29.98 19.19 13.58 10.22
65 all 35.53 16.86 14.42 9.88
75 all 33.56 16.19 17.28 10.36
85 all

S 15 all
25 all 26.18 22.58 12.28 10.05
35 all 27.70 18.96 13.10 9.57
45 all 30.08 14.13 14.19 8.12
55 all 30.01 16.84 14.69 8.33
65 all 33.48 12.74 14.40 7.45
75 all 32.53 12.03 14.66 7.87
85 all

F 15 all
25 all 26.26 27.01 14.33 12.79
35 all 26.48 21.77 13.90 11.33
45 all 28.16 18.45 14.26 9.88
55 all 32.45 15.78 16.35 8.45
65 all 32.98 18.22 17.83 9.10
75 all 42.15 15.07 20.02 7.14
85 all

C 15 all
25 all 30.81 22.12 15.64 10.72
35 all 30.29 18.70 16.00 10.21
45 all 32.53 18.16 16.40 9.60
55 all 37.19 19.85 20.11 10.13
65 all 37.38 16.97 19.46 8.32
75 all
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Environment | Elevation [°] | Driving Dir. | gpur,i | ODur, | 4Dur,2 | ODur,2
85 all

O 15 all
25 all 31.52 25.16 17.83 12.00
35 all 30.11 21.84 20.44 11.10
45 all 30.69 21.11 19.69 10.58
55 all 29.30 21.06 22.88 9.98
65 all 48.48 25.05 17.50 8.02
75 all 57.25 22.96 13.09 7.35
85 all

T 15 all
25 all 27.24 26.38 14.98 12.38
35 all 28.35 21.66 15.46 11.34
45 all 27.58 20.71 15.10 10.40
55 all 32.37 16.97 19.78 10.09
65 all 31.51 17.17 18.60 8.80
75 all
85 all

Table C.3.: Semi-Markov parameters for state sequence modelling derived from Milady GNSS mea-
surements for different environments (Urban (U), Suburban (S), Forest (F), Commercial (C), Open
(0)), elevation angles, and driving directions. The special case 'uniformly distributed driving di-
rection’ is indicated with ’all’. The parameters are mean and standard deviation of the lognormal
distribution for ’good’ state (4pur,1, 0Dur,1) and for 'bad’ state (Upur,2, opur,2) given in dB.
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Environment | Elevation [°] | Driving Dir.[°] | gpur,i | 0Dur,i | MDur,2 | ODur,2
U 15 5 35.13 25.56 10.72 12.23
15 20 30.18 29.99 8.65 14.45
15 45 25.69 31.19 8.23 15.10
15 75 21.59 33.34 7.98 14.25
15 all 27.78 31.27 9.42 14.64
U 25 5 32.92 20.42 11.38 10.82
25 20 30.36 24.31 10.51 11.88
25 45 26.36 26.97 8.76 13.45
25 75 23.71 28.42 8.66 13.03
25 all 27.64 26.75 9.73 13.06
U 35 5 36.59 15.91 12.37 9.06
35 20 30.82 20.42 11.59 9.85
35 45 27.40 23.41 10.48 11.45
35 75 24.88 23.94 9.82 12.05
35 all 28.23 23.05 11.11 11.40
U 45 5 35.22 16.30 13.12 7.86
45 20 32.66 17.02 12.17 9.11
45 45 28.15 21.46 11.52 10.26
45 75 25.58 22.47 10.76 10.95
45 all 28.78 21.06 11.98 10.38
U 55 5 34.99 12.22 13.67 7.40
55 20 33.80 14.87 13.63 7.59
55 45 29.61 19.36 12.84 9.04
55 75 28.17 20.68 12.36 9.97
55 all 30.07 19.14 13.28 9.31
U 65 5 35.64 15.10 13.58 8.33
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Environment | Elevation [°] | Driving Dir.[°] | #pur,i | ODur,1 | 4Dur,2 | ODur,2
65 20 34.01 16.30 14.60 8.14
65 45 31.26 17.44 13.52 8.63
65 75 29.30 18.55 14.19 8.70
65 all 31.19 17.55 14.13 8.60
U 75 5 35.23 16.60 14.38 9.44
75 20 34.49 16.73 14.64 8.66
75 45 31.79 17.50 14.26 7.73
75 75 31.71 17.48 13.75 7.72
75 all 32.45 17.17 14.29 7.93
U 85 5 33.16 15.67 16.00 7.09
85 20 32.67 17.67 14.95 7.74
85 45 32.89 17.16 15.75 7.79
85 75 33.35 17.49 15.51 8.56
85 all 33.05 17.17 15.53 7.97
S 15 5 35.54 26.55 10.65 12.34
15 20 33.06 28.93 9.26 12.82
15 45 27.36 29.71 8.21 13.30
15 75 25.18 30.92 8.00 13.63
15 all 29.17 29.91 9.28 13.32
S 25 5 33.86 22.92 11.61 11.23
25 20 33.13 24.61 10.72 11.13
25 45 29.34 25.54 9.47 11.45
25 75 26.44 26.13 8.64 11.75
25 all 29.31 25.65 9.87 11.56
S 35 5 33.97 19.64 12.98 9.16
35 20 32.67 21.52 12.23 9.96
35 45 29.18 22.87 11.39 9.88
35 75 26.93 22.74 10.35 10.10
35 all 29.07 22.59 11.42 9.99
S 45 5 31.11 20.33 13.85 9.70
45 20 30.82 20.64 13.50 9.53
45 45 29.21 21.20 12.09 9.17
45 75 27.65 21.91 11.36 9.49
45 all 29.07 21.41 12.16 9.38
S 55 5 31.76 18.90 14.81 9.36
55 20 30.72 19.04 13.87 8.45
55 45 30.47 20.01 13.13 8.77
55 75 28.54 21.00 12.93 9.13
55 all 29.72 20.34 13.33 8.95
S 65 5 32.06 18.75 13.80 8.63
65 20 30.63 19.18 13.51 8.84
65 45 29.99 19.44 14.18 8.77
65 75 29.06 20.01 13.38 8.95
65 all 29.87 19.60 13.78 8.87
S 75 5 31.45 19.07 14.12 8.55
75 20 29.37 19.96 14.45 8.56
75 45 29.29 20.09 14.57 8.70
75 75 30.00 18.35 13.68 8.93
75 all 29.83 19.32 14.20 8.79
S 85 5 29.82 18.40 14.73 8.23
85 20 29.47 18.43 14.41 8.36
85 45 30.39 18.51 14.69 8.29
85 75 30.00 19.17 13.79 8.41
85 all 30.12 18.67 14.34 8.32
F 15 5 35.77 31.08 9.41 11.37
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Environment | Elevation [°] | Driving Dir.[°] | #pur,i | ODur,1 | 4Dur,2 | ODur,2
15 20 33.01 35.92 8.45 13.30
15 45 27.37 36.92 7.95 15.07
15 75 25.94 42.45 8.02 12.92
15 all 31.93 35.79 9.18 14.06
F 25 5 34.93 27.07 10.82 9.94
25 20 31.53 29.64 9.22 11.84
25 45 27.61 30.75 8.03 12.75
25 75 24.14 30.19 7.41 13.54
25 all 29.02 30.23 9.23 12.62
F 35 5 32.37 21.40 12.95 9.36
35 20 29.30 24.45 11.66 9.92
35 45 27.44 27.85 9.15 10.80
35 75 24.03 28.42 7.88 11.58
35 all 27.91 27.29 10.09 10.94
F 45 5 31.58 22.52 11.91 8.80
45 20 28.73 24.46 11.25 8.62
45 45 27.15 26.63 10.03 9.97
45 75 24.99 26.72 9.04 11.01
45 all 27.53 26.14 10.39 10.05
F 55 5 30.23 19.22 13.41 8.30
55 20 29.18 21.61 12.41 8.73
55 45 28.86 23.46 11.42 9.06
55 75 26.30 24.23 10.02 9.26
55 all 28.36 23.20 11.35 9.14
F 65 5 31.07 19.46 13.16 8.59
65 20 29.75 20.62 12.60 8.68
65 45 29.01 21.89 12.07 8.52
65 75 26.89 22.01 11.33 8.72
65 all 28.50 21.57 12.14 8.67
F 75 5 29.18 21.56 12.69 8.64
75 20 30.00 21.38 12.40 8.85
75 45 30.00 21.43 12.49 8.80
75 75 29.28 22.46 12.32 8.16
75 all 29.69 21.75 12.45 8.63
F 85 5 31.43 17.86 12.12 8.18
85 20 29.60 20.86 13.05 8.59
85 45 31.30 19.83 13.66 9.13
85 75 30.82 22.09 12.73 9.34
85 all 30.98 20.85 13.00 9.10
C 15 5 25.76 12.78 16.65 17.16
15 20 33.06 22.19 10.59 13.59
15 45 29.53 23.82 9.11 13.93
15 75 26.98 19.30 9.22 17.75
15 all 29.59 20.09 10.45 16.29
C 25 5 40.84 19.43 12.22 13.33
25 20 34.72 19.51 12.24 10.72
25 45 30.79 21.67 10.42 10.44
25 75 28.66 23.01 10.63 11.49
25 all 31.38 21.88 11.37 10.94
C 35 5
35 20 38.56 13.60 12.40 9.26
35 45 31.19 18.49 12.57 9.47
35 75 28.67 19.60 11.50 9.95
35 all 31.40 18.59 12.99 9.74
C 45 5 42.37 17.20 12.14 12.27
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Environment | Elevation [°] | Driving Dir.[°] | #pur,i | ODur,1 | 4Dur,2 | ODur,2
45 20 40.27 13.62 12.60 10.23
45 45 32.89 17.53 13.48 9.45
45 75 30.96 18.12 11.87 9.37
45 all 33.15 17.26 13.54 9.68
C 55 5
55 20 40.05 14.33 13.54 11.52
55 45 34.32 15.58 14.30 12.84
55 75 29.31 13.71 15.19 12.77
55 all 33.76 13.63 15.11 13.15
C 65 5
65 20 32.44 12.99 17.99 11.73
65 45 35.03 16.63 14.89 10.46
65 75 32.33 14.05 15.92 9.26
65 all 34.06 14.87 16.04 10.22
C 75 5 27.10 11.05 19.74 10.23
75 20 32.13 14.69 18.81 14.87
75 45 33.85 10.88 16.60 10.17
75 75 18.10 15.03 22.24 10.83
75 all 26.19 11.18 19.95 13.19
C 85 5
85 20 19.70 18.67 20.97 11.77
85 45
85 75
85 all 25.97 10.57 19.86 12.25
(@) 15 5 38.79 21.90 11.83 11.45
15 20 35.52 28.90 10.97 11.56
15 45 32.31 29.63 10.60 12.25
15 75 30.10 29.60 10.35 12.18
15 all 32.89 29.30 11.07 12.08
O 25 5 38.47 20.32 11.92 10.75
25 20 36.15 24.67 12.00 11.48
25 45 31.33 25.86 11.24 11.47
25 75 29.96 25.14 11.41 11.79
25 all 31.94 25.29 11.86 11.60
O 35 5 37.91 14.14 12.97 10.25
35 20 34.36 20.72 12.53 9.75
35 45 32.11 22.68 12.37 10.56
35 75 29.40 21.61 12.07 10.75
35 all 31.59 21.50 12.71 10.59
O 45 5 36.50 17.49 12.58 10.06
45 20 35.74 17.96 13.40 9.18
45 45 30.82 20.03 12.75 9.35
45 75 29.31 22.25 12.42 10.32
45 all 31.03 20.86 13.00 9.94
O 55 5 36.26 19.72 12.08 10.69
55 20 36.36 15.78 13.48 8.59
55 45 31.62 18.62 13.39 8.90
55 75 30.04 19.41 13.25 9.51
55 all 31.78 18.68 13.60 9.19
O 65 5 33.52 16.66 13.61 8.54
65 20 34.90 14.52 14.15 8.22
65 45 33.59 15.66 13.65 9.09
65 75 31.90 16.94 13.58 9.43
65 all 33.13 16.22 13.82 9.09
O 75 5 34.82 16.57 14.35 8.02
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Environment | Elevation [°] | Driving Dir.[°] | #pur,i | ODur,1 | 4Dur,2 | ODur,2
75 20 36.06 19.34 13.57 8.20
75 45 33.44 13.81 13.99 8.13
75 75 34.64 15.75 12.97 8.59
75 all 34.51 16.12 13.60 8.44
O 85 5
85 20 35.70 13.37 12.74 8.16
85 45 32.06 13.26 13.69 8.68
85 75
85 all 34.24 14.60 13.59 8.41

Table C.4.: State correlation coefficients psiates between two satellites for multi-satellite LMS mod-
elling derived from Milady GNSS measurements. The values are given for different environments
env, elevation angle of satellite 1 (¢1) and satellite 2 (¢2), and azimuth separation Af between the
satellites.

Pstates for Af =
env | ¢ 7] | @21 || 5 | 20° | 45° | 75° | 105° | 135° | 165°
U 15 15 0.89 | 0.28 | 0.02 | -0.02 | -0.00 0.02 | 0.10
15 25 0.41 | 0.31 0.06 0.00 | -0.02 | -0.00 | 0.12
15 35 0.35 | 0.25 0.03 0.02 | -0.02 0.06 | 0.15
15 45 0.25 | 0.21 0.02 0.06 | -0.00 0.03 | 0.09
15 55 0.12 | 0.10 | 0.07 | 0.04 | 0.07 | 0.02 | 0.14
15 65 0.12 | 0.08 0.07 0.02 0.05 | -0.02 | 0.05
15 75 0.09 | 0.05 0.05 0.05 | -0.03 0.05 | 0.05
15 85 0.01 | -0.03 | -0.02 0.04 | 0.06 | 0.07
U 25 25 0.89 | 0.40 0.07 0.11 | -0.02 0.09 | 0.21
25 35 0.51 | 0.35 0.09 0.13 | 0.15 0.08 | 0.21
25 45 045 | 0.34 | 0.15 0.09 | 0.06 0.13 | 0.21
25 55 0.25 | 0.23 0.10 0.06 0.05 0.10 | 0.14
25 65 0.17 | 0.14 | 0.10 0.07 | 0.05 0.07 | 0.10
25 75 0.10 | 0.11 0.09 0.09 | 0.05 0.06 | 0.09
25 85 0.07 | 0.12 0.06 0.14 0.10 0.04 | 0.08
U 35 35 091 | 049 | 0.20 0.01 0.14 | 0.10 | 0.17
35 45 0.60 | 0.41 0.22 0.13 | 0.19 0.13 | 0.18
35 55 0.32 | 0.33 0.27 0.06 0.15 0.06 | 0.17
35 65 0.29 | 0.23 | 0.15 0.05 0.11 0.04 | 0.09
35 75 0.10 | 0.12 0.14 | 0.11 0.10 0.08 | 0.08
35 85 0.08 | 0.09 0.02 0.16 0.14 0.10 | 0.11
U 45 45 0.92 | 045 0.26 | -0.00 | 0.11 0.09 | 0.14
45 55 0.57 | 0.36 | 0.31 0.09 | 0.10 0.13 | 0.20
45 65 0.41 | 0.39 0.21 0.21 0.14 0.12 | 0.10
45 75 0.27 | 0.21 0.21 0.27 0.13 0.18 | 0.16
45 85 0.15 0.13 0.15 0.20 0.20 | 0.18
U 55 55 0.92 | 0.39 0.32 0.14 0.08 0.15 | 0.25
55 65 0.40 | 0.37 | 0.32 0.18 | 0.12 0.17 | 0.25
55 75 0.36 | 0.26 | 0.27 | 0.16 | 0.28 0.17 | 0.29
55 85 0.23 0.16 0.24 0.26 0.13 | 0.12
U 65 65 092 | 043 | 0.28 0.33 | 0.28 0.21 | 0.21
65 75 0.56 | 0.52 044 | 039 | 0.21 0.23 | 0.22
65 85 0.19 | 0.26 0.28 | 0.18 0.17 | 0.33
U 75 75 0.96 | 0.59 | 045 0.22 0.21 0.37 | 0.25

Continued on next page

174



Table C.4 — continued from previous page

Pstates for AO =
env | ¢1 [°] | @2 [°] 5° l 20° l 45° l 75° l 105° l 135° l 165°
75 85 0.30 | 0.38 0.38 0.35 0.40 0.37 | 0.24
U 85 85 0.90 | 0.15 0.50 0.73
S 15 15 0.86 | 0.38 0.21 0.02 0.03 0.13 | 0.22
15 25 0.44 | 0.36 0.23 0.06 0.03 0.11 | 0.19
15 35 0.33 | 0.28 0.21 0.15 0.08 0.11 | 0.20
15 45 0.24 | 0.24 0.16 0.13 0.08 0.14 | 0.15
15 55 0.22 | 0.19 0.14 0.14 0.10 0.11 | 0.11
15 65 0.16 | 0.18 0.16 0.16 0.10 0.11 | 0.13
15 75 0.15 | 0.18 0.13 0.14 0.14 0.14 | 0.16
15 85 0.18 | 0.15 0.13 0.14 0.12 0.12 | 0.10
S 25 25 0.87 | 0.43 0.31 0.14 0.12 0.18 | 0.19
25 35 0.52 | 0.45 0.34 0.21 0.09 0.20 | 0.21
25 45 0.46 | 0.40 0.33 0.25 0.16 0.19 | 0.17
25 55 0.35 | 0.35 0.26 0.21 0.17 | 0.16 | 0.18
25 65 0.31 | 0.30 0.24 0.24 0.22 0.22 | 0.22
25 75 0.27 | 0.24 0.21 0.20 0.21 0.22 | 0.21
25 85 0.08 | 0.18 0.23 0.15 0.24 0.18 | 0.23
S 35 35 0.90 | 0.52 0.40 0.32 0.15 0.19 | 0.15
35 45 0.61 | 0.50 0.41 0.33 0.21 0.20 | 0.27
35 55 0.48 | 0.52 0.40 0.35 0.23 0.23 | 0.23
35 65 0.41 | 0.36 0.39 0.31 0.30 0.27 | 0.27
35 75 0.32 | 0.33 0.34 0.32 0.32 0.32 | 0.30
35 85 0.34 | 0.36 0.32 0.27 | 0.30 0.33 | 0.26
S 45 45 093 | 0.54 | 0.52 0.43 0.33 0.32 | 0.21
45 55 0.60 | 0.58 0.49 0.40 0.41 0.28 | 0.27
45 65 0.48 | 0.57 0.55 0.46 0.34 0.30 | 0.36
45 75 0.53 | 0.42 0.40 0.43 0.42 0.39 | 0.29
45 85 0.49 | 041 0.41 0.36 0.44 0.43 | 0.35
S 55 55 0.94 | 0.63 0.50 0.37 0.37 0.32 | 0.32
55 65 0.72 | 0.68 0.57 0.41 0.41 0.38 | 0.34
55 75 0.49 | 0.55 0.46 0.48 0.42 0.36 | 047
55 85 0.44 | 0.44 0.52 0.47 0.47 0.51 0.48
S 65 65 0.93 | 0.75 0.62 0.58 0.45 0.32 | 0.28
65 75 0.70 | 0.57 | 0.63 0.58 0.49 0.42 | 0.45
65 85 0.52 | 0.56 0.58 0.47 0.50 0.51 0.51
S 75 75 0.95 | 0.56 0.50 0.61 0.51 0.47 | 0.42
75 85 0.55 | 0.52 0.62 0.58 0.62 0.62 | 0.60
S 85 85 0.98 | 0.75 0.63 0.48 0.39 0.34 | 048
F 15 15 0.87 | 0.16 0.19 0.03 0.16 0.13 | 0.21
15 25 0.46 | 0.36 0.13 0.09 0.07 | 0.08 | 0.30
15 35 0.41 | 0.36 0.12 0.00 0.06 0.11 0.26
15 45 0.39 | 0.31 0.13 0.07 | 0.12 0.16 | 0.29
15 55 0.30 | 0.11 0.16 0.09 0.10 0.18 | 0.21
15 65 0.09 | 0.13 0.12 0.02 | -0.03 0.18 | 0.17
15 75 0.23 | 0.13 0.17 | 0.13 0.04 0.12 | 0.17
15 85 0.09 0.02 0.15 0.19
F 25 25 0.87 | 0.41 0.10 0.07 0.08 0.11 0.25
25 35 0.49 | 0.52 0.14 0.09 0.08 0.11 | 0.29
25 45 0.36 | 0.31 0.15 0.15 0.08 0.17 | 0.30
25 55 0.30 | 0.31 0.18 0.15 0.13 0.13 | 0.17
25 65 0.22 | 0.20 0.17 0.05 0.14 0.11 | 0.18
25 75 0.13 | 0.20 0.17 0.14 0.10 0.10 | 0.14
25 85 -0.03 | 0.10 0.05 0.04 0.09 | -0.03 | 0.09
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Table C.4 — continued from previous page

Pstates for Af =

env | ¢1 [°] | é2 [°] 5° l 20° l 45° l 75° l 105° l 135° l 165°

F 35 35 0.93 | 0.51 0.13 0.11 | -0.06 0.11 | 0.25
35 45 0.62 | 0.50 0.21 0.09 0.12 0.18 | 0.25
35 55 0.45 | 0.43 0.27 0.13 0.08 0.23 | 0.27
35 65 0.31 | 0.36 0.24 0.15 0.15 0.20 | 0.24
35 75 0.39 | 0.24 0.26 0.19 0.23 0.23 | 0.23
35 85 0.19 | 0.23 0.09 0.13 0.17 0.25 | 0.23

F 45 45 0.96 | 0.51 0.32 | -0.05 0.21 0.19 | 0.26
45 55 0.47 | 0.52 0.30 0.28 0.21 0.23 | 0.28
45 65 0.48 | 0.40 0.34 0.33 0.12 0.17 | 0.21
45 75 0.36 | 0.25 0.20 0.27 0.23 0.28 | 0.23
45 85 0.14 0.21 0.25 0.14 | 0.14

F 55 55 0.96 | 0.38 0.43 0.48 0.23 0.31 | 0.35
55 65 0.59 | 0.51 0.35 0.28 0.24 0.28 | 0.27
55 75 0.39 | 0.43 0.31 0.40 0.29 0.28 | 0.29
55 85 0.41 | 0.27 0.27 0.31 0.37 0.32 | 0.21

F 65 65 0.86 | 0.55 0.39 0.43 0.28 0.37 | 0.17
65 75 0.64 | 0.50 0.55 0.50 0.28 0.34 | 0.29
65 85 0.47 | 0.35 0.52 0.07 0.23 0.28 | 0.31

F 75 75 0.98 | 0.55 0.31 0.35 0.08 0.39 | 0.35
75 85 0.39 0.14 0.50 0.51 0.36 | 0.31

F 85 85 0.97 0.72 0.06 0.56

C 15 15 0.86 | 0.41 0.14 0.15 | -0.00 0.10 | 0.11
15 25 0.33 | 0.31 0.09 0.09 0.02 0.02 | 0.12
15 35 0.30 | 0.27 0.16 0.12 | -0.03 | -0.01 | 0.07
15 45 0.17 | 0.16 0.18 0.05 0.06 0.01 | 0.07
15 55 0.20 | 0.27 0.15 0.10 0.15 0.05 | 0.09
15 65 0.14 | 0.14 0.13 0.08 0.10 0.08 | 0.12
15 75 0.04 0.03 0.02 0.11 0.09 | 0.12
15 85

C 25 25 0.83 | 0.37 0.11 0.11 0.06 0.12 | 0.16
25 35 0.45 | 0.38 0.26 0.20 0.14 0.14 | 0.16
25 45 0.43 | 0.28 0.33 0.28 0.10 0.09 | 0.13
25 55 0.20 | 0.28 0.22 0.07 0.24 0.05 | 0.07
25 65 0.23 | 0.31 0.25 0.15 0.10 0.28 | 0.27
25 75 0.08 | 0.30 0.17 0.18 0.13 0.28 | 0.19
25 85 0.20

C 35 35 0.86 | 0.69 0.46 0.25 0.15 0.22 | 0.24
35 45 0.55 | 0.53 0.46 0.26 0.16 0.30 | 0.38
35 55 0.30 0.49 0.40 0.21 0.09 | 0.08
35 65 0.53 0.41 0.33 0.37 0.51 | 041
35 75 0.38 0.40 0.42 0.48 0.47
35 85

C 45 45 0.93 | 0.57 0.18 0.29 0.25 0.28 | 041
45 55 0.38 | 0.71 0.54 0.50 0.36 0.35 0.17
45 65 0.88 | 0.56 0.74 0.51 0.25 0.37 | 0.42
45 75 0.40 0.56 | 0.31
45 85

C 55 55 0.93 | 0.63 0.43 0.81 0.63 0.17
55 65 0.77 0.86 0.16 0.69 0.74 | 041
55 75 0.18 0.68 0.75 0.75 0.65
55 85

C 65 65 0.73 0.77 0.81 0.71 0.70 | 0.66
65 75 0.61 0.86 0.60 | 0.77
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Pstates for AO =

e | o] | 61| 5° ] 20° | 45° | 75° | 105° | 135° | 165°
65 85

C 75 75 0.32
75 85

C 85 85

(0] 15 15 0.88 | 0.37 | 0.36 0.30 0.22 0.17 | 0.22
15 25 0.48 | 0.55 0.39 0.29 0.22 0.16 | 0.22
15 35 0.44 | 0.39 0.38 0.24 | 0.14 0.23 | 0.25
15 45 0.38 | 0.37 | 0.31 0.27 | 0.22 0.17 | 0.27
15 55 0.31 | 0.28 0.19 0.21 0.18 0.20 | 0.24
15 65 0.22 | 0.20 0.21 0.17 0.15 0.16 | 0.18
15 75 0.18 | 0.16 0.14 0.15 0.14 0.15 | 0.15
15 85 0.08

(0] 25 25 0.85 | 0.54 0.41 0.33 0.25 0.23 | 0.25
25 35 0.57 | 0.48 0.46 0.36 0.26 0.27 | 0.30
25 45 0.47 | 0.47 0.40 0.34 0.24 0.26 | 0.29
25 55 0.34 | 0.35 0.29 0.22 0.24 0.15 | 0.26
25 65 0.29 | 0.30 0.27 0.25 0.19 0.20 | 0.16
25 75 0.17 | 0.26 0.22 0.23 0.17 | 0.17 | 0.07
25 85 0.04 0.12 0.12 0.25

(0] 35 35 0.86 | 0.63 0.48 0.27 | 0.29 0.38 | 0.35
35 45 0.62 | 0.58 0.49 0.40 0.26 0.29 | 0.40
35 55 0.44 | 0.48 0.40 0.36 0.29 0.23 | 0.23
35 65 0.46 | 0.31 0.29 0.32 0.31 0.21 0.26
35 75 0.00 | 0.31 0.35 0.28 0.24 0.22 | 0.26
35 85 0.26 | 0.28 0.15 0.07 | 0.12 0.17 | 0.15

(0] 45 45 0.93 | 0.64 0.54 0.40 0.26 0.34 | 0.32
45 55 0.61 | 0.62 0.54 0.30 0.21 0.29 | 0.30
45 65 0.47 | 0.49 0.49 0.37 | 0.28 0.23 | 0.21
45 75 0.21 | 0.33 0.30 0.35 0.26 0.26 | 0.25
45 85 0.00 | 0.29 0.39 0.00 0.24 0.00 | 0.27

(0] 55 55 0.93 | 0.60 0.49 0.31 0.29 0.20 | 0.14
55 65 0.61 | 0.60 0.46 0.37 0.39 0.17 | 0.19
55 75 0.30 | 0.51 0.37 0.38 0.23 0.21 | 0.20
55 85 0.00 | 0.00 0.24 0.15 0.36 0.00 | 0.00

(0] 65 65 0.99 | 0.80 0.69 0.41 0.31 0.17 | 0.05
65 75 0.00 | 0.47 | 0.51 0.47 | 0.33 0.23 | 0.28
65 85 0.00 | 0.00 0.00 0.00 0.45 0.51 | 0.00

(0] 75 75 0.93 | 0.47 0.32 0.47 0.33 0.53 | 0.38
75 85 0.00 | 0.00 0.00 0.57 | 0.57 | 0.00 | 0.22

(0] 85 85 0.00 | 0.00 0.00 0.00 0.00 0.00 | 047
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Appendix C. LMS Model Parameters

Table C.5.: Correlation coefficients between two satellites for fading within the combined states
derived from Milady GNSS measurements. They are applied as correlation coefficients for Loo pa-
rameter Ma (pa,) as well as correlation coefficients for lognormal fading samples (piogn) in the
dual-satellite LMS model (cf. Chapter 4.4.3). The parameters pge (= prra,ge = Plogn,ge) and ppb
(= PMa,bb = Plogn,bb) are fading correlation coefficients for joint state ’good good’ and ’bad bad’,
respectively. The values are given for different elevation angles of satellite 1 (¢1) and satellite 2 (¢2),
and azimuth separations (Af) between the satellites, and are valid for all environment types.

azimuth separation Af =
parameter | ¢ [°] | ¢2 [°] 5° [ 20° [ 45° [ 75° [ 105° | 135° [ 165°
Peg 15 15 0.81 | 0.09 | 0.12 | 0.02 | 0.04 | 0.06 | 0.08
Pbb 15 15 0.84 | 0.10 | 0.07 | 0.03 | -0.06 | -0.03 | -0.04
P 15 25 0.16 | 0.11 | 0.12 | 0.07 | 0.04 | 0.10 | 0.09
Pbb 15 25 0.11 | 0.09 | 0.06 | 0.06 | 0.04 | 0.09 | 0.04
Peg 15 35 0.15 | 0.12 | 0.10 | 0.06 | 0.06 | 0.09 | 0.11
Pbb 15 35 0.18 | 0.05 | 0.08 | 0.05 | -0.04 | 0.03 | 0.07
Pee 15 45 0.14 | 0.17 | 0.07 | 0.08 | 0.07 | 0.07 | 0.10
Pbb 15 45 0.18 | 0.15 | 0.01 | 0.05 | 0.02 | 0.03 | 0.05
Peg 15 55 0.09 | 0.10 | 0.10 | 0.11 | 0.07 | 0.08 | 0.08
Pbb 15 55 0.09 | 0.05 | -0.10 | 0.00 | -0.04 | -0.02 | 0.07
Peg 15 65 0.12 | 0.10 | 0.08 | 0.06 | 0.10 | 0.05 | 0.06
Pbb 15 65 -0.06 | -0.02 | -0.04 | -0.00 | -0.10 | -0.16 | 0.12
Pee 15 75 0.09 | 0.11 | 0.06 | 0.10 | 0.01 | 0.06 | 0.05
Pbb 15 75 0.42 | 0.08 | -0.01 | 0.03 | -0.06 | 0.10 | -0.01
Peg 15 85 0.06 | 0.04 | 0.06 | 0.12 | 0.10 | 0.04 | 0.05
Pbb 15 85 0.26 | 0.17 | -0.04 | 0.15 | 0.23 | -0.12 | 0.05
Peg 25 25 0.79 0.21 0.18 0.13 0.11 0.11 0.13
Pbb 25 25 0.88 | 0.08 | 0.06 | 0.08 | 0.02 | 0.05 | 0.02
Peg 25 35 0.25 0.20 0.14 0.15 0.15 0.14 0.14
Pob 25 35 0.21 0.17 0.03 0.04 0.02 0.01 0.02
Peg 25 45 0.21 0.22 0.19 0.18 0.11 0.14 0.14
Pbb 25 45 0.13 | 0.04 | 0.06 | 0.06 | 0.01 | 0.04 | 0.03
Peg 25 55 0.22 0.17 0.13 0.16 0.15 0.12 0.12
Pbb 25 55 0.09 | 0.06 | 0.00 | 0.04 | -0.04 | -0.06 | 0.05
Peg 25 65 0.19 0.18 0.18 0.12 0.12 0.14 0.13
Pbb 25 65 0.03 0.03 | -0.02 0.01 | -0.05 0.06 0.05
Peg 25 75 0.17 | 0.15 0.14 0.18 0.16 0.13 0.11
Pbb 25 75 0.12 | 0.02 | 0.05 | 0.01 | 0.05 | -0.01 | -0.01
Peg 25 85 0.14 0.11 0.15 0.12 0.13 0.12 0.06
Pbb 25 85 0.05 | 0.01 | -0.07 | 0.01 | 0.01 | -0.15 | 0.03
Peg 35 35 0.87 | 0.25 0.21 0.11 0.12 0.14 0.14
Pbb 35 35 0.84 0.17 0.06 0.13 | -0.00 0.01 0.01
Peg 35 45 0.27 | 023 | 0.21 | 0.20| 0.20 | 0.18 | 0.15
Pbb 35 45 0.18 | 0.09 | 0.11 | 0.06 | 0.08 | -0.00 | 0.03
Peg 35 55 0.25 0.24 0.19 0.18 0.19 0.13 0.17
Pbb 35 55 0.14 | 0.09 | 0.11 | -0.00 | -0.01 | -0.02 | -0.05
Peg 35 65 024 | 023 | 021 | 019 | 0.16 | 0.16 | 0.17
Pbb 35 65 -0.03 0.13 0.01 0.05 | -0.08 | -0.09 | -0.13
Peg 35 75 0.23 | 0.18 | 0.17 | 0.18 | 0.20 | 0.15 | 0.13
Pbb 35 75 -0.10 | -0.01 | 0.00 | 0.02 | -0.04 | -0.03 | -0.10
Peg 35 85 0.18 0.17 0.17 | 0.17 0.17 | 0.16 0.18
Pbb 35 85 0.01 | -0.03 | -0.32 | -0.09 | 0.02 | 0.04 | 0.04
Peg 45 45 0.84 0.27 0.26 0.16 0.20 0.17 0.17
Pbb 45 45 0.86 0.20 0.15 0.13 0.03 0.09 | -0.02
Peg 45 55 0.34 0.31 0.27 | 0.22 0.19 0.21 0.20
Pbb 45 55 0.28 | 0.24 | 0.10 | -0.00 | -0.02 | 0.05 | -0.02
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Table C.5 — continued from previous page

azimuth separation Af =

parameter | ¢1 [°] | ¢ [] 5° [ 20° [ 45° [ 75° [ 105° | 135° | 165°
Pas 45 65 025 | 030 | 025 [ 023 [ 022 [ 0.23 [ 0.17
Pbb 45 65 0.17 | 0.21 | 0.07 | 013 | 0.02 | -0.14 | -0.05
Pas 45 75 023 | 023 | 027 | 024 | 022 022 0.18
Pob 45 75 0.19 | 0.11 | 0.11 | 0.2 | -0.01 | 0.01 | -0.05
Pas 45 85 027 | 0.14 | 024 | 023 | 023 | 025 | 0.22
Pbb 45 85 049 | -0.12 | 0.02 | 0.22 | 0.13 | 0.18 | 0.03
Pas 55 55 0.86 | 0.33 | 023 | 0.23| 0.19 | 0.19 | 0.19
Pbb 55 55 0.85 | 0.15 | 0.13 | -0.04 | 0.05 | -0.08 | -0.14
Pas 55 65 030 | 0.33 | 027 | 0.25| 025 | 0.22 | 0.22
Pob 55 65 0.01 | 0.08 | 022 | 010 | 0.02 | -0.07 | -0.09
Pas 55 75 035 | 028 | 029 | 027 | 027 | 025 | 0.24
Pbb 55 75 024 | 0.13 | 024 | -0.02 | -0.09 | -0.02 | 0.05
Pas 55 85 031 | 0.33 | 027 | 0.25| 023 | 0.24 | 0.25
Pbb 55 85 0.30 | 0.17 | -0.01 | 0.36 | 0.29 | 0.14 | 0.16
Pas 65 65 0.90 | 0.35 | 0.30 | 0.28 | 027 | 0.25 | 0.26
Pob 65 65 0.81 | 0.23 | 027 | 012 | 0.08 | 0.13 | -0.04
Pas 65 75 044 | 040 | 029 | 032 | 029 | 0.29 | 0.26
Pbb 65 75 025 | 0.30 | 0.19 | 0.20 | -0.03 | 0.08 | 0.10
Pas 65 85 031 | 0.33 | 029 | 030 | 028 | 0.29 | 0.28
Pob 65 85 0.12 | 0.02 | 0.10 | -0.06 | -0.07 | -0.07 | -0.04
Pas 75 75 0.90 | 040 | 035 | 0.26 | 028 | 0.31 | 0.29
Pob 75 75 0.87 | 047 | 021 | 006 | 0.11 | 0.17 | 0.11
Pas 75 85 041 | 0.36 | 0.33 | 0.33 | 0.30 | 0.30 | 0.30
Pob 75 85 0.16 | 0.17 | 020 | 0.20 | 0.23 | -0.07 | 0.14
Pas 85 85 0.96 | 045 | 029 | 044 | 035 | 030 | 0.24
pob 85 85 0.82 | 0.58 | 0.20 | 0.44 0.08

179






Glossary of Abbreviations, Symbols and Notation

Abbreviations

AFD
ASTM
ASTM-MT
C/N
C/Ny
CDF
CCDF
DVB-SH
GEO
EIRP
EGC
GNSS
GPS
HEO
LCR
LEO
LMS
LOS
MEO
MIMO
MKA
MRC
MSE
PDF
PDP
PPG
PSD
QoS

RF
RLN
RMS
SC
SDARS
SDPDF
SDCDF
SNR
SSG
SSFG

average fade duration
adaptive slave transition matrix

adaptive slave transition matrix based on master transitions

carrier-to-noise ratio

carrier-to-noise spectral density ratio
cumulative distribution function
complementary cumulative distribution function
digital video broadcasting - service handheld
geostationary orbit

equivalent isotropic radiated power

equal gain combining

global navigation satellite system

global positioning system

high-elliptical orbit

level crossing rate

low earth orbit

land mobile satellite

line-of-sight

medium earth orbit

Multiple Input Multiple Output

masking angle

maximal-ratio combining

mean squared error

probability density function

power delay profile

propagation parameter generator

power spectral density

Quality-of-Service

radio frequency

Rice-lognormal

root mean square

selection combining

Satellite Digital Audio Radio Services
state duration probability density function
state duration cumulative distribution function
signal-to-noise ratio

state sequence generator

small-scale fading generator
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STPM
STPT
UHF

Operators

a(.)
B{}
1B
Io{-}
r{-}
In{-}
min{- }

max{- }

F{-}
Re{-}
Im{- }

Units

Hz
MHz

dB

km

182

state transition probability matrix
state transition probability tensor

ultra-high frequency

Dirac delta function

expectation value

confluent hypergeometric function

modified Bessel function of first kind and order zero

Gamma function
logarithmus to base e
minimum

maximum

Gaussian distribution
Fourier transform
real part

imaginary part

hertz
megahertz
decibel
metre
kilometre

second

Glossary of Abbreviations, Symbols and Notation



Constants

Variables

m W °

d

-

kﬁ&b‘

Py, Po1, Poy

Euler’s number e = 2.71828...
light speed ¢ = 3-10% m/s
imaginary unit

m = 3.141592653...

infinity

amplitude

amplitude

coherence bandwidth

Doppler spread

state duration

mean duration of state i

frequency

carrier frequency

Doppler shift

maximum Doppler shift

Doppler shift of the direct signal component
output Doppler spread function
time-variant complex fading coefficient
time-variant impulse response

Rice factor

carrier wavelength

correlation distance

interleaver length

Loo parameter: mean value of lognormal fading component
Loo parameter: multipath power

state probability

"good’-state probability of satellite 1, ’bad’-state probability of satellite 1,
'bad bad’-state probability

183



Glossary of Abbreviations, Symbols and Notation

P
Ptrans
P(D)

7Dtrans

<

Umobile

Urel,sat

Ab
A¢
APypb

(1)
p

PStates
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state probability vector

state transition probability matrix

state duration probability density function

state transition probability tensor

discrete state duration in samples

envelope of the received signal

state

delay Doppler spread function

time

delay spread

coherence time

time-variant transfer function

Doppler shift

vehicle speed

satellite speed relative to a fixed observation point on earth
azimuth angle separation between two satellites
elevation angle separation between two satellites

state modelling error for state ’bad bad bad’: difference between measured
and re-simulated ’bad bad bad’-probability

mean value of a random variable

elevation angle of the satellite

time-variant phase of fading

correlation coefficient

correlation coefficient of the state sequences between two satellites
standard deviation of a random variable

variance of a random variable

Loo parameter: standard deviation of lognormal fading component
delay time

RMS delay spread

azimuth angle of the satellite with respect to the vehicle’s driving direction
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