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Abbreviations 

aka  also known as 

4-AP   4-aminopyridine 

ATP   adenosine triphosphate 

BC   (helix) bundle crossing 

BK  big potassium channels 

CNG   cyclic nucleotide-gated channels 

cRNA   ribonucleic acid derived from complementary deoxyribonucleic acid 

Cs+    Caesium 

DAG   diacylglycerol 

D2D   planar conformation of a TnA molecule 

dl   deciliter 

EC50   half maximal effective concentration 

EGTA  ethylene glycol tetraacetic acid 

fig.   figure 

fMRI   functional magnetic resonance imaging 

GFG   glycine-phenylalanine-glycine 

GYG   glycine-tyrosine-glycine 

GINT interaction free energy 

Gq   heterotrimeric G-protein subunit activating phospholipase C 

HDAC5  gene encoding histone deacetylase 

HEPES  4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hERG  voltage-gated potassium channel subfamily H member 2, also: ether-a-

go-go-related gene potassium channel 1 

5-HT1B  5-hydroxytryptamine receptor 1B 

IC50   half maximal inhibitory concentration 

Imax   maximum current 

IP3   inositol-3-phosphate 

K   Kelvin 

K+   Potassium 

kHz   kilohertz 

LPC   lysophosphatidylcholine 
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KcsA   Streptomyces lividans K+ channel 

KCNK2  gene encoding TREK-1 

KCNKØ  gene encoding a K2P channel in Drosophila melanogaster, also: ORK1 

Kir   inward rectifying Potassium channels 

K2P  two-pore domain potassium channels 

KvAP   voltage-gated potassium channel from Aeropyrum pernix 

Kv1.2   voltage-gated potassium channel subfamily A member 2 

kon   on-rate of blocker binding 

Kv   voltage-gated potassium channels 

MD   molecular dynamics 

mg   milligram 

MlotiK  bacterial cyclic nucleotide-regulated channel 

mM   millimolar 

µM   micromolar 

MΩ   megaohm 

ms   millisecond  

MthK  Calcium-gated potassium channel in Methanothermobacter 

thermautotrophicus 

mRNA  messenger ribonucleic acid 

mV   millivolt 

nA   nanoampere 

Na+   Sodium 

NaK   nonselective cation channel from Bacillus cereus 

NaPPi  sodium pyrophosphate 

ORK1  K2P channel in Drosophila melanogaster, also: KCNKØ 

P1   first pore loop 

P2   second pore loop 

pH   decimal logarithm of the reciprocal of the hydrogen ion activity 

pHic   intracellular pH 

PIP2   phosphatidylinositol 4,5-bisphosphate 

PI4P   phosphatidyl-4-phosphate 

pKA   acid dissociation rate 

PKA   protein kinase A 

PKC   protein kinase C 
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PKG   protein kinase G 

Po   open probability 

pS   picosiemens 

PUFA  polyunsaturated fatty acids 

PVP   proline-valine-proline 

PXP   proline-X-proline 

QA   quaternary ammonium compounds 

R   gas constant  

Rb+   Rubidium 

RNA   ribonucleic acid 

rTREK-1  rat homolog of TREK-1 

S6  sixth transmembrane helix in subunits of voltage-gated potassium 

channels 

S100A10  gene encoding the protein p11  

SD   standard deviation 

SEM   standard error of the mean 

SLC18A2  gene encoding vesicular monoamine transporter 2 

SNP   single-nucleotide polymorphism 

STAR*D  „Sequenced Treatment Alternatives to Relieve Depression“ clinical 

study 

T   temperature 

TALK   TWIK-related alkaline pH-activated K+ channel 

TBA   tetrabutylammonium bromide 

TEA   tetraethylammonium 

TEA-C9  nonyltriethylammonium 

THepA  tetraheptylammonium bromide 

THexA  tetrahexylammonium chloride 

THIK   Halothane-Inhibited K+ Channel 

Tl+   Thallium 

TM   transmembrane helix 

2TM-1P  potassium channels in which each subunit contains two transmembrane 

helices (2TM) and one pore loop (1P) 

TnA   derivatives of tetraethyl ammonium with n-alkylic side chains 

TOA   tetraoctylammonium chloride 
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on   open time constant of blocker binding  

TPenA  tetrapentylammonium chloride 

TREK  TWIK-related K+ Channel 

TRESK  TWIK-related spinal cord K+ channel 

TASK   TWIK-related acid sensing K+ channel  

TRAAK  TWIK-related arachidonic acid-stimulated K+ channel 

TRPV1  transient receptor potential cation channel subfamily V member 1 

TWIK   weak inward rectifying K+ channel 

VMD   Visual molecular dynamics, molecular graphics software 

WT   wild-type 
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1 Summary 

 

Two-pore domain potassium channels (K2P) represent an ion channel family of vital 

importance to cell excitability, maintaining background potassium currents beyond 

the K+ conductance provided by inward rectifying potassium channels (Kir). TREK-1 

as the most intensively studied member is tightly regulated by an abundance of 

stimuli, including pH, lipids, pressure, temperature and voltage. Moreover, it has 

been linked to the pathophysiology of depression and epilepsy as well as to the onset 

of anesthesia. Being discovered recently, its architecture and structure-function 

relationships are only vaguely understood despite its remarkable physiological 

relevance.  

 

In this study, a new class of K2P blockers, derivatives of tetraethyl ammonium (TEA) 

with longer alkylic side chains (TnA) is described. Their binding site is determined by 

site-directed mutagenesis and inside-out giant patch recordings. Experiments on the 

inhibitory mechanism of TEA derivatives in TREK-1 channels are shown, which 

reveal that these molecules act as open channel blockers, similar to their mode of 

action in other channel families like voltage-gated potassium channels.  

 

Furthermore, it is demonstrated that unlike the majority of K+ channels, TREK-1 does 

not possess an intracellular gate controlling the intracellular entrance into the channel 

cavity, but is rather characterized by being constitutively open on its cytosolic side.  

 

This missing lower gate implies the necessity of an alternative gating mechanism 

located in a different region of the protein, very close to or within the selectivity filter 

region. Such a gate is supported by two lines of evidence in this study: First, mutated 

residues very close to the selectivity filter region dramatically affect pH gating, either 

in- or decreasing pH sensitivity. Second, exchanging the permeant ion influences pH 

sensitivity as well, with rubidium ions shifting pH activation to less acidic pH and 

Thallium ions shifting it to higher pH values. 

 

A similar gating concept has already been proposed to be the primary gating mode in 

CNG channels (Contreras und Holmgren 2006, Contreras et al. 2008) and given the 
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recent literature on BK channels it might not be unprecedented in the class of 

potassium channels either (Chen und Aldrich 2011). 

 

The results of this study have been published in: 

 

Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I, 

Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T. 2011. The pore 

structure and gating mechanism of K2P channels. EMBO J, 30 (17):3607-3619. 

 

Zusammenfassung 

 
Kalium-Zwei-Poren-Kanäle (K2P) stellen eine Ionenkanal-Familie mit großer Bedeu-

tung für das zelluläre Ruhemembranpotential dar, da sie gemeinsam mit der Kanal-

familie der Kalium-Einwärtsgleichrichter (Kir) die Ruheleitfähigkeit für Kaliumionen 

gewährleisten. TREK-1 ist der am intensivsten untersuchte Vertreter der K2P-Kanäle 

und wird stark reguliert durch eine Vielzahl physiologischer Stimuli, die pH, Lipide, 

mechanischen Druck, Temperatur und elektrische Spannung umfassen. Darüber 

hinaus ist er in die Pathophysiologie von depressiven Erkrankungen und Epilepsie 

sowie das Ansprechen auf Anästhetika eingebunden. Trotz dieser potentiell enormen 

physiologischen und pathophysiologischen Relevanz dieses Kanalproteins sind sein 

Aufbau und das Zusammenspiel von Struktur und Funktion nur schemenhaft ver-

standen. 

 

In der vorliegenden Arbeit wird eine neue Klasse von porenblockierenden Molekülen 

an K2P-Kanälen beschrieben, die TEA-Derivate mit verlängerten Alkyl-Seitenketten 

darstellen (TnA). Mithilfe von Mutagenese und sogenannten „inside-out giant 

patches“ konnte außerdem die Bindungsstelle dieser Moleküle in der Pore des 

TREK-1-Kanals identifiziert werden. Weitere Experimente zum Inhibitions-

mechanismus zeigen anschließend, dass TnA-Moleküle in K2P-Kanälen als Blocker 

der offenen Kanalpore fungieren und dieser Inhibitionsmechanismus jenem von TEA 

in anderen Kaliumkanalfamilien wie spannungsgesteuerten Kaliumkanälen vergleich-

bar ist. Des Weiteren wird gezeigt, dass im Gegensatz zu anderen Kaliumkanal-

familien im TREK-1-Kanal kein zytosolischer Schließmechanismus (gate) das Öffnen 
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und Schließen des Kanalproteins reguliert. Vielmehr ist das zytosolische gate des 

Kanals immer geöffnet.  

 

Das Fehlen des zytosolischen Schließmechanismus impliziert, dass Öffnen und 

Schließen des Kanals von einem anderen Mechanismus gewährleistet werden. Dafür 

wird in dieser Arbeit ein „Selektivitätsfilter-Gate“ hypothetisiert, in dem das Schließen 

des Kanals durch ein temporäres Kollabieren des Selektivitätsfilters erklärt wird. 

Diese Hypothese wird gestützt durch zwei experimentelle Ergebnisse: Erstens führen 

Mutationen in direkter Nähe zum Selektivitätsfilter zu deutlichen Veränderungen in 

der Aktivierbarkeit des TREK-1-Kanals. Zweitens können ebenfalls deutliche Ände-

rungen dieser Aktivierbarkeit erzeugt werden durch ein Ersetzen des permeierenden 

Kalium-Ions durch Thallium- oder Rubidium-Ionen. Dabei führt Rubidium zu einem 

Absinken des halbmaximalen pH-Wertes für eine pH-Aktivierung, während Thallium-

Ionen diesen erhöhen. Ein ähnliches Konzept des sogenannten „gatings“, also des 

Öffnens und Schließens eines Kanals, das nur auf Mechanismen im Selektivitätsfilter 

beruht, wurde bereits für CNG-Kanäle postuliert (Contreras und Homgren 2010, 

Contreras et al. 2008). Vor dem Hintergrund neuerer Literatur zur BK-Kaliumkanälen 

könnte es darüber hinaus auch in anderen Kaliumkanälen von Bedeutung sein (Chen 

und Aldrich 2011).  

 

Die Ergebnisse der vorliegenden Arbeit wurden publiziert in:  

 

Piechotta PL, Rapedius M, Stansfeld PJ, Bollepalli MK, Ehrlich G, Andres-Enguix I, 

Fritzenschaft H, Decher N, Sansom MS, Tucker SJ, Baukrowitz T. 2011. The pore 

structure and gating mechanism of K2P channels. EMBO J, 30 (17):3607-3619. 
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2 Introduction 

2.1 The K2P family 

 

After it had been hypothesized in the 1940s, that mechanisms allowing potassium 

ions to leak out of the cell must exist (Goldman 1943, Hodgkin und Huxley 1947), 

until 1996 the molecular counterpart maintaining that process was believed to be 

solely resembled by inward rectifying K+ channels. In that year, the first protein of the 

K2P family was discovered (Lesage et al. 1996), which was followed by 14 other 

members in six subfamilies (table 1). 

 

The then discovered K2P channels are dimers, with each subunit consisting of four 

transmembrane helices (TM1 - 4) and two pore loop forming segments (P1 and P2). 

The latter contain the crucial feature for potassium selectivity, the G(Y/F/L)G motif of 

the filter. Whereas this filter is highly conserved in classical potassium channels as T- 

 

Table 1. The subfamilies and 14 members of the K2P channel family along with their first 

mention in the scientific literature. 

 

TWIK (weak inward rectifying K+ channel) TWIK1 (Lesage et al. 1996) 

 TWIK2 (Chavez et al. 1999) 

TREK (TWIK-related K+ channel) TREK1 (Fink et al. 1996) 

 TREK2 (Bang et al. 2000) 

(Lesage et al. 2000) 

 TRAAK (Fink et al. 1998) 

TASK (TWIK-related acid sensing K+ channel) TASK1 (Duprat et al. 1997) 

 TASK3 (Rajan et al. 2000, Kim et al. 
2000) 

 TASK5 (Kim und Gnatenco 2001, 
Ashmole et al. 2001) 

TALK (TWIK-related alkaline pH-activated K+ 
channel) 

TALK1 (Girard et al. 2001) 

 TALK2 (Girard et al. 2001) 

 TASK2 (Reyes et al. 1998) 

THIK (Halothane-inhibited K+ channel) THIK1 (Rajan et al. 2001) 

 THIK2 (Rajan et al. 2001, Girard et 
al. 2001) 

TRESK (TWIK-related spinal cord K+ channel) TRESK (Sano et al. 2003) 
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X-G-Y-G-D, in K2P channels this motif shows greater variation and only two con-

served residues: T-X-G-X-X. With two different pore loop forming segments in each 

subunit, K2P channels feature asymmetrical pores, while classic potassium channels 

are known to show fourfold symmetry. This implies that in any standard site-directed 

mutagenesis scan done on K2P channels, only two altered residues will be intro–

duced into the channel. This is contrary to site directed mutagenesis in tetrameric K ir 

and Kv channels - in these, mutagenesis results in four effectively mutated residues 

per channel. The unusual length of the first pore loop P1 in K2P channels, but not the 

second pore loop, represents one more distinction between them and classical 

potassium channels with their shorter and fourfold symmetrical extracellular pore 

loops. 

 

 

 

 

Figure 1. Structural differences between K2P and Kir channels. In K2P channels, each 

subunit consists of four transmembrane helices (TM1 – 4) and two different pore forming 

loops (P1 and P2). Combining two subunits results in the two-fold symmetry of the 

assembled protein. In tetrameric Kir channels, each channel includes four subunits. 

Therefore, subunits only contain one pore loop region, and the channel protein displays 

fourfold symmetry.  
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Common features in the K2P family include the ability to conduct background 

currents (Enyedi und Czirjak 2010) and multiple channel regulation pathways besides 

voltage dependence. Due to their properties, K2P channels are of vital importance to 

the cell’s resting potential and its control of potassium homeostasis. Correspondingly, 

they are expressed ubiquitously in the human body.  

 

2.2 Molecular and biophysical properties of TREK-1 

 

The gene KCNK2 encodes a TREK-1 channel subunit of 426 residues. Two different 

splice variants have been reported (Xian Tao et al. 2006) as well as two different 

protein isoforms caused by alternative translation initiation (Thomas et al. 2008).  

 

Previously, the TREK-1 channel was reported to show a single channel conductance 

of 101 ± 3 pS under symmetrical K+ conditions, given a membrane potential of 50 mV 

(Patel et al. 1998b). Furthermore, Bockenhauer et. al. demonstrated that TREK-1 dis-

plays one open state and two distinct closed states at – 60 mV. Phosphorylation 

affects one of two closed states: Its dwell time of 6.1 ± 1.0 ms in the dephosphory-

lated state switches to a dwell time of 1700 ± 2000 ms upon the treatment with pro-

tein kinase A and ATP (Bockenhauer et al. 2001).  

Additionally, later investigations described two different conductance modes (Xian 

Tao et al. 2006), that are unaffected by different splicing variants. 

 

2.3 Regulation of TREK-1  

 

Prior to the discovery of the K2P channel family, the simplest model of „potassium 

leak channels“ resembled constitutively open, unregulated pores. However, soon 

after the characterisation of K2P channels it became obvious that, in agreement with 

their considerable effect on the resting potential of every cell, they are in fact tightly 

regulated.  

 

With multiple regulation pathways being described for two-pore domain channels, the 

plethora of currently known mechanisms affecting the activity of TREK-1 is un–

equalled even in this protein family. Voltage, pH, lipids, temperature, mechanical 
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stress and phosphorylation have been reported to influence channel gating. How-

ever, compared to the rest of the family, this multitude of gating factors might be 

partly explicable in terms of TREK-1 being the most intensively studied K2P member 

thus far.  

 

Voltage dependency. Given symmetrical potassium concentrations, TREK-1 shows 

pronounced outward rectification and is usually considered to classify as an outward 

rectifier. However, this voltage dependency in TREK-1 can be overruled via protein 

dephosphorylation of a serine at position S333 or treatment with phosphatidylinositol-

4,5-bisphosphate (PIP2). Both convert TREK-1 into an open leak channel 

(Bockenhauer et al. 2001, Chemin et al. 2005b). Inversely, phosphorylation of S333 

by protein kinase A (PKA) is necessary for outward rectification. This regulation 

requires the TREK-1 „proton sensor“ glutamic acid E321 to be intact (Honore et al. 

2002a). 

 

Intracellular pH-sensitivity. TREK-1 channels are regulated by protons from the intra-

cellular side of the membrane in a reversible and dose-dependent manner (Honore et 

al. 2002a). Cytosolic acidification stabilizes the open state of the channel. In the first 

paper describing TREK-1 pH sensitivity, one single residue, the above-mentioned 

proton sensor E321, was shown to be essential for intracellular pH activation. 

Introducing hydrophobic or positively charged mutants at this position like E306A 

increases the open probability (Po) of the channel remarkably as it mimicks a proton-

ated glutamine acid. At the same time, these mutations render the channel immune 

to further mechanical or lipid activation. Interestingly, protonating the native 

glutamate resulted in higher pressure sensitivity, shifting the half maximum activation 

pressure to less negative values. No effect was detected upon introducing the con-

servative mutation E321D. Furthermore, Chemin et al. described a „locked open 

state“ of the channel: When they added phospholipids and decreased the intra-

cellular pH (pHic), TREK-1 channels were irreversibly transformed into open leak 

channels, which were no longer sensitive to many usual regulatory stimuli including 

pHic whereas pressure regulation was preserved (Chemin et al. 2005b). Therefore, 

Honoré et al. proposed a functional model that focuses on the interaction between 

the proximal C-terminus including E321 and the negatively charged phospholipids 

like PIP2 within the inner bilayer (Fig. 2). Glutamate E321 as a negatively charged 
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amino acid is embedded in a cluster of five positively charged residues, namely 

R312, K316, K317, K319 and R326. The authors hypothesized, that the interaction 

between this „positive stretch“ and the inner membrane leaflet can be prevented in 

the presence of glutamate E321.  

 

Figure 2. The proton sensor E321 (E306) controls gating in TREK-1 channels (Chemin et al. 

2005b). Please note, that due to different counting in the original paper, E321 is named E306 

in this figure. (A) When positively charged polyamines like spermine or polylysine are 

applied, negatively charged phospholipids like PIP2 are cleaved and cannot interact with the 

cytosolic domain of TREK-1. (B) In the presence of PIP2 in the inner membrane leaflet, the 

cytosolic C-terminus can interact with the membrane and hence force conformational 

changes upon the channel protein. In this state, TREK-1 can be activated by intracellular 

acidosis, mechanical pressure and depolarization. (C) TREK-1 can also act as a leak 

channel. This is achieved by protonation of the glutamate at position E321 or its mutation to 

alanine.  
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However, if this glutamate is protonated, the electrostatic hindrance is overcome and 

the proximal part of the TREK-1 C-terminus might directly interact with the 

intracellular layer of the membrane. This interaction was proposed to cause channel 

opening. It is important to notice that glutamate E321 is not only embedded in a 

cluster of positively charged residues, but also in a group of other titratable amino 

acids like D294, E309/D309 and E324. Therefore it is possible to shift the respective 

pKA to about 5.5. 

 

However, E321 is not the only residue to determine intracellular pH sensitivity. In the 

course of this study several new residues across the protein were shown to influence 

intracellular pH remarkably.  

 

Extracellular pH-sensitivity. TREK-1 channels are also regulated by protons from the 

extracellular side of the membrane. Extracellular protons do not activate, but in-

activate the channel (Cohen et al. 2008, Sandoz et al. 2009). Two histidine residues, 

H87 and H141, were singled out to effect extracellular proton inactivation, both lo-

cated within the first pore loop P1 (Fig. 3). The IC50 for extracellular proton inacti-

vation was pH 7.5 ± 0.2 (Cohen et al. 2008). The authors argued that a collapse of 

the selectivity filter caused by the additional positive charges of the protonated 

histidines might be the mechanistic explanation for extracellular pH gating. 

 

Pressure sensitivity. The tension of the cell membrane is highly relevant for TREK-1 

open probability: The channel is reversibly and dose-dependently activated by nega-

tive pressure aka suction from the extracellular side of the cell, which results in a 

convex curvature of the membrane. This activation is even augmented upon 

disintegration of the cytoskeleton (Lauritzen et al. 2005), ruling out intracellular 

structures to solely mediate the channel’s pressure response.  

 

Pressure gating in TREK-1 can be mimicked by amphipathic molecules like trinitro-

phenol. This exemplary anionic substance preferentially inserts into the outer layer of 

the lipid membrane (Patel et al. 1998b) and therefore causes a convex shape of the 

membrane. For this reason, trinitrophenol is also referred to as „membrane crenator“ 

and has been shown to mimick mechanical suction in an inside-out patch. Contrarily, 

cationic „cup formers“ like chlopromazine are able to simulate positive pressure by 
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inserting into the inner layer of the membrane. The phenomenon of cup-formers and 

crenators also suggests a possible link between mechanical and lipid regulation. 

 

Published half maximal pressure activation values for TREK-1 vary significantly 

(Maingret et al. 1999, Patel et al. 1998a), as it seems extremely difficult to control all 

relevant variables like membrane composition and cytoskeleton integrity in order to 

determine universally valid figures. 

 

Lipid regulation. From what is already known about lipid regulation in TREK-1 

channels, this regulatory pathway is rather complex. While saturated lipids have no 

effect on the channel (Danthi et al. 2003), polyunsaturated fatty acids (PUFA) like 

arachidonic acid (AA) and lysophospholipids like lysophosphatidylcholine (LPC) can 

activate TREK-1 (Lesage et al. 2000). Interestingly, lysophospholipid activation 

depends on cellular integrity and therefore seems to influence channel gating in-

directly, whereas PUFA are effective channel activators even in excised patches 

(Maingret et al. 2000a). Necessary prerequisites for PUFA activation include at least 

one double bond and a negative charge within the lipid molecule. Possible links 

between lipid and pressure activation have been observed with lysophosphatidic acid 

sensitizing TREK-1 to mechanical pressure (Chemin et al. 2005a). 

 

As a third class of lipid TREK-1 activators, phospholipids like phosphatidylinositol-

4,5-bisphosphate (PIP2) that are known to influence a multitude of ion channels also 

affect TREK-1 gating (Chemin et al. 2005b). When they are snatched from the mem-

brane by polyamines like spermine and polylysine and therefore absent from the 

inner leaflet of the bilayer, the activation thresholds in TREK-1 for pH and mechanical 

pressure were shown to be increased considerably. However, unlike other PIP2-

activated channels, TREK-1 does not exclusively depend on PIP2. Negatively 

charged phospholipids might suffice to ensure TREK-1 conductance (Sandoz et al. 

2011).  

 

Furthermore, Chemin et al. described a „locked open state“ of the channel in one 

defined experimental context: When they added phospholipids and decreased the 

intracellular pH, TREK-1 channels were irreversibly transformed into open leak 

channels, that were no longer sensitive to usual regulatory stimuli including 
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intracellular pH (Chemin et al. 2005b). The protocol included the following steps: 

Polylysine was applied first, leading to an almost silent channel due to the absence of 

phospholipids in the inner leaflet. Subsequently PIP2 was added, which resulted in a 

recovery of channel activity. Thereupon the intracellular pH was decreased to 5.5 for 

a short period of time and then normalized to pH 7.2 again. As a result of this 

protocol, TREK-1 was no longer sensitive to internal pH alterations and its baseline 

activity was increased about 10-fold. However, pressure sensitivity was still present, 

albeit altered. 

 

Recently, the crystal structure of a Kir 2.2 channel with a bound PIP2-derivative has 

been published. It helped to clarify the mechanism of PIP2 activation in Kir channels 

(Hansen et al. 2011): The different parts of PIP2 interact with transmembrane and 

cytoplasmic domains of the channel as well as lipids within the bilayer. PIP2 binding 

to the different parts of the channel forces them to come together, causing the large 

cytoplasmic domains to shift aside towards the transmembrane helices. This 

movement is hypothesized to pull open the adjacent helix bundle crossing gate. Even 

though this mechanism has only been demonstrated in Kir channels and even though 

TREK-1 does not possess equally voluminous cytoplasmic domains it is most likely 

that the PIP2 activation mechanism in K2P at least partly resembles that found in Kir 

channels.  

 

Thermal activation. TREK-1 currents can be increased by rises in temperature 

(Maingret et al. 2000b). As thermal activation is completely abolished upon patch 

excision but does not depend on the expression system it remains elusive whether or 

not thermosensitivity is achieved by interactions with thermosensitive partner proteins 

or an intrinsic thermosensitive gating mechanism of the channel. 

 

Interaction with G-protein coupled receptors. Finally, phosphorylation by different 

protein kinases is important in order to link TREK-1 gating to G-Protein coupled 

receptors in the membrane (Bockenhauer et al. 2001, Koh et al. 2001, Murbartian et 

al. 2005, Fink et al. 1996). The pivotal phosphorylation sites are serine S300 for 

protein kinase C (PKC), S333 for protein kinase A (PKA) and S351 for protein kinase 

G (PKG) (Fig. 3). However, Sandoz et al. showed that with activated Gq proteins, the 

downstream activation of protein kinase C does not affect TREK-1 channel currents 
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(Sandoz et al. 2011). Neither mutations of S300, the respective phosphorylation site, 

nor preincubation with the PKC inhibitor calphostatin C impacted channel activity. 

They stated, that the effect of Gq regulation of TREK-1 channels depends specifically 

on the cleavage of PIP2 into diacylglycerol (DAG) and inositol-3-phosphate (IP3). This 

reasoning is based on the finding that the enzymatic cleavage of PIP2 into 

phosphatidyl-4-phosphate (PI4P) and phosphate did not cause channel inactivation.  

 

2.4 Interdependency of channel structure and function 
 

Mutational analyses of TREK-1 have been performed in order to clarify the role of 

structural motifs, single residues and entire regions of the protein. For example, the 

truncation of the N-terminus, TREK-1 ∆1–56, results in a channel no longer selective 

to potassium, but permeated by sodium ions as well (Thomas et al. 2008). Deleting 

the last 76 amino acids of the C-Terminus, TREK-1 ∆Ct 76, converts the channel 

from an outward into an inward rectifier (Maingret et al. 2002). 

 

Additionally, several residues linked to specific regulation mechanisms have been 

identified (Fig. 3): As mentioned above, the regulation by extracellular pH seems to 

rely on the protonation of two histidine residues in the first turret loop P1, H87 and 

H141 (Cohen et al. 2008). Secondly, intracellular pH activation in TREK-1 was 

hypothesized to require a glutamate in the C-Terminus of the channel, E321 (Honore 

et al. 2002a). Thirdly, the C-terminal tail of the channel was shown to be necessary 

for mechanical and lipid activation, but it is not sufficient to maintain the according 

gating mechanisms (Patel et al. 1998b). In this case, the C-term was found to be not 

a gate itself, but rather acting as a stabilizer of the open conformation of the channel 

(Zilberberg et al. 2000). 

 



 

 
19 

   

2.5 The channel’s physiological and clinical relevance 

  

In 2006, TREK-1-deficient rodent models were reported to resemble a „depression-

resistant phenotype“ (Heurteaux et al. 2006). Based on this finding, recent 

pharmacogenetic clinical studies linked mutations in the encoding KCNK2 gene to  

 

 

Figure 3. Single residues linked to specific regulation pathways in TREK-1. TREK-1 is shown 

with its four transmembrane helices TM1 – 4 and two pore loops (P1 and P2). Additionally, 

single residues that have been linked to specific regulation pathways are depicted. These 

include H87 and H141 regulating extracellular pH inactivation, E306 as intracellular proton 

sensor and the C-terminal phosphorylation sites at S300, S333 and S351. Different lengths 

of the N-terminus were demonstrated to change the channel’s ion selectivity (Thomas et al. 

2008). Convex membrane conformation and pressure increase channel open probability. 
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the likelihood of treatment-resistent major depressive disorder (Perlis et al. 2008). 

Given the high prevalence of depression and between 29% to 46% of diagnosed 

patients who do not respond to adequate treatment (Fava und Davidson 1996), 

understanding the reasons for therapy failure is essential for improving clinical 

results.  

 

The clinical study „Sequenced Treatment Alternatives to Relieve Depression“ 

(STAR*D) evaluated the importance of single-nucleotide polymorphisms (SNP) in 

therapy-resistant depression in a sample of 1554 patients (Perlis et al. 2008). The 

investigators concentrated on SNP prevalence in four genes, which had previously 

been shown to affect the pathophysiology of depression in rodent knockout models. 

Those genes included the KCNK2 gene, which encodes TREK-1, SLC18A2, a 

monoamine VMAT2 transporter, HDAC5, a histone deacetylase and S100A10, which 

encodes p11, a protein responsible for 5-HT1B–receptor modulation.  

 

Screening patient samples for SNP in all these candidate genes, only four SNP in the 

KCNK2 gene were strongly correlated with treatment-resistant depression. SLC18A2, 

HDAC5 and S100A10 did not display any significant associations. To assess the 

importance of KCNK2 genetic variations in healthy humans rather than a population 

of patients, further functional MRI (fMRI) studies focussed on KCNK2’s impact on 

reward processing (Dillon et al. 2010). Significant associations were detected 

between the number of healthy KCNK2 alleles and responses to gain, i.e. money, by 

basal ganglia, regions of the frontal cortex and the dorsal anterior cingulate cortex. 

 

Besides its importance for rewarding processes and the pathophysiology of 

depression, studies on TREK-1-knockout mice identified possible additional 

physiological functions of the channel, such as sensitivity for anesthetics, the vulner-

ability to ischemia and epilepsy as well as thresholds in thermal and mechanical 

nociception (Heurteaux et al. 2004, Alloui et al. 2006).  

 

The latter was proposed to be mainly achieved by the TREK-1 channel acting as a 

molecular counterpart of the colocalized TRPV1 channel: TRPV1 is considered a 

„key molecule“ in peripheral pain sensation. Expressed in nociceptive neurons, this 
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non-selective cation channel causes depolarization when activated by stimuli like pH, 

heat, capsaicin and PIP2 (Tominaga und Tominaga 2005). TREK-1, also activated by 

the majority of these stimuli with the exception of capsaicin, could reverse the 

depolarizing effect of TRPV1 by allowing K+ outflow, therefore acting as a molecular 

counterpart of TRPV1. Intriguingly, TREK-1 and TRPV1 show extensive colocal-

ization in sensory neurons (Alloui et al. 2006, Yamamoto et al. 2009). Moreover, 

TREK-1 knockout mice display increased thermal and mechanical sensitivity, 

especially within the thermal interval between 40 and 45°C (Alloui et al. 2006). Thus, 

the threshold of nociceptive neurons might be regulated by balancing TRPV1 and 

TREK-1 expression in the peripheral nervous system, hence modulating the extent of 

pain perception.   

 

Additionally, possible roles of TREK-1 in bladder excitability and myometrial quies-

cence have been argued (Bai et al. 2005, Baker et al. 2008, Buxton et al. 2010). 

Unlike previously reported, the lack of TREK-1 in rodent models seems to have no 

effect on vasodilation (Namiranian et al. 2010). 

 

2.6 Gating Modes in classical K+ channels 

 

Three distinct gating mechanism have been proposed to enact channel gating in 

classical potassium channels – C-type, N-type and so-called „helix bundle crossing“ 

(BC) gating. It is usually assumed that these gating modes resemble canonical 

patterns for the majority of K+ channel families. However, it remains elusive if they 

can fully explain gating in K2P channels.  

 

N-terminal inactivation gate. N-type gating in K+ channels was prototypically de-

scribed for the Shaker K+ channel. In this and other voltage-dependent K+ channels, 

fast inactivation is achieved by a small N-terminal „ball“ protein domain usually 

comprising the first 20 amino acids of the channel subunit. This ball peptide is flexibly 

connected to a protein linker that attaches it to the first transmembrane helix. It can 

block the channel by entering and occluding its cavity. As no ball peptide is present in 

K2P channels, N-type inactivation possesses no relevance in K2P channels. 
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C-type gating. The concept of C-type gating is currently based on the idea that 

conformational changes within the selectivity filter can lead to its destabilization, 

therefore obviating ion conductance. „C-type inactivation“ was first described in the 

early 1990s, when voltage-dependent K+ channels without the N-terminal ball domain 

were studied. It was noted that, in the absence of the N-terminal ball domain, 

channels would still inactivate, albeit slowlier. Furthermore, wild-type channels with 

intact ball peptide showed a two-exponential time course of channel inactivation. This 

phenomenon could only be explained by two different inactivation mechanisms (Choi 

et al. 1991): Fast inactivation was correctly identified as N-type inactivation whereas 

the slower inactivation process remained elusive. Following studies showed the 

latter’s dependence on the permeant ion, extracellular ion concentrations and block-

ing molecules. The underlying mechanism was soon described as „C-type inacti-

vation“, a term coined in contrast to „N-type“ gating (Hoshi et al. 1991). 

 

To understand the mechanisms behind C-type gating, it is necessary to understand 

ion conduction through the channel. A potassium channel’s pore is made up of three 

different parts – the channel cavity opening towards the intracellular space, the 

narrow filter located in the outer third of the membrane and an extracellular part 

where the C-terminal ends of the alpha helices come together with their negative end 

charges and stabilize one extracellular K+ ion. The channel cavity is about ten Ång-

ström in diameter, giving space to a potassium ion that is fully hydrated with six water 

molecules. Hydrating the ion until it has entered the centre of the the pore and 

therefore halfway through the membrane lowers the necessary energy for the ion to 

traverse this part of its way through the energy barrier between intra- and 

extracellular areas. However, the cavity cannot secure selectivity, which must be 

achieved by the adjacent filter region.  

 

The selectivity filter is the central and best conserved domain in all ion channels. A 

canonical sequence of TTXG Y/F G forms a loop that reaches into the channel 

cavity. Together with the three loop counterparts of the other subunits in tetrameric 

channels, it narrows the pore’s outer third, creating a small filter path with four 

potassium binding sites (Fig. 4). This path is too narrow for a fully hydrated 

potassium ion to pass. However, if the ion is dehydrated with only two or three water 

molecules left at its side, it fits the selectivity filter region, which structurally mimicks 
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the ion’s hydration shell: Eight backbone oxygen atoms are coordinating the ion in 

every single of the four central filter binding sites in a way reminiscent of the H2O 

shell. Additionally, three peripheral K+ binding sites exist, S0 on the extracellular side, 

S5 on the intracellular side and S6 in the channel cavity. Whereas ions like rubidium, 

caesium and thallium can pass this selectivity filter, sodium ions cannot. The 

underlying selectivity is mainly achieved by a combination of a higher dehydration 

energy for sodium ions and steric reasons, as the Na+ ion is smaller in size than the 

K+ ion, leading to a fail of the backbone oxygens atoms to cordinate a sodium ion.  

 

 

Figure 4. The selectivity filter region of classical potassium channel with the canonical K+ ion 

binding sites (MacKinnon 2004). Depicted are prototypical structures of a K+ selectivity filter 

based on a KcsA high-resolution structure. The transmembrane helices are hidden out in this 

illustration. Four K+ binding sites, S1 – 4, can be seen within the selectivity filter. Backbone 

oxygens are depicted red, including those that coordinate K+ ions. Below S1 – 4, a fully 

hydrated K+ ion is shown located within the channel cavity. On the left panel, the additional 

putative binding sites for a sixth and seventh K+ ion are shown on the extracellular side. 

 

The filter structures in Na+ channels are slightly wider, but their exact mechanism of 

selectivity has not been identified yet. However, the concept of a fixed filter diameter 

as central feature for ion selectivity has been called into question. In molecular 

simulations of K+ flux in the KcsA filter, the positions of carbonyl oxygens were shown 
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to be quite variable (Berneche und Roux 2001), ruling out a bigger role of the filter 

diameter and instead stressing the importance of higher energetic barriers for Na+ 

ions crossing the filter gate. Given the sophisticated requirements for K+ conduction, 

it seems clear that even small conformational alterations in this region can obviate 

the entire ion flux. Over the past two decades, evidence for a filter-related 

mechanism for C-type gating in Kv channels and mechanisms reminiscent of C-type 

gating in other K+ channels has accumulated. Exemplarily, a possible mechanism 

was demonstrated in the prokaryotic inward-rectifying KcsA channel (Cordero-

Morales et al. 2006): Upon the introduction of E71A, only three residues upstream of 

the selectivity filter motif in KcsA, the open probability (Po) increases dramatically 

from ≤ 0.2 to ~ 0.95-0.99. Additionally, the crystallized E71A mutant shows 

remarkable conformational alterations within and close to the filter region. In one of 

the two detected, crystallized states, the mutation caused a reorientation of the filter 

motifs’ backbones most likely due to the disrupted carboxyl-carboxylate interaction 

between a glutamate and an aspartate at positions E71 and D80. Even more 

recently, KcsA was crystallized in a set of different conformations, not only showing 

different stages of helix bundle opening but also the supposed intermediate states of 

the selectivity filter (Cuello et al. 2010a).  

 

Helix bundle gating. Whereas C-type gating seals off the K+ permeation pathway 

within the selectivity filter, a second gating region exists in Kv and Kir channels. This 

gate regulates the channel entrance on the intracellular side. The so-called helix 

bundle crossing or BC gate is currently understood as a narrowing of the inner third 

of the channel directly below the channel cavity. It is formed by the four inner helices 

(M2 in Kir channels, S6 in Kv channels and theoretically M2/M4 in K2P channels). 

These helices traverse the membrane at an angle of about 25° and converge on the 

intracellular side of the membrane (Doyle et al. 1998). The resulting narrowing of the 

interhelical diameter in this region is described as bundle crossing (BC) point (Labro 

und Snyders 2012).  

 

In order to enable opening and closure, the diameter of the BC point must be flexible. 

With the K+ ion’s diameter of about 2.66 Ångström, reducing the BC diameter to 2.0 

Ångström would be sufficient to hinder K+ ions from entering the channel cavity. 

However, it has been argued that an opening as wide as six Ångström would be 
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sufficient to obviate ion and water permeation if the opening was lined by hydophobic 

residues (Beckstein et al. 2004). On the other hand, big TEA derivatives have been 

shown to be able to enter and stay within the central cavity (Zhou et al. 2001), 

implying that the BC gate can open as widely as eight to ten Ångström.  

 

Different mechanisms have been proposed to explain the transition between these 

open and closed BC conformations based on studies in other K+ channel families, 

especially the Shaker Kv channel. The currently emerging consensus explains BC 

gating as a movement of the inner helices, tilting away from the central axis and 

thereby opening the channel entrance like the aperture of a camera (Labro und 

Snyders 2012). So far, two slightly different models for this movement have been 

proposed for the different K+ channel families: In classical voltage-gated K+ channels 

with six transmembrane helices in one subunit like Shaker, the pore-lining helix S6 

contains two „hinge“ motifs to allow for gating: Firstly, a conserved glycine residue is 

positioned 20 residues downstream the GYG selectivity filter motif. Secondly, seven 

residues after this glycine, a PVP (proline-valine-proline) motif is located roughly 

halfway through the membrane. Given these two flexible hinge motifs, the S6 helix is 

thought to kink at the PVP motif, thereby opening the channel entrance in voltage 

gated K+ channels (del Camino et al. 2000). In contrast, no PVP motif exists in K+ 

channels with only two transmembrane helices per subunit (2TM-1P), e.g. Kcsa or 

MthK. However, they still contain the conserved glycine 20 residues downstream the 

filter motif and are thought to open their BC gate by bending their M2 helix outwardly, 

using this conserved glycine as a hinge (Labro und Snyders 2012).  
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2.7 Currently known blockers of TREK-1 

 

For a long time after their discovery, functional studies on K2P channels remained 

very difficult due to a lack of inhibitors. All classical potassium channel blockers like 

tetraethylammonium (TEA), 4-aminopyridine (4-AP) and Cs+ failed to block K2P 

channels when applied from the extracellular side (Fink et al. 1996, Fink et al. 1998). 

However, since then many molecules blocking TREK-1 currents have been identified 

(Table 2), among them the classical calcium channel blocker amlodipine (Liu et al. 

2007), antidepressants like fluoxetine (Kennard et al. 2005), antipsychotics 

(Thümmler et al. 2007) and the amino acid methionine (Mongahan et al. 2011). As 

results are based on different types of electrophysiological recordings and expression 

systems, published IC50 are hardly comparable. 

 

Table 2. Currently known inhibitors and activators of TREK-1 channels. The respective first 

publication reporting an effect on the TREK-1 channel is stated in the second column.  

 
Blockers 

  

Amlodipine, Niguldipine (Liu et al. 2007) 

Antipsychotics 
Fluphenazine, Chlorpromazine, Haloperidol, 
Flupenthixol, Loxapine, Pimozide 

(Thümmler et al. 2007) 

Cisplatin (Milosavljevic et al. 2010) 

Curcumin (Enyeart et al. 2008) 

Fluoxetine, Norfluoxetine (Kennard et al. 2005) 

Lidocaine (Nayak et al. 2009) 

Maprotiline (Eckert et al. 2011) 

Methionine (Mongahan et al. 2011) 

N-6-substituted cAMP-analogs (Liu et al. 2009) 

N-Butylphalide (Ji et al. 2011) 

Quinidine (Patel et al. 1998b, Zhou et al. 2009) 

Spadin (Mazella et al. 2010) 

TEA-derivatives this study 

Tri-/Tetracyclic antidepressants: Citalopram, 
Mirtazapine, Doxepine 

(Eckert et al. 2011) 

Zinc (Gruss et al. 2004) 

 
Activators 

 

Anesthetics 
Chloroform, Diethyl ether, Halothane, Isoflurane 

(Patel et al. 1999) 

Copper (Gruss et al. 2004) 

Trichlorethanol (Harinath und Sikdar 2004) 

Riluzole (Duprat et al. 2000) 
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2.8 The TnA-blocker family 

 
Tetraethylammonium (TEA) and its derivatives (TnA), also known as quaternary 

ammonium compounds (QA), are long-known pore blockers of classical potassium 

channels (Armstrong 1966). Consisting of a central nitrogen atom and four bound n-

alkyl tails, they act as open channel blockers in Kv and Kir channels, meaning that the 

channel has to open before the TnA molecule can enter the channel pore and 

occlude it. Consequentially, they can support studies on channel gating mechanisms, 

especially enlightening the role of channel gates at the intra- or extracellular entrance 

of the channel. Additionally, they provide insight into the cross section of the 

molecule in different parts of the permeation pathway as well as its length (Miller 

1982). In classical potassium channels, increasing the length of one or more n-alkyl 

tails also enhances affinity for intracellular TnA block (Armstrong 1971). Not least 

because of missing open channel pore blockers for K2P channels, the gating 

mechanism of channels like TREK-1 has not been studied in detail. Before the 

present study, TEA had always been reported to be unable to block TREK-1 

channels from the extracellular side (Fink et al. 1996, Fink et al. 1998). In one single 

study focussing on the K2P channel TASK-2, the sensitivity of a K2P member 

towards cytosolic TEA was demonstrated (Cotten et al. 2004). TEA derivatives with 

longer alkylic side chains like Tetrapentylammonium had not been studied in K2P 

channels.  
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3 Aim of this study 

 

Despite their assumed physiological relevance and possible role in pharmacology, 

the pore structure and gating mechanisms of K2P channels are only poorly 

understood. As K2P architecture differs markedly from all previously studied potas-

sium channels it remains unclear whether K2P channels actually employ the same 

gating principles as classical potassium channels. In order to study gating, it is 

helpful to identify pore blockers. These molecules have to pass cytosolic channel 

gates and subsequently enter their binding site in the channel cavity. They enable 

studies regarding pore diameter, gating movements and constriction regions. 

Furthermore, they can identify pore lining residues, thus enabling validation of in-

silico models and crystal structures. Even though several inhibitors of the TREK-1 

channel are known, their binding site, let alone blocking mechanisms have not been 

identified.  

 

Consequentially, the first aim of this study was to retrieve and characterize pore 

blockers for TREK-1. Therefore, a cysteine scan of pore-lining residues was 

employed to identify the TPenA blocker binding site. Furthermore, the dependence of 

blocker affinity on open probability, extracellular potassium concentration and 

different permeating ions was tested. On the basis of those results, conclusions could 

be drawn regarding the channel pore’s structure, likely conformational changes 

during the gating process and the location of the channel gate itself. 
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4 Methods 

 

Mutagenesis, cRNA synthesis and injection in Xenopus laevis oocytes. Studies were 

performed using the rTREK-1 channel (NM_172042), the TASK channel, the TRESK 

channel, the Kir 1.1 channel and the modified Δ6-46 Shaker channel, which lacks the 

N-terminal ball peptide. Mutations in TREK-1 were introduced by site directed 

mutagenesis (QuikChange ll, Stratagene, La Jolla CA, USA), followed by sequence 

verification. Constructs were subcloned in pGEM and pBF vectors. mRNA synthesis 

was achieved using SP6 mMessage mMachine, Ambion, Austin TX, USA, prepared 

by Dr. H. Fritzenschaft in the Baukrowitz laboratory and L. Shang in the Tucker 

group. mRNA was stored at -80°C.  

 

Surgical oocyte preparation of Dumont stage VI oocytes was performed on female 

Xenopus laevis frogs at four-weekly intervals. Oocyte treatment included manual 

dissection after collagenase conditioning, using 0.5 mg/dl collagenase II (Sigma, 

Taufkirchen, Germany). Oocytes were then stored in Barth’s solution. Between eight 

to 36 hours after preparation, mRNA solution was injected and injected oocytes were 

incubated in Barth’s Solution at 19°C for twelve hours to seven days, and 

defolliculated on the day of the electrophysiological measurement. 

 

Electrophysiological measurements. Data were obtained measuring giant inside out 

patches in voltage clamp conditions. Pipettes from thick walled borosilicate glass had 

a resistance  [0.15; 1] MΩ. They were filled with a solution containing 120 mM KCl, 

10 HEPES and 1,8 CaCl2. If required, pH was adjusted to 7.2 using KOH. For low 

external potassium concentrations, this solution was modified to 4 mM KOH, 116 mM 

NaOH, 10 HEPES and 1.8 CaCl2. Intracellular solutions were applied using a 

multibarrel pipette made from double barrel theta glass capillaries. Intracellular 

solutions contained 120 mM KCl, 10 HEPES, 2 mM EGTA and 1 mM NaPPi. This 

solution was adjusted to the required pH using HCl and KOH, respectively.  

 

Tetraethylammonium derivatives (TnA), including Tetraethylammonium chloride 

(TEA), Tetrabutylammonium bromide (TBA), Tetrapentylammonium chloride 
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(TPenA), Tetrahexylammonium chloride (THexA), Tetraheptylammonium bromide 

(THepA) and Tetraoctylammonium chloride (TOA) were purchased from Sigma. 

Substances were stored as stock solutions ranging from 10 to 100 mM at -20°C. 

 

Currents were measured using an EPC10 amplifier (HEKA electronics, Lamprecht, 

Germany) and a chlorided silver wire inside the pipette. An additional bathing 

electrode was employed to serve as a reference electrode. Currents were sampled at 

10 kHz and filtered at 3 kHz. Pressure was applied by the HSPC 1 device (Ala 

Scientific Instruments, Famingdale NY, USA). Unless otherwise stated, currents were 

recorded at – 80 mV in symmetrical potassium concentrations.  

 

Data analysis. Data were analyzed using Igor Pro 4.09A Software (Wavemetrics Inc., 

USA). Graphing was performed with Canvas 8 (Deneba Systems, USA), statistical 

analysis with Microsoft Excel 2008 (Microsoft, USA). Relative steady state levels for 

different blocking compounds including TnA blockers and pH were fitted based on 

the Hill equation. IC50 measurements for TPenA in TREK-1 WT and mutants were 

compared by paired samples t-test. The null hypothesis was rejected at P < 0.05. 

 

Illustrations. Channel representations were created using VMD, Multiple Alignment 

Plugin, Interactive Molecular Dynamics (IMD), Tachyon (Humphrey et al. 1996) 

employing preliminary KvaP-derived TREK-1 models provided by the Sansom group 

in Oxford. 

 

 



31 

5 Results 

5.1 TnA derivatives are high-affinity blockers in TREK-1 

 

Previous to this study, different groups had published data demonstrating that 

TREK–1 channels are insensitive towards extracellular tetraethylammonium (TEA) at 

concentrations that are sufficient for channel block in Kir and Kv channels (Fink et al. 

1996, Fink et al. 1998). The effect of higher intracellular TEA concentrations or TEA 

derivatives (TnA) had not been explored in detail. In our initial experiments, only very 

high concentrations of intracellular TEA resulted in partial TREK-1 blockage (Fig. 5). 

 

In 1971, Clay Armstrong showed that increasing the hydrophobicity of TnA side 

chains boosts the affinity of TnA blockers applied from the cytosolic side (Armstrong 

1971). He worked with TEA derivatives in which only one side chain was altered: He 

replaced one ethyl group with either unbranched hydrocarbon side chains or carbon 

linkers that attached a benzene ring to the quaternary nitrogen. He demonstrated that 

blocker affinity increases with longer side chains in all those TEA derivatives. This 

being the case, it was hypothesized at the beginning of the present study that TREK-

1 resilience towards cytosolic TEA block could be overcome by increasing the length 

of carbon chains, resulting in higher hydrophobicity. As TEA derivatives with only one 

altered side chain were not commercially available, it was decided to employ 

symmetrical variants. In those, every central nitrogen is accompanied by four un-

branched carbon chains of equal length. I tested molecules with alkyl-chain lengths 

ranging from four to eight carbon atoms by comparing blocker affinity for these 

molecules in TREK-1 channels. Inside out giant patches with the intracellular side of 

the membrane facing the bath solution were exposed to increasing blocker 

concentrations, resulting in dose-response curves of inhibition with at least four 

different concentrations of the blocking molecule in each experiment.  

 

Before each experiment the patch was exposed to two different pH solutions at pH 

5.5 and 8.0. As TREK-1 is closed in the presence of pH 8.0 unless additional stimuli 

like positive pressure are applied, the remaining current at pH 8.0 was considered to  
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Figure 5. Intracellular TEA shows almost no inhibitory effect on TREK-1. When applied from 

the intracellular side in the presence of pHic 5.0, even high concentrations of TEA only block 

a minor fraction of TREK-1 channels. Channel inactivation by intracellular pH 8.0 is shown as 

a control.  

 

resemble potassium conductance distinct from TREK-1 currents and was therefore 

substracted from the measured current at pHic 5.5, resulting in Imax.  

 

Imax = IpH5.5 – IpH8.0 

 

In a fraction of patches, an initial „run-up“ of current was observed, most likely 

reflecting a change in membrane lipid composition due to patch excision (Schmidt 

und MacKinnon 2008). In these cases, experiments were started after IpH5.5 had been 

stable for more than 10 seconds. To rule out further additional stimuli like tempera-

ture and positive pressure, all solutions were applied at room temperature ranging 

from 19 to 25°C. Before conducting the blocker experiments, the multibarrel 

application system was tested with plain pH 5.5 solution in all of its chambers to rule 

out differences in flow pressure between the different application slots. In this 
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experiment, no impact of the different slots of the application system on patch current 

was detected.  

 

TnA dose response curves were obtained in giant patches with at least four different 

concentrations of the respective substance applied (Fig. 6). The extent of block was 

determined expressing the remaining current I as a fraction of maximum current Imax. 

Subsequently, I/Imax was plotted against blocker concentration. The resulting plots 

were fitted to the Hill equation:  

 

 

I/Imax = (([TnA]/IC50)
n + 1))-1, 

 

 

[TnA] representing blocker concentration, n representing the Hill coefficient, I 

representing the respective current, Imax representing the maximum current and IC50 

referring to the blocker concentration at which half-maximum inhibition was achieved. 

Tetraethylammonium (TEA) showed almost no inhibitory effect on TREK-1 with an 

estimated IC50 of 60 mM in accordance with previous reports (Fig. 5).  

 

Blocker affinity then increased sharply for larger TEA derivatives: The IC50 decreased 

from 2 ± 0.3 mM in Tetrabutylammonium (TButA), to 13 ± 2 µM in Tetrapentyl-

ammonium (TPenA) and to 1 ± 0.4 µM in Tetrahexylammonium (THexA, see Fig. 6). 

Due to a slow second component of inhibition, the IC50 of Tetraheptylammonium 

(THepA) and Tetraoctylammonium (TOA) could not be determined for TREK-1, but 

could be measured in the more TnA-sensitive K2P members TRESK and TASK-3 by 

my colleague Dr. M. Rapedius.  

 

To further characterize the biophysical properties of TnA block, I examined the 

voltage dependency in TREK-1 channels. TREK-1, unlike Kir channels, showed only 

mild voltage dependence of TnA block. Upon a 160 mV voltage shift, current block 

increased only by ten percent closely resembling voltage-independent TnA block in 

Kv channels (Fig. 7). 
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Figure 6. TnA molecules block TREK-1 from the intracellular side. (A) When applied from the 

intracellular side, blocker affinity of TnA increases with increasing chain length. (B) An 

exemplary dose response measurement in TREK-1 with four different concentrations of 

TPenA applied. After blocker removal, full recovery of the current is observed. (C-E) IC50 

values of TnA compounds depending on the length of the hydrophobic side chains. In 

TREK–1, IC50 values for THepA and TOA could not be determined due to a reproducible, 

pronounced and slow second component of block, whose cause remains unknown. 

Experiments for TRESK and TASK-3 channels were performed by Dr. M. Rapedius. 

 

5.2 Identifying the TnA blocker binding site 

 
In order to identify the T5A binding site in TREK-1 channels, a cysteine scan of both 

transmembrane helices TM2 and TM4, the pore regions P1 and P2 as well as an 

additional stretch of amino acids in the proximal C-terminal region was employed. 

These regions were selected on the basis of a previously derived, unpublished KcsA 

homology model of TREK-1 proposed by Prof. Sansom’s group in Oxford. That 

model predicted these residues to represent the pore-lining regions. Mutants were 

prepared by Dr. H. Fritzenschaft in the Baukrowitz group and L. Shang in the Tucker  
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Figure 7. TnA blockage in TREK-1 is voltage-independent. (A) Exemplary voltage ramps with 

pulses from - 80 to + 80 mV are shown in the presence of pHic 5.0 and different 

concentrations of tetrapentylammonium (TPenA) for TREK-1 as a member of the K2P family. 

Block by TpenA shows only subtle voltage-dependence. (B) Exemplary voltage ramps with 

pulses from - 80 to + 80 mV are shown in the presence of pHic 7.2 for Kir 1.1. The chanel is 

blocked voltage-dependently by different TEA-derivatives with a single alkyl side chain, 

namely C6-TEA, C8-TEA and C9-TEA. 

 
 

lab. Altogether, 49 cysteine TREK-1 mutants were included: I155C to I158C in the 

first pore loop, I182C to G201C forming the second transmembrane helix, L264C to 

I267C in the second pore loop, I293C to W310C in the fourth transmembrane helix 

and L311C to K316C as a proximal part of the C-terminus (Fig. 8). 

 

None of these residues was a cysteine in the wild-type. We assumed, that introduced 

cysteines would not form additional disulfide bridges and would not profoundly alter 

the structure of the channel cavity or possible binding sites. Only one mutation 

(G296C) within the scanned regions resulted in a non-conducting channel. The 

comparatively large proportion of functioning mutants might be explicable by K2P’s 

special architecture: Because of its dimeric structure, a cysteine scan in TREK-1 only 

introduces two altered amino acids into the protein. In tetrameric channels like K ir, 

mutagenesis results in four altered sites per channel protein. This less significant 

perturbation of the channel in dimeric K2P channels might explain a lesser risk of 

non-functional proteins. 
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Figure 8. Cysteine scan of pore lining residues in TREK-1: Scanned regions in pore and 

inner transmembrane regions. (A) Mutated residues I155 to T157 (red) in P1 and L264 to 

T266 (blue) in P2 shown in a bottom-up view of TREK-1 in a KvaP-based model. (B) 

Scanned residues in both inner transmembrane helices TM2 (red) and TM4 including four C-

term residues (blue) along with the pore mutants shown in a bottom-up view of the channel. 

(C) Mutated residues I155 to T157 (red) in P1 and L264 to T266 (blue) in P2 shown in a side 

view of TREK-1 in a KvaP-based model. (D) Scanned residues in both inner transmembrane 

helices TM2 (red) and TM4 including four C-term residues (blue) along with the pore mutants 

shown in a side view. Channel illustrations were created in VMD and are based on a KvaP-

derived model provided by the Sansom group in Oxford. 

 

 

For all these mutants, TPenA IC50 was measured. Although a number of IC50 

alterations were detected, only alterations bigger than a three-fold increase were 
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considered to be functionally significant. As a result, twelve residues were identified 

that shifted TPenA IC50 of wild-type channels considerably (Table 3, Fig. 9). These 

residues included T157C in P1; I182C, P183C and L189C in M2; T266C in P2 and 

G296C, A298C, Y299C, L304C, S305C, I307C and D309C in M4.  

 

Not all residues in the cysteine scan that reduced or increased blocker affinity are 

likely to directly interact with the TPenA molecule. P183C might change blocker 

affinity because of its profound effect on transmembrane helix conformation and 

proximity to I182 rather than being part of the binding site. This rationale can be 

applied to all detected mutations which are located next to each other, as I182/P183, 

A298/Y299 and L304/S305 are positioned within -helix regions and therefore only 

one residue of each pair can face the inner cavity in the absence of conformational 

changes. Therefore, we differentiated between those residues that directly interact 

with TPenA and those which might only indirectly influence TPenA binding. 

Additionally, the plausibility of the putative binding site was tested in several MD 

simulations by the Sansom group in Oxford. In those simulations, 18 different 

homology models of TREK-1 were evaluated. Both closed and open state homology 

models were included: Closed state templates ranged from crystal structures of 

MlotiK and NaK, open state models included several KcsA structures as well as 

KvAP, MthK, Kv1.2 and NaK. Furthermore, two recently published TREK-1 models 

were included (Treptow und Klein 2010, Milac et al. 2011). Consecutively, the twelve 

residues that markedly altered TPenA affinity in our experiments were evaluated for 

interactions with an optimally docked TPenA molecule.  

 

As a result, the combined evaluation of structural plausibility and MD simulations led 

to the differentiation of the twelve candidate residues, that is represented in Fig. 8: 

Those residues likely to form the blocker binding site are coloured in emerald green, 

namely T157, I182, L189, T266 and L304. Those which supposedly shift TPenA 

affinity solely by indirect interactions with the blocker molecule are depicted in light 

green.  
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Table 3. Alterations in TPenA IC50 in a cysteine scan of pore lining residues in TREK-1. 

Values are given for each mutation as well as the double mutant TREK-1 T157C-L189C. 

Residues that shifted the mean IC50 more than three-fold are highlighted in red. *P < 0.05. 

 

mutant n IC50 SD SEM mutant n IC50 SD SEM 

WT 10 14__    4.1 1.3 266 5 102_* 20.6 9.2 
155 7 27_* 5.1 1.9 267 4 14__ 2.0 1.0 
156 4 11__ 2.4 1.2 293 11 22__ 10.0 3.0 
157 5 123_* 25.5 11.4 294 5 10__ 2.4 1.1 
158 3 6_* 1.1 0.7 295 3 16__ 6.5 3.8 
182 8 121_* 41.7 14.8 296 5 81_* _39.2 17.5 
183 7 60_* 21.0 7.9 297 7 5_* 0.9 0.3 
184 3 19__ 16.5 9.5 298 10 59_* 16.4 5.2 
185 3 16_* 2.9 1.7 299 6 53_* 16.7 6.8 
186 3 6_* 1.9 1.1 300 3 11__ 3.5 2.0 
187 4 21__ 12.7 6.4 301 3 16_* 1.2 0.7 
188 4 25__ 34.1 17.1 302 4 30_* 3.0 1.5 
189 6 120_* 43.1 17.6 303 3 32__ 9.6 5.5 
190 3 13__ 4.2 2.4 304 10 64_* 19.1 6.0 
191 4 36__ 19.4 9.7 305 8 73_* 22.0 7.8 
193 4 19_* 1.7 0.9 306 6 31_* 11.6 4.7 
194 9 32_* 10.8 3.6 307 12 73_* 30.9 8.9 
195 4 21_* 4.3 2.2 308 3 33_* 6.8 3.9 
196 6 28_* 2.2 0.9 309 6 52_* 13.5 5.5 
197 7 29_* 11.1 4.2 310 5 22__ 10.6 4.7 
198 5 9__ 1.4 0.6 311 6 35_* 7.8 3.2 
199 4 10__ 2.3 1.1 312 4 10__ 1.7 0.9 
200 3 14__ 5.5 3.2 313 3 17_* 2.6 1.5 
201 6 17__ 6.3 2.6 316 3 23__ 4.4 2.5 

264 10 23__ 16.3 5.1 
T157C-
L189C 4 4390_* 2708.1 1354.1 

265 3 12__ 1.2 0.7      
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Figure 9. Identification of the TPenA binding site in TREK-1. (A) Cysteine scan of pore lining 

residues in TM2 and TM4, the pore regions P1 and P2 as well as four C-terminal residues 

(„COOH“) and respective TpenA IC50 values. The vertical red line represents the corridor of 

the TPenA IC50 standard error of the mean in TREK-1 wild-type. Directly interacting residues 

are highlighted in emerald green, indirectly interacting residues are depicted in light green. 

(B) Exemplary TPenA dose response trace of the T157C-L189C double mutant in TREK-1, 

which is not fully inhibited by 10 mM TPenA. (C) TPenA affinity fitted with a standard Hill 

equation for TREK-1 WT, the mutants T157C, L189C and T157C-L189C.  
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However, even the largest detected shifts in TPenA affinity upon cysteine 

introduction were rather mild. Comparable mutational analyses in other Kir channels 

showed up to 100-fold changes in TEA affinity caused by a single alanine mutant 

within the channel cavity (Shin et al. 2005). As mentioned before, this might 

somehow be explainable by the dimeric structure of K2P channels: As the entire 

channel protein is formed by only two subunits, introducing a mutation results in only 

two altered amino acids in the whole channel protein. Contrarily, in tetrameric 

channels, one mutation would cause four amino acids within the channel to be 

changed. Even though this might be the reason for the rather weak effects of 

mutations on TPenA binding, we wanted to rule out the possibility that the detected 

affinity shifts only reflect allosteric effects on TPenA binding. 

 

 

5.3 A double mutant shows direct interactions   

 

We hypothesized that five of the identified residues interact directly with the blocker 

molecule, namely T157C, I182C, L189C, T266C and L304C. Independent, direct 

interaction of single residues with a bound molecule is reflected in the respective 

binding energy of the amino acid with it. In a double mutant, the loss of two residues 

that directly interact with TPenA would therefore result in the additive loss of their 

binding energies (Ren et al. 2012). On the other hand, two residues that both 

influence the same interaction with the blocker might each disrupt this interaction 

fully, therefore the respective double mutant would show no further loss in binding 

energy, or further increase in IC50. In order to test the hypothesis of independent 

blocker interactions, two double mutants were designed.  

 

First, a combination of both identified pore loop threonines, TREK-1 T157C-T266C 

was tested. However, this protein did not produce any measurable current. T157 and 

T266 together might be quintessential for ion conduction due to their proximity to the 

selectivity filter region: Only two residues upstream the GFG motif, these four 

introduced cysteines in close proximity to the selectivity filter are unlikely to allow 

potassium passage. While the dual mutant T157C-T266C did not produce 

measurable current under standard conditions, the double mutant T157C-L189C was 
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functional and showed an approximately 300-fold decrease in affinity with a TPenA 

IC50 of 4.4  1.4 mM, compared to 14  1.3 µM in the wild-type channel (Table 3, Fig. 

9 b-c). In addition, the IC50 for THexA in this double mutant was 155  9 µM, 

compared to 1 ± 0.4 µM in the wild-type channel. 

 

As a result, the double mutant displayed rough but not absolute additivity. This might 

be partly explicable as a result of weak coupling energies due to structural 

rearrangements and compensations after mutant introduction (Horovitz 1996). 

However, we have to note that a double mutant with cysteines instead of alanines 

does not provide excellent conditions for such an analysis. With cysteine, it is rather 

likely that not only the investigated interaction of the original residue is removed, but 

that new, maybe relevant interactions are introduced into the protein, and that KM 

might be affected by these interactions as well. In addition, the five above-mentioned 

residues forming the TPenA binding site were also tested for their impact on 

Fluoxetine and Amlodipine block in TREK-1. However, none of them had any effect 

on Fluoxetine or Amlodipine affinity compared to the wild-type channel, arguing 

strongly for a different inhibition mechanism for both molecules. 

 

A TnA binding site inside the channel pore has been established in other K+ channels 

before (Armstrong 1971, Yellen et al. 1991). Most notably, a crystal structure of a 

KcsA channel with a bound TBA molecule was published in 2001 (Zhou et al. 2001). 

In that structure, TBA binds directly beneath the selectivity filter, also interacting with 

conserved threonine residues within the filter motif. Furthermore, TBA is depicted to 

bind in a planar fashion, that means that all alkylic side chains lie in one plane. This 

conformation of TBA is also referred to as D2D. On the other hand, the „octopus 

structure“ does describe a TnA molecule, whose alkylic side chains are bent over, 

and whose diameter is therefore diminished. The correct conformation of the TnA 

molecule in the channel is relevant, as it defines the blocker molecule’s planar 

diameter. Therefore, the set of pore lining residues that can interact with the blocker 

also depends on blocker conformation. As a consequence, the different TPenA 

conformations affect the conclusions that can be derived from experimental results 

concerning the channel’s cavity diameter and the diameter of a putative cytosolic 

gate.  
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5.3 TPenA binds to TREK-1 in open and the closed states with equal 

affinity 

 

As the putative binding site suggests a blocking mechanism working from within the 

pore, we performed experiments to demonstrate that TnA derivatives work as pore 

blockers rather than allosteric inhibitors. The demonstration of so-called tail currents 

is often used to prove, that a molecule acts as an ion channel pore blocker. It is 

based on the idea that a pore blocker can only enter its binding site if the channel 

cavity is open at the intracellular side. A second precondition is an open time 

constant of blocker binding (on) which is slower than the opening of the channel’s 

gate. This is necessary, as the channel must be allowed to open before subsequently 

being inhibited by the washed up blocker. With a sufficiently small on the binding 

process of the blocker can then be observed as an exponentially decreasing current, 

also known as „transient current“. This phenomenon can be seen in Shaker channels 

upon TnA block. As the inhibitor’s open time constant is a product of the on rate kon 

and the blocker concentration,  

 

on = kon · [blocker] 

 

on can be reduced by reducing blocker concentration and therefore widening the 

time window to observe a transient current. However, to exploit this mechanism a 

high affinity blocker is mandatory. In TREK-1, THexA with an IC50 of 1 ± 0.4 µM is a 

high-affinity blocker and was therefore chosen to investigate the TnA blocking 

mechanism at a concentration of 1 µM. At this concentration, the on was 

demonstrated to equal about 200 ms in TREK-1 (Piechotta et al. 2011). I performed 

this experiment with fast mechanoactivation of the TREK-1 channel. Fast pressure 

pulses were achieved by a high-speed pressure clamp, which was controlled via the 

EPC 10 system. Pressure pulses were transmitted directly via a connection between 

pressure clamp headstage and patch pipette holder. The on for pressure activation 

was 25.5 ± 2.5 ms and therefore about ten times faster than the on of 1 µM THexA. 

Using this approach, no transient current could be detected in the presence of THexA  
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Figure 10. TnA molecules can bind in open and closed TREK-1 channels with equal affinity. 

(A) TREK-1 channels are mechanosensitive and can be activated by negative pressure. In 

this experiment, a continuous pulse of – 15 mmHg is applied to activate the channel in the 

absence (black) and presence of 1 µM THexA (red). A time-dependent desensitization is 

observed in both cases. (B) Changes in open probability of TREK-1 induced by cytosolic pH 

do not impact TPenA affinity. 

 

 

(Fig. 10). Intriguingly, pressure activation of the TREK-1 current is followed by a slow 

desensitization of the channel with exponentially decreasing current. Therefore, this 

desensitization could be misinterpreted as tail current. However, this desensitization 

was present not only in the presence of THexA but also in blocker-free solution. 

Thus, it can be clearly distinguished from blocker-induced tail currents. Given the 

absence of tail currents, we rejected our first hypothesis of a cytosolic gate in TREK-

1 and assumed, that TnA molecules bind to TREK-1 in both the open and the closed 

state of the channel with equal affinity. Consequentially, we hypothesized that 

changes in open probability would not affect blocker affinity expressed as IC50. 

 

In order to determine TPenA affinity’s dependence on open probability, dose 

response curves were measured in different pH backgrounds. As a result, unlike 

voltage-gated potassium channels, open probability did not show any impact on 

blocker affinity (Fig. 10). This argues for a blocker that can enter its binding site 

without traversing any channel gate. 
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5.4 The pH-gate in TREK-1 

 

Given the combined evidence of functional data and structural dockings, we posit 

that TnA derivatives act within the pore. The identified binding site shows that TnA 

act within the channel cavity as pore blockers. Therefore, the previous experiments 

show that the cytosolic BC gate, also referred to as „helix bundle crossing“, is not 

functional in pH and pressure gating in TREK-1 channels. 

 

With this cytosolic gate being constitutively open, the key conformational changes 

during gating must convene in another region of the protein, located „above“ or rather 

on the extracellular side of the blocker binding site. With the selectivity filter already 

been proposed previously to be of importance for TREK-1 channel gating in 

response to extracellular pH (Cohen et al. 2008), an equally important function in 

intracellular pH and pressure gating seems to be likely.  

 

Therefore we examined the impact of mutants in the selectivity filter region on pH 

gating. If pH gating was indeed enacted within the filter region, one would expect that 

mutagenetic perturbation of the channel filter, compromising its structural integrity, 

would shift the EC50 for pH gating. The filter region of TREK-1 is formed by 

155ITTIGFG161 in the first pore loop (P1) and 264LTTIGFG270 in P2. Introducing 

mutants within the evolutionary conserved filter region does create a significant 

perturbation. We determined the EC50 values for activation by intracellular pH (pHic) 

in both filter regions, namely I155C to I158C and L264C to I267C. In TREK-1 wild-

type channels, pH activation shows a biphasic behaviour. While the maximal 

activation requires an internal pH 5.0, a further increase in proton concentration leads 

to a partial inhibition of TREK-1 current, a so-called proton block (Fig. 11). 

Interestingly, all mutated residues showed significantly altered pHic EC50. The most 

pronounced shifts were detected in the T157C mutant (Fig. 11).  

 

Interestingly, in the double mutant T157C – L189C, pH sensitivity was abolished 

completely. However, it must be noted that beyond the filter regions, several 

scattered mutations also showed pronounced alterations regarding pH gating, 

notably A302C in the fourth transmembrane helix. 
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Figure 11. pH-sensitive residues in the selectivity filter region. (A) pHic activation in TREK-1 

WT. (B) pHic activation in T157C. (C) Activation by intracellular pH fitted with a standard Hill 

equation for TREK-1 WT and the mutants T157C and I267C. (D) EC50 values for pHic 

activation in selectivity filter mutants of TREK-1.  

 

 

Given these results, we can conclude that an important involvement of the filter 

region is present in pH gating, adding further evidence to the hypothesis of the 

selectivity filter acting as the channel gate in pH gating in TREK-1. Although we 

cannot rule out that the pH gate is located even above the selectivity filter in the pore 

loop region, we propose a gating model that is based on a collapsed, non-conductive 

selectivity filter as the closed state of the channel to be the most likely gating 

mechanism in TREK-1. This assumption is supported by this study as well as 

previous studies on extracellular pH gating in TREK-1 (Cohen et al. 2008). 
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6 Discussion 

 

In this study, the pore and gating mechanisms in K2P channels were investigated. 

Employing a cysteine scan of the inner pore helices in the K2P member channel 

TREK-1, I characterized TnA derivatives as pore blockers in this potassium channel 

family. Subsequently, the binding of TnA derivatives was demonstrated to be 

independent of channel gating. This led to the conclusion that K2P channels, in 

contrast to other Potassium channel families like Kir and Kv, do not employ a cytosolic 

helix bundle gate. Instead, their gating seems to rely solely on the selectivity filter 

region. Therefore, their gating mechanism differs markedly from other classical 

potassium channel families which employ at least two different gating mechanisms.  

 

6.1 TnA block as a common feature in all K+ channels 

 
When K2P channels were described first, their insensitivity to classical potassium 

channel blockers was described as a major difference from Kv and Kir channels. 

Molecules like 4-AP and Cs+ did not block K2P channels (Fink et al. 1996, Fink et al. 

1998). Extracellular TEA as a potent pore blocker in Kv and Kir channels also failed to 

block K2P at micromolar concentrations (Fink et al. 1996). The effect of intracellular 

TEA and its derivatives on K2P had not been studied in detail. 

 

In this study it is demonstrated that cytosolic TnA derivatives can block different K2P 

channel members at micromolar concentrations and voltage-independently (Fig. 6). 

Increasing side chain lengths of the symmetrical TnA blocker molecule resulted in 

blockers of higher affinity. In the studied K2P member channel TREK-1, this effect 

saturated for symmetrical TnA with a side chain length of six. Intriguingly, the same 

optimal side chain length was described for internal TnA block in hERG channels 

(Choi et al. 2011).  

 

The TREK-1 binding site of TPenA as a TEA derivative was characterised utilising a 

cysteine scan that covers the inner helices of TREK-1 (Fig. 9). Five residues, namely 

T157, I182, L189, T266 and L304, were found to form the TPenA binding pocket in 

the upper channel cavity. It is located directly beneath the selectivity filter and 
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resembles the previously described TBA binding site in the KcsA channel (Zhou et al. 

2001). Whereas both polar threonines, T157 and T266, are located centrally within 

the pore loop, the more lipophilic, nonpolar residues within this binding site are found 

peripherally in the transmembrane helices TM2 and TM2. Thus, the binding site 

echoes the structure of the blocker molecule with its central nitrogen and peripheral 

alkylic chains.  

 

T157 and T266 are located only two residues upstream their respective selectivity 

filter motif glycine-phenylalanine-glycine (GFG). Therefore, their functional similarity 

in binding the symmetrical blocker TPenA indicates a possible structural symmetry 

between P1 and P2. Such a symmetry is known in classical potassium channels, but 

uncertain in K2P channels. In contrast to that, no hints of symmetry can be found 

between the two inner helices, neither in number nor in position of the identified 

residues. In the second transmembrane helix, only three mutants were demonstrated 

to shift TPenA affinity markedly, namely I182, P183 and L189. As TM2 spans from 

Q168 to G201, these three residues are located in the centre of the helix. Contrarily, 

twice as many mutants were singled out along the TM4 helix, with the majority of 

them in the distal half of it.  

 

These differences in position and number of critical residues might be partly 

explicable by TM2 and TM4 serving different purposes: Unlike TM2, TM4 most likely 

translates C-terminal activation into conformational changes within the channel pore 

and the selectivity filter region. Mutants in TM4 might therefore be more likely to 

affect the channel’s cavity and filter conformation. Interestingly, a small stretch of 

residues screened in the proximal C-terminus itself showed no effect on TPenA 

affinity.  

 

Having identified the blocker binding site and the biophysical properties of TnA block 

it is possible to compare TnA block characteristics in TREK-1 and other K2P 

channels with those in Kir and Kv channels. Kir channels, upon intracellular TnA 

application, display remarkable voltage dependence, whereas TnA block is voltage-

independent in K2P channels (Fig. 7). On the other hand, the properties of Kv 

channels are comparable to those in TREK-1: Voltage as well as extracellular K+ 

concentrations hardly affect blocker potency. Based on that, one could hypothesize 
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that Kv and K2P channels might share more pore and cavity properties than K2P and 

Kir channels. 

 

6.2 Pharmacological Implications  
 

The described differences in blocker voltage dependency between K2P and Kir 

channels could be exploited to elucidate K2P’s role in different native cell types: The 

relative contributions of Kir and K2P currents to the resting membrane potential are 

still unknown in the majority of native cell types. TnA molecules could serve as a 

molecular discriminator between both channel families. At hyperpolarized voltages 

and in the presence of TnA, only K2P channels would be blocked. Kir channels, on 

the other hand, would still be conducting. Therefore, the contribution of the different 

channel classes to the resting membrane potential could be determined. As TnA 

molecules like TPenA and THexA have been shown to traverse the membrane (Choi 

et al. 2011), they could be applied extracellularly and still reach their binding site. 

Therefore, this approach might be feasible in whole-cell measurements. 

 

6.3 Validating homology models with functional data 

 

At the time of this study, no crystallized structure of any K2P channel had been 

published. Addressing this lack of information on K2P structure, molecular 

simulations based on the crystal structures of other K+ channels tried to model K2P 

dimers in order to predict structural and functional characteristics of the protein 

(Maksaev et al. 2011, Kollewe et al. 2009, Streit et al. 2011). As further 

understanding of K2P architecture would greatly improve understanding of their 

structure-function relationship, one of the aims of this study was to test existing 

homology models for consistency with our functional data.  
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Figure 12. The TPenA binding site is employed to evaluate homology models of the TREK-1 

channel. A TPenA molecule (yellow) is docked into the channel cavity with directly (green) 

and indirectly (orange) interacting residues. (A) Side-view highlighting relevant residues in P1 

and TM2. (B) Side-view depicting relevant amino acids in P2 and TM4. (C) Surface model of 

the TPenA binding site. (D) Identification of the best-fit homology model for TREK-1. 18 

homology models are tested for consistency with the functional data of this study regarding 

TPenA-interacting residues. Correct predictions of TPenA interactions are indicated in green, 

false-positives are symbolized by red signs. Residues with a presumed indirect interaction 

with TPenA are highlighted in yellow. MD simulations and model evaluation were performed 

by Dr. Phillip Stansfeld and Prof. Dr. Mark Sansom. 
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Having identified the TPenA binding site in TREK-1, this study’s functional data 

regarding TPenA-interacting residues was employed by Phillip Stansfeld and Mark 

Sansom to evaluate the accuracy of 18 different homology models which had 

previously been derived (Fig. 12). Both closed and open state homology models 

were included: Closed state templates ranged from models based on the closed state 

crystal structures of MlotiK, NaK and KcsA, open state models included several KcsA 

structures as well as KvAP, MthK, Kv1.2. and NaK. Furthermore, two recently 

published TREK-1 models were included (Treptow und Klein 2010, Milac et al. 2011).  

 

Consistency of the several tested models was evaluated by determining the number 

of correctly predicted amino acids interacting with a TPenA molecule, which was 

docked into the pore by aligning it with the coordinates of a TBA molecule in the 

KcsA crystal structure (Zhou et al. 2001). The respectable cut-off distance between 

blocker and amino acid side chain was set at four Ångström, any greater distance 

between amino acid and TPenA molecule was considered to disqualify as a possible 

interaction. In accordance with these conditions, the best fitting model was found to 

be the one based on a KvAP open channel structure. It correctly identified T157, 

I182, L189, T266 and L304 as interacting residues, without showing false-positives, 

that is, further interactions without functional correlate in our cysteine scan study (Fig. 

11). Interestingly, this model represents an open state structure featuring four-fold 

symmetry. What is more, it revealed that the majority of residues identified in the 

fourth transmembrane helix do not affect TnA binding directly, but rather indirectly. 

This would be in conformity with the putative role of the TM4 segment, which is 

hypothesized to translate pressure and pH activation sensed or rather triggered at C-

terminal domains into conformational changes within the gating structures of the 

channel filter. 

 

 

6.4 Classical K+ channel gating concepts and their role in TREK-1 

channels 

 
Over the past decades, three distinct gating concepts have been described for 

classical K+ channels: „N-type“ gating, „C-type“ gating and so-called „bundle 

crossing“ or BC gating as discussed above (Choi et al. 1991, Hoshi et al. 1991). It is 
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obvious that no N-type inhibition is present in K2P channels as they lack the N-

terminal ball peptide structure. The roles of C- and BC-type gating are less clear. We 

argue, based on our functional data in TREK-1 channels and previous studies 

(Cohen et al. 2008), that a cytosolic bundle gate is not involved in K2P’s pH gating 

and that pH gating in K2P channels relies on conformational changes within the 

selectivity filter.  

 
TnA molecules played a pivotal role in determining the cytosolic BC gate in Kir and Kv 

channels (Holmgren et al. 1997, Armstrong 1966, Armstrong 1971). Several 

observations employing TnA block in those channels led to the model of a gate that 

controls the intracellular entrance of the channel permeation pathway: Firstly, TEA 

block from the intracellular side requires an open channel: It was demonstrated that 

the blocker molecule can reach its binding site only in the open channel conformation 

(Armstrong 1971). Secondly, cytosolic TEA blockage was demonstrated to show 

higher efficacy at higher open probabilities (Choi et al. 1993). Thirdly, Armstrong 

could show that TEA derivatives like nonyltriethylammonium (TEA-C9) could be 

„trapped“ within the channel cavity when applied from the intracellular side: The 

blocker would bind in the open state of the channel, was trapped during the closed 

state and would be released only after the channel had opened again. Based on 

these findings, it was assumed that cytosolic TEA must pass a cytosolic channel gate 

before it can reach its binding site. The blocker binding site was assumed to lie 

above this assumed gate, deeper within the channel cavity (Armstrong 1971). In 

sum, these experimental findings were seen as strong evidence for a cytosolic gate 

at the intracellular entrance into the channel cavity in Kir and Kv channels.   

 

As the TnA binding site in TREK-1 channels had been identified during this study and 

as TnA blockage in K2P resembles that in other potassium channel families, it was 

decided to employ TnA molecules to study the existence of an assumed cytosolic 

gate in K2P channels. In order to confirm a cytosolic gate, it was necessary to show 

first that TnA blockers can reach their binding site in K2P channels only when the 

channels are open.  

 

In Kv channels without N-terminal ball peptides, a fast opening of the channel in the 

presence of THexA results in a so-called „transient current“: Upon fast channel 



 

 
52 

   

opening e.g. by a voltage jump in the presence of THexA, the current is first fully 

activated and then inhibited exponentially by the blocker. This demonstrates that 

although the blocker is present before and after channel activation, it cannot bind 

until the channel switches to its open conformation. We performed similar experi-

ments with TREK-1 channels. As TREK-1 is not voltage activated, fast channel 

activation was achieved by piezo-driven pressure clamp. THexA at 1 µM was used to 

ensure a small time constant on. However, no tail currents could be observed (Fig. 

10). Subsequent experiments by Dr. M. Bollepalli employing piezo-driven pHic 

activation could not yield any tail currents either. Consequently we assumed that pH 

gating and mechanogating do not involve a cytosolic gate in TREK-1. 

 

The hypothesis of a cytosolic gate was therefore rejected. Consecutive experiments 

were designed to further prove the absence of a functional cytosolic gate in TREK-1 

pH gating and mechanogating. For example, TnA affinity should not be affected by 

the channels’s open probability if the blocker molecule does not need to traverse a 

gate before being able to enter its binding site. Contrarily, if a gate existed on the 

cytosolic side entrance of the channel, it would hinder blocker binding by prohibiting 

blocker binding during switches to at least one of the two closed states of the 

channel. In that case, a lower open probability would result in lower blocker affinity. 

Therefore, the affinity of the TPenA blocker at different open probabilities was 

measured (Fig. 10). Changes in open probability were induced by pHic changes. 

However, no changes in TPenA IC50 could be detected when measured separately in 

pH 5.0, 5.5, 6.0 or 6.5. Additionally, TnA molecules could not be trapped in the 

channel cavity, adding further evidence for the absence of a functional cytosolic 

channel gate. In summary, it can be stated that several experimental approaches, 

that led to the model of a cytosolic gate in Kv and Kir channels, could not be 

reproduced in TREK-1 channels. Therefore we conclude that a cytosolic gate is not 

present in TREK-1 channels during pH gating and mechanogating. 

 

If a cytosolic bundle gate does not exist in TREK-1 channels, other forms of gating 

must regulate these channels. As N-type gating is ruled out due to the above-

mentioned reasons, only C-type gating provides a likely explanation for TREK-1 

gating. Therefore, experiments were designed to positively confirm this hypothesis of 

a selectivity filter gate in TREK-1. If C-type gating acted as the primary gating 
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mechanism in TREK-1 channels, perturbations within or adjacent to the selectivity 

filter region should directly affect TREK-1 gating. Therefore, the impact of 

mutagenetic alterations within the filter regions on pH gating was investigated in this 

study (Fig. 11). As a result, all tested cysteine mutations within 155ITTIGFG161 in the 

first pore loop (P1) and 264LTTIGFG270 in the second pore loop (P2) shifted the pH 

EC50 either to higher or lower pH levels, thus supporting the hypothesis of a gating 

mechanism enacted within the selectivity filter region of the channel.  

 

Additionally, the significance of the permeant ion on pH gating was evaluated. 

Stabilization of a K+ channel filter by Rb+ had been shown previously (Demo und 

Yellen 1992, Cuello et al. 2010b). To test, if similar results could be elicited from 

TREK-1 channels, Dr. M. Rapedius conducted experiments, in which a change of the 

permeating ion from K+ to Rb+ resulted in altered EC50 values for pH activation 

(Piechotta et al. 2011): The EC50 for pHic in symmetrical K+ solutions equalling pHic 

5.8 changed to approximately 8.0 in Rb+ solutions. Contrarily, Tl+ caused a small 

decrease in pHic EC50, being consonant with findings that Tl+ destabilises filter 

regions (Lu et al. 2001). The impact of both filter mutations on one hand and the 

influence of the permeating ion on pHic gating on the other hand strongly suggest a 

selectivity filter gate in TREK-1 pHic gating. 

 

Intriguingly, two pore loop threonines T157 and T266 are part of the TPenA binding 

site in TREK-1. Thus, the binding site includes parts of the selectivity filter and 

putative gate, only one residue apart from the GFG filter motif. At first sight this might 

seem contradictory, because a channel gate must move and would therefore disrupt 

the optimal conformation of the binding site resulting in a TPenA affinity decrease. 

Such a decrease is actually not observed. However, the author would argue that the 

conformational changes exist and might even affect TnA binding, but the differences 

in free energy are too small to be observed in our experimental approach of giant 

inside-out patches. 

 

Aside from the experimental evidence, the structure of TREK-1’s inner helices TM2 

and TM4 also supports the hypothesis of a lacking helix bundle gate in two-pore 

domain potassium channels. In Kv and Kir channels, „hinge“ motifs within the inner 

helices have been demonstrated to facilitate helix bundle gating (del Camino et al. 
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2000, Labro und Snyders 2012). These hinge regions enable the channel to bring its 

inner helices together in the lower third of the channel cavity and constrict the 

channel entrance. Both prolines and glycines can interrupt alpha helical structures 

and are therefore able to serve as the molecular basis for hinge regions. Whereas 

channels like KcsA with only two transmembrane helices per subunit (2TM-1P) rely 

on one single conserved glycine residue, Kv channels like the Shaker channel with 

six transmembrane helices per subunit possess an additional PXP motif about 

halfway through the pore-lining helix S6. In both channel superfamilies, these hinge 

regions have been demonstrated to enable significant movements of the inner 

helices and therefore a flexible cytosolic gate at the channel entrance (Labro und 

Snyders 2012). 

 

K2P’s inner helices resemble neither the structure of the S6 helix in Kv channels, nor 

classical TM2 architecture in Kir channels. The inner helices TM2 and TM4 in K2P 

lack a PXP motif in both helices. Intriguingly, TM2 in TREK-1 contains five glycines 

and is therefore reminiscent of the inner helices in 2Tm-1P channels like Kcsa and 

MthK. In those channels, one glycine in the middle of each inner helix is sufficient to 

enable helix bundle crossing. However, TM4 in TREK-1 contains only two glycines, 

one of them close to the filter region (G296) and the second one at the cytosolic end 

of the helix (G308). No glycine is present in a more central position within the helix. 

Thus, no hinge motif is present in TM4.  

 

Given the deviating architecture of the inner helices in K2P and therefore asymmetry 

between TM2 and TM4 it seems unlikely that a concerted movement of the inner 

helices could form a bundle crossing gate. In conclusion the author would argue, that 

a cytosolic bundle gate is not involved in TREK-1 pH gating and mechanogating.  
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6.5 A gating concept for TREK-1 channels 

 

In the present study, a selectivity filter gating mechanism is proposed for pH ic 

regulation and mechanogating in TREK-1 channels. The combined evidence of fast 

activation experiments, the lacking impact of open probability on TnA affinity, the 

abundance of residues in the filter region affecting pHic gating, the dependence of 

pHic gating on the permeating ion and the structural lack of symmetrical hinge 

regions suggests that the TREK-1 channel as a K2P member is constitutively open at 

the intracellular entrance of its channel cavity. We therefore hypothesize that pHic 

gating and mechanogating in TREK-1 take place within the selectivity filter region. 

 

Recently, two crystal structures of the K2P channels TWIK-1 and TRAAK were 

published, representing the first crystal structures within the K2P family (Miller und 

Long 2012, Brohawn et al. 2012). As expected, both structures show channels that 

recapitulate the basic principles of K+ channel architecture. They do so despite 

enormous differences in amino acid sequence when compared to other Potassium 

channel superfamilies. Both published crystal structures are so-called „open channel 

structures“, meaning that the cytosolic entrance of the channel cavity is open with a 

diameter as wide as about ten Ångström. Additionally, the filter region in both 

crystallized K2P members shows fourfold symmetry despite several sequence 

differences between P1 and P2. Contrarily, the channel cavity displays only two-fold 

symmetry. In fact, the above-mentioned differences between TM2 and TM4 in K2P 

are crystallographically reflected in substantial conformational differences between 

the two helices: In TM2, the combination of several glycines and an additional proline 

halfway through the membrane generate a bend within the helix (Miller und Long 

2012). The fourth transmembrane helix TM4, on the other hand, lacks any possible 

hinge motifs as described above. Correspondingly, in both crystal structures no bend 

can be observed within TM4 helices. In summary, with only two out of four helices of 

the dimeric channel presenting the structural prerequisites for helix bundle gating, the 

crystal structures argue once again in favour of an absent cytosolic gate.  

 

Nevertheless, A. Miller and S. Long have argued that the results of the present study 

do not necessarily imply that K2P pHic gating only relies on the selectivity filter gate 
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(Miller und Long 2012). Their reasoning is mainly based on a surprising observation 

in the K2P crystal structures: Both TRAAK and TWIK-1 structures revealed 

unexpected side fenestrations of the channel cavity at the membrane-channel 

interface (Miller und Long 2012, Brohawn et al. 2012). These side fenestrations are a 

consequence of the structural differences between TM2 and TM4: The bend in TM2 

results in different angles at which TM2 and TM4 traverse the membrane. As a result, 

an interhelical gap exists between the helices, possibly creating a direct passage 

between the channel cavity and the lipid bilayer. A. Miller and S. Long argue that this 

gap would suffice to allow any lipophilic TnA molecule like tetrahexylammonium 

(THexA) to enter its binding site within the channel cavity by diffusion through the 

membrane, bypassing any existing bundle crossing gate. However, several 

experimental results argue against THexA entering its binding pocket via channel 

side fenestrations: 

 

THexA has been shown to be unable to block TREK-1 when applied extracellularly at 

concentrations up to 50 µM (Rapedius et al. 2012), arguing against the hypothesis of 

the blocker reaching its binding site by diffusing through the membrane. 

Contradictorily, it has been stated that TEA derivatives like THexA traverse the 

membrane by diffusion, but the respective study did not mention the concentrations 

at which TnA derivatives were applied extracellularly (Choi et al. 2011). Therefore, 

these results are still in accordance with the lack of a functional BC gate in TREK-1 

and most likely other K2P channels. 

 

As for now, the hypothesis of a lacking BC gate in TREK-1 channels has only been 

proven for the case of pHic gating. In the present study, pressure gating has not been 

scrutinized as extensively, mostly due to a lack of patches tolerating pressure 

application over a long period of time and strong desensitization in pressure-

activated patches. Regarding lipid regulation, the lack of a functional BC gate during 

phospholipid gating in K2P has been demonstrated in a follow-up study (Rapedius et 

al. 2012).  

 

Additionally, several results from other studies support a filter-based gating concept 

for K2P channels, with all activating stimuli converging in one conformational change 

taking place at the channel’s selectivity filter. Firstly, possible links between the 
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different pathways have already been suggested, e.g. links between pressure and 

lipid gating on one hand or pressure and pH gating on the other hand (Patel et al. 

1998b, Maingret et al. 1999, Honore et al. 2002b, Chemin et al. 2005b). Secondly, a 

study in 2001 by Zilberberg et al. provided evidence that in KCNKØ (or ORK1), a 

K2P channel in Drosophila melanogaster, all different conformational states of the 

channel can be influenced by alterations at the selectivity filter region or the adjacent 

outer pore (Zilberberg et al. 2001). Finally, a similar concept for channels relying 

solely on a selectivity filter gate has already been accepted for CNG channels 

(Contreras et al. 2008). 
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7 Conclusions 

 

In this study on the structure-function relationship in TREK-1 channels as members 

of the K2P channel family, new insights into the pore structure and gating principles 

of two-pore domain K+ channels are provided.  

 

Firstly, TEA-derivatives (TnA) are described and characterized as novel K2P pore 

blockers. Secondly, the exemplary binding site of the TnA molecule tetrapentyl-

ammonium (TPenA) is identified as being located directly beneath the channel’s 

selectivity filter region in the channel pore. Identification of binding residues is 

achieved by employing a cysteine scan including transmembrane helices TM2 and 

TM4 as well as both filter regions and five residues in the C-terminal domain of 

TREK-1. Thirdly, TnA block in TREK-1 channels is characterised. It is demonstrated 

that blocker affinity increases with longer alkylic side chains. This effect saturates at 

alkylic side chains with six carbon atoms. Furthermore, TnA block in TREK-1 is found 

to be voltage-independent. Comparing these latter features to other K+ channel 

subfamilies, TREK-1 channels resemble the TnA block characteristics of Kv, but not 

Kir channels. Fourthly, the absence of a functionally relevant helix bundle gate in pHic 

gating and mechanogating is demonstrated in several experiments. It is shown that 

the TnA blocker molecule does not need to traverse a functional gate before entering 

its binding site during pHic gating or mechanogating. Consequentially, it is postulated 

that pHic gating in TREK-1 and other K2P channels relies solely on a selectivity filter 

gate.  

 

With TnA blocking characteristics and the respective binding site being identified, it 

becomes possible to exploit TnA derivatives for further studies of K2P gating, 

characterising gating mechanisms in pressure, pH and lipid gating. Furthermore, the 

detected differences in gating and pore structures compared to other Potassium 

channel classes enhance the chance of developing drugs that affect the different 

kinds of Potassium channels more specifically. 
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