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Zusammenfassung 

Der Androgenrezeptor (AR)-Signalgebung ist von entscheidender Bedeutung für das 

Fortschreiten von Prostatakrebs (PCa) zum kastrationsresistenten Stadium mit 

schlechtem klinischen Ausgang. Dysfunktionen von AR interagierenden Faktoren 

tragen zu kastrationsresistentem PCa (CRPCa) bei. Inhibitor of Growth 1 (ING1) ist ein 

epigenetischer Regulator vielzähliger zellulärer Prozesse, darunter für die Proliferation 

und zellulärer Seneszenz. Eine Fehlregulierung von ING1 konnten bereits mit PCa in 

Verbindung gebracht werden, jedoch ist die Rolle von ING1 für die AR-Signalgebung 

noch unbekannt. Basierend auf den gezeigten Interaktion zwischen AR und ING1b stellt 

ING1b eine Möglichkeit dar, den AR spezifisch zu inhibieren und zelluläre Seneszenz 

in PCa Zellen zu induzieren. 

Androgenabhängige LNCaP und CRPCa AR-exprimierende PC3-AR Zelllinien wurden 

verwendet, um den Einfluss von ING1 auf Wachstum, Migration, zelluläre Seneszenz 

und AR-vermittelte Genexpression zu analysieren. Ing1 KO-Mäuse wurden verwendet, 

um die Rolle von ING1b auf AR-vermittelte Transkription in vivo zu analysieren.  

Die Ergebnisse zeigen, dass die ING1b Expression in CRPCa Zellen im Vergleich zu 

androgenabhängigen Zellen herunter reguliert ist, dass ektopische ING1b Expression in 

beiden PCa Zelllinien die zelluläre Seneszenz induziert und die Zellmigration reduziert. 

Überdies induziert ING1b verschiedene CDK Inhibitoren, einschließlich p27KIP1 – das 

hier neu identifizierte Zielgen p27KIP1. ING1b Knockdown (KD) Experimente zeigen, 

dass ING1b die AR-induzierte zelluläre Seneszenz in PC3-AR Zellen vermittelt. 

Außerdem vermag ING1b, das androgeninduzierte Wachstum in LNCaP Zellen in 

ähnlichem Maße zu inhibieren wie AR Antagonisten. Interessanterweise wird die 

ING1b Expression durch die Stimulation mit Antagonisten hochreguliert. Die ING1b 

Überexpression reprimiert die AR Transaktivierung von Schlüsselzielgenen in LNCaP 

Zellen, möglicherweise durch AR Abbau. Überraschenderweise inhibiert der ING1b 

KD die AR-vermittelte transkriptionelle Regulation der gleichen Zielgene in beiden 

PCa Zelllinien, was mit Ing1 KO Mäuse in vivo bestätigt wurde. Dieses interessante 

Ergebnis konnte durch einen kompensatorischen Mechanismus mittels erhöhter ING2a 

Expression erklärt werden, da ektopische Expression von ING2a – ähnlich ING1b – die 

AR-vermittelte transkriptionelle Aktivierung hemmt. Des Weiteren deuten die Daten 

auf eine Induktion von p16INK4a durch ING2a in LNCaP Zellen, was zuvor noch nicht 

beschrieben wurde. 



ix 
 

Zusammengenommen deutet dieser kompensatorische Mechanismus auf eine neue 

Wechselwirkung innerhalb den Mitgliedern der ING Familie und auch in Bezug auf die 

Regulation der AR-Funktionen hin und öffnet einen potentiellen Weg den AR-

Signalweg in PCa zu inhibieren.  
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Summary 

The androgen receptor (AR) signaling is critical for prostate cancer (PCa) progression 

to the castration-resistant stage with poor clinical outcome. Altered function of AR 

interacting factors contributes to castration-resistant PCa (CRPCa). Inhibitor of growth 

1 (ING1) is an epigenetic regulator of various cellular processes including proliferation 

and cellular senescence. ING1 dysregulation and its signaling have been implicated in 

PCa, but its role in AR signaling is still unknown. Based on the shown interaction 

between AR and ING1b, specific targeting the AR by ING1b can be one possible way 

to inhibit the AR signaling and induce cellular senescence in PCa cells.  

Androgen-dependent LNCaP and castration-resistant AR-expressing PC3-AR cell lines 

were used to analyze the ING1 influence on growth, migration, cellular senescence and 

AR mediated gene expression. To further confirm the regulatory role of ING1b on AR 

mediated transcription in vivo, Ing1 KO mice were used. 

The results indicate that ING1b expression is downregulated in CRPCa cells compared 

to androgen-dependent ones. Thereby, its ectopic expression induces cellular 

senescence and reduces cell migration in both PCa cells. Moreover, ING1b upregulates 

different CDK inhibitors including p27KIP1 which is a novel target for ING1b. ING1b 

knockdown (KD) analysis indicates that ING1b is a downstream target of AR mediated 

cellular senescence in PC3-AR cells. ING1b can also inhibit androgen induced growth 

in LNCaP cells in a similar manner to AR antagonists. Interestingly, the expression of 

ING1b is upregulated upon treatment with antagonists. ING1b overexpression represses 

AR transactivation on key target genes in LNCaP cells possibly through AR 

degradation. Intriguingly, ING1b KD inhibits AR-mediated transcriptional regulation of 

the same target genes in both PCa cells, which could be verified in vivo using Ing1 KO 

mice. This interesting result could be explained by the compensatory mechanism 

through enhanced expression of the ING2a protein in ING1-deficient condition as 

ectopic expression of ING2a also hampers the AR transcriptional activation similar to 

ING1b. The data further suggest the induction of p16INK4a by ING2a in LNCaP cells, 

which has not yet been reported.  

Taken together, this compensatory mechanism suggests a novel crosstalk among ING 

family members in regulating AR functions and opens a potential way to inhibit AR 

signaling in PCa.  
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1 Introduction 

1.1 Prostate cancer  

Prostate cancer (PCa) ranks as the second leading cause of male cancer-related death in 

the Western world (Ferlay et al. 2013, Siegel et al. 2013). Majority of localized primary 

prostate tumors are treated successfully by radical prostatectomy or external beam 

radiotherapy, however, some tumors progress to invasive form (Bluemn and Nelson 

2012). Evidence shows that the androgen receptor (AR) plays a leading role not only in 

normal prostate development but also in promoting PCa (Balk and Knudsen 2008). 

Therefore, androgen deprivation therapy (ADT) through either chemical or surgical 

castration is applied for treatment (Bluemn and Nelson 2012). Despite the initial 

effectiveness, most of the patients gradually develop a metastatic hormone-refractory 

form so called castration-resistant prostate cancer (CRPCa) (Harris et al. 2009). 

However, AR is still active in CRPCa and new generation AR antagonists seem to be 

beneficial to inhibit AR signaling in CRPCa (Hoimes and Kelly 2010, Roell and 

Baniahmad 2011, Tsao et al. 2012). Furthermore, CRPCa is a multifactorial and 

heterogeneous disease process involving several pathways and can be treated by 

combining therapeutic approaches against different molecular targets (Ramsay and 

Leungs 2009, Stavridi et al. 2010, Bonkhoff and Berges 2010, Lonergan and Tindall 

2011).  

1.2 AR signaling   

The AR is a nuclear transcription factor and a member of the steroid hormone receptor 

superfamily. It consists of four structurally and functionally distinct domains: a poorly 

conserved N-terminal domain (NTD), a highly conserved DNA-binding domain (DBD), 

a hing region and a moderately conserved C-terminal ligand-binding domain (LBD). 

(Gelmann 2002, Claessens et al. 2008). The NTD harbors transcriptional activation 

function 1 (AF1), which encompasses two transcriptional activation units (TAU): TAU-

1 and TAU-5 (Jenster et al. 1995). The NTD is mainly responsible for the AR-mediated 

transactivation (Gelmann 2002). The DBD consists of two zinc fingers that specify gene 

specific nucleotide contacts within the DNA groove and facilitate homodimerization of 

the receptor (Umesono and Evans 1989). The LBD enables binding of the AR ligands 
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and contains AF2. AF1 and AF2 are responsible for the recruitment of the coregulators 

and transcriptional complexes to AR (Heery et al. 1997, Bevan et al. 1999). Most of the 

AR point mutations identified in CRPCa have been mapped to the LBD (Taplin et al. 

1995, Buchanan et al. 2001).  

Unliganded AR is primarily localized in the cytoplasm bound in a complex with 

multiple chaperones (heat shock proteins) which disable AR from entering to the 

nucleus (Hessenkemper and Baniahmad 2012). Upon androgen binding, AR changes its 

conformation and dissociates from the heat shock proteins leading to nuclear 

translocation and subsequent dimerization and binding to the androgen response 

elements (ARE) in the promoter and enhancer regions of target genes where the 

recruitment of coregulators and transcriptional complexes result in transactivation or 

inhibition of gene expression. (Heinlein and Chang 2001, Gelmann 2002, Baniahmad 

2005).  

There are an increasing number of the proteins which interact with and modulate AR 

transcriptional action. These proteins include coactivators, corepressors, chromatin 

remodeling proteins and also other transcription factors (Grosse et al. 2012). Unlike 

coactivators that enhance AR-mediated gene transcription, AR corepressors attenuate 

AR transactivation (Wang et al. 2005). Alterations in coregulators’ function have been 

postulated to contribute to CRPCa (Rahman et al. 2004, Chmelar et al. 2007, Heemers 

and Tindall 2007).  

Furthermore, the genomic amplification and/overexpression of AR itself occur in 

roughly 60% of the CRPCa cases (Taylor et al. 2010). The additional mechanisms 

leading to AR upregulation include the factors which are responsible for the 

transcriptional or posttranslational regulation of AR protein (Sharma et al. 2010, Cai et 

al. 2011, Valdez et al. 2011, Li et al. 2014a). In this regard, posttranslational 

modifications and degradation of AR through various proteins have been reported as an 

essential biological process in maintaining the cellular homeostasis (Lin et al. 2002, Xu 

et al. 2009, Varisli et al. 2012, Qi et al. 2013, Li et al. 2014b,  Sarkar et al. 2014).   

The roles of AR in normal prostate organogenesis as well as the development of PCa on 

the one hand and induction of the cell cycle arrest in the PCa cells by ADT on the other 

hand imply that AR plays a key role in regulating cell cycle proteins (Agus et al. 1999, 

Heinlein and Chang 2004). The genetic pathways activated by the androgen receptor 

during the induction of proliferation in the ventral prostate gland have been identified 
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(Nantermet et al. 2004). One of the recurrent chromosomal aberrations found in PCa is 

the fusions between the TMPRSS2 gene and the Ets transcription factor family 

members, ERG or ETV1. The androgen-responsive promoter elements of TMPRSS2 

mediate the overexpression of ETS family members in prostate cancer (Lin et al. 1999, 

Tomlins et al., 2005). Matrix metalloproteinases (MMP) 2 and 9, which have been 

found to be associated with PCa metastasis (Nemeth et al. 2002), harbor Ets binding site 

on their promoters (Schneikert et al. 1996). Role of androgens and the AR in epithelial-

mesenchymal transition (EMT) and invasion of prostate cancer cells has been reported 

(Zhu and Kyprianou 2010). Moreover, the regulatory role of AR in apoptosis (Gao et al. 

2005, Rokhlin et al. 2005) and in cellular senescence (Mirochnik et al. 2012, Yang et al. 

2013, Ewald et al. 2013, Roediger et al. 2014, Hessenkemper et al. 2014) have been also 

well established. Cellular senescence is a state of irreversible cell cycle arrest frequently 

in the G0/G1 phase (Campisi and d'Adda di Fagagna 2007).  

1.3 Epigenetics and cancer  

Cancer is a complex genetic disorder initiated by cells that have accumulated multiple 

genetic and/or epigenetic changes resulting in altered gene expression to drive 

malignant characteristics (Coles and Jones 2009, Tallen and Riabowol 2014). Similarly, 

PCa is also driven by progressive genetic and epigenetic aberrations (Albany et al. 

2011). One of the hallmarks described for cancer is aberrant expression of the tumor 

suppressors which enable the cancer cells evading from growth suppressor mechanisms 

(Hanahan and Weinberg 2011). Tumor suppressor proteins have been found to regulate 

numerous cellular processes, including cellular senescence, DNA repair, signal 

transduction and apoptosis. They comprise proteins that regulate chromatin remodeling 

and/or modify histones to alter gene expression, including members of the inhibitor of 

growth (ING) family (Coles and Jones 2009).  

ING family members are histone binding proteins which are also found as components 

of large chromatin remodeling complexes including histone deacetylases (HDAC), 

acetyltransferases (HAT) and methyltransferases (HMT) enzymes. HDACs, HATs and 

HMTs are responsible for posttranslational modifications of histones and other 

regulatory proteins (Coles and Jones 2009). Epigenetic alterations have been 

demonstrated to play critical roles in prostate carcinogenesis and metastasis (Valdes-

Mora and Clark 2014). 
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1.4 ING family 

In human, ING family of proteins consists of five known members (ING1-ING5) with 

various isoforms. ING family, which is evolutionary conserved from yeast to humans 

(He et al. 2005), regulates a wide variety of vital cellular processes (Coles and Jones 

2009, Unoki et al. 2009). Initially ING family proteins were characterized as tumor 

suppressors, however, recent emerging evidence has now broadened this definition as 

epigenetic regulators due to differentially control of cell growth in different biological 

contexts (Unoki et al. 2009, Schaefer et al. 2013, Tallen and Riabowohl 2014). All ING 

proteins share a highly conserved plant homeodomain (PHD) finger at the C-terminus 

(He et al. 2005, Soliman et al. 2007). The PHD domain selectively binds to the lysine 4 

residue of histone H3 with affinity increasing with methylation state (highest affinity for 

H3K4me3) (Pena et al. 2006, Shi et al. 2006, Tallen and Riabowohl 2014). H3K4me3 is 

preferentially located at promoters and is a histone mark associated with activated and 

open chromatin downstream of transcription start sites (Santos-Rosa et al. 2002, 

Ruthenburg et al. 2007). Interaction of ING proteins with H3K4me3 directs other 

complex proteins including HDACs, HATs or HMTs to regulate their target genes.  

1.5 ING1 and ING2 

Human ING1 was identified as first member of the ING family following searching new 

tumor suppressors (Garkavtsev et al. 1996). It is located on chromosome 13q14 and 

consists of four exons. It encodes for four known isoforms namely p47ING1a, 

p33ING1b, p27ING1d and p24ING1c which are generated from different promoters or 

as a result of alternative splicing. p33ING1b, thereafter called ING1b, is the most 

abundant form among ING1 isoforms (Guerillon et al. 2013). ING1b protein contains a 

PCNA-interacting protein motif (PIP) and a partial bromo domain (PBD) in its N-

terminal part, a lamin interaction domain (LID) and a nuclear localization sequence 

(NLS) in its central region and a PHD and a polybasic region (PBR) in its C-terminal 

part (Figure 1). PHD and LID are the well conserved regions among ING proteins. 

NLS, which targets ING proteins to the nucleus, also contains basic nucleolar targeting 

sequences (NTS) in ING1 (Tallen and Riabowohl 2014). 
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Figure 1. Human ING1b protein structure and its interacting partners. PIP: PCNA-
interacting protein, PBD: Partial bromo domain (PBD), LID: lamin interaction domain, NLS: 
nuclear localization sequence in which nucleolar targeting sequences (NTS) were depicted in 3 
dark blue boxes, PHD: plant homeodomain and PBR: polybasic region. Two phosphorylation 
sites located on serines 126 and 199 (S126, S199) have been reported to regulate the half-life 
and subcellular localization of ING1b, respectively. Lysine 193 (K193), which is the preferred 
ING1b SUMO acceptor site, regulates ING1b-mediated transcription upon SUMOylation. 
Upper panel shows the proteins interacting with the corresponding domains of ING1b (modified 
from Tallen and Riabowohl 2014).   

Human ING2 is mapped at chromosome 4q35.1 and is made up of three exons resulting 

in two alternatively spliced isoforms: p33ING2a and p28ING2b. Both ING2a and 

ING2b mRNA are ubiquitously expressed, however, with much lower expression level 

for ING2b. Furthermore, while ING2b expression has been shown at the RNA level, no 

protein has ever been detected for it. ING2a is highly expressed in testis (Unoki et al. 

2008, Guerillon et al. 2013). ING2a displays high amino acid sequence homology 

(70%) to ING1b (Guerillon et al. 2013).  In contrast to ING1b, ING2a N-terminus 

contains a leucine zipper-like (LZL) region that can help regulate nucleotide-excision-

repair-associated functions of ING2, the DNA damage response and cell differentiation 

(Tallen and Riabowohl 2014). Mouse Ing1 is transcribed as three known isoforms 

including p31ING1a, p37ING1b and p31ING1c. Human and mouse ING1b share 89% 

identity based on amino acid alignment. Mouse Ing2 transcription results in two 

isoforms: ING2a and ING2b. Human and mouse ING2a cDNAs share 90% identity 

(Guerillon et al. 2013). 

Although two models of Ing1 knockout (KO) mice have been developed so far, they 

displayed similar characteristics. The first one was generated as complete Ing1 KO 

mouse (Kichina et al. 2006), while the other one was developed as an isoform specific 

ING1b-deficient mouse (Coles et al. 2007). Both KO mice are characterized by reduced 

body size with higher incidence of B-cell lymphomas and aberrant DNA damage 

response. However, difference in tumor spectrum between these two mice strains 

NH2 COOHPIP PBD LID NLS PHD PBR

1 S126 S199 279

PCNA Lamin A 14-3-3

H3K4me3p53 & CSIGSAP30

ARF

GADD45A

K193
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suggests that ING1a and ING1c isoforms modulate ING1b activity in mice. The 

complete Ing1 KO mice have no other obvious morphological, physiological or 

behavioral abnormalities, indicating that Ing1 function is dispensable for the viability of 

mice under normal physiological conditions (Kichina et al. 2006). However, targeted 

disruption of Ing2 results in defective spermatogenesis in male mice and development 

of soft-tissue sarcomas in both genders (Saito et al. 2010). Moreover, Ing2 KO mice 

have displayed a decrease in acinar dilation in prostate indicating a role for Ing2 in 

prostate. In spite of high homology between ING1 and ING2, a different phenotype has 

been observed in their corresponding KO mice models (Guerillon et al. 2013). 

1.6 ING1 in PCa 

As expected from ING1 role as a tumor suppressor, ING1 has been found to be lost or 

downregulated at mRNA and/or protein expression levels in multiple malignancies 

(Walzak et al. 2008, Guerillon et al. 2014). Although some mutations have been 

reported in either the NLS or the PHD domain, mutation in ING1 is an infrequently 

occurring phenomenon in human tumors and cancer cell lines (Ythier et al. 2008). 

Analyzing ING1 expression in PCa is limited to one study indicating the low ING1 

mRNA level in the prostate adenocarcinoma PC3 versus normal prostate (Walzak et al. 

2008). Nevertheless, ING1b mRNA is not differentially expressed between normal 

prostate and prostate adenocarcinoma in this study. However, transcriptome analysis 

has revealed that ING1b-repressed genes associate with PCa (p= 0.044, kappa similarity 

score= 0.41) (Thakur et al. 2014). Another indication for ING1b role in prostate comes 

from the study of Schwarze et al. (2002) in which ING1b mRNA showed 1.8 fold 

induction in terminally senescent human prostate epithelial cells (HPECs) compared to 

the proliferating ones. 

1.7 ING1b regulates cell growth 

Apart from caretaker functions of ING1b in DNA repair, it regulates the cell 

proliferation, apoptosis, cellular senescence and migration as gatekeeper functions 

(Guerillon et al. 2013). The implication of ING1b in cell growth was supported by its 

expression changes during the cell cycle (Garkavtsev and Riabowol 1997). 

Furthermore, many studies have shown that the overexpression of the ING1b could 

inhibit growth of normal and cancerous cells. Initially, Garkavtsev et al. (1996) has 
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reported that the ectopic expression of human ING1b in Hs68 fibroblast cells caused 

cell cycle arrest in the G0/G1 phase. However, the mechanism by which ING1b causes 

cell growth inhibition seems dependent on the cellular context. ING1b not only could 

induce apoptosis in various cell types (Helbing et al. 1997, Shinoura et al. 1999, Lv et 

al. 2012, Thakur et al. 2012, Bose et al. 2013) but also could trigger cellular senescence 

pathway in different cells (Goeman et al. 2005, Abad et al. 2007, Abad et al. 2011, Li et 

al. 2011). Moreover, 8- to 10-fold higher expression of ING1b in senescent cells 

compared to young ones brings more evidence for involvement of ING1b in cellular 

senescence (Garkavtsev and Riabowol 1997). Moreover, ING1b-deficient MEFs has 

displayed induced Bax expression and DNA damage-induced apoptosis indicating that 

ING1b can negatively regulate apoptosis (Coles et al. 2007). In line with overexpression 

studies, suppression of ING1b expression extends the proliferative life span of normal 

fibroblasts (Garkavtsev and Riabowol 1997), promotes neoplastic transformation 

(Garkavtsev et al. 1996) and results in formation of spontaneous follicular B-cell 

lymphomas in ING1b-deficient mice (Coles et al. 2007). 

1.8 Regulation of ING1b expression 

Since mutations in ING1 gene have been rarely reported in human tumors (Ythier et al. 

2008), several reasons has been postulated and studied for its downregulation in tumors.   

ING1 gene and flanking regions are highly GC rich (Gunduz et al. 2000), and indeed 

abnormally high methylation levels on the ING1 promoter have been reported to cause 

low ING1b mRNA expression in ovarian cancer (Shen et al. 2005) indicative of 

epigenetic mechanism regulating ING1 transcription. Interestingly, ectopic expression 

of microRNA622 promoted invasion, tumorigenesis and metastasis of gastric cancer 

cells where it binds to the 3'-untranslated region (3'-UTR) of ING1 transcript to post-

transcriptionally repress its protein level (Guo et al. 2011). Moreover, posttranslational 

modifications of ING1b have been reported to modulate its stability and activity.  

Genotoxic stresses, like UV, induce ING1b phosphorylation at Serine 126 and extend 

its half-life to regulate various growth inhibitory effects (Garate et al. 2007, Garate et al. 

2008). Also, phosphorylation-dependent binding of 14-3-3 to ING1b targets its 

subcellular localization and regulates p21CIP1/WAF1 expression (Gong et al. 2006). 

Moreover, the proto-oncogene Src, a non-receptor tyrosine kinase with an important 

role in growth factor signal transduction, physically associates with, and phosphorylates 
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ING1b which results in its cytoplasmic localization and decreased stability thereby 

antagonizing the ability of ING1b to induce apoptosis. These finding suggests that Src 

may play a major role in regulating ING1 levels during tumorigenesis in those cancers 

in which high levels of Src expression or activity are present (Yu et al. 2013). 

1.9 ING1b controls gene transcription 

The involvement of ING1b in various cellular processes necessitates very finely 

regulated mechanisms by which ING1b controls the cellular pathways. Indeed one of 

the most important mechanisms can be regulation of the gene expression of the proteins 

that play key roles in cellular homeostasis. ING1b was found to associate with 

chromatin remodeling complexes to exert its functions (Coles and Jones 2009). It has 

been described that ING1 can bind with high affinity to H3K4me3 by its PHD domain 

and subsequent recruitment of the SIN3A/HDAC1-2/SAP30 complex results in 

repression of gene transcription through histone deacetylation (Kuzmichev et al. 2002, 

Doyon et al. 2006). Contrary to common belief about SIN3a/HDAC as a transcription 

repressor, it might positively regulate transcription as well (Silverstein and Ekwall 

2005). Studies in both yeast and human cells have implicated ING1b in chromatin 

remodeling complexes containing HATs and its role in transcriptional activation (Feng 

et al. 2002). On the other hand, directing the growth arrest and DNA damage protein 

45a (GADD45A) to H3K4me3 by ING1 causes DNA demethylation and subsequent 

gene activation (Schaefer et al. 2013). The recognition of the chromatin mark H3K4me3 

seems to be essential for the induction of specific transcriptome signature. Mutations 

disrupting the ING1b PHD domain have been reported to impair the ING1b function in 

inducing cellular senescence and gene-specific DNA demethylation (Abad et al. 2011, 

Schaefer et al. 2013).  

ING1b-induced senescence is associated to a specific genetic signature enriched in 

chemokine and cytokine signaling factors (Abad et al. 2011). In addition, ING1b has 

also been reported to bind to p16 promoter and upregulates p16INGK4a expression in 2BS 

fibroblasts in a p300-dependent manner that lead to induction of cellular senescence (Li 

et al. 2011). Moreover, in mouse mammary epithelial cells, ING1b has been found to 

negatively control the expression of cyclin B1 and the proto-oncogene DEK (Takahashi 

et al. 2002). In HepG2 cells, ING1b could stimulate p21CIP1/WAF1 promoter (Kataoka et 

al. 2003). However, the ability of ING1b to cause cell-cycle arrest, p53-mediated 
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transactivation and induction of p21 is impaired in p19ARF-deficient primary MEFs 

(Gonzalez et al. 2006). Reportedly, the functional link between ING1b and p53 pathway 

is well established, however, ING1b can also regulate cell growth and apoptosis 

independently of p53 (Coles and Jones 2009, Guerillon et al. 2013).  

ING1b SUMOylation on lysine 193 (K193) regulates the binding of ING1b to the 

ISG15 and DGCR8 promoters, consequently regulating their transcription (Satpathy et 

al. 2014). Indeed, interaction of ING1b with other regulatory proteins can also modulate 

their transavtivation or transrepression properties. The ING1b protein has been found 

via GST-pull-down assay to associate with corepressor Alien and enhance Alien- 

induced gene silencing mediated by selected members of nuclear hormone receptors and 

E2F1 (Fegers et al. 2007). After UV irradiation, human ING1b increases its protein 

expression, translocates into the nucleolus and interacts with CSIG (Cellular 

Senescence-Inhibited Gene) and increases CSIG protein stability. CSIG is a nucleolar 

protein that has been involved in the regulation of cellular senescence and apoptosis 

(Ma et al. 2008, Li et al. 2012). Furthermore, ING1b physically associates with estrogen 

receptor alpha (ER-α) where it acts like a coactivator and stimulates estrogen-induced 

ER-α transcriptional activity (Toyama et al. 2003). Another indication of ING1b role in 

hormonal signaling comes from the study of Helbing et al. (2011) in Xenopus laevis in 

which ING1b, along with ING2a, modulate thyroid hormone (TH)-dependent responses 

through association with TH receptor β (TR-β) and its promoter region and enhancing 

TR-associated promoter activity in response to T3.  

Moreover, connection between ING1b and microRNAs has been also revealed. In 

ING1b-deficient MEFs, the expression of Dgcr8, which encodes for a protein involved 

in the early steps of microRNA biogenesis, has been increased. It has been shown that 

ING1b contributes to the transcriptional repression of Dgcr8 by inhibiting histone 

acetylation through recruitment of deacetylation complexes. Consequently, a small 

subset of mature microRNAs that displayed statistically significant differences have 

been identified in ING1b-deficient MEFs relative to wild-type controls (Gomez-Cabello 

et al. 2010). Also, ING1b epigenetically induces microRNA203 leading to inhibition of 

cancer cell proliferation through coordinate downregulation of CDK6, c-Abl and Src 

(Chen et al. 2013). Interestingly, deregulation of the microRNA machinery is well 

characterized in tumors (Shi et al. 2008).  

However, which mechanisms define the recruitment of activator or repressor complexes 
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to the target genes remains to be elusive. This issue would be more complicated when 

one consider what define which ING should be bound to H3K4me3 since the highly 

conserved PHD domain is common among ING family. 
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2 Objective  

Continued reliance on AR signaling for survival is a hallmark of CRPCa (Bluemn and 

Nelson 2012). Therefore, inhibiting AR by using different strategies would be useful for 

PCa therapy. Cellular senescence has emerged recently as an antiproliferative 

tumorsuppressive mechanism (Prieur and Peeper 2008, Collado and Serrano, 2010, 

Nardella et al. 2011) and it can be one possible way to inhibit AR and subsequently PCa 

growth.  

ING1b is one of the upregulated transcripts in the senescent human prostate epithelial 

cells (Schwarze et al. 2002) and it is also able to induce cellular senescence in other 

contexts (Goeman et al. 2005, Abad et al. 2007, Abad et al. 2011, Li et al. 2011). It has 

been reasoned that ING1b plays important role in aging process of prostate and can also 

induce growth arrest through cellular senescence in PCa cells. Moreover, understanding 

molecular mechanism of ING1b-induced cellular senescence in PCa cells is essential for 

further steps.  

The AR can also drive cellular senescence in response to agonists and antagonists 

(Mirochnik et al. 2012, Roediger et al. 2014, Hessenkemper et al. 2014). Interestingly, 

the host group studies have shown that ING1b interacts with human AR (Diploma thesis 

Jennek 2009). For that reason, this study is aimed to analyze whether ING1b is the 

mediator of AR-driven senescence. In line with this, it should be investigated if agonists 

or antagonists influence ING1b expression.  

It has been also indicated that ING1b can inhibit AR transactivation (Diploma theses 

Klitzsch 2011, Ludwig 2012). Therefore, analysis of ING1b inhibitory effect on AR 

signaling in PCa cells was conducted. To further confirm the regulatory role of ING1b 

on AR-mediated transcription in vivo, Ing1 KO mouse was used.  

Taken together, functional analysis of AR-ING1b interaction in the presence of agonists 

and antagonists and their activity on the expression of target genes, cellular senescence, 

proliferation and migration will provide a potential approach for molecular-targeted 

therapy of CRPCa.  
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3 Materials and Methods  

3.1 Hormones, chemicals and antibiotics 

Dihydrotestosterone (DHT), Casodex (Cas), Cycloheximide, Chloroquine diphosphate, 

Hexadimethrine bromide (Polybrene), Dichlorofluorescin diacetate (DCF-DA) and N-

acetylcysteine (NAC) were obtained from Sigma‐Aldrich (Taufkirchen, Germany); 

Atraric acid (AA) from Merck (Darmstadt, Germany); Methyltrienolone (R1881) from 

Perkin Elmer (Waltham, MA, USA); MG132 from Cayman Chemical (Ann Arbor, MI, 

USA); Zeocin and Puromycin from InvivoGen (San Diego, CA, USA); Geneticin 

disulphate (G418 Sulphate) and Crystal violet from Carl Roth (Karlsruhe, Germany).  

All compounds were dissolved in dimethylsulfoxide (DMSO) or ethanol (EtOH) or 

water and were added to the culturing medium in such a way that the final concentration 

of the solvent did not exceed 0.2%. Control incubations (no test compounds) were 

performed with the appropriate volume of DMSO or EtOH. 

3.2 Plasmids 

The androgen responsive pMMTV-luc plasmid, which contains a luciferase (luc) 

reporter gene driven by mouse mammary tumor virus (MMTV) long terminal repeats, 

has been already described (Kaspar et al. 1993). The pARR3-tk-luc, which expresses 

the luc gene driven by the Probasin promoter sequence, was kindly provided by R.J. 

Matusik (Nashville, TN, USA). The pPSA-luc reporter plasmid contains the PSA 

promoter sequence (Cleutjens et al. 1997). The pCMV-lacZ plasmid expressing 

β-galactosidase under control of the cytomegalovirus (CMV) promoter was employed 

as internal control for transfection efficiency in reporter gene assays (Dotzlaw et al. 

2002). pBabe-Zeo-EcoR plasmid was obtained from Addgene (plasmid No. 10687) and 

used for introducing the ecotropic receptor (Albritton et al. 1989) into human PCa cells. 

The retroviral vector pLPC, which was used as empty vector control, the pLPC-ING1b 

and the pLPC-ING2a expression vectors have been previously described (Serrano et al. 

1997, Goeman et al. 2005). The retroviral vectors pLMP-sh-luc and pLMP-sh-ING1b, 

which enable efficient production of specific shRNAs using a miR30 microRNA 

backbone against firefly luciferase gene and human ING1b respectively, have been 

described by Abad et al. (2011). The pEGFP-AR and pEGFP-AR(T877A) constructs, 

coding for N-terminally tagged GFP-AR fusion proteins, have been described 
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previously by Farla et al. (2004, 2005) and were kindly provided by Dr. A.B. 

Houtsmuller (Rotterdam, The Netherlands).  

The pmCherry-C1, which is a mammalian expression vector designed to express a 

protein of interest fused to the C-terminus of mCherry, is from Clontech Laboratories 

(Mountain View, CA, USA). The pmCherry-ING1b construct were subcloned as 

follows: The pmCherry-C1 was digested with BamHI and dephosphorylated with 

FastAP (Thermo Scientific, Hamburg, Germany). The linearized vector was then ligated 

using T4 DNA ligase (Thermo Scientific, Hamburg, Germany) with the full-length 

ING1b, which was already cut out from pLPC-ING1b with the same restriction enzyme 

to give the sticky ends. The successful cloning was verified by restriction analysis and 

sequencing (Figure 2). 

 

 

Figure 2. The schematic representation of pmCherry-ING1b construct. 

 

3.3 Cell culture 

HeLa cells, a human cervix carcinoma cell line, were cultured in Dulbecco’s Modified 

Eagle’s Medium (DMEM) supplemented with 5% fetal bovine serum (FBS), penicillin 

(100 U/ml), streptomycin (100 µg/ml) and 25 mM HEPES (pH 7.8). MEFs, mouse 

embryonic fibroblasts isolated from embryonic day E15.5 male embryos, were cultured 

in the same medium as HeLa cells, except that FBS was 10%. MEFs from wild type and 

GGATCC ACC GAC TTC TAC CTA AAG AGA TCC ATG TTG AGT ………….. AGG TAG GATCTCCTGAATTC

GTAGTCGACATTGCGGCCGCTCGAGCTCAAGCTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATCC

BamHI

BamHI

AU5 ING1b

XhoI HindIII EcoRI
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Ing1 KO male mice were kindly provided by Dr. C. Niehrs (Mainz, Germany).  

Phoenix-Eco, which is a retroviral packaging cell line for the generation of helper-free 

ecotropic retroviruses, was cultured in the same medium as HeLa cells, except that FBS 

was 10% heat inactivated. The androgen-dependent human PCa line LNCaP-tet 

(Protopopov et al. 2002) was cultured in RPMI1640 supplemented with 10% FBS, 

penicillin (100 U/ml), streptomycin (100 µg/ml), 25 mM HEPES (pH 7.8) and 1% 

sodium pyruvate. The androgen-independent growing C4‐2 cells, which are derived 

from the LNCaP cell line (Wu et al. 1994), were cultured in DMEM supplemented with 

20% F12 medium, 10% FBS, 5 μg/ml insulin, 5 μg/ml apotransferin, 0.25 μg/ml Biotin, 

25 μg/ml Adenin, penicillin (100 U/ml), streptomycin (100 μg/ml) and 25 mM HEPES 

(pH 7.8). PC3 cells, which are derived from advanced androgen-independent bone 

metastasis of PCa (Kaighn et al. 1979), were cultured in RPMI1640 supplemented with 

10% heat inactivated FBS, penicillin (100 U/ml), streptomycin (100 µg/ml), 25 mM 

HEPES (pH 7.8). PC3-AR cells, which are a derivative of PC3 cells stably transfected 

with wild type AR cDNA (Peterziel et al. 1999), were cultured in the same medium as 

PC3 with adding 0.6 mg/ml G418. All cells were cultivated in a humidified atmosphere 

with 5% CO2 at 37°C. The cells were cultured in charcoal stripped serum (CSS) 

containing media when hormone depletion was needed.  

3.4 Retroviral transduction 

Retroviral gene transfer into human PCa cells was performed essentially as described by 

Goeman et al. (2005) with minor modifications. In brief, for the production of virus, 

Phoenix-Eco cells are transiently transfected with 15 μg of the retroviral vector of 

interest using a modified CaPO4 method (Wigler et al. 1978, Moehren et al. 2008).  

After 48h, the supernatant containing viral particles was filtered, diluted with fresh 

medium in the presence of 8 μg/ml polybrene and added to the human PCa cells, which 

were stably transfected with the vector pBabe-Zeo-EcoR driving the expression of the 

ecotropic receptor. This procedure was repeated 24h later. Successfully infected cells 

were selected with puromycin (0.3 μg/ml or 1 μg/ml for PC3-AR and LNCaP cells, 

respectively) for 10-15 days and selected cells were then pooled for the other assays. 

3.5 Growth assay 

The growth assay was basically carried out in 2 ways. 
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(I) LNCaP and PC3-AR cells were seeded on the 6-well tissue culture plates in 

appropriated medium at 5×104 and 104 cells per well, respectively. Then the retroviral 

transduction was applied to the cells. After 48h, the medium was replaced with the ones 

containing 5% FBS and different AR ligands. After a further cultivation of 48h, 

antibiotic selection of the transduced cells in the presence or absence of AR ligands was 

performed for 10-15 days. The resistant cells were fixed with 1% glutaraldehyde, 

stained with 0.1% crystal violet as an indirect measure of cell number, and the cell 

associated crystal violet in dried plates was solubilized with Sørenson’s solution as 

described (Jansson et al. 2012). Absorbance was measured at 590 nm.  

(II) The stably transduced cells were seeded in duplicate a week after the end of 

selection at a density of 7000 (LNCaP) and 2000 (PC3-AR) cells per well in 12-well 

plates in appropriate medium containing 5% FBS. After 48h, cells were fed with fresh 

medium and solvent control or AR ligands as indicated. At the indicated time points, 

cells were stained with 0.1% crystal violet after fixation, and indirect measure of cell 

number was performed by reading the absorbance at 590 nm. Moreover, the media were 

replaced with fresh one together with freshly added ligands for the other plates in these 

time points. 

3.6 Scratch assay 

The cells were plated on 6-well plates in the appropriate medium containing 5% FBS to 

create a confluent monolayer at following day. The required cell number for this 

condition was 106 and 5×105 for LNCaP and PC3-AR, respectively. The confluent 

monolayer was scratched with a crystal 10 µl pipette tip. The culture medium was 

replaced with fresh one with or without ligands. At indicated time points, brightfield 

microscopic pictures were taken from the same location and the media were replaced 

with fresh one as described. The images acquired for each well was further analyzed 

quantitatively by using TScratch computing software (Gebäck et al. 2009). Cell 

migration is presented as percent gap closure, calculated using the following equation:  

 

        (Pre-migration area at time 0) – (Migration area at indicated time point) 

                               (Pre-migration area at time 0) 
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3.7 Senescence-associated beta-galactosidase (SA-β-Gal) staining 

The staining was performed as described earlier (Dimri et al. 1995) either directly on 

the transduced cells survived from antibiotic selection or on the transduced cells seeded 

after selection in 6-well plates at a density of 50000 (LNCaP) or 20000 (PC3-AR) cells 

per well. In the latter case, the cells were then treated in the presence or absence of 

different AR ligands for 3 days. The cells were washed with phosphate buffered saline 

(PBS) and fixed for 5 min in 1% glutaraldehyde. Fixed cells were washed with PBS and 

incubated at 37°C (no CO2) with fresh SA-β-Gal staining solution (Dimri et al. 1995). 

The staining solution contains X-Gal, a galactopyranosid, which yields an insoluble 

blue compound when cleaved by active β-galactosidase. The percentage of stained cells 

was determined following counting at least 400 cells per well under light microscopy.  

3.8 Reporter gene assay 

The cells were seeded onto 6-well plates at the density of 2-5 ×105 cells per well in the 

appropriate medium supplemented with 5% CSS medium. Next day, the cells were 

cotransfected with 1-2 μg reporter construct and 0.2 μg pCMV‐lacZ for internal 

normalization. When needed, the empty vector (pLPC) or expression vector for the 

human ING2a (pLPC-ING2a) was added to the transfection mix. LNCaP cells were 

transfected using DOTAP transfection reagent (Roth, Karlsruhe, Germany) according  

to manufacturer’s protocol, with minor modifications (Reeb et al. 2011), whereas  

PC3-AR cells were transfected by using a modified CaPO4 method (Wigler et al. 1978, 

Moehren et al. 2008). After 6-16 h, media were replaced with the indicated substances. 

Cells were harvested 72h after hormone induction to measure both luciferase and 

galactosidase activities. Obtained luciferase units were normalized to those of  

beta-galactosidase. 

3.9 Dichlorofluorescein (DCF) assay  

The assay employed the cell-permeable nonfluorescent probe 2',7'-Dichlorofluorescein 

diacetate (DCFH-DA). DCFH-DA is deacetylated by cellular esterases to non-

fluorescent DCFH which is retained in the cell. DCFH is then rapidly oxidized to highly 

fluorescent DCF by ROS (Keston and Brandt 1965). The cells were grown in 24-well 

plates and treated with the respective AR ligands on the following day. 72h later, they 
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were washed with PBS and incubated in a loading medium consisting of pure cell 

growth medium with 1% FBS and 100 μM DCFH-DA for 30 min in a cell incubator. 

Afterwards cells were washed twice with PBS and lysed in 150-250 μl of RIPA lysis 

buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% NaDeoxycholate). 

The fluorescence was measured in Fluoroskan Ascent (Labsystems, Helsinki, Finland) 

at excitation wavelength 485 nm and emission filter 538 nm. The values were 

normalized to the protein concentrations. The normalized values were depicted as fold 

ROS level after setting the DMSO values obtained for empty vector arbitrarily to 1. 

3.10 Fluorescence microscopy 

For colocalization studies, the HeLa cells were seeded on glass coverslips in the 5% 

CSS medium and transiently cotransfected with the plasmids coding for GFP-AR and 

mCherry-ING1b proteins using a modified CaPO4 method (Wigler et al. 1978, Moehren 

et al. 2008). 16h later, the cells were washed with PBS and fed with fresh 5% CSS 

medium for recovery and expression of the tagged proteins. After 24h, the transfected 

cells were treated with solvent control DMSO or R1881 (1 nM) in 5% CSS medium for 

2h. Afterwards, the cells were washed three times with PBS and fixed using 4% 

formaldehyde solution (in PBS). Then the cells on the coverslips were mounted onto 

glass slides using ProLong® Gold antifade reagent with DAPI (Life Technologies, 

Darmstadt, Germany). The intracellular distribution of AR and ING1b was investigated 

with a fluorescence microscope Axio Observer.Z1 (Carl Zeiss, Jena, Germany) 

supplemented with ApoTome device for generation of optical sections. Colocalization 

was quantified using BioImageXD software (Kankaanpää et al. 2012). 

3.11 Quantitative reverse transcription PCR (qRT-PCR) 

RNA was isolated from the cells or mice organs using peqGOLD TriFast (Peqlab, 

Erlangen, Germany) according to the manufacturer’s protocol. Two-step qRT-PCR was 

conducted as follows: 2 μg RNA were converted to cDNA using High Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Then the 

cDNA synthesis reaction samples were diluted 1:1 with DEPC‐treated water. In the 2nd 

step, qRT-PCR was performed using the SsoFastTMEvaGreen® Supermix (Bio‐Rad, 

München, Germany), gene specific primers and Biorad CFX96TM Real Time PCR 

detection system. The primer sequences and annealing temperatures were listed in   
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Table 1 and Table 2. qRT-PCR results were analyzed via ΔΔCt method (Pfaffl 2001) 

using CFX manager software from Biorad. Among the housekeeping genes tested, 

human RPL13a and murine Rpl13a were found as most constant ones and used for 

normalization of the assays, unless stated otherwise. 

 
Table 1. Human primers used in this study for qRT-PCR analysis 

Gene Primer                 Sequence 5' → 3' Annealing temperature 

AFP fw 
rev 

CCCGAACTTTCCAAGCCATAACTG 
ATCCAGCACATCTCCTCTGCAAC 

65°C 

AR fw 
rev 

TCAGCATTATTCCAGTGGATGGGC 
TGGTAGAAGCGTCTTGAGCAGGAT 

60°C 

BCL2 fw 
rev 

CATGTGTGTGGAGAGCGTCAA 
GCCGGTTCAGGTACTCAGTCA 

65°C 

FKBP5 fw 
rev 

GAGGAAACGCCGATGATTGGAGAC 
CATGCCTTGATGACTTGGCCTTTG 

65°C 

ING1b fw 
rev 

GGACTACCTGGACTCCAT 
CGACTGAAGCGCTCGTA 

55°C 

ING2a fw 
rev 

TGCGGGAGCTGGACAAC 
TGGAGAAGCTGCTGTAGACG 

60°C 

MMP9 fw 
rev 

ACGACGTCTTCCAGTACCGA 
TTGGTCCACCTGGTTCAACT 

55°C 

MMP13 fw 
rev 

CTTAGAGGTGACTGGCAAAC 
TCAGAGGAGTTACATCGGAC 

55°C 

NKX3.1 fw 
rev 

CCGAGACGCTGGCAGAGACC 
GCTTAGGGGTTTGGGGAAG 

55°C 

p14ARF fw 
rev 

CCTGGAGGCGGCGAGAAC 
AGTAGCATCAGCACGAGGGC 

55°C 

p16INK4a fw 
rev 

CTTGCCTGGAAAGATACCG 
CCCTCCTCTTTCTTCCTCC 

55°C 

p21CIP1/WAF1 fw 
rev 

TCGACTTTGTCACCGAGACACCAC 
CAGGTCCACATGGTCTTCCTCTG 

55°C 

p27KIP1 fw 
rev 

GGCCTCAGAAGACGTCAAAC 
ACAGGATGTCCATTCCATGA 

55°C 

PSA fw 
rev 

GAGGCTGGGAGTGCGAGAAG 
TTGTTCCTGATGCAGTGGGC 

60°C 
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RPL13a fw 
rev 

GTATGCTGCCCCACAAAACC 
TGTAGGCTTCAGACGCACGAC 

60°C 

TERT fw 
rev 

CGGAAGAGTGTCTGGAGCAA 
GGATGAAGCGGAGTCTGGA 

60°C 

TIMP1 fw 
rev 

AAGGCTCTGAAAAGGGCTTC 
GAAAGATGGGAGTGGGAACA 

60°C 

TIMP2 fw 
rev 

CCAAGCAGGAGTTTCTCGAC 
GACCCATGGGATGAGTGTTT 

55°C 

TMPRSS2 fw 
rev 

CCTGCAAGGACATGGGCTATA 
CCGGCACTTGTGTTCAGTTTC 

60°C 

 

Table 2. Mouse primers used in this study for qRT-PCR analysis 

Gene Primer             Sequence 5' → 3' Annealing temperature 

Adh1 fw 
rev 

ACCCATCAATTTCCTGCCTGC 
TGCGACTTCTATGTCCTCGATG 

55°C 

Afp fw 
rev 

GGCGATGGGTGTTTAGAAAG 
TCTTTCCACTCCACTTTGGC 

55°C 

Fkbp5 fw 
rev 

CTCAAACCCAAACGAAGGAG 
CATCTTCACCAGGGCTTTGT 

60°C 

Gstp1 fw 
rev 

ACCATACACCATTGTCTACTTCCC 
GGTAAAGGGTGAGGTCTCCAT 

55°C 

Gus fw 
rev 

TGCCTGTCCCTTCTAGCTTC 
TGTTCCACCACATGAATCCCATTC 

60°C 

Hprt fw 
rev 

GGCCAGACTTTGTTGGATTT 
CAGATTCAACTTGCGCTCAT 

55°C 

Hsd3b6 fw 
rev 

GGACCAGCTGGGATACAGAA 
ACAGTGACCCTGGAGATGGT 

55°C 

Ing2a fw 
rev 

GGGAGCTGGACAACAAATAC 
GGCTATTGATTAACGCTCTCTGG 

60°C 

Kap fw 
rev 

AGACAGTCTCCTCCGGCTTT 
ATATCCTGAATGGCAGTCGC 

55°C 

Nkx3.1 fw 
rev 

AGGGAACACTCCAATTCTTCTCTGG 
GGCTCTCTCTAAACAGGGGAGCGG 

55°C 

p16Ink4a fw 
rev 

CCGCTGCAGACAGACTGG 
CCATCATCATCACCTGAATCG 

60°C 
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p19Arf fw 
rev 

TTCTTGGTGAAGTTCGTGCGATCC 
ACGTGAACGTTGCCCATCATCATC 

60°C 

p21Cip1/Waf1 fw 
rev 

GACCTGGGAGGGGACAAGAG 
TTCTCTTGCAGAAGACCAATC 

60°C 

p27Kip1 fw 
rev 

CTGCTCCATTTGACTGTCTGTGTGC 
CGTTTGACATCTTCCTCCTCGGG 

60°C 

Pbsn fw 
rev 

GGTCATCATCCTCCTGCTCA 
AGCTAAGTAAATTGTTTGCCAAGG 

55°C 

Rhox5 fw 
rev 

GGAGCAGGAACAAAATGAGC     
TGGACTCCAGTTCCCTCAGT 

55°C 

Rpl13a fw 
rev 

CTGAAGCCTACCAGAAAGTTTGC 
CGTCCTGTTTTCCGTAACCTCAAG    

60°C 

Sox9 fw 
rev 

GGTTTCAGATGCAGTGAGGAGC 
CACATACAGTCCAGGCAGACC 

60°C 

Tnf-α fw 
rev 

CGATGGGTTGTACCTTGTCTACTC 
CTCCTGGTATGAGATAGCAAATCGG 

55°C 

3.12 Western Blotting 

For preparation of total cell lysates, the cells after transfection, transduction or ligand 

treatment were washed with PBS, scraped in ice cold PBS and transferred to reaction 

tubes. To isolate the cells they were spun down (2500 rpm, 5 min, 4°C). The cell pellet 

was resuspended in its fivefold volume of NETN buffer (100 mM NaCl, 20 mM 

Tris/HCl pH 8.0, 1 mM EDTA, 0.5% NP‐40) supplemented with phosphatase inhibitors 

(5 mM NaF, 100 μM Na3VO4, 10 mM β‐Glycerophosphate). The cell lysis was taken 

place by incubating the cell suspension 10 min on ice and thereafter three cycles of 

freezing (in liquid nitrogen) and thawing (in 37°C water bath). The cell debris was 

precipitated by centrifugation (15000 rpm, 15 min, 4°C) and supernatant was collected 

in a fresh tube as whole cell extract used for Western blot. 

Protein extraction from mice organs was performed on the organic phase remaining 

after RNA isolation with TriFast according to the manufacture’s protocol. Protein pellet 

was dissolve in 1% SDS by incubating it at 50°C. Insoluble material was then removed 

by centrifugation (12000 rpm, 10 min, 4°C). The protein supernatant was transferred to 

a fresh tube for further analysis.  



Materials and Methods 
 

21 
 

40 μg of protein extracts were resolved on SDS‐PAGE and wet blotted onto a PVDF 

membrane (Roche, Mannheim, Germany). The transfer buffer for wet tank blot 

consisted of 250 mM Tris, 192 mM glycin, 0.1% SDS and 10-20% methanol. Blotted 

PVDF membrane were washed with TBS‐T buffer (50 mM Tris pH 7.5, 150 mM NaCl, 

0.1% Tween 20) and blocked with 10% non-fat milk (Biomol, Hamburg, Germany) for 

50 min at room temperature. The non-fat milk was solved in TBS-T buffer thereafter 

centrifuged (4500 rpm, 20 min) and supernatant was used for blocking. For detection of 

target protein, the membrane was incubated overnight at 4°C with primary antibody and 

afterwards with secondary antibody at room temperature for 30 min. The primary and 

secondary antibodies were summarized in Table 3. The light emission produced after 

incubation with enhanced chemiluminescence (ECL) reagent (GE Healthcare, 

Buckinghamshire, UK) was detected by ImageQuantTM LAS 4000 (GE Healthcare Bio-

Sciences AB, Uppsala, Sweden). LabImage 1D software (Kapelan Bio Imaging 

solutions, Leipzig, Germany) was applied for quantification of protein of interest 

relative to the loading control (α-Tubulin or β-Actin).  

 

Table 3. Description of the antibodies used for Western blot 

Target Source Company, Ref. no.  Dilution* Protein size in kDa  

Actin mouse Abcam, ab6276 1:10000 42 

AR mouse Biogenex, 256M  1:2000  110  

ING1 mouse Upstate, 05-720 1:2000 47, 33, 27, 24 

ING1b mouse BD Biosciences, 550455 1:2000 33 

ING2a rabbit Proteintech, 11560-1-AP 1:1000 33 

p16INK4a mouse Santa Cruz, sc-81613 1:500 16 

p21CIP1/WAF1 mouse Cell Signaling, 2946  1:2000 21 

p27KIP1 mouse Santa Cruz, sc-1641 1:2000 27 

PARP mouse Cell Signaling, 9546 1:2000  
Uncleaved:  116  
Cleaved:  89  

pRb rabbit Abcam, ab6075  1:500 105 

ppRb (Ser780) rabbit Cell Signaling, 9308  1:2000 110 

Tubulin  rabbit Abcam, ab15246  1:2000 50 

Rabbit IgG HRP§ Bovine Santa Cruz, sc‐2370  1:10000  

Mouse IgG HRP§ Goat Santa Cruz, sc‐2005  1:10000  

(*) All antibodies were diluted in TBS-T. 
(§) Secondary antibodies are conjugated to horseradish peroxidase (HRP). 



Materials and Methods 
 

22 
 

3.13 Database and statistical analyses 

For comparing ING1 mRNA expression level between normal and cancerous prostate, 

Oncomine platform (www.oncomine.com) (Rhodes et al. 2004) was analyzed. 

Likewise, the Human Protein Atlas (www.proteinatlas.org) (Uhlen et al. 2010) was used 

to assess the ING1 protein expression in PCa. Two-tailed unpaired Student’s t-test was 

performed for differential comparison between two groups using GraphPad Prism 

software. A value of p<0.05 was considered as statistically significant.  

 
 
 

http://www.oncomine.com/
http://www.proteinatlas.org/
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4 Results 

4.1 ING1 expression is differentially regulated in PCa 

Several studies have described that ING1 mRNA is mainly lost or decreased in human 

tumors (Walzak et al. 2008, Guerillon et al. 2013). To assess the expression of ING1 in 

PCa, Oncomine database was used to analyze the published microarray gene expression 

studies that have reported significant alteration of ING1 mRNA level. Of those, two 

studies have shown downregulation of ING1 mRNA in PCa compared to normal 

prostate gland (Figure 3A), however, 5 studies have indicated the opposite result 

(Figure 3B). It is of note that mean of fold change in downregulated studies is -1.68 

versus +1.15 of that in upregulated ones. This controversial observation has been also 

reported for another tumor suppressor (Wu et al. 2014).  

Since there was no report available on protein expression analysis of ING1 in PCa, the 

Human Protein Atlas portal was utilized for this purpose. Interestingly, ING1 protein 

failed to be detected in more than 30% of the PCa specimens compared to the low level 

of ING1 in normal prostate tissue (Figure 3C). Similar to the data obtained for ING1 

mRNA level, there were still less than 10% of the PCa samples that displayed mild 

upregulation of ING1 protein. This controversial finding may be due to inverse 

relationships among ING1 variants (Soliman et al. 2008, Coles et al. 2007, Zhu et al. 

2009). For that reason, the protein expression of major isoform ING1b was examined in 

several PCa cell lines using Western blotting. The cell lines compared were the 

androgen-dependent LNCaP and CRPCa cell lines C4-2, PC3 and PC3-AR. A 

decreased protein expression of ING1b was detected in CRPCa cells compared to 

androgen-dependent ones (Figure 3D). Taken together, these data suggest that ING1 

expression tends to be downregulated in PCa. 
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Figure 3. ING1 expression is regulated in PCa. Oncomine database analysis of ING1 mRNA 
expression was performed in 7 independent datasets represented by the name of first author. (A)  
The studies have shown downregulation of ING1 in PCa compared to normal prostate gland. (B) 
The reports have indicated upregulation of ING1 in PCa. For each box, the horizontal line 
represents the median, whereas the error bars (whiskers) represent the 90th and 10th percentile 
of log2 median-centered intensities. The upper and lower dots show maximum and minimum of 
the values, respectively. (C) The Human Atlas Protein database analysis of ING1 protein level 
in PCa specimens using two different antibodies. (D) Western blot analysis for ING1b in total 
cell lysates from the PCa cell lines. The protein expression of ING1b was normalized to the 
loading control β‐Actin using LabImage 1D quantification software. 
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4.2 ING1b colocalizes with human AR  

ING1b protein localizes in the nucleus (Garkavtsev et al. 1997) and it translocates 

predominantly into the nucleolus upon ectopic expression or stress conditions (Scott 

et al. 2001). However, the AR as a transcription factor requires ligand activation for its 

nuclear translocation where it occupies AREs on DNA (Tyagi et al. 2000). Based on the 

host group’s finding regarding the interaction between ING1b and human AR detected 

by immunoblotting and SELDI-MS (surface-enhanced laser desorption/ionization-mass 

spectrometry) (Diploma thesis Jennek 2009), the colocalization analysis was employed 

to further verify this interaction. To this end, full-length ING1b subcloned to pmCherry 

vector and the expression of the mCherry-tagged ING1b was analyzed at protein level 

(Figure 4A) and under fluorescent microscopy (Figure 4B). Subsequently, HeLa cells 

were transiently cotransfected by mCherry-ING1b and GFP-AR (wild type or mutant 

form T877A) and treated with solvent control or the synthetic androgen R1881. 

Fluorescent microscopy showed that ING1b localized in the nucleus, primarily in the 

nucleoli, (Figure 4C) and treatment of the cells with solvent control DMSO or androgen 

did not affect its localization (data not shown). As expected, AR is translocated mainly 

into the nucleus in the presence of androgen (Figure 4C). Quantitative colocalization 

analysis of the images from the cotransfected cells revealed that ING1b colocalizes with 

AR in the nucleus excluding nucleolus regions (Figure 4C, Table 4). Ligand-induced 

nuclear translocation is a crucial step for AR-mediated transcription. ING1b did not 

prevent AR from ligand-induced import into the nucleus (data not shown). Thus, these 

data indicate that ING1b colocalizes with wild type and mutant form (T877A) of the 

AR.   
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Figure 4. Intracellular colocalization of ING1b with AR. (A) Western blot analysis for the 
Phoenix-Eco cells transiently transfected with either empty vector (pmCherry) or pmCherry-
ING1b. The tagged protein (545 amino acids) was detected by ING1 specific antibody mainly 
around 60 kDa. The smaller fragments indicated by arrowheads might come from internalized 
transcription start sites or degradation. β‐Actin served as a loading control. (B) The fluorescence 
microscopy of the cells explained in A. Negative control is the Phoenix-Eco cells transfected 
with calf thymus DNA. (C) Images of the HeLa cells cotransfected by mCherry-tagged ING1b 
and GFP-tagged AR and then treated with R1881 (1 nM) for 2h.  

Table 4. Results of quantitative colocalization analysis between ING1b and AR based on 
the Costes’ randomization method. 

AR Manders’ coefficientsa R(obs)b R(rand)c (mean±SD) p-valued 

 M1 M2    
Wild type 1.000 0.918 0.694 0.033±0.001 1.000 

Mutant (T877A) 0.524 0.791 0.679 -0.002±0.001 1.000 

(a) Manders’ coefficients for channel 1 (green) and channel 2 (red) varying between 0 and +1, 
with 0 for no overlap and +1 for perfect overlap. 
(b) Pearson’s correlation coefficient for the two selected channels varying between -1 and +1, 
with -1 for total negative correlation, 0 for random correlation, and +1 for perfect correlation. 
(c) Pearson’s correlation coefficient for channel 1 against a number of randomized channel 2 
images. 
(d) Costes’ p-value of ≥0.95 indicates significant true colocalization. 
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4.3 ING1b inhibits growth in PCa cell lines 

Previous studies have demonstrated that ING1b, as a tumor suppressor, could inhibit 

growth in various cellular contexts (Goeman et al. 2005, Abad et al. 2011, Lv et al. 

2012, Thakur et al. 2012, Bose et al. 2013), however, this effect has not yet been studied 

on PCa cells. To investigate inhibitory effect of ING1b on growth of PCa cell lines, 

LNCaP (androgen-dependent) and PC3-AR (androgen-independent) cells were 

retrovirally transduced with either empty vector (pLPC) or expression vector for ING1b 

(pLPC-ING1b). ING1b overexpression was confirmed by Western blotting (Figure 5A) 

and also by upregulation of the ING1b target gene BCL2 (Figure 5B). Compared to the 

results seen with the empty vector, expression of ING1b reduced growth in both cell 

lines (Figure 5C, D). To further analyze whether interaction between ING1b and AR 

affect the agonist-mediated or antagonist-inhibited growth rate, different ligands were 

applied during different time points of growth assays. The data confirmed the inhibitory 

effect of ING1b on growth rate of the PCa cells in the presence of AR ligands, although 

no synergistic effect was seen between ING1b and AR ligands (Figure 6). 

It is of note that agonists R1881 and DHT result in completely different growth 

response in low and high concentrations (Mirochnik et al. 2012, Roediger et al. 2014). 

Moreover, the antagonist Casodex at 0.1 μM exhibited no inhibitory effect on growth 

behavior of LNCaP cells (data not shown), therefore higher concentration (1 μM) was 

applied. Similarly, since AA at 30 μM had no inhibitory effect on growth behavior of 

PC3-AR cells (Figure 6B), therefore R1881 at high concentration (1 nM) was applied 

for subsequent growth assays as an growth inhibiting ligand in PC3-AR cells 

(Mirochnik et al. 2012) (Figure 6C). The different growth response of PC3-AR cells to 

low concentration of R1881 (10pM) (Figure 6B, C) might be due to low rate of R1881 

inactivation and metabolization. These results show for the first time that ING1b 

suppresses growth of PCa cells.  



Results 
 

28 
 

 

 

Figure 5. Stable expression of the ING1b inhibits growth of PCa cell line. (A) Western blot 
analysis of the ING1b protein and (B) qRT-PCR analysis of ING1b target gene BCL2 in LNCaP 
and PC3-AR cells transduced with either empty vector or vector expressing ING1b. (C) Crystal 
violet staining of the cells survived after stable transduction and antibiotic selection. (D) 
Absorbance of the cell-associated crystal violet was then measured at 590 nm and the value 
obtained with the empty vector was set arbitrarily at 1. The mean±SEM values from at least two 
independent experiments are shown (* indicates p< 0.05). 
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Figure 6. Different time points of stable ING1b expression inhibit growth in PCa cells. 
Growth assays were performed for (A) LNCaP and (B) PC3-AR cells similar to figure 5C, D 
under everyday antibiotic selection in the presence of different ligands: solvent control DMSO, 
R1881 (L) (low concentration: 10 pM), R1881 (H) (high concentration: 1 nM), DHT (10 nM), 
Casodex (1 µM for LNCaP and 0.1 µM for PC3-AR), AA (30 µM) and the value obtained with 
the empty vector treated with DMSO was set arbitrarily at 1. (C) Growth assay for the stably 
transduced cells after being 1-2 weeks in culture after end of selection (long term ING1b 
overexpression) under various treatments: DMSO or R1881 (L) (low concentration: 10 pM) or 
AA (30 µM) for LNCaP and DMSO or R1881 (L) (low concentration: 10 pM) or R1881 (H) 
(high concentration: 1 nM) for PC3-AR. The amount of OD 590 nm at each time point is 
represented relative to that of cells at day 0. The mean±SEM values from at least two 
independent experiments are shown (* indicates p< 0.05). 
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4.4 Knockdown of ING1b results in distinct growth response in PCa 
cells 

Given the fact that the suppression of ING1b promotes neoplastic transformation 

(Garkavtsev et al. 1996) and ING1b-deficient mice develop B cell lymphoma (Coles et 

al. 2007), it was asked whether knockdown (KD) of ING1b promotes growth in PCa 

cell lines. Therefore, LNCaP and PC3-AR cells were retrovirally transduced with the 

vectors expressing short hairpin RNA against either firefly luciferase (sh-control) or 

ING1b (sh-ING1b). ING1b KD was confirmed by Western blotting (Figure 7A) and 

also by downregulation of the ING1b target gene BCL2 in LNCaP cells (Figure 7B). 

The absence of BCL2 downregulation in PC3-AR cells may be due to different response 

to ING1b deficiency in diverse cellular contexts. Interestingly, the results from growth 

assays of PC3-AR cells under different ligand treatment suggested that ING1b KD 

promotes growth in these cells, however, LNCaP cells show unexpectedly growth 

inhibition upon ING1b KD (Figure 7C, D). Applying the growth assays for the cells 

expressing ING1b KD for longer time (20 days) showed the similar inhibition effect for 

LNCaP cells, while in the PC3-AR cells the growth difference is prominent at high 

concentration of R1881 (1 nM) compared to control cells (Figure 7E). In sum, the 

results indicate that ING1b KD promotes growth of PC3-AR cells and inhibits growth 

in LNCaP cells.   
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Figure 7. Stable knockdown of ING1b has opposite effects in growth behavior of PCa cell 
lines. (A) Western blot analysis of the ING1b protein in LNCaP and PC3-AR cells transduced 
with vector expressing short hairpin RNA either against firefly luciferase (sh-control) or against 
ING1b (sh-ING1b) (B) qRT-PCR analysis of ING1b target gene BCL2 for the cells explained in 
(A). (C) & (D) Growth assays were performed similar to Figure 6A, B for the cells explained in 
(A). (E) Growth assays were applied for the cells described in (A) in similar condition to Figure 
6C. The mean±SEM values from at least two independent experiments are shown (* indicates 
p< 0.05).  
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4.5 ROS production and apoptosis are not responsible for ING1b- 
induced growth arrest in PCa cells 

Recent study has shown that ING1b induces apoptosis through direct effects at the 

mitochondria (Bose et al. 2013) which are an important source of ROS within most 

mammalian cells (Adam-Vizi and Chinopoulos 2006). AR activation can also increase 

ROS in LNCaP and PC3-AR cells (Mehraein-Ghomi et al. 2008, Mirochnik et al. 2012). 

To investigate whether ING1b and AR interaction can synergize ROS production and 

mediate growth arrest, ROS production was analyzed in the PCa cell lines stably 

expressing ING1b along with ligand treatment. The data showed no increase in ROS 

level of ING1b expressing cells compared with the cells expressing empty vector, 

whereas the ROS accumulation upon agonist and antagonist was evident (Figure 8A). 

Moreover, to ask whether the different growth responses to ING1b KD in LNCaP and 

PC3-AR cells is due to difference in ROS induction, ROS levels were measured for 

ING1b KD cells under treatment with various ligands. The results from both cell lines 

did not exhibit any change of ROS levels in ING1 KD cells as compared to control ones 

(data not shown).  

Likewise, the production of the cleaved PARP as a marker of apoptosis was ruled out in 

the cells stably expressing ING1b or sh-ING1b (Figure 8B). Moreover the microscopic 

observation of the explained cells during cultivation did not show any morphologically 

apoptotic cells (data not shown). Taken together, the data suggest that ROS production 

and apoptosis are not induced upon ectopic expression or knockdown of ING1b in PCa 

cells.   
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Figure 8. ROS and apoptosis are not induced by ING1b in PCa cells. (A) The stably 
transduced cells were treated 72h with the indicated ligands: DMSO, R1881 (1 nM) or Casodex 
(1 µM for LNCaP and 0.1 µM for PC3-AR). Subsequently, ROS levels were detected by DCF 
assay and the values obtained were normalized to protein concentrations. Values are shown as 
mean±SEM from at least two independent experiments. (B) Western blot analysis of PARP 
cleavage in response to the stable expression of ING1b or sh-ING1b in PCa cells. C+ is the 
corresponding PCa cell line treated with doxorubicin (1 μM) for induction of apoptosis as a 
positive control. α-Tubulin was used as a loading control in Western blotting.   

4.6 ING1b induces cellular senescence in PCa cells      

Besides induction of apoptosis, ING1b has been shown to induce cellular senescence in 

different primary cells (Goeman et al. 2005, Abad et al. 2011, Li et al. 2011). To test 

whether ING1b can play a same role in senescence status of PCa cells, the SA-β-Gal 

staining was applied for the stably transduced cells. The data could show the induction 

of cellular senescence in ING1b expressing cells compared to the control ones (Figure 

9A, B). ING1b mRNA is upregulated in the senescent HPECs (Schwartze et al. 2002) 

and AR can also drive cellular senescence upon different ligand treatments (Mirochnik 

et al. 2012, Roediger et al. 2014, Hessenkemper et al. 2014). To further examine the 

functional consequence of AR-ING1b interaction in cellular senescence and to know 

whether ING1b is a mediator of AR-induced senescence, SA-β-Gal assay was 
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performed for the mentioned cells along with different ligand treatments. The data 

suggested that ING1b does not synergize with AR in fold induction of cellular 

senescence in the presence of different ligands (Figure 9C). Similarly, ING1b KD did 

not affect the ligand-stimulated cellular senescence in LNCaP cells (Figure 10A), 

however it impaired the agonist-induced cellular senescence in PC3-AR cells (Figure 

10B).  

Moreover, it has been reported that N-acetyl cysteine (NAC), ROS scavenger, can 

reduce androgen-mediated cellular senescence in PC3-AR cells (Mirochnik et al. 2012). 

To determine whether NAC can also play a same role in inhibiting androgen- or ING1b-

induced senescence in LNCaP cells, the SA-β-Gal staining was performed for the stably 

transduced cells. As a result, NAC could attenuate the androgen-mediated cellular 

senescence but not ING1b-mediated senescence in response to androgen (Figure 11) 

which implies alternative means of senescence induction for ING1b. Thus, the data 

indicate that ING1b induces cellular senescence in PCa cells and it is the mediator of 

AR-driven senescence in response to androgens in PC3-AR cells.     
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Figure 9. ING1b drives cellular senescence in PCa cells. (A) LNCaP and PC3-AR cells were 
transduced by indicated vectors and selected by puromycin for 15 days. Then they were stained 
2 days for SA-β-Gal and visualized under brightfield microscope (100x magnification). (B) 
Percentage of the SA-β-Gal positive cells by counting minimum 400 cells per cell type 
(* indicates p< 0.05). (C) Stably transduced cells were seeded on the 6-well plates. Next day, 
they were treated with either solvent control DMSO or R1881 (L) (low concentration: 10 pM) 
or R1881 (H) (high concentration: 1 nM) or DHT (10  nM) or Casodex (0.1 µM for PC3-AR 
and 1 µM for LNCaP) or AA (30 µM). Three days after treatment SA-β-Gal staining was 
performed. After 2 days, the blue/green colored cells were visualized and counted. All 
experiments were repeated at least two times. Error bars indicate SEM.  
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Figure 10. ING1b KD exhibits distinct effect in androgen-induced cellular senescence for 
LNCaP and PC3-AR cells. (A) & (C) The representative micrographs from stably transduced 
LNCaP or PC3-AR cells treated with DMSO or R1881 (1 nM) or AA (30 µM) for 3 days and 
stained for SA-β-Gal. (B) & (D) The cells explained in (A or C) counted and the results plotted 
as percentage of the SA-β-Gal positive cells. The experiments were performed three times in 
duplicate form. Error bars indicate SEM (* indicates p< 0.05). 
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Figure 11. NAC cannot reduce the androgen-induced cellular senescence in LNCaP-
ING1b cells. Stably transduced LNCaP cells were seeded on the 6-well plates. Next day, they 
were treated with either DMSO or R1881 (1 nM) in the presence or absence of NAC (1 mM). 
Three days after treatment SA-β-Gal staining was performed. After 2 days, the blue/green 
colored cells were visualized and counted. Error bars indicate SEM (* indicates p< 0.05). 

 

4.7 AR antagonists upregulate ING1b expression in LNCaP cells 

Previous studies have suggested that the AR agonist R1881 and AR antagonist AA can 

induce cellular senescence in LNCaP cells (Roediger et al. 2014, Hessenkemper et al. 

2014). To elucidate whether ING1b expression can be influenced by AR ligands, which 

could be one underlying mechanism of AR ligand-induced cellular senescence, ING1b 

protein and mRNA expression levels were investigated. Interestingly, transcriptional 

and translational expression of ING1b could be upregulated by AR antagonists Casodex 

and AA in LNCaP cells (Figure 12). However, this effect was not observed for PC3-AR 

cells (see Figure 29B in section 4.18). Thus, the data suggest that AR antagonists 

upregulate ING1b expression in LNCaP cells.  
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Figure 12. AR antagonists induce ING1b expression in LNCaP cells. (A) Western blot result 
of ING1b for the stably transduced LNCaP cells with the indicated vectors after 3 days 
treatment with DMSO, R1881 (1 nM) or Casodex (1 µM). The protein expression of ING1b 
was normalized to the loading control α‐Tubulin using LabImage 1D quantification software. 
(B) qRT-PCR analysis of ING1b for the cells explained in (A) after two days treatment with 
indicated ligands: DMSO, R1881 (1 nM), DHT (10 nM), Casodex (1 μM) or AA (30 μM) in the 
depleted condition. The normalized expression level of DMSO for empty vector or sh-control 
cells were set arbitrarily at 1. The experiments were repeated twice. Error bars indicate SEM 
(* indicates p< 0.05).  

4.8 ING1b reduces cell migration and regulates migration-related 
genes in PCa cells 

One of the complications in advanced prostate cancer is occurrence of metastasis which 

remains a significant cause of morbidity and mortality (Smith et al. 1999, Nandana and 

Chung 2014). ING1b as a type II tumor suppressor should have a potential of 

suppressing angiogenesis and cell invasion (Guerillon et al. 2013) and the reports have 

shown that the reduced ING1b level is associated with metastasis in breast and gastric 

cancers (Guo et al. 2011, Thakur et al. 2014). Moreover, ING1b overexpression could 
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inhibit migration and invasion of the breast cancer cell line MDA-MB231 cells, block 

the development of metastasis and improve survival in vivo (Thakur et al. 2014). 

To evaluate the ability of ING1b to regulate migratory behavior of PCa cell line, scratch 

assays were conducted by using stably transduced cells under different ligand 

treatments. To exclude confounding effect of cellular senescence on migration, the 

ligands were applied at concentrations which do not induce cellular senescence. 

Consistent with the published data in non-PCa cells (Thakur et al. 2014), stable ING1b 

overexpression inhibited the ability of PCa cells to migrate and heal the wounds created 

in the cell monolayers. This inhibitory effect was not disturbed in the presence of the 

agonist or antagonist (Figure 13). However, ING1b KD resulted in distinct cell 

migration response in LNCaP and PC3-AR cell lines so that it promoted or decreased 

the cell motility in PC3-AR and LNCaP cells, respectively (Figure 14).  

To identify the mechanism behind the ING1b regulatory effect on the migration 

behavior of the PCa cells, the migration- and invasion-related genes were analyzed by 

qRT-PCR (Lichtinghagen et al. 2003). ING1b overexpression could upregulate mRNA 

level of both migration-inducing genes (MMP9 and MMP13) and migration-inhibiting 

genes (TIMP1 and TIMP2) in LNCaP cells (Figure 15A), while only TIMP1 was 

upregulated by ING1b overexpression in PC3-AR cells (Figure 15A). ING1 KD did not 

significantly affect the mRNA level of the genes tested (Figure 15B). These results 

suggest that ING1b overexpression inhibits PCa cell migration and this inhibitory effect 

is mostly independent of AR ligands. Also the data indicate that ING1b regulates 

mRNA expression of the genes which are involved in migration and invasion. 
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Figure 13. ING1b reduces cell migration in PCa cells. (A) Scratch assays of the stably 
transduced LNCaP cells under different ligand treatment: DMSO, R1881 (10 pM) or Casodex 
(0.1 μM). The same scratched regions were captured under the brightfield microscope at 
indicated time points. (B) Quatification of the scratch assay by TScratch software for the 
indicated time points in LNCaP cells. (C) The similar experiments as (A) for PC3-AR cells. (D) 
Quatification of the scratch assays for PC3-AR cells. The experiments were repeated twice. 
Error bars indicate SEM (* represents p< 0.05). 

B

0

20

40

60

80

100

DMSO R1881 Cas DMSO R1881 Cas

48h 96h

G
ap

 c
lo

su
re

(%
)

empty vector
ING1b

* *

*
* *

DMSO                R1881                Cas DMSO     R1881                 Cas
empty ING1bVector:

Time 0h

Time 24h

Ligand:

PC3-AR
C

G
ap

 c
lo

su
re

(%
)

0

20

40

60

DMSO R1881 Cas

empty vector
ING1b

*
*

D



Results 
 

41 
 

 

 

 

 

 

 

 

LNCaP
A

DMSO                R1881                 Cas DMSO                  R1881                 Cas

sh-control sh-ING1bVector:

Time 0h

Time 48h

Ligand:

Time 96h

B

0

20

40

60

80

100

DMSO R1881 Cas DMSO R1881 Cas

48h 96h

G
ap

 c
lo

su
re

(%
)

sh-control
sh-ING1b

*

*

PC3-AR

DMSO                 R1881              Cas                 DMSO              R1881                 Cas

sh-control sh-ING1bVector:

Time 0h

Time 24h

Ligand:

C



Results 
 

42 
 

 

Figure 14. ING1b KD results in distinct cell migration response in LNCaP and PC3-AR 
cells. Scratch assays after stable knockdown of ING1b in LNCaP (A, B) and in PC3-AR (C, D) 
cells. The experimental setting was similar to that described in Figure 13.  

 

Figure 15. ING1b regulates migration-related genes. qRT-PCR analysis of the indicated 
migration- and invasion-related genes after overexpression (A) or knockdown (B) of ING1b in 
LNCaP and PC3-AR cells. The experiments were repeated twice. Error bars show SEM 
(* represents p< 0.05). 
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4.9 ING1b upregulates p16 and stabilizes p27 in LNCaP cells 

CDK inhibitors control fidelity of cell division in cell cycle checkpoints and the reduced 

expression of these proteins is associated with many types of cancer (Malumbres and 

Barbacid 2009). Reportedly, the functional link between ING1b and CDK inhibitors has 

been established (Garkavtsev et al. 1998, Kataoka et al. 2003, Gonzalez et al. 2006, Li 

et al. 2011). To understand the molecular mechanism by which ING1b induces growth 

arrest and cellular senescence in PCa cells, the expression of cell cycle inhibitors 

p14ARF, p16INK4a, p21CIP1/WAF1 and p27KIP1 were examined.  

qRT-PCR and Western blot results suggested that ING1b regulates the CDK inhibitors 

in different manner in LNCaP and PC3-AR cells. p16 mRNA expression was 

upregulated in LNCaP-ING1b and unexpectedly, in LNCaP-ING1b KD cells, while no 

change for p14 mRNA level was detected in these LNCaP cells (Figure 16A). Since AR 

ligands have been shown to induce p16 (Roediger et al. 2014, Hessenkemper et al. 

2014), the effect of ING1b on p16 expression under various ligands was analyzed. The 

results indicated that ING1b has an additive effect along with AR antagonist Casodex 

on p16 mRNA induction (Figure 16B, C). ING1b stabilized also p27 protein level in 

LNCaP-ING1b cells (Figure 16D, E). Although the p21 was not obviously influenced in 

LNCaP cells (Figure 16F, G), its regulation was identified in PC3-AR cells (Figure 

17A). ING1b overexpression induced p21 upon agonist treatment and surprisingly 

ING1b KD could also upregulate this protein in PC3-AR cells (Figure 17A). However, 

p14 and p27 were not regulated in this cell line (Figure 17B, C) which is also known to 

express no detectable p16 due to hypermethylation of the promoter region (Itoh et al. 

1997, Jarrard et al. 1997). Although p16/pRB axis is one of the well-known pathways 

for cellular senescence induction (Larsson 2011), pRb or its phosphorylation were not 

found to be regulated in the cells examined (data not shown). Briefly, these data suggest 

that ING1b upregulates different CDK inhibitors dependent on the cell type and also 

provide molecular evidence of how ING1b induces cellular senescence and growth 

arrest in PCa cells. The results further indicate that ING1b KD is also able to increases 

p16 and p21 expression in LNCaP and PC3-AR cells, respectively.   
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Figure 16. ING1b upregulates p16 and stabilizes p27 in LNCaP cell line. (A) qRT-PCR 
analysis of LNCaP cells transduced with the indicated vectors. 10 days after antibiotic selection 
of the transduced cells, RNA was isolated and qRT-PCR analysis was performed using target 
and housekeeping genes specific primers. (B) Western blot result of p16 for the cells explained 
in (A) after 3 days treatment with DMSO, R1881 (1 nM) or Casodex (1 µM). (C) qRT-PCR 
result of p16 for the cells explained in (A) after 2 days starvation and subsequent 2 days 
treatment with the ligands mentioned in (B) in the depleted condition. (D) Western blot analysis 
of ING1b and p27 for the cells in similar condition to (B). (E) qRT-PCR result of p27 in similar 
condition described in (C). (F) Western blot and (G) qRT-PCR analysis of p21 like (B) and (C), 
respectively. The normalized protein expression levels have been shown. The experiments were 
repeated two times. Error bars show SEM (* indicates p< 0.05). 
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Figure 17. ING1b regulates p21 in PC3-AR cells. (A) Western blot results of p21 in PC3-AR 
cells stably transduced with the indicated vectors and treated with DMSO, R1881 (1 nM) or 
Casodex (0.1 µM). (B) Western blot result of p27 for the cells described in (A). (C) qRT-PCR 
analysis was performed using target and housekeeping genes specific primers. The normalized 
protein expression levels have been displayed. The experiments were repeated two times. Error 
bars show SEM.  
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4.10 ING1b represses AR responsive promoters in LNCaP cells 

Based on the obtained data in the host group, overexpression of ING1b can repress the 

transactivation of exogenous human AR (wild type and mutant form) in CV1 (green 

monkey kidney cell line) and NIH 3T3 (mouse embryonic fibroblast cell line) cells 

(Diploma theses Jennek 2009, Klitzsch 2011, Ludwig 2012). To determine whether 

ING1b can inhibit the transactivation of endogenous AR in PCa cells, the stable cell 

lines LNCaP-ING1b and LNCaP-ING1b KD cells were transiently transfected by 

MMTV-luc and Probasin-luc androgen responsive reporter plasmids. The LNCaP-

ING1b cells exhibited diminished AR-mediated promoter activity of both reporters 

(Figure 18A, B). However, the LNCaP-ING1b KD cells showed surprisingly opposite 

effect between two reporters (Figure 18A, B). It is of note that MMTV promoter 

sequence contains several general binding elements for nuclear hormone receptors 

including AR, GR and PR (Miyamoto et al. 2003) whereas Probain-luc promoter 

sequence is specific for AR (Snoek et al. 1996). These results support the ING1b role in 

regulating AR transactivation in LNCaP cells.   
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Figure 18. ING1b inhibits AR-mediated transactivation in LNCaP cells. Reporter gene 
assays were performed for the stable cells LNCaP-ING1b, LNCaP-ING1b KD and their 
corresponding control cells. The cells were seeded out in 10% CSS medium and transiently 
transfected with 2 µg reporter construct (A) MMTV-luc or (B) Probasin-luc, and pCMV‐lacZ 
(0.2 μg) which is expression vector for β‐galactosidase and was used as an internal control for 
normalization. 6h later, the cells were treated with DMSO or low (L) or high (H) concentration 
of R1881 (0.1 or 1 nM, respectively) for 3 days in 10% CSS medium. Cells were then lysed and 
the measured luciferase values were normalized to β-galactosidase activity. The normalized 
luciferase values are shown as fold induction after setting the DMSO values arbitrarily at 1. The 
experiments were repeated at least twice. Error bars represent SEM (* shows p< 0.05). 

4.11 ING1b represses endogenous AR target genes in LNCaP cells 

In light of the above results regarding ING1b inhibition of AR transactivation, it was 

asked whether ING1b represses endogenous target genes of AR. For that purpose, 

LNCaP cells were stably transduced with ING1b or empty vector control and then 

examined for the mRNA level of AR target genes PSA, TMPRSS2 and NKX3.1.  

qRT-PCR analysis showed that the stable overexpression of ING1b decreases the 

transcription of positively regulated AR target genes in response to androgens (Figure 

19A, B, C). This repression starts early for PSA, but later for TMPRSS2 and NKX3.1. 

The similar result was obtained for another AR target gene FKBP5 under 48h treatment 

(data not shown). Taken together, the data suggest that ING1b functions as a repressor 

in regulating the expression of positively regulated AR target genes in LNCaP cells.   
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Figure 19. ING1b suppresses endogenous AR target genes in LNCaP cells. After 10 days 
antibiotic selection of the transduced cells with the indicated vectors, they were starved 2 days 
in 10% CSS medium, then the cells were treated with the solvent control DMSO or synthetic 
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agonist R1881 (1 nM) or natural agonist DHT (10 nM) for various treatment times in the 
depleted condition. Thereafter RNA was isolated and qRT-PCR analysis was performed using 
specific primers for AR target genes (A) PSA, (B) TMPRSS2 or (C) NKX3.1. The normalized 
mRNA levels are shown as fold levels after setting the DMSO values arbitrarily at 1. The 
experiments were repeated at least two times. Error bars represent SEM (* indicates p< 0.05). 

4.12 ING1b represses neither AR responsive promoters nor 
endogenous AR target genes in PC3-AR cells 

To determine whether this inhibitory effect of ING1b on the AR-mediated 

transactivation and gene expression can be reproduced in another AR expressing cell 

line, the similar experiments using reporter gene assays and qRT-PCR were applied to 

PC3-AR cells. However, in PC3-AR cells ING1b could increase the androgen-induced 

AR activity of MMTV-luc promoter in contrary to the repressive effect seen in LNCaP 

cells (Figure 20A). Probasin-luc reporter did not exhibit any change in ING1b 

expressing PC3-AR cells (Figure 20B).  

In addition, the ING1b KD cells exhibited opposite effects between two reporters in this 

cell line (Figure 20A, B). Analyzing endogenous genes PSA, TMPRSS2 and FKBP5 

verified that ING1b overexpression could not inhibit the positively regulated AR target 

genes (Figure 20C). Thus, the results indicate that ING1b does not reduce AR-mediated 

transactivation or gene expression of positively regulated endogenous genes in PC3-AR 

cells.    
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Figure 20. ING1b does not inhibit AR transactivation in PC3-AR cells. Reporter gene assay 
results of (A) MMTV-luc and (B) Probasin-luc for PC3-AR cells in a similar condition 
described in Figure 18. (C) qRT-PCR results for PC3-AR cells which were treated 48h with 
DMSO or DHT (10 nM) in a similar condition explained in Figure 19. The experiments were 
repeated twice. Error bars indicate SEM (* shows p< 0.05).      

4.13 ING1b prevents AR-mediated transcriptional repression of 
endogenous genes 

AR as a ligand-controlled transcription factor regulates gene expression by recruiting 

wide variety of coactivators, corepressors, chromatin remodeling proteins and also other 

transcription factors at DNA binding sites. Therefore, AR can not only activate but also 

represses its target genes (Grosse et al. 2012). To identify whether ING1b as a 

chromatin remodeling factor can regulate AR repressive activity, the mRNA expression 

levels of α-fetoprotein (AFP) and catalytic subunit of human telomerase reverse 

transcriptase (TERT) were examined. It has been demonstrated that there is a link 
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between hepatocellular carcinoma marker AFP and AR activity (Ao et al. 2012, Wu et 

al. 2010). AFP was also found as a repressed target gene for AR in our experiments. 

ING1b can also repress AFP expression (Kataoka et al. 2003). 

The qRT-PCR data indicated that overexpression of ING1b could repress the basal level 

of AFP mRNA in both PCa cell lines, and AR repressed AFP upon androgen treatment 

(Figure 21). Interestingly, ING1b prevented androgen-mediated transcriptional 

repression of AFP (Figure 21). To validate this inhibitory effect of ING1b on the AR- 

repressed genes, TERT mRNA level was analyzed. Although preferentially wild type 

AR can repress TERT in response to androgens (Moehren et al. 2008), in our 

experimental setting for 48h androgen treatment the repression of TERT was also 

detected in LNCaP cells which express mutant AR (T877A). Similarly, ING1b could 

inhibit androgen-mediated repression of TERT (Figure 21). As seen, ING1b had no 

effect on basal level of TERT expression. Taken together, these results suggest that 

ING1b functions as an inhibitor of AR transrepressive function in PCa cells. 

 

 

      

Figure 21. ING1b inhibits AR-mediated gene repression. qRT-PCR results of AFP and 
TERT for LNCaP and PC3-AR cells which were transduced and treated 48h with DMSO, 
R1881 (1 nM) or DHT (10 nM) in a similar condition explained in Figure 19. The experiments 
were repeated twice. Error bars represent SEM (* shows p< 0.05). 
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4.14 Knockdown of ING1b counteracts the expression of endogenous 
AR target genes  

Based on the results achieved for LNCaP cells, ING1b could reverse AR transcription 

function and it is expected that ING1b KD cells show the opposite effect. However, the 

growth, scratch and SA-β-Gal assays displayed no reversed action upon ING1b 

depletion in LNCaP cells. To test whether ING1b KD increases the AR-mediated gene 

expression, qRT-PCR analysis of the endogenous AR target genes were conducted.  

Unexpectedly, agonist-stimulated gene expression was repressed upon knockdown of 

ING1b in both LNCaP and PC3-AR cells (Figure 22). In LNCaP cells this repressive 

effect was validated for several AR target genes at different treatment times, however, 

each gene reacted at different time points more prominently to this repression (Figure 

22A-C). PC3-AR cells showed the similar reduction in expression of AR target genes 

(Figure 22D), although ING1b overexpression had no effect in these cells. Moreover, 

ING1b KD could reduce PSA transcription upon applying increasing concentration of 

R1881 in LNCaP cells (Figure 22E).  

To obtain additional evidence for the distinct effect of ING1b KD on the AR target gene 

expression, the negatively regulated genes, AFP and TERT mRNA level were analyzed. 

As expected, the ING1b KD upregulated basal level of AFP mRNA in both cell lines 

(Figure 23). Of interest, the data suggested that the ING1b KD could counteract the AR 

transrepressive effect on its target genes in LNCaP and PC3-AR cells (Figure 23). Thus, 

these results indicate that ING1b KD inhibits AR-mediated transcriptional activation 

and repression.  
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Figure 22. ING1b KD reduces androgen-induced gene expression in PCa cell lines. The 
stably-transduced cells with sh-control or sh-ING1b were selected 10 days against antibiotic. 
Then, they were starved 2 days in 10% CSS medium and treated with DMSO, R1881 (1 nM) or 
DHT (10 nM) for various treatment times in the depleted condition. Subsequently qRT-PCR 
analysis was performed on the extracted RNA from LNCaP cells using specific primers for AR 
target gene (A) PSA, (B) TMPRSS2 or (C) NKX3.1. The similar experimental setting was 
applied to (D) PC3-AR and (E) LNCaP cells which were treated 48h with the indicated 
agonists: DHT (10 nM) or R1881 (as shown). Normalized mRNA levels are shown as fold 
levels after setting the DMSO values arbitrarily at 1. The experiments were repeated three 
times. Error bars indicate SEM (* shows p< 0.05).  
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Figure 23. ING1b KD inhibits AR-mediated transcriptional represssion of endogenous 
genes. qRT-PCR results of AFP and TERT for LNCaP and PC3-AR cells which were 
transduced and treated 48h with DMSO, R1881 (1 nM) or DHT (10 nM) in a similar condition 
explained in Figure 22. 

4.15 ING1b regulates differentially AR expression     

Literatures have reported that AR-mediated transcription can be regulated with or 

without influencing AR protein level (Axlund et al. 2010, Varisli et al. 2011, Lu et al. 

2013, Li et al. 2014). To test whether the AR expression levels was also regulated by 

ING1b, qRT-PCR and Western blot analyses of AR mRNA and protein levels were 

performed in stably ING1b or ING1b KD expressing LNCaP or PC3-AR cells and 

compared with those of the corresponding control cells. The data suggested that ING1b 

leads to degradation of AR protein in LNCaP cells, since mRNA level of AR was not 

regulated (Figure 24A, B). This degradation was more prominent in the presence of AR 

agonist R1881 or AR antagonist Casodex indicating that this effect is independent of 

ligand type. However, ING1b KD did not affect neither protein nor mRNA level of AR 

(Figure 24A, B). Contrary to LNCaP cells, ING1b upregulated AR in the presence of 

DMSO or R1881 in PC3-AR cells (Figure 24C). qRT-PCR of AR mRNA level in this 

cell line was partially in concordance with protein level (Figure 24D). However, the 

difference between protein and mRNA levels of AR in the presence of antagonist 

Casodex is evident. The mRNA level of AR was reduced by Casodex but there was no 

such a reduction in its protein level suggesting a role for Casodex in regulating the 

stability of AR protein.   
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To identify whether ING1b degradation of AR in LNCaP cells is mediated through the 

ubiquitin proteasome pathway, LNCaP-ING1b cells were administered with proteasome 

inhibitor MG132 for 24h along with the ligands. The Western blot results proposed that 

AR degradation by ING1b is independent of proteasomal machinery (Figure 25A). The 

upregulation of ING1b and p27 in MG132-treated cells validated its action in inhibiting 

proteasomal degradation. Furthermore, MG132 treatment caused the accumulation of 

~90 kDa truncated AR (Figure 25A) which is produced by a serine protease and 

degraded by proteasome system (Harada et al. 2012). Since there was no difference 

between control and ING1b cells in producing p90-AR (Figure 25A), the possibility of 

protease-mediated degradation of AR by ING1b is also unlikely.  

It is also reported that MG132 inhibits AR degradation in time- and concentration- 

dependent manners (Tanner et al. 2004). For this reason, the similar experiment was 

conducted by applying 6h MG132 treatment. The obtained data confirmed that ING1b 

leads to degradation of AR independent of proteasome system (Figure 25B).  

To test a potential synergistic effect of ING1b KD and MG132 treatment on AR 

stability, the similar experiment was performed with the LNCaP-ING1 KD and control 

cells. Only slight upregulation of AR protein level was observed in ING1 KD cells upon 

R1881 treatment with MG132 (Figure 25C). As seen from the latest Western blot 

results (Figure 25B, 6h untreated with MG132), ING1b had no measurable degradation 

effect on AR in this short time period. This case might be due to rapid AR replacement 

via de novo translation. To test this assumption and to find out how fast this degradation 

occurs, the treatment of the cells with cycloheximide for inhibiting protein synthesis 

was performed. The data suggested that the degradation of AR by ING1b starts as early 

as 6h (Figure 25D). Taken together, the data suggest that ING1b leads to degradation of 

AR in LNCaP cells in a proteasome- or protease-independent manner. These data also 

show that ING1b upregulates the AR expression in PC3-AR cells.  
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Figure 24. ING1b regulates differentially AR expression in LNCaP and PC3-AR cells. (A) 
Western blot analysis of AR in LNCaP cells stably transduced with the indicated vectors along 
with treatment with DMSO, R1881 (1 nM) or Casodex (1 µM) for 3 days. The expression AR 
protein was normalized to β‐Actin. (B) qRT-PCR analysis of AR for the cells explained in (A). 
(C) & (D) The similar experiments (except Casodex 0.1 µM) were applied to PC3-AR cells as 
explained in (A) and (B), respectively. The normalized protein expression levels have been 
shown. The experiments were repeated twice. Error bars represent SEM (* shows p< 0.05). 
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Figure 25. AR degradation by ING1b is independent of the proteasomal machinery in 
LNCaP cells. (A) Western blot analyses of AR, ING1b and p27 proteins in whole cell lysates 
from stably transduced LNCaP cells with empty vector or vector expressing ING1b after 24h 
treatment with DMSO, R1881 (1 nM) or Casodex (1 µM). The proteasome inhibitor MG132 
(10 µM) was applied together with the ligands. (B) Western blot analysis for the cells explained 
in (A) after 6h treatment with the same concentration of ligands and MG132. (C) The same 
experimental setting described in (B) for the LNCaP cells stably transduced with vectors 
expressing either sh-control or sh-ING1b. (D) Western blot analysis for the cells explained in 
(A) under 6h treatment of translation inhibitor cycloheximide (10 µg/ml) together with the 
ligands. Protein from the cells untreated with cycloheximide was extracted at time zero before 
starting treatment. In all experiments AR protein expression was normalized to the loading 
controls (α-Tubulin or β‐Actin) expression using LabImage 1D quantification software. The 
experiments were repeated twice. 
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4.16 ING1 KD does not affect the expression of other ING1 isoforms 

Contrary to our expectation, ING1b KD could inhibit the positively- and negatively-

regulated AR target genes in a similar trend as observed with ING1b overexpression 

(see section 4.14). AR degradation by ING1b might be a possible underlying molecular 

mechanism by which ING1b reduces the AR transcriptional activity. However, AR 

expression levels were not affected by ING1b KD (see previous section). Therefore, one 

hypothesis could be that knocking down of ING1b leads to enhanced expression of a 

putative protein, which is responsible for suppressing AR target genes in knockdown 

cells.  

To examine this hypothesis, inhibition of the protein synthesis could serve the clue. 

Intriguingly, cycloheximide reduced the ING1b KD repressive effect on TMPRSS2 

mRNA level in response to androgens (Figure 26). 

Since ING1 isoforms are differentially expressed during cellular senescence (Soliman 

et al. 2008) and the ING1b-deficient mouse has displayed upregulation of ING1a and/or 

ING1c isoforms (Coles et al. 2007), it was asked whether ING1b deficiency in PCa 

cells is compensated by upregulation of other ING1 variants. Nevertheless, the results 

of Western blot analysis did not show any upregulation of other ING1 isoforms in 

LNCaP-ING1b KD cells (Figure 27) based on the protein quantification (data not 

displayed). Similar results were attained for PC3-AR cells in which ING1b was 

knockdowned (data not shown). These data suggest that a putative protein other than 

ING1 isoforms might be responsible for suppressing AR target genes in ING1b KD 

cells.  
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Figure 26. Cycloheximide reduces the ING1b KD effect on TMPRSS2 mRNA level. qRT-
PCR results of TMPRSS2 for the LNCaP cells stably transduced with sh-control or sh-ING1b 
and treated 24h with DMSO, R1881 (1 nM) or DHT (10 nM) in the absence or presence of  
Cycloheximide (10 µg/ml). The normalized mRNA levels are shown as fold levels after setting 
the DMSO values arbitrarily at 1. Error bars represent SEM (* shows p< 0.05). 

 

 

Figure 27. ING1b KD does not influence the expression of the other ING1 isoforms in 
LNCaP cells. Western blot analysis of ING1 protein levels in the stably transduced cells with 
either sh-control or sh-ING1b and treated 72h with DMSO or R1881 (1 nM) or Casodex 
(1 µM). α-Tubulin served as a loading control. The experiment was repeated twice.   
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4.17 In vivo mouse model rules out involvement of other ING1 
isoforms in repressing AR target genes   

To validate our previous finding in vivo, Ing1 KO mouse could be a good candidate to 

analyze the role of ING1 in AR-mediated gene expression since all ING1 isoforms are 

absent (Kichina et al. 2006). This mouse strain is characterized by reduced size, 

hypersensitivity to radiation and elevated incidence of lymphomas. However, there are 

no other obvious morphological, physiological or behavioral abnormalities in Ing1 KO 

mouse, indicating that Ing1 function is dispensable for the viability of mice under 

normal physiological conditions (Kichina et al. 2006).  

qRT-PCR results of AR target genes in primary mouse embryonic fibroblasts (MEFs), 

which were generated from male Ing1 KO mice, suggest that Ing1 KO MEFs has less 

potential to induce the AR target genes in response to androgens (Figure 28A). In line 

with this, AR target genes Pbsn and Fkbp5 (Rennie et al. 1993, Magee et al. 2006) 

exhibit reduced expression in male Ing1 KO mice (Figure 28B). qRT-PCR analysis of 

various organ-specific AR target genes (Felder et al. 1988, Lund et al. 1988, Melia et al. 

1998, Ikeda et al. 2002, Xu et al. 2007, Zhou et al. 2010) in Ing1 KO mice suggest that 

ING1 regulatory function on AR target gene expression is prominent in prostate with 

seminal vesicles (Figure 28B).  

Taken together, these in vivo data corroborate results from the PCa cells and consistent 

with findings that ING1 deficiency downregulates AR target genes. The data further 

confirm that a protein other than ING1 isoforms might be responsible for inhibiting AR 

transcriptional activity in ING1b KD PCa cells and in prostate with seminal vesicles of 

Ing1 KO mice.   
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Figure 28. The mRNA expression of AR target genes is affected in Ing1 KO mice. (A) 
MEFs from wild type and Ing1 KO male mice were cultured in 10% CSS medium and treated 
48h with DMSO or R1881 (0.1 nM) in the depleted condition. Thereafter RNA was isolated and 
qRT-PCR analysis was conducted using specific primers for mouse AR target genes Tnf-α, 
Nkx3.1 and Sox9. Error bars represent SEM. (B) Different organs were taken from wild type and 
Ing1 KO male mice (n=3 mice per group, 6 months old). RNA was extracted from these organs 
and the expression of organ-specific AR target genes was analyzed by qRT-PCR. Rpl13a and 
Hprt were used as housekeeping genes for normalization. The normalized mRNA levels are 
shown as fold levels after setting the wild type values arbitrarily at 1. Error bars indicate SEM 
from 3 mice per group (* indicates p< 0.05).  
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4.18 ING1b regulates the stability of ING2a protein 

Since there are structural and functional overlaps among ING family members (Coles 

and Jones 2009, Jafarnejad and Li 2012), it was reasoned to analyze the expression of 

other ING family members in ING1 KD cells to find compensatory feedback loop. For 

this purpose, ING2 was selected as the closest ING family member to ING1. Human 

ING2 has 2 known isoforms, however, only ING2a isoform with a molecular weight of 

33 kDa has been experimentally detected at protein level. The amino acid sequence of 

human ING2a displays more than 70% homology with ING1b and it shares many of the 

functional characteristics of ING1b (Guerillon et al. 2013). For analyzing ING2 protein 

and mRNA expression levels, Western blot and qRT-PCR were performed in stably 

ING1b or ING1b KD expressing LNCaP or PC3-AR cells and compared with those of 

the corresponding control cells. Interestingly, ING1b overexpression downregulated 

strongly ING2a protein level and in line with this ING1b KD upregulates ING2a in both 

LNCaP and PC3-AR cells (Figure 29A, B). Analysis of ING2a mRNA level suggested 

that this regulation occurred mainly at protein level (Figure 29C). Contrary to PC3-AR 

cells, the upregulation of ING2a in the LNCaP cells was observed in a ligand-dependent 

manner (Figure 29A, B). 

It is of note that this inverse correlation between ING1b and ING2a protein expressions 

was detected in different PCa cell lines (Figure 3D, Figure 29D). Accordingly, elevated 

mRNA level of ING2a in PC3 cells compared to LNCaP cells has been reported (Unoki 

et al. 2008).  

To validate this result in vivo, ING2a protein expression was investigated in prostate 

with seminal vesicles of Ing1 KO mice as these organs showed the downregulation of 

AR target genes. The results displayed the upregulation of ING2a protein level in 

Ing1 KO mice (Figure 29E, F), although this result should be repeated with more mice 

per group to enhance its statistical significance. The upper band in ING2a Western blot 

might be a phosphorylated from of this protein since applying phosphatase to the 

protein extracts from ING2a-overexpressed LNCaP cells removed this band in another 

experimental setting (Master thesis Pungsrinont, 2015). In sum, ING1b negatively 

regulates ING2a protein level suggesting a novel crosstalk between ING1 and ING2.  
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Figure 29. ING1b regulates ING2a protein level in human PCa cells and mouse prostate 
with seminal vesicles. Western blot analyses of the ING1b and ING2a proteins for (A) LNCaP 
and (B) PC3-AR cells that are explained in Figure 24. ING2a protein level was normalized to  
α-Tubulin. The experiments were repeated twice. (C) qRT-PCR analysis of ING2a for the 
LNCaP cells described in (A). (D) Western blotting for ING2a in total cell lysates from the PCa 
cell lines. The protein expression of ING2a was normalized to the loading control α-Tubulin. 
(E) Western blot analysis of the ING2a protein in prostate and seminal vesicles of wild type and 
Ing1 KO mice (n=3). The normalized ING2a protein values from three mice per group are 
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shown as means±SEM. LNCaP cells transduced with either ING2a expressing vector or empty 
vector were loaded as positive controls at left side. (F) qRT-PCR of Ing2a in prostate and 
seminal vesicles of wild type and Ing1 KO mice. The normalized mRNA values obtained for 
wild type mice were set arbitrarily at 1. Error bars represent SEM. 

4.19 ING2a represses the AR transactivation and upregulates p16 

To confirm whether the upregulation of ING2a is responsible for reduced AR target 

gene expression in ING1 KD cells, the role of ING2a was investigated in PCa cell lines. 

To this end, PC3-AR cells were transiently cotransfected with either empty vector or 

vector expressing ING2a along with AR responsive promoter constructs MMTV-luc or 

PSA-luc. Of interest, ectopic expression of ING2a could attenuate AR transactivation of 

both reporters in response to androgen (Figure 30A, B). To determine whether ING2a 

can also inhibit the endogenous AR target genes, LNCaP cells were stably transduced 

with ING2a or empty vector and then the mRNA expression of PSA, TEMPRSS2 and 

NKX3.1 was studied. qRT-PCR results provided more evidence that ING2a could 

repress the androgen-induced expression of endogenous AR regulated genes (Figure 

30C).  

It has been previously reported that ING2a is able to induce p21 independent of p53 

status (Larrieu et al. 2010), and this is consistent with the results obtained upon 

ING1b KD in PC3-AR cells where the concomitant upregulation of ING2a and p21 was 

observed in p53 null context (Figure 17A, Figure 29B). However, it seems the p21 

induction by ING2a is dependent on the cellular context since LNCaP-ING1 KD cells 

showed no detectable change for p21 expression, but for p16 (Figure 16). Therefore, it 

was reasoned that ING2a can induce p16 in LNCaP cells. Expectedly, qRT-PCR result 

of p16 in LNCaP-ING2a cells confirmed this hypothesis (Figure 30D). However, 

mRNA level of CDK inhibitors p16, p19, p21 and p27 were not found to be 

differentially regulated in prostate and seminal vesicles of Ing1 KO mice (data not 

shown). Thus, the data indicate that ING2a represses AR-mediated transactivation in 

PCa cells and induces the expression of various CDK inhibitors dependent on the 

cellular context. 
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Figure 30. ING2a represses AR-mediated transactivation and upregulates p16.  Reporter 
gene assays were performed for PC3-AR cells. The cells were seeded out in 10% CSS medium 
and transiently cotransfected with 1µg of either empty vector or vector expressing ING2a along 
with 1µg reporter construct (A) MMTV-luc or (B) PSA-luc, and pCMV‐lacZ (0.2 μg) which is 
expression vector for β‐galactosidase and was used as an internal control for normalization. 16h 
later, the cells were treated with solvent control DMSO or R1881 (1 nM) for 3 days in 10% CSS 
medium. The normalized luciferase values are shown as fold induction after setting the DMSO 
values arbitrarily at 1. (C) qRT-PCR analysis with the experimental conditions similar to Figure 
19 except the vectors which were empty or ING2a expressing ones. (D) p16 mRNA level was 
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detected by qRT-PCR for the LNCaP cells described in (C) without any ligand treatment. The 
experiments were repeated twice. Error bars show SEM (* represent p< 0.05). 

 

Taken all results together, the ectopic expression of ING1b inhibits growth of PCa cells 

by induction of cellular senescence through upregulation of different CDK inhibitors in 

both androgen-dependent LNCaP and CRPCa PC3-AR cells. ING1b can also reduce 

cell migration in both cell lines by regulating the expression of migration-related genes. 

Moreover, ING1b overexpression represses AR transactivation on key target genes in 

LNCaP cells, however, this repressive effect is absent in PC3-AR cells. This differential 

repressive effect might be due to cell specific degradation of AR by ING1b in LNCaP 

cells. However, ING1b can function as an inhibitor of AR transrepressive function in 

both PCa cells suggesting a mechanism other than AR degradation for control of the 

negatively regulated AR target genes. 

Unexpectedly, knocking down of ING1b in LNCaP and PC3-AR cells result in distinct 

responses on growth, migration and cellular senescence between two cell lines. 

ING1b KD impairs the agonist-induced cellular senescence in PC3-AR cells only. 

Interestingly, ING1b KD inhibits AR-mediated transcriptional activation and repression 

on key target genes in both PCa cells in a similar manner to ING1b overexpression in 

LNCaP cells, which is in accordance with the in vivo results from Ing1 KO mice. 

Analyzing potential mechanisms suggests that these unexpected findings might be due 

to a compensatory mechanism through upregulation of ING2a protein. The data indicate 

that ING2a can also inhibit key target genes of AR similar to ING1b. This 

compensatory mechanism suggests a novel crosstalk among ING family members in 

regulating various AR functions. Thus, the obtained findings provide evidence for 

functional interaction of ING1b with AR.    

  

 

   

 

 

 

  



Discussion 
 

71 
 

5 Discussion 

PCa is the second most common cause of cancer mortality of men in western countries. 

The risk of developing PCa increases with age (Siegel et al. 2013). With nowadays 

aging society it is inevitable PCa to be investigated further to develop more effective 

therapeutic approaches especially for the cases with CRPCa. Since AR signaling is still 

active in CRPCa, its inhibition seems to be beneficial for patients (Bluemn and Nelson 

2012). ING1 is an epigenetic regulator of different cellular processes including 

proliferation and cellular senescence (Tallen and Riabowohl 2014). Given the 

interaction between AR and ING1b, the aims of the study were to analyze whether 

ING1b is the mediator of the AR-induced cellular senescence and also to get benefit of 

cellular senescence in inhibition of PCa cell growth by using ING1b.  

5.1 ING1 and PCa 

Consistent with proposed tumor suppressor role for ING1, it was found to be frequently 

downregulated in several cancers (Walzak et al. 2008, Guerillon et al. 2013). However, 

little is known about the role of ING1 in PCa. For this purpose, ING1 mRNA expression 

was compared between normal and cancerous prostate from published microarray gene 

expression studies using Oncomine tool. Controversially, the results show both 

downregulation and upregulation of ING1 mRNA level in PCa tissues compared to the 

normal prostate. Therefore, the protein expression of ING1 was analyzed using Human 

Protein Atlas portal. Interestingly, the data indicate that the protein level of ING1 is lost 

in more than 30% of the PCa specimens.  

Moreover, the protein expression of major isoform ING1b is decreased in CRPCa cells 

C4-2 and PC3 compared to androgen-dependent LNCaP cells. Interestingly, Src, which 

has been shown to decrease ING1b stability (Yu et al. 2013), is upregulated in C4-2 and 

PC3 cells compared to LNCaP cell line (Asim et al. 2008). These findings suggest that 

Src may play a role in regulating ING1b levels during PCa progression. These results 

along with upregulation of ING1b in the senescent HPECs (Schwarze et al. 2002) 

support more likely the notion that ING1b has a negative impact on the development 

and progression of PCa.  
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5.2 ING1b regulates growth, cellular senescence and migration 

The presenting data have shown for the first time that the ectopic expression of ING1b 

can inhibit growth of the androgen-dependent LNCaP and CRPCa PC3-AR cells similar 

to previous reports in other cancer cell lines (Shinoura et al. 1999, Tsang et al. 2003, Lv 

et al. 2012, Thakur et al. 2012, Bose et al. 2013). At first glance it seems ING1b inhibits 

growth in a p53-independent manner as PC3-AR cell line is p53 null (Rubin et al. 1991, 

Carroll et al. 1993). This finding is comparable to the previous studies which have 

shown that ING1b inhibits growth of non-PCa cells, independently of p53 (Coles and 

Jones 2009, Guerillon et al. 2013). However, the fold of growth reduction for PC3-AR 

cells is less than that for LNCaP cells suggesting that certain factors needed for the 

ING1b full functionality are absent in PC3-AR cells. Apart from p53 null status, 

PC3-AR cell line is also known to express no detectable p16 due to hypermethylation of 

the promoter region (Itoh et al. 1997, Jarrard et al. 1997). Reportedly, ING1b stabilizes 

p53 protein (Leung et al. 2002), represses the transcription of the certain genes 

dependent on p53 (Kataoka et al. 2003) and induces growth arrest via upregulation of 

p16 (Li et al. 2011). Therefore, one can suggest that ING1b fails to exert its complete 

function through p53 and/or p16 in PC3-AR cells. Since ING1b can still repress the 

growth of PC3-AR cells, it indicates that ING1b uses alternative pathways for inhibiting 

growth in PC3-AR cells. This growth inhibitory effect of ING1b is ligand-independent 

because no synergistic effect was seen between ING1b and AR ligands suggesting that 

ING1b inhibits growth independent of its interaction with AR. 

The data demonstrate that ING1b induces cellular senescence in LNCaP and PC3-AR 

cells. On the other hand, ROS production and the apoptosis marker, cleaved-PARP, 

could not be found to be upregulated upon ING1b overexpression. It means that the 

induction of cellular senescence is a possible pathway by which ING1b reduces growth 

in PCa cells, similar to the findings reported in primary cells (Goeman et al. 2005, Abad 

et al. 2007, Abad et al. 2011, Li et al. 2011). However, it is contrary to the studies 

indicating that apoptosis is responsible for ING1b-induced growth inhibition in different 

non-PCa cancer cells (Shinoura et al. 1999, Tsang et al. 2003, Lv et al. 2012, Thakur et 

al. 2012, Bose et al. 2013). The upregulation of the ING1b target gene BCL-2 excludes   

the possibility of apoptosis induction by ING1b in PCa cells due to the well-known 

anti-apoptotic function of BCL-2. Furthermore, ING1b-deficient MEFs have displayed 

induced Bax expression and DNA damage-induced apoptosis indicating that ING1b can 
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negatively regulate apoptosis (Coles et al. 2007). More studies are needed to clarify how 

ING1b affects various cancer cells dependent on their genetic context.  

Liganded AR has been also shown to induce cellular senescence (Mirochnik et al. 2012, 

Roediger et al. 2014, Hessenkemper et al. 2014). Since ING1b does not synergize with 

AR for fold induction of cellular senescence in the presence of agonists, it seems that 

ING1b and AR induce the cellular senescence through the same pathway or the level of 

senescence reaches to a plateau. However, inhibiting ROS-induced senescence by NAC 

in LNCaP cells could attenuate the androgen-mediated cellular senescence but not 

ING1b-mediated senescence in response to androgen meaning that ING1b utilizes 

alternative pathway to induce the cellular senescence. Therefore, reaching to a plateau 

level of cellular senescence in the presence of agonists is more likely. 

Although a logical expectation might be to see increased growth rate upon ING1b KD, 

this has been not observed for LNCaP cells. Actually, LNCaP-ING1b KD cells show 

unexpectedly growth inhibition, however, ING1b KD promotes growth in PC3-AR cells 

as expected. This growth promotion is more prominent with the high concentration of 

agonist. Interestingly, ING1b KD does not affect the ligand-stimulated cellular 

senescence in LNCaP cells, however it impairs the agonist-induced cellular senescence 

in PC3-AR cells. This can explain in part the growth response differences and emphasis 

that ING1b is the mediator of AR-induced senescence in response to agonist in PC3-AR 

cells. The growth inhibition in LNCaP-ING1 KD cells may not be attributed to 

downregulation of BCL-2 and induction of apoptosis because the apoptosis maker, 

cleaved-PARP, was not detected in these cells.  

Consistent with the reported role for ING1b in inhibiting cell migration and invasion in 

breast cancer cells (Thakur et al. 2014), ING1b can also inhibit the migration of PCa 

cell lines. This effect is independent of AR ligands. Nevertheless, ING1b KD has been 

found to result in distinct responses in LNCaP and PC3-AR cells. In line with  

ING1b KD or KO studies (Garkavtsev et al. 1996, Coles et al. 2007, Guo et al. 2011, 

Thakur et al. 2014), ING1b deficient PC3-AR cells migrate more quickly than the 

control cells. Contrary to the expectation, LNCaP cells migrate slower after ING1b KD, 

although AR ligands abrogate this effect suggesting a functional interaction of AR with 

ING1b in controlling PCa cell migration.  
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5.3 ING1b controls gene expression 

ING1b is believed to exert cellular functions primarily by altering gene expression 

through epigenetic mechanisms, specifically by binding to and targeting the protein 

complexes to the H3K4Me3 mark (Tallen and Riabowohl 2014).  

5.3.1 ING1b regulates CDK inhibitors 

The results demonstrate that ING1b targets specific genes in different genetic context. 

ING1b upregulates p16 transcription in LNCaP cells as reported previously in other cell 

type (Li et al. 2011). Also the data have shown for the first time that ING1b stabilizes 

p27 posttranscriptionally. The specificity of the ING1b in gene regulation of cell cycle 

factors comes from this fact that expression of p14 and p21 has not been influenced by 

ING1b in LNCaP cells. However, in the PC3-AR cells p21 protein is a target for ING1b 

that is also upregulated in response to AR agonist while no regulation for p14 mRNA 

and p27 protein has been found (Figure 31).  

Thus, it seems that ING1b induces growth arrest and cellular senescence via 

upregulation of CDK inhibitors in PCa cells, although more experiments are needed to 

identify the underlying reasons for basal level of growth repression and senescence 

induction in PC3-AR cells. Furthermore, in LNCaP cells ING1b and AR cooperate 

around additively to upregulate p16 mRNA expression only in the presence of the AR 

antagonist. This cooperation has been found for p27 protein there only in the presence 

of AR agonist. Since the ING1b is still able to induce higher percentage of senescent 

cells in LNCaP cell line in the presence of antagonists but not agonists as compared 

with empty vector, p16 probably is more involved than p27 to induce senescence. The 

simultaneous induction of ROS, p16 and cellular senescence has been found in LNCaP 

cells similar to the previous reports in which p16 expression is induced by ROS (Kim 

and Wong 2009, Larsson 2011). Therefore, it is expected by inhibiting ROS and 

subsequent impairment of p16-induced cellular senescence, the level of agonist-

mediated cellular senescence reduces. And this is the case observed after treating the 

LNCaP cells by ROS scavenger, NAC. However, stabilization of p27 upon agonist 

treatment could keep induced level of senescence compared to solvent control.  

The p27-mediated senescence is probably the alternative pathway through which 

ING1b-overexpressed cells keep their senescence in the presence of agonist even they 

treated with NAC. The CDK inhibitor p27 is induced by external growth inhibitory 
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signals like transforming growth factor (TGF)-β and inhibits cyclin E/CDK2 leading to 

growth arrest via induction and maintenance of cellular senescence (Larsson 2011). 

Furthermore, the role of p27 in DHT-mediated growth arrest in LNCaP cells (Tsihlias et 

al. 2000) and AKT-induced senescence in the murine prostatic intraepithelial neoplasia 

have been reported (Majumder et al. 2008). ING2, a close family member to ING1, 

mediates TGF-β cellular responses in epithelial cells (Sarker et al. 2008). Therefore, the 

detailed studies are required for establishing functional link among ING1, p27 and 

TGF-β to better understand mechanisms responsible for ING1b-mediated cellular 

senescence in PCa cells. 

5.3.2 ING1b regulates migration-related genes 

Contrary to expectation, ING1b upregulates the mRNA level of MMP9 and MMP13 in 

LNCaP cells, which are responsible for promoting migration. However, it could also 

upregulate their inhibitors TIMP1 and TIMP2 there. Since the migration behavior of the 

LNCaP cells has been reduced by ING1b, it seems the effect of MMP inhibitors more 

potent or other migration-related genes are regulated by ING1b in LNCaP cells. A 

relatively higher association has been described for reduced TIMPs mRNA expression 

with malignant prostatic tissues (Lichtinghagen et al. 2003) indicating an important role 

for TIMPs. In PC3-AR cells only TIMP1 mRNA level has been upregulated by ING1b 

while no change for MMP9, MMP13 and TIMP2 has been detected fitting to the 

diminished migration of the cells upon ING1b overexpression.  

Interestingly, ING1b KD has no statistically significant effect on the migration-related 

genes, although an increase in MMP9, MMP13 and TIMP2 and decrease in TIMP1 

mRNA levels were indeed noted in response to ING1 KD in PC3-AR cells, which is 

partially in agreement with their higher migration rate. Analyzing protein level of the 

mentioned genes and measuring MMPs enzymatic activity would be helpful for better 

interpretation of the results. 

5.3.3 ING1b controls gene expression of the AR target genes 

The results demonstrate that ING1b represses positively regulated AR target genes PSA, 

NKX3.1, TMPRSS2 and FKBP5 in response to androgens in LNCaP cells, however, this 

repressive effect is absent in PC3-AR cells. The data indeed indicate that one level at 

which ING1b affects AR signaling is through the regulation of AR stability. ING1b 
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leads to the degradation of AR only in LNCaP cells in which the diminished AR 

transcriptional activity was detected. Conversely, ING1b increases AR expression in 

PC3-AR cells and the consequent expectation would be a higher AR transcriptional 

activity. As mentioned, however, no increased AR signaling has been detected in this 

cell line. Although p53 negatively regulates the mRNA and protein expression of AR in 

prostate epithelial and cancer cells (Alimirah et al. 2007) and ING1b can stabilize p53 

(Leung et al. 2002, Thalappilly et al. 2011), ING1b does not downregulate AR mRNA 

level in LNCaP cells.  

The obtained data from LNCaP cells show that the degradation of AR is independent of 

the proteasome and protease systems. Interestingly, LNCaP-ING1b KD cells do not 

show upregulation of AR protein level. More studies are required for finding the 

proteins or mechanism for explaining reduced AR protein level in LNCaP cells and its 

upregulated expression in PC3-AR cells upon ectopic expression of ING1b.  

Ligand-induced nuclear translocation is a crucial step for AR-mediated transcription. 

The translocation studies exclude the possibility that ING1b represses AR activity by 

inhibiting its nuclear shuttling. 

The differential repressive effect of ING1b on AR transactivation between LNCaP and 

PC3-AR cells can be also explained by the fact that PC3-AR cells are p53 null (Rubin et 

al. 1991, Carroll et al. 1993) and inhibition of p53 leads to diminished AR signaling 

(Cronauer et al. 2004, Guseva et al. 2012). p53 KD studies in LNCaP cells will unravel 

this point. Moreover, the different genetic context between LNCaP and PC3-AR leads 

to the expression of various sets of corepressor/coactivators in these cells and it can be 

also considered for this difference.   

However, ING1b prevents AR-mediated transcriptional repression of the endogenous 

genes AFP and TERT in both cell lines suggesting a mechanism other than AR 

degradation for control of the negatively regulated AR target genes. The repression of 

AFP expression by ING1b in both PCa cell lines indicates that ING1b represses AFP 

independent of p53 which is consistent with the report of Kataoka et al. (2003) in  

non-PCa cells. Similarly, AR downregulates the AFP and TERT expression in both cell 

lines suggesting a p53-independent regulation, although one can conclude a partial 

dependence on p53 for AFP due to a stronger repression in LNCaP cells. Therefore, 

ING1b can prevent AR transrepressive role as well in PC3-AR.  
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5.4 Crosstalk between ING1b and ING2a 

As ING1b downregulates the AR-mediated transcription in response to androgens, one 

would predict that the inhibition of endogenous ING1b should upregulate the AR 

transactivation in PCa cells. Unexpectedly, agonist-stimulated gene expression was 

repressed upon knockdown of ING1b in both LNCaP and PC3-AR cells. This result, 

which was validated for several AR target genes in different time point of agonist 

treatment, is especially interesting in PC3-AR cells in which ectopic expression of 

ING1b did not regulate AR transcriptional activity. In addition, ING1b KD counteracts 

AR-mediated transcriptional repression of endogenous genes AFP and TERT in both 

cells. Consistently, LNCaP-ING1 KD cells grow slower than control cells and migrate 

less in the absence of AR ligands. In addition, cellular senescence marker, SA-β-Gal, 

has not been reduced and indeed increased slightly in absence or presence of antagonist 

AA upon ING1b depletion in LNCaP cells. Also, the data demonstrate the upregulation 

of CDK inhibitors p16 upon knockdown of ING1b, in similar tendency observed for 

ING1b overexpression in LNCaP cells. Since AR expression is not regulated in 

ING1KD cells compared to control ones, it should not be responsible for 

downregulation of AR target genes in ING1 KD context. To find a possible underlying 

mechanism, the inhibition of protein synthesis has reduced the ING1b KD repressive 

effect on the AR target gene TMPRSS2 mRNA level suggesting that a putative protein 

is responsible for suppressing AR target genes in ING1b KD cells. While ING1 

isoforms are differentially expressed during cellular senescence (Soliman et al. 2008) 

and ING1b-deficient mice have displayed upregulation of ING1a and/or ING1c 

isoforms (Coles et al. 2007), the obtained results however show no upregulation of other 

ING1 isoforms in ING1b KD cells. Moreover, Ing1 KO MEFs exhibit a reduced AR 

target gene expression in response to androgens. In line with this, the prostate-specific 

AR target genes Pbsn and Fkbp5 have been revealed to be downregulated in Ing1 KO 

mice confirming that ING1 isoforms are not the candidate protein. 

Intriguingly, ectopic expression of ING1b downregulates strongly ING2a protein level 

and accordingly ING1b KD upregulates ING2a in LNCaP and PC3-AR cells. This 

inverse correlation between ING1b and ING2a protein expressions could be also 

detected in C4-2 and PC3 cell lines. Moreover, ING2a upregulation in prostate and 

seminal vesicles of Ing1 KO mice verifies the results in vivo. ING2a, like ING1b, is a 

tumor suppressor with gatekeeper and caretaker functions. It displays high amino acid 
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sequence homology with ING1b. Both ING1b and ING2a are stable components of the 

SIN3A/HDAC1-2/SAP30 complex and thus both regulate gene transcription. Since 

ING1b and ING2a do not coprecipitate together, they are exclusive components of the 

SIN3A/HDAC1-2/SAP30 complex (Guerillon et al. 2013). Apart from reduced size and 

higher incidence of lymphomas, Ing1 KO mice exhibit no other obvious morphological, 

physiological or behavioral abnormalities, indicating that Ing1 function is dispensable 

for the viability under normal physiological conditions (Kichina et al. 2006) and Ing2 

might play a compensatory role in Ing1 depleted condition. Analyzing young (6-week-

old) Ing1 KO mice has revealed no abnormalities with fertility and prostate phenotype 

(Kichina et al. 2006). Since the obtained results exhibit a reduced expression of 

prostate-specific AR target genes at 6-month-old Ing1 KO mice, the fertility and 

prostate phenotype need to be rechecked in detail with older Ing1 KO mice. Ing2 KO 

mice are characterized by defective spermatogenesis in males and higher incidence of 

soft tissue sarcomas (Saito et al. 2010). Interestingly, the major tumor type observed in 

Ing2 KO mice was histiocytic sarcoma which showed increased incidence preferentially 

in males for currently unknown reasons. Moreover, Ing2 KO mice have displayed a 

decrease in acinar dilation in prostate indicating a role for Ing2 in the prostate.           

Ectopic expression of ING2a not only could attenuate AR transactivation in response to 

androgen in PC3-AR cells but also could repress the androgen-induced expression of 

endogenous AR regulated genes in LNCaP cells. This effect may be the underlying 

molecular mechanism explaining the repression of the AR target genes in ING1 KD 

cells. Also, analysis of the publicly available dataset (GSE18610 at 

http://www.ncbi.nlm.nih.gov/geo/) from Ing2 KO mice (2-3 months old) (Saito et al. 

2010) has shown the significantly increased expression of testis-specific AR target 

genes Rhox5 and Sox9 in testes of Ing2 KO mice compared to wild type ones. 

Although ING1b cannot inhibit AR target genes in PC3-AR cells, it is not the case for 

ING2a suggesting different mechanism for ING2a in repressing AR target genes. In 

addition, ING2a induces p16 mRNA level in LNCaP cells which explain the enhanced 

level of p16 in LNCaP-ING1 KD cells with elevated ING2 expression. This finding 

along with the proved role of ING2a in inducing cellular senescence (Pedeux et al. 

2005), might be the molecular reason why there is no reduction of SA-β-Gal activity in 

LNCaP-ING1b KD cells. This compensatory mechanism suggests a novel crosstalk 

between ING1b and ING2a (Figure 31). 
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Figure 31. Model of ING1b-mediated cellular senescence in crosstalk with AR and ING2a. 
LNCaP cells: Agonist-bound AR induces p16 and p27 and ectopic expression of ING1b can 
increase p16 and p27 levels as well. Elevated level of p16 and p27 inhibits CDKs and triggers 
cellular senescence. Upon knockdown of ING1b, ING2a is stabilized and induces p16 restoring 
the cellular senescence in the absence of ING1b. AR antagonists increase the expression of 
ING1b, however, compensatory role of ING2a might be responsible for restored level of 
cellular senescence in ING1b KD cells. PC3-AR cells: AR or ING1b induces p21 upon agonist 
treatment and causes senescence. AR-induced senescence in response to androgens is impaired 
in ING1b KD cells indicating that ING1b is the mediator by which AR induces senescence upon 
agonist treatment. Although knockdown of ING1b stabilizes ING2a and subsequently 
upregulates p21, it is not enough to completely restore the cellular senescence suggesting that 
ING2a and its partner p21 require ING1b to actively induce senescence in PC3-AR cells in 
response to agonist. The novel links are shown in red.               

It has been previously reported that ING2a is able to induce p21 expression independent 

of the p53 status (Larrieu et al. 2010). This is consistent with the results obtained upon 

ING1b KD in PC3-AR cells in which the concomitant upregulation of ING2a and p21 

were observed in p53 null context. Knocking down of ING1b in PC3-AR cells impairs, 

but not completely abolishes, the agonist-induced cellular senescence in PC3-AR cells 

suggesting that ING2a and its partner p21 require ING1b to actively induce senescence 

in PC3-AR cells in response to androgens. Likewise, ING1b-deficient MEFs display a 

defective senescence-like phenotype in response to an activated Ras oncogene, even 

though they express elevated level of p19ARF and p21CIP1/WAF1 (Abad et al. 2007). 

Double knockdown of p21 and ING1b in PC3-AR cells will elucidate this point. 

Furthermore, one can assume that AR-driven senescence in response to androgens is 

mediated by different CDK inhibitors dependent on the cellular context. 
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6 Conclusions and perspectives 

Recently the relevance of cellular senescence as a physiological barrier against tumor 

initiation and progression is well established and various senescence-inducing 

compounds were applied for PCa therapy (Nardella et al. 2011, Ewald and Jarrard 

2012). However, cancer cell-specific targeted therapy is an important point to reduce 

the toxicity that is associated with traditional therapies (Nardella et al. 2011). Since AR 

signaling is still active in CRPCa, specific targeting the AR by ING1b can be one 

possible way to inhibit the AR signaling and induce cellular senescence in PCa cells. 

Moreover, understanding molecular mechanism of ING1b-mediated cellular senescence 

in PCa cells helps to design better therapeutic strategies.  

The recent studies have revealed that overexpression of ING1b prevents growth and 

invasion of the breast cancer cells, block the metastasis and improve survival in vivo 

(Thakur et al. 2012, Thakur et al. 2014). The obtained data could show for the first time 

that ING1b can inhibit growth and migration of both androgen-dependent and 

castration-resistant PCa cells. This inhibitory effect is due to repressing the expression 

of AR target genes and upregulating cellular senescence-inducing factors such as 

p16INK4a and p27KIP1 in LNCaP cells suggesting that ING1b represses AR signaling. 

Considering this newly identified link between ING1b and p27KIP1, analyzing the role of 

p27KIP1 in ING1b-induced cellular senescence is of interest. Moreover, the degradation 

of the AR by ING1b could be observed in LNCaP cells, which indicates a possible 

underlying mechanism to repress AR signaling. Although the growth inhibitory function 

of ING1b in PC3-AR cells remains to be more analyzed, CDK inhibitor p21CIP1/WAF1 

plays a key role in AR- and ING1b-induced cellular senescence in response to 

androgens in this cell line. Interestingly, the ING1b KD studies could demonstrate that 

ING1b is the mediator through which AR induces cellular senescence in response to 

androgens in PC3-AR cells. Analyzing ING1b KD cells along with Ing1 KO mice 

suggests a dual role for ING1b in crosstalk with the other ING family member ING2a 

that is also involved in cellular senescence. Therefore, it is necessary to study the role of 

ING2 in prostate cancer. Indeed, the recent evidence broadened the definition of ING 

family proteins as epigenetic regulators due to their dual roles in differentially control of 

cell growth in different biological contexts (Schaefer et al. 2013, Tallen and Riabowohl 

2014). Based on the altered AR specific gene expression in prostate with seminal 

vesicles of Ing1 KO mice and reduction of prostatic acinar dilation in Ing2 KO mice, 
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more investigation on the cellular senescence markers in prostate of old Ing1 KO and 

Ing2 KO mice would be interesting. Besides, generating an inducible double KO mouse 

for Ing1 and Ing2 specifically in prostate will provide a model for studying their 

crosstalk in prostate.  

AR antagonists can upregulate ING1b expression in LNCaP cells suggesting that 

ING1b might be responsible for antagonist-induced cellular senescence. Due to 

compensatory effect of ING2a, double knockdown of ING1b and ING2a will clarify 

this point. 

Taken together, the findings obtained provide evidence for functional interaction of 

ING1b with AR in crosstalk with ING2, and suggest ING1 as a novel potential target to 

inhibit AR signaling. Analysis of the chromatin modifications on the AR regulated 

genes in the presence and absence of ING1 and/or ING2 will further confirm these 

functional interactions. Moreover, to get deep insight into genomic action and to detect 

which genes are commonly regulated by AR and ING1 or ING2, it is necessary to 

perform ING1 or ING2 chromatin immunoprecipitation-sequencing (ChIP-seq) for the 

human PCa cells treated with AR ligands and then compare the results with the 

published AR ChIP-seq data. RNA-seq experiments with ING1 KD, ING2 KD and 

double ING1/ING2 KD human PCa cells will elucidate that how ING1 and/or ING2 

deficiency affect the AR regulated transcriptome.  

Analyzing AR ChIP-seq and RNA-seq data between wild type and Ing1 KO mice 

prostate will provide more evidence of how ING1 deficiency influences AR chromatin 

binding and differential gene expression in the mice prostate.     
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