

Raimund Ubar, Artur Jutman, Margus Kruus, Elmet Orasson,

Sergej Devadze, Heinz-Dietrich Wuttke

Learning digital test and diagnostics via Internet

Original published in:

International journal of online engineering : IJOE. - Kassel : Kassel Univ. Press. –
3 (2007), 1, 9 p.

ISSN (online): 1861-2121

ISSN (print): 1868-1646

DOI:
URL: http://www.online-journals.org/index.php/i-joe/article/view/361
[Visited: 2015-07-07]

This work is licensed under a Creative Commons Attribution
3.0 Austria License.
[http://creativecommons.org/licenses/by/3.0/at/]

Note from the Author Guidelines:

Articles in the International Journal of Online Engineering (iJOE) are published
under the Creative Commons Attribution Licence (CC-BY)

[http://www.online-journals.org/index.php/i-joe/about/submissions]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224750628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/3.0/at/
http://creativecommons.org/licenses/by/3.0/at/
http://creativecommons.org/licenses/by/3.0/at/

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Learning Digital Test and Diagnostics
via Internet

R.Ubar1, A.Jutman1, M.Kruus1, E.Orasson1, S.Devadze1, H.-D.Wuttke2

1 Tallinn University of Technology, Tallinn, Estonia
2 Technical University of Ilmenau, Ilmenau, Germany

Abstract— An environment targeted to e-learning is
presented for teaching design and test of electronic systems.
The environment consists of a set of Java applets, and of
web based access to the hardware equipments, which can be
used in the classroom, for learning at home, in laboratory
research and training, or for carrying out testing of students
during exams. The tools support university courses on
digital electronics, computer hardware, testing and design
for testability to learn by hands-on exercises how to design
digital systems, how to make them testable, how to build
self-testing systems, how to generate test patterns, how to
analyze the quality of tests, and how to localize faults in
hardware. The tasks chosen for hands-on training represent
simultaneously research problems, which allow to fostering
in students critical thinking, problem solving skills and
creativity.

Index Terms— Tools for interactive learning and teaching,
Web and Computer-based learning, Re-usable Learning
Objects.

I. INTRODUCTION
The increasing complexity of digital systems

accompanied by entering the era of Systems-on-Chips
(SoC) and Networks-on-Chips (NoC) has made testing
and fault diagnosis in electronic systems one of the most
complicated and time-consuming problems in electronics
design and manufacturing. The more complex are getting
electronics systems, the more important will be the
problems of test and design for testability because of the
very high cost of testing electronic products. At present,
most system designers and electronics engineers know
little about testing. This is because in the today’s
university curricula test issues are usually neglected.
Students learn how to design electronic systems but not
how to test them. The next generation of engineers
involved with SoC and NoC technologies should be made
better aware of the importance of test, and be trained
much more in test technology to enable them to develop,
design and produce high quality and defect-free products.

Today, in teaching digital design, mainly logic
simulation methods are the objective and tool for
investigating the behavior of systems. For analyzing
defective microelectronic systems today diagnostic
methods based on logic simulation only are not sufficient
any more. The gigahertz operating frequencies and ultra
high scale of integration in modern microelectronic
systems make the physical level defects manifest
themselves in new unusual and unconsidered ways. The
good old logic level fault models such as stuck-at or even

bridging fault models do not guarantee full defect
coverage anymore [1]. Even rather easy to model defects
like opens and zero-resistive shorts might behave in an
unexpected way when their behavior is purely considered
on logic level. Moreover, due to process variations and
other phenomena, even the results of rather complicated
electrical simulation methods sometimes do not match
with the reality. This causes the necessity to create a
possibility to learn also in related university courses more
practically the effects of realistic defects in
microelectronics systems.

In this paper, we present a conception and means to
improve the skills of students educated for hardware and
SoC design in test related topics. We present an interactive
learning method based on using so-called living pictures
[2]. The method presented here deals with the goal, to put
interactive teaching modules to the Internet that can be
used in a lecture as well as for individual self-studies. The
modules can be accessed independent of time and place.
On one hand, teachers can demonstrate different examples
and procedures of test related topics using living pictures
during the lessons. On the other hand, students can use the
same simulations on their home computer, if the living
pictures are available on the Internet. Finally, the same
modules can be used during examination.

The core of the teaching concept presented are JAVA-
applets (interactive modules) running on any browser
connected to the Internet. These applets, tailored for
educational purposes, support the test methods as tools for
special tasks. In contrast to commercial available tools,
they are easy to use because they support only the method
that the teacher wants to teach and have a graphical user
interface. That interface also visualizes details of the
underlying algorithms (e.g. step-by-step execution). We
call this type of applet "Living Pictures". By using
interaction possibilities the students can produce input test
stimuli, watch the behavior of the circuit in the fault-free
mode and in different faulty modes. In the paper, different
learning tasks and exercises are described, which make
use of the applets. We developed two types of such
applets: applets for investigating and learning test
problems in simple gate level circuits [3], and applets for
practicing design and test problems in digital systems that
are more complex and consist of a control and a data path
[4].

For investigating realistic physical defects in
microelectronic circuits, a novel web based hardware/
software (HW/SW) environment has been developed [5,
6]. The core of the environment is a special educational
chip called “DefSim” where a large variety of shorts and

iJOE International Journal of Online Engineering - www.i-joe.org 1

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Figure 1.

II.

Living pictures for investigating logic circuits

opens can be physically inserted into a set of digital
standard cells and small circuits [7]. This environment
allows carrying out remote experiments via Internet with
different realistic defects selected remotely in the DefSim.

We organized the paper in the following way:
Section 2 presents the applets for e-learning of logic level
diagnostics. Section 3 describes different learning
scenarios for logic level testing and fault location. Section
4 is devoted to investigating the problems of higher-level
test. In Section 5, we discuss the ideas and possibilities of
remote experimenting with real physical defects in
electronic circuits. Section 6 concludes the paper.

ENVIRONMENT OF WEB-BASED LEARNING TOOLS
FOR DESIGN AND TEST

Learning in practical situations and learning by doing is
an efficient way to learn because a student will form
mental pictures about the things to be learned, and they
will be remembered better, too.

The e-learning software developed supports the action-
based training in digital design and test via Internet. It
offers a set of tools to inspect the different objectives of
testing digital logic to be learned, access to multiple
learning modules, a big library of examples and the
possibility to generate new personal examples. It provides
easy action and reaction (click and watch) by using "living
pictures", the possibility of distance learning, and learning
by doing. The core of that concept are Java-applets (the
interactive modules) running over network, using standard
browsers like Netscape and Internet Explorer with Java
1.2 runtime plug-in, or with Java 2 applet viewer.

Different types of applets have been created for
learning design and test of electronic circuits or systems at
the low logic level and at the higher register transfer or
behavior levels.

One class of applets developed can be used for teaching
and learning the basics of logic level digital test and
testable design as illustrative tool explaining the problems
of fault simulation, test generation, design for testability
and fault diagnosis. The work window of this program

(Fig.1) consists of a test pattern insertion panel, a view
panel for design schematics, and a view panel for
simulation results like waveforms, fault tables, diagnostic
information etc. Test patterns can be inserted manually or
generated automatically by different methods. The boxes
at the lines on schematics are clickable for inserting or
viewing signals during the test generation or fault
diagnosis. The described environment is accessible in [3].

The applets can be used for carrying out different
teaching or learning scenarios. In each scenario, they can
be re-used and embedded into another context. Thus, they
are a kind of re-usable learning objects (RLOs). For
example, logic level research involves the following tasks:

• manual test generation for a given gate-level
circuit,

• generating tests with automatic tools and analyze
the quality of tests by fault simulation,

• generating diagnostic tables, and fault locating
procedures,

• Finding a fault in a circuit, creating cost-effective
procedures for fault diagnosis.

In Fig.1, a pattern is applied on the inputs of the circuit.
On the upper view panel, the lines tested by the applied
pattern are highlighted. On the lower panel, a fault table is
shown. The rows correspond to the test patterns and the
columns correspond to the lines of the circuit. The entry x
in the table means that a particular line is not tested by the
given pattern. The entry 0 or 1 means that a fault stuck-at-
0 or stuck-at-1 of the particular line is tested by the given
pattern. In the last column, also the percentages of faults
detected by the test patterns, used up to the actual pattern,
are shown.

The task of test generation consists of finding a set of
test patterns, which is able to detect all the possible faults
in the circuit. The students can try to minimize such a set
of test patterns. Another learning scenario is to generate a
set of test patterns, which can be used to locate any
possible fault.

iJOE International Journal of Online Engineering - www.i-joe.org 2

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Some of the tasks can be organized in a gaming style or
as a competition between students. For example, a fault
can be inserted into a circuit by the teacher, and a
competition between students will be thereafter carried out
in a manner who is the first who can localize the fault i.e.
who will be able to use the minimum search steps. This
way of working with applets makes learning even more
exciting.

x3

x2

x1

I3

I1

I0
&

&

I 4
1

I 5
1

I6
&

I2
&

&

1

1

0

0

1

0
1

0

1

Figure 2. Test generation by path activation (fault free behavior)

III.

A.

B.

LEARNING SCENARIOS OF LOGIC LEVEL TEST
We start working with the applet by selecting a circuit

from a set of predefined ones. Then we can carry out
different experiments with this circuit by selecting a
proper working mode from the mode menu.

References
There are two methods possible for test vector

generation using the applet:
• direct test vector insertion on inputs (on the

vector insertion panel), and
• test generation by path activation in the circuit

(on the schematics panel).
In the direct test vector insertion mode we can choose

test vectors either automatically by using Linear Feedback
Shift Register (LFSR) as a pseudorandom pattern
generator [8], or by inserting vectors manually.

In the manual mode, we generate step-by-step input
patterns, which are simultaneously simulated. The boxes
at the lines on the schematics sub panel display the result
of simulation – the values of internal signals on the
connections. The waveforms can be viewed on the data
sub panel.

When using LFSR, we have to specify the initial state
of LFSR, to select a proper feedback structure of LFSR
(different structures provide different quality of test
patterns), and to specify the length of the desired test
sequence. By changing the settings on the vector insertion
panel, we can emulate different feedback structures of the
chosen architecture.

The quality of the test patterns now can be analyzed by
fault simulation. In the fault simulation mode, a fault table
is generated and shown on the data panel for all the test
vectors created at the given moment. For example, in the
fault table on the lower panel of Fig. 1, the results of the
fault simulation of five test patterns 9,10,11,12, and 13 are
shown. By selecting a test vector in the fault table, all the
detected faults will be highlighted by colors on the
schematic panel. For example, on the upper schematic
panel of Fig.1 we see the activated paths and all the
detected faults for the vector number 10 selected in the
fault table. The pattern itself can be viewed by clicking on
“Test vectors” on the lower panel. The values in boxes at
the lines of the circuit show the behavior of lines for the
selected test vector. The value 0 (or 1) in the boxes means
that the fault stuck-at-1 (or stuck-at-0) is activated and can
be detected by the selected test pattern.

In the test generation mode we choose a target fault in
the schematic and create step by step proper activated
paths in the circuit to activate the fault at his site and to
propagate the error signals caused by the fault towards the
output by clicking the needed values into boxes on the
lines. From these values finally, an input vector will be
deduced. The colors on lines help us to understand the

current status of the task: red and green lines mark
activated faults and activated paths. The inconsistencies of
the signal values are highlighted by blue color. As the
result of the procedure, it generates a test pattern. The
detected faults are displayed also on the data panel in form
of a row in the fault table.

For example, to generate a test pattern for the fault x3 ≡
1 in Fig. 2, first, a signal with opposite value 0 to the
faulty value 1 should be inserted to x3 by clicking the box
on the line x3. Then, the faulty signal of x3 should be
propagated to the output of the circuit. By inserting the
value 1 on the line x2 the faulty signal from x3 is
propagated through the gate I1. Next, by inserting the
value 0 on the upper input of gate I4 the faulty signal is
propagated through the gate I4. Finally, by inserting the
value 1 on the lower input of gate I6 the faulty signal is
propagated through the gate I6 to the output y. The
activated path is shown in Fig.2 by bold lines. All the
inserted values should be properly justified step by step by
other signals moving towards the inputs. As the result, a
test pattern will be created on the inputs. For this example,
the test pattern x1x2x3 = 110 will be found.

Fault diagnosis
In the fault diagnosis mode, we need at first to create a

fault table by running the fault simulator for a set of
previously generated test vectors. In the diagnosis mode,
an unknown fault should be first introduced into the
circuit.

The following diagnosis strategies chosen from the
scenarios’ menu can be investigated: combinational and
sequential diagnosis.

For learning the combinational diagnostic strategy, a
single vector or a subset of vectors can be selected and
applied to the erroneous circuit (by imitating test
experiments). The applet shows the results of testing, and
displays the subset of suspected faults. If the subset
contains a single fault, the diagnostic task is solved. If the
subset contains more than one fault, the diagnostic
resolution should be improved. To improve the resolution,
additional test vector(s) may be generated and used in the
repeated test experiment.

Sequential diagnosis (guided-probe testing) is based on
the guided probing strategy. A test pattern is applied and
the expected behavior of the circuit is displayed. The
principle of guided-probe testing is to back-trace an error
from the output where it has been observed to its source
(faulty gate). By clicking on the connection boxes, the real
values of signals of the faulty circuit can be measured. A
faulty gate is located if it has been found that the signal on

iJOE International Journal of Online Engineering - www.i-joe.org 3

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

OUT

I 6a

I 6b

I 4 a

I 4 b

I 1 a

I 1 b
OK

F

OK

F

OK

OK
Figure 3.

IV.

A.

Fault diagnosis scenario

the output of the gate is faulty, while only correct
expected signals are observed at its inputs.

The main didactically point in learning of the both
diagnostic strategies is to try to localize the fault by as few
as possible test vectors (in the combinational approach) or
by as few measurements (in the case of sequential
approach) as possible. In this task, students can carry out a
competition: The student who needs fewer measurements
to localize the fault will be the winner.

As an example, let us see the procedure of sequential
fault localization by pinpointing the signals in the circuit
for the case of test pattern x1x2x3 = 110 represented in
Fig.2. Suppose the gate I1 is faulty and produces a wrong
signal 0 instead of the expected 1. The erroneous signal is
propagated by this test pattern up to the output (as a wrong
signal 1 instead of the expected 0) and the error can be
observed there.

Now three possible fault location procedures can be
imagined for this particular case covered by the diagnostic
tree in Fig.3. The nodes in the graph in Fig.3 mean signal
measurements on the inputs of the gates Ijk. The inputs of
a gate Ij are denoted from above down by k = a, b.

First, we may use a trivial backtracing procedure of
erroneous signals shown as the full search tree in Fig.3. In
the worst case, we may click to measure the signals on all
of the 6 nodes of the tree. Starting with the node I6b we
observe a correct signal. Then, we try the next input I6a of
the gate I6 where the error is detected. We continue now
backtracing in the node I4 a. Then, we try the next input I4b
of the gate I4 where again the error is detected. Now we
backtrace to the inputs of the gate I1 where no errors are
found. This means that we have located the erroneous gate
I1 by 6 measurements.

Secondly, we may analyze the fault activation
conditions on the inputs of gates in the back-trace tree for
local optimization (at each gate) of the search process. For
example, based on the input signals of the gate I6 we can
reason that if an erroneous signal has been propagated
through the gate, it can originate only from the input I6a.
In other words, we can skip pinpointing of the node I6b
because as the result of reasoning we can learn that an
error at the input I6b of the gate I6 would not be able to
cause a change of the signal on the output of the gate I6. In
the same way, we realize that the measurement of I4a is
also not needed. As the result, the backtracing procedure
will cost only 4 measurements (see the bold lines in
Fig.3).

There is a third possibility to analyze the situation for a
global optimization of the searching process. We can find
out by reasoning the simulated state of the circuit that the

fault should locate somewhere on the bold lines in Fig.2.
We can use now the well-known divide and conquer
approach. By measuring the value of I4b in the middle of
the activated path, we can divide all the possible faults
into two equal groups. In the case of correct signal at I4b,
we have to proceed towards the output and pinpoint the
value of I6a to determine which of the gates I4 or I6 is
faulty. In the case of erroneous signal, we have to continue
towards the inputs and measure the value of x3 to
determine if either the input x3 or the gate I1 is faulty. In
both cases, we need only 2 measurements to locate the
fault instead of the 6 measurements of the full search.

With this little example, we managed to show that the
fault diagnosis process could be regarded as a demanding
mental experiment. A competition can be organized
between students to make the learning procedure an
exciting event.

LEARNING HIGHER LEVEL TEST
Entering the SoC era with its new concepts involves

teaching the design of electronic systems on higher levels
of abstraction like register transfer level (RTL), instruction
set architecture or behavioral levels. We have developed
another type of Java applets for learning high-level design
and test in control intensive digital systems. Students can
exercise RTL implementations of more complex
functionalities represented by data flow graphs or micro-
programs (like multiplication, division, signal processing
algorithms etc.).

Such topics as design of data-flows and microprograms
of computing algorithms, investigation of tradeoffs
between speed and hardware cost in digital design, RTL
simulation, design for testability, test generation, built-in
self-test (BIST), diagnostic analysis and other related
problems are covered by these applets.

Description of the RTL design and test applet
The work window of the applet (Fig.4) consists of three

parts – a control panel, a view panel for design
schematics, and a panel for microprogram development
and viewing simulation results. The described
environment is also accessible at [4].

A structure of the data-path and the needed functional
units for implementing particular microoperations can be
found from the library. Different architectures can be
explored and experimented for implementation of a given
set of functions or algorithms.

Each functional unit (FU) of the data path F1 … F4 in
Fig.4 contains a number of microoperations (functions:
unary and binary), which are labeled by corresponding
control signals activating a chosen function. There is an
overlap between possible functions of F4 and of F1, F2
and F3 to allow a parallelization of a given algorithm. The
student can select one or more microoperations for each
unit of the data path when implementing his own
algorithm (like multiplication, division etc.). Each micro-
operation has a gate-level implementation, and the number
of gates determines its cost and at the end, the final
hardware cost of the system. The student can select, thus,
a particular implementation of his algorithm meeting
either the cost or timing requirements, or he can compare
different hardware solutions for the given algorithm and
find out the design tradeoffs. For any chosen architecture,
the system calculates the cost of the hardware, and the

iJOE International Journal of Online Engineering - www.i-joe.org 4

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Figure 4. Applets for investigating digital systems

speed of processing (number of clock cycles needed by
the developed micro-program) can be measured by
simulation. The simulation is supported by an RT-level
model of the system as a whole and by gate-level models
of each microoperation in each FU.

The control path is a microprogrammed controller,
which implements a Mealy FSM (Final State Machine).
The controller consists of a microprogram table and an
interpreter. The microprogram is developed by the user to
realize a given algorithm based on the selected resources
of the data path. The user fills in the rows of
microprogram table, which contains information about the
address of the current and the next microinstruction,
multiplexer (MUX) and de-multiplexer (DMUX) configu-
rations, Data IN values, selection of functions in FUs (F1
to F4) at each microinstruction, and status signal
configuration.

The Fig.4 presents an example of algorithm of
multiplication of two operands A and B. The result of the
multiplication is stored in REG1 and fed out to the data
output.

The RT-Level simulation is carried out at the higher
level by using corresponding to functional units Java
subroutines which are activated according to condition
values by the control signals in the order given in the
microprogram table. The simulation data is stored in the
Simulation Results sub panel. This data reflects the states
of all the registers, outputs of all the functional blocks,

data input and output of the device, current states at each
clock cycle and the condition signals. The simulation data
can be used by the student as a debugging info as well as
for the improving the efficiency: the speed or the cost of
the system.

With this applet we are aimed at showing a variety of
different modern testing techniques including functional
and deterministic testing, a number of Built-in Self-Test
(BIST) solutions.

B. Learning test by the Register Transfer Level Applet
Functional Test. In this mode the cheapest test

technique is investigated, which does not require
designing special test programs and embedding of special
test structures into the system. The required level of fault
coverage must be achieved by a smart selection of input
data. The sole checkpoint allowed for catching the fault is
the data path primary output. Moreover, it only can be
observed at the time when the microprogram outputs the
final result.

The fault simulation information is presented at the
Global Test Panel (Fig.5). The input operands (A, B, C,
D) are specified first. The same microprogram is used
then repeatedly for fault simulation for all the input data.
The fault coverage is calculated for each selected FU and
for the whole system as well. The cumulative fault
coverage for each input vector is provided in the Global
Fault Coverage table (Fig.5).

Figure 5. Global Fault Coverage table

iJOE International Journal of Online Engineering - www.i-joe.org 5

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Figure 6.

V.

Deterministic test pattern generation

The primary task of the student during investigation of
functional testing is the selection of good operands (A, B,
C, D) in order to achieve the target fault coverage as fast
as possible. For simpler designs, this technique can be
feasible. However, for structures that are more
complicated we have to use something more sophisticated.

Deterministic Test. This mode is aimed at a gate-level
test generation and fault simulation for each selected FU
separately. For learning these activities, the applets
described in Section 3 can be used. The simulation results
for FUs are provided in the fault table at the Local Test
Panel (Fig.6). For each vector, the fault coverage (FC2) is
calculated and the information on tested nodes is given.
The cumulative fault coverage (FC1) is also shown for
each simulation step. The hierarchical RT-level fault
simulation is applied in order to evaluate the global fault
coverage of those vectors for the data path as a whole. For
this purposes a hierarchical test program should be
composed for each selected FU. The simulation data will
be reflected in the Global Test Panel (Fig.5) in the same
way as it is done in the Functional Test mode.

In order to help the user to generate gate-level test
vectors for FUs, the gate-level schematic of the currently
selected FU is displayed. The user selects a target fault
and generates a test vector. After pressing the “Simulate”
button this vector is fault simulated at the gate level and
the results (local fault coverage) are added into the fault
table. At the same time, the same vector is sent to RT-
level hierarchical fault simulator in order to fill in the
Global Test Panel. This panel shows the vector as two
decimal operands. The test microprogram, used for RT-
level fault simulation, must provide a good access to the
selected FU. A simple version of such a program is
generated automatically. It can be used as a template by a
student in order to develop a more sophisticated test
program if needed.

The Built-in Self-Test (BIST) Mode. The Deterministic
Test mode is one of the most efficient ways of testing.
However, it does not provide access to internal signals of
the system under test. This problem is addressed by
various BIST solutions. Usually it is a scan-path with a

random test pattern generator (TPG) and one or more
signature analyzers (SA). By the scan-path technology, the
inputs and the outputs of the combinational blocks in the
data path are directly accessible by TPGs and SAs [8].

Our teaching system allows reconfiguration of internal
registers into the BIST mode. Depending on the chosen
BIST method, some of them can perform functions of
TPG, SA or both. When the configuration is chosen, the
fault simulation will be performed and the results are
displayed in the way similar to the one used in Functional
and Deterministic test modes.

The modes described above help to illustrate the way of
operation of different BIST structures and show how their
efficiency depends on the TPG configuration. The
selection of a good configuration for each selected FU is
the main problem to solve by the student. Another task is
the selection of such a single TPG configuration that
allows testing all of the FUs in the shortest possible time.

Different training and research scenarios of testing the
design can be exercised by the applet. Generating high-
level or hierarchical test programs and analyzing their
quality develops real skills in the student, which are
needed in testing and diagnosing electronic products in the
industry.

WEB-BASED ENVIRONMENT FOR EXERCISING
REAL DEFECTS

The gigahertz operating frequencies and high
integration levels of modern microelectronic systems
make the physical level defects manifest themselves in a
new unusual way. The traditional logic level fault models
like stuck-at or even bridging ones do not guarantee full
defect coverage anymore [1]. Even rather easy to model
defects like opens and zero-resistive shorts might behave
in an unexpected way when their behavior is purely
considered on logic level. Moreover, due to process
variations and other phenomena, even the results of rather
complicated electrical simulation methods sometimes do
not match with the reality.

iJOE International Journal of Online Engineering - www.i-joe.org 6

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

Figure 7. Graphical User Interface to DefSim

Figure 8. Measurement results: defect table

These facts fully agree with the results one can observe
using our measurement environment for real CMOS
defects – DefSim [5, 6]. The central element of the
DefSim environment is the IC with a large variety of
shorts and opens physically inserted into a set of digital
standard cells and small circuits. The IC is attached to a
dedicated measurement box serving as an interface to the
computer. The box supports two measurement modes –
voltage and IDDQ testing [9].The communication between
the DefSim hardware and software goes through the USB
port.

The DefSim IC has three main structural parts: a matrix
of simple digital circuits, addressing mechanism, and a
measurement circuitry [7]. Each circuit from the range is
implemented in many copies where one of them is correct
and all the others are intentionally defective. All such
defects have different locations within a corresponding
copy of the circuit. During chip operation, only one such
copy can be active at a time.

Currently two types of defects are implemented in
DefSim: opens and hard shorts in conducting layers.
These defects are located both inside logic gates and upon
(or between) signal lines outside the gates. It is possible to
select any defect of interest by addressing a corresponding
copy of the circuit. Then the user can apply an arbitrary
input test sequence and measure the circuit’s response to it
in terms of both the binary logic values and current levels
(IDDQ). It is also possible to compare its behavior over
the correct copy of the same circuit.

The DefSim software package provides a very
convenient access to the features of the IC and ensures a
smooth way of going through educational scenarios for
students [6].

As the first step, the user has to select a target circuit to
work with. Then, the list of implemented defects for this
circuit becomes available. The user can work either with a
single specific defect or with a group of defects
simultaneously. A random defect can be selected too, if
defect localization is the intended task.

From the didactical point of view, the DefSim
environment targets (but it is not limited to) two main

areas of expertise: defect modeling and defect
observability. First, the user gets a chance to compare the
efficiency of different logic level fault models in terms of
their capability to cover all possible shorts and opens in a
CMOS circuit. The students will learn in practice that
some simple defects represent a real challenge especially
from the diagnostics (defect localization) point of view.

Since DefSim environment supports both voltage and
IDDQ testing, the user can compare the fault detection
efficiency of those test methods as well. In most cases,
their effectiveness is noticeably different.

Besides the fault list, two types of schematics are
available for each circuit: the logic level scheme and
transistor level one. The necessary test patterns can be
generated either by the user using these schematics or
automatically by the software. Then, the prepared test
patterns are sent to the IC and applied to either the
selected defect or a group of defects, and consequently,
the circuit responses are recorded. The results of
measurements are displayed in several different forms
(Fig.8). For instance, the user can observe the truth table

iJOE International Journal of Online Engineering - www.i-joe.org 7

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

a) b)
Figure 9.

VI.

Measurements results windows

for a certain defect, or a fault (defect) table for a group of
defects, or IDDQ value info. Such a defect table for a
simple NO3 cell (3-input NOR-gate) is given in Fig. 8.

Basically, all the exercises on the DefSim environment
can be divided into two groups: less advanced and more
advanced ones. Here we will consider a simpler flow as an
example. It is targeted on students whose main
specialization is not digital test but general
microelectronics. A bit more advanced exercises are
considered in [5].

• Getting a truth table of good (without defects)
CMOS simple and complex standard gates.

• Getting a truth table of good (without defects)
small combinational circuits (C17 or CB1).

• Repeating steps 2 and 3 but with a given defect
of a certain type in order to observe how the
circuit’s function is modified by the defect.

• Getting basic knowledge of voltage and current
testing principles.

The first and the second step of this flow are illustrated
in Fig. 8 based on a simple cell NO3. The last row of this
table named “Q” gives correct output values of this cell.
The measurement results of a defected circuit instance
(short B/Q) are illustrated in Fig.9a. There one can see the
binary value at the output Q and the fault detection infor-
mation (“PASS/FAIL”) provided for each test vector
ABC.

It is not that hard to notice that normally the short B/Q
is detected when there are opposite logic levels on the
corresponding lines B and Q, where B appears to be a
stronger driver than Q. The only exception is the last
pattern 111, where 0-value on Q doesn’t change despite
line B tries to drive it to logic 1. In all other cases 1 on B
appears to be stronger than 0 on Q, which actually
contradicts with simple and commonly used logic-level
models for short defects like Wired-AND and Wired-OR
[8]. This is an example supporting the need for accurate
and real implementation of CMOS defects in silicon for
getting correct understanding of their real behavior.

The last step in the flow for investigating the impact of
IDDQ testing is illustrated in Fig.9b. It shows the
measurement results of static supply current levels on the
output of NO3 cell. One can see that in this case the last
pattern ‘111’ comes up with the fault detection.

Obviously, this is the result of a different degree of
observability a particular testing method is featuring.

CONCLUSIONS
An environment consisting of web-based applets for

hands-on training is presented for improving the skills of
students to be educated for electronics design in test
related topics. The novelty of this environment is in
supporting by a uniform web-based tool-set learning of
design and test problems in digital systems. It is also in
starting with an investigation of real physical defects at
the very low transistor level, reasoning of test and
diagnostic related problems at the traditional logic level,
and learning how to generate complex test programs and
localize faults at higher functional levels of complex
digital systems. Based on the described environment, an e-
learning conception using simple applets in a form of
“living pictures” can be introduced into study programs at
technical universities for teaching courses on digital
electronics, design of digital systems, testing and design
for testability. The applets may be used for solving real
research and engineering problems in the field of
electronics design and test, which allow fostering in
students critical thinking and creativity in an exciting
working environment and stimulating atmosphere. This
environment has been successfully tested at Tallinn
University of Technology.

ACKNOWLEDGMENT
This work was supported by the Thuringian Ministry of

Science, Research and Art (Germany), by the Enterprise
Estonia funded ELIKO Technology Development Center,
and by the Estonian Science Foundation grants G5649 and
G5910. The DefSim GUI and server software were
developed by Testonica Lab (http://www.testonica.com).

REFERENCES
[1] D.Kasprowicz, W.A.Pleskacz, “Improvement of Integrated Circuit

Testing Reliability by Using the Defect Based Approach,”
Microelectronics Reliability, PERGAMON – Elsevier Science,
vol. 43/6, June 2003, pp. 945-953.

[2] R.Ubar, H.-D.Wuttke, “The DILDIS-Project – Using Applets for
More Demonstrative Lectures in Digital Systems Design and
Test”, Proceedings of the 31st ASEE/IEEE Frontiers in Education
Conference, FIE’2001, Oct. 10-13, 2001, Reno, NV, USA,
pp.SIE-2-7.

[3] http://www.pld.ttu.ee/applets/td/

iJOE International Journal of Online Engineering - www.i-joe.org 8

http://www.testonica.com/
http://www.pld.ttu.ee/applets/td/

LEARNING DIGITAL TEST AND DIAGNOSTICS VIA INTERNET

A. Jutman is with the Computer Engineering
Department, Tallinn University of Technology, Raja 15,
13511 Tallinn, Estonia (e-mail: artur@pld.ttu.ee).

[4] http://www.pld.ttu.ee/applets/rtl/
[5] W.A.Pleskacz, T.Borejko, A.Walkanis, V.Stopjakova, A.Jutman,

R.Ubar. DefSim: CMOS Defects on Chip for Research and
Education. 7th IEEE Latin-American Test Workshop, March 26-
29, 2006, Buenos Aires, Argentina, pp.74-79. M. Kruus is with the Computer Engineering

Department, Tallinn University of Technology, Raja 15,
13511 Tallinn, Estonia (e-mail: kruus@cc.ttu.ee).

[6] http://www.pld.ttu.ee/defsim/
[7] W.A.Pleskacz, T.Borejko, T.Gugala, P.Pizon, V.Stopjakova,

”DefSim – The Educational Integrated Circuit for Defect
Simulation,” Proc. of IEEE Int. Conf. on Microelectronic Systems
Education, Anaheim, USA, June 2005, pp. 121-122.

E. Orasson is with the Computer Engineering
Department, Tallinn University of Technology, Raja 15,
13511 Tallinn, Estonia (e-mail: elmet@pld.ttu.ee).

[8] M.L. Bushnell, V.D. Agrawal. Essentials of Electronic Testing for
Digital, Memory and Mixed-Signal VLSI Circuits. Kluwer
Academic Publishers, 2000, 690 pp.

S. Devadze is with the Computer Engineering
Department, Tallinn University of Technology, Raja 15,
13511 Tallinn, Estonia (e-mail: serega@pld.ttu.ee). [9] V. Stopjakova, H. Manhaeve: “CCII+ Current Conveyor Based

BIC Monitor for IDDQ Testing of Complex CMOS Circuits,” Proc.
of European Design & Test Conference, pp. 266-270, Paris,
France, March 1997.

H. D. Wuttke is with the Faculty of Informatics and
Automation, Ilmenau Technical University, Post box
100565, D-98684 Ilmenau, Germany (e-mail:
dieter.wuttke@tu-ilmenau.de).

 AUTHORS
Manuscript received 20 May 2006. This work was supported by the

Thuringian Ministry of Science, Research and Art (Germany), Enterprise
Estonia funded ELIKO Technology Development Center, and by the
Estonian Science Foundation grants G5649 and G5910. The DefSim GUI
and server software were developed by Testonica Lab
(http://www.testonica.com).

R. Ubar is with the Computer Engineering Department,
Tallinn University of Technology, Raja 15, 13511 Tallinn,
Estonia (e-mail: raiub@pld.ttu.ee).

iJOE International Journal of Online Engineering - www.i-joe.org 9

http://www.pld.ttu.ee/applets/rtl/
http://www.pld.ttu.ee/defsim/
http://www.testonica.com/

	I. Introduction
	Environment of Web-based learning tools for Design and Test
	III. Learning scenarios of logic level test
	A. References
	B. Fault diagnosis

	IV. Learning higher level test
	A. Description of the RTL design and test applet
	B. Learning test by the Register Transfer Level Applet

	V. Web-Based Environment for Exercising Real Defects
	VI. Conclusions
	Acknowledgment
	References
	Authors

