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Abstract

Automatic structures are a subject which has gained a lot of
attention in the “logic in computer science” community during
the last fifteen years. Roughly speaking, a structure is automatic
if its domain, relations and functions can be recognized by finite
automata on strings or trees. In particular, such structures are
finitely presentable. The investigation of automatic structures
is largely motivated by the fact that their first-order theories
are uniformly decidable. The corresponding decision procedure
takes an automatic presentation of some structure and a first-
order sentence as input and checks whether the structure satisfies
the sentence by means of constructions and algorithms for finite
automata.

In this thesis, we study the model-theoretic complexity of
automatic linear orders from two perspectives: in terms of the
finite-condensation rank and by means of the Ramsey degree.
Intuitively, the finite-condensation rank of a linear order is an
ordinal which indicates how far the linear order is away from
being dense. Our corresponding main results establish optimal
upper bounds on the finite-condensation ranks of automatic linear
orders with respect to several notions of automaticity. In this
regard, we focus particularly on subclasses of automatic structures
which are obtained by restricting language-theoretic properties
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of the underlying domains. We further show that the separating
line between string-automatic and tree-automatic scattered linear
orders can also be drawn in terms of the finite-condensation rank.
As an application of this result, we further provide a partial
solution to the isomorphism problem for tree-automatic ordinals.

The Ramsey degree of an ordinal measures its model-theoretic
complexity by means of the partition relations studied in combi-
natorial set theory. We investigate this concept in a purely set-
theoretic setting as well as in the context of automatic structures.
Concerning the set-theoretic case, we show that all ordinals below
ωω possess a finite Ramsey degree and provide a range of ordinals
beyond ωω whose Ramsey degrees are infinite. The results in the
automatic setting are very similar, except that we prove that all
automatic ordinals beyond ωω have an infinite Ramsey degree.
Last but not least, we conclude this thesis by providing a tree-
automatic version of Ramsey’s theorem.
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Zusammenfassung

Automatische Strukturen sind auf dem Forschungsgebiet „Logik
in der Informatik“ seit etwa 15 Jahren ein viel beachtetes Thema.
Eine Struktur ist, vereinfacht gesagt, genau dann automatisch,
wenn ihre Trägermenge, ihre Relationen und ihre Funktionen
allesamt durch endliche Automaten auf Wörtern oder Bäumen
erkennbar sind. Insbesondere sind derartige Strukturen endlich
darstellbar. Die Hauptmotivation zur Untersuchung automati-
scher Strukturen liegt in der uniformen Entscheidbarkeit ihrer
prädikatenlogischen Theorien erster Stufe. Die zugrundeliegende
Entscheidungsprozedur bekommt eine automatische Darstellung
einer Struktur und einen prädikatenlogischen Satz als Eingabe
und überprüft mithilfe von Konstruktionen und Algorithmen für
endliche Automaten, ob der Satz in der Struktur gültig ist.

In dieser Dissertation untersuchen wir die modelltheoreti-
sche Komplexität automatischer linearer Ordnungen bezüglich
der zwei Komplexitätsmaße Kondensationsrang und Ramsey-
Grad. Der Kondensationsrang einer linearen Ordnung misst ih-
re Abweichung von der Eigenschaft der Dichtheit durch eine
Ordinalzahl. Unsere Hauptergebnisse in diesem Zusammenhang
leiten für verschiedene Begriffe von Automatizität optimale obe-
re Schranken für die Kondensationsränge automatischer linearer
Ordnungen her. Dabei liegt der Fokus vor allem auf Teilklassen
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automatischer Strukturen, die die zugrundeliegenden Trägermen-
gen anhand sprachtheoretischer Eigenschaften einschränken. Des
Weiteren zeigen wir, dass die Trennlinie zwischen wort- und bau-
mautomatischen verteilten linearen Ordnungen auch vermittels
des Kondensationsranges gezogen werden kann. Eine Anwendung
dieses Ergebnisses ermöglicht uns eine teilweise Lösung des Iso-
morphieproblems für baumautomatische Ordinalzahlen.

Der Ramsey-Grad einer Ordinalzahl misst ihre modelltheo-
retische Komplexität mithilfe von Partitionsrelationen aus der
kombinatorischen Mengenlehre. Wir untersuchen dieses Konzept
sowohl aus rein mengentheoretischer Sicht als auch im Kontext
automatischer Strukturen. Im mengentheoretischen Fall zeigen
wir, dass alle Ordinalzahlen unterhalb von ωω einen endlichen
Ramsey-Grad besitzen und geben einen Bereich von Ordinalzah-
len oberhalb von ωω an, deren Ramsey-Grade unendlich sind.
Die Ergebnisse im automatischen Fall sind sehr ähnlich, mit Aus-
nahme der Tatsache, dass die Ramsey-Grade aller Ordinalzahlen
oberhalb von ωω unendlich sind. Zu guter Letzt schließen wir diese
Dissertation mit dem Beweis einer baumautomatischen Version
des Satzes von Ramsey ab.
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1 Introduction

At first glance, computers seem to be one of the greatest tools
for mathematical problem-solving ever invented. Yet a second
glance unveils a huge mismatch: Many mathematical problems
involve questions about infinite objects in some way, whereas the
two most important resources of computers—memory space and
computation time—are inherently finite. This mismatch manifests,
for instance, in Gödel’s first incompleteness theorem [Göd31]
and the negative answer to the Entscheidungsproblem given by
Church [Chu36a] and Turing [Tur37]. Remarkably enough, all
these results predate the invention of the computer in the 1940s.
Accordingly, they are not based on the computational power of
any real device but rather on “the intuitive notion of effective
calculability” [Chu36b] or an abstraction of “a man in the process
of computing” [Tur37].

The incompleteness theorem basically states that any logical
theory which is generated by a computable set of axioms and
includes certain basic facts about elementary arithmetic is incom-
plete, that is to say it contains statements which can neither be
proved nor disproved from the axioms. An immediate consequence
is that the first-order theory of arithmetic (N; +,×) itself cannot
be decided by a computer, cf. [Chu36b]. The Entscheidungsprob-
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1 Introduction

lem was posed by Hilbert [AH28] and asks for an algorithm which
takes a statement and a finite list of axioms, both formalized
in first-order logic, as input and decides whether the statement
follows from the axioms or not. According to Church and Turing,
such an algorithm does not exist.

Despite those limitations, mathematicians and theoretical
computer scientists succeeded to find decision procedures for
many logical theories. A very prominent result is due to Pres-
burger [Pre30], who demonstrated that the first-order theory
of (N; +), nowadays known as Presburger’s arithmetic, can be
decided using the method of quantifier elimination. Another
noteworthy application of this technique is Tarski’s proof that
the first-order theories of (R; +,×,6) and Euclidean geometry
are decidable [Tar51].1

In the beginning of the 1960s, the recently established field of
automata theory gave a boost to the development of decision pro-
cedures for logical theories. Using results and methods from this
new field, Büchi [Büc60], Elgot [Elg61] and Trakhtenbrot [Tra62]
independently showed the weak monadic theory2 of (N;6) to be
decidable. Later on, this approach was extended to the (non-
weak) monadic theories of (N;6) and all other countable well-
orders by Büchi [Büc62, Büc65] and to the weak monadic theory
of the full binary tree by Doner [Don65] and, independently, by
Thatcher and Wright [TW68]. Eventually, this development cul-
minated in Rabin’s tree theorem [Rab69], which states that the
monadic theory of the full binary tree is decidable.

In addition to his aforementioned result, Büchi [Büc60] pro-
vided an alternative proof of Presburger’s decidability result,

1Tarski claims that his method was “found in 1930 but previously unpub-
lished” [Tar51, 2].

2(Weak) monadic logic, also called (weak) monadic second-order logic,
extends first-order logic by variables which range over (finite) subsets of the
domain.
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which is based on a syntactic reduction to the weak monadic
theory of (N;6) by means of a logical interpretation. Actually,
the syntactic reduction and the subsequent automata-theoretic
decision procedure can easily be merged into one “purely” au-
tomata-theoretic algorithm without loosing conceptual clarity.
Abstracting from how the structure (N; +) is implicitly presented
to the merged algorithm, Hodgson [Hod82, Hod83] introduced
the concept of automatic structures as a systematic approach
towards deciding first-order theories.

Roughly speaking, a structure is automatic if its domain is
a regular language of strings and its relations are recognizable
by synchronous finite multi-tape automata. Such automata take
tuples of strings as input, each entry initially written on its own
read-only tape, and processes the tapes from left to right with
all heads moving at the same speed. For instance, the implicit
presentation of (N; +) mentioned above works as follows: Each
number is encoded by its binary representation (least significant
bit first) and a finite automaton with three tapes implements
the usual ripple-carry addition in order to recognize the relation
“x+ y = z”. Just like intended by Hodgson’s definition, the first-
order theory of any automatic structure can be decided by the
automata-theoretic algorithm. In fact, this decision procedure is
uniform in the automatic structure, that is to say it still works
if the finite automata presenting the structure are not fixed but
given as part of the input.

More than a decade later, Khoussainov and Nerode [KN95]
independently rediscovered the concept of automatic structures.
Unlike Hodgson, their motivation originated in computable model
theory, cf. [EGNR98]. More precisely, they were interested in a
formalism for presenting infinite structures which is more feasible
than (polynomial time) computable structures. Accordingly, they
restricted the model of computation, which is allowed in presen-
tations of structures, from Turing machines to finite (multi-tape)
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1 Introduction

automata. Despite this second discovery of automatic structures,
they did not become an active field of research until Blumensath
and Grädel [BG00] introduced them to the “logic in computer
science” community a few years later. Recalling the efforts from
the 1960s, the ensuing research also took the generalizations to
ω-string-automatic and tree-automatic structures into account, al-
though the main focus remained on string-automatic structures.3
Most of the progress which has been made since that time is
covered by the two surveys [Rub08, BGR11].

In view of its importance for Hodgson’s as well as Khoussainov
and Nerode’s motivation, the problem of characterizing the au-
tomatic members of certain classes of structures, such as groups
or linear orders, gained much attention. One of the first results
in this line of research was obtained by Delhommé [Del04], who
showed that the string-automatic and tree-automatic ordinals
are precisely those below ωω and ωωω , respectively. Moreover,
the string-automatic members of several other classes were com-
pletely characterized, including finitely generated groups [OT05],
Boolean algebras and fields [KNRS07]. In contrast, for string-
automatic linear orders and order trees only partial characteriza-
tions in terms of upper bounds on some model-theoretic rank are
known [KRS05]. Later on, it turned out that ω-string-automatic
ordinals and, more generally, scattered linear orders4 are effec-
tively string-automatic and hence the (partial) characterizations
carry over [Kus11].

Characterizing the automatic members of some class is closely
related to its isomorphism problem: Given two automatic presen-
tations of structures from this class, decide whether the presented
structures are isomorphic. As a matter of fact, the characteriza-

3In fact, ω-tree-automatic structures were also considered but are still
lacking remarkable results.

4A linear order is scattered if it does not embed the linear order of the
rationals.
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tions of the string-automatic ordinals, Boolean algebras and fields
immediately led to decision procedures for the corresponding iso-
morphism problems [KRS05, KNRS07]. In contrast, the general
isomorphism problem for string-automatic structures is highly un-
decidable. To be exact, it is complete for the first existential level
Σ1

1 of the analytical hierarchy and hence as hard as the isomor-
phism problem for arbitrary computable structures [KNRS07].5
This complexity remains the same even for some subclasses, such
as semigroups [Nie07], linear orders or order trees [KLL13b]. Ob-
viously, this Σ1

1-completeness is also inherited by the isomorphism
problem for tree-automatic structures. The isomorphism problem
for ω-string-automatic structures is even harder and not contained
in the analytical hierarchy at all [KLL13a].

Apparently, string-automatic linear orders gained quite some
attention, whereas there is only little knowledge of tree-automatic
linear orders. In chapter 3, we improve this situation in two ways.6
First of all, we partially characterize the tree-automatic linear or-
ders in terms of an upper bound on the same model-theoretic rank
mentioned above. In addition, we establish similar bounds for two
natural hierarchies of subclasses inside the string-automatic and
tree-automatic structures. Roughly speaking, these hierarchies
are obtained by restricting certain language-theoretic properties of
the permitted domains. Our second contribution investigates the
relationship between string-automaticity and tree-automaticity in
the context of scattered linear orders. More precisely, we give a
decidable characterization of those tree-automatic scattered linear
orders which are already string-automatic. As a consequence of
this result we further obtain that the isomorphism problem for

5Intuitively, this result says that the only way to establish isomorphy is
to find an isomorphism.

6A detailed overview of the current knowledge of automatic linear orders
and our results can be found in the introduction to chapter 3 starting on
page 55. The same applies to the subjects of chapters 4 and 5.
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1 Introduction

tree-automatic ordinals below ωω2 is decidable. Even if this result
might seem very limited, it marks actual progress: While the
decision procedure for the string-automatic case heavily builds on
the fact that first-order logic plays well with ordinals below ωω,
this nice interplay is no longer available beyond ωω, cf. [Büc65].

The correctness of our new decision procedure relies on an
argument involving the infinitary version of Ramsey’s theorem.
Unfortunately, this argument cannot be extended beyond ωω2

since the guarantees given by Ramsey’s theorem are in a way too
weak for that purpose. The outcome of our efforts to find a more
adequate variant of Ramsey’s theorem is quite ambivalent: On
the one hand, none of the results we obtained actually helped to
improve the limitations of our decision procedure. On the other
hand, the collection of these results soon evolved into a subject
being of interest on its own. Although answering the questions
which subsequently popped up led us astray from the isomorphism
problem for tree-automatic ordinals and into combinatorial set
theory, we took this lead. The result of this deviation is the
(purely set-theoretic) polychromatic Ramsey theory for ordinals
presented in chapter 4. Roughly speaking, this theory studies
which ordinals α admit a natural number n with the following
property: Every complete graph, whose nodes form a well-order
of type at least α and whose edges are colored by finitely many
colors, contains a subset of order type α whose internal edges use
at most n different colors.

One of the main concerns of computable model theory is the
effective content of (purely set-theoretic) mathematical results.
As a matter of course, this concern has also played a certain
role in the investigation of automatic structures. Remarkable re-
sults in this context include string-automatic versions of Cantor’s
theorem [Kus03], Kőnig’s lemma [KRS05] and Ramsey’s theo-
rem [Rub08]. The latter result, also known as Rubin’s theorem,
states that every string-automatic edge coloring of the countably
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infinite complete graph by finitely many colors contains an infinite
subset (of the set of nodes) being monochromatic and regular at
the same time. Given a string-automatic presentation of the col-
oring and a color, one can even decide whether there is an infinite
subset using only this color and, in case of a positive answer, com-
pute a finite automaton recognizing such a subset. In chapter 5,
we revisit our polychromatic Ramsey theory for ordinals from this
point of view and establish similar automatic versions of its main
results. Last but not least, we reuse the techniques developed in
the course of these investigations in order to contribute a new
tree-automatic version of Ramsey’s theorem, which complements
Kartzow’s result [Kar11]. While he established decidability of the
existence of (possibly non-regular) infinite subsets using a certain
color only, we focus on the existence of infinite subsets which are
monochromatic and regular.
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2 Preliminaries

In this chapter, we present the fundamental concepts required for
the results in the subsequent chapters. These fundamentals center
around automatic structures and linear orders. For the most part,
we assume basic familiarity with the presented topic and the
primary purpose is to fix notation. We accompany this rather
minimalistic approach by providing references to the literature
on all these topics. In the last section of this chapter, we prove
a first result on automatic structures which is not particularly
connected to the investigations taken out in the next chapters.

2.1 Logic

This section presents the fundamental notions of logic needed in
the later chapters. For a detailed overview, we refer the reader to
the book “Model theory” by Hodges [Hod93].

2.1.1 Relational Structures and First-Order Logic

Throughout this thesis, we only deal with logic over relational
structures, i.e., structures which do neither possess constants nor

9



2 Preliminaries

functions. A (relational) structure is a tuple

A = (A;RA
1 , . . . , R

A
n )

consisting of an arbitrary set A and relations Ri ⊆ Ari for some
ri ∈ N. The set A is called domain (or universe) of A . We agree
on the convention that whenever a structure is named by some
capital calligraphic letter, its domain is named by the very same
letter in Roman. The symbols Ri are called relation symbols, the
actual relation RA

i is the interpretation of Ri in A and ri is the
arity of both Ri and RA

i . Whenever there is only one structure
in scope which uses a certain relation symbol R, we usually omit
the superscript A from its interpretation RA . Accordingly, we
usually introduce A as “the structure A = (A;R1, . . . , Rn)”.

Two structures A and B are isomorphic if they use the
same relation symbols R1, . . . , Rn with the same arities r1, . . . , rn,
respectively, and there is a bijection f : A → B such that, for
each i ∈ [1, n] and all u ∈ Ari ,

u ∈ RA
i ⇐⇒ f(u) ∈ RB

i .

In this situation, the map f is called an isomorphism between A
and B.

We define first-order logic as usual, including the equality
predicate. We fix an infinite set of (individual) variables. It
is customary to denote these variables by small letters such as
x, y, z or x1, x2, . . . . The atomic formulas of first-order logic
are R(x1, . . . , xr) and x = y, where R is a relation symbol and
x1, . . . , xr, x, y are variables. These atomic formulas are composed
to more complex (first-order) formulas by means of the Boolean
connectives disjunction ∨, conjunction ∧, negation ¬, implica-
tion → and equivalence ↔ as well as existential and universal
quantification, written as ∃x . . . and ∀x . . . , respectively. In some
situations, we further consider the quantifier “there are infinitely
many”, written as ∃∞x . . . .

10



2.1 Logic

Let φ be a first-order formula and A a structure. We say
that φ and A are suitable for one another if φ uses only relation
symbols which appear in A with the same arity. For a formula φ
and individual variables x1, . . . , xr, we write φ(x1, . . . , xr) to put
that the free variables of φ are among x1, . . . , xr. A formula
without free variables is called (first-order) sentence. Convention-
ally, we name sentences by capital Greek letters. For a formula
φ(x1, . . . , xr), a structure A and elements u1, . . . , ur ∈ A, we
write

A |= φ[u1, . . . , ur]

to denote the fact that φ is suitable for A and A satisfies the
formula φ when the free occurrences of xi are interpreted by ui.
The first-order theory of a structure A is a the set of all first-
order sentences Φ with A |= Φ.

2.1.2 Monadic Second-Order Logic and
Interpretations

Monadic second-order logic or, for short, mso logic extends first-
order logic by a new kind of variables along with quantifiers and
atomic formulas for these variables. More precisely, the new
variables are called set variables and range over subsets of the
domain of the structure under consideration. To emphasize the
difference between the two kinds of variables, the “old” variables
from first-order logic are called individual variables as they range
over individual elements of the structure. It is customary to
name set variables by capital letters like X,Y, Z and X1, X2, . . . .
In order to make set variables accessible, mso logic contains
existential and universal quantifiers for these variables, written
as ∃X . . . and ∀X . . . , respectively. In addition, mso logic adds
the new atomic formula X(x) which evaluates to true if the
interpretation of the individual variable x is a member of the

11



2 Preliminaries

interpretation of the set variable X. Moreover, we freely use
abbreviations such as X = Y , X ⊆ Y , X ∪Y = Z and X ∩Y = ∅,
which are easily expressible by mso formulas.

In contrast to first-order logic, mso logic can express transitive
closure. More precisely, for every mso formula φ(x, y), there is
an mso formula φ∗(x, y) such that, for any structure A suitable
for φ and all u, v ∈ A, we have A |= φ∗[u, v] if and only if there
are n > 0 and w0, w1, . . . , wn ∈ A with u = w0, v = wn and
A |= φ[wi−1, wi] for each i ∈ [1, n]. For instance, the formula

∀X
(
X(x) ∧ ∀z, z′

(
X(z) ∧ φ(z, z′)→ X(z′)

)
→ X(y)

)
(2.1)

is a possible choice for φ∗(x, y).
In section 2.4.4, our investigations are based on the idea of

defining one structure in another. This idea is formalized by
the notion of an interpretation. Let A = (A;R1, . . . , Rn) and
B be structures and ri the arity of Ri. A monadic second-order
interpretation or, for short, mso interpretation of A in B is
a tuple I = (δ;ϕR1 , . . . , ϕRn) of mso formulas suitable for B
satisfying the following conditions:
(1) δ has precisely one free individual variable, each ϕRi has

precisely ri free individual variables and no set variables are
free in any of these formulas.

(2) There is an injective map f : A→ B such that, for all v ∈ B,

v ∈ f(A) ⇐⇒ B |= δ[v]

and, for all i ∈ [1, n] and u ∈ Ari ,

u ∈ Ri ⇐⇒ B |= ϕRi [f(u)] .

Put another way, condition (2) ensures that the map f is an
isomorphism between A and the structure

I(B) := (A′;R′1, . . . , R′n)

12



2.2 Linear Orders

defined by

A′ :=
{
v ∈ B

∣∣ B |= δ[v]
}

and
R′i :=

{
v ∈ (A′)ri

∣∣ B |= ϕRi [v]
}
.

Whenever we want to emphasize the map f , we say that I is an
mso interpretation of A in B via f .

The main benefit of mso interpretations is that they provide
a way to reduce the mso theory of A to the mso theory of B.
More precisely, there is a syntactic transformation which assigns
to every mso sentence Φ suitable for A an mso sentence ΦI
suitable for B with the property that A |= Φ holds true if and
only if B |= ΦI . Roughly speaking, ΦI is obtained from Φ by
relativizing all quantifiers to (sets of) elements satisfying the
formula δ and replacing each atomic subformula Ri(x1, . . . , xri)
with ϕRi(x1, . . . , xri).

2.2 Linear Orders
The purpose of this section is to recall the fundamentals on
linear orders and ordinals. Moreover, we provide the necessary
background on the finite-condensation rank. For the most part,
we loosely follow the presentation in the book “Linear orderings”
by Rosenstein [Ros82].

2.2.1 Basic Notations

A linear order is a relational structure (A;6A) where 6A is a
linear ordering of A, i.e., a reflexive, transitive, anti-symmetric
and total relation on A. The corresponding strict linear ordering
of A is denoted by <A. As is customary, we identify the domain
A with the linear order (A;6A) in many situations and simply

13
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call A a linear order then. Whenever we do so, we denote the
linear ordering of A by 6A or even just by 6 if there is no
danger of confusion. The order type or sometimes just type of
a linear order A is the isomorphism type of A, i.e., the class of
all structures which are isomorphic to A. In order to slightly
simplify notation, we use the phrase “type τ linear order A” for
“linear order A of type τ”. The order types of the linear orders
(N;6), (N;>), (Z;6) and (Q;6) are denoted by ω, ω?, ζ and η.
The order type of a finite linear order with n elements is simply
denoted by n as well.1

Let A and B be linear orders. An embedding of A into B is an
injective map f : A→ B such that u 6A v implies f(u) 6B f(v)
for all u, v ∈ A. Equivalently, a map f : A→ B is an embedding
if u <A v implies f(u) <B f(v) for all u, v ∈ A. Notice that there
might be embeddings f : A→ B and g : B → A although A and
B are not isomorphic.

Let I be a linear order and Ai a linear order for each i ∈ I.
The I-sum of the Ai, denoted by

∑
i∈I Ai, is the linear order A

defined by
A :=

⊎
i∈I

Ai

and u 6A v if either there are i, j ∈ I with i <I j, u ∈ Ai
and v ∈ Aj or there is i ∈ I with u, v ∈ Ai and u 6Ai v. If
I is finite, say I = {1, . . . , n} ordered naturally, we also write
A1 + A2 + · · · + An for the I-sum of the Ai. Clearly, replacing
the Ai by isomorphic linear orders yields an isomorphic I-sum.
Put another way, we can also build sums of order types.

The product of two linear orders A and B is the linear order
A ·B defined by

A ·B := A×B
1In order to limit potential confusion, we use this notation without further

notice only in arithmetical expressions of order types, e.g., η + 1, ζ · n or ωn,
where n ∈ N.
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and 〈u1, v1〉 6A·B 〈u2, v2〉 if either v1 <B v2 or both v1 = v2 and
u1 6A u2. Notice that A · B is isomorphic to the sum

∑
v∈B A.

Moreover, the order type of A · B is completely determined by
the order types of A and B. Accordingly, we extend this product
from linear orders to order types as well.

A linear order A is dense if, for all u, v ∈ A with u <A v,
there is w ∈ A with u <A w <A v. In fact, there are only very
few isomorphism types of dense countable linear orders:

Theorem 2.2.1 (Cantor’s theorem). A non-empty countable
linear order is dense if and only if its order type is among 1, η,
1 + η, η + 1 and 1 + η + 1.

The complete opposite of being dense is being scattered. Formally,
a linear order A is scattered if (Q;6) cannot be embedded into A.
In some sense, dense and scattered linear orders are the basic
building blocks of countable linear orders.

Theorem 2.2.2 (Hausdorff’s theorem). Every countable linear
order A is a dense sum of scattered linear orders, i.e., there are a
dense linear order I and scattered linear orders Ai for each i ∈ I
such that A =

∑
i∈I Ai.

2.2.2 Well-Orders and Ordinals

We assume familiarity with ordinals and their arithmetic. We
regard ordinals as order types of well-orders. In order to avoid am-
biguities we do not identify an ordinal α with the set {β | β < α }
of all smaller ordinals. The first uncountable ordinal is denoted
by ω1. The Cantor normal form of an ordinal α is its unique
representation as a finite sum α = ωγ1 + ωγ2 + · · · + ωγs with
γ1 > γ2 > · · · > γs. If A is a type α well-order, its decomposition
into Cantor normal form is the unique decomposition as a sum
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A1 + A2 + · · · + As such that Ai has order type ωγi for each
i ∈ [1, s].

In addition to the standard arithmetic of ordinals, we need the
natural arithmetic. To this end, let α and β be two ordinals and
α = ωγ1 + · · ·+ ωγs and β = ωδ1 + · · ·+ ωδt their Cantor normal
forms. Moreover, let ε1 > ε2 > · · · > εs+t be the sequence of
ordinals obtained from sorting the sequence γ1, . . . , γs, δ1, . . . , δt.
The natural sum of α and β is the ordinal α⊕ β defined by

α⊕ β := ωε1 + ωε2 + · · ·+ ωεs+t .

The natural product of α and β is the ordinal α⊗ β defined by

α⊗ β :=
⊕

16i6s
16j6t

ωγi⊕δj .

In contrast to the standard ordinal sum and product, the natural
sum and product both are commutative and strictly monotonic
in both arguments.

2.2.3 The Finite-Condensation Rank

As indicated in the introduction, the only known partial char-
acterization of the string-automatic linear orders is an upper
bound on their finite-condensation ranks. Roughly speaking, the
finite-condensation rank of a linear order A is an ordinal which
measures how far A is away from being dense. Our presentation
of the definition of this rank loosely follows chapters 4 and 5 of
Rosenstein’s book [Ros82], although we make one fundamental
change in notation: We prefer to describe the underlying conden-
sation process in terms of equivalence relations and not in terms
of natural homomorphisms. However, one can easily show that
both variants are equivalent. If A is a linear order and X,Y ⊆ A
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are subsets, we write X � Y to denote the fact that u < v for
all u ∈ X and v ∈ Y .

Let A be a linear order. A condensation relation on A is
an equivalence relation ∼ on A whose equivalence classes are
convex subsets of A. In this situation, the set of all ∼-classes is
strictly linearly ordered by �. We denote the resulting linear
order by A/∼. Figuratively speaking, this linear order is obtained
from A by contracting (or condensing) each ∼-class into a single
point. To put it the other way round,

A =
∑

X∈A/∼
X . (2.2)

An important example of a condensation relation on A is the
relation of being finitely distant (in A): u, v ∈ A are finitely
distant in A if there are only finitely many w ∈ A with u 6 w 6 v
(if u 6 v) or v 6 w 6 u (if v 6 u). This condensation is called
the finite-condensation relation (on A). For the purpose of later
use, we note that this condensation relation can be defined in A
by means of the ∃∞-quantifier.

We now formalize the process of transfinitely iterating the
finite-condensation relation. To this end, we define for each
ordinal α a condensation relation ∼α on A, which is called the
αth iterated finite-condensation relation:
(1) ∼0 is the identity relation on A.
(2) If α is a successor ordinal, say α = β+1, then u ∼α v whenever

the ∼β-classes of u and v are finitely distant in A/∼β.
(3) If α is a limit ordinal, then u ∼α v whenever there is β < α

with u ∼β v.
Notice that ∼1 is precisely the finite-condensation relation itself.
For reasons of cardinality, there is always an ordinal α such that
∼α and ∼β coincide for each β > α. In fact, there is even a
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countable α with this property whenever A is countable [Ros82,
theorem 5.9]. The former fact justifies the following definition:

Definition 2.2.3. Let A be a linear order. The finite-condensa-
tion rank or FC-rank of A, denoted by FC(A), is the least ordinal
α with the property that ∼α and ∼β coincide for each β > α.

The lemma below lists various properties of the FC-rank that we
require later on, cf. [Ros82, chapter 5].

Lemma 2.2.4. Let A be a linear order and X ⊆ A a suborder.

(1) If A is a scattered linear order or X is a convex subset of A,
then FC(X) 6 FC(A).

(2) If A is a type ωγ well-order, then FC(A) = γ.

(3) If A is a type ωγ + 1 well-order, then FC(A) = γ + 1.

(4) If α = FC(A), then every ∼α-class is scattered and A/∼α is
dense.

In view of eq. (2.2) on the preceding page, the last statement
demonstrates theorem 2.2.2. In addition, A is scattered if and
only if A/∼α is a singleton linear order. In the remainder of this
section, we present an alternative characterization of the class
of countable scattered linear orders which evolved in the context
of theorem 2.2.2. For each countable ordinal α, the class VDα of
linear orders is defined inductively as follows:

(1) VD0 consists of the empty linear order and all singleton linear
orders.

(2) For α > 0, VDα consists of all ζ-sums of linear orders from
the class

VD<α :=
⋃
β<α

VDβ .
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Finally, the class VD of very discrete linear orders is defined as

VD :=
⋃
α<ω1

VDα .

For any linear order A ∈ VD, the VD-rank of A, which is denoted
by VD(A), is the least ordinal α such that A ∈ VDα. The
aforementioned characterization of scatteredness is as follows:

Theorem 2.2.5 (Hausdorff’s theorem (continued)). A countable
linear order A is scattered if and only if A ∈ VD. In case that A
is scattered,

FC(A) = VD(A) .

The classes VDα have the disadvantage of not being closed under
taking finite sums. However, for our purposes this property is
crucial. Accordingly, for each countable ordinal α, we further
take the class

VD?α :=
{
A1 + · · ·+An

∣∣ n > 0, A1, . . . , An ∈ VDα
}

into account. Obviously,

VD =
⋃
α<ω1

VD?α .

The VD∗-rank of a scattered linear order A, denoted by VD∗(A),
is the least ordinal α such that A ∈ VD?α. Using almost the same
proof as for theorem 2.2.5, one can show that VD∗(A) is the least
ordinal α such that A/∼α is finite.

2.3 Automata Theory
In this section, we present the necessary background on finite
automata on strings [Eil74, KN01] and trees [TW68, CDG+08],
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their connection to monadic second-order logic [Tho97] and al-
gebraic recognizability [Eil76]. As deterministic models of finite
automata are strong enough and considerably more convenient for
the elaborations to follow, we refrain from introducing non-deter-
ministic automata. In the end of this section, we further present
some basic results on regular languages of polynomial growth. In
particular, we provide a new short proof of the characterization
of these languages.

2.3.1 Finite Automata on Strings

Let Σ be an alphabet, i.e., a non-empty finite set. From now on,
the letter Σ always refers to an alphabet. The set of all (finite)
strings (over Σ) is denoted by Σ∗, the empty string by ε and the
length of some string u ∈ Σ∗ by |u|. The set of non-empty strings
is Σ+, i.e., Σ+ := Σ∗ \ {ε}. For u ∈ Σ∗ and a ∈ Σ, the symbol
|u|a counts the number of a-symbols in u. The concatenation of
two string u, v ∈ Σ∗ is written u · v or just uv. Subsets of Σ∗ are
called languages (of strings). The concatenation of two languages
K,L ⊆ Σ∗ is denoted by K ·L or just KL, the (Kleene) iteration
of L ⊆ Σ∗ by L∗.

A deterministic finite automaton on strings (over Σ) or, for
short, string-automaton (over Σ) is a 4-tuple M = (Q, ι, δ, F )
consisting of a finite set Q, an element ι ∈ Q, a map δ : Q×Σ → Q
and a subset F ⊆ Q. The elements of Q are called states, ι is
the initial state, δ is the transition map and the states in F are
final states. We extend δ to a map δ̂ : Q×Σ∗ → Q by inductively
defining, for all q ∈ Q, a ∈ Σ and u ∈ Σ∗,

δ̂(q, ε) := q and δ̂(q, ua) := δ(δ̂(q, u), a) . (2.3)

Abusing notation, we omit the accent on δ̂ and just write δ(q, u)
for δ̂(q, u) in what follows. The automatonM is said to accept a
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string u ∈ Σ∗ if δ(ι, u) ∈ F . The language recognized by A is the
language L (M) ⊆ Σ∗ of all strings accepted byM, i.e.,

L (M) :=
{
u ∈ Σ∗

∣∣ δ(ι, u) ∈ F
}
.

A language L ⊆ Σ∗ is called regular if it is recognized by some
string-automaton. It is well-known that the class of regular
languages is effectively closed under Boolean operations, concate-
nation, iteration and (inverse) projections.

2.3.2 Algebraic Automata Theory

An alternative characterization of the class of regular languages
is given by means of algebraic recognizability. Our interest in
this characterization is primarily due to the concise pumping
arguments it brings into scope. A semigroup is a set S together
with an associative binary operation · on S, called the semigroup
operation. It is customary to denote the semigroup operation
by juxtaposition, i.e., we write st for s · t with s, t ∈ S. Two
important examples of a semigroup are formed by the sets Σ∗ and
Σ+ both equipped with concatenation as semigroup operation.
Notice that either of this semigroups is finitely generated, the
former by Σ ∪ {ε} and the latter by Σ. The direct product of
semigroups S1, . . . , Sn is the Cartesian product S1×· · ·×Sn with
component-wise application of the semigroup operations, i.e.,

〈s1, . . . , sn〉 · 〈t1, . . . , tn〉 := 〈s1t1, . . . , sntn〉 .

A morphism (of semigroups) is a map η : S → S′ between two
semigroups S and S′ which respects the semigroup operations,
i.e., η(st) = η(s) η(t) for all s, t ∈ S. Let L ⊆ Σ∗ be a language
and S a finite semigroup. A morphism η : Σ∗ → S recognizes the
language L if one of the following two equivalent conditions is
satisfied:
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(1) There is a subset F ⊆ S such that L = η−1(F ).
(2) For all u, v ∈ Σ∗ with η(u) = η(v), we have u ∈ L if and only

if v ∈ L.
A language L is called algebraically recognizable if it is recognized
by some morphism into a finite semigroup. Throughout this
thesis, we use the phrase “a morphism η : Σ∗ → S recognizing L”
as an abbreviation for “a morphism η : Σ∗ → S into a finite
semigroup S which recognizes L”. In particular, we implicitly
assume S to be finite. The connection between regularity and
algebraic recognizability is as follows:

Theorem 2.3.1 (Myhill’s theorem). Let L ⊆ Σ∗ be a language.
The following conditions are effectively equivalent:
(1) L is regular.
(2) L is algebraically recognizable.

Suppose that L1, . . . , Ln ⊆ Σ∗ are regular languages and each Li
is recognized by the morphism ηi : Σ∗ → Si. Then the morphism
η : Σ∗ → S1 × · · · × Sn defined by

η(s1, . . . , sn) := 〈η1(s1), . . . , ηn(sn)〉

recognizes all the Li. To emphasize this, any finite number of regu-
lar languages admit one common morphism which simultaneously
recognizes all of them.

Recall that our interest in algebraic recognizability is mainly
motivated by concise pumping arguments. These arguments are
formalized by means of the notion of idempotency. To this end,
we fix a semigroup S. An element s ∈ S is idempotent if s2 = s.
Henceforth, we additionally assume that S is finite. Then every
s ∈ S admits some k(s) > 1 such that sk(s) is idempotent. In
fact, there is even some k > 1 such that sk is idempotent for all
s ∈ S, e.g., the least common multiple of all the k(s). The least k
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with this property is called the exponent of S. The choice of the
term “exponent” reflects that the role idempotent elements play in
semigroups is in some sense similar to the role the neutral element
plays in groups. Notice that any multiple k of the exponent of S
has the property that sk is idempotent for all s ∈ S as well. As
a matter of fact, one can even show that no k other than these
multiples have this property. To get a taste of the concise pumping
arguments we have in mind, we provide a simple showcase:

Example 2.3.2. Let L be a language, η : Σ∗ → S a morphism
recognizing L and k the exponent of S. Suppose we have u, v ∈ Σ∗
and m,n > 2k with umvn ∈ L. Using the idempotency of η(u)k
and η(v)k, we obtain

η(um+kvn−k) = η(um−k) · (η(u)k)2 · η(v)k · η(vn−2k)
= η(um−k) · η(u)k · (η(v)k)2 · η(vn−2k)
= η(umvn)

and hence um+kvn−k ∈ L. The interesting point about this
calculation is that we added as many u’s as we removed v’s.

Although it is possible to achieve similar results by ordinary pump-
ing arguments applied to finite automata, these arguments would
not be as concise. The advantage of resorting to algebraic recog-
nizability becomes even more apparent in our actual applications
in chapter 5.

2.3.3 Finite Automata on Trees

The prefix relation on {0, 1}∗ is the partial ordering 4 defined by
u 4 v if there is w ∈ {0, 1}∗ with uw = v. A subset U ⊆ {0, 1}∗
is an anti-chain if its elements are mutually incomparable wrt 4.
A tree-domain is a non-empty finite subset D ⊆ {0, 1}∗ which
is downward closed wrt 4, i.e., the premises u 4 v and v ∈ D
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always imply u ∈ D.2 The elements of D are called nodes and are
of two kinds: A node u ∈ D is a leaf if u0, u1 6∈ D and an inner
node otherwise. The boundary of D is the least (wrt inclusion) set
∂D ⊆ {0, 1}∗ such that ui ∈ D ∪ ∂D for all u ∈ D and i ∈ {0, 1}.
More precisely,

∂D :=
{
ui
∣∣ u ∈ D, i ∈ {0, 1}, ui 6∈ D } .

Notice that D ∪ ∂D is a tree-domain as well. Its inner nodes are
those in D and its leaves the elements of ∂D.

A (finite labeled) tree (over Σ) is a map t : D → Σ where
dom(t) := D is a tree-domain. The set of all trees over Σ is
denoted by TΣ . Its subsets are called languages (of trees). Let
t ∈ TΣ be a tree. The height of t is the number

h(t) := max
{
|u|
∣∣ u ∈ dom(t)

}
.

The subtree of t rooted at u ∈ dom(t) is the tree t�u ∈ TΣ defined
by

dom(t�u) :=
{
v ∈ {0, 1}∗

∣∣ uv ∈ dom(t)
}

and
t�u(v) := t(uv) .

For an anti-chain {u1, . . . , un} ⊆ dom(t) and trees t1, . . . , tn ∈ TΣ ,
we consider the tree t[u1/t1, . . . , un/tn] ∈ TΣ which is obtained
from t by simultaneously replacing, for each i ∈ [1, n], the subtree
rooted at ui with ti. Formally,

dom(t[u1/t1, . . . , un/tn]) :=
dom(t) \ {u1, . . . , un}{0, 1}∗ ∪

⋃
16i6n

ui dom(ti)

2Some authors additionally require that u0 ∈ D whenever u1 ∈ D or
even that u0 ∈ D if and only if u1 ∈ D. As a matter of fact, remark 2.4.4
establishes that such requirements would not reduce the expressive power in
the context of automatic structures anyway.
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and

t[u1/t1, . . . , un/tn](u) :=
{
ti(v) if u = uiv for some i and v,
t(u) otherwise.

A bottom-up deterministic finite automaton on trees (over Σ) or,
for short, tree-automaton (over Σ) is a 4-tuple T = (Q, ι, δ, F ) con-
sisting of a finite setQ, an element ι ∈ Q, a map δ : Q×Σ×Q→ Q
and a subset F ⊆ Q. Again, the elements of Q are called states, ι
is the initial state, δ is the transition map and the states in F are
final states. Similar to eq. (2.3) on page 20, we define for each
t ∈ TΣ and u ∈ dom(t) ∪ ∂ dom(t) a state δ̂(ι, t, u) ∈ Q by

δ̂(ι, t, u) :=
{
ι if u ∈ ∂ dom(t),
δ(δ̂(ι, t, u0), t(u), δ̂(ι, t, u1)) if u ∈ dom(t).

Notice that
δ̂(ι, t, u) = δ̂(ι, t�u, ε)

whenever u ∈ dom(t). Abusing notation in the same way as before,
we write δ(ι, t, u) for δ̂(ι, t, u) in what follows. In addition, we
omit the parameter u from δ(ι, t, u) whenever u = ε. Intuitively,
δ(ι, t) is the state the automaton T reaches at the root when
processing t.3 The language recognized by T is the set

L (T ) :=
{
t ∈ TΣ

∣∣ δ(ι, t) ∈ F }
of all trees accepted by T . A language L ⊆ Σ∗ is called regular if
it is recognized by some tree-automaton. The class of regular lan-
guages of trees is also effectively closed under Boolean operations
and (inverse) projections.

3Although we always use the initial state ι as the first parameter of δ(ι, t),
we do not omit this parameter for the sake of a notation which treats finite
automata on strings and on trees uniformly.
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2.3.4 Monadic Second-Order Definability

In order to describe languages of strings or trees by means
of mso formulas, we need to represent every string and every
tree by a relational structure. The representation of a string
u = a1a2 . . . an ∈ Σ∗ is the structure

Mu :=
(
{1, . . . , n};6u, (P ua )a∈Σ

)
where 6u is the natural ordering of {1, . . . , n} and

P ua :=
{
i ∈ {1, . . . , n}

∣∣ ai = a
}
.

In the following, we identify u with its representation Mu. In
particular, we say that an mso sentence Φ is suitable for u if
it is suitable for Mu and write u |= Φ instead of Mu |= Φ. A
language L ⊆ Σ∗ is monadic second-order definable or, for short,
mso definable if there is an mso sentence Φ such that

L =
{
u ∈ Σ∗

∣∣ u |= Φ
}
.

In this situation, we say that the sentence Φ defines L.
The representation of a tree t ∈ TΣ is the structure

Mt :=
(
dom(t); (Sti )i=0,1, (P ta)a∈Σ

)
given by

Sti :=
{
〈u, v〉 ∈ dom(t)2 ∣∣ ui = v

}
and

P ta :=
{
u ∈ dom(t)

∣∣ t(u) = a
}
.

Notice that we did not include the prefix relation 4 on dom(t)
in Mt. However, this is of no importance since 4 is mso definable
by means of eq. (2.1) on page 12 as the transitive closure of
the formula S(x, y) := S0(x, y) ∨ S1(x, y). Just like for strings,
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we identify t with its representation Mt as well. Accordingly, a
language L ⊆ TΣ is monadic second-order definable if there is an
mso sentence Φ which defines L, i.e.,

L =
{
t ∈ TΣ

∣∣ t |= Φ
}
.

Our interest in mso definability is owed to its close connection to
regularity given by the following theorem. The version for strings
is sometimes called Büchi–Elgot–Trakhtenbrot theorem [Büc60,
Elg61, Tra61] and the version for trees is due to Doner [Don65,
Don70] and, independently, Thatcher and Wright [TW68].

Theorem 2.3.3 (cf. [Tho97]). Let L be a language of strings or
trees. The following conditions are effectively equivalent:
(1) L is regular.

(2) L is monadic second-order definable.

2.3.5 Regular Languages of Polynomial Growth

Preparing a natural restriction of the class of automatic structures,
this section deals with regular languages of polynomial growth.
Basically, we provide a new characterization of this class of lan-
guages in terms of unambiguously rational expressions. Our proof
is very short and subsumes the characterization from [SYZS92].

Definition 2.3.4. Let L ⊆ Σ∗ be a language. The growth of L
is the map gL : N→ N defined by

gL(n) := |L ∩Σ6n| .

We say that L has polynomial growth or grows polynomially if
gL(n) ∈ O(nk) for some k ∈ N. Conversely, we say that L grows
exponentially if gL(n) ∈ 2Ω(n).
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Notice the trivial upper bound gL(n) ∈ 2O(n). Thus, every ex-
ponentially growing language even satisfies gL(n) ∈ 2Θ(n). The
standard example of a polynomially growing language is as follows:

Example 2.3.5. Let m > 0 and, for each i ∈ [1,m], ki > 0,
ui0, ui1, . . . , uiki ∈ Σ∗ and vi1, . . . , viki ∈ Σ+. We demonstrate
that the language

L :=
⋃

16i6m
ui0v

∗
i1ui1 · · · v∗ikiuiki (2.4)

grows polynomially by establishing the bound gL(n) ∈ O(nk) for
k := max{k1, . . . , km}.

To this end, let Li := ui0v
∗
i1ui1 · · · v∗ikiuiki for each i. Since

L =
⋃

16i6m Li, we obtain

gL(n) 6
∑

16i6m
gLi(n) . (2.5)

Now, fix i ∈ [1,m], n ∈ N and consider some w ∈ Li∩Σ6n. There
are n1, . . . , nki ∈ N satisfying w = ui0v

n1
i1 ui1 · · · v

nki
iki
uiki . Notice

that
n1, . . . , nki 6 |ui0v

n1
i1 ui1 · · · v

nki
iki
uiki | = |w| 6 n .

Thus, we may conclude

gLi(n) 6
∣∣{ 〈n1, . . . , nki〉 ∈ Nki

∣∣ n1, . . . , nki 6 n
}∣∣

= (n+ 1)ki ∈ O(nki) .

Finally, we obtain gL(n) ∈ O(nk) according to eq. (2.5) and the
choice of k.

In fact, it is already known that all polynomially growing regular
languages are of the form in example 2.3.5 [SYZS92]. Moreover,
we have the following dichotomy: Every regular language L grows
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either polynomially or exponentially. In case that L grows polyno-
mially, there is even some k > 0 such that gL(n) ∈ Θ(nk). Using
the notion of unambiguously rational expressions, we now give
a new proof of these results that is substantially shorter than
those in [SYZS92] and slightly strengthens the characterization
of polynomially growing regular languages.

A language L ⊆ Σ∗ is rational if it can be constructed from the
finite languages using union ∪, concatenation · and iteration ∗ only.
According to Kleene’s theorem, a language is rational if and only if
it is regular, i.e., can be recognized by a finite automaton [Kle56].
In fact, this characterization is effective, i.e., one can compute
a rational expression L from a finite automaton recognizing L
and vice versa. It is folklore that applying this construction to a
deterministic finite automaton yields a rational expression with
a special property which is commonly called unambiguity and
defined as follows: Let A,B ⊆ Σ∗ be languages.

(1) The union A ∪B is unambiguous if A and B are disjoint.

(2) The concatenation A · B is unambiguous if every u ∈ A · B
admits precisely one factorization u = vw with v ∈ A and
w ∈ B.

(3) The iteration A∗ is unambiguous if every u ∈ A∗ admits
precisely one factorization u = v1 · · · vn with n > 0 and
v1, . . . , vn ∈ A \ {ε}.

A language L ⊆ Σ∗ is unambiguously rational if it can be con-
structed from the finite languages using unambiguous unions,
concatenations and iterations only. Using this notion of unambi-
guity, Kleene’s theorem reads as follows:

Theorem 2.3.6 (Kleene’s theorem [Kle56]). For every language
L ⊆ Σ∗, the following are effectively equivalent:

(1) L is regular.
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(2) L is rational.
(3) L is unambiguously rational.

The next theorem is the announced characterization of the class
of polynomially growing regular languages.

Theorem 2.3.7. Let L ⊆ Σ∗ be a regular language. Then L
grows either polynomially or exponentially. In case L grows
polynomially, there are m > 0 and, for each i ∈ [1,m], ki > 0,
ui0, ui1, . . . , uiki ∈ Σ∗ and vi1, . . . , viki ∈ Σ+ such that

L =
⋃

16i6m
ui0v

∗
i1ui1 · · · v∗ikiuiki (2.6)

and this rational expression is unambiguous. In particular, if L
is non-empty, then gL(n) ∈ Θ(nk) for k := max{k1, . . . , km}.

Proof. The claim for L = ∅ is trivial. Henceforth, we assume
L 6= ∅. According to theorem 2.3.6, L is unambiguously rational.
Using the algebraic properties of ∪ and · (associativity, distribu-
tivity, neutral/absorbing elements, etc.) and the relationship
∅∗ = ε∗ = {ε}, we can write L as

L =
⋃

16i6m
ui0E

∗
i1ui1 · · ·E∗ikiuiki (2.7)

with m > 1, ki > 0, uij ∈ Σ∗ and rational languages Eij 6⊆ {ε}
such that the whole expression is unambiguous.

For each Eij , let vij ∈ Eij \ {ε} be of minimal length. First,
suppose there is Eij with E∗ij 6= v∗ij . Then there exists w ∈ Eij\v∗ij .
Since E∗ij is an unambiguous iteration, we have vijw 6= wvij and
hence the subset

ui0ui1 · · ·ui,j−1{vijw,wvij}∗uij · · ·uiki ⊆ L

grows exponentially. Thus, L grows exponentially itself.
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Now, suppose that E∗ij = v∗ij for each Eij . Replacing all the
E∗ij with v∗ij in eq. (2.7) establishes eq. (2.6) and the resulting
expression is clearly still unambiguous. Due to example 2.3.5,
this particularly implies that L grows polynomially and, more
precisely, gL(n) ∈ O(nk).

In order to see that gL(n) ∈ Ω(nk), we fix some i with k = ki.
We consider the map f : Nk → L defined by

f(x) := ui0v
x1
i1 ui1 · · · v

xk
ik uik .

Since the expression in eq. (2.6) is unambiguous, f is injective.
Let

p := |ui0|+ · · ·+ |uik|
and

q := max
{
|vi1|, . . . , |vik|

}
.

For all n > 0 and x ∈ Nk with x1, . . . , xk 6
n
k , we have

|f(x)| 6 q · (x1 + · · ·+ xk) + p 6 q · n+ p .

Thus,

gL(q · n+ p) >
∣∣{x ∈ Nk

∣∣ x1, . . . , xk 6
n
k

}∣∣
= (bnk c+ 1)k ∈ Ω(nk) .

Clearly, this implies gL(n) ∈ Ω(nk).

Using the previous characterization along with counting argu-
ments very similar to those in example 2.3.5, we obtain:

Corollary 2.3.8. Let k > 1 and L ⊆ Σ∗ be a regular language
with gL(n) ∈ O(nk). Then

|L ∩Σ=n| ∈ O(nk−1) .
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2.4 Automatic Structures

In this section, we provide the required notation concerning auto-
matic structures. We try to avoid repeating definitions for the
string-automatic and the tree-automatic case but rather approach
them in a more uniform way. For a more detailed overview on
string-automatic structures, we refer the reader to the survey
[Rub08]. The best reference on tree-automatic structures we are
aware of is [BGR11].

2.4.1 String-Automatic and Tree-Automatic
Structures

In order to employ finite automata to recognize relations of
strings, we need to encode tuples of strings by single strings.
To this end, let � 6∈ Σ be a new symbol, called padding sym-
bol, and put Σ� := Σ ∪ {�}. We encode any tuple w ∈ (Σ∗)r
by its convolution ⊗w ∈ (Σr

�)∗ which is defined as follows:
|⊗w| = max{ |w1|, . . . , |wr| } and the ith symbol of ⊗w is the
tuple 〈a1, . . . , ar〉 where, for j ∈ [1, r], aj is the ith symbol of wj
if i 6 |wj | and � otherwise. Whenever r = 2, we also write ⊗ as
an infix operator, i.e., we write w1 ⊗ w2 for ⊗〈w1, w2〉. The con-
volution of a whole relation of strings R ⊆ (Σ∗)r is the language

⊗R :=
{
⊗w

∣∣ w ∈ R } ⊆ (Σr
�)∗ .

Regarding a language L as a unary relation and taking its con-
volution has no effect at all, i.e., ⊗L = L. To resolve possible
ambiguities, we agree that the convolution operator ⊗ has a lower
precedence than taking Cartesian powers, i.e., the term ⊗Lr
means ⊗(Lr), where L is some language.

Similarly, we encode any tuple of trees t ∈ T rΣ by its convolu-
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tion ⊗t ∈ TΣr� which is defined by

dom(⊗t) :=
⋃

16j6r
dom(tj)

and
(⊗t)(u) := 〈t′1(u), . . . , t′r(u)〉 ,

where

t′j(u) :=
{
tj(u) if u ∈ dom(tj),
� otherwise.

Again, the convolution of a relation of trees R ⊆ T rΣ is the
language

⊗R :=
{
⊗t

∣∣ t ∈ R } ⊆ TΣr� .
Definition 2.4.1. A relation of strings or trees R is automatic
if its convolution ⊗R is a regular language. If M is a finite
automaton (on strings or on trees) recognizing ⊗R, then we also
say thatM recognizes R.

Using the notion of an automatic relation, we can provide the very
fundamental definition of an automatically presentable structure.

Definition 2.4.2. A structure A = (A;R1, . . . , Rn) is automat-
ically presentable if there is an injective map f : A → Σ∗ or
f : A→ TΣ , called encoding, satisfying the following two condi-
tions:

(1) The language f(A) is regular.

(2) The relation
f(Ri) :=

{
f(x)

∣∣ x ∈ Ri }
is automatic for each i ∈ [1, n].
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In this situation, an automatic presentation of A is a tuple
P = (M0;M1, . . . ,Mn) of finite automata such thatM0 recog-
nizes f(A) andMi recognizes f(Ri) for each i ∈ [1, n].

Whenever f maps into Σ∗ and we want to emphasize this
circumstance, we say that A is string-automatically presentable
and call P a string-automatic presentation of A . Similarly, A is
tree-automatically presentable and P a tree-automatic presentation
if f maps into TΣ .

The class of string-automatically presentable structures is
denoted by SA and the class of tree-automatically presentable
structures by TA.

First of all, notice that the injectivity of f in the definition
above immediately implies that f is an isomorphism between the
structures A and

f(A ) :=
(
f(A); f(R1), . . . , f(Rn)

)
.

If we want to show that a certain structure A is automatically
presentable, we mostly do so by specifying the encoding f(u)
of each u ∈ A and verifying that the map f defined this way
does actually satisfy the conditions of definition 2.4.2. We note
that there is another notion of automatic presentability where
every single element of A might have several encodings and the
relation of “encoding the same element” is automatic. However, it
is known that every structure which is automatically presentable
in this more general sense is also automatically presentable in the
sense of definition 2.4.2 [KN95, CL07].

Whenever we investigate properties invariant under isomor-
phism of automatically presentable structures, we resort to inves-
tigating the structure f(A ) instead of A itself. In order to avoid
clumsy notation in these situations, structures of the form f(A )
have a catchy name:
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Definition 2.4.3. A structure A = (A;R1, . . . , Rn) is automatic
if it satisfies the following two conditions:
(1) The domain A is a regular language of strings or of trees.
(2) Each relation Ri is automatic.
A presentation of A then is a tuple P = (M0;M1, . . . ,Mn) of
finite automata such thatM0 recognizes A andMi recognizes
Ri for each i ∈ [1, n].

More precisely, A is string-automatic if A is a language of
strings and tree-automatic if A is a language of trees.

Put another way, a structure is automatic if it is automatically
presentable by encoding each element by itself. Moreover, a
structure is automatically presentable if and only if it is isomorphic
to an automatic structure. Finally, we note a subtle difference
between an automatic presentation and a presentation (without
the prefixed “automatic”) of an automatic structure: Whereas
the former might correspond to an arbitrary encoding, the latter
always requires the encoding to be the identity map.
Remark 2.4.4. As already mentioned, some authors put higher
requirements on tree-domains, the strongest of them being that
u0 ∈ D if and only if u1 ∈ D. However, every structure which is
tree-automatically presentable in the sense of definition 2.4.2 is
also tree-automatically presentable in this more restricted sense.
To see this, let A be a tree-automatic structure with A ⊆ TΣ
and ⊥ 6∈ Σ a fresh symbol. Encoding every tree t ∈ A by the tree
t⊥ ∈ TΣ∪{⊥} given by

dom(t⊥) := dom(t) ∪ ∂ dom(t)
and

t⊥(u) :=
{
t(u) if u ∈ dom(t),
⊥ otherwise,
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effectively yields a tree-automatic presentation of A satisfying
the strongest requirement on tree-domains.
It is well-known that every string-automatic structure A is
also tree-automatically presentable, i.e., SA ⊆ TA. To see this,
one fixes an arbitrary symbol a0 ∈ Σ and encodes each string
w = a1 . . . an ∈ A by the unique tree tw ∈ TΣ with dom(tw) = 06n

and tw(0i) = ai. It is a matter of routine to check that this encod-
ing satisfies the conditions of definition 2.4.2. A prominent and
very useful example of a string-automatic structure is a linear
order which plays a role in several proofs to follow.

Example 2.4.5. Let 6Σ be an arbitrary linear ordering of the
alphabet Σ. The length-lexicographic ordering (wrt 6Σ) of Σ∗
is the linear ordering 6llex defined by u <llex v if either |u| < |v|
or both |u| = |v| and there are x, y, z ∈ Σ∗ and a, b ∈ Σ with
a <Σ b, u = xay and v = xbz. It is well-known and easy to check
that (Σ∗;6llex) is a string-automatic type ω linear order.

The interest in automatic structures is mostly owed to the fol-
lowing fundamental theorem and its corollary, cf. [Hod83, KN95,
Blu99]. In fact, this theorem is fundamental to such an extent
that we use it without further reference. Usually, its application is
indicated by arguing that some relation R is first-order definable
and concluding that R is hence automatic.

Theorem 2.4.6 (fundamental theorem, cf. [Blu99]). Let A be
an automatic structure and φ(x1, . . . , xr) a first-order formula
suitable for A . Then the relation

φA :=
{
u ∈ Ar

∣∣ A |= φ[u]
}

defined by φ is effectively automatic. More precisely, given a
presentation of A and the formula φ, one can compute a finite
automaton recognizing φA .
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Corollary 2.4.7 (cf. [Blu99]). The first-order theory of every
automatically presentable structure is uniformly decidable. More
precisely, given an automatic presentation of some structure A
and a first-order sentence Φ suitable for A , one can decide whether
A |= Φ holds true or not.

Remark 2.4.8. It is well-known that theorem 2.4.6 and corol-
lary 2.4.7 remain valid if first-order logic is extended by the
“there are infinitely many” quantifier ∃∞ [Blu99].

We note that any decision procedure which verifies corollary 2.4.7
is inherently non-elementary. This is caused by the circumstance
that there are string-automatic structures possessing a first-order
theory of non-elementary complexity, including the full binary
tree ({0, 1}∗;S0, S1,4) [CH90] and the extension (N; +, |2) of
Presburger’s arithmetic where x |2 y if x is a power of 2 which
divides y [Grä90].

We conclude our introduction to automatic structures by
providing a result that can be regarded as a pumping lemma
for string-automatic structures. As a matter of fact, this lemma
turned out to be highly useful for showing that certain structures
are not string-automatically presentable and we use it in the same
way here.

Definition 2.4.9. Let r ∈ N and A be a set. A relation R ⊆ Ar+1

is finitely valued at u ∈ Ar if there only finitely many v ∈ A such
that 〈u, v〉 ∈ R. The relation R is locally finite if it is finitely
valued at every u ∈ Ar.

Lemma 2.4.10 ([EM65]). Let R ⊆ (Σ∗)r+1 be an automatic re-
lation. There exists a constant C ∈ N such that, for all 〈u, v〉 ∈ R
where R is finitely valued at u, the length of v is bounded by

|v| 6 |⊗u|+ C .
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2.4.2 Automatic Structures on Domains of
Polynomial Growth

A very natural and well studied subclass of SA is the class
1SA of unary string-automatically presentable structures which
is obtained by restricting the alphabet Σ to singleton sets only,
cf. [Blu99, Rub04]. A more general but lesser studied class is
formed by those structures which are string-automatically pre-
sentable on a domain of polynomial growth, cf. [Bár07]. Remark-
ably enough, imposing this restriction on the domain of a string-
automatic structure leads to a first-order theory in PSPACE.

Definition 2.4.11. For every k ∈ N, the class pSA[k] contains all
structures that are isomorphic to a string-automatic structure A
with gA(n) ∈ O(nk). The class pSA contains all structures that
are isomorphic to a string-automatic structure A whose domain
A grows polynomially, i.e.,

pSA :=
⋃
k>0

pSA[k] .

Notice that the classes pSA[k] form a hierarchy

pSA[0] ⊆ pSA[1] ⊆ pSA[2] ⊆ · · · ⊆ pSA ⊆ SA

inside pSA and SA. Obviously, pSA[0] is the class of finite struc-
tures. Furthermore, the class pSA[1] contains precisely the unary
string-automatically presentable structures [Bár07].

A similar hierarchy inside TA was proposed under the name
“finite-rank tree-automatic presentations” in [BGR11]. Intuitively,
the idea behind this hierarchy is to restrict the branching com-
plexity of the trees involved in a tree-automatic presentation.
Formally, this branching complexity can be captured by means
of the Cantor–Bendixson rank, cf. [KRS05]. However, it is possi-
ble to introduce the same restriction in terms of the growth of
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languages of strings. To this end, we assign to every language
L ⊆ TΣ the set

T (L) :=
⋃
t∈L

dom(t) ⊆ {0, 1}∗ .

One can easily show that T (L) is regular whenever L is regular.
In particular, theorem 2.3.7 applies to T (L) then.

Definition 2.4.12. For every k ∈ N, the class pTA[k] contains
all structures that are isomorphic to a tree-automatic structure
A with gT (A)(n) ∈ O(nk). The class pTA contains all structures
that are isomorphic to a tree-automatic structure A such that
T (A) grows polynomially, i.e.,

pTA :=
⋃
k>0

pTA[k] .

Again, we have a hierarchy

pTA[0] ⊆ pTA[1] ⊆ pTA[2] ⊆ · · · ⊆ pTA ⊆ TA .

As a matter of fact, the class pTA[1] coincides with SA. The
inclusion SA ⊆ pTA[1] is sketched right below remark 2.4.4. The
converse inclusion can be shown by “compressing” any tree-au-
tomatic structure A with gT (A)(n) ∈ O(n1) into an isomorphic
string-automatic structure, cf. theorem 2.4.17.

2.4.3 Slim Languages of Trees

The last two sections of this chapter are devoted to the afore-
mentioned compression technique for showing pTA[1] ⊆ SA. To
be exact, we demonstrate a more general technique which works
for tree-automatic structures on slim domains and is needed in
this generality in section 3.5. For this purpose, we first introduce
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the notion of slim languages of trees and show that slimness is
a decidable property. Afterwards, we describe how to actually
compress a tree-automatic structure on a slim domain into an
isomorphic string-automatic structure in the next section.

Definition 2.4.13. The diameter �(t) ∈ N of a tree t ∈ TΣ is
the maximal number of nodes on any level, i.e.,

�(t) := max
{
|dom(t) ∩ {0, 1}=`|

∣∣ ` ∈ N
}
.

For every d ∈ N, the set of all t ∈ TΣ with �(t) 6 d is denoted
by TΣ,d. A language L ⊆ TΣ of trees is slim if there exists d ∈ N
such that L ⊆ TΣ,d.

Remark 2.4.14. Let L ⊆ TΣ be a regular language of trees with
gT (L)(n) ∈ O(n1). According to corollary 2.3.8, we have

|T (L) ∩ {0, 1}=n| ∈ O(n0) .

Put another way, there is some d ∈ N such that

|T (L) ∩ {0, 1}=n| 6 d

for all n ∈ N. Since dom(t) ⊆ T (L) for each t ∈ L, this particu-
larly implies L ⊆ TΣ,d. Thus, L is slim.
As a first step, we show that it is decidable whether the language
recognized by a given tree-automaton is slim. To this end, we
need the notion of reachable and infinitely reachable states: Let
T = (Q, ι, δ, F ) be a tree-automaton. A state q ∈ Q is reachable if
there is a tree t ∈ TΣ with δ(ι, t) = q. If there are infinitely many
such t, then q is infinitely reachable. Using a simple marking
algorithm, one can compute the set of all reachable states of T
as follows: In the beginning mark ι and as long as there are
unmarked states q ∈ Q which admit marked states r, s ∈ Q and
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a ∈ Σ with δ(r, a, s) = q mark these states q. Since removing
unreachable states from T does not affect its language, we assume
all states of T to be reachable as of now. Tree-automata with
this property are called reduced.

Using graph algorithms, one can even compute the set of all
infinitely reachable states of T . These algorithms inspect the
directed graph GT = (Q,ET ) whose edge relation is given by

〈p, q〉 ∈ ET :⇐⇒ ∃r ∈ Q, a ∈ Σ :
δ(p, a, r) = q ∨ δ(r, a, p) = q .

(2.8)

Notice that, for all t ∈ TΣ , u ∈ dom(t) and i ∈ {0, 1}, there is an
edge

〈δ(ι, t, ui), δ(ι, t, u)〉 ∈ ET ,

which is verified by choosing j ∈ {0, 1} \ {i}, r = δ(ι, t, uj) and
a = t(u). It is well-known that the following conditions are
equivalent for all q ∈ Q:
(1) q is infinitely reachable.
(2) There is a tree t ∈ TΣ with h(t) > |Q| and δ(ι, t) = q.
(3) GT contains a cycle from which q is reachable.
In order to decide whether a tree-automaton recognizes a slim
language, we employ the characterization given by the next lemma.
Therein, an edge 〈p, q〉 ∈ ET is fat if one can choose r to be
infinitely reachable in eq. (2.8).

Lemma 2.4.15. Let T = (Q, ι, δ, F ) be a reduced tree-automaton.
The following conditions are equivalent:
(1) The language L (T ) recognized by T is not slim.
(2) There is a tree t ∈ L (T ) with �(t) > 2|Q|−1.
(3) GT contains a cycle which includes a fat edge and from which

some state in F is reachable.
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Proof. The implication (1) ⇒ (2) is trivial and hence it suffices
to establish the implications (2) ⇒ (3) and (3) ⇒ (1).

Implication (2) ⇒ (3). We fix a tree t ∈ TΣ . In order to keep
notation concise, we put t[u] := δ(ι, t, u) for each u ∈ dom(t). We
further consider the set

Qt :=
{
t[u]

∣∣ u ∈ dom(t)
}
.

For u, v ∈ dom(t) such that u 4 v, say v = ui1 . . . ik with k > 0
and i1, . . . , ik ∈ {0, 1}, we use t[v, u] to denote the path through
GT from t[v] to t[u] along the states qk, qk−1, . . . , q1, q0 with
q` = t[ui1 · · · i`]. Notice that t[v, u] visits only states in Qt.

Using induction on n > 0, we show that whenever �(t) > 2n−1

and |Qt| 6 n, there are u, v ∈ dom(t) such that u ≺ v and t[v, u]
is a cycle which includes a fat edge. In the end, choosing n = |Q|
and t ∈ L (T ) with �(t) > 2|Q|−1 verifies condition (3) because
t[ε] ∈ F is reachable from the cycle t[v, u] along the path t[u, ε].

The base case n = 0 of the induction is trivial because the
premise |Qt| 6 0 is never met. Henceforth, assume that n > 0,
�(t) > 2n−1 and |Qt| 6 n. Let ` ∈ N be such that the set

U := dom(t) ∩ {0, 1}=`

satisfies |U | > 2n−1. Moreover, let u ∈ dom(t) be the longest
common prefix of all elements in U . Clearly,

` > |u|+ n > |u|+ |Qt| .

Depending on whether there exists v ∈ dom(t) with u ≺ v and
t[u] = t[v], we distinguish two cases.

First, suppose there is such v. We assume without loss of
generality that u0 4 v. Due to the choice of u, there is some
w ∈ U with u1 4 w. The path t[w, u] contains ` − |u| > |Qt|
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edges and hence a cycle. The state t[u1] is infinitely reachable
since it is located on or after this cycle. Thus, the edge t[u0, u] is
fat and included in the cycle t[v, u].

Now, suppose there is no v ∈ dom(t) with u ≺ v and t[u] = t[v].
We have 2 6 |Qt| 6 n. Since

�(t�u) > |U | > 2n−1 ,

there is i ∈ {0, 1} such that �(s) > 2n−2 for s = t�ui. We have
Qs ⊆ Qt and t[u] ∈ Qt \Qs. Thus,

|Qs| 6 |Qt| − 1 6 n− 1 .

According to the induction hypothesis, there are v, w ∈ dom(s)
such that v ≺ w and s[w, v] is a cycle which includes a fat
edge. The claim of the induction follows from uiv ≺ uiw and
t[uiw, uiv] = s[w, v].

Implication (3) ⇒ (1). Using induction on n > 0, we show the
following: If GT contains a path which ends in q ∈ Q and includes
n fat edges, there is a tree t ∈ TΣ with δ(ι, t) = q and �(t) > n.
In the end, this proves statement (1) because the cycle in GT
induces paths which end in F and include arbitrarily many fat
edges.

The base case n = 0 is trivial since T is reduced and every
t ∈ TΣ satisfies �(t) > 0. Henceforth, assume n > 0 and consider
a path π which ends in q and includes n fat edges. Let 〈p, r〉
be the last fat edge in π. Applying the induction hypothesis to
everything of π before 〈p, r〉 yields a tree s ∈ TΣ with δ(ι, s) = p
and �(s) > n− 1. Let ` ∈ N be such that

|dom(s) ∩ {0, 1}=`| > n− 1 .

Since 〈p, r〉 is a fat edge, there are an infinitely reachable p′ ∈ Q
and a ∈ Σ with δ(p, a, p′) = r or δ(p′, a, p) = r. Due to the
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symmetry of both cases, we assume without loss of generality
that δ(p, a, p′) = r. As p′ is infinitely reachable, there is s′ ∈ TΣ
with δ(ι, s′) = p′ and h(s′) > `.

We now consider the tree t′ = a(s, s′), i.e., the unique t′ ∈ TΣ
with t′(ε) = a, t′�0 = s and t′�1 = s′. Due to the choices made
above, we have δ(ι, t′) = r and �(t′) > n. Since everything in
π after 〈p, r〉 forms a path from r to q, there are t ∈ TΣ and
u ∈ dom(t) with δ(ι, t) = q and t�u = t′. Clearly, �(t′) > n
implies �(t) > n as well. This completes the induction.

Notice that condition (3) of lemma 2.4.15 is decidable. Thus, re-
moving all unreachable states from a tree-automaton and applying
lemma 2.4.15 yields the subsequent decidability result.

Theorem 2.4.16. Given a tree-automaton T , one can decide
whether the language recognized by T is slim or not. In case L (T )
is slim, then L (T ) ⊆ TΣ,2n−1 for n the number of reachable states
of T .

2.4.4 Tree-Automatic Structures on Slim Domains

The sole purpose of this section is to prove the subsequent theorem.
To this end, we demonstrate how any tree-automatic structure
on a slim domain can be compressed into an isomorphic string-
automatic structure.

Theorem 2.4.17. Given a presentation of a tree-automatic struc-
ture A on a slim domain, one can compute a string-automatic
presentation of A .

First of all, we fix an alphabet Σ and two distinct symbols
⊥, $ ∈ Σ. A tree t ∈ TΣ is called special if its root is not a leaf
and every node u ∈ dom(t) has the following three properties:
(1) t(u) 6= $, (2) if u is an inner node, then t(u) 6= ⊥ and u has
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precisely two children and (3) if u is a leaf, then t(u) = ⊥. A
tuple 〈t1, . . . , tn〉 ∈ TnΣ is special if each ti is special. We say that
a relation on TΣ is special if all its elements are special.

Due to remark 2.4.4, every tree-automatic structure A with
A ⊆ TΣ\{⊥,$} is effectively isomorphic to a tree-automatic struc-
ture B such that B ⊆ TΣ is special. Whenever A is slim, say
A ⊆ TΣ\{⊥,$},d, then B ⊆ TΣ,2d, i.e., B is also slim. Accordingly,
we only take tree-automatic structures on special domains into
account.

For the remainder of this section, we further fix some d ∈ N.
The translation from tree-automaticity to string-automaticity
consists of two parts:

(1) We provide an encoding of any special tree t ∈ TΣ,d by a
string C(t) ∈ Σ∗.

(2) We demonstrate that this encoding preserves automaticity.

Before defining this encoding formally, we give an intuitive descrip-
tion. Consider a special tree t ∈ TΣ,d of height h. Its encoding
C(t) = σ0σ1 · · ·σh consists of h+1 blocks σ0, σ1, . . . , σh ∈ Σ=d de-
scribing the individual levels of t. More precisely, σi consists of the
labels of the ith level from left to right and is padded up to length
d by $-symbols. For example, the special tree t0 ∈ T{a,b,c,⊥,$} in
fig. 2.1 on the following page satisfies �(t0) = 6 and is, provided
that d = 8, encoded as

C(t0) = a$7 bc$6 cb⊥a$4 ⊥⊥a⊥⊥⊥$2 ⊥⊥$6 .

Definition 2.4.18. Let t ∈ TΣ,d be a special tree of height h.
The encoding of t is the string

C(t) := σ0σ1 · · ·σh ∈ Σ∗
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a

b

c

⊥ ⊥

b

a

⊥ ⊥

⊥

c

⊥ a

⊥ ⊥

Figure 2.1: An example tree t0

where, for each i ∈ [0, h],

σi := t(ui1)t(ui2) · · · t(uisi)$d−si ,

provided that

dom(t) ∩ {0, 1}=i =
{
ui1 <lex ui2 < · · · <lex uisi

}
.

We lift this encoding to special tuples and special relations in the
obvious way.

Given a tree-automaton TA which recognizes a special lan-
guage A ⊆ TΣ,d, it seems quite reasonable to construct a string-
automaton which recognizes C(A) by simulating TA. However, it
turned out to be far more complicated to implement the analogous
simulation for binary relations R ⊆ T 2

Σ,d. The reason for this
disparity is as follows: Every position of C(t) refers to a unique
node of t whereas distinct positions of C(t1)⊗ C(t2) might refer
to the same node of t1 ⊗ t2. Thus, a string-automaton which
simulates a tree-automaton recognizing R would also have to keep
track of which positions refer to the same nodes. Unfortunately,
it appears to be too intricate to handle this construction properly.

In view of this intricacy, we resort to the connection between
recognizability by finite automata and mso definability along
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with mso interpretations in order to prove that the encoding
C preserves automaticity. Our main tool in this proof is the
following lemma. Basically, it states that t can be recovered from
C(t) by means of an mso interpretation which is independent
from t. Recall that the modulo quantifier “there are n many for
some n ∈ N with n ≡ r (mod d)”, written as ∃r mod d, can be
expressed in mso logic over strings.

Lemma 2.4.19. There is an mso interpretation IC of Σ-trees in
Σ-strings such that t ∼= IC(C(t)) for every special tree t ∈ TΣ,d.

Proof. Let t ∈ TΣ,d be a special tree of height h. We write
C(t) = σ0σ1 · · ·σh with σi, si, ui1, . . . , uisi for i ∈ [0, h] as in
definition 2.4.18. We construct the interpretation

IC = (δ; (ϕSb)b=0,1, (ϕPa)a∈Σ)

by describing how to interpret t in C(t). The node uij shall be
represented by the jth position of σi, i.e., the one which is labeled
by t(uij). Accordingly, we choose

δ(x) := ¬P$(x)
and

ϕPa(x) := Pa(x) .

Concerning the construction of ϕSb(x, y) for b = 0, 1, recall that
uij is an inner node of t precisely if t(uij) 6= ⊥. Now, consider
an inner node uij . The children of uij are the nodes ui+1,2k+1
and ui+1,2k+2, where k is the number of inner nodes among
ui1, . . . , ui,j−1. Notice that 0 6 k < d. Suppose we had positions
p, q, r in C(t) such that C(t) |= ψ[p, q, r] for the formula

ψ(x, y, z) := ∃0 mod dz′ (z′ < z)∧ z 6 x < z+ d 6 y 6 z+ 2d− 1 .
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The first conjunct ensures that r is the first position of σi for some
i ∈ [0, h]. The second conjunct in turn ensures that p and q are
positions in σi and σi+1, respectively. Using this formula ψ(x, y, z),
we finally choose ϕSb(x, y) as follows:

ϕSb(x, y) := ¬P⊥(x) ∧ ∃z

 ψ(x, y, z) ∧∨
06k<d

(
∃=kz′ (z 6 z′ < x) ∧
y = z + d+ 2k + b

) 
This completes the construction of IC .

As a first consequence, C(t1) = C(t2) implies

t1 ∼= IC(C(t1)) = IC(C(t2)) ∼= t2

and hence t1 = t2. Put another way, the encoding C is injec-
tive. The previous lemma along with the next one shows that C
preserves regularity.

Lemma 2.4.20. There is an mso sentence ΦC which is suitable
for Σ-strings and such that any w ∈ Σ∗ satisfies ΦC if and only
if there is a special t ∈ TΣ,d with C(t) = w.

Proof. First of all, we characterize those w ∈ Σ∗ which shall
satisfy ΦC : There is a special tree t ∈ TΣ,d with C(t) = w if and
only if w admits a factorization w = σ0σ1 · · ·σh with h ∈ N which
satisfies the following conditions:

(1) σ0, σ1, . . . , σh ∈ (Σ \ {$})+$∗ ∩Σ=d,

(2) |σ0|Σ\{⊥,$} = 1 and |σ0|⊥ = 0,

(3) |σi|Σ\{$} = 2 · |σi−1|Σ\{⊥,$} for each i ∈ [1, n] and

(4) |σh|Σ\{⊥,$} = 0.
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It is a matter of routine to verify this characterization provided
the following ideas behind the four conditions are taken into
account: (1) w has the overall shape of an encoding of a special
tree of height h, (2) the 0th level contains precisely one node
which is no leaf, namely the root, (3) every inner node on the
(i− 1)st level induces two nodes on the ith level and (4) there are
no inner nodes on the last level.

Using the ideas from the proof of lemma 2.4.19 and the formula

ψ(x, y) := ∃0 mod dx′ (x′ < x) ∧ x 6 y 6 x+ d− 1 ,

which ensures that x refers to the first position of some σi and
y to a position in the same σi, it is another matter of routine
to translate the four conditions above into the desired mso sen-
tence ΦC .

A simple consequence of the previous two lemmas is that the
encoding C preserves regularity. We note that the inverse of C
does not preserve regularity.

Proposition 2.4.21. Let A ⊆ TΣ,d be a special language. If A
is regular, then C(A) is also regular.

Proof. Suppose that A is regular. According to theorem 2.3.3,
there is an mso sentence Ψ defining A. Due to the choice of IC
and ΦC , the mso sentence ΦC ∧ ΨIC defines the language C(A).
This implies that C(A) is regular by theorem 2.3.3 once more.

We now prove that the encoding C does not only preserve reg-
ularity but also automaticity of n-ary relations. Basically, the
main idea behind this proof is the same as above although it is
more involved. Consider a special tuple t ∈ TnΣ,d. In general, the
structure ⊗t contains more elements than the structure ⊗C(t)
and is hence not directly mso interpretable therein. We solve this
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problem by means of the unique homomorphism µ : (Σn
� )∗ → Σ∗�

which extends the inclusion Σn
� ↪→ Σ∗� , i.e.,

µ(a1a2 . . .a`) := a11a12 . . . a1n a21a22 . . . a2n · · · a`1a`2 . . . a`n .

Intuitively, µ turns a string of column vectors into a string of
individual letters by turning each column vector into a row vec-
tor and concatenating all of them. The interpretation of ⊗t in
µ(⊗C(t)) embraces two aspects that we consider separately. To
this end, we regard the tuple t as a forest F (t) augmented by
the same-level relation L and unary relations Qi marking the ti.
Formally,

F (t) :=
⋃

16i6n
{i} × dom(ti)

and

〈〈i, u〉, 〈j, v〉〉 ∈ SF (t)
b :⇐⇒ i = j & 〈u, v〉 ∈ Stib ,

〈i, u〉 ∈ PF (t)
a :⇐⇒ u ∈ P tia ,

〈〈i, u〉, 〈j, v〉〉 ∈ LF (t) :⇐⇒ |u| = |v| ,

〈i, u〉 ∈ QF (t)
k :⇐⇒ i = k ,

where b ∈ {0, 1}, a ∈ Σ and k ∈ [1, n]. The next two lemmas
demonstrate how to interpret ⊗t in F (t) and F (t) in µ(⊗C(t)).
Combining these interpretations yields an interpretation of ⊗t
in µ(⊗C(t)).

Lemma 2.4.22. There is an mso interpretation IF of Σn
� -trees

in forests such that ⊗t ∼= IF (F (t)) for every t ∈ TnΣ.

Proof. Let t ∈ TnΣ . Our first goal is to show that the equivalence
relation ≡ on F (t) defined by 〈i, u〉 ≡ 〈j, v〉 if u = v is mso
definable in F (t). For this purpose, we consider the partial
ordering v of F (t) given by 〈i, u〉 v 〈j, v〉 if i = j and u 4 v. It is
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well-known that there is one mso formula which defines the prefix
relation 4 in every Σ-tree. Hence, v is mso definable in F (t).
The following formula ε(x, y) defines the relation ≡ by encoding
an easy characterization of the condition u = v:

ε(x, y) := L(x, y) ∧ ∀x′, y′
( (

x′ v x ∧ y′ v y ∧ L(x′, y′)
)
→(

ω0(x′)↔ ω0(y′)
) )

where

ω0(z) := ∃z′ S0(z′, z) .

Now, we devise the interpretation

IF = (δ; (ϕSb)b=0,1, (ϕPa)a∈Σn� )

by describing how to interpret ⊗t in F (t). Recall that

dom(⊗t) = dom(t1) ∪ · · · ∪ dom(tn) .

The node u ∈ dom(⊗t) shall be represented by the unique pair
〈u, i〉 ∈ F (t) where i is minimal with u ∈ dom(ti). Using the
formula ε(x, y) constructed above, we choose

δ(x) := ∀y
(
ε(x, y)→

∨
16i6j6n

Qi(x) ∧Qj(y)
)

and
ϕSb(x, y) := ∃z

(
ε(x, z) ∧ Sb(z, x)

)
.

Concerning ϕPa(x), we define two auxiliary formulas, where
a ∈ Σ:

ψi,a(x) := ∃y
(
ε(x, y) ∧Qi(y) ∧ Pa(y)

)
and

ψi,�(x) := ¬∃y
(
ε(x, y) ∧Qi(y)

)
.

Finally,
ϕP〈a1,...,an〉

(x) :=
∧

16i6n
ψi,ai(x) .
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Lemma 2.4.23. There is an mso interpretation Iµ of forests
in Σ�-strings such that F (t) ∼= Iµ(µ(⊗C(t))) for every special
t ∈ TnΣ,d.

Proof. Let t ∈ TnΣ,d be special and i ∈ [1, n]. Notice that taking
every nth position of µ(⊗C(t)) starting with the ith yields the
string C(ti) � . . . �. Thus, one can interpret F (t) in µ(⊗C(t))
by representing the node 〈i, u〉 ∈ F (t) by the representative of
u in this scattered substring C(ti). Using the quantifier ∃i mod n

and the interpretation IC from lemma 2.4.19, it is just a matter
of routine to obtain all formulas of Iµ, except for ϕL(x, y). In
the encoding C(ti) = σ0σ1 · · ·σh, the factor σk represents the kth

level of ti. Consequently, if we factorize µ(⊗C(t)) = τ0τ1 · · · τ`
such that τ0, τ1, . . . , τ` ∈ Σ=dn, then τk represents the kth level
of F (t). Accordingly, we choose

ϕL(x, y) := ∃z
(
∃0 mod dnz′ (z′ < z)∧ z 6 x, y 6 z + dn− 1

)
.

Lemma 2.4.24. There is an mso sentence Φµ which is suitable
for Σ�-strings and such that any w ∈ Σ∗� satisfies Φµ if and only
if there is a special t ∈ TnΣ,d with µ(⊗(C(t))) = w.

Proof. Basically, Φµ just needs to verify for each i ∈ [1, n] that
there is a special tree ti ∈ TΣ,d such that the scattered substring
containing every nth position of w starting from the ith is of the
form C(ti) � . . . �. Using the quantifier ∃i mod n and the sentence
ΦC from lemma 2.4.20, this is easily accomplished.

Proposition 2.4.25. Let R ⊆ TnΣ,d be a special relation. If R is
automatic, then C(R) is also automatic.

Proof. Suppose that R is automatic. According to theorem 2.3.3,
there is an mso sentence Ψ defining ⊗R. Due to the choice
of IF , Iµ and Φµ, the mso sentence Φµ ∧ (ΨIF )Iµ defines the
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language µ(⊗C(R)). This implies that µ(⊗C(R)) is regular by
theorem 2.3.3 once more. Since µ is a homomorphism, this further
implies that ⊗C(R) is regular, i.e., C(R) is automatic.

We are now able to prove theorem 2.4.17 by collecting all the
pieces.

Theorem 2.4.17. Given a presentation of a tree-automatic struc-
ture A on a slim domain, one can compute a string-automatic
presentation of A .

Proof. Let A = (A;R1, . . . , Rn) be a tree-automatic structure
such that A is slim and P = (T0; T1, . . . , Tn) a presentation of A .
Theorem 2.4.16 allows for computing a number d ∈ N with
A ⊆ TΣ,d from T0. Obviously, the structure

C(A ) :=
(
C(A);C(R1), . . . , C(Rn)

)
is isomorphic to A . According to propositions 2.4.21 and 2.4.25,
C(A ) is also string-automatic. Since all proofs throughout this
section are constructive, they actually provide a way to compute
a presentation of C(A ) from P.
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A problem that gained a lot of attention in the context of auto-
matic structures is the following: Given a class C of structures and
a formalism F for presenting structures, characterize all F-pre-
sentable members of C in terms of model-theoretic properties.
Instances of this problem where a full characterization was suc-
cessfully accomplished include unary string-automatic graphs,
groups, equivalence relations and linear orders [Blu99, Rub04],
string-automatic and tree-automatic well-orders [Del04], string-
automatic finitely generated groups [OT05], Boolean algebras
and fields [KNRS07]. In some cases, only upper bounds on the
model-theoretic complexity of the F-presentable members of C
are known. For example, bounds on the ranks of string-automatic
linear orders and order trees were established [KRS05]. In this
chapter, we focus on linear orders and the various notions of
automaticity introduced in chapter 2.

The first results on automatic linear orders are due to Hodg-
son [Hod83] as well as Khoussainov and Nerode [KN95]: (i) The
order type η is string-automatically presentable, i.e., contained
in SA. (ii) The ordinal ωn belongs to SA for each n ∈ N. (iii) The
class of linear orders in SA is closed under finite sums and prod-
ucts. As an immediate consequence of the latter two facts, every
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ordinal α < ωω is a member of SA. In the end of their paper,
Khoussainov and Nerode asked for the least ordinal which is not
contained in SA. Several years later, Delhommé [Del04] came up
with the answer: An ordinal α belongs to SA if and only if α < ωω.
In addition, he proved ωωω to be the respective bound for TA,
the class of tree-automatically presentable structures. In order
to obtain these results, Delhommé developed a decomposition
technique for automatic structures and applied it to the class of
well-orders.

Shortly afterwards, Khoussainov, Rubin and Stephan [KRS05]
applied this decomposition technique to scattered linear orders
and combined it with Hausdorff’s theorem: The finite-conden-
sation rank1 FC(A) of any linear order A from SA is bounded
by FC(A) < ω. It is well-known that any two ordinals α and γ
satisfy FC(α) 6 γ precisely if α 6 ωγ , cf. lemma 2.2.4 on page 18.
Consequently, the upper bound ω on the FC-rank generalizes
the upper bound ωω on ordinals. In line with this, it has been
suspected that FC(A) < ωω for any linear order A in TA since
then, but a confirmation was missing. In the second half of this
chapter, we close this gap by confirming the suspicion:2

(1) The FC-rank of any linear order A in TA is bounded by
FC(A) < ωω (theorem 3.3.19).

Roughly speaking, the proof is another application of the decom-
position technique to scattered linear orders in combination with
Hausdorff’s theorem. In more detail, (the wording of) Delhommé’s
decomposition theorem for tree-automatic structures is slightly

1See definition 2.2.3 on page 18 for details on the finite-condensation rank.
2This result already appeared in [Hus13]. Recently, Jain, Khoussainov,

Schlicht and Stephan independently showed FC(A) < ωω for any tree-auto-
matic scattered linear order A [JKSS14]. Although this implies FC(A) 6 ωω
for every tree-automatic linear order A, there is no obvious way to change
their proof to rule out ωω as a possible rank.

56



too weak for this purpose and hence needs some refinement. Since
Delhommé did unfortunately not provide a proof of this theorem,
we state and prove a refined decomposition theorem for tree-au-
tomatic structures.3 However, the main difficulty in confirming
the suspicion is to substantiate that scattered linear orders are
accessible to this refined decomposition technique at all. Refining
the decomposition technique even further allows for almost com-
pleting the picture of characterizations of automatic well-orders
and bounds on the FC-ranks of automatic linear orders:

(2) The FC-rank of any linear order A in pTA[k] is bounded by
FC(A) < ωk (theorem 3.4.1).

(3) An ordinal α is in pTA[k] if and only if α < ωω
k (corol-

lary 3.4.3).

(4) An ordinal α is in pSA[k] if and only if α < ωk+1 (theo-
rem 3.2.4).

Regrettably, the FC-rank is too coarse to be bounded on the
linear orders in pSA by means of the decomposition technique. In
view of this impediment, we take another approach to obtain this
bound nevertheless. First, we prove that every linear order in
pSA is scattered. Afterwards, we demonstrate how to transform
a string-automatic scattered linear order into an automatic well-
order on the same domain while preserving the VD∗-rank. The
VD∗-rank is a slight variation of the FC-rank on scattered linear
orders which deviates by at most 1.4

(5) Every linear order A in pSA[k] is scattered and its VD∗-rank
is bounded by VD∗(A) 6 k (theorem 3.2.9).

With all these bounds on ranks of automatic linear orders in mind,

3This refined decomposition technique also turned out to be useful in the
context of well-founded order trees [HKLL13].

4The VD∗-rank is defined right after theorem 2.2.5 on page 19.
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one might wonder which of them do actually provide characteri-
zations. In the case of string-automatic linear orders of growth
in O(n1), which are basically just the unary string-automatic
linear orders, the answer is affirmative [Blu99, Rub04]. In all
other cases, the answer is negative due to a simple reason: There
is a scattered linear order with FC-rank 2 whose first-order theory
is undecidable. Subsequently, the question arises whether the
bounds on the ranks characterize the automatically presentable
linear orders among those linear orders whose first-order theories
are sufficiently simple to not rule out automaticity. In line with
the optimal upper bounds shown by Kuske [Kus09], we call a first-
order theory sufficiently simple for string-automatic decidability
if the Σk-theory belongs to (k − 1)-EXPSPACE for each k > 1.
Again, the answer is negative and for the linear orders in pSA
even worse:

(6) There is a computable scattered linear order which is neither
contained in SA nor in TA although it has FC-rank 2 and its
first-order theory is sufficiently simple for string-automatic
decidability (theorem 3.6.3).

(7) There is a scattered linear order of VD∗-rank 2 in SA which
is not contained in pSA (example 3.6.4).

(8) For each k > 2, there is a scattered linear order of VD∗-rank 2
in pSA[k] which is not contained in pSA[k−1] (example 3.6.5).

Going one step further, one might ask whether the bound on the
FC-rank of linear orders in SA characterizes them among all linear
orders in TA. This time, the answer is affirmative for scattered
linear orders at least:5

(9) A scattered linear order A from TA is contained in SA if and
only if FC(A) < ω (theorem 3.5.5).

5This result already appeared in [Hus12].
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In addition, this characterization is effective in the following sense:
Given a tree-automatic presentation of a scattered linear order A,
one can decide whether A satisfies FC(A) < ω and hence belongs
to SA. In case of a positive answer, one can even compute a
string-automatic presentation of A.

A problem which is closely related to characterizing the auto-
matically presentable linear orders is solving their isomorphism
problem: Given two automatic presentations of linear orders,
decide whether the presented linear orders are isomorphic. In
fact, Delhommé’s characterization of the ordinals in SA almost
immediately led to a decision procedure for the isomorphism
problem for string-automatic well-orders [KRS05]. Given string-
automatic presentations of two well-orders, this procedure basi-
cally computes the Cantor normal forms of their order types and
compares these normal forms afterwards. The former of these
two steps heavily relies on the fact that first-order logic plays
well with ordinals below ωω. Since this nice interplay is no longer
available beyond ωω and no other methods have been found yet,
the isomorphism problem for tree-automatic well-orders is still
unsolved. Based on the aforementioned decidable characterization
of the scattered linear orders A in TA which satisfy FC(A) < ω,
we contribute the following partial solution:

(10) The isomorphism problem for tree-automatic well-orders of
order types strictly below ωω2 is decidable (corollary 3.5.10).

Unfortunately, none of our numerous attempts towards extending
the upper bound beyond ωω2 was crowned with success.

For the sake of completeness, we mention that the isomor-
phism problem for arbitrary string-automatic linear orders is
Σ1

1-complete and hence highly undecidable [KLL13b]. Obviously,
this complexity is inherited by the tree-automatic version. In
contrast, isomorphism of unary string-automatic linear orders
can be decided in linear time [LM11]. Finally, the isomorphism
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problem for scattered linear orders is still open in the string-
automatic case and undecidable in the tree-automatic case, where
the best known lower bound is Π0

1-hardness [Kus14].

Outline. The current state of research on linear orders in SA is
presented in section 3.1. The subsequent section 3.2 is devoted
to the positive results on linear orders in pSA. In section 3.3,
we present the (refined) decomposition technique and apply it
to obtain the aforementioned bounds on linear orders in TA.
The analogous results for linear orders in pTA are the subject
of section 3.4. The purpose of section 3.5 is twofold: First, we
characterize those scattered linear orders in TA which are also
contained in SA. Based on this characterization, we further
demonstrate our partial solution to the isomorphism problem
for tree-automatic well-orders. All results concerning the non-
automaticity of various scattered linear orders are finally proved
in section 3.6.

3.1 String-Automaticity
Although we sketched the current state of the art concerning the
characterization of string-automatic linear orders in the introduc-
tion already, we state the two major results for later reference
again. Moreover, we present some consequences of these results
that are used later as well. In the end, we briefly discuss the
isomorphism problem for string-automatic linear orders.

First of all, we provide two useful examples of string-automatic
linear orders. The first of them demonstrates that the linear order
of the rationals is string-automatically presentable.

Example 3.1.1. We define a linear order Q = ({0, 1}∗;6in) by
u 6in v if the longest common prefix w of u and v satisfies w0 4 u0
and w1 4 v1, where 4 denotes the prefix relation. Intuitively,
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3.1 String-Automaticity

6in captures the in-order traversal of the full binary tree. It is
a matter of routine to check that Q is a string-automatic linear
order. Using Cantor’s theorem 2.2.1 on page 15, one can prove
that Q has order type η.

The second example shows that SA contains all ordinals α < ωω.

Example 3.1.2. For every n ∈ N, a string-automatic type ωn
well-order is given by ((1∗0)n;6in), where6in is the linear ordering
from the previous example. A string-automatic well-order of type
α < ωn is obtained by taking an initial segment thereof. Clearly,
this exhausts all ordinals α < ωω.6

The best known partial characterization of the class of string-
automatically presentable linear orders is given by the theorem
below. Due to the previous example, any n < ω is in effect the
FC-rank of some string-automatic linear order. In particular, the
upper bound ω is optimal.

Theorem 3.1.3 ([KRS05]). The FC-rank of any linear order A
in SA is bounded by

FC(A) < ω .

We already mentioned that this theorem is by no means a char-
acterization. The subsequent example provides a reason for this
claim.

Example 3.1.4 ([KRS05]). Let M ⊆ N be an undecidable set
and consider the order type τM :=

∑
n∈M ζ + n. On the one

hand, the FC-rank of τM is 2. On the other hand, τM is not
automatically presentable since M can easily be reduced to the
first-order theory of τM .

6We refer to the argument provided in the last two sentences as “the last
argument from example 3.1.2” in what follows.
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In section 3.6, we even give an example of a linear order which is
not contained in SA although it has FC-rank 2 and its first-order
theory is sufficiently simple for string-automatic decidability. Del-
hommé’s characterization of the string-automatically presentable
ordinals is an immediate consequence of example 3.1.2 and theo-
rem 3.1.3.

Corollary 3.1.5 ([Del04]). An ordinal α is contained in SA if
and only if

α < ωω .

Recall that the finite-condensation relation on a string-automatic
linear order A is effectively automatic. Consequently, the finite-
condensation process on A can be made effective. According to
theorem 3.1.3, this process arrives at a dense linear order after
finitely many steps and terminates then. Since being dense is a
first-order definable property, the termination condition is indeed
decidable. These circumstances have two important consequences:

Corollary 3.1.6 ([KRS05]). Given a presentation of a string-
automatic linear order A, one can decide whether A is scattered.
In case A is not scattered, one can compute a string-automaton
recognizing a regular type η subset of A.

Corollary 3.1.7 ([KRS05]). Given a string-automatic presen-
tation of a linear order A, it is decidable whether A is a well-
order. In case of a positive answer, one can compute numbers
n1, . . . , ns ∈ N such that ωn1 + · · · + ωns is the Cantor normal
form of the order type of A.

Proof sketch. In view of corollary 3.1.6, we may assume that A
is scattered. Then, one can easily base a decision procedure on
the following equivalence: A scattered linear order A is a well-
order if and only if each ∼-class contains a least element and
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A/∼ is a well-order.7 This procedure always terminates since
0 < FC(A) < ω implies FC(A/∼) < FC(A).

In case that A is a well-order, the Cantor normal form of the
order type α of A can be computed similarly: The case α = 0 is
trivial. If α is a successor ordinal, say α = β+1, and ωn1 +· · ·+ωns
the Cantor normal form of β, then ωn1 + · · · + ωns + ω0 is the
Cantor normal form of α. If α is a limit ordinal, β the order type of
A/∼, i.e. the unique ordinal with α = ω β, and ωn1 + · · ·+ωns the
Cantor normal form of β, then ω1+n1 + · · ·+ ω1+ns is the Cantor
normal form of α. This procedure always terminates since β < α
holds in both cases, in the latter case due to 0 < α < ωω.

In chapter 5, we use the following variation of the second part of
corollary 3.1.7.

Corollary 3.1.8. Given a presentation of a string-automatic
well-order A, one can compute string-automata recognizing the
parts Ai of its decomposition A1 + · · ·+As into Cantor normal
form.

Proof. Basically, we implement the algorithm from the proof of
corollary 3.1.7 in terms of string-automata. To this end, let α
be the order type of A. If α = 0 or α is a successor ordinal, the
claim is again trivial. If α is a limit ordinal, B the set of limit
points of A and B = B1 + · · ·+Bs the decomposition of B into
Cantor normal form, then A = A1 + · · ·+As with

Ai :=
{
u ∈ A

∣∣ ∃v ∈ Bi : u ∼ v }
is the decomposition of A into Cantor normal form. Clearly, the
set B is effectively regular and one can compute an automaton
recognizing Ai from an automaton recognizing Bi.

7The finite-condensation relation ∼ is defined on page 17.
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Last but not least, corollary 3.1.7 immediately implies that the
isomorphism problem for string-automatic well-orders is decidable.

Corollary 3.1.9 ([KRS05]). Given string-automatic presenta-
tions of two well-orders A and B, one can decide whether A and B
are isomorphic.

In contrast, the isomorphism problem for arbitrary string-auto-
matic linear orders is highly undecidable.

Theorem 3.1.10 ([KLL13b]). Given string-automatic presenta-
tions of two linear orders A and B, it is Σ1

1-complete to decide
whether A and B are isomorphic.

For the intermediate class of string-automatic scattered linear
orders, it is still open whether the isomorphism problem is decid-
able or not. The best known upper bound is a reduction to the
first-order theory of (N; +,×) [KLL13b].

3.2 String-Automaticity on Polynomial
Domains

The objective of this section is twofold: On the one hand, we
characterize, for every k ∈ N, the ordinals in pSA[k] as those being
strictly below ωk+1. On the other hand, we prove that all linear
orders in pSA[k] are scattered and their VD∗-ranks do not exceed k.
As we already mentioned in the introduction, the VD∗-rank is too
coarse for interacting with Delhommé’s decomposition technique
for pSA[k]. More precisely, for the decomposition technique to be
applicable it would be necessary that the step from pSA[k − 1] to
pSA[k] made infinitely many new VD∗-ranks available. In view of
this obstacle, we take the following alternative approach: We use
the decomposition technique to characterize the ordinals in pSA[k]
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(theorem 3.2.4). Afterwards, we establish that all linear orders
in pSA are scattered (corollary 3.2.6). Finally, we demonstrate
how to transform any string-automatic scattered linear order into
a string-automatic well-order on the same domain and with the
same VD∗-rank. By these means, we obtain an optimal upper
bound on the VD∗-rank of linear orders in pSA[k] (theorem 3.2.9).

3.2.1 Well-Orders

This section is devoted to the proof of theorem 3.2.4, which
characterizes the ordinals α in pSA[k] as those satisfying α < ωk+1.
The “if”-part is verified by the next example.

Example 3.2.1. For every m ∈ N, example 3.1.2 provides the
string-automatic type ωkm well-order A = (1<m0(1∗0)k;6in).
Since gA(n) ∈ O(nk), the class pSA[k] contains ωkm and hence all
ordinals α < ωk+1 by the last argument from example 3.1.2.

In the remainder of this section, we prove the “only if”-part
by applying Delhommé’s decomposition technique. To avoid
notational overhead, we do not formulate this technique as a
standalone result first but rather employ it ad hoc. The basic fact
on well-orders underlying the proof is a result by Caruth on the
natural sum of ordinals.

Theorem 3.2.2 ([Car42]). Let A be a well-order and consider a
partition {B1, . . . , Bn} of A. If α and βi denote the order types
of A and Bi, respectively, then

α 6 β1 ⊕ · · · ⊕ βn .

The main ingredient of extending the decomposition technique
from SA to pSA is the following technical lemma:
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Lemma 3.2.3. Let k ∈ N and A ⊆ Σ∗ be a regular language
with gA(n) ∈ O(nk). There exists a constant c ∈ N such that any
anti-chain (wrt the prefix relation 4) U ⊆ Σ∗ contains at most c
elements u ∈ U with gu−1A(n) ∈ Θ(nk).

Proof. Suppose that Σ = {σ1, . . . , σr}. If r = 1, the claim is
trivial since any anti-chain then contains at most one element.
Henceforth, we assume r > 2. LetM = (Q, ι, δ, F ) be a string-
automaton recognizing A and put m := |Q|. We prove c := rm−1
to be a possible choice.

Aiming for a contradiction, suppose there is an anti-chain
U ⊆ Σ∗ such that |U | > rm and gu−1A(n) ∈ Θ(nk) for all u ∈ U .
We derive a contradiction by constructing a subset B ⊆ A with
gB(n) ∈ Θ(nk+1). To this end, let T be the set of all v ∈ Σ∗
which are the longest common prefix of some non-empty subset
of U . The structure (T ;4) forms a finite tree whose set of leaves
is U . Our first goal is to show that every inner node v ∈ T \ U
branches at most r-ary.

Aiming for another contradiction, suppose that v has at least
r+ 1 mutually distinct immediate successors w0, . . . , wr. For each
i ∈ [0, r], there is σi ∈ Σ with vσi 4 wi. By the pigeon hole
principle, we have σi = σj for some 0 6 i < j 6 r. Let w′ ∈ T be
the longest common prefix of wi and wj . In particular, vσi 4 w′
and hence w′ 6= v. Consequently, wi and wj cannot both be
immediate successors of v in the tree T . This proves that inner
nodes of T branch at most r-ary.

In view of this bound and since T has |U | > rm many leaves,
the height of T must be at least m. Consequently, T contains
a path v0 ≺ v1 ≺ · · · ≺ vm ≺ · · · . According to the pigeon hole
principle, there are i, j ∈ [0,m] with i < j and δ(ι, vi) = δ(ι, vj).
Let σ1 ∈ Σ and w1 ∈ Σ∗ be such that viσ1w1 = vj . Moreover,
let U ′ ⊆ U be a subset whose longest common prefix happens to
be vi. Since viσ1 is not the longest common prefix of U ′, there
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are u0 ∈ U and σ2 ∈ Σ \ {σ1} with viσ2 4 u0, say viσ2w2 = u0.
In the remainder of this proof, we show that the set

B := v1(σ1w1)∗σ2w2(u−1
0 A) (3.1)

is a subset of A with gB(n) ∈ Θ(nk+1), which clearly contradicts
gA(n) ∈ O(nk).

First, consider some arbitrary y ∈ B, say y = vi(σ1w1)`σ2w2x
with ` ∈ N and x ∈ u−1

0 A. Using δ(ι, vi) = δ(ι, viσ1w1), we obtain

δ(ι, y) = δ(ι, vi(σ1w1)`σ2w2x) = δ(ι, viσ2wx) = δ(ι, u0x) ∈ F .

Thus, y ∈ A and, more generally, B ⊆ A.
Since gu−1

0 A(n) ∈ Θ(nk), theorem 2.3.7 on page 30 provides us
with an unambiguous rational expression for u−1

0 A of the shape

u−1
0 A =

⋃
16i6m

pi0q
∗
i1pi1 · · · q∗ikipiki

with max{k1, . . . , km} = k. According to the choice of B in
eq. (3.1), we have the following rational expression for B:

B =
⋃

16i6m
v1(σ1w1)∗σ2w2pi0q

∗
i1pi1 · · · q∗ikipiki .

Since σ1 6= σ2, this expression is unambiguous as well. Conse-
quently, another application of theorem 2.3.7 yields

gB(n) ∈ Θ(nk+1) .

The theorem below is the main result of this section. The first
part of the corresponding ad hoc application of the decomposi-
tion technique bears notable similarities to the proof of [KRS05,
proposition 4.6].
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Theorem 3.2.4. Let k ∈ N. An ordinal α is in pSA[k] if and
only if

α < ωk+1 .

Proof. The “if”-part has already been verified in example 3.2.1.
We prove the “only if”-part by induction on k. The case k = 0 is
trivial, since gA(n) ∈ O(n0) just says that A is finite. Henceforth,
we assume k > 0.

Aiming for a contradiction, suppose there is a string-auto-
matic well-order A of type α > ωk+1 with gA(n) ∈ O(nk). Let
M = (Q, ι, δ, F ) be a string-automaton recognizing <A. We
consider the set

M :=
{
〈u, v〉 ∈ Σ∗ ×A

∣∣ |u| = |v| } .
For all 〈u, v〉 ∈M , we define a pair of states

qu,v := 〈δ(ι, u⊗ u), δ(ι, u⊗ v)〉

and a subset

Au,v :=
{
w ∈ A

∣∣ u 4 w and w <A v
}
⊆ A .

The suborder Au,v is also automatic since it is first-order definable
in A augmented by the regular language uΣ∗∩A. Let αu,v denote
the order type of Au,v. We derive a contradiction by proving the
following two statements:
(1) For all 〈u, v〉, 〈ũ, ṽ〉 ∈M , qu,v = qũ,ṽ implies αu,v = αũ,ṽ.
(2) For every m ∈ N, there exists 〈u, v〉 ∈M such that

ωkm < αu,v < ωk+1 .

Notice that statement (1) implies that there are only finitely many
ordinals of the form αu,v, whereas statement (2) amounts to the
contrary.
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Regarding statement (1). Consider two pairs 〈u, v〉, 〈ũ, ṽ〉 ∈M
with qu,v = qũ,ṽ. We show that the injective map f : Au,v → Aũ,ṽ
defined by

f(uw) := ũw

is an isomorphism between Au,v and Aũ,ṽ. For every w ∈ Σ∗, we
have

δ(ι, uw ⊗ v) = δ(ι, (u⊗ v)(w ⊗ ε))
= δ(ι, (ũ⊗ ṽ)(w ⊗ ε))
= δ(ι, ũw ⊗ ṽ) ,

where the first and third equality use the defining property of M
and the second equality uses δ(ι, u⊗v) = δ(ι, ũ⊗ṽ). Consequently,
we obtain the following chain of equivalences, which establishes
that f is surjective and well-defined wrt its image:

uw ∈ Au,v ⇐⇒ δ(ι, uw ⊗ v) ∈ F
⇐⇒ δ(ι, ũw ⊗ ṽ) ∈ F
⇐⇒ ũw ∈ Aũ,ṽ .

It remains to show that f is order-preserving. Based on the
premise δ(ι, u⊗ u) = δ(ι, ũ⊗ ũ), we obtain the following chain of
equivalences for all uw1, uw2 ∈ Au,v:

uw1 <A uw2 ⇐⇒ δ(ι, uw1 ⊗ uw2) ∈ F
⇐⇒ δ(ι, ũw1 ⊗ ũw2) ∈ F
⇐⇒ f(uw1) <A f(uw2) .

This proves statement (1).

Regarding statement (2). We fix some m ∈ N. Let c ∈ N be
the constant which exists by lemma 3.2.3. Since α > ωk+1, there
exists some v ∈ A such that the initial segment

Iv :=
{
w ∈ A

∣∣ w <A v
}
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of A has order type ωk(mc+ 1). We fix this v and put ` := |v|.
Observe that Iv can be partitioned as

Iv = (Iv ∩Σ<`) ]
⊎

u∈Σ=`

Au,v .

Let κv be the size of the finite set In∩Σ<`. Due to theorem 3.2.2,
we have

ωk(mc+ 1) 6 κv ⊕
⊕

u∈Σ=`

αu,v . (3.2)

We consider the set

U :=
{
u ∈ Σ=`

∣∣∣ gAu,v(n) ∈ Θ(nk)
}
.

For u ∈ Σ=` \ U , we have

gAu,v(n) ∈ O(nk) \Θ(nk)
and hence

gAu,v(n) ∈ O(nk−1) .

This implies αu,v < ωk by the induction hypothesis. In contrast,
for u ∈ U , we have

Au,v ⊆ u(u−1A) ⊆ A

and hence both

gu−1A(n) 6 gA(n+ |u|) ∈ O(nk)
as well as

gu−1A(n) > gAu,v(n+ |u|) ∈ Ω(nk) .
Thus,

gu−1A(n) ∈ Θ(nk) .
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Due to the choice of c, we obtain |U | 6 c. If we had αu,v 6 ωkm
for each u ∈ U , we would obtain

κv ⊕
⊕
u∈Σ`

αu,v = κv ⊕
⊕

u∈Σ`\U
αu,v

︸ ︷︷ ︸
<ωk

⊕
⊕
u∈U

αu,v︸ ︷︷ ︸
6ωkmc

< ωk(mc+ 1) .

Since this would contradict eq. (3.2), we conclude that there is
some ũ ∈ U such that αũ,v > ωkm. At the same time, Aũ,v ⊆ Iv
implies

αũ,v 6 ω
k(mc+ 1) < ωk+1 .

This proves statement (2) and hence the whole theorem.

3.2.2 Dense and Non-scattered Linear Orders

In this section, we prove that there is neither a dense nor any
non-scattered infinite linear order in pSA. Put another way, every
linear order in pSA is scattered. The proof of the first result uses
growth arguments based on lemma 2.4.10 on page 37, which are
standard in the investigation of automatic structures by now.

Theorem 3.2.5. The linear order (Q;6) does not belong to pSA.

Proof. Let (A;6A) be a string-automatic type η linear order.
We prove the claim by demonstrating that its domain A grows
exponentially. We consider the relation

R :=
{
〈u, v, w〉 ∈ A3

∣∣∣ u <A v and w = minllex(u, v)A
}
,

where (u, v)A denotes the open interval between u and v. Clearly,
R is automatic and locally finite. Thus, lemma 2.4.10 provides
us with a constant C ∈ N such that

|w| 6 max
{
|u|, |v|

}
+ C
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for all 〈u, v, w〉 ∈ R. Moreover, let D ∈ N be such that |u| 6 D
for at least two distinct u ∈ A. In the remainder of this proof,
we derive a contradiction by inductively constructing subsets
G0, G1, G2, . . . ⊆ A such that, for each n > 0, |Gn| = 2n + 1 but
|u| 6 C · n+D for all u ∈ Gn. Obviously, this is only possible if
A grows exponentially.

Due to the choice of D, there is a subset G0 ⊆ A with the de-
sired properties. Henceforth, assume n > 1. Let Gn−1 ⊆ A
be the subset which exists by the induction hypothesis and
u0 <A u1 <A · · · <A u2n−1 the ascending enumeration of its
elements. For each i ∈ [1, 2n−1], let vi ∈ A be such that
〈ui−1, ui, vi〉 ∈ R. Since |ui−1|, |ui| 6 C · (n− 1) +D and due to
the choice of C, we obtain |vi| 6 C · n+D. Consequently, the set

Gn := Gn−1 ∪
{
vi
∣∣ i ∈ [1, 2n−1]

}
proves the claim of the inductive step.

According to corollary 3.1.6, every string-automatic non-scattered
linear order contains an automatic suborder of type η. Along
with theorem 3.2.5, we conclude:

Corollary 3.2.6. Every linear order in pSA is scattered.

As a consequence, we obtain an interesting subtle difference be-
tween arbitrary string-automatic structures and string-automatic
linear orders. For each k > 3, one can find a structure in pSA[k]
which is not string-automatically presentable on any domain
growing in Θ(nk).8 In contrast, this situation cannot arise in the
context of linear orders.

8This result is part of unpublished joint work with Bakhadyr Khoussainov
and Jiamou Liu.
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Corollary 3.2.7. Let k > 1. Every infinite linear order in
pSA[k] is isomorphic to a string-automatic linear order A with
gA(n) ∈ Θ(nk).

Proof. Let (B;6) be a string-automatic linear order satisfying
gB(n) ∈ O(nk). Moreover, let ∼ be the finite-condensation rela-
tion on B. Since B is infinite and scattered, there is some u ∈ B
whose ∼-class [u] is infinite. More precisely, [u] has order type ω,
ω? or ζ. We only demonstrate the case of order type ω, the other
two cases are similar.

Let 0 and 1 be fresh symbols not appearing in B. Moreover,
let A be the string-automatic linear order which is obtained from
B by replacing the convex subset [u] with the length-lexicographic
ordering of the set (0∗1)k. Obviously, A and B are isomorphic.
The domain

A := B \ [u] ∪ (0∗1)k

satisfies gA(n) ∈ Θ(nk) by theorem 2.3.7 on page 30.

3.2.3 Scattered Linear Orders

We complete the investigation of linear orders in pSA by provid-
ing an upper bound on their VD∗-ranks in theorem 3.2.9. Our
main tool is the lemma below, which reduces the problem to the
characterization of ordinals in theorem 3.2.4. We note that this
result bears perfunctory similarities with [KRS05, theorem 7.7]
where bounds on the Cantor–Bendixson ranks of string-automatic
trees were obtained by means of the Kleene–Brouwer ordering
and theorem 3.1.3.

Lemma 3.2.8. Let (A;6) be a string-automatic scattered linear
order. There exists an automatic well-ordering P of A such that

VD∗(A;6) = VD∗(A; P) .
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Proof. Due to theorem 3.1.3 the VD∗-rank of (A;6) is finite, say
n := VD∗(A;6). If n = 0, then A is finite and the claim is trivial.
Henceforth, we assume n > 0. For each k ∈ N, let ∼k and [u]k
denote the kth iterated finite-condensation relation on (A;6) and
the ∼k-class of u ∈ A, respectively.

Before delving into the details, we provide a brief sketch of
the basic idea. Intuitively, we consider a tree whose nodes are
all ∼k-classes of A for all k ∈ N. They are ordered by inclusion.
Since VD(A;6) 6 n+ 1, there is only one ∼n+1-class, namely A,
which is the root. The leaves are the ∼0-classes, i.e., the singleton
sets {u} for each u ∈ A. If the children of any node are ordered by
�, the induced ordering of the leaves is isomorphic to (A;6) via
mapping {u} to u. Now, suppose that each node, which is a subset
of A, is labeled with its length-lexicographically least element.
Further suppose that the children of any node are ordered length-
lexicographically with respect to their labels. If there are infinitely
many children, they are now ordered like ω. In effect, the induced
linear ordering of the leaves is a well-ordering. In the remainder
of the proof, we formalize this description and show that the
resulting linear order is indeed a well-order, which in addition has
the same VD∗-rank as (A;6).

We consider the type ωn+1 well-order (An+1;v) where the
relation 〈un, . . . , u0〉 < 〈vn, . . . , v0〉 holds true precisely when the
greatest i with ui 6= vi satisfies ui <llex vi. We further consider
the map f : A→ An+1 given by

f(w) := 〈minllex[w]n, . . . ,minllex[w]0〉 .

This map is injective since [w]0 = {w}. Finally, we define a
well-ordering P of A by u P v if f(u) v f(v). Obviously, P
is first-order definable in (A;6) augmented by the automatic
relations 6llex,∼0, . . . ,∼n and hence automatic itself. Thus, it
only remains to show VD∗(A;6) = VD∗(A; P). In terms of the
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order type α of (A; P), this amounts to proving

ωn 6 α < ωn+1 .

For each k ∈ N, we obtain a suborder Bk of (A;6) which is
isomorphic to A/∼k by choosing the length-lexicographic least
element of each ∼k-class as its representative, i.e.,

Bk :=
{

minllex[w]k
∣∣ w ∈ A } .

Notice that f(A) ⊆ Bn × An. Since VD∗(A;6) = n, the set Bn
is finite, say m := |Bn|. Hence, α 6 ωnm < ωn+1. This proves
the upper bound on α.

Concerning the lower bound, we first recall that

(A;6) =
∑

X∈A/∼n
(X;6) =

∑
w∈(Bn;6)

([w]n;6) .

Since VD∗(A;6) = n and Bn is finite, there is some w ∈ Bn
with VD∗([w]n;6) = n. In the remainder of this proof, we show
that the order type of ([w]n; P) is at least ωn. In the end, this
establishes the lower bound on α. More generally, we show for all
k ∈ N and u ∈ Bk the following implication: If VD∗([u]k;6) = k,
then the order type of ([u]k; P) is at least ωk.

We proceed by induction on k. The cases k = 0 and k = 1
are trivial. Henceforth, assume k > 2 and consider some u ∈ Bk
with VD∗([u]k;6) = k. The equation

([u]k;6) =
∑

v∈([u]k∩Bk−1;6)
([v]k−1;6)

captures the condensation of all ∼k−1-classes contained in [u]k
into the ∼k-class [u]k. Recall that VD∗([v]k−1;6) 6 k − 1 for
each v ∈ [u]k ∩ Bk−1. In fact, there are infinitely many v with
VD∗([v]k−1;6) = k − 1 since VD∗([u]k;6) = k. Due to the
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induction hypothesis, the order type of ([v]k−1; P) is at least ωk−1

for these infinitely many v. Hence, it suffices to prove

([u]k; P) =
∑

v∈([u]k∩Bk−1;P)
([v]k−1; P)

in order to show that the order type of ([u]k; P) is at least ωk.
To this end, consider v, ṽ ∈ [u]k ∩ Bk−1, w ∈ [v]k−1 and

w̃ ∈ [ṽ]k−1 with v C ṽ. Our goal is to show w C w̃. Since
w, w̃ ∈ [u]k, we have [w]k = [w̃]k and hence

minllex[w]` = minllex[w̃]`

for each ` > k. Moreover, v, ṽ ∈ Bk−1 and v 6= ṽ imply

minllex[w]k−1 = v <llex ṽ = minllex[w̃]k−1 .

This proves w C w̃.

The theorem below is the desired analogue of theorem 3.1.3 for
the class pSA.

Theorem 3.2.9. Let k ∈ N. Every linear order A in pSA[k] is
scattered and satisfies

VD∗(A) 6 k .

Proof. Let (A;6) be a string-automatic linear order satisfying
gA(n) ∈ O(nk). According to corollary 3.2.6, (A;6) is scattered.
Due to lemma 3.2.8, there exists a well-ordering P of A such that
VD∗(A;6) = VD∗(A; P). By theorem 3.2.4, the order type α of
(A; P) is bounded by α < ωk+1 and hence VD∗(A; P) 6 k.

In view of example 3.1.4, this bound on the VD∗-rank does not
characterize the linear orders in pSA[k] whenever k > 2. In
contrast, theorem 3.2.9 is a characterization if k 6 1. This is
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trivial for k = 0 since pSA[0] and VD?0 are the classes of all
finite structures and all finite linear orders, respectively. For
k = 1, this follows from the circumstance that the unary string-
automatically presentable linear orders are precisely those in
VD?1 [Rub04, theorem D.1.19].

3.3 Tree-Automaticity

After studying the linear orders from pSA in the previous section,
we now turn to those contained in TA. We provide an upper
bound on their FC-ranks in theorem 3.3.19. Subsequently, corol-
lary 3.3.21 provides Delhommé’s characterization of the ordinals
in TA. First of all, we give an example of a tree-automatic linear
order.

Example 3.3.1. Let 6Σ be an arbitrary linear ordering of the
alphabet Σ. Moreover, let 6in be the linear ordering of {0, 1}∗
from example 3.1.1. We define a linear ordering P of TΣ by t1 C t2
if the least (wrt 6in) u ∈ dom(t1)∪dom(t2) where t1 and t2 differ
either satisfies u 6∈ dom(t1) or both u ∈ dom(t1) ∩ dom(t2) and
t1(u) <Σ t2(u). It is matter of routine to check that P is an
automatic linear ordering of TΣ . In addition, one can show that
(TΣ ; P) is not scattered.

3.3.1 The Decomposition Technique

In this section, we motivate and prove our refined version of Del-
hommé’s decomposition theorem. As we apply the decomposition
technique only to linear orders here, we refrain from presenting
its general version but rather focus on its specialization to linear
orders. First of all, recall that one of the main ingredients of
characterizing the ordinals in pSA and SA is the application of
theorem 3.2.2, which is restated below.
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Theorem 3.2.2 ([Car42]). Let A be a well-order and consider a
partition {B1, . . . , Bn} of A. If α and βi denote the order types
of A and Bi, respectively, then

α 6 β1 ⊕ · · · ⊕ βn .

The generalization of Delhommé’s upper bound on the ordinals
in SA to an upper bound on the FC-ranks of linear orders in SA
is based on two additional ingredients: Hausdorff’s theorem 2.2.2
on page 15 and theorem 3.3.2 below, which in some sense extends
theorem 3.2.2 to scattered linear orders.

Theorem 3.3.2 ([KRS05]). Let A be a scattered linear order and
consider a partition {B1, . . . , Bn} of A. Then

VD∗(A) 6 max
{

VD∗(B1), . . . ,VD∗(Bn)
}
. (3.3)

For a moment, we reverse the point of view on partitions of linear
orders. Let A and B1, . . . , Bn be linear orders and B the partial
order that is obtained by taking the disjoint union of the Bi.
Then A admits a partition {A1, . . . , An} with Ai ∼= Bi for each i
if and only if A is (isomorphic to) a linear extension of B. In this
light, theorem 3.3.2 can be read as follows: Any scattered linear
extension A of B satisfies eq. (3.3).9

In the context of decomposing tree-automatic linear orders,
we are not only confronted with linear extension of disjoint unions
but also with linear extensions of direct products. If partitions
are regarded as the converse of disjoint unions, the according
converse of direct products is given by the definition below.10

9As a matter of fact, any linear extension of B is scattered.
10Earlier publications dealing with the decomposition technique used

the term “sum-decomposition” instead of “partition”, cf. [Hus13, HKLL13].
However, as we need the notion of a partition anyway and in order to
prevent confusion, we refrain from using the term “sum-decomposition” in
this meaning here.
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Definition 3.3.3. Let A be a linear order. A box-decomposition
of A is a tuple (f ;B1, . . . , Bn) consisting of finitely many linear
orders B1, . . . , Bn and a bijection f : B1×· · ·×Bn → A such that
u1 6B1 v1, . . . , un 6Bn vn implies

f(u1, . . . , un) 6A f(v1, . . . , vn) .

Let S be a set of linear orders. We say that A is box-decomposable
in S if there exists a box-decomposition (f ;B1, . . . , Bn) of A with
B1, . . . , Bn ∈ S.

Notice that box-decompositions are closed under permutations in
the following sense: If (f ;B1, . . . , Bn) is a box-decomposition of
A and i1, . . . , in a permutation of 1, . . . , n, then (f ′;Bi1 , . . . , Bin)
with

f ′(ui1 , . . . , uin) := f(u1, . . . , un)

is a box-decomposition of A as well. The fundamental result on
box-decompositions of well-orders used by Delhommé to prove
his upper bound on the ordinals contained in TA is as follows:

Theorem 3.3.4 ([Car42]). Let A be a well-order and consider a
box-decomposition (f ;B1, . . . , Bn) of A. If α and βi denote the
order types of A and Bi, respectively, then

α 6 β1 ⊗ · · · ⊗ βn .

The expected extension to scattered linear orders would read as
follows: Let A be a well-order and consider a box-decomposition
(f ;B1, . . . , Bn) of A. Then

VD∗(A) 6 VD∗(B1)⊕ · · · ⊕VD∗(Bn) . (3.4)

However, this assertion is not valid as the next example shows:
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Example 3.3.5. Let γ > 0 be a countable ordinal and

A =
∑
k∈ζ

Ak

a sum of scattered linear orders Ak with VD∗(Ak) = γ. Clearly,
VD∗(A) = γ + 1. Moreover, let f : N2 → A be a bijection such
that, for each k ∈ Z,

f−1(Ak) =
{
〈x, y〉

∣∣ x− y = k
}
.

Since each of these sets f−1(Ak) forms an anti-chain in the partial
order which is the direct product of (N;6) and (N;>), the tuple(
f ; (N;6), (N;>)

)
is a box-decomposition of A. However, there

is no meaningful bound on VD∗(A) in terms of VD∗(N;6) and
VD∗(N;>) because γ can be chosen arbitrarily.

Fortunately, it turns out that such “wild” behavior cannot happen
in the context of tree-automatic linear orders. Our formalization
of “non-wild” behavior is based on the following abstraction from
automatic presentations of linear orders.

Definition 3.3.6. Let A be a linear order. A finite device for A
is a map µ : A2 → Q into a finite set Q which admits a subset
F ⊆ Q such that, for all u, v ∈ A, u 6 v if and only if µ(u, v) ∈ F .

This notion abstracts from automatic presentations in the follow-
ing sense: Let A be an automatic linear order and T = (Q, ι, δ, F )
an automaton recognizing 6A. Then the map µ : A2 → Q defined
by

µ(s, t) := δ(ι, s⊗ t)

is a finite device for A. Using this notion, “non-wild” or, as we
call them, “tame” box-decompositions are formalized as follows:
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Definition 3.3.7. A box-decomposition (f ;B1, . . . , Bn) of A is
called tame if there are finite devices µ1, . . . , µn for B1, . . . , Bn,
respectively, such that the following defines a finite device µ for A:

µ(f(u1, . . . , un), f(v1, . . . , vn)) := 〈µ1(u1, v1), . . . , µn(un, vn)〉 .

Let S be a set of linear orders. We say that A is tamely box-
decomposable in S if there exists a tame box-decomposition
(f ;B1, . . . , Bn) of A with B1, . . . , Bn ∈ S.

As the words “wild” and “tame” shall suggest, the assertion in
eq. (3.4) on page 79 becomes valid if the respective box-decomposi-
tion is presumed to be tame. We prove this claim in theorem 3.3.17
in the next section. In the remainder of this section, we demon-
strate our refined decomposition theorem 3.3.8 for tree-automatic
linear orders. Apart from its specialization to the later use case,
the essential difference to Delhommé’s (unproven) version is the
addition of the word “tamely”. As a matter of fact, the notion of
tameness can be extended to graphs or even arbitrary structures
and yields analogous results then, cf. [Hus13, HKLL13].

Theorem 3.3.8 (decomposition theorem, cf. [Del04]). Let A be
a tree-automatic linear order. There exists a finite set S of tree-
automatic linear orders such that every closed interval in A admits
a partition into suborders which are tamely box-decomposable in S.

Before delving into the details of the proof, we sketch how the
decomposition of any closed interval I = [`, r]A ⊆ A is carried out,
which is also depicted in fig. 3.1 on the following page. Roughly
speaking, two trees belong to the same class of the partition of
I if they (1) coincide on the domain of `⊗ r and (2) lead to the
same states in the automaton recognizing 6A along the boundary
of ` ⊗ r, i.e., in the nodes u1, . . . , um shown in fig. 3.1. Each
class C of this partition is then tamely box-decomposed into
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`⊗ r

u1 u2 ui um

t ∈ I

x1
x2

xi xm

Figure 3.1: Basic idea behind the decomposition of the closed
interval I = [`, r]A ⊆ A

(f ;X1, . . . , Xm), where the domain of Xi is the set of all subtrees
rooted at ui within any t ∈ C and the linear ordering of Xi is
chosen in a very natural way. Moreover,

f(x1, . . . , xm) := t0[u1/x1, . . . , um/xm]

for some arbitrary t0 ∈ C. After carrying out this decomposition
formally, we conclude the proof by showing that only finitely
many distinct order types occur among all the involved Xi.

As we use the same decomposition in sections 3.4 and 3.5
again, we have split the proof of theorem 3.3.8 into several lem-
mas. For the remainder of this section, we fix a tree-automatic
linear order A as well as tree-automata T = (Q, ι, δ, F ) and
T ′ = (Q′, ι′, δ′, F ′) recognizing 6A and the relation{

〈t, `, r〉 ∈ A3
∣∣∣ t ∈ [`, r]A

}
,

respectively. Furthermore, we fix a closed interval I = [`, r]A ⊆ A
and put

D := dom(`⊗ r) = dom(`) ∪ dom(r) .
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Recall that the boundary of D is the set

∂D :=
{
ui
∣∣ u ∈ D, i ∈ {0, 1}, ui 6∈ D } .

The equivalence relation ≡I defined below formalizes the partition
of I we described above.

Definition 3.3.9. The I-type of a tree t ∈ TΣ is the tree
ϑ ∈ TΣ](Q×Q′) defined by

dom(ϑ) := dom(t) ∩ (D ∪ ∂D)
and

ϑ(u) :=
{
t(u) if u ∈ D,
〈δ(ι, t⊗ t, u), δ′(ι′,⊗〈t, `, r〉, u)〉 if u ∈ ∂D.

Two trees t1, t2 ∈ TΣ are I-equivalent, denoted by t1 ≡I t2, if
their I-types coincide.

Let ϑ be an I-type, u1, . . . , um an enumeration of dom(ϑ) ∩ ∂D
and ϑ(ui) = 〈qi, q′i〉 for each i. Since ϑ 6∈ TΣ in general, the
convolution ϑ ⊗ ϑ is not a valid input for T . However, ϑ ⊗ ϑ
provides enough information to be treated as such an input. More
precisely, we define

δ(ι, ϑ⊗ ϑ) := δu1/q1,...,um/qm(ι, ϑ�D ⊗ ϑ�D) .

Similarly, we treat ⊗〈ϑ, `, r〉 as an input for T ′ by defining

δ′(ι,⊗〈ϑ, `, r〉) := δu1/q′1,...,um/q
′
m

(ι′,⊗〈ϑ�D, `, r〉) .

In fact, these two conventions along with definition 3.3.9 were
just chosen such that

δ(ι, ϑ⊗ ϑ) = δ(ι, t⊗ t)
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and
δ′(ι′,⊗〈ϑ, `, r〉) = δ′(ι′,⊗〈t, `, r〉)

for every tree t ∈ TΣ with I-type ϑ. The latter equality partic-
ularly implies that ϑ completely determines whether t ∈ I. Put
another way, I is a union of ≡I -classes. Since every I-type ϑ
satisfies dom(ϑ) ⊆ D ∪ ∂D, there are only finitely many I-types
or, equivalently, ≡I -classes. The next lemma summarizes these
insights.

Lemma 3.3.10. The closed interval I is a finite union of
≡I-classes.

In the following, ≡I -classes C with C ⊆ I and their I-types play
an important role.

Definition 3.3.11. An ≡I -class C is proper if C ⊆ I. An I-type
is proper if it corresponds to a proper ≡I -class.

Our next step is to construct a tame box-decomposition of each
proper ≡I -class. The components of this decomposition are given
by the next lemma. For x ∈ TΣ , the tree x� ∈ TΣ3

�
is defined by

dom(x�) := dom(x)
and

x�(u) := 〈x(u), �, �〉 .

Intuitively, x� is obtained by convolving x with two copies of the
“empty tree”.

Lemma 3.3.12. Let ϑ be a proper I-type and u ∈ dom(ϑ) ∩ ∂D.
The structure (Xϑu; Pϑu) defined by

Xϑu :=
{
x ∈ TΣ

∣∣∣ 〈δ(ι, x⊗ x), δ′(ι′, x�)〉 = ϑ(u)
}
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and
x Pϑu y :⇐⇒ δu/δ(ι,x⊗y)(ι, ϑ⊗ ϑ) ∈ F .

is a tree-automatic linear order.

Proof. It is a matter of routine to check that (Xϑu; Pϑu) is indeed
tree-automatic. It remains to verify that Pϑu is a linear ordering
of Xϑu. For this purpose, let C be the ≡I -class belonging to ϑ
and fix some arbitrary t ∈ C. We show that mapping x ∈ Xϑu

to t[u/x] defines an embedding of (Xϑu; Pϑu) into (C;6A). Due
to the choice of Xϑu, t[u/x] has I-type ϑ as well, i.e., t[u/x] ∈ C.
Finally, for all x, y ∈ Xϑu, we have

x Pϑu y ⇐⇒ δu/δ(ι,x⊗y)(ι, ϑ⊗ ϑ) ∈ F
⇐⇒ δ(ι, t[u/x]⊗ t[u/y]) ∈ F
⇐⇒ t[u/x] 6A t[u/y] .

The actual tame box-decomposition itself is given by the next
lemma.

Lemma 3.3.13. Let C be a proper ≡I-class, ϑ its I-type and
u1, . . . , um an enumeration of dom(ϑ) ∩ ∂D. Furthermore, let
f : Xϑu1 × · · · ×Xϑum → C be defined by

f(x1, . . . , xm) := ϑ[u1/x1, . . . , um/xm] .

Then (f ;Xϑu1 , . . . , Xϑum) is a tame box-decomposition of C.

Proof. Obviously, f is injective. Putting together all the related
definitions, we easily obtain that a tree is contained in the image
of f if and only if its I-type is ϑ. In other words, f is a bijection.

Our next step is to show that f satisfies the condition of
definition 3.3.3. To this end, let X := Xϑu1 × · · · × Xϑum and
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consider x,y ∈ X with xi Pϑui yi for each i ∈ [1,m]. We have to
show f(x) 6A f(y). For i ∈ [0,m], we put

zi := 〈y1, . . . , yi, xi+1, . . . , xm〉 ∈ X .

In these terms, we have to show f(z0) 6A f(zm). We do so by
proving

f(z0) 6A f(z1) 6A · · · 6A f(zm) .

For this purpose, we fix some i ∈ [1,m] and observe that

f(zi−1)⊗ f(zi)
= (ϑ⊗ ϑ)[(uj/yj ⊗ yj)j<i, ui/xi ⊗ yi, (uj/xj ⊗ xj)j>i] .

For each j, the definition of Xϑuj says that both δ(ι, xj ⊗ xj) and
δ(ι, yj ⊗ yj) coincide with the first component of ϑ(uj). Thus,

δ(ι, f(zi−1)⊗ f(zi)) = δui/δ(ι,xi⊗yi)(ι, ϑ⊗ ϑ) ∈ F ,

where the membership in F is due to xi Pϑui yi. Consequently,
f(zi−1) 6A f(zi). So far, we have shown that (f ;Xϑu1 , . . . , Xϑum)
is a box-decomposition of C.

It remains to show that this box-decomposition is tame. Due
to the definition of Pϑui , the map µi : X2

ϑui
→ Q given by

µi(xi, yi) := δ(ι, xi ⊗ yi) is a finite device for Xϑui . Thus, it
suffices to show that the map µ : C2 → Qm defined by

µ(f(x1, . . . , xm), f(y1, . . . , ym)) := 〈µ1(x1, y1), . . . , µm(xm, ym)〉

is a finite device for C.
To this end, we define a map g : Qm → Q by

g(q1, . . . , qm) := δu1/q1,...,um/qm(ι, ϑ⊗ ϑ) .

86



3.3 Tree-Automaticity

For all s = f(x1, . . . , xm), t = f(y1, . . . , ym) ∈ C, we have

δ(ι, s⊗ t) = g(δ(ι, x1 ⊗ y1), . . . , δ(ι, xm ⊗ ym))
= g(µ1(x1, y1), . . . , µm(xm, ym))
= g(µ(s, t)) .

Since T recognizes 6A, we finally obtain the following chain of
equivalences:

s 6A t ⇐⇒ δ(ι, s⊗ t) ∈ F
⇐⇒ µ(s, t) ∈ g−1(F ) .

This proves that µ is a finite device for 6A.

Now, we are in a position to prove the decomposition theorem.

Theorem 3.3.8 (decomposition theorem, cf. [Del04]). Let A be
a tree-automatic linear order. There exists a finite set S of tree-
automatic linear orders such that every closed interval in A admits
a partition into suborders which are tamely box-decomposable in S.

Proof. In view of lemmas 3.3.10 and 3.3.13, it only remains
to show that collecting the (Xϑu; Pϑu) over all closed intervals
I = [`, r]A ⊆ A, each I-type ϑ and every u ∈ dom(ϑ)∩∂ dom(`⊗r)
yields only finitely many distinct linear orders. However, this
is almost trivial since the set Xϑu is determined by the pair
ϑ(u) ∈ Q×Q′ and the linear ordering by the set{

q ∈ Q
∣∣ δu/q(ι, ϑ⊗ ϑ) ∈ F

}
.

Clearly, there are only |Q| · |Q′| · 2|Q| many choices for these
parameters.

Finally, an easy inspection of the preceding proofs reveals that
theorem 3.3.8 is effective in the following regards: (1) Given a tree-
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automatic presentation of the linear order A, one can compute
tree-automatic presentations of the elements of S. (2) Given a
closed interval in I ⊆ A, one can compute an automatic partition
of I and for each part a box-decomposition into members of S.

3.3.2 Tame Box-Decompositions of Scattered
Linear Orders

The sole purpose of this section is to prove theorem 3.3.17, which
asserts that eq. (3.4) on page 79 is valid for tame box-decomposi-
tions. Basically, the proof proceeds by induction on the size n of
the box-decomposition. The main part of this section deals with
the case n = 2 in proposition 3.3.16. We prepare the proof by
two technical lemmas.

Let A be a linear order and µ : A2 → Q a finite device for A.
A subset X ⊆ A is called homogeneous (wrt µ) if there are
q<, q=, q> ∈ Q such that, for all a, b ∈ X and θ ∈ {<,=, >}, a θ b
if and only if µ(a, b) = qθ.

Lemma 3.3.14. Let A be a linear order and µ : A2 → Q a finite
device for A.

(1) If A has no greatest element, then there is a homogeneous
cofinal type ω subset X ⊆ A.

(2) If A has no least element, then there is a homogeneous coini-
tial type ω? subset X ⊆ A.

Proof. Suppose that A has no greatest element. Hence, there
is a cofinal type ω subset Z ⊆ A. According to the infinitary
pigeon hole principle, there are q= ∈ Q and an infinite subset
Y ⊆ Z such that µ(a, a) = q= for all a ∈ Y . Due to the infinitary
version of Ramsey’s theorem (cf. theorem 4.1.3 on page 126),
there are q<, q> ∈ Q and an infinite subset X ⊆ Y such that
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µ(a, b) = q< and µ(b, a) = q> for all a, b ∈ X with a < b. This
proves statement (1). Statement (2) is shown analogously.

Lemma 3.3.15. Let α be an ordinal, A ∈ VDα a scattered linear
order and X ⊆ A.
(1) If A is an ω-sum of linear orders from VD<α and X is

bounded from above, then X ∈ VD?<α.
(2) If A is an ω?-sum of linear orders from VD<α and X is

bounded from below, then X ∈ VD?<α.

Proof. We only prove statement (1), statement (2) is shown
analogously. Suppose the premises are satisfied. We write A
as an ω-sum A =

∑
i∈ω Ai with Ai ∈ VD<α for each i. Let

a ∈ A be an upper bound on X and k ∈ N with a ∈ Ak. Then
X ⊆ A0 + · · ·+Ak ∈ VD?<α.

The next proposition proves the case n = 2 of theorem 3.3.17. It
is only for technical reasons, that we refrained from stating its
claim as VD∗(A) 6 VD∗(B)⊕VD∗(C).

Proposition 3.3.16. Let A be a scattered linear order, (f ;B,C)
a tame box-decomposition of A and β, γ ordinals. If B ∈ VD?β
and C ∈ VD?γ, then A ∈ VD?β⊕γ.

Proof. To keep notation simple, we assume without loss of gener-
ality that A = B × C and f is the identity map. Before we delve
into the details of an induction on β and γ, we perform a slight
simplification. Since B ∈ VD?β , we can write B = B1 + · · ·+Bm
with B1, . . . , Bm ∈ VDβ. Analogously, C = C1 + · · · + Cn with
C1, . . . , Cn ∈ VDγ . Since every ζ-sum can be written as a sum of
an ω∗-sum and an ω-sum, we can additionally assume that none
of the Bi and Cj is constructed as a ζ-sum. Notice that the set{

Bi × Cj
∣∣ i ∈ [1,m], j ∈ [1, n]

}
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forms a partition of A. In view of theorem 3.2.2, it hence suf-
fices to show (Bi × Cj ;6A) ∈ VD?β⊕γ for all i and j. Since
(f�Bi×Cj ;Bi, Cj) is a tame box-decomposition of (Bi × Cj ;6A),
this amounts to proving the claim of the theorem under the
stronger assumptions that B ∈ VDβ, C ∈ VDγ and neither B
nor C are constructed as a ζ-sum. We demonstrate this modified
claim by induction on β and γ.

Base case: β = 0 or γ = 0. If β = 0, then B is either empty or
a singleton. In both cases, the claim is trivial. The case γ = 0 is
symmetric.

Inductive step: β > 0 and γ > 0. If B is a finite sum of linear
orders from VD<β, then B ∈ VD?<β and hence A ∈ VD?<β⊕γ
by the induction hypothesis. The case of a finite sum C is
symmetric. It remains to show the claim under the assumption
that both B and C are ω-sums or ω∗-sums of non-empty linear
orders from VD<β and VD<γ , respectively. In line with this,
we distinguish four cases. In each case, let µB and µC be finite
devices for B and C, respectively, witnessing the tameness of
the box-decomposition. In addition, let µA be the induced finite
device for A, i.e.,

µA(〈b1, c1〉, 〈b2, c2〉) := 〈µB(b1, b2), µC(c1, c2)〉 .

Case 1: B is an ω-sum and C is an ω?-sum. According to
lemma 3.3.14, there are a homogeneous (wrt µB) cofinal subset
{ b0 < b1 < b2 < · · · } ⊆ B and a homogeneous (wrt µC) coinitial
subset { c0 > c1 > c2 > · · · } ⊆ C. Depending on how 〈b0, c0〉
compares to 〈b1, c1〉 in A, we distinguish two cases.

Case 1.1: 〈b0, c0〉 <A 〈b1, c1〉. Figure 3.2 on page 92 depicts
the idea behind the treatment of this case. The horizontal axis
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3.3 Tree-Automaticity

describes B and increases from left to right, whereas the vertical
axis outlines C and grows from bottom to top. Within the grid,
arrows point from smaller to greater elements.

Formally, let b−1 := −∞ and put

Xi := (bi−1, bi]B × (−∞, c0)C

for each i ∈ N. Moreover, let

Y1 := B × [c0,∞)C , Y2 :=
⋃
i∈N

X2i and Y3 :=
⋃
i∈N

X2i+1 .

Since the sequence of the bi is unbounded, we have

B × C = Y1 ] Y2 ] Y3 .

Our goal is to show Y1, Y2, Y3 ∈ VD?β⊕γ . Due to theorem 3.3.2,
this implies A ∈ VD?β⊕γ , as desired.

According to lemma 3.3.15, we have (bi−1, bi]B ∈ VD
?
<β, for

each i, as well as [c0,∞)C ∈ VD
?
<γ . By the induction hypothesis,

we obtain Xi, Y1 ∈ VD?<β⊕γ for each i. Recall that, by definition,
Xi � Xj holds true precisely if a <A a′ for all a ∈ Xi and a′ ∈ Xj .
Our next step is to show

X0 � X2 � X4 � · · · and X1 � X3 � X5 � · · · . (3.5)

To this end, consider i ∈ N, 〈b, c〉 ∈ Xi and 〈b′, c′〉 ∈ Xi+2. Since
the sequence of the cj is strictly decreasing and unbounded, there
is j0 ∈ N such that cj0 6 c′. The choice of the bi and cj implies

µA(〈b0, c0〉, 〈b1, c1〉) = µA(〈bi, c0〉, 〈bi+1, cj0〉)

and hence 〈bi, c0〉 <A 〈bi+1, cj0〉. Since (f ;B,C) is a box-decom-
position of A, we further conclude

〈b, c〉 <A 〈bi, c0〉 <A 〈bi+1, cj0〉 <A 〈b′, c′〉 .
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B

C

b0 b1 b2 bi−1 bi bi+1 bi+2

c0

c1

cj0

〈b0, c0〉

〈b1, c1〉

〈b, c〉

〈bi, c0〉

〈bi+1, cj0〉

〈b′, c′〉

Y1

X0 X1 X2 · · · Xi Xi+2

Figure 3.2: Proof sketch for case 1.1
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This proves eq. (3.5). As a direct consequence, we obtain

Y2 =
∑
i∈ω

X2i and Y3 =
∑
i∈ω

X2i+1 .

Hence, Y2 and Y3 are ω-sums of linear orders in VD?<β⊕γ , i.e.,
Y2, Y3 ∈ VDβ⊕γ . Altogether, we have shown Y1, Y2, Y3 ∈ VD?β⊕γ
so far. According to theorem 3.3.2, this implies A ∈ VD?β⊕γ and
completes case 1.1.

Case 1.2: 〈b0, c0〉 >A 〈b1, c1〉. This case is symmetric to case 1.1
and depicted in fig. 3.3 on the following page.

Case 2: B and C both are ω-sums. This time, lemma 3.3.14 guar-
antees the existence of cofinal subsets { b0 < b1 < b2 < · · · } ⊆ B
and { c0 < c1 < c2 < · · · } ⊆ C which are homogeneous wrt µB
and µC , respectively. Depending on how 〈b0, c1〉 compares to
〈b1, c0〉 in A, we distinguish two cases.

Case 2.1: 〈b0, c1〉 <A 〈b1, c0〉. This case is treated similar to
case 1.1 and depicted in fig. 3.4 on page 95.

Case 2.2: 〈b0, c1〉 >A 〈b1, c0〉. This case is symmetric to case 2.1.

Case 3: B is an ω?-sum and C is an ω-sum. This case is
symmetric to case 1.

Case 4: B and C both are ω?-sums. This case is symmetric to
case 2.

Finally, we are in a position to perform the induction proving
theorem 3.3.17.
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Figure 3.3: Proof sketch for case 1.2
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Figure 3.4: Proof sketch for case 2.1
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Theorem 3.3.17. Let A be a scattered linear order and consider
a tame box-decomposition (f ;B1, . . . , Bn) of A. Then

VD∗(A) 6 VD∗(B1)⊕ · · · ⊕VD∗(Bn) .

Proof. We proceed by induction on n.

Base case: n = 1. Since A ∼= B1 (via f), the claim is trivial.

Inductive step: n > 1. Without loss of generality, we assume that
A = B1 × · · · ×Bn and f is the identity map. Let µ1, . . . , µn be
finite devices for B1, . . . , Bn, respectively, such that the following
defines a finite device µ for A:

µ(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) := 〈µ1(x1, y1), . . . , µn(xn, yn)〉 .

Let A′ := B1 × · · · ×Bn−1. We define an equivalence relation ∼
on Bn by xn ∼ yn if µn(xn, xn) = µn(yn, yn). Since ∼ has finite
index and due to theorem 3.3.2, it suffices to show the following
upper bound for each ∼-class Z ⊆ Bn:

VD∗(A′ × Z) 6 VD∗(B1)⊕ · · · ⊕VD∗(Bn) . (3.6)

For this purpose, we fix a representative z ∈ Z. Observe that
(g;B1, . . . , Bn−1) with g(x) := 〈x, z〉 is a tame box-decompo-
sition of A′ × {z}. We complete the proof by showing that
(h;A′×{z}, Z) is a tame box-decomposition of A′×Z, where the
bijection h : (A′ × {z})× Z → A′ × Z is defined by

h(〈x, z〉, xn) := 〈x, xn〉 .

Proposition 3.3.16 and the induction hypothesis then yield

VD∗(A′ × Z) 6 VD∗(A′ × {z})⊕VD∗(Z)
6 VD∗(B1)⊕ · · · ⊕VD∗(Bn−1)⊕VD∗(Bn) .
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Consider some x,y ∈ A′ and xn, yn ∈ Z with 〈x, z〉 6A 〈y, z〉
and xn 6Bn yn. Since µn(z, z) = µn(xn, xn), we obtain

µ(〈x, z〉, 〈y, z〉) = µ(〈x, xn〉, 〈y, xn〉)
and hence
h(〈x, z〉, xn) = 〈x, xn〉 6A 〈y, xn〉 6A 〈y, yn〉 = h(〈y, z〉, yn) .

This demonstrates that (h;A′ × {z}, Z) is indeed a box-decompo-
sition of A′ × Z. Using (the restrictions of) the finite devices µ
and µn for A′ × {z} and Z, respectively, it is a matter of routine
to verify that this box-decomposition is tame.

3.3.3 Bounding the Finite-Condensation Rank

In this section, we finally prove the upper bound on the FC-ranks
of linear orders in TA. As a corollary, we obtain Delhommé’s
characterization of the ordinals in TA. The lemma below is a
slight variation of [KRS05, proposition 4.5].

Lemma 3.3.18. Let A be a linear order. There is a scattered
closed interval I ⊆ A with VD∗(I) = α for each α < FC(A).

Proof. Consider some α < FC(A). The proof of [KRS05, propo-
sition 4.5] shows that there is a scattered closed interval I ⊆ A
with VD(A) = α+ 1. Since I has a least and a greatest element,
it is neither an ω-sum nor an ω∗-sum nor a ζ-sum of non-empty
linear orders from VD<α+1 = VDα. Thus, I is a finite sum of
linear orders from VDα, i.e., I ∈ VD?α. Since VD(I) = α+ 1, this
implies VD∗(I) = α.

The main result of this section is as follows:

Theorem 3.3.19. The FC-rank of any linear order A in TA is
bounded by

FC(A) < ωω .
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Proof. Aiming for a contradiction, assume there is a tree-au-
tomatic linear order A such that FC(A) > ωω. According to
theorem 3.3.8, there is a finite set S of linear orders such that
every closed interval in A admits a partition into suborders which
are tamely box-decomposable in S. We derive a contradiction by
showing that S contains a scattered linear order of VD∗-rank ωk
for each k ∈ N.

To this end, fix some k ∈ N. By lemma 3.3.18, there exists a
scattered closed interval I ⊆ A such that VD∗(I) = ωk. Due to
the choice of S, there is a partition ∆ of I such that each linear
order in ∆ is box-decomposable into linear orders from S. By
theorem 3.3.2, there is B ∈ ∆ with VD∗(B) = ωk.

Finally, let (f ;C1, . . . , Cn) be a tame box-decomposition of
B with C1, . . . , Cn ∈ S. Recall that VD∗(Ci) 6 ωk. If we had
VD∗(Ci) < ωk for each i, we would obtain

VD∗(C1)⊕ · · · ⊕VD∗(Cn) < ωk .

However, this would contradict theorem 3.3.17. Put another
way, there is some j such that VD∗(Cj) = ωk, i.e., S contains a
scattered linear order of VD∗-rank ωk.

The next example is folklore and shows that TA contains all
ordinals α < ωωω . In particular, this proves the bound in theo-
rem 3.3.19 to be optimal.

Example 3.3.20 (cf. [BGR11, example 1.3.6]). Let γ 6 ωn be
an ordinal and A the string-automatic type γ well-order with
A ⊆ (1∗0)n from example 3.1.2. The standard example (N(A); P)
of a type ωγ well-order is defined by

N(A) :=
{
f : A→ N

∣∣∣ f(u) = 0 for all but finitely many u ∈ A
}

and f C g if the greatest u ∈ A with f(u) 6= g(u) satisfies
f(u) < g(u). Encoding each f ∈ N(A) by the unique tree tf ∈ T{a}
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whose domain dom(tf ) is the prefix-closure of the set⋃
u∈A
f(u)6=0

u1f(u)

yields a tree-automatic type ωγ linear order. Consequently, TA
contains ωγ and hence all ordinals α < ωωω by the last argument
from example 3.1.2.

The following characterization of the ordinals in TA is immediately
implied by theorem 3.3.19 along with example 3.3.20.

Corollary 3.3.21 ([Del04]). An ordinal α is in TA if and only if

α < ωω
ω
.

3.4 Tree-Automaticity on Polynomial
Domains

We complete our investigation on ranks of automatic linear orders
by studying pTA. The main result in this regard is theorem 3.4.1
below, whose proof combines ideas from the investigations of pSA
and TA, namely theorems 3.2.4 and 3.3.19.

Theorem 3.4.1. Let k > 1. The FC-rank of any linear order A
in pTA[k] is bounded by

FC(A) < ωk .

Proof. We proceed by induction on k. We add an artificial base
case k = 0 and use the induction hypothesis only in the following
restricted form: The VD∗-rank of any scattered linear order A
in pTA[k] is bounded by VD∗(A) < ωk. For k > 1, this assertion
easily follows from

VD∗(A) 6 FC(A) < ωk .
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Base case: k = 0. Since any structure in pTA[0] is finite, every
scattered linear order A in pTA[0] trivially satisfies VD∗(A) < ω0.

Inductive step: k > 1. Aiming for a contradiction, assume
there is a tree-automatic linear order A with FC(A) > ωk and
gT (A)(n) ∈ O(nk). According to theorem 3.3.8, there is a finite
set S of linear orders such that every closed interval in A admits
a partition into suborders which are tamely box-decomposable
in S. We derive a contradiction to the finiteness of S by showing
that S contains for each ` ∈ N a scattered linear order B with

ωk−1` < VD∗(B) < ωk .

To this end, we fix some ` ∈ N. By lemma 3.2.3, there is a
constant c ∈ N such that any anti-chain U ⊆ {0, 1}∗ contains at
most c elements u ∈ U with

gu−1T (A)(n) ∈ Θ(nk) .

Due to lemma 3.3.18, there exists a scattered closed interval
I = [`, r]A ⊆ A such that

VD∗(I) = ωk−1(`c+ 1) .

According to lemma 3.3.10, I is a finite union of ≡I -classes. Thus,
there is an ≡I -class C ⊆ I with

VD∗(C) = ωk−1(`c+ 1)

by theorem 3.3.2. Let ϑ be the I-type of C, u1, . . . , um an enu-
meration of dom(ϑ) ∩ ∂ dom(`⊗ r) and (f ;Xϑu1 , . . . , Xϑum) the
tame box-decomposition of C from lemma 3.3.13. Recall that
each Xϑui is a scattered linear order with

VD∗(Xϑui) 6 ωk−1(`c+ 1) .
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For all x1 ∈ Xϑu1 , . . . , xm ∈ Xϑum , we have

ϑ[u1/x1, . . . , um/xm] ∈ C ⊆ A .

In particular,
T (Xϑui) ⊆ u

−1
i T (A)

for each i. We consider the set

H :=
{
i ∈ [1,m]

∣∣∣ gu−1
i T (A)(n) ∈ Θ(nk)

}
.

Due to the choice of c, we have |H| 6 c. For all i ∈ [1,m] \H,
the restricted induction hypothesis applies to Xϑui , i.e.,

VD∗(Xϑui) < ωk−1 .

If we also had VD∗(Xϑui) 6 ωk−1` for all i ∈ H, we would obtain⊕
i∈[1,m]

VD∗(Xϑui) =
⊕

i∈[1,m]\H
VD∗(Xϑui)︸ ︷︷ ︸

<ωk−1

⊕
⊕
i∈H

VD∗(Xϑui)︸ ︷︷ ︸
6ωk−1`c

< ωk−1(`c+ 1) .

However, this would contradict theorem 3.3.17. Hence, there is
some j ∈ [1,m] such that

ωk−1` < VD∗(Xϑuj ) 6 ωk−1(`c+ 1) < ωk .

This proves the claim.

The following example demonstrates that each ordinal α < ωω
k

is contained in pTA[k].

Example 3.4.2. Let k > 1, m ∈ N and

A = (1<m0(1∗0)k−1;6in)
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be the string-automatic type ωk−1m well-order from example 3.2.1.
Applying the construction from example 3.3.20 yields a tree-
automatic type ωωk−1m well-order (B;6B). The set T (B) is the
prefix-closure of 1<m0(1∗0)k−11∗, i.e.,

T (B) =
⋃

06i6k
1<m(01∗)i .

Thus, gT (B)(n) ∈ O(nk). Consequently, pTA[k] contains ωωk−1m

and hence all ordinals α < ωωk by the last argument from exam-
ple 3.1.2.

Just like before, theorem 3.4.1 in combination with example 3.4.2
yields a characterization of the ordinals in pTA[k]

Corollary 3.4.3. Let k ∈ N. An ordinal α is in pTA[k] if and
only if

α < ωω
k
.

Notice that corollaries 3.3.21 and 3.4.3 imply that every ordinal
in TA is already contained in pTA. In fact, one can show that
the domain of any tree-automatic well-order—or more generally,
scattered linear order—is of polynomial growth [JKSS14].

3.5 String-Automaticity versus
Tree-Automaticity

This section is devoted to theorems 3.5.5 and 3.5.9. The former
characterizes those scattered linear orders in TA which are also
contained in SA and the latter provides an algorithm to compute
the Cantor normal form of any tree-automatic well-order of type
α < ωω2 . Recall that every tree-automatic structure on a slim
domain belongs to SA by theorem 2.4.17 on page 44. Along with
theorem 3.1.3, we obtain that the FC-rank of a tree-automatic
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linear order A is bounded by FC(A) < ω whenever A is slim.
The aforementioned two results both rely on the converse of this
implication, which is demonstrated in proposition 3.5.4. Although
it would be possible to prove this without using the decomposition
technique, we partially resort to this technique since we have
already introduced it anyway. As our first step, we establish a
very restricted converse of theorem 3.3.17.

Lemma 3.5.1. Let A be a scattered linear order and consider
a tame box-decomposition (f ;A1, . . . , An) of A. If all the Ai are
infinite, then

VD∗(A) > n .

Proof. Without loss of generality, we assume A = A1 × · · · ×An
and that f is the identity map. We denote the orderings of A
and Ai by 6 and 6i, respectively. Let v be the partial order on
A defined by x v y if xi 6i yi for each i. Due to the definition of
box-decompositions, 6 is a linear extension of v. Let µ1, . . . , µn
be finite devices for A1, . . . , An, respectively, witnessing that the
box-decomposition is tame. Let µ be the induced finite device
for A, i.e.,

µ(x,y) := 〈µ1(x1, y1), . . . , µn(xn, yn)〉 .

Obviously, each Ai contains a suborder of type ω or ω?. Applying
lemma 3.3.14 to this suborder, yields a homogeneous (wrt µ)
suborder Xi ⊆ Ai of the same type. Our goal is to show that the
suborder

X := X1 × · · · ×Xn ⊆ A

satisfies VD∗(X) = n.
For this purpose, fix some a, b, c ∈ X with ai <i bi <i ci for

each i ∈ [1, n]. We define

ei := 〈a1, . . . , ai−1, bi, ai+1, . . . , an〉 .
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Since the permutation of a tame box-decomposition is again a
tame box-decomposition, we assume without loss of generality
that

e1 < e2 < · · · < en .

As a next step, we show that, for all x,y ∈ X, x < y whenever
there is some i with xi 6= yi and the maximal such i satisfies
xi <i yi. Suppose that the latter condition is satisfied and let k
be maximal with xk <k yk. We define p, q ∈ X by

〈pi, qi〉 :=


〈ai, bi〉 if xi <i yi,
〈ai, ai〉 if xi = yi,
〈bi, ai〉 if xi >i yi.

Notice that µ(x,y) = µ(p, q). Hence, it suffices to verify p < q.
If k = 1, this follows from p < q. Henceforth, assume k > 0. For
each i ∈ [1, k − 1], we define

si := 〈a1, . . . , ai−1, ci, bi+1, . . . , bk−1, ak, . . . , an〉 .

For i < k − 1, we have µ(si, si+1) = µ(ei, ei+1) and hence
si < si+1. We further have µ(sk−1, ek) = µ(ek−1, ek) and hence
sk−1 < ek. Altogether,

p < s1 < s2 < · · · < sk−1 < ek v q .

This proves p < q and hence x < y.
Put another way, we have just shown that

(X;6) = (X1;61) · (X2;62) · · · (Xn;6n) .

Since each (Xi;6i) has order type ω or ω?, we obtain VD∗(X) = n
and hence VD∗(A) > n.
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It strikes us as if incorporating ideas from chapter 4 into the previ-
ous proof would yield the subsequently conjectured generalization
of lemma 3.5.1. However, going down that road does not appear
to be of any particular help for the investigation of automatically
presentable linear orders.

Conjecture 3.5.2. Let A be a scattered linear order and consider
a tame box-decomposition (f ;A1, . . . , An) of A. Moreover, let
k1, . . . , kn ∈ N be such that each Ai satisfies VD∗(Ai) > ki. Then

VD∗(A) > k1 + · · ·+ kn .

In contrast to this conjecture, the interplay between tame box-de-
compositions and lower bounds on the VD∗-rank is definitely quite
poor for infinite VD∗-ranks. The following example illustrates
this poorness for certain particularly relevant tree-automatically
presentable well-orders.

Example 3.5.3. Let k, n ∈ N+, A be a type ωωk well-order and
A =

∑
i∈ω Ai the unique decomposition of A such that each Ai

has type ωωk−1i. We consider the well-order

B :=
∑
in∈ω
· · ·

∑
i2∈ω

∑
i1∈ω

Ai1 ·Ai2 · · ·Ain .

It is a matter of routine to verify that the tuple (f ;A,A, . . . , A),
where f is the identity map on An, forms a tame box-decomposi-
tion of B. A suitable finite device µ : A2 → Q for A is given by
Q := {<,=, >}2 and µ(u, v) = 〈θ, θ′〉 precisely if u θ v and i θ′ j
for the unique i, j ∈ N with u ∈ Ai and v ∈ Aj . Moreover, B has
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order type ∑
in∈ω
· · ·

∑
i2∈ω

∑
i1∈ω

ωω
k−1i1 · ωωk−1i2 · · ·ωωk−1in

=
∑
in∈ω
· · ·

∑
i2∈ω

ωω
k

= ωω
k+n−1 .

In a way, the finite difference between the VD∗-ranks of A and B,
namely VD∗(A) = ωk and VD∗(B) = ωk + n− 1, is neglectable
in the context of infinite VD∗-ranks.

In the proof of the following proposition, we do not use the
decomposition theorem 3.3.8 literally but a variation of the de-
composition technique which is adapted to proving lower bounds
on FC-ranks.

Proposition 3.5.4. Let A be a tree-automatic scattered linear
order. If A is not slim, then

FC(A) > ω .

Proof. Suppose that A is not slim. Using lemma 3.5.1, we show
that, for each n ∈ N, there is a suborder C ⊆ A with VD∗(C) > n.
This proves FC(A) > ω.

To this end, fix some n ∈ N. Let T = (Q, ι, δ, F ) and
T ′ = (Q′, ι′, δ′, F ′) be tree-automata recognizing A and 6A, re-
spectively. We put k := |Q|. Since A is not slim, there are t ∈ A
and ` ∈ N with

|dom(t) ∩ {0, 1}=`| > 2k n .

Let

U :=
{
u ∈ dom(t) ∩ {0, 1}=`−k

∣∣∣ ∃v ∈ {0, 1}=k : uv ∈ dom(t)
}
.
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Due to the choice of t and `, we have |U | > n, say u1, . . . , un ∈ U
are mutually distinct elements of U . For each i ∈ [1, n], let
qi := δ(ι, t, u). The tree t�ui has height at least k and satisfies
δ(ι, t�ui) = qi. Using a simple pumping argument, we conclude
that there are infinitely many xi ∈ TΣ with δ(ι, xi) = qi. Accord-
ing to the infinitary pigeon hole principle, there is a state q′i ∈ Q′
such that the set

Xi :=
{
xi ∈ TΣ

∣∣∣ δ(ι, xi) = qi and δ′(ι′, xi ⊗ xi) = q′i

}
is infinite. In particular, we have t[ui/xi] ∈ A for every xi ∈ Xi.
We assume without loss of generality that we have chosen t
initially such that t�ui ∈ Xi. We define a linear ordering Pi of Xi

by xi Pi yi if t[ui/xi] 6A t[ui/yi].
We further consider the injective map f : X1 × · · · ×Xn → C

given by
f(x1, . . . , xn) := t[u1/x1, . . . , un/xn] ,

where C is chosen such that f is also surjective. Due to the choice
of the Xi, we have C ⊆ A. Using the same arguments as in
the proof of lemma 3.3.13, we may conclude that (f ;X1, . . . , Xn)
is a tame box-decomposition of C. Thus, lemma 3.5.1 implies
VD∗(C) > n.

Combining theorem 2.4.17 on page 44, theorem 3.1.3 and proposi-
tion 3.5.4 immediately yields the first main result of this section:

Theorem 3.5.5. Any scattered linear order A from TA is con-
tained in SA if and only if

FC(A) < ω .

Due to theorem 2.4.16, it is decidable whether a given tree-
automaton recognizes a slim language or not. Moreover, every
tree-automatic structure on a slim domain is effectively string-
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automatically presentable by theorem 2.4.17. Accordingly, we
obtain the following two corollaries:

Corollary 3.5.6 ([Hus12]). Given a tree-automatic presentation
of a scattered linear order A, it is decidable whether A is contained
in SA. In case of a positive answer, one can compute a string-
automatic presentation of A.

Corollary 3.5.7. Given a tree-automatic presentation of a struc-
ture A which admits a first-order definable scattered linear order-
ing 6 of the domain A satisfying FC(A;6) < ω, one can compute
a string-automatic presentation of A .

Applied to well-orders, the former corollary says that it is de-
cidable whether a given tree-automatically presentable ordinal
α satisfies α < ωω. In the remainder of this section, we use this
decidability result to demonstrate how the Cantor normal form
of any ordinal α < ωω2 can be computed from a tree-automatic
presentation of α.

First of all, recall that the Cantor normal form of (the order
type of) any string-automatic well-order A can be computed by
carrying out the finite-condensation process, cf. corollaries 3.1.7
and 3.1.8. Basically, the effectiveness of this process relies on
two facts: (1) the finite-condensation relation ∼ is effectively
automatic in every automatic well-order and (2) the process stops
after FC(A) many steps, which are only finitely many according
to theorem 3.1.3. Unfortunately, condition (2) does no longer
hold for ordinals α > ωω. However, the next lemma establishes
that the ωth iterated finite-condensation relation ∼ω is effectively
automatic as well. This allows for pushing the upper bound to
ωω2 in theorem 3.5.9.

Lemma 3.5.8. Given a presentation of a tree-automatic well-
order A, one can compute a tree-automaton recognizing the ωth

iterated condensation relation ∼ω on A.
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Proof. Let A be a tree-automatic well-order. Moreover, let
T = (Q, ι, δ, F ) and T ′ = (Q′, ι′, δ′, F ′) be tree-automata rec-
ognizing 6A and the relation{

〈t, `, r〉 ∈ A3
∣∣∣ t ∈ [`, r]A

}
,

respectively. Clearly, it suffices to construct a tree-automaton
recognizing the relation

R :=
{
〈`, r〉 ∈ A2

∣∣∣ ` <A r and ` 6∼ω r
}
.

A tree-automaton recognizing ∼ω is then easily constructed from
the one for R. Our first goal is to characterize the pairs in R in
terms of the I-types from definition 3.3.9.

To this end, consider `, r ∈ A with ` <A r. We put I := [`, r]A
and denote the order type of I by β. It is well known that ` 6∼ω r is
equivalent to β > ωω. Accordingly, a tree-automaton for R would
have to check whether I is not slim. Although it is possible to
construct such an automaton ad hoc, we apply the decomposition
technique from section 3.3.1 once more to simplify the illustration.

Recall how we first partitioned I into finitely many ≡I -classes
in lemma 3.3.10 and then box-decomposed each proper ≡I -class
into linear orders Xϑu in lemma 3.3.13. Due to theorems 3.2.2
and 3.3.4, we have β > ωω if and only if there is some Xϑu whose
order type is at least ωω. According to (the proof of) theorem 3.5.5
and the choice of Xϑu in lemma 3.3.12, the order type of Xϑu is at
least ωω precisely if ϑ(u) is contained in the subset N ⊆ Q×Q′
given by

〈q, q′〉 ∈ N :⇐⇒{
x ∈ TΣ

∣∣∣ δ(ι, x⊗ x) = q and δ′(ι′, x�) = q′
}
is not slim .

Notice that N is computable from T and T ′ due to lemma 2.4.15
on page 41.
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Altogether, we have ` 6∼ω r if and only if there are a proper
I-type ϑ and some u ∈ dom(ϑ) ∩ ∂ dom(`⊗ r) with ϑ(u) ∈ N . If
we say that such ϑ witnesses ` 6∼ω r, we obtain

R =
{
〈`, r〉 ∈ A2

∣∣∣∣∣ there is some t ∈ [`, r]A whose
[`, r]A-type witnesses ` 6∼ω r

}
.

Finally, it is a matter of routine to translate this characterization
into a tree-automaton recognizing R.

Recall the every ordinal γ < ω2 can be written as γ = ωm+ n
for some m,n ∈ N. Accordingly, the Cantor normal form of any
ordinal α < ωω2 can be represented by a list of pairs of numbers.

Theorem 3.5.9. Given a tree-automatic presentation of some
ordinal α < ωω2 , one can compute numbersm1, n1, . . . ,ms, ns ∈ N
such that

ωωm1+n1 + · · ·+ ωωms+ns

is the Cantor normal form of α.

Proof. Let A be a tree-automatic well-order of type α < ωω2 . We
describe a procedure which computes the Cantor normal form of
α by induction on the least k ∈ N with α < ωω k. In fact, we do
not compute the precise value of k but only need its existence
for the procedure to terminate. If k = 0 or, equivalently, α = 0,
the claim is trivial. Henceforth, assume k > 1. There are unique
ordinals α′ < ωω (k−1) and β < ωω with

α = ωω α′ + β .

We are interested in computing automatic presentations of these
ordinals α′ and β.

If A/∼ω contains a greatest element X and the order type of
this ∼ω-classX is strictly below ωω, then α′+1 and β are the order
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3.5 String-Automaticity versus Tree-Automaticity

types of A/∼ω and X, respectively. In all other cases, α′ is the
order type of A/∼ω and β = 0. Since ∼ω is effectively automatic
by lemma 3.5.8, a tree-automatic presentation of A/∼ω is obtained
from the given presentation of A by choosing the least element
from each ∼ω-class. Using theorem 3.5.5 and corollary 3.5.6, we
further obtain a tree-automatic presentation of α′ and a string-
automatic presentation of β.

Due to the induction hypothesis, we can compute numbers
m1, n1, . . . ,ms, ns ∈ N such that

ωωm1+n1 + · · ·+ ωωms+ns

is the Cantor normal form of α′. According to corollary 3.1.7, we
can also compute numbers `1, . . . , `r ∈ N such that ω`1 + · · ·+ω`r

is the Cantor normal form of β. Altogether, we obtain that

ωω (m1+1)+n1 + · · ·+ ωω (ms+1)+ns + ω`1 + · · ·+ ω`r

is the Cantor normal form of α.

Since the Cantor normal form of every ordinal is unique, one
can decide whether two given tree-automatic well-orders of types
below ωω2 are isomorphic by computing and comparing their
Cantor normal forms.

Corollary 3.5.10. Given tree-automatic presentations of two
well-orders A and B of order types strictly below ωω2, one can
decide whether A and B are isomorphic.

Unfortunately, the isomorphism problem for tree-automatically
presentable well-orders of types beyond ωω2 resisted numerous
attempts towards a solution. The same applies to the closely
related problem of deciding whether a given tree-automatically
presentable ordinal α satisfies α < ωω2 at all. It appears to us that
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the main challenge in solving both problems is to establish further
useful lower bounds like in lemma 3.5.1 and proposition 3.5.4.

The isomorphism problem for arbitrary tree-automatic linear
orders is Σ1

1-complete as well: The lower bound is inherited from
theorem 3.1.10 and the upper bound holds for the isomorphism
problem of computable structures in general. In contrast to
the string-automatic case, the isomorphism problem for tree-
automatic scattered linear orders is known to be undecidable.

Theorem 3.5.11 ([Kus14]). Given tree-automatic presentations
of two scattered linear orders A and B, it is Π0

1-hard to decide
whether A and B are isomorphic.

3.6 Non-automaticity
We complete our investigation of automatic linear orders by pro-
viding some examples of linear orders which are not automatically
presentable for reasons other than the known bounds on FC-ranks
or the complexity of first-order theories. All of these linear orders
are of the following type.

Definition 3.6.1. Let f : N → N+ be a map. The order type
τf ∈ VD2 is defined as

τf :=
∑
n∈N

ζ + f(n) .

The subsequent lemma provides necessary conditions on f for
τf to be contained in SA or in pSA[k]. Afterwards, we use these
conditions to show that several linear orders are not contained in
SA or pSA[k].

Lemma 3.6.2. Let f : N→ N+ be a map and k > 2.
(1) If τf is contained in SA, then f(n) ∈ 2O(n).
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3.6 Non-automaticity

(2) If τf is contained in pSA[k], then f(n) ∈ O(nk−1).

Proof. The proofs of both assertions are the same except for the
very last argument. Let (A;6) be a type τf string-automatic
linear order. Moreover, let ∼ be the finite-condensation relation
on A and denote the ∼-class of u ∈ A by [u]. Recall that ∼ is
automatic. We consider the subset

B :=
{

minllex[u]
∣∣ u ∈ A, [u] is finite

}
,

which has order type ω. Let u0 < u1 < u2 < · · · be the ascending
enumeration of B. Notice that each [un] contains exactly f(n)
elements.

Since the successor relation of (B;6) is locally finite and first-
order definable in (A;6) augmented by 6llex and ∼, lemma 2.4.10
on page 37 provides us with a constant C ∈ N such that

|un+1| 6 |un|+ C

for each n ∈ N. Using a simple induction on n, we obtain

|un| 6 C · n+ |u0| ∈ O(n) .

Since ∼ is finitely valued at each un, applying lemma 2.4.10 again
yields another constant D ∈ N such that |v| 6 |un|+D for any
v ∈ [un]. According to the choice of un, we also have |v| > |un|
for all v ∈ [un]. Thus,

f(n) =
∣∣[un]

∣∣ 6 D∑
i=0

∣∣A ∩Σ=|un|+i∣∣ .
In general, we have |A ∩ Σ=n| ∈ 2O(n) and hence f(n) ∈ 2O(n).
This proves (1). If we additionally assume gA(n) ∈ O(nk), corol-
lary 2.3.8 on page 31 implies |A ∩ Σ=n| ∈ O(nk−1) and hence
f(n) ∈ O(nk−1). This shows (2).
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The next theorem is the main result of this section. In view of
theorem 3.5.5, it does not matter if we consider string-automatic
or tree-automatic presentations. Recall that a first-order theory is
sufficiently simple for string-automatic decidability if the Σk-the-
ory belongs to (k − 1)-EXPSPACE for each k > 1. This notion is
in line with the optimal upper bounds on the complexity of the
Σk-theories of string-automatic structures [Kus09].

Theorem 3.6.3. There is a scattered linear order A which is not
automatically presentable although FC(A) = 2 and the first-order
theory of A is sufficiently simple for string-automatic decidability.

Proof. We consider the map f : N→ N+ given by f(n) := 22n and
show that any linear order of type τf has the desired property. The
claim FC(τf ) = 2 is obvious and the non-automaticity follows from
lemma 3.6.2. Thus, we only have to investigate the complexity of
the Σk-theories.

To this end, let Φ be a Σk-sentence suitable for linear orders
andm its quantifier depth. From the investigation of Ehrenfeucht–
Fraïssé games, it is well known that first-order sentences of quan-
tifier depth m cannot distinguish between finite linear orders
containing at least 2m elements [Ros82, corollary 6.9]. In line
with this, we consider the map h : N→ N+ given by

h(n) :=
{

22n if 2n 6 m,
2m otherwise.

Since Ehrenfeucht–Fraïssé games also play well with sums of
linear orders, we obtain that τf |= Φ if and only if τh |= Φ [Ros82,
lemma 6.5 (2)]. In the remainder of this proof, we demonstrate
how to compute a string-automatic presentation of τh in time
polynomial in m. In the end, one can decide τf |= Φ by computing
this presentation and deciding τh |= Φ. According to [Kus09,
proposition 3.3], the latter step can be done in space (k − 1)-fold
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exponential in the size of Φ (and the presentation of τh, whose
size is polynomial in the size of Φ anyway).

We consider the linear order (A;6) whose domain is given by

A :=
⋃
n∈N

an
(
b+ ∪ c+ ∪ {0, 1}log2 h(n)

)
(3.7)

and where 6 is the lexicographic ordering of A induced by

b < � < c < 0 < 1 < a .

Using the two ideas below, it is a matter of routine to check that
(A;6) has order type τh:
(1) The subset an (b+ ∪ c+) corresponds the nth occurrence of ζ

in τh and is internally ordered as

· · · < anb3 < anb2 < anb1 < anc1 < anc2 < anc3 < · · · .

(2) The subset an {0, 1}log2 h(n) corresponds to the occurrence of
h(n) in τh and is internally ordered lexicographically.

It remains to provide a presentation of (A;6). A string-automaton
recognizing A with O(m) states is depicted in fig. 3.5 on the next
page, where ` := blog2mc. Since recognizing the lexicographic
ordering of {a, b, c, 0, 1}∗ requires only constantly many states,
there is a string-automaton recognizing 6 with O(m2) states.
Obviously, this string-automatic presentation of τh is computable
in time polynomial in m.

Recall that corollary 3.2.6 says that all linear orders in pSA are
scattered. In contrast, SA contains non-scattered linear orders,
e.g., the linear order of the rationals. In view of these results,
one might wonder whether non-scatteredness is the only cause
separating the class of linear orders in SA from those in pSA. In
fact, it is not as the following example shows.
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Example 3.6.4. Consider the map f(n) := 2n. According to
lemma 3.6.2, τf is not contained in pSA. In contrast, using a very
similar idea as in the proof of theorem 3.6.3, we obtain a string-
automatic type τf linear order on the domain

A :=
⋃
n>0

(
an(b+ ∪ c+) ∪ {0, 1}n

)
= a∗(b+ ∪ c+) ∪ {0, 1}∗ .

According to theorem 3.2.4, the ordinal ωk separates the class of
linear orders in pSA[k] from those in pSA[k − 1]. More generally,
every linear order in pSA[k] of VD∗-rank k provides evidence for
this separation. However, there are causes beyond the VD∗-rank
for the distinctness of these classes:

Example 3.6.5. Let k > 1 and consider the map f(n) :=
(n
k

)
+1.

Obviously, f(n) ∈ Θ(nk). Recall that VD∗(τf ) = 2. On the one
hand, τf is not contained in pSA[k] by theorem 3.2.9 if k = 1 and
by lemma 3.6.2 if k > 2. On the other hand, there is a string-
automatic linear order of type τf on domain

A := a∗ (b+ ∪ c+) ∪ 0∗(10∗)k ∪ 0∗ .

Since

gA(n) = n · (n+ 1) +
(
n+ 1
k + 1

)
+ n+ 1 ∈ O(nk+1) ,

this implies that τf is contained in pSA[k + 1]. Altogether, τf
separates pSA[k + 1] from pSA[k].

3.7 Conclusion
We close our investigation of automatic linear orders by summariz-
ing a large part of the results known so far in two tables. Table 3.1
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automaticity ordinal α linear order A

1SA α < ω2

[Rub04]
VD∗(A) 6 1
[Rub04]

pSA[k] α < ωk+1

(theorem 3.2.4)
VD∗(A) 6 k

(theorem 3.2.9)

SA α < ωω

[Del04]
FC(A) < ω
[KRS05]

pTA[k] α < ωωk

(corollary 3.4.3)
FC(A) < ωk

(theorem 3.4.1)

TA α < ωωω

[Del04]
FC(A) < ωω

(theorem 3.3.19)

Table 3.1: Upper bounds on the ordinals and the finite-condensa-
tion rank of linear orders within certain classes of automatically
presentable structures

presents the partial characterizations of the linear orders contained
in several classes of automatically presentable structures in terms
of upper bounds on their finite-condensation ranks. In the case
of ordinals, these bounds are actually complete characterizations.
The same holds for arbitrary linear orders in 1SA, the class of
unary string-automatically presentable structures. Furthermore,
we implicitly point to the fact that all linear orders in 1SA and
pSA are scattered by giving a bound on their VD∗-rank instead
of their FC-rank.

The current knowledge about the various isomorphism prob-
lems for automatic linear orders is shown in table 3.2 on page 120.
As already mentioned, the isomorphism problem for arbitrar-
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ily large tree-automatic ordinals resisted all our attempts to be
solved and is hence still open. However, one of these attempts
partially gave rise to the polychromatic Ramsey theory for ordi-
nals, whose set-theoretic and automatic variants are presented in
the remaining two chapters of this thesis.
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4 Set-Theoretic Ramsey Theory

A not-so-uncommon situation in mathematics and theoretical
computer science is the following: One has a map f on some
structure A and is interested in a large substructure X ⊆ A such
that the behavior of f on A is easily comprehensible. For instance,
we were facing this situation in chapter 3. The structure A was
an infinite regular language of trees and the map f the behavior
of a tree automaton recognizing a linear ordering of A. We were
interested in an infinite subset X ⊆ A such that f takes as few
states as possible on X. Our solution was to apply the infinitary
version of Ramsey’s theorem [Ram30], which reads as follows: Ev-
ery partition of the edges of an infinite complete graph into finitely
many classes admits an infinite induced subgraph all of whose
edges belong to the same class. One might wonder whether this
statement remains valid if we replace both occurrences of “infinite”
by “uncountable”. Sierpiński answered this question negatively.
More precisely, there is an edge partition of the complete graph
on the continuum in two classes such that every uncountable
subgraph contains edges of both classes [Sie33]. These two results,
particularly the first one, were the starting point for a whole
field of research known as (infinitary) Ramsey theory, partition
calculus or combinatorial set theory. For a detailed overview of
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the subject, one might consult the articles [EHR65, EH74] or the
monographs [EHMR84, Wil77].

In course of time, not only graphs on unstructured sets were
considered but also graphs on linearly ordered sets, notably well-
ordered sets. Ramsey’s theorem can be rephrased in terms of
well-orders as follows: Every edge partition of the complete graph
on a type ω linear order into finitely many classes admits a type
ω subset whose induced subgraph falls entirely into a single class.
Abstracting from this statement, we say that an infinite order
type τ has the Ramsey property if replacing both occurrences of
ω by τ yields a true statement.1 Of course, ω has the Ramsey
property. Another example of an order type with the Ramsey
property is ω?, the reverse of ω. Using Sierpiński partitions,
one can show that there are no countable order types with the
Ramsey property other than ω and ω?. More generally, every
order type with the Ramsey property is either a cardinal, regarded
as the corresponding initial ordinal, or the reverse of a cardinal
[EHMR84]. Sierpiński’s aforementioned result however implies
that ω1 and ω?1 do not possess the Ramsey property. In fact, all
uncountable cardinals with the Ramsey property are inaccessible
cardinals, whose existence cannot be proved in Zermelo–Fraenkel
set theory with the axiom of choice, cf. [Dra74].

Generally speaking, this is bad news regarding the situation
we described initially. However, there is a famous unpublished
result by Galvin which provides some hope in the countable case:
Every finite edge partition of the complete graph on a type η
linear order, alias the rationals, admits a type η subset whose
induced subgraph intersects at most two classes. Abstracting
from this fact, we say that an order type τ has Ramsey degree k
if every finite edge partition of the complete graph on τ admits a

1As we are not interested in finite order types in this introduction, we
implicitly assume all order types under consideration to be infinite.
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type τ subset meeting at most k classes and k is minimal with
this property. In some sense, the Ramsey degree measures how
far an order type is from having the Ramsey property.2 Of course,
every order type with the Ramsey property has Ramsey degree 1
and η has Ramsey degree 2. Since every countable non-scattered
linear order contains a type η suborder on the one hand and is
embeddable into the rationals on the other hand, all countable
non-scattered order types have the same Ramsey degree as η.
Using Ramsey’s theorem and the infinitary pigeon hole principle,
one can easily show that ω + 1 and its reverse 1 + ω? also have
Ramsey degree 2. Similar but more involved arguments reveal
that ω + 2, ω · 2, ω2 and ζ all have Ramsey degree 4. A result
obtained independently by Galvin and Hajnal implies that the
Ramsey degree of every ordinal ωn with n < ω exists, cf. [Wil77,
theorem 7.2.7]. In addition, the proof allows for deriving an upper
bound on the Ramsey degree of ωn in terms of the number of
certain lattice paths through the n× n grid.

This situation naturally raises the question whether the Ram-
sey degree of every order type does exist. Again, the answer is
negative. Several counterexamples can be obtained from more
general results: ωω from [Tod98, lemma 4], ω1 from [Tod87] and
the initial ordinal of cardinality continuum from [GS73]. Further
questions arise immediately, particularly those concerning the
countable ordinals we have not mentioned so far. In this chapter,
we contribute the following answers, the first two of which already
appeared in [HL13]:

(1) The Ramsey degree of every ordinal α < ωω does exist (theo-
rem 4.5.4).

(2) The precise value of this Ramsey degree can be computed

2There are different notions of “Ramsey property” and “Ramsey degree”
in finite combinatorics but their relationship is the same as here, cf. [Fou99].

123



4 Set-Theoretic Ramsey Theory

from the Cantor normal form of α (theorem 4.6.7 and corol-
lary 4.6.8).

(3) The Ramsey degree does not exist for any ordinal α with
ωω 6 α < ωω

2 (theorem 4.7.9).
For the sake of illustration, we were withholding one important
aspect of Ramsey’s theorem in the presentation so far: Ramsey
proved this theorem not only for graphs but also for uniform
hypergraphs of any finite arity r > 2. Taking this extra parameter
into account, leads to the notions of the r-ary Ramsey property
and the r-ary Ramsey degree. All the negative results mentioned
above transfer easily to these extended notions. More precisely, all
order types beyond ω and ω? having the r-ary Ramsey property
are inaccessible cardinals or their reverses and the r-ary Ramsey
degree does still not exist for ωω, ω1 and the initial ordinal of
cardinality continuum. On the positive side, Galvin’s result on
η extends to the r-ary Ramsey degree of η, although the actual
values increase as r does [Dev79]. The comment on countable
non-scattered order types applies literally.

In view of these circumstances, our contribution in this chapter
is not limited to the binary Ramsey degree but provides the
answers (1) to (3) above in the more general setting of the r-ary
Ramsey degree. More precisely, we prove that, for all ordinals
α < ωω and each r > 2, the r-ary Ramsey degree of α does exist
and describe how to compute its exact value by counting certain
box diagrams. We further demonstrate that none of the r-ary
Ramsey degrees of α exists whenever ωω 6 α < ωω

2 .

Outline. All our results on the r-ary Ramsey degree are obtained
in terms of partition relations. These relations as well as the formal
definition of the Ramsey degree itself are introduced and discussed
briefly in section 4.1. The purpose of section 4.2 is to give an
overview on the major steps involved in determining Ramsey
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degrees, namely polarization, canonicalization and simplification.
Sections 4.3 to 4.5 detail these three steps. By composing the
corresponding results, we obtain optimal upper bounds on Ramsey
degrees. Matching lower bounds are established in section 4.6.
The resulting exact values of Ramsey degrees are then related
to numbers of certain box diagrams. In section 4.7, we extend
the technique from section 4.6 in order to prove that the Ramsey
degrees of ordinals between ωω and ωω2 do not exist. We conclude
this chapter by discussing some open problems in section 4.8.

4.1 Basic Definitions and Partition
Relations

The objective of this section is to provide a formal definition of the
r-ary Ramsey degree for ordinals and to discuss its relationship to
various partition relations. As we are interested in hypergraphs
on linearly ordered sets only, we use the set [A]r defined below as
our model of the complete uniform hypergraph of arity r on A.

Definition 4.1.1. Let A be a linear order and r ∈ N. The set
[A]r is defined as

[A]r :=
{
〈u1, u2, . . . , ur〉 ∈ Ar

∣∣ u1 < u2 < · · · < ur
}
.

For the sake of technical convenience, we deviate slightly from the
usual definition of [A]r, which would be the set of all subsets of A
containing precisely r elements. However, there is a very natural
bijection between these two sets, namely the one mapping the
tuple 〈u1, . . . , ur〉 ∈ [A]r to the set {u1, . . . , ur}. Finally, we note
that [A]r is empty whenever |A| < r.

In line with the introduction, all partitions in this chapter
are assumed to be finite. More precisely, a (finite) partition of
a set A is a finite set ∆ of subsets of A, whose elements are
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called ∆-classes, such that each element of A belongs to precisely
one ∆-class. If ∆ is a partition of A and B ⊆ A a subset, the
restriction of ∆ to B is the partition {D ∩B | D ∈ ∆ } of B.

Definition 4.1.2. Let α be an ordinal and r ∈ N. The r-ary
Ramsey degree of α is the least cardinal λ with the following
property: For any type α well-order A and every partition ∆
of [A]r, there is a type α subset X ⊆ A such that [X]r intersects
at most λ different ∆-classes.

As we consider partitions into finitely many classes only, each
r-ary Ramsey degree is either finite or equals the least infinite
cardinal ℵ0. We refer to the latter case by simply saying “the
r-ary Ramsey degree is infinite”.

In order to formulate our intermediate results conveniently,
we resort to the notion of partition relations. In the subse-
quent presentation of these relations, we loosely follow [EHMR84].
Throughout this presentation, let α, β be ordinals and r, κ, λ ∈ N.
Although the case κ = 0 might seem a bit odd in what follows,
we need to take it into account for technical reasons.

The simplest and best-studied partition relation is the ordinary
partition relation

α −→ (β)rκ (4.1)

which denotes the following fact: For any type α well-order A and
every partition ∆ of [A]r into κ classes, there is a type β subset
X ⊆ A such that [X]r is contained entirely in a single ∆-class. We
refer to this latter property of X as being homogeneous (wrt ∆).
In terms of this relation, Ramsey’s theorem in its variant for
ordinals reads as follows:

Theorem 4.1.3 (Ramsey’s theorem [Ram30]). For all r, κ ∈ N,
we have

ω −→ (ω)rκ .
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More generally, an ordinal α has the r-ary Ramsey property
mentioned in the introduction if α −→ (α)rκ for all κ ∈ N.

The ordinary partition relation in eq. (4.1) is monotonic in
various regards: It remains true if one replaces α by a larger
ordinal, β by a smaller ordinal or κ by a smaller number. In
the following, we refer to this fact as “the monotonicity of the
partition relation”. Later on, we show that one may also replace
r by a smaller number whenever β is infinite (cf. lemma 4.7.1).

The second partition relation we consider is the square bracket
partition relation

α −→ [β]rκ (4.2)

which denotes the following fact: For any type α well-order A and
every partition ∆ of [A]r into κ classes, there is a type β subset
X ⊆ A such that [X]r does not intersect all ∆-classes. We note
that eq. (4.2) is monotonic wrt α and β the same way eq. (4.1)
is but for κ it is the other way round: The partition relation in
eq. (4.2) remains true if we replaces κ by a larger number. In the
following, we are mainly interested in the negation

α X−→ [β]rκ

which denotes the following fact: There are a type α well-or-
der A and a partition ∆ of [A]r into κ classes such that, for
each type β subset X ⊆ A, the set [X]r intersects all ∆-classes.
Subsets X ⊆ A with this latter property are called completely
inhomogeneous (wrt ∆).

The last partition relation we take into account here is a
common generalization of the previous two relations. The weak
square bracket partition relation

α −→ [β]rκ,λ (4.3)

denotes the following fact: For any type α well-order A and every
partition ∆ of [A]r into κ classes, there is a type β subset X ⊆ A
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such that [X]r intersects at most λ different ∆-classes. Subsets
X ⊆ A with this latter property are called relatively λ-homoge-
neous (wrt ∆). It is obvious that this partition relation respects
the same monotonicity properties as the ordinary partition re-
lation. In addition, eq. (4.3) remains true if we replace λ by a
larger number. We note that the first two partition relations
can be regarded as abbreviations for special cases of the weak
square bracket partition relation: α −→ (β)rκ and α −→ [β]rκ
are equivalent to α −→ [β]rκ,1 and α −→ [β]rκ,κ−1, respectively,
whenever κ > 0.

We conclude this section by discussing the close relationship
between the r-ary Ramsey degree and the latter two partition
relations. In terms of the weak square bracket partition relation,
definition 4.1.2 can be rephrased as follows: The r-ary Ramsey
degree of α is either the least λ ∈ N such that, for all κ ∈ N,

α −→ [α]rκ,λ

or it is infinite if there is no such λ at all. Due to the monotonicity
of the partition relations, the r-ary Ramsey degree of α has
another notable characterization: It coincides with the largest
λ ∈ N such that

α X−→ [α]rλ ,

provided this maximum exists, and is infinite otherwise. Our
strategy to obtain exact values of Ramsey degrees is a mixture of
both characterizations and captured by the lemma below, whose
proof is trivial:

Lemma 4.1.4. Let α be an ordinal and r, λ ∈ N. If

α −→ [α]rκ,λ and α X−→ [α]rλ

for all κ ∈ N, then the r-ary Ramsey degree of α is exactly λ.
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4.2 Basic Ideas: A Showcase

Before we delve into the details of showing that certain Ramsey
degrees are finite, we sketch how to prove that the binary Ramsey
degree of ω · 3 = ω + ω + ω is exactly 9. The purpose of this
sketch is to give an overview of the major steps involved in
determining r-ary Ramsey degrees of arbitrary ordinals α < ωω,
namely polarization, canonicalization and simplification.

Let A be a type ω · 3 well-order and ∆ a partition of [A]2. We
consider the decomposition A = A1 +A2 +A3 of A into Cantor
normal form, i.e., each Ai has order type ω. For every type ω · 3
subset X ⊆ A, all the intersections Ai ∩X have order type ω as
well. Finding a type ω · 3 subset X ⊆ A such that [X]2 intersects
as few ∆-classes as possible therefore amounts to finding type ω
subsetsXi ⊆ Ai, for i = 1, 2, 3, such that [X1+X2+X3]2 intersects
as few ∆-classes as possible. The elements of [X1 + X2 + X3]2
then are of six different kinds according to the partition

[X1 +X2 +X3]2 = [X1]2 ] [X2]2 ] [X3]2

] (X1 ×X2) ] (X1 ×X3) ] (X2 ×X3) .

Consequently, our goal is to choose the Xi such that each of
the six parts above intersects as few ∆-classes as possible. This
choice is accomplished by the following four steps, which are also
depicted in fig. 4.1 on the next page:

Step 1: Ramsey’s theorem 4.1.3 provides us with type ω subsets
X◦i ⊆ Ai, for i = 1, 2, 3, such that each [X◦i ]2 intersects
only one ∆-class. We regard these sets X◦i as initial
approximations of the final sets Xi.

Step 2: We improve the approximations ofX1 andX2 by choosing
type ω subsets X ′1 ⊆ X◦1 and X ′2 ⊆ X◦2 such that X ′1×X ′2
intersects as few ∆-classes as possible, say λ12 many.
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X1A1

X2A2 X3 A3

Given : A1, A2, A3
Step 1: X◦1 , X◦2 , X◦3

Step 2: X ′1, X ′2
Step 3: X1, X

′
3

Step 4: X2, X3

Figure 4.1: The process of polarization

Step 3: We choose the final subset X1 ⊆ X ′1 and a better ap-
proximation X ′3 ⊆ X◦3 , both of order type ω, such that
X1 ×X ′3 intersects as few ∆-classes as possible, say λ13
many.

Step 4: We choose the final type ω subsetsX2 ⊆ X ′2 andX3 ⊆ X ′3
such that X2×X3 intersects as few ∆-classes as possible,
say λ23 many.

Altogether, the set X1 +X2 +X3 ⊆ A has order type ω · 3 and
intersects at most 3 + λ12 + λ13 + λ23 distinct ∆-classes. In this
way, we have reduced the problem of finding a type ω · 3 subset
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X ⊆ A which intersects as few ∆-classes as possible to Ramsey’s
theorem 4.1.3 and the problem to find the least number λ ∈ N
with the following property: For any type ω well-orders B and C
and every partition ∆ of B × C, there are type ω subsets Y ⊆ B
and Z ⊆ C such that Y ×Z intersects at most λ distinct ∆-classes.
A solution of this latter problem can be regarded as a variant
of Ramsey’s theorem 4.1.3 for complete bipartite graphs on two
type ω well-orders.

We call this process of reducing a partition relation on the sum
of some ordinals to partition relations (for multipartite graphs) on
the summands polarization. In section 4.3, we study polarization
in the general case.

In order to show that the binary Ramsey degree of ω · 3 is indeed
finite, we still need to prove the bipartite version of Ramsey’s
theorem. Our first goal is to show that every partition ∆ of N×N
admits type ω subsets Y,Z ⊆ N such that Y ×Z intersects at most
3 distinct ∆-classes. To this end, we define an equivalence relation
∼ on [N]2 by 〈x1, x2〉 ∼ 〈y1, y2〉 if, for all 〈i, j〉 ∈ {1, 2} × {1, 2},
〈xi, xj〉 and 〈yi, yj〉 belong to the same ∆-class. Since ∼ has finite
index, Ramsey’s theorem 4.1.3 provides us with a type ω subset
H ⊆ N such that [H]2 is completely contained in a single ∼-class.
In effect, the restriction of ∆ to H×H contains only 3 non-empty
classes, namely the sets

Dθ =
{
〈x, y〉 ∈ H ×H

∣∣ x θ y }
for θ ∈ {<,=, >}.

Subpartitions of this simple form are called canonical par-
titions. In section 4.4, we lift this notion to the general case
and extend ideas from [Wil77, section 7.2] in order to show that
canonical subpartitions do always exist. This already implies
finite upper bounds on certain Ramsey degrees.
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Our last goal is to find the exact value of the binary Ramsey
degree of ω · 3. For this purpose, we simplify the canonical
partition {D<, D=, D>} of H ×H from above even further. Let
H = Y ]Z be a partition ofH in two infinite subsets Y, Z. Clearly,
the set Y ×Z does not intersect the class D= and hence intersects
at most 2 distinct ∆-classes. We extend this simplification of
canonical partitions to the general case in section 4.5.

Up to this point, we have established that the type ω ·3 subset
X1 +X2 +X3 ⊆ A constructed in the four steps above intersects
at most 9 different ∆-classes. Put another way, the Ramsey
degree of ω · 3 is at most 9. In order to show that this cannot be
improved any further, it suffices to show that neither Ramsey’s
theorem nor its bipartite version can be improved. Composing
the partitions demonstrating these optimalities in a suitable way
then, yields a partition of [A]2 into 9 classes which does not admit
a relatively 8-homogeneous type ω · 3 subset of A. Obviously,
Ramsey’s theorem is optimal. To see that the bipartite version is
also optimal, we consider the partition ∆ = {E6, E>} of N× N
given by

Eθ =
{
〈x, y〉 ∈ N× N

∣∣ x θ y } .
Clearly, Y × Z intersects both E6 and E> for all type ω subsets
Y,Z ⊆ N. Finally, notice how much ∆ resembles the simplified
canonical partition above: The ∆-class of a pair 〈x, y〉 ∈ N× N
is completely determined by the relative order of x and y in N,
without having a separate class for x = y. In section 4.6, we
demonstrate that simplified canonical partitions are, in a certain
sense, the best one can achieve in general.

4.3 Polarization
The fundamental notion needed to formalize the idea of polariza-
tion is another family of partition relations which do not speak
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about single ordinals but about tuples of ordinals. Such relations
are known as polarized partition relations [EHMR84]. Before
giving the definition of our variant, we extend some notions from
sets to tuples of sets.

Let s ∈ N. Consider a tuple of sets A = 〈A1, . . . , As〉 and
some r = 〈r1, . . . , rs〉 ∈ Ns. The set [A]r is defined as

[A]r := [A1]r1 × [A2]r2 × · · · × [As]rs .

A tuple of sets X = 〈X1, . . . , Xs〉 is a tuple of subsets of A, which
we denote by X ⊆ A, if each Xk is a subset of Ak. Notice that
[X]r is a subset of [A]r whenever X ⊆ A. Finally, suppose that
A is a tuple of well-orders. The (order) type of A is the tuple of
ordinals 〈α1, . . . , αs〉 where each αk is the order type of Ak.

The notions of homogeneous, completely inhomogeneous and
relatively λ-homogeneous subsets (wrt some partition) transfer
easily from sets to tuples of sets. For instance, a tuple of subsets
X ⊆ A is relatively λ-homogeneous wrt some partition ∆ of [A]r
if [X]r intersects at most λ different ∆-classes.

Definition 4.3.1. Let s, κ, λ ∈ N, r ∈ Ns and α1, . . . , αs,
β1, . . . , βs be ordinals. The polarized weak square bracket partition
relation α1

...
αs

 −→
β1
...
βs


r1,...,rs

κ,λ

denotes the following fact: For any type 〈α1, . . . , αs〉 tuple of well-
orders A and every partition ∆ of [A]r into κ classes, there is a
relatively λ-homogeneous type 〈β1, . . . , βs〉 tuple of subsets of A.

Notice that the special case s = 1 is precisely the weak square
bracket partition relation in eq. (4.3) on page 127. Like the
non-polarized relation the polarized variant is also monotonic in
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various regards: It remains true if one replaces the αk by larger
ordinals, the βk by smaller ordinals, κ by a smaller number or λ
by a larger number. We refer to this fact as “the monotonicity
of the polarized partition relation”. Recall that one can regard
α −→ [β]rκ as an abbreviation for α −→ [β]rκ,κ−1. Using the same
abbreviation for polarized relations leads to the polarized square
bracket partition relation. Again, we are mainly interested in its
negation α1

...
αs

 X−→

β1
...
βs


r1,...,rs

κ

which denotes the following fact: There are a type 〈α1, . . . , αs〉
tuple of well-ordersA and a partition ∆ of [A]r into κ classes such
that each type 〈β1, . . . , βs〉 tuple of subsets of A is completely
inhomogeneous wrt ∆.

In the remainder of this section, we prove two polarization lemmas,
namely the positive polarization lemma 4.3.2 and the negative
polarization lemma 4.3.5, which allow for concluding non-polarized
partition relations on sums of ordinals from polarized partition
relations on the summands. In line with lemma 4.1.4, they deal
with the weak and the negated square bracket partition relation.
In our applications, the sums are Cantor normal forms. Both
lemmas use the set R(s, r) ⊆ Ns, where s, r ∈ N, given by

R(s, r) :=
{
r̃ ∈ Ns

∣∣ r̃1 + · · ·+ r̃s = r
}
.

For any map ` : R(s, r)→ N, we define the number |`| ∈ N as

|`| :=
∑

r̃∈R(s,r)
`(r̃) .

The positive polarization lemma generalizes the four step process
depicted in fig. 4.1 on page 130.
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Lemma 4.3.2 (positive polarization lemma). Let r, κ ∈ N, α
be an ordinal, α = ωγ1 + · · ·+ ωγs its Cantor normal form and
` : R(s, r)→ N a map. If

ω
γ1

...
ωγs

 −→
ω

γ1

...
ωγs


r̃1,...,r̃s

κ,`(r̃)

for all r̃ ∈ R(s, r), then

α −→ [α]rκ,|`| .

Proof. Suppose the premise is satisfied. Let A1 + · · ·+ As be a
type α well-order where each Ak has type ωγk and ∆ a partition
of [A1 + · · · + As]r into κ classes. We put A := 〈A1, . . . , As〉.
Observe that the set {

[A]r̃
∣∣ r̃ ∈ R(s, r)

}
, (4.4)

which was defined as{
[A1]r̃1 × · · · × [As]r̃s

∣∣∣ r̃1, . . . , r̃s ∈ N, r̃1 + · · ·+ r̃s = r
}
,

forms another partition of [A1 + · · ·+As]r. For each r̃ ∈ R(s, r),
the restriction of ∆ to [A]r̃ is a partition of [A]r̃ into κ classes.
Thus, one of the presumed polarized partition relations applies.
We proceed by applying all these partition relations in a suitable
way.

To this end, fix some enumeration r̃1, . . . , r̃m of R(s, r). We
construct a chain X0 ⊇ X1 ⊇ · · · ⊇ Xm of type 〈α1, . . . , αs〉
tuples of subsets of A inductively.

Base case: t = 0. We simply choose X0 = A.
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Inductive step: t ∈ [1,m]. Assume Xt−1 to be constructed
before. Applying the presumed polarized partition relation for r̃t
to the restriction ∆t−1 of ∆ to [Xt−1]r̃t yields a type 〈α1, . . . , αs〉
tuple of subsets Y ⊆Xt−1 which is relatively `(r̃t)-homogeneous
wrt the restriction ∆t−1. Consequently, [Y ]r̃t intersects at most
`(r̃) different ∆-classes as well. We complete the inductive step
by choosing Xt := Y .

We conclude this proof by showing that the type α1 + · · ·+ αs
subset

Z := Xm1 + · · ·+Xms

of A1 + · · ·+As is relatively |`|-homogeneous. Analogously to the
set in eq. (4.4), the set {

[Xm]r̃
∣∣ r̃ ∈ R }

forms a partition of [Z]r. In view of the definition of |`|, it suffices
to show that each [Xm]r̃ intersects at most `(r̃) different∆-classes.
To this end, let t ∈ [1,m] be such that r̃ = r̃t. We haveXm ⊆Xt

and hence [Xm]r̃ ⊆ [Xt]r̃t . Thus, [Xm]r̃ intersects indeed at
most `(r̃) different ∆-classes since [Xt]r̃t has this property by
choice.

In order to prove the negative polarization lemma, we need one
more step of preparation. In terms of well-orders and suborders,
the statement below reads as follows: Let A = A1 + · · ·+As be
a well-order and its decomposition into Cantor normal form and
X ⊆ A. If X has the same order type as A, then X ∩Ak has the
same order type as Ak for each k.

Lemma 4.3.3. Let α be an ordinal, α = ωγ1 + · · · + ωγs its
Cantor normal form and α1 6 ωγ1 , . . . , αs 6 ωγs ordinals. If

α = α1 + · · ·+ αs ,

then αk = ωγk for each k.
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Proof. We show the contraposition of the claimed implication.
Suppose there is ` such that α` < ωγ` . Our first goal is to prove
that

α` + ωγ`+1 + · · ·+ ωγs < ωγ` + ωγ`+1 + · · ·+ ωγs . (4.5)

To this end, let ωδ1 + · · ·+ ωδt be the Cantor normal form of α`.
Notice that α` < ωγ` implies either t = 0 or δ1 < γ`. There is
m ∈ [0, t] such that

ωδ1 + · · ·+ ωδm + ωγ`+1 + · · ·+ ωγs

is the Cantor normal form of the left hand side in eq. (4.5).
Thus, eq. (4.5) follows from δ1 < γ` whenever m > 1 and from
γ` > γ`+1 > · · · > γs otherwise.

Recall that the addition of ordinals is monotonic in both
arguments and even strictly monotonic in its second argument.
Consequently, eq. (4.5) implies

α1 + · · ·+ αs < α1 + · · ·+ α` + ωγ`+1 + · · ·+ ωγs

6 ωγ1 + · · ·+ ωγs .

Before we finally turn to the negative polarization lemma, we
showcase the main idea behind its proof by demonstrating the
following simpler result, which is used in the very end of this
chapter.

Lemma 4.3.4. Let r, κ ∈ N and α be an ordinal. If the Cantor
normal form of α contains a summand ωγ with

ωγ X−→ [ωγ ]rκ ,
then

α X−→ [α]rκ .

137



4 Set-Theoretic Ramsey Theory

Proof. The case κ = 0 is trivial. Henceforth, we assume κ > 0.
Let A = A1+· · ·+As be a type α well-order and its decomposition
into Cantor normal form. Pick ` ∈ [1, s] such that A` has order
type ωγ . Let ∆ = {D1, . . . , Dκ} be a partition of [A`]r which
exemplifies [ωγ ] X−→ [ωγ ]rκ. Since [A`]r ⊆ [A]r, there is a partition
Γ = {C1, . . . , Cκ} of [A]r such that Di ⊆ Ci for all i ∈ [1, κ]. It
suffices to show that every type α subset X ⊆ A is completely
inhomogeneous wrt Γ .

For this purpose, we consider a type α subset X ⊆ A and
some Γ -class Ci. According to lemma 4.3.3, the set X ∩A` has
order type ωγ and is hence completely inhomogeneous wrt ∆. In
particular, [X ∩ A`]r intersects Di. Since [X]r ⊇ [X ∩ A`]r and
Di ⊆ Ci, this implies that [X]r intersects Ci.

In view of lemma 4.1.4, the negative polarization lemma be-
low can be regarded as the contrary of the positive polarization
lemma 4.3.2.

Lemma 4.3.5 (negative polarization lemma). Let r ∈ N, α be
an ordinal, α = ωγ1 + · · · + ωγs its Cantor normal form and
` : R(s, r)→ N a map. If

ω
γ1

...
ωγs

 X−→

ω
γ1

...
ωγs


r̃1,...,r̃s

`(r̃)

for all r̃ ∈ R(s, r), then

α X−→ [α]r|`| .

Proof. Suppose the premise is satisfied. Let A1 + · · · + As be
a type α well-order where each Ak has order type ωγk . Our
objective is to construct a partition of [A1 + · · · + As]r into |`|
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classes which establishes the desired partition relation. We put
A := 〈A1, . . . , As〉 and recall that the set{

[A]r̃
∣∣ r̃ ∈ R(s, r)

}
forms a partition of [A1 + · · ·+As]r.

For each r̃ ∈ R(s, r), let ∆r̃ be a partition of [A]r̃ into `(r̃)
classes which exemplifies the premise for r̃, i.e., for every type
〈ωγ1 , . . . , ωγs〉 tuple of subsets X ⊆ A, the set [X]r̃ intersects all
∆r̃-classes. We combine all these partitions into one partition ∆
of [A1 + · · ·+As]r into |`| classes by putting

∆ :=
⋃

r̃∈R(s,r)
∆r̃ .

In the remainder of this proof, we demonstrate that every type
ωγ1 + · · ·+ ωγs subset X ⊆ A1 + · · ·+As is completely inhomo-
geneous wrt ∆.

To this end, consider some ∆-class D. There is r̃ ∈ R(s, r)
with D ∈ ∆r̃. For each k ∈ [1, s], let αk be the order type
of X ∩Ak. According to lemma 4.3.3, we have αk = ωγk . Due to
the choice of ∆r̃, the set [X ∩A1, . . . , X ∩As]r̃ hence intersects D.
Since

[X ∩A1, . . . , X ∩As]r̃ ⊆ [X]r ,

the set [X]r intersects D as well.

4.4 Canonicalization
This section is devoted to the investigation of the canonicalization
step which followed the polarization step in section 4.2. Basically,
the canonicalization lemma 4.4.5 extends a result by Hajnal and,
independently, Galvin on the existence of canonical partitions
from sets to tuples of sets. Along with the positive polarization
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lemma 4.3.2, we can already conclude that the Ramsey degrees
of all ordinals α < ωω are finite. In addition, we obtain upper
bounds on their values. However, these bounds turn out to be
not optimal in the next section.

In our presentation of the existence of canonical partitions, we
roughly follow [Wil77, section 7.2]. As of now, we assume the set
Nn+ and its subsets to be ordered lexicographically, i.e., x <Nn+ y
if there is i with xi 6= yi and the least such i satisfies xi < yi.
Although Nn+ is hence a type ωn well-order itself, we do not use
it as our standard model of ωn. This is mainly due to technical
reasons. Instead, we use the suborder

W(n) :=
{
〈x1, x2, . . . , xn〉 ∈ Nn+

∣∣ x1 < x2 < · · · < xn
}

as our standard model of ωn. To avoid a level of indices, we treat
the elements of Nn+ and W(n) as (order-preserving) functions
from [1, n] to N+.3 Since W(n) and Nn+ both are type ωn well-
orders, there is a unique isomorphism between them. We denote
the image of x ∈ W(n) under this isomorphism by Mx. It is easy
to check that Mx is given by

Mx(µ) := x(µ)− x(µ− 1) ,

where we use x(0) = 0. In order to prevent explicitly dealing with
some corner cases, we use the convention x(0) = 0 for x ∈ W(n)
in several places without further notice.

In order to work with polarized partition relations in a conve-
nient way, we introduce some notation for tuples of well-orders.
Let s ∈ N, n = 〈n1, . . . , ns〉 ∈ Ns and r = 〈r1, . . . , rs〉 ∈ Ns. If
not further specified, s, n and r are always of this kind in the
remainder of this chapter. We define the tuple of well-orders
W(n) by

W(n) := 〈W(n1), . . . ,W(ns)〉 .
3This convention does not apply to Nn.
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In the following, the set

[W(n)]r = [W(n1)]r1 × [W(n2)]r2 × · · · × [W(ns)]rs

plays an important role. Its members are tuples

x = 〈x11, . . . , x1r1 ; . . . ;xk1, . . . , xkrk ; . . . ;xs1, . . . , xsrs〉 (4.6)

with xk1, . . . , xkrk ∈ W(nk) and xk1 < · · · < xkrk for all k ∈ [1, s],
where W(nk) is ordered lexicographically. Notice how the entries
sharing the same first index are grouped by means of semicolons
in eq. (4.6). The entry set of x is the set{

xki(µ)
∣∣ k ∈ [1, s], i ∈ [1, rk], µ ∈ [1, nk]

}
⊆ N+ .

To avoid repetitively specifying exact ranges for indices, we use
the phrase “for all indices k, i, µ” to abbreviate “for all k ∈ [1, s],
i ∈ [1, rk] and µ ∈ [1, nk]”. The meaning of the phrase “for all
indices i, k” is analogous.

During the development of the results presented here, we
found it helpful to think about elements of [W(n)]r in terms of
box diagrams as depicted in fig. 4.2 on the following page, which
is explained below.

Example 4.4.1. Let s = 3, n = 〈3, 2, 4〉 and r = 〈2, 1, 1〉. Then

[W(n)]r = [W(3)]2 ×W(2)×W(4) .

Figure 4.2 depicts the following elements of [W(n)]r as box dia-
grams:4

x = 〈〈7, 8, 11〉, 〈7, 11, 16〉; 〈4, 10〉; 〈1, 7, 10, 19〉〉 (4.7)

y = 〈〈5, 13, 16〉, 〈5, 13, 18〉; 〈3, 21〉; 〈8, 10, 14, 17〉〉 (4.8)

z = 〈〈3, 4, 6〉, 〈3, 6, 7〉; 〈2, 5〉; 〈1, 3, 5, 8〉〉 (4.9)
4The semicolons in eqs. (4.7) to (4.9) serve the same purpose as in eq. (4.6).
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For instance, the box diagram for x in fig. 4.2(a) is obtained as
follows: For all indices k, i, the row labeled by ki contains precisely
nk boxes with numbers xki(1), . . . , xki(nk) in them. In each
column, all boxes contain the same number and these numbers
are strictly increasing from left to right. The dotted lines indicate
a change in the first index of ki, i.e., they serve the same purpose
as the semicolons in eq. (4.6) and eqs. (4.7) to (4.9). The box
diagrams in figs. 4.2(b) and 4.2(c) are obtained from y and z
analogously.

Sometimes, we are not interested in a complete box diagram
but only in its shape, i.e., the arrangement of its boxes without the
numbers. We refer to such diagrams as box diagram shapes. For
instance, the shape of the box diagram for y is the box diagram
shape given in fig. 4.2(d). Finally, notice that the box diagrams
of x and z have the same shape.

Clearly, for all choices of s, n and r, any x ∈ [W(n)]r can be
depicted by a box diagram in this way. Recall the condition on x
that xki < xkj whenever i < j. This translates in the following
condition on the shape of the box diagram for x: There is a
column in which precisely one of the rows ki and kj contains a
box and in the first such column it is row ki which contains the
box. Conversely, if you take a diagram of boxes without numbers
which satisfies this condition for all indices k, i and k, j and fill
the columns with strictly increasing numbers, you obtain the box
diagram for some element of [W(n)]r. Throughout the remainder
of this chapter, the relation of having box diagrams with the same
shape plays a very important role. We capture this by means of
the following equivalence relation on [W(n)]r.

Definition 4.4.2. Two tuples x,y ∈ [W(n)]r are similar if all
indices k, i, µ and `, j, ν satisfy the following equivalence:

xki(µ) < x`j(ν) ⇐⇒ yki(µ) < y`j(ν) .
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Put another way, x and y are similar if and only if mapping
xki(µ) to yki(µ) defines an order-preserving bijection between the
entry sets of x and y. With this bijection in mind, one easily
sees that x and y are similar if and only if their box diagrams
have the same shape. Accordingly, box diagram shapes represent
similarity classes just like box diagrams represent specific elements
of [W(n)]r. Since every box diagram shape contains precisely
n1r1 + · · · + nsrs boxes, there are only finitely many similarity
classes in [W(n)]r.

Example 4.4.1 (continuing). The tuples x and z are similar to
each other but not similar to y.

Now, fix some x ∈ [W(n)]r and let m be the size of its entry set.
This size satisfies m 6 n1r1 + . . .+ nsrs and the entry set of any
element similar to x has size m as well. Accordingly, we also call
m the entry set size of the similarity class of x. Moreover, for
every subset M ⊆ N+ of size m, there is precisely one element
y in the similarity class of x whose entry set is M . In fact, the
box diagram for y is obtained from the shape of the box diagram
for x by inserting the elements of M in increasing order. This
observation justifies the subsequent definition.

Definition 4.4.3. The least element of a similarity class in
[W(n)]r is the unique element therein whose entry set is pre-
cisely {1, . . . ,m}, where m is the entry set size of the class.

Example 4.4.1 (continuing). The least element of the similarity
class of x is z.

Finally, consider some x ∈ [W(n)]r and the least element z of its
similarity class. The bijection mapping each zki(µ) to xki(µ) is
in fact an element of W(m), for m the size of the entry set of x.
Say a ∈ W(m) is this bijection, then

xki(µ) = a(zki(µ)) (4.10)
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for all indices k, i, µ. This motivates the following notation: Let
N ∈ N, a ∈ W(N) and z ∈ [W(n)]r be such that zki(µ) 6 N for
all indices k, i, µ. We define a tuple a(z) ∈ [W(n)]r by

(a(z))ki(µ) := a(zki(µ)) .

Using this notation, eq. (4.10) can be rephrased as x = a(z).

Definition 4.4.4. Let X be a subset of [W(n)]r. A partition ∆
of X is canonical if it is coarser than similarity, i.e., whenever
x,y ∈ X are similar, they belong to the same ∆-class.

Put another way, a partition ∆ of X ⊆ [W(n)]r is canonical if the
similarity class of any x ∈ X already determines its ∆-class. The
existence of canonical subpartitions of any partition of [W(n)]r
is ensured by lemma 4.4.5 below, which extends [Wil77, theo-
rem 7.2.7] beyond the special case s = 1 and r1 = 2. For every
subset H ⊆ N+, we define the tuple of sets

W(n) ∩Hn := 〈W(n1) ∩Hn1 , . . . ,W(ns) ∩Hns〉 .

Observe that W(n) ∩Hn has the same order type as W(n) if H
is infinite.

Lemma 4.4.5 (canonicalization lemma). Let ∆ be a partition
of [W(n)]r. There is an infinite subset H ⊆ N+ such that the
restriction of ∆ to [W(n) ∩Hn]r is canonical.

Proof. Let m := n1r1 + · · ·+ nsrs and I := {1, . . . ,m}. Observe
that the set [W(n) ∩ In]r is finite and all its elements z satisfy
zki(µ) 6 m for all indices k, i, µ. In order to obtain the set H, we
first construct a partition of [N+]m. Notice that [N+]m =W(m).
We define an equivalence relation ∼ on [N+]m by a ∼ b if a(z)
and b(z) belong to the same ∆-class for all z ∈ [W(n) ∩ In]r.
Since ∆ and [W(n) ∩ In]r are finite, this equivalence relation
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induces a finite partition of W(m). According to theorem 4.1.3,
there is an infinite subset H ⊆ N+ which is homogeneous wrt this
partition, i.e., [H]m is contained in a single ∼-class. It remains
to show that the restriction of ∆ to [W(n) ∩Hn]r is canonical.

Consider x,y ∈ [W(n) ∩ Hn]r which are similar and let
z be the least element of their similarity class. Notice that
z ∈ [W(n) ∩ In]r. There are a, b ∈ W(m) ∩ Hm such that
x = a(z) and y = b(z). Since W(m) ∩ Hm = [H]m, we have
a ∼ b and hence x and y belong to the same ∆-class.

An immediate consequence of this lemma is the following polarized
partition relation, where κ ∈ N is arbitrary and S(n; r) denotes
the number of similarity classes in [W(n)]r:

ω
n1

...
ωns

 −→
ω

n1

...
ωns


r1,...,rs

κ,S(n;r)

Applying the positive polarization lemma 4.3.2 to these partition
relations and the Cantor normal form of some ordinal α < ωω

yields that r-ary Ramsey degree of α is finite for each r ∈ N.
However, the corresponding upper bound on this Ramsey degree
is not optimal.

4.5 Simplification

In order to obtain optimal bounds, we further simplify the sub-
partitions obtained from the canonicalization lemma 4.4.5.
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4.5 Simplification

Definition 4.5.1. A tuple x ∈ [W(n)]r is called p-simple5 if, for
all indices k, i, µ and `, j, ν, the premise xki(µ) = x`j(ν) implies
k = `, µ = ν and xki(ξ) = x`j(ξ) for each ξ < µ. The number
of similarity classes containing a p-simple element is denoted
by P (n; r).

Example 4.4.1 (continuing). The tuple y is p-simple, but x and
z are not.

Observe that being p-simple is in fact a property of similarity
classes: Whenever a similarity class contains some p-simple el-
ement, then all its elements are p-simple. Therefore, P (n; r) is
just the number of p-simple similarity classes. Obviously, p-sim-
plicity easily translates into a condition on box diagram shapes.
More precisely, this translation yields the three forbidden pat-
terns which are depicted in fig. 4.3 on the next page. Accordingly,
P (n; r) can be computed from n and r by counting the number
of box diagram shapes which do not match any of these patterns.

Recall that the canonicalization lemma 4.4.5 states that every
partition∆ of [W(n)]r admits an infinite subsetH ⊆ N+ such that
the restriction of ∆ to [W(n) ∩Hn]r is canonical. In partitions
of this latter form, non-p-simplicity can be avoided in the the
following sense:

Lemma 4.5.2 (positive simplification lemma). Let H ⊆ N+ be
an infinite subset. There is a type 〈ωn1 , . . . , ωns〉 tuple of subsets
U ⊆ W(n) ∩Hn such that all tuples in [U ]r are p-simple.

Proof. Let {G1, . . . , Gs} be an arbitrary partition of H consisting
entirely of infinite sets. As a first step, we construct the sets Uk.

5The “p” stands for “prefix”: For s = 1 and r1 = 2, the shape of the
box diagram for any x ∈ [W(n)]2 can be regarded as a string over the
alphabet { , , }. Then x is p-simple if and only if the -symbols form a
prefix of this string.
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(a) k 6= ` (b) µ 6= ν

(c) ∃ξ < µ : xki(ξ) 6= x`j(ξ)

Figure 4.3: The three reasons for non-p-simplicity (the shaded
boxes shall contain xki(µ) and x`j(ν) whereas the dotted boxes
shall contain xki(ξ) and x`j(ξ))

For this purpose, fix some index k and let p1, p2, . . . be an arbitrary
enumeration of all prime numbers. We put

Pk =
{
p
a(1)
1 p

a(2)
2 · · · pa(µ)

µ

∣∣∣ µ ∈ [1, nk], a(1), . . . , a(µ) ∈ N+
}
.

Since both Pk and Gk are infinite subsets of N+, there exists
an order-preserving bijection gk : Pk → Gk. We define a map
fk : Nnk+ →W(nk) ∩Gnkk by

(fk(a))(µ) := gk
(
p
a(1)
1 p

a(2)
2 · · · pa(µ)

µ

)
.

It is a matter of routine to check that fk is order-preserving as
well. Thus, the set

Uk := fk(Nnk+ )

has order type ωnk . We conclude the proof by showing that every
tuple x ∈ [U ]r is p-simple.
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Consider indices k, i, µ and `, j, ν with xki(µ) = x`j(ν). Since
xki(µ) ∈ Gk and x`j(ν) ∈ G`, we conclude k = `. According to
the choice of Uk, there are a, b ∈ Nnk+ such that xki = fk(a) and
x`j = fk(b). Since gk is a bijection, we obtain

p
a(1)
1 · · · pa(µ)

µ = g−1
k (xki(µ)) = g−1

k (x`j(ν)) = p
b(1)
1 · · · pb(ν)

ν .

Due to the unique-prime-factorization theorem, we obtain µ = ν
and a(ξ) = b(ξ) for each ξ 6 µ. Consequently,

xki(ξ) = gk
(
p
a(1)
1 · · · pa(ξ)

ξ

)
= gk

(
p
b(1)
1 · · · pb(ξ)ξ

)
= x`j(ξ) .

This verifies the conditions of definition 4.5.1.

Composing the canonicalization lemma 4.4.5 with the positive
simplification lemma 4.5.2 yields a polarized partition relation,
which turns out to be optimal in theorem 4.6.5.

Theorem 4.5.3. For all s, κ ∈ N and n, r ∈ Ns, the following
holds: ω

n1

...
ωns

 −→
ω

n1

...
ωns


r1,...,rs

κ,P (n;r)

Proof. Let ∆ be a partition of [W(n)]r into κ classes. Due to the
canonicalization lemma 4.4.5, there is an infinite subset H ⊆ N+
such that the restriction of ∆ to [W(n) ∩ Hn]r is canonical.
Applying the simplification lemma 4.5.2 to this restriction yields
a type 〈ωn1 , . . . , ωns〉 tuple of subsets U ⊆ W(n)∩Hn such that
all elements of [U ]r are p-simple. Since the restriction of∆ to [U ]r
is still canonical, the tuple U is relatively P (n; r)-homogeneous
wrt ∆.
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Putting the positive polarization lemma 4.3.2 and the polarized
partition relations from the previous theorem together, we obtain
that the r-ary Ramsey degree of α is finite for each r ∈ N and
all ordinals α < ωω. If α = ωn1 + · · ·+ ωns is the Cantor normal
form of α, then this Ramsey degree is bounded from above by

λ(α; r) :=
∑

r̃1,...,r̃s∈N
r̃1+···+r̃s=r

P (n1, . . . , ns; r̃1, . . . , r̃s) .

Theorem 4.5.4. For all r, κ ∈ N and every ordinal α < ωω, we
have

α −→ [α]rκ,λ(α;r) .

4.6 Exact Values of Ramsey Degrees

The purpose of this section is to prove that the upper bounds on
Ramsey degrees just given in theorem 4.5.4 are optimal. In line
with lemma 4.1.4, we hence show in theorem 4.6.6 the negated
partition relation

α X−→ [α]rλ(α;r) (4.11)

for all ordinals α < ωω and r ∈ N. According to the negative
polarization lemma 4.3.5, this amounts to establishing that the
polarized partition relations in theorem 4.5.3 are optimal. To this
end, we show that the positive simplification lemma 4.5.2 is the
best one can achieve in general. In the course of doing so, we use
a simple characterization of type ωn subsets of W(n) in terms of
free components, which is taken from [Wil77, section 7.2].

Definition 4.6.1. Let n ∈ N and µ ∈ [1, n]. A subset U ⊆ W(n)
is free in the µth component if for all a ∈ U and m ∈ N there is
b ∈ U with b(µ) > m and b(ξ) = a(ξ) for each ξ < µ.
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Example 4.6.2. Let n = 3. The set

U :=
{
a ∈ W(3)

∣∣∣∣∣ a(1) is a prime, a(2) > 2a(1) and
a(3) < a(1) + 2 · a(2)

}

is free in the first two components but not free in the last compo-
nent: Given arbitrary a ∈ U and m ∈ N, the elements

b1 = 〈p, 2p, 2p + 1〉 ∈ U
and

b2 = 〈a(1), 2a(1) +m, 2a(1) +m+ 1〉 ∈ U ,

where p is some prime with p > m, verify freedom in the 1st and
2nd component, respectively. To see that U is not free in the 3rd

component, consider a = 〈3, 11, 20〉 ∈ U and m = 25. Obviously,
there is no b ∈ U which satisfies b(1) = a(1), b(2) = a(2) and
b(3) > m at the same time.

Lemma 4.6.3 ([Wil77]). Let m 6 n and U ⊆ W(n). The order
type of U is at least ωm if and only if there is a non-empty subset
of U which is free in m different components.

Recall that the positive simplification lemma 4.5.2 states that
non-p-simplicity can be avoided in some sense. In the same sense,
p-simplicity however cannot be avoided.

Lemma 4.6.4 (negative simplification lemma). For all type
〈ωn1 , . . . , ωnk〉 tuples of subsets U ⊆ W(n), the set [U ]r intersects
every p-simple similarity class.

Proof. The basic proof idea is as follows: We consider the box
diagram shape representing some p-simple similarity class and fill
its columns from left to right with numbers in such a way that
we end up with a box diagram for some element of U .
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To this end, we fix the least element z of an arbitrary p-simple
similarity class in [W(n)]r. Recall that the entry set of z is of
the form {1, . . . ,m}. According to lemma 4.6.3, there is a tuple
of subsets V ⊆ U such that each Vk is non-empty and free in all
nk components. Our goal is to construct a ∈ W(m) such that the
tuple a(z), which is similar to z, is contained in [V ]r and hence
also in [U ]r. Intuitively, a(t) is just the number we fill into the
tth column of the box diagram shape for z. Hence, this filling
leads to the box diagram for a(z).

We construct a ∈ W(m) inductively in m steps. In step
t ∈ [1,m], we choose a(t) such that the following invariant is
preserved:

(?) For all indices k, i, there is some b ∈ Vk such that the equality
b(µ) = a(zki(µ)) holds true for all µ with zki(µ) 6 t.

For t = m, this condition just says a(z) ∈ [V ]r, which proves the
claim in the end. For the sake of technical convenience, we add
the artificial base case t = 0.

Base case. Following our convention, we put a(0) := 0. The
invariant (?) is then trivially satisfied for t = 0 because the sets
Vk are non-empty.

Inductive step. Let t ∈ [1,m] be the number of the current step.
Let `, j, ν be indices such that t = z`j(ν). Due to the induction
hypothesis, there is some c ∈ Vk such that c(ξ) = a(z`j(ξ)) for
each ξ < ν. Since Vk is free in the νth component, there is d ∈ Vk
such that d(ν) > a(t − 1) and d(ξ) = c(ξ) for each ξ < ν. We
choose a(t) := d(ν).

In order to verify that this choice of a(t) preserves the in-
variant (?), consider indices k, i. We have to find some b ∈ Vk
such that b(µ) = a(zki(µ)) for all µ with zki(µ) 6 t. If there
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is no µ with zki(µ) = t, the induction hypothesis yields the re-
quired b. Henceforth, assume there is µ with zki(µ) = t. Thus,
zki(µ) = z`j(ν). Since z is p-simple, we conclude k = `, µ = ν
and zki(ξ) = z`j(ξ) for each ξ 6 µ. It is a matter of routine to
check that b := d is a suitable choice for b.

The announced negated polarized partition relation is as follows:

Theorem 4.6.5. For all s ∈ N and n, r ∈ Ns, the following
holds: ω

n1

...
ωns

 X−→

ω
n1

...
ωns


r1,...,rs

P (n;r)

Proof. Let ∆ be an arbitrary canonical partition of [W(n)]r into
P (n; r) classes such that no two p-simple similarity classes fall into
the same ∆-class. Consequently, each ∆-class contains precisely
one p-simple similarity class. Applying the negative simplification
lemma 4.6.4 hence yields that every type 〈ωn1 , . . . , ωns〉 tuple of
subsets of W(n) is completely inhomogeneous wrt ∆.

Applying the negative polarization lemma 4.3.5 to the polarized
partition relations just shown yields that theorem 4.5.4 is indeed
optimal.

Theorem 4.6.6. For all ordinals α < ωω and r ∈ N, we have

α X−→ [α]rλ(α;r) .

Using lemma 4.1.4, we summarize theorems 4.5.4 and 4.6.6 in
terms of the Ramsey degree.
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Theorem 4.6.7. Let r ∈ N and α < ωω be an ordinal. The r-ary
Ramsey degree of α is finite and its exact value is given by∑

r̃1,...,r̃s∈N
r̃1+···+r̃s=r

P (n1, . . . , ns; r̃1, . . . , r̃s) ,

provided that α = ωn1 + · · · + ωns is the Cantor normal form
of α.

Recall that the numbers P (n1, . . . , ns; r̃1, . . . , r̃s) can be obtained
by counting the number of box diagram shapes which belong to
p-simple similarity classes. Hence, the r-ary Ramsey degree of
α < ωω is computable from the Cantor normal form of α. We
conclude this section by sketching the according calculations for
r = 2.

Corollary 4.6.8 ([HL13]). Let α < ωω be an ordinal. The binary
Ramsey degree of α is finite and its exact value is given by

∑
16k6s

∑
16t6nk

(
2t− 1
t

)
+

∑
16k<`6s

(
nk + n`
nk

)
,

provided that α = ωn1 + · · ·+ωns is the Cantor normal form of α.

Proof sketch. According to theorem 4.6.7, we only have to deter-
mine the values of P (n1, . . . , ns; r̃1, . . . , r̃s) under the assumption
r̃1 + · · · + r̃s = 2. To this end, we regard box diagram shapes
representing similarity classes in [W(n)]r̃ as strings over the al-
phabet { , , }. We distinguish two cases:

Case 1: There is k with r̃k = 2. A string w over { , , } is a
box diagram shape precisely if the following three conditions are
satisfied:
(1) |w| + |w| = |w| + |w| = nk,
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(2) w contains a symbol other than and
(3) the first symbol of w different from is a -symbol.
Obviously and as already mentioned in footnote 5 on page 147,
w represents a p-simple similarity class precisely if the -symbols
in w form a prefix of w. There are no further restrictions implied
on w. Thus, for each t ∈ [1, nk], there are precisely

(2t−1
t

)
strings

of this kind whose -prefix has length nk − t. In total, we obtain

P (n1, . . . , ns; r̃1, . . . , r̃s) =
∑

16t6nk

(
2t− 1
t

)
.

Case 2: There are k and ` with k < ` and r̃k = r̃` = 1. This time,
a string w is a box diagram shape if and only if |w| + |w| = nk
and |w| + |w| = n`. The represented similarity class is p-simple
precisely if w does not contain any -symbols at all. Accordingly,

P (n1, . . . , ns; r̃1, . . . , r̃s) =
(
nk + n`
nk

)
.

Adding all these values yields the claim.

4.7 Infinite Ramsey Degrees

We complete this chapter by demonstrating that the r-ary Ramsey
degree of α is infinite whenever ωω 6 α < ωω

2 and r > 2. We
accomplish this objective by means of corollary 4.7.8, which
basically establishes the negated partition relation

α X−→ [α]rκ

for all κ ∈ N. As a first step, we show that we can focus on the
case r = 2.
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Lemma 4.7.1. Let r, κ, λ ∈ N and α, β be infinite ordinals. If
r > 2 and

α −→ [β]rκ,λ ,
then

α −→ [β]2κ,λ .

Proof. Suppose the premise is satisfied. We consider a type α
well-order A and a partition ∆ = {D1, . . . , Dκ} of [A]2. We define
a partition ∆′ = {D′1, . . . , D′κ} of [A]r by

D′i :=
{
〈u1, . . . , ur〉 ∈ [A]r

∣∣ 〈ur−1, ur〉 ∈ Di
}
.

Due to the premise, there is a type β subset X ⊆ A, which is
relatively λ-homogeneous wrt ∆′. Let v1 < · · · < vr−2 be the r−2
smallest elements of X and put Y := X\{v1, . . . , vr−2}. Since β is
infinite, Y still has order type β. If [Y ]2 intersects some∆-classDi,
say 〈u1, u2〉 ∈ Di ∩ [Y ]2, then [X]r intersects the ∆′-class D′i,
namely 〈v1, . . . , vr−2, u1, u2〉 ∈ D′i ∩ [X]r. Consequently, Y is
relatively λ-homogeneous wrt ∆.

The key ingredient to the negated partition relations we estab-
lished in the previous section was the negative simplification
lemma 4.5.2. In a certain sense, it says that p-simplicity cannot
be avoided. Here, we take a similar approach but restrict our
attention only to certain p-simple similarity classes called zigzags.
In the remainder of this section, m,n ∈ N are always numbers
with m 6 n. The intuition behind the next definition is depicted
in fig. 4.4 on the next page, where we omitted most of the vertical
bars for the sake of visual clarity.

Definition 4.7.2. Let k ∈ [1,m] and µ ∈ W(m) with µ(m) 6 n.
A pair 〈x, y〉 in [W(n)]2 is a µ-k-zigzag if it satisfies the fol-
lowing three conditions, which conveniently use µ(0) = 0 and
µ(m+ 1) = n+ 1:
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4 Set-Theoretic Ramsey Theory

(1) x(ξ) = y(ξ) for all ξ < µ(1).
(2) x(µ(i)− 1) < y(µ(i)) and y(µ(i)− 1) < x(µ(i)) for each i.
(3) x(µ(i+ 1)− 1) < y(µ(i)) for all i 6 k.
(4) y(µ(i+ 1)− 1) < x(µ(i)) for all i > k.

In view of fig. 4.4, it is almost immediate that the set of µ-k-zigzags
forms a p-simple similarity class.6 Observe that conditions (3)
and (4) along with the monotonicity of x, y and µ imply the
following two conditions (5) and (6), respectively:
(5) x(µ(i)) < y(µ(i)) for i 6 k.
(6) y(µ(i)) < x(µ(i)) for i > k.
The presumed relationship x < y is implicitly also contained in
the conditions above: x < y follows from x(µ(1)) < y(µ(1)) and
x(ξ) = y(ξ) for each ξ < µ(1).

Reasoning by means of box diagrams once more, one can easily
see that for every µ-k-zigzag the values of µ and k are unique.
Since the proofs to follow rely on this uniqueness, we provide a
proof in terms of definition 4.7.2.

Lemma 4.7.3. Let m ∈ N. Every pair in [W(n)]2 is a µ-k-zigzag
for at most one choice of µ ∈ W(m) and k ∈ [1,m].

Proof. Suppose that 〈x, y〉 ∈ [W(n)]2 is a µ-k-zigzag as well as a
ν-`-zigzag for some µ, ν ∈ W(m) and k, ` ∈ [1,m]. We show that
µ = ν and k = `.

Aiming for a contradiction, assume that µ 6= ν. Let i ∈ [1,m]
be minimal with µ(i) 6= ν(i). Without loss of generality, we
assume µ(i) > ν(i). If i = 1, we have the self-contradictory
inequality

x(ν(1))
(a)
< y(ν(1)) (b)= x(ν(1))

6We refrain from proving this since it does not matter for the correctness
of the proofs to follow but is only mentioned for reasons of intuition.
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4.7 Infinite Ramsey Degrees

with the following justifications: (a) 〈x, y〉 is a ν-`-zigzag and
1 6 `; (b) 〈x, y〉 is a µ-k-zigzag and ν(1) < µ(1). If 1 < i 6 k + 1,
we conclude

x(ν(i))
(a)
6 x(µ(i)− 1)

(b)
< y(µ(i− 1))
(c)= y(ν(i− 1))

(d)
6 y(ν(i)− 1)

(e)
< x(ν(i))

using the following arguments: (a) ν(i) < µ(i) and x is monotonic;
(b) 〈x, y〉 is a µ-k-zigzag and i − 1 6 k; (c) µ(i − 1) = ν(i − 1);
(d) ν(i−1) 6 ν(i)−1 and y is monotonic; (e) 〈x, y〉 is a ν-`-zigzag.
Clearly, this is also a contradiction. Finally, the case i > k + 1
is symmetric to the case 1 < i 6 k + 1, the only difference is
that x and y are interchanged. More precisely, we obtain the
contradiction

y(ν(i))
(a)
6 y(µ(i)− 1)

(b)
< x(µ(i− 1))
(c)= x(ν(i− 1))

(d)
6 x(ν(i)− 1)

(e)
< y(ν(i))

by the following justifications: (a) ν(i) < µ(i) and y is monotonic;
(b) 〈x, y〉 is a µ-k-zigzag and i − 1 > k; (c) µ(i − 1) = ν(i − 1);
(d) ν(i−1) 6 ν(i)−1 and x is monotonic; (e) 〈x, y〉 is a ν-`-zigzag.

So far, we have shown µ = ν. Aiming for another contradiction,
suppose k < `. On the one hand, since 〈x, y〉 is a µ-k-zigzag,
k + 1 > k and condition (6) imply y(µ(k + 1)) < x(µ(k + 1)). On
the other hand, since 〈x, y〉 is also a µ-`-zigzag, k + 1 6 ` and
condition (5) imply x(µ(k + 1)) < y(µ(k + 1)). Obviously, this is
a contradiction.

The subsequent lemma7 is an analogue for zigzags of the negative
simplification lemma 4.6.4 and states that zigzags cannot be
avoided in some sense.

7We would have called it “zigzag lemma” if that name were not in use
already.
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Lemma 4.7.4. For all type ωm subsets U ⊆ W(n) and k ∈ [1,m],
there exists µ ∈ W(m) such that [U ]2 contains a µ-k-zigzag.

Proof. According to lemma 4.6.3, there are a non-empty subset
V ⊆ U and a tuple µ ∈ W(m) with µ(m) 6 n such that V is free
in the µ(i)th component for each i ∈ [1,m]. Like in definition 4.7.2,
we conveniently use µ(0) = 0 and µ(m+ 1) = n+ 1.

Basically, we now take the same approach as in the proof of
lemma 4.6.4: We consider the box diagram shape representing
the similarity class of µ-k-zigzags and fill its columns from left
to right with numbers in such a way that we end up with a box
diagram for some element of [U ]2. This time however, we do not
fill the boxes column by column but in blocks as indicated in
fig. 4.4 on page 157.

To this end, we inductively construct a µ-k-zigzag 〈x, y〉 ∈ [V ]2
in m + 1 steps. In step i ∈ [0,m], we choose x(ξ) and y(ξ) for
µ(i) 6 ξ < µ(i+ 1) such that the following invariant is preserved:
(?) There are a, b ∈ V such that a(ξ) = x(ξ) and b(ξ) = y(ξ) for

all ξ < µ(i+ 1).
For i = m, this condition simply says x, y ∈ V . In the end, this
proves the claim.

Base case: i = 0. Since V is not empty, there exists some a ∈ V .
We choose x(ξ) := y(ξ) := a(ξ) for each ξ < µ(1). Clearly,
this choice establishes the invariant (?) for i = 0 and ensures
condition (1) of 〈x, y〉 being a µ-k-zigzag.

Inductive step: i > 0. By the induction hypothesis, there are
a, b ∈ V such that a(ξ) = x(ξ) and b(ξ) = y(ξ) for all ξ < µ(i).

First, suppose that i 6 k. Since V is free in the µ(i)th

component, there are c, d ∈ V such that c(µ(i)) > y(µ(i)− 1) and
d(µ(i)) > c(µ(i + 1) − 1) as well as c(ξ) = a(ξ) and d(ξ) = b(ξ)
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4.7 Infinite Ramsey Degrees

for each ξ < µ(i). We choose x(ξ) := c(ξ) and y(ξ) := d(ξ) for
µ(i) 6 ξ < µ(i+ 1). It is easy to check that this choice preserves
the invariant (?) for c and d in place of a and b, respectively, and
ensures conditions (2), (3) and (4) of 〈x, y〉 being a µ-k-zigzag.

Finally, the case i > k can be treated with almost the same
arguments. The only difference is that the requirements on c(µ(i))
and d(µ(i)) need to be changed to d(µ(i)) > x(µ(i) − 1) and
c(µ(i)) > d(µ(i+ 1)− 1).

The omnipresence of zigzags implies the subsequent negated par-
tition relation.

Theorem 4.7.5. For all m,n ∈ N with m 6 n, we have

ωn X−→ [ωm]2m .

Proof. By lemma 4.7.3, there is a partition ∆ = {D1, . . . , Dm} of
[W(n)]2 such that Dk contains all µ-k-zigzags for any µ ∈ W(m).
Applying lemma 4.7.4 yields that every type ωm subset U ⊆ W(n)
is completely inhomogeneous.

Our next step towards corollary 4.7.8 is to compose infinitely
many of the partition relations above into one partition relation
on ωω or, more generally, on ωγ for ω 6 γ < ω2. We accomplish
this by means of the following lemma.

Lemma 4.7.6. Let m ∈ N and β, ν, αµ be ordinals for µ < ν. If

αµ X−→ [β + 1]2m

for each µ < ν, then ∑
µ<ν

αµ X−→ [βν + 1]2m .
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Proof. For each µ < ν, let Aµ be a type αµ well-order and
∆µ = {Dµ1, . . . , Dµm} a partition of [Aµ]2 exemplifying the pre-
sumed partition relation on αµ, i.e., every type β+ 1 subset of Aµ
is completely inhomogeneous wrt ∆µ. We consider the well-order

A :=
∑
µ<ν

Aµ .

Notice that the sets [Aµ]2 are mutually disjoint subsets of [A]2.
Thus, there is a partition Γ = {C1, . . . , Cm} of [A]2 such that
Dµk ⊆ Ck for all k ∈ [1,m] and µ < ν. We conclude the proof
by showing that every type βν + 1 subset X ⊆ A is completely
inhomogeneous wrt Γ .

For each µ < ν, let βµ be the order type of X ∩An. Then∑
µ<ν

βµ = βν + 1 . (4.12)

We cannot have βµ 6 β for all µ as this would contradict eq. (4.12).
Put another way, there is some µ̃ < ν such that βµ̃ > β + 1.
Consider some arbitrary k ∈ [1,m]. Observe that

[X ∩Aµ̃]2 ∩Dµ̃k ⊆ [X]2 ∩ Ck .

Due to the choice of ∆µ̃, the former set is non-empty and hence
the latter set is non-empty as well. Consequently, X is completely
inhomogeneous wrt Γ .

Applying the lemma above to the partition relation in theo-
rem 4.7.5 yields the following:

Theorem 4.7.7. For every m ∈ N and all ordinals γ with
ω 6 γ < ω2, we have

ωγ X−→ [ωγ ]2m .
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Proof. First, we apply lemma 4.7.6 to β = ωm, ν = ω and
αµ = ωm+µ and obtain

ωω X−→ [ωm+1 + 1]2m .

Let δ be such that γ = ω+δ. Applying lemma 4.7.6 to β = ωm+1,
ν = ωδ and αµ = ωω yields

ωγ X−→ [ωm+1+δ + 1]2m .

Since γ < ω2, we have m+ 1 + δ < γ and hence ωm+1+δ + 1 < ωγ .
Due to the monotonicity of the partition relation, this implies the
claim.

As the Cantor normal form of any ordinal α with ωω 6 α < ωω
2

contains a summand ωγ with ω 6 γ < ω2, theorem 4.7.7 along
with lemma 4.3.4 of the negative polarization lemma immediately
imply the desired partition relation:

Corollary 4.7.8. For every m ∈ N and all ordinals α with
ωω 6 α < ωω

2, we have

α X−→ [α]2m .

Putting together lemma 4.7.1 and corollary 4.7.8 and expressing
the result in terms of the Ramsey degree, we obtain:

Theorem 4.7.9. For all r > 2 and ordinals α with ωω 6 α < ωω2 ,
the r-ary Ramsey degree of α is infinite.

4.8 Open Problems
In view of the results in this chapter, several questions arise imme-
diately. However, with Todorčević’s result on ω1 in mind [Tod87],
it seems implausible that there are uncountable order types which
possess a (finite or even countable) Ramsey degree. Concerning
countable order types, there are basically two open problems:
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(1) Are there countable ordinals other than those below ωω whose
Ramsey degree is finite?

(2) Which countable scattered order types do have a finite Ramsey
degree?

With regard to question (1), we particularly wonder whether the
technique from the previous section can be extended to ωω2 and
beyond. In the context of question (2), it might be interesting to
study the following variation of the Ramsey degree: The varied
r-ary Ramsey degree of a scattered order type τ is the least
cardinal λ which admits another scattered order type τ ′ of the
same VD∗-rank as τ such that τ −→ [τ ′]rκ,λ for all κ ∈ N. The
varied r-ary Ramsey degree of an ordinal α with ωn 6 α < ωn+1

then would coincide with the (non-varied) r-Ramsey degree of ωn.
Consequently, the varied Ramsey degree would be monotonic
on ordinals α < ωω; a feature the (non-varied) Ramsey degree
regrettably lacks.
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5 Automatic Ramsey Theory

As computer scientists, we are not satisfied by the mere existence
of certain objects but we want to compute them. Regarding Ram-
sey’s theorem, for instance, this urge can be expressed as follows:
Suppose we are given a finite presentation of an infinite graph.
How can we compute a finite presentation of a homogeneous
infinite set of nodes? Is this even possible at all?

As a matter of fact, the answer is manifold and depends heav-
ily on what exactly we do mean by the term “finite presentation”.
For example, we could mean “presentation by Turing machines”.
Unfortunately, the answer is negative in this case. More precisely,
there is a computable graph which contains no computably enu-
merable homogeneous infinite set of nodes [Spe71]. Although
there might even be no homogeneous infinite subset from Σ0

2,
there is always one from Π0

2 [Joc72].
In contrast, the situation is a lot better when “finite pre-

sentation” means “string-automatic presentation”: Every string-
automatic graph admits a regular homogeneous infinite subset
and one can actually compute a string-automaton recognizing
such a set from a string-automatic presentation of the graph
[Rub08]. For automatic presentations using finite automata on
other input structures than strings, the situation is more com-
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plicated. Although every ω-string-automatic uncountable graph
admits a homogeneous uncountable subset, there might be no
ω-regular set of this kind [Kus11]. Surprisingly, the first part of
this result is no longer valid for ternary hypergraphs [Kus11]. The
best known result of this kind for tree-automatic (hyper)graphs is
decidability of the existence of an infinite clique, i.e., an infinite
complete subgraph [Kar11].

Put in one phrase, the main objective of this chapter is to
figure out how much of the theory of Ramsey degrees from the
previous chapter can be made effective in the context of auto-
matic structures. To this end, we introduce the automatic r-ary
Ramsey degree of an ordinal α. Due to the characterizations of
automatically presentable ordinals in corollary 3.1.5 on page 62
and corollary 3.3.21 on page 99, this notion is only meaningful
for ordinals α < ωωω . In addition, corollary 3.5.7 on page 108
implies that tree-automaticity is no more powerful than string-
automaticity for presenting well-orders of types below ωω and
partitions of hypergraphs thereon. Accordingly, we define the
automatic Ramsey degree of an ordinal α in terms of string-
automatic partitions if α < ωω and in terms of tree-automatic
partitions if ωω 6 α < ωωω .

Our investigations of this automatic Ramsey degree lead to
results which strongly resemble those on the (non-automatic)
Ramsey degree. Furthermore, all claims on the existence of
regular relatively homogeneous sets are effective, i.e., one can
actually compute automata recognizing such sets. In more detail,
the results are the following, the first three of which already
appeared for r = 2 in [HL13]:
(1) The automatic r-ary Ramsey degree of every ordinal α < ωω

is finite (theorem 5.3.9).
(2) The precise value of this Ramsey degree can be computed

from r and the Cantor normal form of α (theorem 5.4.6).
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(3) One can compute a string-automaton recognizing a relatively
λ-homogeneous type α subset, for λ being this precise value
of the Ramsey degree (corollary 5.4.7).

(4) The automatic r-ary Ramsey degree of α is infinite whenever
ωω 6 α < ωωω (theorem 5.5.5).

Concerning result (2), it turns out that the automatic r-Ramsey
degree of an ordinal α < ωω always is at least as large as its non-
automatic counterpart and in most cases even strictly larger.

Roughly speaking, the notable similarity between the results
on non-automatic and automatic Ramsey degrees also carries
over to the overall structure of the corresponding proofs. More
precisely, the proof of the positive results (1) to (3) also employs
the three steps polarization, canonicalization and simplification.
Although the automatic versions of the two polarization lemmas
are proved almost literally the same way as before, the canoni-
calization and simplification lemmas both require entirely new
proofs. In addition, there is a fourth step, called standardization,
which resolves one of the most fundamental differences between
set-theoretic and automatic Ramsey theory: For any well-or-
ders A and B of the same order type α and every partition Γ
of [A]r, there is a unique partition ∆ of [B]r which is isomorphic
to Γ . Consequently, we were allowed to freely choose the most
suitable type α well-order for demonstrating a partition relation
α −→ [β]rκ,λ. We made extensive use of this freedom by choosing
W(n) as our standard type ωn well-order in section 4.4. However,
the situation is fundamentally different in the context of auto-
matic Ramsey theory: There are instances where A, B and Γ
are automatic but ∆ is not. Accordingly, we are no longer free to
choose the automatic type α well-order being most easy to handle
when investigating an automatic version of the partition relation
α −→ [β]rκ,λ. The sole purpose of the standardization step is to

167



5 Automatic Ramsey Theory

establish that we can still use W(n) as our standard type ωn well-
order nevertheless.

As a byproduct of these investigations, we obtain a new and
quite simple proof of the string-automatic version of Ramsey’s
theorem, i.e., the fact that every string-automatic uniform hyper-
graph1 effectively admits a regular homogeneous infinite subset.
Compared to the results in [Rub08], this proof unfortunately
has the disadvantage that it does not allow for deciding whether
a given string-automatic hypergraph contains an infinite clique.
However, its huge advantage is that it easily extends to tree-auto-
matic hypergraphs. As a consequence, we obtained the following
new results:
(5) Every tree-automatic hypergraph effectively admits a regular

homogeneous infinite subset (theorem 5.6.8).

(6) It is decidable whether a given tree-automatic hypergraph
contains a regular infinite clique (theorem 5.6.10).

Notice that the latter result differs from the one in [Kar11] only
in the word “regular”. Along with an example of a tree-automatic
hypergraph containing an infinite clique but no regular infinite
clique, this completes the picture on the tree-automatic version
of Ramsey’s theorem.

Outline. Just like in the non-automatic case, all our results on
the automatic Ramsey degree are obtained in terms of (automatic
variants of) partition relations. Along with the automatic Ramsey
degree itself, these are introduced in section 5.1. The purpose
of section 5.2 is to exhibit the aforementioned standardization
step. The other three steps, namely polarization, canonicalization
and simplification, are presented in section 5.3. The implied

1As we only deal with uniform hypergraphs, we omit the word “uniform”
from now on.
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upper bounds on automatic Ramsey degrees are matched by
lower bounds in section 5.4. In section 5.5, we demonstrate that
the automatic Ramsey degrees of all ordinals between ωω and
ωωω are infinite. Finally, the announced tree-automatic version
of Ramsey’s theorem is presented in section 5.6.

5.1 The Automatic Ramsey Degree
Throughout this section, we define string-automatic and tree-
automatic variants of several notions. In order to avoid notational
overhead, we use the term automatic linear order generically to
refer to a linear order which is either string-automatic or tree-
automatic. Accordingly, symbols involving SA and TA refer to
the string-automatic and the tree-automatic version, respectively.
Before providing the mentioned definitions, we shortly discuss the
notion of automatic relations in the context of Ramsey theory. To
this end, suppose that A is an automatic linear order and r ∈ N.
Since any relation D ⊆ [A]r is just a set of tuples from Ar, being
automatic is a well-defined property of D. Recall that we slightly
deviated from the standard when defining [A]r as

[A]r :=
{
〈u1, u2, . . . , ur〉 ∈ Ar

∣∣ u1 < u2 < · · · < ur
}

and not as the set of all subsets of A having size r. If we had
decided in favor of this customary definition, it would seem natural
to call a set E of such subsets of A automatic whenever the relation{

〈u1, u2, . . . , ur〉
∣∣ {u1, u2 . . . , ur} ∈ E

}
is automatic. As a matter of fact, there is no significant difference
between these two possible definitions because a relation D ⊆ [A]r
is automatic if and only if its symmetric closure{
〈ui1 , . . . , uir〉

∣∣ 〈u1, . . . , ur〉 ∈ D, {i1, . . . , ir} = {1, . . . , r}
}
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is automatic.

Definition 5.1.1. Let A be an automatic linear order and r ∈ N.
A partition ∆ of [A]r is automatic if each ∆-class is automatic.

Definition 5.1.2. Let α, β < ωωω be ordinals and r, κ, λ ∈ N.
The automatic weak square bracket partition relations

α
SA−→ [β]rκ,λ and α

TA−→ [β]rκ,λ (5.1)

denote the following facts: For any automatic type α well-order A
and every automatic partition ∆ of [A]r into κ classes, there is a
regular type β subset X ⊆ A which is relatively λ-homogeneous
wrt ∆.

First of all, notice that these partition relations possess the same
monotonicity properties as the (non-automatic) weak square
bracket partition relation. More precisely, the partition rela-
tions in eq. (5.1) remain true if we replace α by a larger ordinal
(below ωω for SA−→ and below ωωω for TA−→), β by a smaller ordinal,
κ by a smaller number or λ by a larger number. The automatic
ordinary partition relations

α
SA−→ (β)rκ and α

TA−→ (β)rκ

capture the special case λ = 1 of eq. (5.1). Using this partition
relation, the string-automatic version of Ramsey’s theorem can
be phrased as follows:

Theorem 5.1.3 (Rubin’s theorem [Rub08]). For all r, κ ∈ N, we
have

ω
SA−→ (ω)rκ .

More precisely, given presentations of a string-automatic type ω
well-order A and an automatic partition ∆ of [A]r into κ classes,
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one can compute a string-automaton recognizing a homogeneous
infinite subset of A.2

Similarly to their non-automatic versions, the automatic square
bracket partition relations

α
SA−→ [β]rκ and α

TA−→ [β]rκ

refer to the special case λ = κ− 1. Once more, we are primarily
interested in the negations

α
SAX−→ [β]rκ and α

TAX−→ [β]rκ

which denote the following facts: There are an automatic type
α well-order A and an automatic partition ∆ of [A]r into κ
classes such that each regular type β subset of A is completely
inhomogeneous wrt ∆.

Definition 5.1.4. Let α < ωωω be an ordinal and r ∈ N. The
automatic r-ary Ramsey degree of α is the least cardinal λ such
that, for all κ ∈ N,

α
SA−→ [α]rκ,λ

if α < ωω and
α

TA−→ [α]rκ,λ

otherwise.

Just like for the non-automatic variant, every automatic Ramsey
degree either is finite or equals ℵ0. Analogously to lemma 4.1.4
on page 128, we have the following characterization which again
lays down our strategy to obtain precise values of the automatic
Ramsey degree.

2In fact, Rubin has proved a substantially stronger result, cf. theorem 5.6.1
on page 201 for details.
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Lemma 5.1.5. Let α < ωω be an ordinal and r, λ ∈ N. If

α
SA−→ [α]rκ,λ and α

SAX−→ [α]rλ
for all κ ∈ N, then the automatic r-ary Ramsey degree of α is
exactly λ.

Owing to the fact that our positive result on the automatic Ramsey
degrees of ordinals α < ωω is again based on a polarization step,
we also define a string-automatic variant of the most general
polarized partition relation.

Definition 5.1.6. Let s, κ, λ ∈ N be numbers, r ∈ Ns and
α1, . . . , αr, β1, . . . , βr < ωω ordinals. The automatic polarized
weak square bracket partition relationα1

...
αs

 SA−→

β1
...
βs


r1,...,rs

κ,λ

denotes the following fact: For any type 〈α1, . . . , αs〉 tuple of
string-automatic well-orders A and every automatic partition ∆
of [A]r into κ classes, there is a type 〈β1, . . . , βs〉 tuple of regular
subsets of A which is relatively λ-homogeneous wrt ∆.

5.2 Standardization
The purpose of this section is to demonstrate that we can choose
the type ωn suborder

W(n) :=
{
x ∈ Nn+

∣∣ x(1) < x(2) < . . . < x(n)
}

of Nn+ as our standard type ωn well-order again. More precisely,
the standardization lemma 5.2.7 establishes that it suffices to
consider automatic partitions of the set

[W(n)]r := [W(n1)]r1 × · · · × [W(ns)]rs
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when we investigate partition relations of the following kind:ω
n1

...
ωns

 SA−→

ω
n1

...
ωns


r1,...,rs

κ,λ

First of all, we clarify when a partition of [W(n)]r is automatic.
To this end, let n ∈ N and x ∈ W(n). Recall that Mx(1) = x(1)
and Mx(µ) = x(µ)−x(µ− 1) for µ > 1. The string representation
of x is the string

σ = 1Mx(1)2Mx(2) · · · nMx(n) .

Notice that the length of σ is exactly x(n). For each p ∈ [1, x(n)],
let σp denote the pth letter of σ. Then we have the following
equivalence for all µ ∈ [1, n]:

σp = µ ⇐⇒ x(µ− 1) < p 6 x(µ) . (5.2)

In order to avoid vast quantities of clumsy function applications
translating between x and its string representation, we identify x
with this representation. In line with this, we also identify W(n)
with the set of all string representations of its elements, i.e.,

W(n) = 1+2+ · · · n+ .

Notice that this turnsW(n) into a regular language. Furthermore,
this identification allows for speaking about regular subsets of and
automatic relations on W(n). In particular, it is easy to verify
that the only linear ordering of W(n) we are taking into account
is actually automatic, namely the one given by x < y if the least
µ ∈ [1, n] with x(µ) 6= y(µ) satisfies x(µ) < y(µ). Put another
way, we regard W(n) as a string-automatic well-order.

Now, we fix some s ∈ N and n, r ∈ Ns. Let x ∈ [W(n)]r, m
be the size of its entry set, z the least element of its similarity class
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and a ∈ W(m) such that x = a(z). In line with the identifications
above, we denote the convolution of the string representations
of all xki by ⊗x. Notice that the length of ⊗x is precisely a(m).
For every p ∈ [1, a(m)], the pth letter σp of ⊗x is a tuple

σp = 〈σp11, . . . , σp1r1 ; . . . ;σpk1, . . . , σpkrk ; . . . ;σps1, . . . , σpsrs〉

with σpki ∈ {1, . . . , nk, �} for all indices k, i.

Example 5.2.1 (continues example 4.4.1 on page 141). Let s = 3,
n = 〈3, 2, 4〉 and r = 〈2, 1, 1〉. Recall that

[W(n)]r = [W(3)]2 ×W(2)×W(4) .

We consider the elements of [W(n)]r which are depicted as box
diagrams in fig. 4.2 on page 142:

x = 〈〈7, 8, 11〉, 〈7, 11, 16〉; 〈4, 10〉; 〈1, 7, 10, 19〉〉

y = 〈〈5, 13, 16〉, 〈5, 13, 18〉; 〈3, 21〉; 〈8, 10, 14, 17〉〉

z = 〈〈3, 4, 6〉, 〈3, 6, 7〉; 〈2, 5〉; 〈1, 3, 5, 8〉〉

If we write the letters σp as column vectors in square brackets,
the convolutions of x, y and z read as follows:

⊗x =

1
1
1
1


1

1
1
2


31

1
2
2


32

2
2
3


3

2
2
3


23

2
�
4


�3�

4


5���

4


3

⊗y =

1
1
1
1


31

1
2
1


22

2
2
1


32

2
2
2


22

2
2
3


33

3
2
3


3

3
2
4


2�32

4


�32
�


��2
�


3

⊗z =

1
1
1
1


1

1
1
2


1

1
2
2


2

2
2
3


3

2
2
3


3

2
�
4


�3�

4


���

4
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We note the following connection: If you draw a box around the
last occurrence of every letter (except for the �-symbol) in each
row and write the position of this letter into the box, you end up
with the box diagram of the respective element.

Analogously to eq. (5.2) on page 173, we have the following
equivalences for all p ∈ [1, a(m)] and µ ∈ [1, nk]:

σpki = µ ⇐⇒ xki(µ− 1) < p 6 xki(µ) (5.3)
and

σpki = � ⇐⇒ xki(nk) < p . (5.4)

Altogether, identifying elements of W(nk) with their string repre-
sentations allows for speaking of automatic partitions of [W(n)]r.

5.2.1 Decomposition of Well-Orders

Our next step towards proving the standardization lemma 5.2.7
is to demonstrate that every string-automatic type ωn well-order
contains a type ωn suborder which is isomorphic to W(n) via
an isomorphism of a very simple form. In the final proof of the
standardization lemma, we show and use the fact that maps of this
simple form preserve automaticity in both directions. Formally,
“simple form” shall mean the following:

Definition 5.2.2. A map f : W(n)→ Σ∗ is called presentable if
there exist strings u0, u1, . . . , un ∈ Σ∗ and v1, . . . , vn ∈ Σ+ such
that, for all x ∈ W(n),

f(x) = u0v
Mx(1)
1 u1v

Mx(2)
2 u2 · · · vMx(n)

n un .

The tuple 〈u0, v1, u1, v2, u2, . . . , vn, un〉 then is a presentation of f .
If there is p > 1 such that |vi| = p for each i, we say that f is
p-uniformly presentable and speak of a p-uniform presentation.
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5 Automatic Ramsey Theory

Phrased in this terminology, our goal is to show that every string-
automatic type ωn well-order A admits a p-uniformly presentable
embedding f : W(n)→ A for some p > 1. Before proving this in
its whole generality, we showcase one idea behind the proof in the
case n = 1. This particular idea is also relevant in section 5.6. In
order to make the involved calculations easier to follow, we intro-
duce some notation: Suppose that η : (Σ2

�)∗ → S is a morphism
into a finite semigroup. For u, v ∈ Σ∗, we define

η

[
u
v

]
:= η(u⊗ v) .

In this notation, we align factors of u and v of the same length.
For instance, if u = u1u

k
2u3 and v = v1v

k
2v3v

`
4v5 with |ui| = |vi|

for i = 1, 2 and |u3| 6 |v3|, we write

η

[
u
v

]
= η

[
u1 uk2 u3 ε ε
v1 vk2 v3 v`4 v5

]
.

In addition, suppose that k, k′, `, `′ are multiples of the exponent
of S.3 In particular, sk = sk

′ and t` = t`
′ for all s, t ∈ S. Choosing

s = η(u2⊗v2) and t = η(ε⊗v4), we obtain

η

[
u1 uk2 u3 ε ε
v1 vk2 v3 v`4 v5

]
= η

[
u1 uk

′
2 u3 ε ε

v1 vk
′

2 v3 v`
′

4 v5

]
.

In the following, we utilize calculations of this kind without any
further explanation.

Lemma 5.2.3. Let A be a string-automatic type ω well-order.
There is a presentable embedding f : W(1)→ A.

Proof. First of all, notice that W(1) = N+. Let η : (Σ2
�)∗ → S be

a morphism recognizing 6A and m ∈ N+ the exponent of S. A
3A definition of the exponent of a semigroup can be found on page 23.
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5.2 Standardization

simple pumping argument provides us with u, v, w ∈ Σ∗ satisfying
|v| > 1, m · |v| > |w| and uvkw ∈ A for all k ∈ N+.

We show that the map f : N+ → A defined by

f(k) := u(v2m)kw ,

which is obviously presentable, is an embedding of N+ into A.
Recall that sm′ is idempotent for every multiple m′ of m and each
s ∈ S. In line with the comments above, we can hence perform
the following calculations for all k, ` ∈ N+ with k < `:

η

[
f(k)
f(`)

]
= η

[
u v2mk w ε ε

u v2mk vm vm (2(`−k)−1) w

]
= η

[
u v2m w ε ε
u v2m vm vm w

]
= η

[
f(1)
f(2)

]
Since η recognizes 6A, we have f(k) 6A f(`) if and only if
f(1) 6A f(2). Moreover, f is injective because |v| > 1. In
particular, f(1) 6= f(2). If we had f(1) >A f(2), f would be
order-reversing, contradicting the fact that A is a well-order.
Thus, f(1) <A f(2) and f is order-preserving.

Running slightly off the topic, we briefly sketch how to extend
the previous proof to a proof of the case r = 2 of theorem 5.1.3,
i.e., of the partition relation

ω
SA−→ (ω)2

κ

for all κ ∈ N. To this end, consider a partition ∆ of [A]2. We
may assume that the morphism η does not only recognize 6A
but all ∆-classes as well. Consequently, we have actually shown
that all pairs 〈f(k), f(`)〉 with k < ` belong to the same ∆-class
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5 Automatic Ramsey Theory

as 〈f(1), f(2)〉. Put another way, the infinite regular subset
u(v2m)+w ⊆ A is homogeneous. In addition, all the constructions
involved are effective. In section 5.6, we further extend this idea
to the tree-automatic setting and arbitrary r ∈ N.

Recall that our actual goal is to show that every string-au-
tomatic type ωn well-order A admits a uniformly presentable
embedding f : W(n) → A. The basic idea behind the proof for
n > 2 is an induction on n which uses that every type ωn well-
order A can be uniquely decomposed into an ω-sum of type ωn−1

well-orders. In terms of iterated finite-condensation relations,
this decomposition can be obtained as follows: Let ∼n−1 be the
(n−1)st iterated finite-condensation relation on A. Then A/∼n−1
has order type ω and every ∼n−1-class is a type ωn−1 suborder
of A. In addition, we consider the system of representatives of
∼n−1 given by

Ln−1 :=
{

min[w]n−1
∣∣ w ∈ A } ,

i.e., we represent each ∼n−1-class by its least element.4 The
decomposition of A is now given by

A =
∑

w∈Ln−1

[w]n−1 .

This decomposition is automatic in the following sense: The
relation ∼n−1 and the set Ln−1 are first-order definable in A and
hence automatic whenever A is string-automatic.

We cannot expect the following to work: We take for every
∼n−1-class [w]n−1 a presentable embedding of W(n − 1) into
[w]n−1 and combine all these embeddings into one presentable
embedding of W(n) into A. Accordingly, the following lemma
prepares a sensible choice of embeddings that can be combined.

4In terms of iterated limit points, Ln−1 contains precisely the (n−1)-limit
points of A.
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Lemma 5.2.4. Let n > 2 and A be a string-automatic type ωn
well-order. The relation

R :=
{
〈u, ũ〉 ∈ Ln−1 ×Σ∗

∣∣∣∣∣ |u| = |ũ| and the order type
of [u]n−1 ∩ ũΣ∗ is ωn−1

}

is automatic and contains a pair 〈u, ũ〉 for each u ∈ Ln−1.

Proof. Recall that a well-order B has type ωn−1 if and only if
B/∼n−2 is infinite and B/∼n−1 is a singleton. Consequently,
the relation R is first-order definable in the automatic structure
(Σ∗;A,6A,≡,4), where ≡ and 4 are the same-length and prefix
relations, respectively. Thus, R is automatic.

Concerning the second claim, fix some u ∈ Ln−1. Recall that
[u]n−1 has order type ωn−1. We consider the partition

[u]n−1 = Σ<|u| ]
⊎
ũ∈Σ∗
|u|=|ũ|

[u]n−1 ∩ ũΣ∗ .

According to theorem 3.2.2 on page 65, this partition contains a
class of order type ωn−1. Since the first part is finite, it must be
one of the latter parts. Put another way, there is ũ ∈ Σ∗ with
|u| = |ũ| such that [u]n−1 ∩ ũΣ∗ has order type ωn−1.

Now, we utilize the sensible choice prepared by lemma 5.2.4
along with the main idea behind the proof of lemma 5.2.3 in
order to construct a (possibly non-uniform) presentation of some
embedding f : W(n)→ A.

Theorem 5.2.5. Let n ∈ N and A be a string-automatic type ωn
well-order. There is a presentable embedding f : W(n) → A.
Moreover, given a presentation of A, one can compute a presen-
tation of f .
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5 Automatic Ramsey Theory

Proof. We proceed by induction on n. The claim is trivial for
n = 0 and has been established for n = 1 in lemma 5.2.3. Hence-
forth, we assume n > 2. According to lemma 5.2.4, the relation

R :=
{
〈u, ũ〉 ∈ Ln−1 ×Σ∗

∣∣∣∣∣ |u| = |ũ| and the order type
of [u]n−1 ∩ ũΣ∗ is ωn−1

}

is automatic and infinite. An easy pumping argument provides
us with strings p, q, r ∈

(
Σ2
�
)∗ such that |q| > 1, |q| > |r| and

pqkr ∈ ⊗R for each k ∈ N+. Owing to the same-length condition
in the definition of R, none of the three strings contains a �-symbol.
Thus, we can write p = p⊗ p̃, q = q ⊗ q̃ and r = r ⊗ r̃ for some
strings p, p̃, q, q̃, r, r̃ ∈ Σ∗ with |p| = |p̃|, |q| = |q̃| and |r| = |r̃|.
Notice that |q| > 1, |q| > |r| and 〈pqkr, p̃q̃kr̃〉 ∈ R for each k ∈ N.

Let η :
(
Σ2
�
)∗ → S be a morphism simultaneously recognizing

6A and ∼n−1. Furthermore, let m ∈ N+ be the exponent of S.
We consider the unique language Z ⊆ Σ∗ with

p̃q̃2mr̃ Z = [pq2mr]n−1 ∩ p̃q̃2mr̃ Σ∗ .

Due to the choice of R, the subset of A on the right hand side
has order type ωn−1. Accordingly, we turn Z into a type ωn−1

well-order by defining

u 6Z v :⇐⇒ p̃q̃2mr̃u 6A p̃q̃
2mr̃v .

Since 6A and ∼n−1 are automatic, the well-order Z is also auto-
matic. Due to the induction hypothesis, there is a presentable
embedding g : W(n − 1) → Z. For every x ∈ W(n), we define
x̄ ∈ W(n − 1) by 4x̄(µ) := 4x(µ + 1) for 1 6 µ 6 n − 1. Intu-
itively, Mx̄ is obtained from Mx by dropping the first element. In
the remainder of this proof, we show that the map f : W(n)→ Σ
defined by

f(x) := p̃q̃2mx(1)r̃ g(x̄)
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is a presentable embedding of W(n) into A.
First, suppose that 〈u1, v2, u2, . . . , vn, un〉 is a presentation of g.

It is easy to check that 〈p̃, q̃2m, r̃u1, v2, u2, . . . , vn, un〉 then is a pre-
sentation of f . Our next step is to show that f(x) ∈ [pq2mx(1)r]n−1
for all x ∈ W(n), which particularly implies f(x) ∈ A.

For this purpose, we consider some x ∈ W(n). We have

η

[
pq2mx(1)r
f(x)

]
= η

[
p q2mx(1) r ε

p̃ q̃2mx(1) r̃ g(x̄)

]
= η

[
p q2m r ε
p̃ q̃2m r̃ g(x̄)

]
.

Due to the choice of g and Z, we have g(x̄) ∈ Z and hence
p̃q̃2mr̃ g(x̄) ∈ [pq2mr]n−1. Since η recognizes ∼n−1, we may con-
clude f(x) ∈ [pq2mx(1)r]n−1.

Finally, we demonstrate that f is order-preserving. To this
end, we consider some x, y ∈ W(n) with x < y. In order to show
f(x) <A f(y), we distinguish two cases:

Case 1: x(1) < y(1). Using the very same arguments as in
lemma 5.2.3, we obtain that the map which sends each k ∈ N+
to pq2mkr ∈ Ln−1 is order-preserving. In particular,

pq2mx(1)r <A pq
2my(1)r

and hence

f(x) ∈ [pq2mx(1)r]n−1 � [pq2my(1)r]n−1 3 f(y) .

Case 2: x(1) > y(1). Since x < y, we have x(1) = y(1) and
x̄ < ȳ. Consequently, we obtain

η

[
f(x)
f(y)

]
= η

[
p̃ q̃2mx(1) r̃ g(x̄)
p̃ q̃2my(1) r̃ g(ȳ)

]
= η

[
p̃ q̃2m r̃ g(x̄)
p̃ q̃2m r̃ g(ȳ)

]
.

Since g is order-preserving and x̄ < ȳ, we have g(x̄) <Z g(x̄).
Using the definition of <Z , we conclude

p̃q̃2mr̃ g(x̄) <A p̃q̃2mr̃ g(ȳ) .
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Finally, this implies f(x) <A f(y) because η recognizes <A.

5.2.2 Preservation of Automaticity

In order to prove the standardization lemma 5.2.7, we require
uniformly presentable embeddings for tuples of well-orders. Their
existence is guaranteed by the next corollary. Therein, a tuple of
maps f : W(n)→ A is a tuple f = 〈f1, . . . , fs〉 where each fk is
a map fk : W(nk)→ Ak.

Corollary 5.2.6. Let A be a type 〈ωn1 , . . . , ωns〉 tuple of string-
automatic well-orders. There are p > 1 and a tuple of p-uniformly
presentable embeddings f : W(n)→ A.

Proof. According to theorem 5.2.5, for each k ∈ [1, s], there is a
presentable embedding fk : W(nk)→ Ak, say

〈uk0, vk1, uk1, . . . , vknk , uknk〉

is a presentation of fk. Let p > 1 be a common multiple of all the
|vkµ| and put pkµ := p/|vkµ|. For each k, we define an embedding
gk : W(nk)→W(nk) by

M(gk(x))(µ) = pkµMx(µ) .

Clearly, the map fk ◦ gk : W(nk)→ Ak is an embedding too. For
all x ∈ W(nk), we have

(fk ◦ gk)(x) = uk0
(
vpk1
k1

)Mx(1)
uk1 · · ·

(
v
pknk
knk

)Mx(nk)
uknk .

Since |vpkµkµ | = p for all k, µ, the tuple 〈f1 ◦ g1, . . . , fs ◦ gs〉 has the
desired properties.

Finally, we are prepared to prove the standardization lemma. Ba-
sically, the proof sandwiches an application of its premise between
two translations of automaticity by means of the p-uniformly
presentable embeddings from corollary 5.2.6.
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Lemma 5.2.7 (standardization lemma). Let κ, λ ∈ N. If ev-
ery automatic partition of [W(n)]r into κ classes admits a rela-
tively λ-homogeneous type 〈ωn1 , . . . , ωns〉 tuple of regular subsets
of W(n), then the following holds:ω

n1

...
ωnk

 SA−→

ω
n1

...
ωnk


r1,...,rs

κ,λ

Proof. Let A be a type 〈ωn1 , . . . , ωns〉 tuple of string-automatic
well-orders and ∆ an automatic partition of [A]r into κ classes.
According to corollary 5.2.6, there are p > 1 and a tuple of
p-uniformly presentable embeddings f : W(n)→ A. For a tuple
x ∈ [W(n)]r, we write f(x) for the tuple u ∈ [A]r given by
uki = fk(xki) for all indices k, i. As a first step, we show that the
partition

Γ :=
{
f−1(D)

∣∣ D ∈ ∆ }
of [W(n)]r is automatic.

To this end, let 〈uk0, vk1, uk1, . . . , vknk , uknk〉 be a p-uniform
presentation of fk for each k. We factorize each map fk into two
maps gk, hk as follows, where n = nk:

fk : W(n) = 1+ · · · n+ gk−−→ (1p)+ · · · (np)+

hk−−−→ u0v
+
1 u1 · · · v+

n un ⊆ Ak

x = 1Mx(1) · · · nMx(n) gk7−−→ (1p)Mx(1) · · · (np)Mx(n)

hk7−−−→ u0v
Mx(1)
1 u1 · · · vMx(n)

n un .

According to [FS93, corollary 4.2], each map hk is automatic.
In view of this, it is a matter of routine to check that the re-
lation h−1(D) is automatic for each D ∈ ∆. Due to the very
simple nature of the maps gk, it is even simpler to verify that the

183
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relation g−1(h−1(D)) is automatic as well.5 Since fk = hk ◦ gk,
we actually have

g−1(h−1(D)) = f−1(D) .

Consequently, Γ is automatic.
The premise of this lemma guarantees that there is a type

〈ωn1 , . . . , ωns〉 tuple of regular subsets X ⊆ W(n) which is rel-
atively λ-homogeneous wrt Γ . Due to the choice of f and Γ ,
the tuple 〈f1(X1), . . . , fs(Xs)〉 is a type 〈ωn1 , . . . , ωns〉 tuple of
subsets of A which is relatively λ-homogeneous wrt ∆. It only
remains to show that each fk(Xk) is regular. However, since
fk(Xk) = hk(gk(Xk)), we can use the same arguments as above
in reverse order.

5.3 Polarization, Canonicalization and
Simplification

The goal of this section is to show that the automatic Ramsey
degrees of all ordinals α < ωω are finite and to provide their
exact values. Similar to sections 4.3 to 4.5, we proceed by prov-
ing the positive polarization lemma 5.3.1, the canonicalization
lemma 5.3.4 and the positive simplification lemma 5.3.7. As al-
ready mentioned, the proof of the first of these three lemmas is
almost literally the same as in the non-automatic case whereas
the proofs of the other two lemmas are all new.

Concerning the polarization lemma, recall the definition of
the set

R(s, r) :=
{
r̃ ∈ Ns

∣∣ r̃1 + · · ·+ r̃s = r
}

5More precisely, the maps gk are 〈1, p〉-synchronous transductions and
such transductions are known to preserve automaticity in both directions,
cf. [Bár06, lemma 5 and theorem 2].

184



5.3 Polarization, Canonicalization and Simplification

and, for any map ` : R(s, r)→ N, of the number

|`| :=
∑

r̃∈R(s,r)
`(r̃) .

Lemma 5.3.1 (positive polarization lemma). Let r, κ ∈ N,
α < ωω be an ordinal, α = ωn1 + · · · + ωns its Cantor normal
form and ` : R(s, r)→ N a map. If

ω
n1

...
ωns

 SA−→

ω
n1

...
ωns


r̃1,...,r̃s

κ,`(r̃)

for all r̃ ∈ R(s, r), then

α
SA−→ [α]rκ,|`| .

Proof. We employ almost literally the same construction as in
the proof of the non-automatic positive polarization lemma 4.3.2
on page 135. The only difference is that we have to ensure that
the tuples of sets Xt constructed during the induction contain
only regular sets. This follows from corollary 3.1.8 on page 63 for
t = 0 and from the stronger premises for t > 0.

Our next step is to show the canonicalization lemma 5.3.4. To
this end, let s ∈ N and n = 〈n1, . . . , ns〉, r = 〈r1, . . . , rs〉 ∈ Ns. If
not further specified, s, n and r are always of this kind in the
remainder of this section. Recall definition 4.4.2 on page 143:
Two tuples x,y ∈ [W(n)]r are similar if the equivalence

xki(µ) < x`j(ν) ⇐⇒ yki(µ) < y`j(ν)

is satisfied for all indices k, i, µ and `, j, ν. The least element of
some similarity class was defined as the unique z therein whose
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entry set is of the form {1, . . . ,m}, where m is the size of the
entry set. Using eqs. (5.3) and (5.4) on page 175, it is quite
easy to show that the letters of ⊗z are mutually distinct.6 In
some sense, that may be regarded as the essence of being the
least element of a similarity class. This intuition is backed by the
following lemma, which particularly claims the diagram below to
commute, provided that the mutual distinctness of the letters in
⊗z is taken for granted:

x z

⊗x ⊗z

⊗

least element of
similarity class

remove duplicate
letters

⊗

Lemma 5.3.2. Let x ∈ [W(n)]r, m be the size of its entry set,
z the least element of its similarity class and a ∈ W(m) such that
x = a(z). If ⊗z = τ1τ2 . . . τm, then

⊗x = τ
Ma(1)
1 τ

Ma(2)
2 · · · τMa(m)

m .

Proof. Let ⊗x = σ1 · · ·σa(m) be the factorization of ⊗x into its
letters. We have to show σpki = τqki for all p, q with 1 6 q 6 m
and a(q − 1) < p 6 a(q) and all indices k, i. First, suppose
that τqki = µ ∈ [1, nk], i.e., zki(µ − 1) < q 6 zki(µ) by eq. (5.3)
on page 175. The first part of this inequality is equivalent to
zki(µ− 1) 6 q − 1. The monotonicity of a implies

xki(µ− 1) = a(zki(µ− 1)) 6 a(q − 1) < p

and
p 6 a(q) 6 a(zki(µ)) = xki(µ) .

6We refrain from proving this since it does not matter for the correctness
of the subsequent proofs but is only mentioned for reasons of intuition.
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Applying eq. (5.3) once more, we conclude σpki = µ. Reasoning
similarly but using eq. (5.4) instead of eq. (5.3), we obtain that
τqki = � implies σpki = �.

The following immediate consequence of the previous lemma is
needed in the next section only.

Corollary 5.3.3. Every similarity class in [W(n)]r is automatic.

Proof. Let C be an arbitrary similarity class, z its least element
and ⊗z = τ1 · · · τm. Then lemma 5.3.2 implies

⊗C = τ+
1 · · · τ

+
m .

Recall definition 4.4.4 on page 145: A partition ∆ of a subset
X ⊆ [W(n)]r is called canonical if any two x,y ∈ X which are
similar belong to the same ∆-class. In order to properly phrase
the automatic version of the canonicalization lemma, we need to
introduce some more notation. For x ∈ W(nk) and h ∈ N+, we
define hx ∈ W(nk) by

(hx)(µ) := h · x(µ) .

In line with this, we put

hW(nk) :=
{
hx
∣∣ x ∈ W(nk)

}
⊆ W(nk) .

Notice that this set has order type ωnk and is regular. Finally,
we lift this notation to tuples of sets by defining

hW(n) := 〈hW(n1), . . . , hW(ns)〉 .

Lemma 5.3.4 (canonicalization lemma). Let ∆ be an automatic
partition of [W(n)]r. There exists h ∈ N+ such that the restriction
of ∆ to [hW(n)]r is canonical.
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Proof. Let η be a morphism into a finite semigroup S simultane-
ously recognizing all ∆-classes. We show that the exponent h of
S has the desired property.

Consider x,y ∈ [hW(n)]r which are similar. Let m be the
size of their entry sets, z be the least element of their similarity
class and a, b ∈ W(m) such that x = a(z) and y = a(z). Recall
that ⊗z has length m, say ⊗z = τ1 · · · τm. Due to the choice of
x and y, all the Ma(p) and Mb(p) are divisible by h and hence
tMa(p) = tMb(p) for all t ∈ S. Along with lemma 5.3.2, we obtain

η(⊗x) = η
(
τ
Ma(1)
1 · · · τMa(m)

m

)
= η

(
τ
Mb(1)
1 · · · τMb(m)

m

)
= η(⊗y) .

Since η recognizes all ∆-classes, x and y hence belong to the
same ∆-class.

Composing the canonicalization lemma and the standardization
lemma 5.2.7 yields the following polarized partition relation, where
κ is arbitrary and S(n; r) the number of similarity classes in
[W(n)]r: ω

n1

...
ωnk

 SA−→

ω
n1

...
ωnk


r1,...,rs

κ,S(n;r)

Along with the positive polarization lemma 5.3.1, we obtain an
upper bound on the automatic r-ary Ramsey degree of each
ordinal α < ωω, which is again not optimal. In our investigation
of the set-theoretic Ramsey degree, we improved this bound by
introducing the notion of p-simplicity and demonstrating that non-
p-simplicity can be avoided in some sense. Recall that there were
three reasons for non-p-simplicity, which are depicted in fig. 4.3
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on page 148. Unfortunately, the reason depicted in fig. 4.3(c)
cannot be avoided in the context of tuples of regular subsets of
W(n) any more, as the following minimal example demonstrates.

Example 5.3.5. Let X ⊆ W(2) be a regular type ω2 subset,
η : {1, 2}∗ → S a morphism recognizing X and m the exponent
of S. Due to lemma 4.6.3 on page 151, there is x ∈ X with
Mx(1) > m and Mx(2) > 2m. Let y ∈ W(2) be defined by
y(1) := x(1) +m and y(2) := x(2). Notice that x < y and 〈x, y〉
is not p-simple since x(2) = y(2) but x(1) 6= y(1). However,
simple pumping arguments show y ∈ X and hence 〈x, y〉 ∈ [X]2.
Altogether, [X]2 contains a non-p-simple element.

In view of this example, we resort to the similar but slightly weaker
notion of b-simplicity, which still forbids the patterns depicted in
figs. 4.3(a) and 4.3(b) but no longer the one in fig. 4.3(c).

Definition 5.3.6. A tuple x ∈ [W(n)]r is called b-simple if, for
all indices k, i, µ and `, j, ν, the premise xki(µ) = x`j(ν) implies
k = ` and µ = ν. The number of similarity classes containing a
b-simple element is denoted by B(n; r).7

Obviously, b-simplicity is also a property of similarity classes and
p-simplicity implies b-simplicity. One can compute B(n; r) from
n and r by counting the number of box diagram shapes which
exclude the patterns in figs. 4.3(a) and 4.3(b). In particular, we
obtain B(n; r) > P (n; r) and this inequality is strict if and only
if the pattern in fig. 4.3(c) can be realized, i.e., if there is k ∈ [1, s]
with nk > 2 and rk > 2.

7The “b” stands for “balanced”: As before, the shape of the box diagram
for any x ∈ [W(n)]2 can be regarded as a string over the alphabet { , , }.
Then x is b-simple if and only if the -symbols appear only at positions where
the number of -symbols and -symbols to the left is balanced.
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In the subpartitions constructed in lemma 5.3.4, non-b-sim-
plicity can be avoided in some sense. To make this sense precise,
we consider for each k ∈ [1, s] the set

Uk,s(nk) :=
{
x ∈ W(nk)

∣∣∣∣∣ x(µ) ≡ sµ+ k (mod snk)
for each µ ∈ [1, nk]

}
,

which has order type ωnk and is regular because it is also given
by

Uk,s(nk) = 1k1s(1ns)∗2s(2ns)∗ · · · nsk(nnsk )∗ .

Finally, we define a type 〈ωn1 , . . . , ωns〉 tuple of subsets

U(n) := 〈U1,s(n1), . . . , Uk,s(nk), . . . , Us,s(ns)〉 ⊆ W(n) .

Lemma 5.3.7 (positive simplification lemma). For every h ∈ N+,
all tuples in [hU(n)]r are b-simple.

Proof. Observe that any x ∈ [W(n)]r is similar to hx. Thus,
it suffices to prove the claim for h = 1. To this end, consider
x ∈ [U(n)]r and indices k, i, µ and `, j, ν with xki(µ) = x`j(ν).
Since xki ∈ Uk,s(nk) and x`j ∈ U`,s(n`), we have

k ≡ xki(µ) = x`j(ν) ≡ ` (mod s) .

Since 1 6 k, ` 6 s, this implies k = `. We further conclude

sµ+ k ≡ xki(µ) = x`j(ν) ≡ sν + k (mod snk)

and hence µ ≡ ν (mod nk). Since 1 6 µ, ν 6 nk, this finally
implies µ = ν.

The combination of the standardization, canonicalization and sim-
plification lemmas provides us with a polarized partition relation,
whose optimality is established by theorem 5.4.4.
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Theorem 5.3.8. For all s, κ ∈ N and n, r ∈ Ns, the following
holds: ω

n1

...
ωns

 SA−→

ω
n1

...
ωns


r1,...,rs

κ,B(n;r)

Proof. According to lemma 5.2.7, we only need to take automatic
partitions ∆ of [W(n)]r into account. Applying lemma 5.3.4 to ∆
yields some h ∈ N+ such that the restriction of ∆ to [hW(n)]r is
canonical. Due to lemma 5.3.7, all tuples in [hU(n)]r are b-simple.
Consequently, hU(n) is a type 〈ωn1 , . . . , ωns〉 tuple of subsets of
W(n) which is relatively B(n; r)-homogeneous wrt ∆.

Similarly to theorem 4.5.4 on page 150, theorem 5.3.9 is an immedi-
ate consequence of applying the positive polarization lemma 5.3.1
to the polarized partition relations just shown. For an ordinal
α < ωω with Cantor normal form α = ωn1 + · · ·+ ωns , we put

λSA(α; r) :=
∑

r̃1,...,r̃s∈N
r̃1+···+r̃s=r

B(n1, . . . , ns; r̃1, . . . , r̃s) .

Theorem 5.3.9. For every ordinal α < ωω and all r, κ ∈ N, we
have

α
SA−→ [α]rκ,λSA(α;r) .

5.4 Exact Values of Automatic Ramsey
Degrees

In this section, we provide automatic partitions which prove
the partition relations from the previous section to be optimal.
In this way, we also establish exact values of automatic Ramsey
degrees. Similar to sections 4.3 and 4.6, we proceed by proving the
negative polarization lemma 5.4.1 and the negative simplification
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lemma 5.4.3. The former requires more uniform premises than
its non-automatic counterpart, but basically allows for the same
proof then. In contrast, the latter lemma requires a completely
new proof.

Lemma 5.4.1 (negative polarization lemma). Let r ∈ N, α < ωω

be an ordinal, α = ωn1 + · · · + ωns its Cantor normal form, A
a type 〈ωn1 , . . . , ωns〉 tuple of string-automatic well-orders and
` : R(s, r) → N a map. If there is, for each r̃ ∈ R(s, r), an
automatic partition ∆r̃ of [A]r̃ into `(r̃) classes such that every
type 〈ωn1 , . . . , ωns〉 tuple of regular subsets X ⊆ A is completely
inhomogeneous wrt ∆r̃, then

α
SAX−→ [α]r|`| .

Proof. We assume without loss of generality that the Ak are
mutually disjoint and employ the very same construction as in
the proof of lemma 4.3.5 on page 138 then.

Our next goal is to show the automatic negative simplification
lemma, which requires some preparation. Again, we fix s ∈ N
and n, r ∈ Ns. The next lemma serves the same purpose to the
proof of the automatic version of negative simplification lemma
as lemma 4.6.3 on page 151 did to the proof of the non-automatic
version.

Lemma 5.4.2. Let U ⊆ W(n) be a type 〈ωn1 , . . . , ωns〉 tuple of
regular subsets. There are p > 1 and q1 ∈ Nn1 , . . . , qs ∈ Nns such
that px+ qk ∈ Uk for each k ∈ [1, s] and x ∈ W(nk).

Proof. According to corollary 5.2.6, there are p > 1 and a tu-
ple of p-uniformly presentable embeddings f : W(n) → U . Fix
some k ∈ [1, s] and put n := nk. Let 〈u0, v1, u1, . . . , vn, un〉
be a p-uniform presentation of fk. Since U ⊆ 1+ · · · n+, there
are 1 = µ0 6 µ1 6 · · · 6 µn 6 µn+1 = n such that vi = µpi
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for each i ∈ [1, n] and uj ∈ µ∗j · · ·µ∗j+1 for each j ∈ [0, n]. If
there was some i ∈ [1, n − 1] with µi = µi+1, we would obtain
v2
i uivi+1 = viuiv

2
i+1, contradicting the injectivity of fk. Thus, we

conclude µ1 < · · · < µn and hence µi = i for each i ∈ [1, n].
For all x ∈ W(nk) and µ ∈ [1, n], the number of µ-symbols in

the string representation of fk(x) is given by

|fk(x)|µ = p4x(µ) + |uµ−1uµ|µ .

Consequently, there is qk ∈ Nnk such that 4qk(µ) := |uµ−1uµ|µ
for each µ ∈ [1, n]. Clearly, this choice does not depend on x but
satisfies fk(x) = px+ qk and hence px+ qk ∈ U .

The result below is the announced automatic version of the nega-
tive simplification lemma.

Lemma 5.4.3 (negative simplification lemma). For all type
〈ωn1 , . . . , ωns〉 tuples of regular subsets U ⊆ W(n), the set [U ]r
intersects every b-simple similarity class.

Proof. Let p and q1, . . . , qk be as in lemma 5.4.2. Consider some
b-simple x ∈ [W(n)]r and define y ∈ [U ]r by yki := pxki + qk for
all indices k, i. We conclude the proof by demonstrating that x
and y are similar, i.e., that the equivalence

xki(µ) < x`j(ν) ⇐⇒ pxki(µ) + qk(µ) < px`j(ν) + q`(ν)

holds for all indices k, i, µ and `, j, ν.
First, suppose that we have xki(ν) < x`j(ν) or, equivalently,

xki(ν) + 1 6 x`j(ν). This implies

pxki(µ) + qk(µ) < pxki(µ) + p 6 px`j(ν) 6 px`j(ν) + q`(ν) .

The case xki(µ) > x`j(ν) is symmetric. Finally, assume that
xki(µ) = x`j(ν). Since x is b-simple, we obtain k = ` and µ = ν.
Thus, pxki(µ) + qk(µ) = px`j(ν) + q`(ν).
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Just like theorem 4.6.5 on page 153, its automatic counterpart
below is an immediate consequence of the negative simplification
lemma.

Theorem 5.4.4. For all s ∈ N and n, r ∈ Ns, there is an
automatic partition ∆ of [W(n)]r into B(n; r) classes such that
every type 〈ωn1 , . . . , ωns〉 tuple of regular subsets U ⊆ W(n) is
completely inhomogeneous wrt ∆. In particular, the following
partition relation holds:ω

n1

...
ωns

 SAX−→

ω
n1

...
ωns


r1,...,rs

B(n;r)

Proof. Let ∆ be an arbitrary canonical partition of [W(n)]r into
B(n; r) classes such that no two b-simple similarity classes fall
into the same ∆-class. Due to corollary 5.3.3, ∆ is automatic.
Applying lemma 5.4.3 yields that ∆ also satisfies the requirement
concerning inhomogeneity.

Applying the negative polarization lemma 5.4.1 to the polarized
partition relations from the previous theorem, we obtain that the
automatic partition relation in theorem 5.3.9 is optimal.

Theorem 5.4.5. For all r ∈ N and ordinals α < ωω, we have

α
SAX−→ [α]rλSA(α;r) .

Altogether, lemma 5.1.5 and theorems 5.3.9 and 5.4.5 yield the
following positive result on the automatic Ramsey degree.

Theorem 5.4.6. Let r ∈ N and α < ωω be an ordinal. The
automatic r-ary Ramsey degree of α is finite and its exact value
is given by

λSA(α; r) =
∑

r̃1,...,r̃s∈N
r̃1+···+r̃s=r

B(n1, . . . , ns; r̃1, . . . , r̃s) ,
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provided that α = ωn1 + · · · + ωns is the Cantor normal form
of α.

Since the numbers B(n1, . . . , ns; r̃1, . . . , r̃s) can be obtained by
counting box diagram shapes belonging to b-simple similarity
classes, the value of λSA(α; r) is easily computable from the
Cantor normal form of α. Due to the circumstance, that all
constructions taken out in this chapter so far are actually effec-
tive, one cannot only compute these values but also a relatively
λSA(α; r)-homogeneous type α subset of A.

Corollary 5.4.7. Given r ∈ N and presentations of a string-auto-
matic well-order A and an automatic partition ∆ of [A]r, one can
compute a string-automaton recognizing a relatively λSA(α; r)-ho-
mogeneous type α subset X ⊆ A, where α is the order type
of A.

In view of this result, two questions arise immediately: Suppose
we are given r ∈ N, presentations of a string-automatic type α
well-order A and an automatic partition ∆ of [A]r as well as some
∆-classes D1, . . . , Dλ.
(1) Is it decidable whether there exists a (regular) type α subset

X ⊆ A such that

[X]r ⊆ D1 ∪ · · · ∪Dλ ?

(2) Provided that a regular subset X with these properties does
exist, is there a more ingenious way to compute a string-au-
tomaton recognizing some such set X other than enumerating
all string-automata and taking the first one to match?

Although these questions are definitely worth being answered,
we do not address them here but rather keep focused on the
automatic Ramsey degree.
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5.5 Infinite Automatic Ramsey Degrees

We complete our investigation of the automatic Ramsey degree by
proving that, for r > 2, the r-ary Ramsey degree of any ordinal
α with ωω 6 α < ωωω is infinite. To this end, we establish the
partition relation

α
TAX−→ [α]rκ (5.5)

for all κ ∈ N. The first two lemmas imply that we can focus on
the case r = 2 and α = ωγ with ω 6 γ < ωω. They are tree-
automatic analogues of lemma 4.3.4 on page 137 and lemma 4.7.1
on page 156 and can be proved by the very same constructions
as these.

Lemma 5.5.1. Let r, κ ∈ N and α < ωωω be an ordinal. If the
Cantor normal form of α contains a summand ωγ with

ωγ
TAX−→ [ωγ ]rκ ,

then
α

TAX−→ [α]rκ .

Lemma 5.5.2. Let r, κ, λ ∈ N and α, β < ωωω be infinite ordinals.
If r > 2 and

α
TA−→ [β]rκ,λ ,

then
α

TA−→ [β]2κ,λ .

Recall how a tree-automatic type ωγ well-order was constructed
from a string-automatic type γ well-order A with A ⊆ (1∗0)∗ in
example 3.3.20 on page 98: The set

N(A) :=
{
f : A→ N

∣∣∣ f(u) = 0 for all but finitely many u ∈ A
}
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was linearly ordered using P, which was defined by f C g if the
greatest u ∈ A with f(u) 6= g(u) satisfies f(u) < g(u). Afterwards,
any f ∈ N(A) was encoded by the least (wrt inclusion) tf ∈ T{a}
with u1f(u) ∈ dom(tf ) for all u ∈ A with f(u) 6= 0. The next
lemma can be interpreted as follows: Any type ωγ subset of N(A)

allows for pumping simultaneously in arbitrarily many of the
1f(u)-parts.

Lemma 5.5.3. Let γ be an ordinal with ω 6 γ < ωω, A a type
γ well-order, X ⊆ N(A) a type ωγ subset and n, κ ∈ N. If γ
is infinite, there is f ∈ X such that f(u) > n for more than κ
distinct u ∈ A.

Proof. Aiming for a contradiction, suppose there is no such f ,
i.e., X is a subset of

T (A, κ) :=
{
f ∈ N(A)

∣∣∣ ∃6κu ∈ A : f(u) > n
}
.

Let t(γ, κ) denote the order type of T (A, κ). We derive a contra-
diction by showing that ωd 6 γ < ωd+1 implies

t(γ, κ) < ωω
d
6 ωγ

for all d > 1. For any subset B ⊆ A, there is a natural way to
regard T (B, κ) as a subset of T (A, κ). Thus, t(β, κ) 6 t(γ, κ)
whenever β 6 γ. Accordingly, it suffices to show, for all d, ` > 1,

t(ωd `, κ) < ωω
d
. (5.6)

For this purpose, we proceed by induction on d and `.

Base case: d = 1 and ` = 1. For each m < ω, let Bm ⊆ A be
the initial segment of size m. Notice that⋃

m<ω

T (Bm, κ) = T (A, κ)
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and hence
t(ω, κ) = sup

m<ω
t(m,κ) . (5.7)

If we had t(m,κ) > ωκ+1 for somem < ω, lemma 4.6.3 on page 151
would imply that there is f ∈ T (Bm, κ) with f(u) > n for at
least κ+ 1 distinct u ∈ Bm, contradicting the choice of T (Bm, κ).
Consequently, t(m,κ) < ωκ+1 for each m and hence

t(ω, κ) 6 ωκ+1 < ωω .

Inductive step, case 1: d > 1 and ` = 1. For each m < ω, let
Bm ⊆ A be the initial type ωd−1m interval. Using the same
argument as above and the induction hypothesis, we obtain

t(ωd) = sup
m<ω

t(ωd−1m,κ) 6 ωωd−1
< ωω

d
.

Inductive step, case 2: d > 1 and ` > 1. Let A = A1 + · · ·+A`
be the decomposition of A into its type ωd intervals. We consider
the finite set

K(`, κ) :=
{
κ̃ ∈ N`

∣∣ κ̃1 + · · ·+ κ̃` = κ
}
.

For each κ̃ ∈ K(`, κ), let

T (A, κ̃) :=
{
f ∈ N(A)

∣∣∣ ∀i ∈ [1, `] ∃6κiu ∈ Ai : f(u) > n
}
.

These sets have two useful properties: (1) Each T (A, κ̃) is isomor-
phic to the product well-order T (A1, κ̃1) · · ·T (An, κ̃`). (2) The
union of all the T (A, κ̃) is just T (A, κ). Theorem 3.2.2 on page 65
hence implies

t(ωd `, κ) 6
⊕

κ̃∈K(`,κ)
t(ωd, κ̃1) · · · t(ωd, κ̃`) . (5.8)
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If d = 1, we obtain

t(ω `, κ) 6
⊕

κ̃∈K(`,κ)
t(ω, κ̃1) · · · t(ω, κ̃`)

6
⊕

κ̃∈K(`,κ)
ωκ̃1+1 · · ·ωκ̃`+1

(?)
< ωκ+`+1 < ωω ,

where (?) uses that K(`, k) is finite. If d > 1, we obtain

t(ωd `, κ) 6
⊕

κ̃∈K(`,κ)
t(ωd, κ̃1) · · · t(ωd, κ̃`)

6
⊕

κ̃∈K(`,κ)
ωω

d−1 `

< ωω
d
.

This establishes eq. (5.6) and completes the induction.

The last gap in establishing the partition relation in eq. (5.5) on
page 196 is closed by the following theorem.

Theorem 5.5.4. For all κ ∈ N and ordinals γ with ω 6 γ < ωω,
we have

ωγ
TAX−→ [ωγ ]2κ .

Proof. Let N(A) be the type ωγ well-order whose construction we
have just recalled before lemma 5.5.3. For the sake of convenience,
we identify each f ∈ N(A) with its encoding tf as a tree. In line
with this, we regard N(A) as a tree-automatic linear order itself.
We define an automatic partition ∆ = {D1, . . . , Dκ} of [N(A)]2 as
follows:

Dµ :=
{
〈f, g〉 ∈ [N(A)]2

∣∣∣ ∃=µu ∈ A : f(u) < g(u)
}
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for µ < κ and

Dκ :=
{
〈f, g〉 ∈ [N(A)]2

∣∣∣ ∃>κu ∈ A : f(u) < g(u)
}
.

It is easy to see that ∆ is indeed automatic.
Now, we consider a regular type ωγ subset X ⊆ N(A). Suppose

thatX is recognized by a tree-automaton with n states. According
to lemma 5.5.3 for each µ ∈ [1, κ], there are f ∈ X and a subset
U ⊆ A of size µ with f(u) > n for all u ∈ U . Applying a simple
pumping argument to each 1f(u)-part of tf with u ∈ U in the
automaton for X, we obtain g ∈ X with f(u) < g(u) for u ∈ U
and f(v) = g(v) for v 6∈ U . Notice that 〈f, g〉 ∈ Dµ. Consequently,
X is completely inhomogeneous wrt ∆.

We summarize the results of this section in terms of the auto-
matic Ramsey degree by composing lemmas 5.5.1 and 5.5.2 with
theorem 5.5.4.

Theorem 5.5.5. For every r > 2 and all ordinals α satisfying
ωω 6 α < ωωω , the automatic r-ary Ramsey degree of α is
infinite.

This result completes our investigation of the automatic Ram-
sey degree. In the remainder of this chapter, we reuse some of
the techniques developed in the previous sections in order to
contribute a tree-automatic version of Ramsey’s theorem.

5.6 Tree-Automatic Versions of Ramsey’s
Theorem

We conclude this chapter by investigating the effective content of
Ramsey’s theorem in the context of tree-automatic (hyper)graphs.
Recall that every regular language A of strings or of trees admits
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an automatic linear ordering by virtue of example 2.4.5 on page 36
and example 3.3.1 on page 77, respectively. Accordingly, we
assume the node sets of the (hyper)graphs under consideration to
be linearly ordered. Moreover, we regard [A]r as the set of possible
hyperedges of an r-ary hypergraph on A. This is a reasonable
assumption since a relation D ⊆ [A]r is automatic if and only if
its symmetric closure{
〈ui1 , . . . , uir〉

∣∣ 〈u1, . . . , ur〉 ∈ D, {i1, . . . , ir} = {1, . . . , r}
}

is automatic.
Before proving new results, let us recall the current state

of knowledge of string-automatic and tree-automatic versions of
Ramsey’s theorem. Concerning string-automaticity, the picture
is quite complete:

Theorem 5.6.1 (Rubin’s theorem [Rub08]). Given r ∈ N, a
presentation of a string-automatic linear order A and a string-
automaton recognizing a relation D ⊆ [A]r, one can decide whether
there is a (possibly non-regular) infinite subset X ⊆ A such that
[X]r ⊆ D. In case of a positive answer, one can compute a string-
automaton recognizing some regular set X with this property.

Along with Ramsey’s theorem 4.1.3 on page 126 this immediately
implies:

Corollary 5.6.2 ([Rub08]). Given r ∈ N and presentations of
a string-automatic infinite linear order A and an automatic par-
tition ∆ of [A]r, one can compute a string-automaton recogniz-
ing some regular infinite subset X ⊆ A which is homogeneous
wrt ∆.

In the context of tree-automatic structures, only the following
decidability result is known from the investigation of so-called
Ramsey quantifiers.
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Theorem 5.6.3 ([Kar11]). Given r ∈ N, a presentation of a
tree-automatic linear order A and a tree-automaton recognizing
a relation D ⊆ [A]r, one can decide whether there is a (possibly
non-regular) infinite subset X ⊆ A such that [X]r ⊆ D.

With theorem 5.6.1 in mind, one might wonder whether it is
possible to compute a tree-automaton recognizing some regular set
X with this property in case of a positive answer. Unfortunately,
this is not possible as the example below shows:8

Example 5.6.4. Let A := N2
+ be ordered lexicographically, i.e.,

x <A y if either x(1) < y(1) or both x(1) = y(1) and x(2) < y(2).
Moreover, let

D :=
{
〈x, y〉 ∈ [A]2

∣∣∣ x(1) < y(1) and x(2) < y(2)
}
.

Encoding x ∈ A by the unique tx ∈ T{a} with

dom(tx) = 06x(1) ∪ 16x(2)

turns A into a tree-automatic linear order. Obviously, D is also
automatic under this encoding. On the one hand, there is an
infinite set X ⊆ A such that [X]2 ⊆ D, e.g.,

X =
{
x ∈ A

∣∣ x(1) = x(2)
}
.

On the other hand, there is no set X with this property whose
encoding is regular.

To see this, we aim for a contradiction and assume there is
some such set X. Suppose the encoding of X is recognized by
a tree-automaton T with n states. For distinct x, y ∈ X, the
choice of D implies x(1) 6= y(1) and x(2) 6= y(2). Since X is

8This example was kindly provided by Alexander Kartzow, the author
of [Kar11] himself.
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infinite, there hence is x ∈ X with x(1), x(2) > n. Applying a
simple pumping argument to tx in T , we obtain some y ∈ X with
y(1) > x(1) and y(2) < x(2). This implies x < y but 〈x, y〉 6∈ D,
contradicting [X]2 ⊆ D.

Intuitively, the crucial property of the set D is that (the encoding
of) any infinite subset X ⊆ A with [X]2 ⊆ D has to grow simul-
taneously along two infinite branches. Obviously, such behavior
cannot be guaranteed by tree-automata. In contrast, every regular
infinite language of trees contains a regular infinite subset growing
along one branch only. Using this connection, we now show a tree-
automatic version of corollary 5.6.2. In addition, we demonstrate
a weaker version of theorem 5.6.1 afterwards. Basically, both
proofs apply the idea from the proof of lemma 5.2.3 to languages
of trees growing along one branch only. In order to make this pre-
cise, we need to lift the required concepts of algebraic automata
theory from languages of strings to such restricted languages of
trees first.

Let Σ be an alphabet and • 6∈ Σ a new symbol. A Σ-context
is a tree α ∈ TΣ∪{•} satisfying two conditions: (1) there is at
most one u ∈ dom(α) with α(u) = • and (2) this u is a leaf of α
whenever it exists. We refer to this u as the hole position of α
and call α a proper context if it does exist.9 Otherwise, α is just
an ordinary Σ-tree. The set of all Σ-contexts is denoted by CΣ .
Notice that TΣ ⊆ CΣ . We turn the set CΣ into a semigroup by
defining

αβ :=
{
α[u/β] if α has a hole at position u,
α if α is an ordinary tree.

As a matter of fact, CΣ contains a neutral element, namely
the unique proper context α ∈ CΣ with α(ε) = •. Using the

9As we are not dealing with ordinals in this section, we denote contexts
by α, β, . . . .
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semigroup CΣ , the idea of pumping in regular languages of trees
can be expressed as follows: Let A ⊆ TΣ be a regular language
recognized by a tree-automaton with n states. For every t ∈ A of
height h(t) > n, there are proper contexts α, β ∈ CΣ and a tree
s ∈ TΣ with t = αβs, β(ε) 6= • and αβks ∈ A for all k ∈ N.

The next step of our algebraization exhibits a relationship
between tree-automata over Σ and morphisms from CΣ into some
semigroup. To this end, let T = (Q, ι, δ, F ) be a tree-automa-
ton. The transformation semigroup of T is the set QQ of maps
f : Q→ Q together with function composition (f ◦g)(q) = f(g(q)).
We define a map µT : CΣ → QQ by

(µT (α))(q) :=
{
δu/q(ι, α) if α has a hole at position u,
δ(ι, α) if α is an ordinary tree.

Obviously, µT (t) is a constant map for all t ∈ TΣ . In terms of µT ,
the language recognized by T is given as

L(T ) =
{
t ∈ TΣ

∣∣ µT (t) ∈ FQ
}
.

It is a matter of routine to verify that µT is a morphism of
semigroups.10

In the following, we need the unsurprising fact that the map
µT can be computed by a tree-automaton over Σ ∪ {•}. Clearly,
the set CΣ is easily recognizable by a tree-automaton. For each
f ∈ QQ, we consider the tree-automaton Tf = (QQ, ι′, δ′, {f})
whose initial state ι′ constantly maps to ι and whose transition

10In view of these results, one might think about defining the notion of
a language of Σ-trees being recognized by a morphism µ : CΣ → S into a
finite semigroup. In fact, one can show that a language is recognizable in
that sense if and only if it is regular. However, this is of no great use here
since the semigroup CΣ is not finitely generated.
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map δ′ is given by

(δ′(g, a, h))(q) :=
{
δ(g(q), a, h(g)) if a ∈ Σ,
q if a = •.

It is another matter of routine to check that δ′(ι′, α) = µT (α) for
all α ∈ CΣ . Consequently, the direct product of Tf with the tree-
automaton recognizing CΣ accepts a tree α ∈ TΣ∪{•} if and only
if it is a context with µT (α) = f .

Finally, we need to introduce some technical notation for the
convolution of contexts. Let r ∈ N, i ∈ [1, r] and α, β ∈ CΣ
be two contexts satisfying the following conditions: (1) β is a
proper context with hole position u and (2) α is either a proper
context with hole position u as well or an ordinary tree with
u 6∈ dom(α). Let α ⊗ β denote the convolution of α and β as
elements of TΣ∪{•}. We define a Σr

�-context α ⊗ri β with hole
position u by dom(α⊗ri β) := dom(α⊗ β) and

(α⊗ri β)(v) :=


〈�, · · · , �, a, b, . . . , b〉 if v 6= u and

(α⊗ β)(v) = 〈a, b〉,
• if v = u,

where the a sits in the ith component, i.e., the number of �-symbols
and b-symbols are i− 1 and r− i, respectively. Intuitively, α⊗ri β
is obtained by convolving i− 1 copies of the “empty tree”, one
copy of α and r− i copies of β while keeping the hole position the
same as in β. Using this notation, we now provide a definition
which is fundamental for the remainder of this section.

Definition 5.6.5. Let r ∈ N, A ⊆ TΣ and T be a tree-automaton
over Σr

� . A homogenerator for T is a triple 〈α, β, s〉 consisting of
two proper contexts α, β ∈ CΣ and a tree s ∈ TΣ satisfying the
following conditions:
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(1) The hole position of β is not contained in dom(s).
(2) µT (β ⊗ri β) is idempotent for all i ∈ [1, r].

The term “homogenerator” is an amalgamation of “homogeneous”
and “generator”. In fact, the proof of lemma 5.6.7 shows that T ei-
ther accepts all elements of [α(ββ)+s]r or none of them. In other
words, the set α(ββ)+s generated by 〈α, β, s〉 is homogeneous
wrt the relation recognized by T . The proofs of theorems 5.6.8
and 5.6.10 both use a characterization of the existence of ho-
mogeneous regular infinite subsets in terms of the existence of
homogenerators. This characterization is prepared by the next
lemma.

Lemma 5.6.6. Let A ⊆ TΣ be a regular infinite language and
T1, . . . , Tκ tree-automata over Σr

�. There effectively exists a triple
〈α, β, s〉 with αβ∗s ⊆ A which is a homogenerator for all the Tξ
simultaneously.

Proof. Since A is infinite, a simple pumping argument provides us
with proper contexts α, β ∈ CΣ and a tree s ∈ TΣ such that β is
non-trivial and αβks ∈ A for all k > 0. Let m > 1 be a common
multiple of the exponents of the transformation semigroups of
all Tξ. Since the hole position u of β is not ε, we may additionally
assume m · |u| > h(s). We show that the triple 〈α, βm, s〉 is a
homogenerator for each Tξ.

The hole position of βm is um and hence condition (1) of
definition 5.6.5 is obviously satisfied. Concerning condition (2),
observe that, for each i ∈ [1, r],

µTξ(β
m ⊗ri βm) = µTξ((β ⊗

r
i β)m) = (µTξ(β ⊗

r
i β))m .

Due to the choice of m, this element of the transformation semi-
group of Tξ is idempotent. Clearly, all the constructions taken
out in this proof are effective.
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The aforementioned characterization of the existence of homoge-
neous regular infinite subsets is as follows:

Lemma 5.6.7. Let A ⊆ TΣ be a regular infinite language and T
a tree-automaton recognizing the symmetric closure of a relation
D ⊆ [A]r. The following conditions are effectively equivalent:

(1) There is a regular infinite subset X ⊆ A such that [X]r ⊆ D.

(2) There is a homogenerator 〈α, β, s〉 for T such that T accepts
the tuple

〈αβ2s, αβ4s, . . . , αβ2rs〉 .

Proof. First, suppose that condition (1) is satisfied. According
to lemma 5.6.6, there is a homogenerator 〈α, β, s〉 for T with
αβ∗s ⊆ X. Since T recognizes the symmetric closure of D, it
particularly accepts the tuple 〈αβ2s, αβ4s, . . . , αβ2rs〉 which is
contained therein.

Now, suppose that condition (2) is satisfied. Clearly, the set
X := α(ββ)+s is regular and infinite. Notice that [X]r ⊆ D
would particularly imply X ⊆ A. In order to prove [X]r ⊆ D, it
suffices to show that T accepts, for each x ∈ W(r), the tuple

〈αβ2x(1)s, αβ2x(2)s, . . . , αβ2x(r)s〉 .

According to condition (1) of definition 5.6.5, the hole position of
β is not contained in dom(s). Thus,

⊗〈αβ2x(1)s, . . . , αβ2x(r)s〉

= (α⊗r1 α) · (β ⊗r1 β) ·
∏

16i6r

(
(β ⊗ri β)2Mx(i)−1 · (s⊗ri β)

)
.
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Due to condition (2) of definition 5.6.5, we may conclude

µT (⊗〈αβ2x(1)s, . . . , αβ2x(r)s〉)

= µT

(
(α⊗r1 α) · (β ⊗r1 β) ·

∏
16i6r

(
(β ⊗ri β)2Mx(i)−1 · (s⊗ri β)

))
(?)= µT

(
(α⊗r1 α) · (β ⊗r1 β) ·

∏
16i6r

(
(β ⊗ri β) · (s⊗ri β)

))
= µT (⊗〈αβ2s, . . . , αβ2rs〉) ,

where (?) actually uses that the µT (β⊗ri β) are idempotent. Since
the automaton T accepts 〈αβ2s, . . . , αβ2rs〉, it hence also accepts
〈αβ2x(1)s, . . . , αβ2x(r)s〉.

Putting together lemmas 5.6.6 and 5.6.7 yields the following tree-
automatic version of Ramsey’s theorem:

Theorem 5.6.8. Given r ∈ N and presentations of a tree-auto-
matic infinite linear order A and an automatic partition ∆ of [A]r,
one can compute a tree-automaton recognizing some regular infi-
nite subset X ⊆ A which is homogeneous wrt ∆.

Proof. For each ∆-class D, let TD be a tree-automaton recogniz-
ing the symmetric closure of D. According to lemma 5.6.6, there
is a triple 〈α, β, s〉 which is a homogenerator for all the TD simul-
taneously. Since ∆ forms a partition of [A]r, there is a ∆-class
D0 such that TD0 accepts the tuple 〈αβ2s, αβ4s, . . . , αβ2rs〉. Ac-
cording to lemma 5.6.7, this implies that there is a regular infinite
subset X ⊆ A such that [X]r ⊆ D0. Since all involved construc-
tions are effective and it is decidable whether TD accepts a given
tuple, the claim follows.

As already indicated, a quite intricate situation can arise: On the
one hand, the algorithm from theorem 5.6.8 yields a tree-automa-
ton recognizing an infinite subset X ⊆ A such that [X]r is entirely
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contained in some ∆-class D1. On the other hand, the decision
procedure from theorem 5.6.3 tells us that there is a (possibly non-
regular) infinite subset Y ⊆ A such that [Y ]r is entirely contained
in a certain other ∆-class D2. Due to example 5.6.4, there might
be no regular set Y with this property in general. Two questions
arise immediately: Can we find out whether we really are in the
general case or rather in a situation where a regular Y does exist?
And if we actually find ourselves in this latter situation, can we
compute a tree-automaton recognizing some such set Y then?
Fortunately, the answer to both question is affirmative. In order
to prove this, we show that the characterization in lemma 5.6.7
can be made effective by means of tree-automata:

Lemma 5.6.9. For every tree-automaton T over Σr
�, the relation

ST :=
{
〈α, β, s〉

∣∣∣∣∣ 〈α, β, s〉 is a homogenerator for T
and T accepts 〈αβ2s, . . . , αβ2rs〉

}

is effectively automatic.

Proof. It is easy to see that there is a tree-automaton over
(Σ ∪ {�, •})3 recognizing the set of triples 〈α, β, s〉 consisting
of two proper contexts α, β ∈ CΣ and a tree s ∈ TΣ satisfying
condition (1) of definition 5.6.5. Hence, it suffices to provide a tree-
automaton T ′ accepting such triple 〈α, β, s〉 precisely if it satisfies
condition (2) of definition 5.6.5 and T accepts 〈αβ2s, . . . , αβ2rs〉.
Put another way, T ′ needs to verify that µT (β⊗ri β) is idempotent
for each i ∈ [1, r] and that µT (⊗〈αβ2s, . . . , αβ2rs〉) constantly
maps to a final state of T . Just like in the proof of lemma 5.6.7,
we have

µT (⊗〈αβ2s, . . . , αβ2rs〉)

= µT (α⊗r1 α) · µT (β ⊗r1 β) ·
∏

16i6r

(
µT (β ⊗ri β) · µT (s⊗ri β)

)
.
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Thus, it suffices to demonstrate that T ′ can simultaneously com-
pute µT (α⊗r1α), µT (β⊗ri β) and µT (s⊗ri β) for i ∈ [1, r]. In fact,
the basic idea behind the construction of such an automaton T ′
is the same as for the automaton Tf on page 204. The missing
details are straightforward to add.

The two announced affirmative answers are given by the theorem
below, which is the tree-automatic version of theorem 5.6.1. In
fact, it is slightly weaker than its string-automatic counterpart
but the best one can expect in view of example 5.6.4.

Theorem 5.6.10. Given r ∈ N, a presentation of a tree-auto-
matic linear order A and a tree-automaton recognizing a relation
D ⊆ [A]r, one can decide whether there is a regular infinite subset
X ⊆ A such that [X]r ⊆ D. In case of a positive answer, one
can compute a tree-automaton of elementary size which recognizes
some set X with this property.

Proof. Let T be a tree-automaton recognizing the symmetric
closure of D and T ′ the tree-automaton recognizing ST , which
exists by lemma 5.6.9. According to lemma 5.6.7, there is a
regular infinite subset X ⊆ A with [X]r ⊆ D if and only if ST is
non-empty. Since all involved constructions are effective and non-
emptiness of ST is decidable from T ′, the claim on decidability
follows. If ST turns out to be non-empty, one can also compute
an element 〈α, β, s〉 ∈ ST from T ′ and hence a tree-automaton
recognizing X. It is a matter of routine to check that the size
of this tree-automaton is indeed elementary in the size of the
input.
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