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II Summary 

Systemic Inflammatory Response Syndromes (SIRS), including sepsis, describe a broad 

spectrum of immunological disorders with a very heterogeneous clinical manifestation. A 

SIRS caused by infectious triggers is defined as sepsis and with mortality rates exceeding 

30% and totally 56000 deaths per annum, septic syndromes are the third most common 

causes of death after cardiovascular diseases and cancer in Germany. Acute episodes of 

SIRS and sepsis are characterised by an excessive and de-regulated inflammatory host 

response leading to organ and tissue damage and most fatally to death. In addition, the 

uncontrolled release of pro- and anti-inflammatory immune mediators is the root of 

immune suppressive states in patients at acute and post-acute stages of the disease. 

Malfunction of T-cells, a major component of adaptive immunity, has been shown to 

contribute to acute disease-induced immunosuppression but very little is known about the 

functional state of T-cells at post-acute and late stages of SIRS and sepsis and its potential 

implication with late morbidity and mortality.  

The present thesis provides an in-depth analysis of T-cell immunity at post-acute of SIRS 

and sepsis. Four different murine disease models were employed to account for the large 

clinical heterogeneity of the syndromes allowing drawing eligible conclusions for the 

situation in human patients. The data presented here show that SIRS and sepsis lead to 

protracted systemic loss of T-cells but do not induce persistent cellular defects in adaptive 

T-cell function. T-cell activation and responses were intensively characterised by the 

examination of activation marker up-regulation, T-cell proliferation capacity and detailed 

T-cell receptor signalling studies. T-cell analyses were extended by the employment of 

secondary infection models allowing to investigate antigen-specific effector T-cell 

responses on multiple levels, including cytokine production and activation marker up-

regulation. Ex vivo and in vivo effector T-cell studies in background of secondary 

infections confirm that SIRS and sepsis do not induce protracted inherent alterations in T-

cell function.  

In sum, systemic inflammation and sepsis induce a profound persistent loss of naïve T-

cells thereby affecting T-cell immunity, but do not compromise T-cell function on a 

cellular level at post-acute stages of the disease. These findings shift the focus from T-cell 

immune-stimulatory therapies in sepsis to other aspects of adaptive T-cell immunity, e.g. 

antigen presentation or prevention of T-cell apoptosis. 
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III Zusammenfassung 

Systemische Inflammatorische Response Syndrome (SIRS), einschließlich Sepsis, 

beschreiben ein breites Spektrum an immunologischen Erkrankungen mit sehr 

heterogenem klinischen Erscheinungsbild. Ein SIRS mit nachgewiesenem infektiösen 

Ursprung wird als Sepsis definiert und stellt mit einer Sterblichkeit von über 30% und 

jährlich insgesamt 56000 Todesfällen die dritthäufigste Todesursache nach Herz-Kreislauf- 

und Krebserkrankungen in Deutschland dar. Die Pathophysiologie von SIRS und Sepsis ist 

gekennzeichnet durch unkontrollierte systemische Wirtsimmunreaktionen, die zu Gewebs- 

und Organschädigungen führen und die Ursache sowohl akuter als auch dauerhafter 

Störungen des Immunsystems darstellen. Insbesondere T-Zellen, als zentrale Komponente 

des adaptiven Immunsystems, weisen in der Akutphase der Krankheit eine Vielzahl von 

funktionellen Störungen auf, die zum immunsupprimierten Zustand der Patienten und 

damit zur sepsis-induzierten Mortalität beitragen. Sehr wenig ist aber darüber bekannt, ob 

T-Zellen zelluläre Defekte in post-akuten Krankheitsphasen aufweisen und ob diese 

potentiellen Störungen zur anhaltenden Immunsuppression beitragen, die mit erhöhter 

post-akuter Sterblichkeit assoziiert ist. 

Die vorliegende Arbeit stellt eine umfassende Tiermodell-Studie zur T-Zell-Immunität in 

der post-akut Phase von SIRS und Sepsis dar. Um der Heterogenität der Krankheitsbilder 

gerecht zu werden und die klinische Relevanz der Studie zu erhöhen, wurden vier 

unterschiedliche experimentelle Mausmodelle verwendet. Die Ergebnisse dieser Studie 

zeigen, dass SIRS und Sepsis zu anhaltend verringerten T-Zellzahlen führen, aber keine 

zellulären Defekte in der adaptiven T-Zell-Antwort induzieren. Die Funktion der T-Zellen 

wurde eingehend anhand der Expression von Aktivierungsmarkern, der T-Zell-

Proliferation und auf Ebene der T-Zell-Rezeptor-Signaltransduktion charakterisiert. Für 

weiterführende Analysen wurden sekundäre Infektionsmodelle verwendet, um antigen-

spezifischen Immunantworten auf der Ebene von Effektor T-Zellen zu untersuchen. 

Funktionelle ex vivo und in vivo Studien im Hintergrund von sekundären Infektionen 

bestätigen, dass SIRS und Sepsis keine anhaltenden zellulären Defekte in der T-Zell-

Funktion induzieren. 

Durch die Befunde der vorliegenden Arbeit verschiebt sich der Fokus klinischer Forschung 

von T-Zell-stimulatorischen Therapien auf andere Aspekte der adaptiven Immunantwort 

zur Behandlung von immunsupprimierten Sepsispatienten. 
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Introduction 

1 Introduction 

1.1 Systemic Inflammatory Response Syndrome and Sepsis 

1.1.1 Systemic Inflammatory Response Syndromes and Sepsis: 
definitions 

The Systemic Inflammatory Response Syndrome (SIRS) describes a multi-system 

inflammatory state characterised by the vigorous activation of the immune system and the 

profound release of cytokines and other immune modulators. The syndrome is associated 

with tissue damage and/or organ damage and can lead to death. It can be caused by non-

infectious triggers, such as trauma, burns, surgical complications or pancreatitis. By 

definition, SIRS induced by infections with bacteria, viruses, fungi and other micro 

organisms is termed sepsis. In order to standardise the terminology of these highly diverse 

syndromes, precise definitions were proposed by a consensus conference in 1992 and are 

now widely accepted in the community (Fig. 1) [1]. A systemic inflammatory response 

syndrome is present by manifestation of two or more of the following conditions: (i) body 

temperature greater than 38°C or less than 36°C; (ii) heart rate greater than 90 beats per 

minute; (iii) tachypnea (> 20 breaths per minute) or hyperventilation (PaCO2 of less than 

32 mm Hg); (iv) altered leukocyte counts in blood (< 4,000 or > 12,000 cells / mm3 blood) 

and (v) presence of more than 10% immature neutrophils in blood. A SIRS caused by the 

presence of a confirmed infection is defined as sepsis. Sepsis associated with organ/tissue 

failure and hypoperfusion abnormalities is defined as severe sepsis. Septic shock represents 

the most life-treating septic condition when a sepsis-induced hypotension occurs along 

with severe sepsis. However, these rather unspecific definitions do not entirely meet the 

complex clinical manifestation of the syndromes. Currently, physicians and clinical 

scientist discuss to extend the definition guidelines by including the occurrence of 

immunological and organ dysfunction parameters (e.g. C-reactive protein or plasma 

creatinine) that better indicate the presence of a systemic inflammation and/or sepsis 

associated with organ damage. 
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_________________________________________________________________________ 
Figure 1. Systemic Inflammatory Response Syndromes and Sepsis - definitions 
Systemic Inflammatory Syndromes (SIRS), including septic syndromes describe a broad spectrum of 
immunological disorders with a very heterogeneous nature and clinical manifestation. To standardise the 
terminology of the syndromes precise definitions were proposed by a consensus conference in 1992 that are 
widely expected now [1]. The mortality rates correlate with disease severity, ranging from 10% in sterile 
SIRS and 15% in non-severe sepsis up to 80% in septic shock. Abbreviations: Temp.: body temperature; HR: 
heart rate; RR: breaths per second; PaCO2: CO2 partial pressure in blood; WBC: white blood cell count. 

1.1.2 Epidemiology of systemic inflammation and sepsis 
Systemic Inflammatory Response Syndromes are the most common complications on 

intensive care units (ICUs) worldwide. According to an epidemiological cohort study, 

SIRS affects more than 50% of all ICU patients. More dramatically, more than 80% of 

surgical ICU patients develop a SIRS without a documented infection. The 28-day 

mortality rate of patients suffering from SIRS (excluding septic cases) is about 10% [2]. 

The same study shows that approximately 35% of all SIRS patients in ICUs develop sepsis 

and its subsets. 

For sepsis, a large cohort study from 2001 shows that septic syndromes are common and 

fatal conditions accounting for more than 200,000 deaths in the United States of America 

[3]. In total, approximately 750,000 cases of sepsis and 198,000 cases of severe sepsis per 

annum were reported. The incidence of sepsis is steadily escalating due to a rise of major 

surgery, ageing population and the wide-spread use of antibiotics and immune modulators 

[2]. Although there is a great variability in mortality, the overall sepsis-related mortality is 

estimated to be 30% [3]. It has been shown that mortality rates correlate with disease 

severity, ranging from 15% in non-severe sepsis up to 80% in septic shock (Fig.1) [2]. 
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Similar morbidity and mortality rates are observed in Germany [4]. Importantly, SIRS and 

sepsis do not affect human populations indiscriminately. Infants (aged  1 year) and 

elderly people show the highest incidences for sepsis, with over 50% of all septic patients 

being older than 65 years. Although the overall incidence does not differ in female and 

male populations, it has been shown that from 30 years onwards, woman exhibits rates of 

that observed in men 5 years younger. The same gender/age correlation is reported for 

mortality rates [3]. 

1.1.3 Pathophysiology of sepsis 
Sepsis-induced pathophysiology is a combination of a complex network of processes 

induced by both the excessive systemic host immune response as well as the invading 

infectious trigger. The acute inflammatory response (see 1.2) in systemic inflammation and 

sepsis is the trigger of a cascade of disease processes ultimately leading to tissue / organ 

damage and most fatally to death. 

Early disease-induced alterations affect the coagulation and complement machinery, the 

endothelial-vascular system, metabolic regulation as well as the autonomic nervous system 

[5, 6]. Subsequently, these malevolent alterations induce damages in virtually all tissues 

and organs of the organism. In cases of severe sepsis organ failure occurs most frequently 

in respiratory (45.8%), cardiovascular (24.4%), renal (22%), haematological (20.6%) and 

central nervous (9.3%) systems [3]. 

Furthermore, recovery and quality of life of septic patients is negatively influenced by 

persistent disease-induced myopathies [7], chronic pain [8], encephalopathy [9], 

posttraumatic stress disorder [10] and immunological disorders [11]. As a result, patients 

who survived an acute episode of sepsis have a significantly lowered health-related quality 

of life [12] associated with increased rates of death years after the initial insult [13]. 

1.2 The inflammatory response in systemic inflammation and 
sepsis 

1.2.1 The acute pro-inflammatory response 
An acute infection with bacteria, viruses and other microorganisms induces a rapid innate 

immune host response to fight and eliminate the invading pathogens. The inflammatory 

innate response involves cells, mediators and processes that are tightly regulated to prevent 
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host damage. With the help of pattern recognition receptors (PRRs), innate immune cells, 

such as monocytes / macrophages, dendritic cells and granulocytes recognise pathogens by 

the presence of pathogen signature molecules in fluids or on the invader’s surface. Toll-like 

receptors (TLRs) are the most prominent pattern recognition receptors for sensing these 

pathogen-associated molecular patterns (PAMPs) including nucleic acids, lipids, 

microbial proteins as well as cell wall components such as lipopolysaccharide (LPS) [14]. 

Additionally, necrotic death of cells induced by infection or the host response leads to the 

release of cellular components such as ATP, nucleic acids, heat shock proteins and others. 

These compounds are referred to as alarmines and further enhance the deregulated innate 

immune response in sepsis by additional triggering of PPRs. Endogenous alarmines and 

exogenous PAMPs are collectively defined as damage-associated molecular patterns

(DAMPs) and are crucial triggers of the malevolent septic host response [15]. 

In acute episodes of systemic inflammation and sepsis very high levels of DAMPs, either 

from invading microorganisms or damaged host tissues promote an excessive 

inflammatory response characterised by the activation of the complement system and 

hyper-activation of cellular innate responses [6]. Moreover, vigorous activation of pattern 

recognition receptors in early sepsis leads to the up-regulation of an array of proteins that 

mediate the host response to the septic trigger. During the acute phase response high levels 

of pro-inflammatory interleukin-(IL)-1β, tumor necrosis factor α (TNFα) and IL-6 are 

released by innate immune cells inducing a damaging pro-inflammatory response [16]. 

These cytokines are crucial activators of the coagulation cascade, inducible nitric oxide 

synthase (iNOS), vascular endothelium, C-reactive protein and the complement system. 

The initial pro-inflammatory cytokines induce the production and secretion of additional 

inflammatory mediators, such as the pro-inflammatory cytokines macrophage migration-

inhibitory factor (MIF), high-mobility group protein B1 (HMGB1) and IL-17A as well as 

the highly inflammatory anaphylatoxins C5a [6]. Consequently, the imbalanced cytokine 

release, often referred to as cytokine storm, converts the otherwise beneficial local 

inflammation to a damaging systemic inflammation. 

1.2.2 Immunosuppression in systemic inflammation and sepsis – the 
Compensatory Anti-inflammatory Response Syndrome (CARS) 

In addition to the strong pro-inflammatory response in SIRS and sepsis, clinicians on ICUs 

had noted immunosuppressive states in patients suffering from systemic inflammation 
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caused by trauma or burns since the 1970s [17, 18]. The impaired immune response in this 

patient cohort has been early linked with hyporesponsive states of immune cells but 

detailed mechanisms and processes were unknown at that time. Moreover, many clinical 

trials of therapies designed to inhibit the pro-inflammatory cascade in SIRS and sepsis had 

no beneficial effects in human patients [19]. The tested anti-inflammatory approaches 

included glucocorticoids, agents active against endotoxins, anti-TNFα antibodies as well 

as inhibitors of nitric oxide synthase and prostaglandin synthesis. Taken together, these 

findings clearly indicated that hyper-inflammation is not the sole pathogenic mechanism in 

acute systemic inflammation and sepsis. 

Research over the past decades revealed that many septic patients exhibit two, oftentimes 

concomitant, inflammatory states in acute stages of the disease: SIRS and a Compensatory 

Anti-inflammatory Response Syndrome (CARS) [20]. Importantly, CARS and SIRS 

represent to separate states involving distinct mediators, mechanisms and cellular 

components. It is important to note that CARS does not necessarily represent a regulated 

mechanism to compensate the excessive pro-inflammatory host response, although the 

term CARS suggests this interpretation. In fact, CARS, introduced in 1996 by R. Bone, 

includes all mechanisms and processes that result in impaired host immune responses, such 

as leukocyte apoptosis, release of anti-inflammatory cytokines, decreased monocytes / 

macrophage responses or impaired antigen presentation [21]. Along with hyper-

inflammation, anti-inflammatory processes in sepsis contribute to sepsis-induced morbidity 

and mortality in acute stages of the disease. Furthermore, many patients who survived an 

acute episode of systemic inflammation or sepsis enter a protracted state of immune 

hyporesponsiveness characterised by impaired pathogen clearance, increased susceptibility 

to secondary (often noscomial) infections and viral reactivation [22-24]. The markedly 

increased long-term mortality after sepsis is noticeably associated with infection-caused 

deaths even years after the initial septic insult [13]. 

1.2.3 Mechanisms of SIRS- and sepsis-acquired immune deficiency 
In recent years, cellular and molecular mechanisms of the anti-inflammatory response 

syndrome have been elucidated and it became clear that CARS involves an equally 

complex network of cells and processes as the systemic (pro-) inflammatory response. The 

early loss of immune cells via apoptosis is one of the key mechanisms of CARS and affects 

immunity in acute and post-acute stages of sepsis. In particular, the loss of lymphocytes 
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including T-cells, B-cells and natural killer cells (NK cells) in various organs contributes to 

immunosuppression in sepsis [25]. Altered apoptotic cell death was also reported in cells 

of the innate immune system such as neutrophils and monocytes / macrophages, although 

with contradictory data. Depending on patient cohorts or animal models employed, 

decreased or increased susceptibility to sepsis-induced apoptosis was described for 

phagocyte cell populations [26]. Importantly, dendritic cells, as professional antigen-

presenting cells and linkers of innate with adaptive immune responses, are highly 

susceptible to apoptosis in sepsis [27].  

The profound early apoptotic death of cells induces phagocytosis of the apoptotic particles 

by macrophages to prevent the uncontrolled release of alarmines. It has been shown that 

the ingestion of apoptotic particles leads to altered cytokine expression patterns in 

macrophages resulting in anti-inflammatory / immunosuppressive responses. Phagocytosis 

of a large number of apoptotic bodies in SIRS / sepsis leads to diminished production of 

granulocyte macrophage colony-stimulating factor (GM-CSF), IL-1, IL-8, IL-10 and 

TNFα, while enhancing the production of TGF-β (transforming growth factor-β), 

prostaglandin E2 and platelet activating factor [28]. 

The abundant systemic or focal release of cytokines associated with anti-inflammatory 

functions has been described in human patients as well as rodent animal models. Elevated 

serum levels of IL-10, IL-1 receptor antagonists and soluble TNFα receptor were detected 

in patients with severe sepsis [29]. Interestingly, the same patients also showed increased 

levels of TNFα, IL-1β and IL-6 which are linked to the pro-inflammatory state in systemic 

inflammation and sepsis. Importantly, elevated serum levels of TGF-β were also detected 

in human patients with sepsis contributing to CARS [30]. TGF-β is known to suppress 

antigen-dependent activation and effector function of lymphocytes and to drive generation 

of suppressive regulatory T-cells from activated T-cells. 

Furthermore, impaired cellular functions of neutrophils and monocytes / macrophages have 

been described for SIRS / sepsis patients as well as in animal studies. Neutrophils, as major 

cellular components of the innate immune response, exhibit defects in bacteria clearance, 

reactive-oxygen-species (ROS) production and recruitment to inflammation sites 

associated with the profound loss of chemotactic activity. In line with these observations, 

macrophage responses to bacterial compounds and secretion of pro-inflammatory 

cytokines are compromised in sepsis [31]. Taken together, episodes of systemic 

inflammation and sepsis are characterised by the disturbance of immune homeostasis 
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triggering both pro- and anti-inflammatory processes early after onset of the diseases. The 

excessive and de-regulated inflammatory cascades are the root of disease-related acute and 

protracted immunosuppression (Fig. 2). 

_________________________________________________________________________ 
Figure 2. The cytokine storm in systemic inflammation and sepsis 
Schematic overview of the inflammatory response in systemic inflammation and sepsis. Acute episodes of 
systemic inflammation and sepsis lead to the disturbance of immune homeostasis through the de-regulated 
excessive release of cytokines inducing pro- and anti-inflammatory cascades associated with early mortality. 
Systemic pro-inflammatory responses (SIRS) lead to the activation of immune cells enhancing the initial 
inflammatory response and ultimately resulting in organ / tissue damage. Concomitant anti-inflammatory 
immune responses (CARS) lead to acute immunosuppression affecting acute immune responses and thus 
clearance of the infectious sepsis trigger. Post-acute stages of systemic inflammation and sepsis are 
characterised by protracted immunosuppression leading to viral reactivation and increasing the risk for 
secondary (often noscomial) infections associated with post-acute late mortality and reduced health-related 
quality of life. 

1.3 T-cells 

1.3.1 T-cells - cellular components of the adaptive immune system 
The present thesis focuses on the role and function of T-cells at post-acute stages of 

systemic inflammation and sepsis. T-cells (or T-lymphocytes) are crucial cellular 

components of the immune system involved in numerous immune responses against 
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virtually all pathogens, including viruses, bacteria, fungi and multi-cellular parasites. 

Together with B-cells, T-cells are the main cellular components of the lymphocyte 

compartment promoting antigen-dependent (adaptive) immune responses, though T-cells 

are additionally involved in early innate responses during infections. T-cells feature unique 

antigen-specific surface receptors that recognise foreign antigens presented in complexes 

with MHC molecules (major histocompatibility complex) on the surface of antigen-

presenting cells (APCs), such as macrophages, granulocytes and dendritic cells. 

Antigen-stimulated T-cells mediate both cellular and humoral effector responses. Cell-

mediated immunity includes direct killing of pathogens or infected cells by cytotoxic T-

cells and the activation of phagocytes by T-helper cells. As part of the humoral T-cell 

response, activated T-helper cells stimulate B-cells to produce antibodies against the 

invading pathogen. Malfunction of T-cells is associated with many disease like immune-

deficiency, auto-immune diseases and cancer. 

1.3.2 T-cell subsets 
The T-cell compartment consists of many subtypes with distinct phenotypes and effector 

functions. According to the surface expression of the co-receptors CD4 and CD8 T-cells 

are divided in two major subtypes: CD4+ T-helper cells and CD8+ cytotoxic T-cells. 

Cytotoxic CD8+ T-cells mediate cellular defence against intracellular pathogens, in 

particular viruses [32]. Infected cells present pathogen peptides on their surface in the 

context of MHC-I, thereby activating antigen-specific CD8+ T-cells. Activated cytotoxic 

CD8+ T-cells kill target cells by the release of cytotoxic agents such as perforin, 

granzymes, granulysin and others. Moreover, effector CD8+ T-cells secrete cytokines 

including TNFα and IFNγ to activate phagocytes that further enhance the immune 

response against infected cells and to remove apoptotic particles. 

CD4+ T-helper cells control cellular and humoral immune responses against almost all 

pathogens. Based on their cytokine profile activated effector CD4+ T-cells are divided into 

different subtypes [33]. Th1 (T-helper 1) cells enhance cell-mediated immune responses 

through activation of macrophages, neutrophils and dendritic cells by producing pro-

inflammatory cytokines, such as TNFα or IFNγ. Conversely, Th2 (T-helper 2) cells 

suppress the inflammatory cell-mediated Th1 response by secretion of cytokines with anti-

inflammatory properties including IL-4, IL-5 and IL-10. Th2 responses mediate humoral 

immunity by stimulating B-cells to produce antibodies. The differentiation into either cell 
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type during CD4+ T-cell activation is orchestrated by specific cytokines released by 

immune cells in response to specific pathogens. The differentiation of naïve CD4+ T-cells 

to either Th1 or Th2 effector cells is a key mechanism to regulate distinct CD4+ T-cell 

responses to specific types of infections. Disproportionate Th1 and Th2 responses are 

observed in many chronic inflammatory diseases, such as autoimmunity or allergies and 

are also believed to play a role in sepsis-acquired immunosuppression (see 1.4.2). 

In recent years further effector CD4+ T-helper cells types and their distinct roles in 

immunity and disease have been described. According to their cytokine profile these 

subtypes are referred to as Th9, Th17, Th21 or Th22. Exact mechanisms of lineage 

development and functional patterns in vitro and in vivo are not fully understood yet and 

under investigation. Since only little data are available about their potential role in sepsis-

acquired immunosuppression, they are not further discussed here. 

Regulatory CD4+ T-cells (Tregs) represent another very heterogeneous class of CD4+ T-

cells that are implied to play an ambivalent role in SIRS and sepsis (see 1.4.2). Since 

regulatory T-cells can modulate and suppress other immune cells, they play a crucial role 

in tolerance to self-antigens as well as balancing and terminating adaptive and innate 

immune responses [34]. The most prominent type represent CD4+ regulatory T-cells co-

expressing the IL-2 receptor α-chain (CD25) and the transcription factor FoxP3 (forkhead 

box P3). CD4+/CD25+/FoxP3+ Tregs constitute about 5-10% of all peripheral T-cells. By 

secretion of TGF-β and IL-10 they can inhibit innate and adaptive immune responses. 

TGF-β can reduce phagocytotic activity of macrophages and the activation / proliferation 

of B- and T-cells. IL-10 has been shown to suppress phagocytotic activity and IL-12 

production by dendritic cells thereby blocking Th1 T-cell differentiation. 

However, the above described T-cell subsets represent a very basic classification. The T-

cell compartment is highly diverse and continuously expands continuously by the 

characterisation of new T-cell subsets. 

1.3.3 The T-cell receptor and the TCR/CD3/CD247 complex 
The T-cell receptor (TCR) is the key feature of antigen-specific T-cell immunity. 

Expressed on the surface of all mature peripheral T-lymphocytes the TCR recognises 

foreign antigen peptides bound to MHC proteins on the surface of antigen-presenting cells, 

such as dendritic cells, macrophages or B-cells. Structurally, the T-cell receptor consists of 

two membrane-anchored α- and β-protein chains, forming a disulfide bond-linked 
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heterodimer (Fig. 3) [35]. The great majority of T-cells express the αβ-TCR variant; 

though, a small fraction of T-cells (~ 5%) possess an alternate receptor that consists of γ- 

and δ-chains. According to their TCR variant, both populations are referred to as αβ-T-

cells or γδ-T-cells. 

_________________________________________________________________________ 
Figure 3. The T-cell receptor complex 
The T-cell receptor (TCR) complex is expressed on all mature T-cells. 95% of all peripheral T-cells carry 
αβ-TCR variants depicted here consisting of extracellular immunoglobulin superfamily α- and β-chains with 
membrane-distal variable (V) and membrane–proximal constant (C) domains forming anti-parallel -sheets. 
Antigen peptides bound to major histocompatibility complexes (MHC) are recognised through protein-
protein interactions by hypervariable amino acids residues within the variable regions. Signal propagation is 
carried out by CD3 and CD247 signalling molecules that associate with the TCR heterodimer through 
electrostatic interactions of negatively and positively charged membrane-integral amino acids of both 
molecules. CD3 and CD247 dimers possess long intracellular domains carrying immunoreceptor tyrosine-
based activation motifs (ITAMs) motifs with the conserved sequence YxxI/Lx6-12YxxI/L (Y = tyrosine, x any 
amino acid, I = isoleucine, L = leucine). Phosphorylation of tyrosine residues within the ITAMs by Src 
family tyrosine kinases, such as LCK (lymphocyte-specific protein tyrosine kinase), FYN or LYN represents 
the initial step in proximal TCR signalling. 

Antigen-peptide/MHC recognition and binding is carried out by hypervariable amino acid 

residues within the distal extracellular variable (V) regions of both α- and β-chains [36]. 

Due to its very short cytoplasmatic tails, the αβ-TCR can not propagate extracellular 

signals into the cytoplasm. TCR signal transmission requires the association of the αβ-
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TCR with the three dimeric signalling proteins CD3γ/ε, CD3δ/ε and CD247ζ/ζ

constitutively expressed on the surface of T-cells and hereinafter collectively referred to as 

CD3 or CD247 molecules (Fig. 3) [37, 38]. 

Conserved sequence motifs, called immunoreceptor tyrosine-based activation motifs

(ITAMs) in the intracellular portions of CD3 and CD247 molecules are crucial elements 

for signal propagation and serve as substrates for the tyrosine kinase LCK (lymphocyte-

specific protein tyrosine kinase) and other SRC family kinases, such as FYN or LYN [39]. 

Phosphorylation of two tyrosines within the ITAM sequence is the earliest event in 

intracellular TCR signalling upon antigen/MHC-triggering of TCR complexes (see 1.3.6 

and Fig. 4). Antigen-binding additionally involves the recognition of MHC complexes by 

CD4 or CD8 co-receptors on CD4+ and CD8+ T-cells (Fig. 4) [40]. While CD4 co-

receptors interact with MHC class II molecules on the surface of APCs, MHC-I complexes 

found on virtually all nucleated cells are recognised by CD8 molecules. Intracellular 

domains of the CD4 and CD8 co-receptors are associated with LCK and mediate the initial 

LCK-dependent ITAM phosphorylation.

1.3.4 T-cell receptor diversity and T-cell development 
To ensure specificity against a wide array of unknown pathogen-peptides, each individual 

mature T-lymphocyte possesses a unique TCR-variant with distinct antigen specificity 

determined by the sequence and structure of the variant αβ-TCR chains. 

TCR/antigen/MHC interaction is degenerated, that means that one given antigen is 

recognised by several TCR variants and one particular TCR variant recognises many 

potential antigens. Somatic recombination of gene segments encoding for structural 

elements of the α- and β-chains at early stages of T-cell development creates a unique 

TCR variant with distinct antigen specificity for each individual T-cell clone. Somatic 

TCR gene rearrangement is a stochastic process and creates countless TCR variants 

specific for virtually all possible antigens, including foreign pathogen-antigens [41]. 

As the first step of T-cell development lymphoid progenitor cells, originating from bone-

marrow-resident pluripotent haematopoietic stem cells, migrate into the thymus where they 

differentiate into mature T-cells. In the thymus early CD4-/CD8- thymocytes start to 

express pre-TCR α-chains. If T-cells are capable to express functional TCR β-chains that 

properly interact with the pre-TCR α−chain, they rapidly expand and begin to express both 

CD4 and CD8 co-receptors. In two additional selection rounds CD4+/CD8+ thymocytes 
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bearing TCR variants with inappropriate affinity to self MHC-I/II (too weak or too strong) 

or that are auto-reactive to self-antigens are eliminated through apoptosis. Furthermore, 

interaction of CD4+/CD8+ thymocytes with either MHC-II or MHC-I decides whether a T-

cell clone develops into a CD4+ helper T-cell or cytotoxic CD8+ T-cell. Positive and 

negative selection is carried out by specialised thymic cells that are capable to express a 

wide range of self-antigens in context of MHC-I or II. T-cells with eligible self-tolerant 

TCR variants receive survival signals and differentiate into mature T-cells released into the 

periphery [41]. 

1.3.5 T-cell receptor antigen-recognition and initiation of TCR 
signalling 

Although the TCR structure is known since many decades, the exact mechanism how 

antigen-binding by TCR complexes propagates signals across the cell membrane is not 

fully understood. Current models of antigen/TCR-triggering imply a step-wise mechanism 

leading to activation of intracellular TCR signalling molecules [42]. In the resting state 

TCR/CD3/CD247 complexes exist as monomers in close proximity of the TCR-inhibitory 

membrane-bound tyrosine phosphatases CD45 and CD148 which reverse ITAM 

phosphorylations by constitutive active LCK. TCR triggering by antigen/MHC complexes 

induces conformational changes increasing susceptibly of the ITAMs to LCK-catalysed 

phosphorylation. Furthermore, ligand binding stimulates segregation of the 

TCR/CD3/CD247 complexes from the inhibitory phosphatases SHP (SH2-containing 

phosphatase) and SHIP (SH2-containing inositol phosphatase). TCR-triggering also 

induces the spatial redistribution of TCR complexes in lipid domains leading to the 

aggregation of TCR/CD3/CD247 complexes facilitating LCK trans-autophosphorylation of 

the ITAMs. As a result of these events, microclusters of intracellular TCR signalling 

molecules are formed promoting ITAM phosphorylation and proximal TCR signalling.  

1.3.6 Proximal T-cell receptor signalling 
Proximal T-cell receptor signalling involves a complex cascade of multiple steps of 

activation / deactivation cycles of numerous signalling proteins summarised in Figure 4. 

Upon antigen/MHC-triggering, phosphorylated tyrosine residues within ITAM sequences 

serve as docking sites for Src homology 2 (SH-2) domain containing proteins. Via its two 

SH2 domains, the ZAP-70 kinase (ζ-chain associated protein 70) is recruited to the 
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CD3/CD247 complexes where it gets phosphorylated and activated by LCK. Subsequently, 

activated ZAP-70 phosphorylates the adaptor proteins LAT (linker of activated T-cells) 

and SLP76 (SH2 domain containing leukocyte protein of 76kDa or LCP-2). 

Phosphorylated LAT and SLP76 form a membrane-associated adaptor complex recruiting 

different crucial downstream TCR signalling molecules such as phospholipase C γ1

(PLCγ1) [43]. PLCγ1 catalyses the cleavage of the membrane lipid PIP2

(phosphatidylinositol 4,5-bisphosphate), thereby promoting the formation of cytosolic IP3

(inositol 1,4,5-trisphosphate) and the membrane lipid diacylglycerol (DAG). The binding 

of IP3 to its respective receptors induces the release of Ca2+ ions from the endoplasmatic 

reticulum. Increasing cytosolic levels of Ca2+ activate and open calcium release-activated 

calcium channels (CRAC) at the plasma membrane leading to influx of extracellular 

calcium ions. Elevated cytosolic Ca2+ levels stimulate the protein phosphatase calcineurin 

that in turn removes inhibitory phosphate groups from the transcription factor NFAT 

(nuclear factor of activated T-cells). De-phosphorylation of NFAT leads to conformational 

changes and exposure of the nuclear localisation sequences (NLS) resulting in the nuclear 

import of NFAT where it cooperates with other nuclear transcription factors to regulate the 

expression of TCR target genes [43]. 

Similar to IP3, diacylglycerol also act as an important signal transmitter. DAG can bind and 

stimulate RasGRP1 (Ras guanyl-releasing protein 1), a guanine nucleotide exchange factor 

for the small GTPase Ras. DAG-activated RasGRP1 converts inactive GDP-bound Ras 

into the active Ras-GTP form, by facilitating the release of GDP and replacement by GTP 

[44]. Ras is the starting point of the Ras/MAPK (mitogen activated protein kinase) 

signalling cascade involving a series of three downstream kinases ultimately leading to 

phosphorylation and activation of ERK (extracellular signal-related kinase). Activated 

ERK translocates into the nucleus where it activates transcription factors such as AP-1 

(activator protein 1) that modulate expression of TCR target genes. DAG also stimulates 

protein kinase Cθ (PKCθ), a serine / threonine kinase that regulates the release of the 

transcription factor NfκB (nuclear factor kappa-light-chain-enhancer of activated B cells) 

from its inhibitor IκB (inhibitor of NfκB). NfκB migrates into the nucleus where it acts as a 

central transcriptional regulator for TCR effector genes [45]. The IL-2 gene is the 

prototype of TCR-regulated gene expression as its induction is greatly enhanced upon TCR 

complex stimulation. The promoter region of the IL-2 gene integrates all major TCR and 

co-receptor signalling pathways since it has binding sites for NFAT, AP-1 and NfκB  [46]. 
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IL-2 is secreted by TCR-activated T-cells and promotes T-cell proliferation and 

differentiation in an autocrine fashion. 

_______________________________________________________________________ 
Figure 4. T-cell receptor signalling  
Schematic overview of proximal TCR complex signal transduction. Processed pathogen-peptides are 
presented in the context of major histocompatibility complex class I or II (MHC I or II) by antigen-presenting 
cells (APCs). Activated APCs express co-stimulatory molecules such as B7 family ligands that co-stimulate 
CD28 on T-cells. MHC/antigen recognition induces phosphorylation of tyrosine residues within ITAM 
sequence motifs in the intracellular portions of CD3 and CD247 TCR accessory molecules. Phosphorylated 
ITAMs serve as docking site for ZAP-70 that is in turn activated / phosphorylated by SRC kinases such as 
LCK. ZAP-70 activation and interaction with CD3/247 orientates ZAP-70 to phosphorylate the membrane-
associated adaptor protein LAT. Phosphorylation of LAT induces the formation of a large signalling complex 
and represents a branching point in TCR signalling. Together with co-receptor (e.g. CD28) stimulation and 
signalling, proximal TCR signalling induces transcriptional modulation of numerous TCR effector genes, 
mediating T-cell activation, proliferation, differentiation and survival. In addition, TCR signalling controls 
non-transcriptional effector responses, such as cytoskeleton and membrane structure rearrangement. 
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1.3.7 Co-stimulatory signals in T-cell activation 
Complete antigen-dependent T-cell activation and differentiation into effector T-cells 

requires additional co-stimulatory signals provided by antigen-presenting cells [47]. 

Activated APCs express the co-stimulatory ligands CD80 (B7.1) and CD86 (B7.2) that 

stimulate the co-stimulatory receptor CD28 expressed on T-cells (Fig. 4). During antigen-

mediated TCR stimulation the interaction of CD80/86 with CD28 provides co-stimulatory 

signals as it activates the PI3-kinase/AKT-pathway promoting survival and proliferation of 

the stimulated T-cell clone (PI3-kinase: phosphatidylinositol-4,5-bisphosphate 3-kinase). 

CD28 can also directly augment TCR signalling by stimulating Ras/MAPK signalling or 

enhancing the catalytic activity of LCK. TCR/CD3/CD247 engagement with concomitant 

co-stimulation of CD28 by the same APC is a mechanism to prevent unintended T-cell 

activation, for example by self-antigens in absence of an infection. Activated T-cells also 

express other co-stimulatory receptors that bind ligands of the B-7 protein family that 

further enhance co-stimulatory signals [48]. Prominent examples are ICOS (inducible T-

cell co-stimulator, CD278) a member of the CD28-superfamily and CD27, a member of 

the TNFα receptor family [49]. In addition, secretion of cytokines, such as IL-4, IL-7 or 

IL-12 by APCs regulates the differentiation of activated T-cells into specific effector T-

cells (see 1.3.2). 

Antigen-specific TCR/CD3/CD247 activation in the absence of complete co-stimulation 

can induce a state of T-cell hyporesponsiveness, also referred to as T-cell anergy. T-cell 

anergy is a state in which T-cells are cell-autonomously impaired in their capacity to 

proliferate and elicit effector functions upon antigen (re)encounter but remain alive for an 

extended period of time [50]. Anergic T-cells can be characterised by impaired TCR 

signalling, increased T-cell inhibitory signalling, reduced IL-2 production, cell-cycle arrest 

or epigenetic alterations [51]. T-cell anergy is a pivotal mechanism to impose peripheral 

tolerance by blocking self-reactive T-cells that have escaped thymic selection. Cells 

presenting antigens in absence of infections do not provide co-stimulatory ligands, thus 

creating an environment where auto-reactive T-cells are converted into a state of 

unresponsiveness. 

1.3.8 Inhibitory receptors regulate T-cell activation 
In order to control T-cell responses, T-cells express inhibitory receptors that can terminate 

T-cell activation and help to establish immune homeostasis after the infection has been 
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eliminated [52]. Important inhibitory T-cell regulators are CTLA-4 (cytotoxic T-

lymphocyte-associated protein 4, CD152), PD-1 (programmed cell-death 1) and BTLA (B- 

and T-lymphocyte attenuator). All three molecules are expressed on T-cells after TCR-

mediated activation and bind to molecules of the B-7 family found on activated antigen-

presenting cells [52].  

CTLA-4 is related to the stimulatory CD28 co-receptor as it binds the same B-7 ligands, 

but with much higher affinity than CD28, thereby suppressing effective CD28 co-

stimulation. Through ligand-induced phosphorylation of CTLA4 intracellular 

immunoreceptor tyrosine-based inhibition motifs (ITIMs) CTLA-4 also directly transmits 

inhibitory signals. Phosphorylated tyrosine residues within the ITIM sequences stimulate 

the inhibitory phosphatases SHP and SHIP. While SHP removes activating tyrosine 

phosphorylations of activated TCR signalling molecules (e.g. LCK), SHIP converts PIP3

into PIP2 blocking CD28 co-stimulatory signals. Similar to CTLA-4, PD-1 and BTLA 

negatively regulate T-cell activation by recruiting SHP and SHIP after binding to other 

ligands of the B-7 family expressed on APCs during infection. 

1.3.9 The dynamics of T-cell responses 
In acute local infections dendritic cells, macrophages and neutrophils, engulf pathogens 

and pathogen particles followed by intracellular processing and surface presentation of 

antigen peptides in the context of MHC molecules. Stimulated antigen-presenting cells 

migrate into lymph nodes where they activate antigen-specific T-cell clones. Antigen-

activated T-cells undergo rapid clonal expansion generating a pool of pathogen-specific 

effector CD4+ and/or CD8+ T-cells that leave the lymph node and migrate to the site of 

infection where they encounter their cognate antigen inducing effector T-cell responses 

(Fig. 5) [53]. After the infection is cleared the majority of effector T-cells undergoes 

apoptosis due to the absence of TCR signals. A small fraction of T-cells survives and 

develops into persistent memory T-cells patrolling in tissues and lymph nodes. Memory T-

cells increase the TCR-pool reactive to the respective antigen by 100 to 1000-fold thereby 

greatly accelerating the T-cell response upon antigen reencounter. Furthermore, they are 

more sensitive to the respective antigen resulting in enhanced effector responses [53]. 
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________________________________________________________________________ 
Figure 5. T-cell response dynamics in microbial infections 
Schematic overview of T-cell dynamics in bacterial or viral infections. Activated antigen-presenting cells 
such as macrophages or dendritic cells present peptide fragments of engulfed pathogens to T-cells. Only 
CD4+ and CD8+ T-cell clones with appropriate T-cell receptor variants are selectively activated. During the 
activation phase MHC/antigen along with proper co-stimulation induces proximal TCR signalling that leads 
to T-cell activation that can be tracked by the up-regulation of T-cell activation marker including CD69 and 
CD25 (IL-2 receptor α-chain). In the expansion phase antigen-stimulated T-cells secrete IL-2 that mediates 
clonal T-cell proliferation in an autocrine fashion. In addition, naïve T-cells differentiate into effector T-cells 
with distinct surface marker expression, such as down-regulation of CD62L (L-selectine) or up-regulation of 
CD44. If effector CD4+ and CD8+ T-cells (re)encounter pathogen antigens they secrete effector cytokines, 
including IFNγ or TNFα to orchestrate immune responses. Furthermore, effector T-cells perform effector 
functions, such as killing of infected cells (cytotoxic CD8+ T-cells) or phagocyte activation  as well as the 
activation of B-cells to produce antibodies (CD4+ T-helper cells). After the infectious trigger has been 
cleared, the absence of TCR signals leads to the apoptosis of the majority of the effector T-cells. A small 
fraction differentiates into persistent memory CD4+ or CD8+ T-cells mediating fast and effective T-cell 
immunity upon pathogen reencounter.

1.4 Impaired T-cell immunity in SIRS and sepsis 

1.4.1 The role of the T-cells in acute systemic inflammation and sepsis 
T-cell subsets have been implicated in the early host response during SIRS and sepsis and 

play a role in morbidity and mortality, although with conflicting data from different studies 

[54]. In one study using CD4- or CD8-deficient mouse strains, early survival after 

polymicrobial sepsis was decreased in mice lacking CD4+ T-cells but not in mice deficient 
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for CD8+ lymphocytes [55]. Worse outcome of CD4+ T-cell-depleted mice was associated 

with impaired activation of neutrophils, increased bacterial burden and elevated levels of 

IL-6. The authors conclude that CD4+ T-cells control the innate septic host response, in 

particular neutrophil effector functions. On the other hand, another study found that the 

lack of CD4+ lymphocytes in the same rodent model of polymicrobial sepsis did not affect 

mortality, bacterial clearance and inflammatory responses [56]. Intriguingly, the same 

laboratory showed that CD8+-deficient mice have a better early survival and decreased 

signs of morbidity after subjected to polymicrobial sepsis [57]. Despite the contradictory 

conclusions, these data underline the importance of T-cell immunity in systemic 

inflammation and sepsis. 

1.4.2 Systemic inflammation and sepsis lead to alterations in T-cell 
immunity 

The nature of immunosuppression in SIRS and sepsis is not fully understood but there is a 

large body of evidence that compromised adaptive CD4+ and CD8+ T-cell immune 

responses have a decisive role in the disease-related immune deficiency (Fig. 6). Sepsis-

triggered apoptosis of both CD4+ and CD8+ T-cell populations is unarguably one of the 

key mechanism of T-cell malfunction in systemic inflammation and sepsis [25, 58]. The 

significance of T-lymphopenia to outcome in sepsis is underlined by the finding that 

prevention of T-lymphocyte apoptosis improves T-cell immunity and overall survival in 

experimental models of sepsis [59]. Importantly, the early apoptotic loss of T-cells does 

not require the presence of actual pathogens, since administration of bacterial compounds 

such as lipopolysaccharide is sufficient to induce early CD4+ and CD8+ T-cell apoptosis in 

spleen and other lymph organs [60]. This finding strongly suggests that the initial 

inflammatory cascade, rather than prolonged bacteraemia, induces the profound T-cell 

loss. 

In addition to the early loss of T-cells, research data also suggest functional disturbances of 

T-cells as contributing factors for sepsis-related immune-deficiency. A much-noticed study 

from J.S. Boomer and colleagues could show that CD4+ and CD8+ T-cell responses to in 

vitro stimulation of splenocytes preparations from deceased sepsis patients are impaired on 

multiple levels [61]. T-cells exhibited a decreased cytokine response, increased expression 

of the inhibitory receptors PD-1 and CTLA-4 as well as lowered CD28 co-receptor 

expression. Furthermore, T-cells from the septic group showed a decreased expression of 
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the IL-7 receptor α-chain, a cell surface receptor that is crucial for T-cell homeostasis and 

development. The authors concluded that T-cells enter a suppressive state in severe sepsis 

contributing to pathogenesis of the disease. In line with these findings, similar anergic 

states of T-cells were described in sterile SIRS after trauma or burns (Fig. 6) [22]. 

________________________________________________________________________ 
Figure 6. Overview of T-cell dysfunction at acute stages of systemic inflammation and sepsis 
Acute episodes of systemic inflammation and sepsis induce a profound systemic loss of naïve CD4+ and 
CD8+ T-cells. Differential susceptibility of different T-cell subsets to disease-induced apoptosis further leads 
to an altered composition of the T-cell compartment. In addition to cell loss, T-cells feature an array of 
functional disorders that further compromise T-cell immunity at acute stages of SIRS and sepsis. However, 
detailed mechanisms of T-cell dysfunction are not fully understood yet. For example, only a few studies are 
available that studied proximal T-cell receptor signalling to identify potential mediators of T-cell 
hyporesponsiveness. 

Moreover, impaired effector and memory CD8+ T-cell responses after polymicrobial sepsis 

lead to compromised anti-microbial responses to secondary infections associated with 

decreased survival [62-64]. Impaired CD8+ T-cell immunity in these animal studies was 

linked with decreased T-cell counts, impaired cytokine production and alterations in the T-

cell phenotype. 

Much attention was paid to study the impact of SIRS and sepsis on the function of distinct 

CD4+ T-cell subtypes. Since regulatory CD4+ T-cells are known to control and suppress 

immune responses of T-cells and other immune cells under physiological and 

pathophysiological conditions, they have been proposed as mediators of immune and T-

cell suppression in SIRS and sepsis. Investigations in patients showed that the frequency of 

regulatory T-cells is increased at early stages of SIRS or sepsis. Importantly, the elevated 
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frequency results from the more robust resistance to apoptosis rather from the actual 

increase in total numbers [65]. Furthermore, it has been shown that both SIRS and sepsis 

can increase the immunomodulatory capacity of regulatory T-cells leading to decreased T-

cell (and other immune cells) effector responses [65]. However, adoptive transfer 

experiments revealed that regulatory T-cells also possess a beneficial role and can improve 

outcome by dampening and controlling innate immune responses in SIRS and sepsis [66, 

67]. In sum, frequencies and function of regulatory T-cells are affected by SIRS and sepsis 

but their contribution to morbidity and mortality is bivalent and dependent on multiple 

factors such as type, severity and progression of the disease. 

The differentiation of naïve CD4+ T-cells to either Th1 or Th2 (among others) effector T-

cells is a key mechanism to orchestrate CD4+ T-cell responses during infections (see 

1.3.2). In sepsis the unbalanced shift from Th1 cell-mediated pro-inflammatory responses 

towards anti-inflammatory Th2 responses is believed to disturb the initial pro-

inflammatory cellular response to pathogens [20]. However, this model of T-cell mediated 

immunosuppression in sepsis is highly controversial. Although altered type 1 and 2 

responses were detected in CD4+ T-cells from SIRS and sepsis patients, other studies 

found a general down-regulation of CD4+ effector cytokines and transcription factors 

driving Th1 and Th2 differentiation [68, 69]. Other studies found decreased Th1-responses 

without activation of Th2 immunity [22]. Different results from various studies once more 

underline the heterogeneous nature of systemic inflammation and sepsis and the difficulties 

to find universally valid concepts of T-cell functionality in background of these 

syndromes.  

Other less prominent subsets of T-cells including γδ-T-cells or mucosal associated 

invariant T-cells, have been shown to be affected by SIRS and sepsis. But since the present 

thesis focuses on ‘canonical’ naïve and effector αβ-TCR CD4+ and CD8+ T-cells, they are 

not discussed here. 

1.4.3 T-cell suppression in sepsis: molecular mechanisms 
Animal and human studies provided detailed insights in mechanisms and triggers of sepsis-

induced T-cell apoptosis. Early T-cell loss in sepsis is mediated by both the FAS receptor 

and mitochondrial pathway [25]. By using transgenic mouse models, FADD (Fas-

associated protein with death domain) and BID-1 (BH3 interacting-domain death agonist) 

were identified as mediators of sepsis-induced T-cell apoptosis via the FAS receptor 
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pathway. Expressing a dominant negative mutant of FADD in T-cells resulted in decreased 

activation of caspase 8 and thus to less T-cell death [70]. The same study found that BCL-2 

protein family members BIM and PUMA (p53 up-regulated modulator of apoptosis) are 

critical activators of the mitochondrial (intrinsic) apoptosis pathway in T-cells during 

sepsis. Furthermore, sepsis-induced cell death by both pathways is executed by the 

activation of various caspases bringing them into focus of potential therapeutic targets 

[71]. As a crucial mediator of T-cell apoptosis during sepsis the cytokine TRAIL (TNF-

related apoptosis-inducing ligand) was described in several animal studies [72, 73] and is 

reviewed in [74]. TRAIL is up-regulated during inflammatory processes and through 

binding to its respective receptors it induces apoptosis via activation of caspases-3, -6, and 

-7.  Importantly, early T-cell apoptosis during sepsis is not caused by activation-induced 

cell death (AICD) since T-cell death is not dependent on T-cell activation, TCR 

engagement and proliferation [75]. 

While principle mechanisms of sepsis-induced T-cell apoptosis have been elucidated, 

molecular mechanisms of how sepsis alters the functionality of T-cells are much less 

understood. Some researchers hypothesise that the same mechanisms observed in T-cell 

anergy also play important roles in sepsis-induced T-cell suppression. Anergic T-cells can 

be characterised by increased expression of T-cell inhibitory receptors blocking T-cell 

activation and TCR signalling. In line with that, several studies with human septic patients 

found increased expression of PD-1 [61, 76, 77] CTLA-4 [61] and BTLA [78] on T-cells. 

The concept of SIRS- and sepsis-induced T-cell anergy is supported by the finding that T-

cells from patients exhibit impaired IL-2 production and thereby exhibit defects in 

proliferation, a hallmark of T-cell anergy [79]. 

Antigen-specific T-cell receptor triggering is the key mechanism of T-cell activation.  

However, since most T-cell studies focus on immunological approaches, astonishingly 

little is known about potential sepsis-triggered alterations of TCR activation and signalling. 

To my knowledge, no detailed analysis of how SIRS and sepsis affect TCR-dependent T-

cell activation and TCR signalling has been carried out yet. Only a few available studies 

provide very limited insights into disease-induced alterations of TCR signal transduction. 

A small study from Lopez-Collazo and colleagues found decreased mRNA expression 

levels of αβ-TCR, CD3 and LAT in lymphocytes derived from 17 human sepsis patients 

suggesting impaired TCR-dependent signalling and T-cell activation [80]. However, the 

investigators did not perform functional TCR analyses nor did they analyse expression 

profiles on protein levels. A more functional orientated TCR signalling study using a 
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rodent model of gram(-) bacterial sepsis found defective Ca2+ signalling linked with 

decreased proliferation upon TCR activation early after sepsis onset [81]. Another study 

using a mouse model of thermal injury-induced SIRS, linked defective Ca2+ signalling with 

decreased activation of the TCR-downstream signalling molecules ERK and p38 after TCR 

stimulation [82]. A remarkable animal study from Carson and colleagues found decreased 

phosphorylation of ERK and JNK (c-Jun N-terminal kinase) in naïve CD4+ T-cells from 

septic mice after ex vivo TCR simulation [83]. Additionally, the same study showed altered 

mRNA expression profiles of cytokines, co-stimulatory and inhibitory receptors as well as 

T-cell differentiation factors in resting and TCR-stimulated T-cells from the septic group. 

Most interestingly, the investigators linked disturbed T-cell effector function and 

differentiation with histone methylations in promoter regions of cytokines and 

differentiation regulators. 

1.4.4 Protracted T-cell suppression in systemic inflammation and 
sepsis 

In addition to alterations at early stages of systemic inflammation and sepsis, persistent 

malfunction of T-cell responses is also believed to contribute to protracted 

immunosuppression after SIRS and sepsis, affecting the long-time survival of patients. 

Early apoptosis of CD4+ and CD8+ T-lymphocytes is a hallmark of acute SIRS and sepsis 

and affects early host responses and outcome. But T-lymphopenia is transient as total 

splenic CD4+ and CD8+ T-cell numbers recovered to normal levels within several weeks 

post septic insult as shown in an animal study using a rodent model for polymicrobial 

sepsis [84]. However, even though T-cells numbers have recovered, T-cell responses to 

infections are impaired months after the initial septic insult [62, 63] possibly explained by 

the loss of T-cell precursors accompanied by narrowed T-cell receptor diversity after 

homeostatic proliferation. In line with these findings polymicrobial sepsis increases the 

susceptibility to chronic infections and exacerbates CD8+ T-cell exhaustion at post-acute 

stages associated with increased inhibitory receptor expression and disturbed antigen-

induced cytokine production. One study linked higher susceptibility to secondary bacterial 

infections and impaired T-cell effector responses observed weeks after sepsis onset with an 

increase of CD4+/CD25+ regulatory T-cells [85]. Controversially, there is some evidence 

that acute impaired T-cell responses to secondary infections have the ability to recover at 

post-acute stages of sepsis [86]. 
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Despite the few available studies mentioned here, very little is known about persistent 

alterations in T-cell immunity at post-acute stages of SIRS and sepsis. There is a lack of 

studies that provide detailed immunological and biochemical insights into cellular T-cell 

function at post-acute stages of SIRS and sepsis. A fact that results from focusing on acute 

disease stages in the majority of the available research studies. The characterisation of T-

cell function at post-acute stages of SIRS and sepsis would improve the understanding of 

protracted disease-related immunosuppression and could provide novel therapeutic 

approaches to treat the increasing number of immune-compromised post-septic patients. 
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2 Objectives 

Protracted immunosuppression after Systemic Inflammatory Response Syndromes (SIRS), 

predominantly sepsis, is a major health concern as patients who survived an acute episode 

of the disease exhibit increased risks for infections months and years after the initial insult. 

The immune suppressive state after SIRS and sepsis contributes to the reduced health-

related quality of life and is associated with late morbidity and mortality. 

T-cells represent a central cellular component of the immune system and are involved in 

immune reactions against virtually all types of pathogens. Research over the past decade 

revealed that impaired T-cell immunity contributes to early morbidity and mortality in 

acute episodes of SIRS and sepsis. However, very little is known about T-cell function at 

post-acute and late stages of the disease and its potential contribution to protracted 

immunosuppression after SIRS or sepsis. 

The aim of the present thesis was to perform an in-depth functional analysis of T-cell 

function at post-acute stages of systemic inflammation and sepsis using clinical relevant 

murine models. To achieve this aim following main objectives were addressed in the 

present thesis. 

• To meet the heterogeneity of the disease, four murine models of systemic 

inflammation and sepsis are employed and characterised. The use of murine models of 

sterile SIRS and polymicrobial sepsis facilitates to understand whether the initial excessive 

inflammatory host response alone or the actual presence of an infection leads to persistent 

alterations in T-cell immunity. 

• By the means of various functional assays the capacity of T-cells to respond to T-

cell receptor stimulation is investigated at post-acute stages of the disease. T-cell responses 

are examined on multiple levels including activation marker up-regulation, proliferation 

capacity and multiple intracellular TCR signalling cascades. 

• By using secondary infections models in background of SIRS and sepsis, functional 

T-cell analyses are extended to the level of antigen-specific effector T-cells. Furthermore, 

these models facilitate studying whether potential impaired T-cell responses are mediated 

by inherent T-cell (cell-autonomous) alterations or T-cell extrinsic (environmental) factors. 
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3 Material and Methods 

3.1 Material 

Material, Reagents and peptides 
LPS L2880 /Lot #102M4017V)    (Sigma-Aldrich)     
CPG-ODN 1826 (TCCATGACGTTCCTGACGTT)  (Sigma-Aldrich) 
Meropenem Hospira 500mg    (Hospira Inc.) 
Lithium-heparin blood tubes     (Sarstedt) 
FUJI DRI-CHEM SLIDE LDH-P III   (FujiFilm) 
FUJI DRI-CHEM SLIDE GPT/ALT-P III    (FujiFilm) 
FUJI DRI-CHEM SLIDE GOT/AST-P III   (FujiFilm) 
CD8a (Ly-2) MicroBeads, mouse    (Miltenyi Biotec) 
CD4 (L3T4)  MicroBeads, mouse     (Miltenyi Biotec) 
CD4/CD8 T-cell activation/Expansion Kit, mouse  (Miltenyi Biotec) 
Streptavidin      (JacksonImmunoResearch Laboratories Inc.) 
FURA 2 / AM       (Enzo Life Science) 
Pluronic F-127       (Invitrogen, Molecular Probes, Inc.) 
Ionomycin       (Enzo Life Science) 
2-mercapto-ethanol     (Carl Roth GmbH) 
PBS        (Biochrome AG) 
CFSE Amine dye      (Enzo Life Science) 
Oxidizing Reagent Plus     (PerkinElmer Inc.) 
Enhanced Luminol Reagent Plus     (PerkinElmer Inc.) 
Cytofix/Cytoperm Solution     (BD PharmingenTM) 
10x PermWash buffer      (BD PharmingenTM) 
VitaLyseTM Lysing Buffer     (BioE) 
Golgi PlugTM Protein Transport Inhibitor    (BD PharmingenTM) 
LCMV peptide GP33-41 (GP33) 
sequence: KAVYNFATM     (Bio-Synthesis, Inc.) 
LCMV peptide GP61-80 (GP61) 
sequence: GLKGPDIYKGVYQFKSVEFD    (Bio-Synthesis, Inc.) 

Antibodies 

Table 1: List of antibodies for western blot analyses 
Antibodies  western blot clone species dilution diluted in company 

      
P44/42 MAPK (Erk1/2) 137F5 rabbit mAb 1:1000 TBS-T + 1% BSA Cell Signaling Technology 
Phospho-p44/42 MAPK 
(Erk1/2) (Thr202/Tyr204) D13.14.4E rabbit mAb 1:2000 TBS-T + 1% BSA Cell Signaling Technology 
ZAP-70 1E7.2 mouse mAb 1:500 TBS-T + 1% BSA Santa Cruz Biotechnology Inc 
Phospho-ZAP-70 
(Tyr319)/Syk (Tyr352) polyclonal rabbit 1:1000 TBS-T + 1% BSA Cell Signaling Technology 
PLCy1 1249 rabbit mAb 1:500 TBS-T + 1% BSA Santa Cruz Biotechnology Inc 
Phospho-PLCy1 (Tyr783) polyclonal rabbit 1:1000 TBS-T + 1% BSA Cell Signaling Technology 

PanAkt 11E7 rabbit mAb 1:2000 TBS-T + 1% BSA Cell Signaling Technology 
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Phospho-Akt (Ser473) D9E rabbit mAb 1:2000 TBS-T + 1% BSA Cell Signaling Technology 
LAT polyclonal rabbit 1:1000 TBS-T + 1% BSA Cell Signaling Technology 
Phospho-LAT (Tyr195) polyclonal rabbit 1:1000 TBS-T + 1% BSA Cell Signaling Technology 

Anti-Rabbit IgG (H+L), 
Peroxidase labelled polyclonal goat 

1:20000 
(stock 
1mg/mL) TBS-T + 1% BSA 

KPL, Kirkegaard & Perry 
Laboratories, Inc. 

Anti-Mouse IgG (H+L), 
Peroxidase labelled  polyclonal goat 

1:10000 
(stock 
0.5mg/mL) TBS-T + 1% BSA 

KPL, Kirkegaard & Perry 
Laboratories, Inc. 

Table 2: List of antibodies for flow cytometry 
Antibodies flow cytometry clone fluorophore dilution diluted in company 

     
anti-mouse CD3e 145-2C11 FITC 1:10 FACS buffer I ImmunoTools 
anti-mouse CD4 YTS 191.1.2 PE 1:10 FACS buffer I ImmunoTools 

anti-mouse CD4 GK1.5 PerCP-eFluor710 1:800 FACS buffer II eBioscience Inc. 
anti-mouse CD8a YTS169.4 APC 1:25 FACS buffer I ImmunoTools 

anti-mouse CD8a 53-6.7 APC-eFluor780 1:200 FACS buffer II eBioscience Inc. 
anti-mouse CD25 7D4 APC 1:10 FACS buffer I Miltenyi Biotec GmbH 
anti-mouse CD25 PC61.5 APC 1:150 FACS buffer II eBioscience Inc. 

anti-mouse CD44 KM81 PE 1:25 FACS buffer I ImmunoTools 
anti-mouse CD62L MEL-14 FITC 1:25 FACS buffer I ImmunoTools 

anti-mouse CD69 H1.2F3 FITC 1:50 FACS buffer I eBioscience Inc. 
anti-mouse CD69 H1.2F3 PE 1:200 FACS buffer II eBioscience Inc. 

anti-mouse CD154 MR1 PE 1:50 FACS buffer I eBioscience Inc. 
anti-mouse Thy1.1 HIS51 PerCP-Cy5.5 1:1000 FACS buffer II eBioscience Inc. 
anti-mouse Thy1.2 53-2.1 FITC 1:1000 FACS buffer II eBioscience Inc. 

anti-mouse IFNg XMG1.2 APC 1:200 1x PermWash eBioscience Inc. 
anti-mouse TNFa MP6-XT22 PE 1:200 1x PermWash eBioscience Inc. 

Table 3: List of antibodies and reagents for T-cell stimulation 
Antibodies/reagents  T-cell stimulation clone species company 

   

Biotin Hamster Anti-Mouse CD3ε 145-2C11 hamster BD PharmingenTM

Purified Hamster Anti-Mouse CD3ε 145-2C11 hamster BD PharmingenTM

Biotin Hamster Anti-Mouse CD28  37.51 hamster BD PharmingenTM

Goat Anti-Armenian Hamster IgG (H+L) polyclonal goat Jackson ImmunoResearch Laboratories Inc. 
CD4/CD8 T-cell activation/Expansion Kit, 
mouse   Miltenyi Biotec GmbH 

Buffers 
RP0:   RPMI 1640 (Biochrome AG) 

25mM Hepes 
penicillin / streptomycin 

RP3:   RPMI 1640 (Biochrome AG) 
3% FCS (Biowest LLC) 
penicillin / streptomycin 

RP3 w/o phenol red: RPMI 1640 without phenol red (Biochrome AG) 
3% FCS (Biowest LLC) 
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RP10:    RPMI 1640 (Biochrome AG) 
   10% FCS (Biowest LLC) 
   penicillin / streptomycin 

wash buffer:  PBS pH 7.4 (Biochrome AG) 
   0.5% Bovine Serum Albumine (BSA) (PAA Laboratories) 
   2mM EDTA (AppliChem GmbH) 

FACS buffer I:  PBS pH 7.4 (Biochrome AG) 
   0.5 - 1% Bovine Serum Albumine (BSA) (PAA Laboratories) 
   2mM EDTA (AppliChem GmbH) 

FACS buffer II:  PBS pH 7.4 (Biochrome AG) 
   1% FCS (Biowest LLC) 
   15mM sodium azide 

ACK buffer  10mM KHCO3 

   150mM NH4Cl 
   0.1mM EDTA 

lysis buffer:  50mM Hepes pH 7.5 
   140mM NaCl 
   5mM MgCl2

   1mM EGTA pH 7.5 
   1% NP-40 
   0.1% lauryl maltoside 
   Add prior use: protease inhibitor mix at appropriate concentration 

3.4nM microcystin, 100μM sodium vanadate, 50mM 2-gylcerol phosphate 

2x sample buffer:  124mM Tris pH 6.8 
20% glycerol 

   1.2% SDS 
   10% 2-mercapto-ethanol 
   0.02% bromophenol blue 

5% stacking gel:  for 10mL 
6.3mL dist. water 
2.6mL 0.5M Tris pH 6.8 
1mL acrylamide (Rotiphorese® 37.5%) (Carl Roth GmbH) 
50μL 20% SDS 
50μL 20% ammonium persulfate 
10μL TEMED 

10% separation gel: for 30mL 
   18.1mL dist. water 
   5.6mL 2M Tris pH 8.6 
   6mL ProSieveTM 50 Gel Solution (Lonza Group Ltd) 
   150μL 20% SDS 
   150μL ammonium persulphate 
   12μL TEMED 
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10x PAGE buffer: 250mM Tris 
   2M glycine 
   35mM SDS 
   Adjust to pH 8.3; dilute 1:10 with dist. water prior use 

10x transfer buffer: 250M Tris 
   2M glycine 
   10% methanol, add prior use 
   Adjust to pH 10; dilute 1:10 with dist. water prior use 

10x TBS-Tween:  100mM Tris 
   1M NaCl 
   1% Tween 20 
   Adjust to pH 7.6; dilute 1:10 with dist. water prior use 

Stripping buffer:  100mM 2-mercapto-ethanol 
   62.5mM Tris 

2% SDS  
   Adjust to pH 6.7 

3.2 Methods 

3.2.1 Laboratory mice 
All described experiments were performed with 8 – 16 weeks old wild-type C57BL/6 

laboratory mice. For some experiments performed at the University of Iowa TCR-

transgenic CD8+ T-cells (P14 T-cells) were obtained from C57BL/6 Thy1.1/1.1 or 

Thy1.1/1.2 P14 TCR-transgenic mice. Every single experiment was performed with sex-

matched mice. Mice were kept in specialized animal facilities with educated stuff in legal 

compliance of the respective countries at the Jena University Hospital, Germany or at the

University of Iowa, Carver College of Medicine, USA. Animals were maintained under 

artificial day-night cycles, constant 23°C room temperature, 30 – 60% humidity and 

received a standard mouse diet and water ad libitum. All experiments done at the

Friedrich-Schiller University Jena, Germany were performed in accordance with the 

German legislation on protection of animals and with permission of the regional animal 

welfare committee of Thuringia. Experiments done at the University of Iowa, USA were 

performed in accordance with the University of Iowa Institutional Animal Care and Use 

Committee protocols.
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3.2.2 Induction of Systemic Inflammatory Response Syndrome and 
sepsis 

Four murine experimental models of infection-free SIRS and polymicrobial peritoneal 

sepsis were employed. SIRS: (a) lipopolysaccharide (LPS) / endotoxemia model and (b) 

CpG oligonucleotide (CpG-DNA) model. Sepsis: (c) Peritoneal Contamination and 

Infection (PCI) model and (d) Cecal Ligation and Puncture (CLP) model. 

In order to trigger LPS-induced SIRS, 9 – 11 mg/kg body weight (b.w.) LPS (in 500μL 

0.9% NaCl solution) were injected intraperitoneally (i.p.). To induce CpG-DNA-triggered 

SIRS, 4.5mg/kg b.w. CpG-DNA (in 500μL 0.9% NaCl solution) were administered i.p.. 

CpG-DNA treatment was repeated three times at day 2, 4 and 6 after initial treatment. PCI-

sepsis was induced by i.p. injection of 3μL/g b.w. of a processed human stool suspension. 

Human faeces was donated by healthy male volunteers, processed and microbiologically 

characterised at the Jena University Hospital, Germany. For a detailed description of 

sampling and processing of the human stool see reference [87]. Faeces aliquots were 

kindly provided by PD Dr. R. Claus. Six hours after the insult, the broad-spectrum 

antibiotic Meropenem (25mg/kg b.w.) was injected subcutaneously. Antibiotic treatment 

was repeated once daily for two days. For inducing a polymicrobial sepsis with the CLP 

model the abdomen of anesthetised mice was shaved and disinfected. The cecum was 

exposed and identified via an abdominal incision. The distal one-third of the cecum was 

ligated with silk sutures (4-0) followed by puncturing the ligated portion with a 25-gauge 

needle. After a small amount of faeces content was extruded into the peritoneum the cecum 

was returned into the abdomen. The incision was closed by suturing the peritoneum and 

conglutination of the skin using Vetbond tissue adhesive. 0.9% saline solution was injected 

subcutaneously for resuscitation. Bupivacaine was administered at the incision site and 

flunixin meglumine was administered twice for postoperative analgesia. All animals were 

clinically monitored (clinical appearance, weights) after induction of SIRS / sepsis. 

3.2.3 Complete blood count and clinical chemistry 
Ten days post SIRS / sepsis blood was obtained by puncturing the facial vein with a sterile 

needle and collected in anticoagulant lithium-heparin coated blood tubes. Complete blood 

count was performed by automated veterinary haematology (Poch-100iv-Diff; Sysmex). 

For experiments performed at the University of Iowa, USA a defined volume (50 or 

100μL) blood was obtained via retro-orbital bleeding and collected in 15mL falcon tubes. 
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In order to prevent coagulation, 500μL ice-cold RP10 were added to the blood. To lyse 

erythrocytes, 1mL VitaLyse were added and incubated for 5min at room temperature 

followed by stopping the reaction with 9mL ice-cold RP10. After centrifugation (5min, 

500g, 4°C) the supernatant was discarded and cell pellets were washed with 5mL RP10 

followed by centrifugation. After the supernatant was discarded, cells were resuspended in 

500μL RP10. Total numbers of leukocytes were determined using a Neubauer counting 

chamber. To estimate frequencies and numbers of lymphocytes, large cell populations and 

T-cells, processed blood samples were subjected to flow cytometry (see below). 

Blood plasma was separated from blood cells by centrifugation (2000g, 15min, 4°C). The 

plasma was immediately frozen in liquid nitrogen and stored at -80°C. Plasma levels of 

lactate dehydrogenase (LDH), aspartate aminotransferase (GOT) and alanine transaminase 

(GPT) were measured using the clinical chemistry analyser Fuji Dri-Chem 3500i 

(FujiFilm). 

3.2.4 Total numbers of splenic T-cells and purification of splenic CD4+

and CD8+ T-cells 
Ten days post SIRS / sepsis mice were sacrificed and spleens were harvested. A single cell 

suspension from pooled or single spleens was prepared by using a 70μM cell strainer. The 

cell suspension was washed with wash buffer and centrifuged (800g, 10min, 4°C). The 

supernatant was removed and erythrocyte lysis was performed by resuspending the cell 

pellet in 1-2mL ice-cold ACK buffer. After 3min incubation red blood cell lysis was 

stopped by adding excessive amount of wash buffer followed by one washing cycle. Total 

splenocyte numbers were counted with a Neubauer counting chamber using an appropriate 

cell dilution. In order to determine total numbers of T-cells and CD4+/CD8+ T-cell ratios in 

spleen, approximately 1x106 whole splenocytes were transferred into 1.5mL Eppendorf 

tubes and subjected to flow cytometry (CD3/CD4/CD8 staining, see 3.2.6). CD4+ and 

CD8+ T-cells were purified from processed splenocyte suspensions via magnetic bead cell 

separation using the autoMACSPro (Miltenyi Biotec) cell separator and CD4 and CD8α

MicroBeads. For separation all manufactures instructions were followed. Purity of cell 

separations was determined via flow cytometry (% CD3(+)) and routinely exceeded 90%. 
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3.2.5 T-cell cultivation and ex vivo T-cell activation assays 
In order to study T-cell receptor- (TCR) mediated T-cell activation ex vivo at post-acute 

stages of SIRS and sepsis, T-cell activation assays were employed using monoclonal anti-

CD3ε and/or anti-CD28 antibodies. TCR complex and/or CD28 co-receptor triggering with 

anti-CD3ε and anti-CD28 antibodies is commonly used as an experimental model for 

stimulation of polyclonal naïve T-cells. The interaction of anti-CD3ε with the two CD3ε-

chains of the TCR complex leads to clustering and conformational changes resulting in 

intracellular signalling cascades mediating T-cell effector functions, such as cytokine 

production, clonal expansion, cytotoxicity and cell-cell interactions. However, in addition 

to TCR/CD3 triggering, complete and physiological activation of T-cells requires 

stimulation of the co-receptor CD28 ex vivo and in vivo. Ex vivo co-stimulation of T-cells 

can be triggered by clustering of CD28 co-receptors using anti-CD28 antibodies. 

Immobilisation of anti-CD3ε on dish surfaces and beads or cross-linking of biotinylated 

anti-CD3ε antibodies with streptavidin induces different qualities of T-cell responses. For 

example, streptavidin cross-linked anti-CD3ε/biotin antibodies induce robust proximal 

TCR signalling but fail to elicit a productive TCR response, such as cytokine expression 

and proliferation. In order take these findings in account, a panel of different TCR stimuli 

were employed covering a wide range of physiological productive and unproductive 

triggers: (i) 1.7μg/mL anti-CD28/biotin + 5μg/mL streptavidin in solution, (ii) 1.7μg/mL 

anti-CD3ε/biotin + 5μg/mL streptavidin in solution, (iii) 1.7μg/mL anti-CD3ε/biotin + 

1.7μg/mL anti-CD28/biotin without streptavidin in solution. For dish surface 

immobilisation of anti-CD3ε/biotin (iv), 5μg/mL anti-CD3ε/biotin  (in PBS) were 

incubated in the respective wells for at 2-4 h, at 37°C and washed with PBS before plating 

the T-cells in the presence of 1.7μg/mL anti-CD28. Beads coupled with anti-CD3ε and 

anti-CD28 (v) were used according to the manufactures protocol (T-cell expansion kit, 

Miltenyi). Stimulated CD4+ and CD8+ T-cells were cultured in RP3 medium for 18h 

(CD25, CD69 expression) or in RP10 medium supplemented with 0.00035% 2-mercapto-

ethanol for 48h  (proliferation capacity) at a density of 1x106 cells/mL in 24-well cell 

culture plates in an incubator (37°C, 5% CO2). CD25 (IL-2 receptor α-chain) and CD69 

(C-lectin binding domain type II transmembrane glycoprotein) were used as markers for T-

cell activation. CD69 and CD25 are not expressed on resting naïve CD4+ and CD8+ T-

cells, though CD4+/FoxP3+ regulatory T-cells exhibit constitutive expression of CD25. 

Upon TCR stimulation in vitro and in vivo, CD25 is up-regulated and associates with 
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constitutively expressed β- and common γ-chains to form the trimeric IL-2 receptor 

required for IL-2-dependent T-cell expansion [88]. CD69, also referred to as early 

lymphocyte activation marker, is rapidly expressed on activated T-cells and it is assumed 

that CD69 acts as a co-stimulatory receptor for T-cell activation and expansion, although 

no physiological ligand has been found yet [89].  

3.2.6 Flow cytometry 
Stimulated T-cells (18h) and cells from processed whole splenocyte suspensions were 

transferred into 1.5mL Eppendorf tubes and washed with 500μL FACS buffer I followed 

by centrifugation (800g, 7min, 4°C). After removing the supernatant cells were stained for 

20-30min on ice in the dark with a total volume of 50μL FACS buffer I containing the 

respective flow cytometry antibodies in appropriate fluorochrome combinations and 

concentrations (table 2). Cells were washed with 1mL FACS buffer I, centrifuged and 

resuspended in 300μL PBS. Data were acquired using a FACS Calibur (BD 

PharmingenTM) and analysed with FlowJo software (TreeStar Inc.)

3.2.7 T-cell receptor signalling analysis via western blot 
Purified CD4+ and CD8+ T-cells were resuspended with RP0 buffer in 1.5mL Eppendorf 

tubes at a density of 3 x 106 cells/mL and rested prior stimulation for at least 15min at 

37°C. T-cells were stimulated with 1.5μg/mL anti-CD3ε/biotin + 1.5μg/mL anti-

CD28/biotin for 1min, 5min, 30min, and 4h at 37°C in a water bath. Long-time stimulation 

(18h and 24h) was performed in appropriate cell culture dishes in an incubator (37°C, 5% 

CO2). Both stimulation antibodies were mixed prior adding to cells. After stimulation cells 

were centrifuged for 20s. The supernatant was aspirated off quickly and the cell pellet was 

lysed by adding 250μL ice-cold lysis buffer followed by vortexing. The cell lysates were 

incubated at room temperature for 10min and subsequently on ice for 10min. In order to 

clear the lysates from cell debris, samples were centrifuged for 15min at full speed at 4°C. 

200μL of cleared lysates were transferred into vials containing 200μL 2x sample buffer 

and boiled at 95°C for 5min. 

To separate proteins for western blotting analysis a sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) was performed using a 10% gradient 

separation gel (pH 8.6) and a 5% stacking  gel (pH 6.8) (see 3.1). Protein samples and 

prestained protein standard ladder were applied on two gels with the same composition 
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with a Hamilton glas pipette. Gels were run in 1x PAGE buffer with 45mA and max. 400V 

for approximately 1:45h using the PROTEAN® II xi Cell (Bio-Rad Laboratories, Inc.) 

electrophoresis apparatus. A wet / tank blotting system (Trans-Blot® Cell, Bio-Rad 

Laboratories, Inc.) was used to transfer the proteins from the gel to a polyvinylidene 

fluoride (PVDF) membrane. Whatman filter papers and PVDF blotting membranes were 

cut in the same size like the gels. PVDF membranes were activated with methanol, washed 

with dist. water and equilibrated in 1x transfer buffer together with the Whatman filter 

papers for 30min. A blotting sandwich (3x Whatman filter papers, PVDF membrane, gel 

and 3x Whatman filter papers) was assembled and transferred to the XCell box. The 

protein transfer was run at 0.75mA per gel for 100min. Subsequently, the membranes were 

blocked with 1x TBS-T + 1% BSA for 30min and cut into pieces in order to detect several 

proteins with different protein sizes at the same time. Membranes were exposed to primary 

antibody solutions over night at 4°C under continuously shaking.  

Phosphorylated protein levels of PLCγ1 (Y783, 155kDa), ZAP70 (70kDa), LAT (Y195, 36 

/ 37 kDa), Erk1/2 (Thr202/Tyr204, 42/44kDa) and Akt (S473, 60kDa) were detected using 

phospho-specific antibodies (see 3.1). After incubation with primary antibody, membranes 

were washed three times for 10min with 1x TBS-T followed by incubation with the 

respective secondary antibodies (see 3.1) for 30 – 45min at room temperature. Membranes 

were washed three times for 10min with 1x TBS-T. For protein detection, membranes were 

soaked with Oxidizing Reagent Plus and enhanced Luminol Reagent Plus for 1 min. The 

horseradish peroxidase-catalysed chemiluminescence reaction was detected with the 

FujiFilm LAS-3000 (FujiFilm) imaging system. In order to remove primary and secondary 

antibodies, membranes were incubated with stripping buffer for 30min at 50°C. After 

membrane stripping, membranes were rinsed with dist. water and washed with 1x TBS-T 

followed by a new protein detection cycle. 

3.2.8 Live imaging of Ca2+ release upon TCR triggering 
The release of calcium ions from intracellular Ca2+ stores upon TCR stimulation is a 

crucial step for physiological T-cell responses. The fluorescent dye Fura-2-acetoxymethyl 

ester (Fura-2-AM) is commonly used to study Ca2+ release in biological systems. Fura-2-

AM is cell membrane permeable and is converted into impermeable Fura-2 by cleaving the 

acetooxymethyl ester group by esterases within living cells. Fura-2 binds calcium ions in 

the cytoplasm with a high affinity, thereby changing its fluorescent properties. Fura-2 is 
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excited at 340 and 380nm and fluorescent emission is detected at 510nm. Binding of Ca2+

ions increases 510nm emission of Fura-2 upon 340nM excitation, while 510nm emission at 

380nM excitation declines. Using the ratio of 510nM fluorescence upon 340nm and 

380nM excitation facilitates perpetual quantification of the amount of Ca2+ ions released 

into cytoplasm. 

Purified CD4+ and CD8+ T-cells (2 x 106 cells per stimulation) were transferred into 50mL 

Falcon tubes and washed with 5mL RP3 w/o phenol red. After centrifugation (800g, 

10min, RT) the supernatant was removed and cells were stained at a density of 5 x 106

cells/mL with the respective amount of RP3 w/o phenol red containing 10μM Fura-2-AM 

and 0.02% Pluronic F-127. Cells were incubated for 45min at 37°C in the dark. After 

Fura-2-AM loading cells were washed twice with 5mL RP3 w/o phenol red and 

resuspended for stimulation at a density of 1 x 106 cells/mL RP3 w/o phenol red. 2mL (2 x 

106 cells) were transferred into a quartz cuvette and placed into the spectrofluorometer 

(Jasco FP 6500, Jasco Inc. or RF-5301PC spectrofluorophotometer, Shimadzu). The 

spectrofluorometers possess heated cuvette cells with magnetic stirrers in order to ensure 

optimal stimulation conditions (37°C and quick distribution of stimuli in cell suspension). 

Prior starting stimulation kinetics cells were equilibrated for 5min within the cuvette at 

37°C. Following kinetics were used to measure Ca2+ responses of T-cells: 100sec basal 

reading, 150sec anti-CD3ε + anti-CD28 stimulation (1μg/mL hamster anti-CD3ε and anti-

CD28), 200sec crosslinker stimulation (2.5 μg/mL anti-hamster IgG) and 150sec 

ionomycin (1μg/ mL ionomycin). Ionomycin was added as a positive control and used for 

normalisation in data analysis since its forms pores in biological membranes leading to the 

profound influx of Ca2+ ions independent of TCR triggering. Fura-2 was excited 

simultaneously at 340nm and 380nm and fluorescence intensity was measured at 510nm. 

For data imaging and analysis following equilibration was used for normalisation: y = [f(x) 

– f(x)min] / [f(x)max - f(x)min]; f(x) = 510nm emission at time point x, f(x)min = average 

510nm emission at basal reading, f(x)max = average 510nm emission after ionomycin 

treatment from 580-600s.

3.2.9 T-cell proliferation analysis 
In order to analyse the proliferation capacity of T-cells after SIRS / sepsis, isolated pure 

CD4+ and CD8+ T-cells were loaded with the fluorescent dye carboxyfluorescein 

succinimidyl ester (CFSE). CFSE is cell membrane permeable and is retained within cell 
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due to covalently coupling of the succinimidyl group with amine moieties. The stable 

linkage of CFSE within cells facilitates to monitor cell division due to the progressive 

halving of CFSE fluorescence in each daughter cell. The characteristic CFSE fluorescent 

pattern enables quantification of (a) number of cell divisions per cell and (b) the frequency 

of cells that undergo at least on cell division cycle. CFSE fluorescence profiles are 

analysed via flow cytometry and appropriate softwares. 

For CFSE loading purified CD4+ and CD8+ T-cells (1 x 106 per stimulation) were 

transferred into 15mL Falcon tubes, washed with 5mL PBS and centrifuged (800g, 10min, 

RT). The supernatant was aspirated and cell pellets were resuspended in 1mL PBS 

containing 1-2μM CFSE. Cells were incubated for 5min at 37°C in the dark. The reaction 

was stopped by adding 9mL PBS followed by centrifugation. After the supernatant was 

removed cells were resuspended in RP10 supplemented with 0.00035% 2-meracpto-

ethanol and stimulated ex vivo with a panel of different anti-CD3ε and/or anti-CD28 

combinations in solution or immobilised on dish surfaces or beads (see 3.2.5). 48h post 

stimulation cells were harvested and CFSE fluorescence was measured via flow cytometry 

using a FACS Calibur (BD PharmingenTM) and analysed with FlowJo software (TreeStar 

Inc.). 

3.2.10 Lymphocytic choriomeningitis virus infection, and ex vivo
LCMV-peptide stimulation 

In order to expand and generate LCMV-peptide-specific effector CD4+ and CD8+ T-cells 

in background of SIRS and sepsis, mice were infected with the Armstrong strain of 

Lymphocytic choriomeningitis virus (LCMV-Arm). LCMV-Arm was kindly provided by 

V.P. Badovinac (University of Iowa). Ten days post LPS- and CpG-treatment and CLP 

surgery, 200μL 0.9% saline containing 2 x 105 plaque forming units (PFU) LCMV-Arm 

were injected into mice i.p.. Eight days later mice were sacrificed and spleens were 

harvested. A single cell suspension from individual spleens was prepared using a mesh. 

The single cell suspension was filtered with filter paper, washed with RP10 and spun down 

(5min, 800g, 4°C). The supernatants were discarded and erythrocytes were lysed with 1mL 

VitaLyse buffer. After 3min incubation at room temperature erythrocyte lysis was stopped 

with 9mL RP10 followed by centrifugation. The supernatants were removed and pellets 

were resuspended in 7mL RP10. 100μL of splenocyte suspension were transferred into a 

96-well plate for each separate peptide stimulation concentration. 
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Titrating concentrations of synthetic LCMV-peptides GP61 and GP33 were used to 

stimulate LCMV-specific CD4+ and CD8+ T-cells, respectively. Splenocytes were 

separately stimulated with 0; 0.0256 x 10-3; 0.128 x 10-3; 0.64 x 10-3; 3.2 x 10-3; 0.016; 

0.08; 0.4; 2; 10 and 50μg/mL GP61 or with 0; 0.01; 0.025; 0.05; 0.1; 0.25; 0.5; 1; 2; 5; 10 

and 200nM GP33 for 5h. Peptide concentrations (2 x in RP10, 100μL per stimulation) 

were prepared by a serial dilution of a 10μg/mL GP61 stock solution or a 1mM GP33 

stock solution. 100μL of respective peptide solution was added to 100μL splenocyte 

suspension in a 96-well plate.  Golgi PlugTM Protein Transport Inhibitor (BD 

PharmingenTM) was added (1:1000) to accumulate produced cytokines within the cell and 

inhibit secretion via the Golgi apparatus pathway. Cytokine response was measured via 

flow cytometry (see 3.2.12) 

3.2.11 Listeria monocytogenes infection and in vivo GP33-peptide 
stimulation 

TCR-transgenic Thy1.1/1.2 P14 or Thy1.1/1.1 P14 CD8+ T cells were obtained from 

spleen or peripheral blood of naïve transgenic P14 mice. The majority of peripheral T-cells 

from these mice are CD8+ and possess T-cell receptor molecules specific for the LCMV-

peptide GP33. The frequency of CD8+ T-cells within white blood cells or splenocytes was 

determined prior adoptive transfer via flow cytometry. According to frequency of CD8+ T-

cells in the blood or spleen, cell preparations of blood or spleen were prepared containing 

5,000 CD8+ T-cells (P14 T-cells). Cells were transferred to new vial and 0.9% saline was 

added to fill up to 200μL. Cells were adoptively transferred into the retro-orbital vein of 

recipient mice using a syringe with a fine needle. Mice received P14 T-cells one day prior 

and ten days post LPS, CpG treatment or CLP surgery. 

Ten days post SIRS / sepsis induction mice were intravenously infected with 1 x 107

colony forming units (CFU) attenuated Listeria monocytogenes expressing an Ova/GP33 

fusion protein (LM-GP33). LM-GPP33 was kindly provided by V.P. Badovinac 

(University of Iowa). In order to prepare a LM-GP33 solution with 1 x 107 (CFU), a 1mL 

stock solution of LM-GP33 was thawn and transferred into 50mL Falcon tubes containing 

9mL Tryptic Soy Broth (TSB) and streptomycin (50μg/mL). Bacteria were grown in an 

incubator under continuously shaking at 37°C until reaching an optical density of 0.06. The 

optical density was measured using an appropriate photometer at 600nm. As a blank 

standard TSB (+ streptomycin) without bacteria was used. An optical density of 0.06 is 
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equal to a bacteria concentration of 5 x 107 CFU/mL. 5mL bacteria suspension were 

transferred into fresh falcon tubes and spun down. The supernatant was removed and 

bacteria were resuspended in 5mL 0.9% NaCl solution. 200μL of bacteria/NaCl solution (1 

x 107 CFU) were injected in each mouse i.v.. In order to verify the infection dose used in 

each experiment, the bacterial suspension was plated and grown on culture dishes 

containing TSB broth + streptomycin for 24h in an incubator (37°C,  5% CO2). The 

number of colonies was counted and did not differ significantly from 5 x 107 CFU/mL. 

Seven days post attenuated LM-GP33 infection 5μg GP33-peptide in 200μL 0.9% saline 

solution were injected into the retro-orbital vein of peptide receiving mice. One mouse in 

each experiment did not receive GP33-peptides and served as a control to facilitate an 

appropriate gating strategy in flow cytometry data analysis. Two hours post peptide 

injection mice were sacrificed and individual spleens were harvested. Spleens were quickly 

processed as described in 3.2.10. Flow cytometry and intracellular cytokine staining were 

performed as described in 3.2.12. 

3.2.12 Intracellular cytokine staining via flow cytometry 
The present section describes the flow cytometry procedure of experiments involving 

secondary infection models. 100μL processed blood samples (see 3.2.3) or 100μL of ex 

vivo or in vivo peptide-stimulated splenocytes single cell suspensions were washed with 

150μL FACS buffer II (in 96-well plates) and spun down (3min, 800g, 4°C). Prior cell 

fixation and permeabilisation for intracellular cytokine staining, cell surface molecules 

(CD4, CD8, CD25, CD69, Thy1.1 and/or Thy1.2) were stained. Cell pellets were 

resuspended in 75μL FACS buffer II containing flow cytometry antibodies at appropriate 

concentrations and fluorophores (see 3.1). To minimise unspecific antibody binding on the 

surface of present phagocytes, Fc-blocking reagent was added to the staining solution. 

Cells were stained for 20-30min at 4°C in the dark, washed with 150μL FACS buffer and 

spun down. For fixation, cells were resuspended in 100μL ice-cold Cytofix/Cytoperm 

Solution (BD PharmingenTM) for 10 – 15min at 4°C in the dark. Cells were washed twice 

with 150μL 1x PermWash buffer (BD PharmingenTM). Fixed and permeabilised cells were 

stained with 75μL 1x PermWash buffer containing flow cytometry antibodies at 

appropriate concentrations and fluorophores (see 3.1) for 20-30min at 4°C in the dark. 

After washing with 200μL FACS buffer cells were centrifuged and pellets were 
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resuspended in 300μL FACS buffer II. Data were acquired using a FACS Canto II (BD 

PharmingenTM) analysed with FlowJo software (TreeStar Inc.). 

3.2.13 Statistical analyses 
GraphPad Prism5 (GraphPad Software Inc.) was used for statistical data analysis. A 

Mann-Whitney U test (two-tailed, confidence interval 95%) was used to determine 

significances between two experimental groups. A Kruskal-Wallis one-way analysis with 

Dunns post test was performed to determine significances between more than two 

experimental groups. Statistical survival was performed with SPSS Statistics (IBM). n.s. 

non significant, * p≤0.05, ** p≤0.01, ***p≤0.001 
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4 Results 

4.1 Murine models of systemic inflammation and sepsis 

4.1.1 Mortality and morbidity 
Systemic Inflammatory Response Syndromes, including sepsis are very heterogeneous 

diseases characterised by a complex interplay of cells, processes and molecules that 

contribute to disease-related morbidity and mortality. Disease progression and outcome are 

highly variable depending on multiple factors including the nature and origin of the 

disease, comorbidities of the host as well as genetic and non-genetic predispositions. To 

account for the heterogeneity of the disease, four different murine models of systemic 

inflammation and sepsis were employed (Fig. 7A). Using two models of sterile SIRS 

(LPS- and CpG-DNA-induced SIRS) and two models of polymicrobial sepsis (PCI and 

CLP sepsis models) moreover enables to discriminate effects induced by the inflammatory 

host response from effects caused by the actual presence of viable pathogens. LPS and 

CpG-DNA (unmethylated CpG-rich oligonucleotides) are bacterial compounds and induce 

a profound systemic inflammation via activation of TLR4 (LPS) and TLR9 (CpG-DNA) 

expressed on neutrophils, macrophages and B-cells. By inducing microbial infections in 

the abdominal area, the PCI and CLP models trigger a marked peritoneal sepsis with 

polybacterial origin.   

To characterise the pathophysiology of the utilized disease models animals were clinically 

monitored for ten days post insult, determining weight loss, clinical appearance and 

mortality. LPS / endotoxemia and peritoneal sepsis (PCI and CLP) induced a severe illness 

characterised by profound weights loss, lethargy, ruffled fur, swollen and clotted eyes 

within the first 48h (Fig. 7B). Animals suffering from septic peritonitis additionally 

exhibited signs of diarrhoea. On the contrary, mice treated with CpG oligonucleotides did 

not show symptoms of severe sickness except mild weight loss and lethargy within 24 

hours. After acute illness surviving mice from all experimental groups quickly gained 

weight and recovered exhibiting no symptoms of sickness ten days post SIRS / sepsis (Fig. 

7B). Animals from the PCI group showed an attenuated increase in body weight, not 

reaching initial weight at day ten post sepsis. 
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_________________________________________________________________________ 
Figure 7. Experimental design and clinical features of murine SIRS and sepsis models 
(A) Experimental design. A sterile Systemic Inflammatory Response Syndrome (SIRS) was induced by the 
intraperitoneal injection (i.p.) of 9 – 11 mg/kg b.w. lipopolysaccharide (LPS) or i.p. injection of 4 x 4.5 
mg/kg b.w. CpG oligonucleotides (CpG-DNA) 2d, 4d and 6d post initial treatment. Polymicrobial peritoneal 
sepsis was induced by i.p. injection of 3 μL/g b.w. processed human stool (PCI) followed by antibiotic 
treatment (meropenem, 25mg/kg subcutaneously) 6h, 24h and 48h post insult. Surgical ligation and puncture 
of the cecum (CLP) was employed as a second murine polymicrobial sepsis model. (B) Time course of body 
weights (survivors) and (C) survival rates with at least 26 animals per group. CLP-sepsis experiments were 
performed in a different laboratory and one representative experiment (N=8) is depicted. Animals undergoing 
sham surgery represent the control group (sham) in these experiments. For survival analysis Log Rank 
(Mantel-Cox) was used to determine significances. 
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Most importantly, considerable inter-model differences were observed in SIRS- or sepsis-

induced mortality (Fig. 7C). Peritoneal sepsis triggered by the intraperitoneal injection of 

human faeces (PCI model) exhibited a mortality rate of about 40% within the acute stage 

of the disease (four days post insult) with a total mortality of 46% at day ten post insult. 

Similar disease dynamics were observed for LPS-induced SIRS but with less overall 

mortality. Within four days after disease onset 25% of all mice died. A total mortality of 

28% was observed at day ten. According to the mild clinical appearance, CpG-DNA-

induced systemic inflammation did not induce disease-related mortality. Since the present 

study focused on the long-time impact of SIRS / sepsis in surviving mice, sublethal CLP 

surgery was performed to induce a marked septic insult with clear symptoms of severe 

sickness but low mortality ( 10%). The employed CLP-surgery exhibited a total mortality 

rate of 8% within ten days post disease onset. 

4.1.2 Organ / liver damage after systemic inflammation and sepsis 
Acute episodes of systemic inflammation and sepsis are characterised by tissue and organ 

damage. Elevated blood plasma levels of enzymes normally expressed within intact cells 

are commonly used as markers for cell / tissue damage in research and diagnosis. Lactate 

dehydrogenase (LDH) is ubiquitously expressed within all cells, while plasma levels of 

LDH are low under normal conditions. Death of cells results in the systemic release of 

LDH into blood where it can be detected as a marker for systemic cell/tissue damage in 

humans and rodents. More specifically, the presence of the liver enzymes glutamate 

pyruvate transaminase (GPT) and glutamate oxaloacetate transaminase (GOT) in blood 

plasma is an indicator for liver damage / dysfunction.  

The plasma levels of LDH, GPT and GOT at day ten post insult were determined by 

quantification of the specific catalytic activity via colorimetric analyses using an 

automated clinical chemistry analyser (Fig. 8A). As expected, no elevated levels of all 

three markers (LPS model) or only slightly increased levels of LDH, but not GOT and 

GPT (PCI model), were observed ten days after the insult, underlining the recovery of 

surviving mice from the acute insult. Intriguingly, animals from the CpG-group still 

showed elevated plasma levels of all three tested organ/liver damage markers ten days after 

starting the treatment, although these animals did not show any signs of severe illness. 

However, this finding shows that injection of CpG-DNA indeed caused a systemic 

inflammation associated with tissue / organ damage.
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_________________________________________________________________________ 
Figure 8. Organ/tissue damage and erythrocyte compartment at post-acute SIRS / sepsis 
(A) Plasma levels of lactate dehydrogenase (LDH), alanine transaminase (GPT) and aspartate transaminase 
(GOT) were measured via an automated clinical chemistry analyser in survivor animals at day ten post SIRS 
/ sepsis insult. Data are presented as Box Whisker plots (vertical bar: median, whiskers: min and max) and 
include at least 5 animals per group. (B) Erythrocyte counts and heamatocrit in blood from survivor animals 
at day ten post SIRS / sepsis insult were determined via automated haemocytometry. Data are presented as 
means + standard error of mean (SEM) including at least 13 animals per experimental group. A Kruskal-
Wallis one-way analysis with Dunns post test was performed to determine significances (* p≤0.05, ** 
p≤0.01, *** p≤0.001). 

4.1.3 The red blood cell compartment after systemic inflammation and 
sepsis 

It has been shown that the early loss of red blood cells together with lowered heamatocrit 

and haemoglobin levels are common features of septic patients and most likely contribute 

to worse outcome in sepsis [90-92]. In order to investigate potential alterations of the red 

blood cell compartment at post-acute stages of SIRS and sepsis, ten days post LPS- and 

CpG-treatment or polymicrobial sepsis (PCI model) peripheral blood was withdrawn from 

the facial vein and immediately analysed by automated veterinary haematology. Animals 

from all three experimental groups still exhibited decreased total numbers of erythrocytes 

and lowered heamatocrit values to varying degrees (Fig. 8B). CpG-induced systemic 

inflammation had a stronger impact on the red blood cell compartment than LPS / 

endotoxemia and septic peritonitis. The observed qualitative and quantitative differences of 

A

B
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the erythrocyte compartment underline the distinct biological outcome of the employed 

murine models of SIRS and sepsis. Since experiments using the CLP sepsis model were 

carried out in a different laboratory, quantification of organ / liver damage (Fig. 8A) and 

red blood cell counts (Fig. 8B) were not determined due to the lack of appropriate technical 

equipment. 

4.2 The impact of systemic inflammation and sepsis on T-cell 
immunity at post-acute disease stages 

4.2.1 Systemic inflammation and sepsis lead to persistent leukopenia 
and/or loss of naïve T-cells 

The early loss of leukocytes, in particular lymphocytes, in peripheral blood is a common 

hallmark of SIRS and sepsis and is believed to contribute to immune paralysis after SIRS / 

sepsis (see introduction). However, the majority of studies in humans and rodents focused 

on early stages of the disease and much less is known about potential recovery of total 

leukocyte and lymphocyte numbers at post-acute stages. To investigate whether SIRS- and 

sepsis-triggered leukopenia and lymphopenia is a phenomenon still present at post-acute 

disease stages, total leukocyte and lymphocyte counts were analysed ten days post SIRS 

and polymicrobial sepsis (Fig. 9A and B). Pronounced leukopenia was observed in both 

employed models of sterile systemic inflammation (Fig. 9A). Decreased total leukocytes 

counts are primary caused by a marked drop of lymphocytes (Fig. 9B) while total numbers 

of large cell populations (primary granulocytes in mice) are unaffected (Fig. 9C). 

Conversely, both murine models of peritoneal sepsis did not lead to protracted leukopenia 

(Fig. 9A) but induced strong lymphopenia still present at post-acute stages of sepsis (Fig. 

9B). Total leukocytes numbers in both sepsis models are compensated by the profound 

numerical increase of large cell populations in peripheral blood (Fig. 9C). 

These data strongly suggest that the SIRS- and sepsis-triggered loss of lymphocytes in 

peripheral blood is persistent and most likely contributes to impaired adaptive immunity as 

a long-time consequence of systemic inflammation and sepsis. Moreover, the leukocyte 

compartment exhibits a changed composition after sepsis with potential impacts on 

immune responses at post-acute stages of sepsis. 



 Results 

44

_______________________ 
Figure 9. Blood cell counts and 
splenic T-cell numbers at post-
acute SIRS / sepsis  
Ten days post SIRS / sepsis insult 
the total number of (A) leukocytes, 
(B) lymphocytes and (C) large 
cells (granulocytes) in peripheral 
blood were determined by 
automated heamocytometry from 
at least 9 survivor animals. In 
experiments with CLP sepsis 
leukocyte numbers were 
determined by cell counting of 
processed blood samples. 
Lymphocyte and large cell counts 
were assessed via flow cytometry 
by gating on lymphocytes and 
large cell populations (N=8, 
representative of four independent 
experiments). (D) Total T-cell 
counts and (E) CD4+/CD8+ ratios 
in spleen (at least 9 animals/group) 
or blood (CLP experiments, N=8, 
representative of four independent 
experiments) were determined with 
flow cytometry by gating on 
CD4(+) and CD8(+) cells. A 
Kruskal-Wallis one-way analysis 
with Dunns post test was 
performed to determine 
significances in experiments with 
more than two experimental 
groups. A Wilcoxon-Mann-
Whitney U test was performed to 
determine significances in 
experiments with two experimental 
groups (* p≤0.05, ** p≤0.01, *** 
p≤0.001). 
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However, lymphopenia observed in peripheral blood must not necessarily reflect a 

systemic total loss of lymphocytes, since the majority of B- and T-cells reside in secondary 

lymph organs, in particular the spleen. Additionally, an inflammatory response induces the 

recruitment of peripheral blood immune cells to the infected tissues and lymph organs. To 

take these considerations in account, the total number of CD4+ and CD8+ T-cells was 

determined via flow cytometry in the spleen ten days post SIRS and sepsis. Significant 

persistent loss of splenic T-cells was found in all experimental groups (Fig. 9D) 

conforming that the early systemic drop of T-cell cellularity is a phenomenon also present 

in later stages of SIRS and sepsis. Since experiments using the CLP sepsis model involved 

secondary infections in living animals beyond day ten post insult (see Fig. 13 and 16 for 

experimental design), total numbers of CD4+ and CD8+ T-cells in CLP animals were 

measured from peripheral blood. In line with the findings from the PCI septic peritonitis 

model, animals from the CLP group exhibited a profound loss of CD4+ and CD8+ T-cells 

ten days post disease onset (Fig. 9D). 

SIRS- and sepsis-induced apoptosis did not affect T-cell populations indiscriminately (Fig. 

9E). LPS / endotoxemia primarily affected CD4+ T-cell numbers leading to decreased 

CD4+/CD8+ T-cell ratios, whereas SIRS / sepsis induced by CpG or PCI resulted in slightly 

increased CD4+/CD8+ T-cell ratios. Similar to LPS treatment, CLP-induced T-cell loss in 

peripheral blood preferably affected CD4+ T-cells as illustrated in decreased CD4+/CD8+

ratios. 

4.2.2 T-cell responses to ex vivo TCR stimulation are not disturbed at 
post-acute stages of systemic inflammation and sepsis 

All described data (see above) illustrate that the employed murine models of systemic 

inflammation and polymicrobial sepsis fulfil all clinical criteria of SIRS and sepsis and 

therefore, are suitable protocols to study the impact of the diseases on T-cell function. As 

shown in Fig. 9, SIRS and sepsis resulted in the profound persistent loss of peripheral T-

cells and thereby, most likely affects T-cell immunity at late stages of the disease. In 

addition to T-cell loss, a cellular malfunction of T-cells has been proposed contributing to 

compromised adaptive immunity at post-acute stages of sepsis but no detailed studies have 

been carried out yet. 

In order to investigate TCR-mediated (adaptive) T-cell responses at post-acute stages of 

SIRS and sepsis, CD4+ and CD8+ T-cells were isolated from spleens from post-septic mice 
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and challenged with a panel of TCR/CD3 and/or CD28 co-receptor triggers ex vivo (Fig. 

10A). Monoclonal anti-CD3ε and/or anti-CD28 antibodies were used in different 

combinations and types of presentation to cover a wide range of physiological productive 

and unproductive TCR-triggers (see section 3.2.5). The cell surface expression of CD25 

(IL-2 receptor α-chain) and CD69 is commonly used as a marker for TCR-mediated T-cell 

activation. Here, the induction of CD25 and CD69 was determined via flow cytometry 18h 

post ex vivo TCR stimulation of purified CD4+ and CD8+ T-cells. 

As expected, no induction of expression of CD25 (Fig. 10B) or CD69 (Fig. 10C) was 

detected in all experimental groups without stimulation or upon activation with anti-CD28 

alone. Only weak T-cell activation was observed after challenge with anti-CD3ε in 

solution in the absence of CD28 co-stimulation. Anti-CD3ε in combination with anti-CD28 

co-stimulation induced an intermediate CD25 and CD69 response in the control group, 

while immobilisation and clustering of anti-CD3ε on the dish surface in combination with 

anti-CD28 stimulation triggered a very strong T-cell activation as 80-90% of all T-cells 

expressed CD25 or CD69. T-cell stimulation with beads coupled with anti-CD3ε and anti-

CD28 induced a modest response in CD25 expression but resulted in very pronounced 

CD69 accumulation. In sum, the panel of ex vivo TCR triggers employed here covers a 

wide array of T-cell responses ranging from weak to very strong in terms of CD25 and 

CD69 T-cell activation marker expression. Therefore, this assay is a suitable protocol to 

detect even slight inherent T-cell alterations in TCR responses after SIRS and sepsis. 

Splenic CD4+ and CD8+ T-cells purified from post-acute SIRS (LPS and CpG) or septic 

animals (PCI model) did not show impaired functional responses to ex vivo TCR 

stimulation with either TCR trigger indicating that SIRS and polymicrobial sepsis did not 

lead to inherent defects in T-cell activation. It is worth noting that T-cells from all SIRS / 

sepsis settings showed a clear trend (although not statistically significant in all groups) of 

increased CD25 and CD69 expression profiles upon stimulation with anti-CD3ε together 

with anti-CD28 in solution. This finding might indicate a ‘primed state’ of T-cells after 

SIRS / sepsis rather than desensitised T-cell activation. 
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_________________________________________________________________________ 
Figure 10. T-cell responses to ex vivo TCR stimulation at post-acute SIRS / sepsis 
(A) Experimental design. Ten days post SIRS / sepsis insult animals were sacrificed and spleens were 
harvested. Splenic CD4+ and CD8+ T-cells were purified via magnetic bead separation and ex vivo stimulated 
with a panel of anti-CD3ε and/or anti-CD28 TCR stimuli. 18h later (B) CD25 and (C) CD69 expression was 
determined via flow cytometry by gating on CD25 or CD69 positive cells (at least four independent 
experiments each including several animals). Representative fluorescence histograms are shown on the left 
side of the panel with stimulated (empty curves) vs. non-stimulated (shaded grey). (D) Purified CD4+ and 
CD8+ T-cells were labelled with CFSE and stimulated with the indicated TCR stimuli for 48h. T-cell 
proliferation was assessed via CFSE fluorescence dilution with flow cytometry and quantified as described in 
Material and Methods (at least 3 mice / group). Representative CFSE patterns are shown. Data are presented 
as means + SEM. A Kruskal-Wallis one-way analysis with Dunns post test was performed to determine 
significances (* p≤0.05, ** p≤0.01). 

4.2.3 The expansion capacity of T-cells is not impaired at post-acute 
stages of systemic inflammation and sepsis 

T-cell activation, determined by the means of CD25 and CD69 surface expression upon 

TCR stimulation indicated no inherently impaired T-cell activation after SIRS and sepsis. 

The capacity of T-cells to proliferate after TCR and co-receptor stimulation is a key feature 

of adaptive T-cell responses (Fig. 5). Vigorous T-cell expansion requires three independent 

signals: (i) TCR engagement and signalling, (ii) co-stimulatory signals and (iii) cytokine 

stimulation, in particular IL-2. Enduring SIRS- or sepsis-induced T-cell intrinsic defects in 

one of these steps must consequently lead to impaired expansion upon T-cell stimulation. 

In order to study the proliferation capacity of T-cells ten days post SIRS / sepsis, purified 

splenic T-cells were loaded with CFSE and challenged with a panel of anti-CD3ε and/or 

anti-CD28 TCR triggers ex vivo. 48h later, the CFSE fluorescence pattern was determined 

via flow cytometry to quantify the proliferative T-cell response after TCR/co-receptor 

stimulation (Fig. 10D). 

TCR stimulation with anti-CD3ε in combination with anti-CD28 or coupled on beads 

induced a strong proliferative response of CD4+ and CD8+ T-cells, while CD28 co-receptor 

stimulation alone was not sufficient to trigger T-cell proliferation. In line with non-

defective T-cell activation (Fig. 10B and C), splenic T-cells from SIRS and septic animals 

did not exhibit defects in TCR-induced expansion. Interestingly, tendentially more 

pronounced T-cell proliferation upon soluble anti-CD3ε/CD28 stimulation was observed in 

all SIRS / sepsis groups confirming the findings from the activation marker expression 

(Fig. 10B and C). 
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4.2.4 T-cell receptor signalling upon ex vivo TCR-challenge is not 
altered at post-acute stages of systemic inflammation and sepsis 

All data described above indicate that TCR/co-receptor-mediated T-cell responses are not 

impaired on per cell base at post-acute stages of SIRS and sepsis. In order to confirm these 

findings on a molecular base, the activation pattern of crucial intracellular TCR and CD28 

signalling molecules was analysed upon ex vivo TCR/CD28 triggering with anti-CD3ε + 

anti-CD28. The activation / phosphorylation kinetics of ZAP70, LAT, ERK and AKT were 

assessed via western blot analyses (Fig. 11). Additionally, the TCR-triggered release of 

Ca2+ ions, as a central molecule in TCR signalling, was determined via live ratio-metric 

Fura-2 fluorescence measurements (Fig. 12). 

_________________________________________________________________________ 
Figure 11. Proximal TCR signalling upon ex vivo TCR stimulation at post-acute SIRS / sepsis 
Ten days post SIRS / sepsis insult animals were sacrificed and spleens were harvested. CD4+ and CD8+ T-
cells were purified via magnetic bead separation and stimulated ex vivo with anti-CD3ε and anti-CD28. 
Stimulated cells were lysed at the indicated time points and cell lysates were subjected to standard western 
blot analyses detecting phosphorylated and total protein levels of ZAP-70, LAT, ERK and AKT. Depicted 
western blots are representative for several independent similar experiments. Protein marker sizes in kilo-
dalton (kDa) are shown on the left side of the panel. 

Upon anti-CD3ε/CD28 stimulation all studied TCR signalling molecules were rapidly 

phosphorylated and thus activated, as revealed by using phospho-protein-specific 

antibodies in western blot analyses (Fig. 11). Total protein levels, detected by protein-

specific antibodies, served as loading controls and showed no changed expression pattern 
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over the course of the experiment. None of the experimental SIRS or sepsis groups 

exhibited impaired or altered phosphorylation kinetics, suggesting that SIRS and sepsis did 

not lead to disturbed or changed proximal TCR/CD28 signalling at post-acute stages of the 

disease. These data confirm the findings of non-disturbed T-cell responses described 

above. On the other hand, TCR/co-receptor signalling studies did not provide any evidence 

for stronger T-cell responses upon stimulation with non-immobilised anti-CD3ε/28 as 

phosphorylation dynamics were indistinguishable from the control groups. 

In addition to activating post-translational phosphorylations of TCR/CD28 signalling 

molecules, the release of Ca2+ ions from intracellular calcium stores into cytoplasm 

represents a crucial step in T-cell activation and in the modulation of numerous T-cell 

effector responses. TCR/CD28-induced cytosolic Ca2+ accumulation in T-cells after SIRS 

and sepsis was analysed using the ratio-metric fluorescent dye Fura-2. The ratio of 510nM 

fluorescence emission upon 340nm and 380nM excitation is plotted over the time and 

facilitates live quantification of cytosolic Ca2+ release in living T-cells (Fig. 12). 

As illustrated in Fig. 12, TCR/CD28 complex stimulation with hamster anti-CD3ε/28

induced a weak and slow accumulation of Ca2+, while cross-linking of anti-CD3ε/CD28 

with anti-hamster IgG triggered the rapid and profound release of Ca2+ ions into cytoplasm. 

Ionomycin as an unspecific pore forming agent induces a maximal cellular influx of Ca2+

irrespective of TCR signalling and was used as a positive control and for normalisation. In 

line with the TCR/CD28 signalling molecule phosphorylation analyses, SIRS and sepsis 

did not induce persistent alterations of TCR-triggered Ca2+ release. Temporal kinetics and 

the extent of cytosolic calcium accumulation in T-cells from SIRS and septic animals were 

indistinguishable from the control groups. In sum, biochemical analyses of intracellular T-

cell receptor signal transduction do not provide any indication of impaired T-cell function 

on per cell base at post-acute stages of SIRS and sepsis. 
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Figure 12. Ca2+ release upon ex vivo TCR 
stimulation at post-acute SIRS / sepsis 
Ten days post SIRS / sepsis insult animals were 
sacrificed and spleens were harvested. CD4+ and 
CD8+ T-cells were purified via magnetic bead 
separation and labelled with the ratio-metric 
fluorescence dye Fura-2. Hamster anti-CD3ε + 
anti-CD28, goat anti-hamster IgG and 
ionomycin were added at the indicated time 
points. Live calcium release was assessed by 
measuring Fura-2 emission at 510nm upon 
excitation at 340nm and 380nm.  

Calcium transients are visualised by plotting normalised 340/380nm ratios as described in Material and 
Methods. Experiments are representative of several independent similar experiments. 

4.2.5 Systemic inflammation and sepsis induce persistent defects in 
antigen-dose responses of T-cells ex vivo in background of 
secondary virus infections 

Ex vivo TCR complex and CD28 co-receptor stimulation of pure naïve CD4+ and CD8+ T-

cells with monoclonal antibodies is a suitable experimental approach to study fundamental 

polyclonal adaptive T-cell responses on per cell base as it excludes extrinsic factors that 

modulate T-cell activation in vivo (e.g. antigen presentation or bystander cytokine signals). 

However, this approach fails to recapitulate T-cell activation in its entire complexity 

occurring under in vivo situations (Fig. 5). For example, in infectious diseases, only T-cell 

clones are activated that bear TCR variants specific for the invading pathogens. Pathogen-

induced T-cell stimulation results in the generation of a large pool of effector T-cell clones 

that fight the infectious triggers. This clonal antigen-specific T-cell response is regulated 

by antigen-presenting cells and other immune cells that induce activation and T-cell 

effector responses. To take these considerations in account, secondary infection models 
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were used to extend T-cell studies since they involve all steps of in vivo T-cell activation 

and facilitate ex vivo and in vivo analyses of clonal antigen-specific responses of effector 

CD4+ and CD8+ T-cells in background of systemic inflammation and sepsis. To study 

antigen-specific effector T-cell responses at late stages of SIRS and sepsis, mice were 

infected with the Armstrong strain of Lymphocytic choriomeningitis virus (LCMV-Arm) 

ten days post SIRS and sepsis. Systemic infection with LCMV-Arm induces a profound 

activation of CD8+ and CD4+ T-cells in vivo characterised by the accumulation of virus-

specific T-cell clones including CD4+ and CD8+ T-cells specific for the LCMV-peptides 

GP61 and GP33, respectively. 

The experimental design employed in the present study represents a ‘two-hit experiment’ 

(Fig. 13). Ten days post SIRS (LPS and CpG models) and polymicrobial sepsis (CLP 

model) mice were infected with LCMV-Arm to induce an antiviral response and expand 

LCMV-specific CD4+ and CD8+ effector T-cells. Eight days after LCVM-infection mice 

were sacrificed and whole splenocyte homogenates were challenged ex vivo with titrating 

concentrations of LCMV peptides GP61 or GP33 to examine clonal antigen-specific CD4+

and CD8+ effector T-cell responses in a dose-dependent manner. 

  

_________________________________________________________________________ 
Figure 13. Experimental design of ‘two-hit’ LCMV-infection model  
Ten days post SIRS / sepsis insult mice were infected with the Armstrong strain of Lymphocytic 
choriomeningitis virus (LCMV-Arm) (2 x 105 PFU, intraperitoneal). Eight days post secondary LCMV-Arm 
infection mice were sacrificed and spleen homogenates were stimulated with titrating concentrations of either 
LCMV-GP33 or LCMV-GP61 for 5h in the presence of a secretion inhibitor. CD4+ and CD8+ T-cell 
responses were assessed via flow cytometry. 
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The fraction of T-cells responding to LCMV-peptide stimulation was assessed by 

production of the central T-cell effector cytokine IFNγ via intracellular cytokine staining 

with flow cytometry (Fig. 14 and Fig. 15). At saturating peptide concentration the maximal 

fraction of splenic peptide-specific CD4+ and CD8+ effector T-cells was activated to 

produce IFNγ. Accordingly, ex vivo stimulation with decreasing antigen levels resulted in 

progressively lower frequencies of activated T-cells (IFNγ(+)) following sigmoidal dose-

response kinetics (Fig. 14A and 15A). Dose-response curves were calculated with an 

appropriate software and used to assess the functional avidity (or antigen sensitivity) of 

effector T-cells to cognate antigens. Antigen sensitivity was determined and quantified by 

the means of the peptide concentration that triggers half maximal IFNγ production and are 

depicted as EC50-values. 

As shown in Fig. 14A, CpG-SIRS and CLP-induced sepsis induced protracted attenuated 

antigen-dose responses of effector CD4+ T-cells as judged by right shifts of dose response 

curves. In line with that, the EC50 values for IFNγ production were significantly increased 

in these experimental groups. Contrary, no impaired functional avidity of CD4+ effector T-

cells was detected in mice from the LPS / endotoxemia group. Dose response kinetics and 

EC50 values were indistinguishable from the control group (Fig. 14A). The same results 

were observed for effector CD8+ T-cells (Fig. 15A). CD8+ T-cells from the CpG and CLP 

groups exhibited an attenuated fractional IFNγ production upon antigen stimulation, 

although less pronounced than CD4+ T-cells. In line with the findings from effector CD4+

T-cells, no increased EC50 values for IFNγ production were found in the LPS group. 
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________________________________________________
Figure 14. Ex vivo antigen-dose responses of effector 
CD4+ T-cells at post-acute SIRS / sepsis 
Ten days post SIRS / sepsis insult mice were infected with 
the Armstrong strain of Lymphocytic choriomeningitis virus 
(LCMV-Arm) (2 x 105 PFU, intraperitoneal). Eight days 
post secondary LCMV-Arm infection mice were sacrificed 
and spleen homogenates were stimulated with titrating 
concentrations of LCMV-GP61 (0 – 50 μg/mL) for 5h in 
the presence of a secretion inhibitor. 

(A) IFNγ production in CD4+ T-cells was assessed via intracellular cytokine staining with flow cytometry. 
Fractional IFNγ induction of CD4+ in splenocytes was normalised setting IFNγ induction after 50μg/mL 
LCMV-GP61 to 100%. GraphPad Prism software was used to fit a sigmoidal dose-response curve and for 
calculation of EC50 values for fractional IFNγ production. Representative flow cytometry profiles are 
depicted on the left side of the panel. (B) Geometric mean fluorescence index (MFI) of IFNγ(+) in CD4(+) T-
cells upon stimulation with LCMV-GP61. Data are presented as means + SEM with at least 3 animals per 
group and are representative of 2 – 4 independent experiments. A Kruskal-Wallis one-way analysis with 
Dunns post test was performed to determine significances in experiments with more than two experimental 
groups. A Wilcoxon-Mann-Whitney U test was performed to determine significances in experiments with 
two experimental groups (* p≤0.05).
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Importantly, antigen-triggered synthesis of IFNγ in LCMV-specific effector CD4+ and 

CD8+ T-cells was not impaired on per cell base. The total cellular amount of synthesized 

IFNγ was quantified by the geometric mean fluorescence index (MFI) in activated T-cells 

(IFNγ(+)). None of the experimental groups featured defects in IFNγ synthesis after 

stimulation with saturating antigen concentrations (Fig. 14B and 15B). Interestingly, CD8+

effector T-cells from all experimental groups exhibited trends or significantly increased 

levels of IFNγ production (Fig. 15B), once more indicating a ‘primed T-cell state’ at post-

acute stages of SIRS and sepsis (see Fig. 10). In line with that, the cellular production of 

TNFα, another crucial CD8+ T-cell effector cytokine, was also not impaired on a cellular 

base (Fig. 15C). 

In sum, T-cell analyses using a secondary viral infection model indicate that systemic 

inflammation and polymicrobial sepsis can potentially lead to protracted decreased 

antigen-dose responses (antigen sensitivity) of effector CD4+ and CD8+ T-cells, though 

heterogeneous inter-model outcomes were observed in the SIRS settings. On the other 

hand, cytokine responses of CD4+ and CD8+ T-cells were not affected on a cellular level 

suggesting that attenuated T-cell responses were caused by disease-induced T-cell extrinsic 

defects, such as impaired antigen presentation or co-stimulation. 
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Figure 15. Ex vivo antigen-dose 
responses of effector CD8+ T-cells 
at post-acute SIRS / sepsis 
Ten days post SIRS / sepsis insult 
mice were infected with the 
Armstrong strain of lymphocytic 
choriomeningitis virus (LCMV-Arm) 
(2 x 105 PFU, intraperitoneal). Eight 
days post secondary LCMV-Arm 
infection mice were sacrificed and 
spleen homogenates were stimulated 
with titrating concentrations of 
LCMV-GP33 (0 – 200nM) for 5h in 
the presence of a secretion inhibitor. 
(A) IFNγ production in CD8+ T-cells 
was assessed via intracellular 
cytokine staining with flow 
cytometry. Fractional IFNγ induction 
of CD8+ splenocytes was normalised 
setting IFNγ induction after 200nM 
LCMV-GP33 to 100%. GraphPad 
Prism software was used to fit a 
sigmoidal dose response curve and 
for calculation of EC50 values for 
fractional IFNγ production. 
Geometric mean fluorescence index 
(MFI) of (B) IFNγ(+) in CD8(+) T-
cells and (C) TNFα(+) in CD8(+) T-
cells upon stimulation with 200nM 
LCMV-GP33 for 5h in the presence 
of secretion inhibitor. Data are 
presented as means + SEM with at 
least 3 animals per group and are 
representative of 2 – 4 independent 
experiments. A Wilcoxon-Mann-
Whitney U test was performed to 
determine significances (* p≤0.05).
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4.2.6 Systemic inflammation and sepsis do not induce persistent 
defects of in vivo effector CD8+ T-cell responses 

Data from the LCMV-infection model experiments indicate disturbed antigen-dependent 

T-cell responses at post-acute stages of SIRS and sepsis mediated by environmental cues 

rather than T-cell autonomous defects. In order to study these findings in more detail, a 

novel experimental approach was employed that allows functional in vivo T-cell studies 

with simultaneous discrimination of defects mediated by T-cell extrinsic factors from T-

cell inherent alterations (Fig. 16A). TCR-transgenic P14 CD8+ T-cells, specific for the 

LCMV-peptide GP33 were used to study clonal T-cell activation and effector responses 

upon in vivo injection of GP33. P14 T-cells were adoptively transferred in the same mice at 

physiological low numbers prior (‘pre-SIRS’) and ten days post (‘post-SIRS’) induction of 

SIRS / sepsis. Since ‘post-SIRS’ T-cells are transferred late after the SIRS / sepsis insult, 

potential functional defects in this population would strongly suggest persistent T-cell 

extrinsic alterations that modulate T-cell responses. On the other hand, functional 

disturbances that occur solely in the ‘pre-SIRS’ P14 T-cell population would strongly 

suggest inherent defects induced by the diseases. Expression of different allele variants of 

the T-cell-specific surface molecule Thy1 (Thy1.1/1.1 and Thy1.1/1.2, respectively) 

facilitates discrimination of ‘pre-SIRS’ and ‘post-SIRS’ P14 T-cells populations from 

endogenous T-cells (Fig. 16B). 

In order to accumulate GP33-specific P14 T-cells prior in vivo antigen-challenge, ten days 

post disease onset mice were infected with non-virulent attenuated Listeria monocytogenes

expressing LCMV-derived GP33 (att. LM-GP33). Seven days post att. LM-GP33 infection 

P14 T-cells were challenged in vivo by intravenous injection of their cognate antigen 

GP33. Two hours later, mice were sacrificed, spleens harvested and prepared for flow 

cytometry. Flow cytometric staining for Thy1.1 and Thy1.2 was used to distinguish and to 

gate on ‘pre-SIRS’ and ‘post-SIRS’ P14-T-cell populations (Fig. 16B). To examine in vivo 

P14 T-cell responses, activation marker up-regulation (CD25 and CD69) and effector 

cytokine production (IFNγ and TNFα) were immediately measured via flow cytometry 

from whole splenocyte homogenates without additional ex vivo incubation or stimulation 

steps. As judged by the expression profile of CD69 and CD25, in vivo GP33-antigen 

challenge resulted in rapid activation of both P14 effector T-cell populations (Fig. 16C and 

D). As expected, non-peptide-receiving mice exhibited no signs of T-cell activation 
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underlining the eligibility of the employed in vivo T-cell assay (see Fig16C – F, shaded 

grey histograms).  
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_________________________________________________________________________ 
Figure 16. In vivo CD8+ T-cell responses to antigen stimulation at post-acute SIRS / sepsis 
(A) Experimental design. 5,000 TCR-transgenic LCMV-GP33-specific P14 T-cells were adoptively 
transferred one day before (‘pre-SIRS’, Thy1.1/1.2) and ten days post (‘post-SIRS’, Thy1.1/1.1) induction of 
SIRS / sepsis. Ten days post SIRS / sepsis insult mice were infected with attenuated Listeria monocytogenes
expressing LCMV-GP33 (1 x 107 PFU, intravenously) to accumulate P14 T-cells. Seven days post secondary 
infection P14 T-cells were challenged in vivo by intravenous injection of 5μg LCMV-GP33. Two hours later, 
mice were sacrificed and spleens were harvested followed by flow cytometry staining. (B) ‘pre-SIRS’, ‘post-
SIRS’ P14-T-cells and endogenous T-cells were distinguished via flow cytometry by their differential 
expression of Thy1 alleles. Representative Thy1.1/Thy1.2 2D-plot is shown. (C) CD25, (D) CD69, (E) IFNγ
and (F) TNFα induction after in vivo LCMV-GP33 stimulation was determined via surface staining (CD25, 
CD69) and intracellular cytokine staining (IFNγ, TNFα) with flow cytometry with pre-gating on CD8(+) and 
Thy1.1(+)/Thy1.2(+) (‘pre-SIRS) or Thy1.1(+)Thy1.2(-) (‘post-SIRS’). Representative fluorescence profiles 
are depicted on the left side of the panel with non-stimulated (shaded grey) vs. peptide-stimulated (empty 
curves). Data are presented as means + SEM with at least 4 animals per group and are representative of 2 
independent similar experiments. A Kruskal-Wallis one-way analysis with Dunns post test was performed to 
determine significances. (* p≤0.05, ** p≤0.01). 

Importantly, antigen-triggered P14 T-cell activation was not altered in animals from the 

LPS-SIRS and CLP-sepsis groups, indicating no inherent or extrinsic defects in T-cell 

activation. On the other hand, CpG-treated animals exhibited strong trends of lower 

fractional induction of CD69 and CD25 expression indicating impaired or attenuated T-cell 

activation after CpG-induced SIRS. Since in this experimental group both P14 T-cell 

populations were affected indiscriminately, one can conclude that defective T-cell 

activation was induced by T-cell extrinsic (environmental) alterations rather than disease-

induced T-cell autonomous disturbances. If SIRS / sepsis would have induced inherent 

cellular alterations in P14 T-cells, impaired CD25 and CD69 would have been noticeable 

exclusively in the ‘pre-SIRS’ P14 T-cells, as this cell population was present during 

disease onset. 

Intriguingly, fractional production of INFγ and TNFα in both P14-T-cell populations was 

not impaired in all SIRS / sepsis settings (Fig. 16E and F), although decreased activation 

marker expression indicated impaired T-cell activation in the CpG-group. Moreover, none 

of the experimental groups exhibited alterations in antigen-induced total production of 

IFNγ or TNFα on per cell base as indicated by the unaltered MFIs in cytokine-producing 

P14 CD8+ T-cells (data not shown). In sum, these data illustrate that SIRS and sepsis do 

not lead to substantial enduring defects in TCR-mediated T-cell responses in vivo and 

largely underline the findings described in this thesis. Moreover, non-affected cytokine 

production in both P14 T-cells populations clearly argues against profound environmental 

defects in T-cell activation. However, attenuated activation marker expression upon 
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antigen challenge in the CpG-group, suggests alterations in T-cell activation mediated by 

extrinsic cues, a notion that was raised by the findings of impaired antigen-dose responses 

described in 4.2.5. 

4.2.7 Remarks 
All experiments presented in this thesis were performed by the author alone or with 

technical support from colleagues. All depicted results were obtained from experiments 

with substantial contribution from the author of the thesis. However, the CFSE-

proliferation experiment shown in Fig. 10D was performed by Dr. R. Requardt. This 

particular experiment was chosen for presentation since it contains all four experimental 

groups in the same assay facilitating a clear and structured data presentation. The author of 

the present thesis performed similar CFSE-proliferation experiments each including one 

SIRS- or sepsis-group yielding essentially the same results. 
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5 Discussion 

Systemic Inflammatory Response Syndromes, predominantly sepsis and its subsets, are 

major health concerns with very high prevalence on intensive care units and patients who 

underwent surgical interventions. In fact, systemic inflammation and sepsis are the leading 

causes of death on ICUs worldwide, with steadily rising incidence due to a rising number 

of surgeries, increasing antibiotic resistances and ageing population. 

In addition to the malevolent acute pro-inflammatory cascade, SIRS and sepsis are 

accompanied by a series of anti-inflammatory processes. The de-regulated excessive 

inflammatory responses are the cause of acute and protracted immune suppressive states 

that contribute to early mortality and are associated with elevated mortality at post-acute 

stages of the diseases. Since advances in critical care medicine and improved medical 

guidelines result in continuously increasing numbers of patients surviving the acute insult 

[93], persistent immunosuppression becomes a main health issue drawing attention of both 

physicians and researchers. Malfunction of the T-cell compartment is known to contribute 

to impaired immunity at acute stages but very little is known about the functional state of 

T-lymphocytes at post-acute stages of SIRS and sepsis and its potential contribution to late 

morbidity and mortality. The present thesis represents a significant contribution helping to 

close this gap of knowledge. 

5.1 Murine models of systemic inflammation and sepsis 

5.1.1 Features of employed experimental murine models of systemic 
inflammation and sepsis  

Systemic Inflammatory Response Syndromes are very heterogeneous clinical diseases with 

highly diverse progression, affected organs/systems, severity and outcome depending on 

multiple factors such as septic trigger, site of infection/inflammation and the use of 

appropriate treatment protocols. The complexity of septic responses is even more increased 

due to host determinants including age, gender, genetic factors and comorbidities [94]. 

Over the past two decades several murine models of the diseases were established to study 

fundamental mechanisms of SIRS and sepsis. Available cell culture systems, albeit 

preferable under ethical aspects, fail to reproduce the systemic nature of sepsis in its full 
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complexity involving numerous cells types, mediators and tissue networks. However, the 

clinical relevance of the commonly employed animal disease models is consistently 

addressed and heavily disputed in clinical sepsis research [95, 96]. Some arguments raised 

in these articles can not be denied easily. Although most models have high resemblance to 

the pathophysiology in human patients, the characterisation of key regulators and processes 

failed to translate into effective therapeutic interventions. In fact, in Europe no specific 

drug is approved to treat patients with acute episodes of sepsis.  

To account for the heterogeneity of the disease and the drawbacks of individual rodent 

animal models, four different models of SIRS and sepsis were employed bearing distinct 

clinical features, such as trigger mechanism, severity and outcome.  As documented in Fig. 

7 – 9 and discussed in more detail below, all four experimental models feature high 

resemblance to the heterogeneous clinical manifestation in humans with inter-model 

differences in morbidity, mortality and outcome. The broad spectrum of disease models 

increases the clinical relevance of this study and allows translating the findings to human 

patients. Importantly, the employment of sterile SIRS models and models of bacterial-

triggered sepsis facilitates the investigation of clinical consequences induced by the 

inflammatory host response alone or effects triggered by the actual presence of an 

infection. All four experimental models induce an acute episode of SIRS or sepsis 

originating from the abdominal area, a very frequent site of infection in human patients [3, 

4].  

An infection-free Systemic Inflammatory Response Syndrome was induced by the 

intraperitoneal injection of free microbial components, here lipopolysaccharide and CpG-

DNA. Both compounds have been shown to induce a profound SIRS that is mediated by 

macrophages and other immune cells upon binding to TLR4 (LPS) or TLR9 (CpG-DNA) 

[97-100]. LPS as a compound of the cell wall of gram-negative bacteria was chosen to 

mimic systemic bacterial gram-negative infections as these infections are the trigger of half 

of all sepsis cases [3, 4, 101]. Unmethylated CpG-rich DNA motifs are highly 

underrepresented in vertebrate genomes but are prevalent in bacterial DNA and thus, 

induce a strong inflammatory response in the host organism [98]. CpG-DNA injection was 

used to broaden the spectrum of acute systemic inflammatory responses, allowing studying 

common or diverse effects of different TLR-induced SIRS insults on T-cell immunity. LPS 

and CpG-DNA have been clearly associated with the inflammatory response in septic 

patients and represent key molecules in the pathogenesis of many septic cases [98-100]. By 

definition [1], administration of LPS and CpG-DNA does not meet the criteria for clinical 
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sepsis since the insult does not originate from a real infection. Taking this notion in 

account, the present thesis collectively terms both models as (sterile) SIRS, although LPS 

and CpG-DNA are bacterial compounds, unarguably leading to an infectious (systemic) 

immune response similar to the clinical manifestation in sepsis. 

The second strategy mimicked a peritoneal polybacterial sepsis triggered by i.p. injection 

of human stool (PCI model) and ligation and perforation of the cecum (CLP model). In 

contrast to the SIRS models, polybacterial sepsis simultaneously triggers multiple pattern 

recognition receptors, thereby modulating the nature of the acute inflammatory response 

and potentially resulting in different outcomes. Both models are based on systemic 

bacterial infections and share clinical features observed in human septic patients. For 

example PCI- and CLP-triggered sepsis induces acute organ damage / failure, 

predominantly in the liver and the renal system [87, 102-104], organs also frequently 

affected in human patients. Moreover, both PCI and CLP induce a strong acute 

inflammatory response mediated by factors, such as IL-6 and IL-10 also relevant in 

humans [87, 105-107]. 

5.1.2 PCI vs. CLP 
Functional assays involving polyclonal ex vivo T-cell stimulation with monoclonal anti-

CD3ε/28 antibodies included PCI-treated animals while the secondary infection model 

experiments included animals that underwent CLP surgery. Different sepsis models were 

employed, since T-cell assays were performed in laboratories in two different countries. 

The laboratory at the University of Iowa, USA did no have the capability to employ the 

PCI sepsis model. 

Optimally, the same disease models should be used in the same study to allow direct 

comparison of the data as different models can potentially result in different outcomes. A 

significant difference of both employed models lies in survival, with PCI exhibiting 

mortality rates of 44%, while CLP sepsis was low-lethal with a mortality rate of 8%. On 

the other hand, the PCI and CLP models feature certain similar characteristics. First, both 

models involve an infection in the abdominal area. Second, the infectious pathogens, 

primary bacteria, arise from the intestinal microbiota of mice (CLP) or human (PCI). The 

composition of the gut flora may be different, although it has been shown that there is a 

great similarity at the level of division (evolutionary lineage) in both species [108]. Third, 

both PCI and CLP are characterised by the profound release of inflammatory mediators 
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(e.g. IL-6 or IL-10) at the acute stage of disease associated with organ / tissue damage. 

Moreover, both models result in the persistent loss of lymphocytes to almost the same 

degree that is accompanied by an increase of total phagocyte counts in peripheral blood 

suggesting an analogous apoptotic pattern in both models (Fig. 9). Accordingly, episodes 

of PCI- and CLP-induced sepsis lead to decreased T-cells counts at day ten post insult, 

although CD4+ and CD8+ T-cell subsets are differently affected, as judged by different 

CD4/CD8 ratios (Fig. 9D - E). In sum, although precise mechanisms in both models are 

distinct, major aspects are analogous thereby facilitating drawing eligible and comparable 

conclusions from both models. 

5.1.3 Morbidity and mortality of murine models of systemic 
inflammation and sepsis 

The broad spectrum of the four employed murine disease models is underlined by inter-

model differences in morbidity and mortality (Fig. 7). Treatment with LPS or human 

faeces (PCI model) induced an acute severe illness characterised by profound weight loss, 

lethargy, ruffled fur and clotted eyes and was associated with an mortality of 28% and 

44%, respectively. The dynamics of morbidity and survival in these models is very close to 

the situation observed in human patients suffering from sepsis and severe sepsis and 

thereby reflect suitable protocols to study the long-time consequences of SIRS and sepsis 

on various biological parameters, e.g. function of T-cells. 

Patients in ICUs suffering from an acute episode of sepsis are treated with antibiotics to 

eliminate the infectious trigger of the disease. Rapid and appropriate administration of 

antibacterial treatment has been shown to be the primary determinant of disease 

progression, morbidity and outcome in human patients [109, 110]. This notion is 

recapitulated in the PCI sepsis model through daily injection of antibiotics during the acute 

stage of the disease. Similar to human patients, almost all animals would die without 

antibacterial therapy. As a matter of fact, the PCI model is the only murine model of 

polymicrobial sepsis that involves antibiotic treatments as a standard procedure thereby 

increasing the clinical relevance of this disease model. 

Although severe sepsis and septic shock are associated with high mortality (>30%), a 

considerably large number of patients with SIRS and sepsis exhibit mortality rates of 10% 

[111] and 15% [2], respectively. A fact that is not considered in most clinical studies as 

human studies often exclusively include cases of severe sepsis and/or tissue samples from 
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deceased patients. In line with that, many animals studies employ sepsis models with very 

high mortality rates (often more than 50%), that do not properly reflect the situation in 

human patients. In fact, cases of SIRS and non-severe sepsis represent the great majority of 

insults. To take these considerations in account, sublethal murine models of SIRS and 

polymicrobial sepsis were additionally used in the present study. Injection of CpG-DNA 

induced a Systemic Inflammatory Response Syndrome without mortality and without signs 

of severe sickness. The actual potency of CpG-DNA to induce SIRS associated with organ 

damage and excessive secretion of cytokines (e.g. IFNγ, IL-6, IL-10) also found in humans 

patients has been well documented [97, 98] and was additionally confirmed in the present 

thesis (see below). 

CLP surgery was used to induce a polymicrobial sepsis with deliberately low mortality 

rates (about 10%) to study the long-time impact of sepsis on T-cell immunity. The CLP 

model of peritoneal sepsis is considered as the ‘gold-standard’ in sepsis research and is the 

most employed murine model of polymicrobial sepsis [112]. Despite the relatively low 

mortality, animals suffering from CLP-induced sepsis showed signs of severe sickness at 

acute stages of the disease including profound weight loss, diarrhoea and lethargy (Fig. 7). 

5.1.4 Haematological changes at post-acute stages of systemic 
inflammation and sepsis 

Acute and post-acute alterations in the haematological system including leukocytes, 

lymphocytes, erythrocytes and platelets are hallmarks in patients with Systemic 

Inflammatory Response Syndromes. In sepsis and its subsets, virtually all patients exhibit 

malevolent haematological changes regarding total cellular counts and function, associated 

with the fatal outcome of the disease [90, 113]. All employed murine models of SIRS and 

sepsis recapitulated the profound alterations in the haematological compartment, once 

more underlining the clinical resemblance and relevance of these disease models. 

A marked total loss of lymphocytes (Fig. 9B) was detected in all models at day ten post 

disease onset, suggesting that lymphocyte apoptosis is a common feature in all Systemic 

Inflammatory Response Syndromes, disregarding of the nature and origin of the disease. 

Lymphopenia occurred early within the acute stage of the disease since decreased 

lymphocyte numbers were also detected within the first 4 days post initial insult ([63], data 

not shown). Importantly, the present study shows that lymphopenia is a phenomenon also 
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present at post-acute stages, a fact that was poorly investigated in many SIRS and sepsis 

studies.  

Interestingly, protracted lymphopenia is not necessarily accompanied by a total loss of 

leukocytes in blood. Both peritoneal sepsis settings did not exhibit leukopenia at day ten 

post insult, while both SIRS-disease models induced a profound decrease in total leukocyte 

numbers (Fig. 9A). In the LPS and CpG-DNA groups leukopenia was primary caused by 

the loss of lymphocytes as the frequency of large cell populations (primary granulocytes in 

mice) did not change significantly (Fig. 9C). In peritoneal sepsis, the loss of lymphocytes 

in peripheral blood was numerical compensated by the simultaneous marked increase of 

large cell populations resulting in non-altered overall leukocyte numbers (Fig. 9C). These 

data clearly suggest that the infectious nature of the septic insult has differential effects on 

granulocytes counts in blood than a sterile TLR-mediated systemic inflammatory host 

response. Moreover, increased numbers of neutrophil or macrophage / monocytes 

populations were also observed in the spleen at post-acute stages of all four employed 

SIRS / sepsis models (data not shown). These results are supported by a recent study 

investigating the correlation between the number of immature granulocytes in septic vs.

SIRS human patients in acute and post-acute stages [114]. In this study an infectious septic 

insult resulted in increased frequencies of immature granulocytes compared to SIRS 

patients without infections. One can speculate that this notion affects immune responses at 

late stages after sepsis on multiple levels. For example, phagocyte populations modulate T-

cell immunity as they are involved in antigen presentation and T-cell activation. However, 

the contribution of these cells on T-cell functionally during septic insults is not well 

understood and thus represents an objective for future studies based on the intriguing 

findings discussed here. In first line, the identification and characterisation of this 

population would facilitate investigation of functional patterns of these cells associated 

with T-cell function.  

In addition to altered leukocyte cellularity and composition, acute and protracted anaemia 

is a very common feature in patients with severe sepsis and septic shock [90, 92]. 

Consistent with the situation in human patients, the employed murine animal models 

induced a decrease in erythrocyte levels accompanied by lowered heamatocrit values in all 

tested disease models, although with inter-model differences (Fig. 8B). The protracted 

nature of anaemia indicates persistent damages in hemopoietic tissues or in the kidneys 

that stimulate erythropoiesis by secretion of erythropoietin under anaemic conditions. 
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Due to the post-acute time of investigation, profound disease-induced organ damage could 

not be detected in the LPS and PCI groups (Fig. 8A). However, together with the normal 

clinical appearance these findings underline the recovery of the animals from the acute 

insult. Interestingly, animals from the CpG group exhibited signs of organ and liver 

damage at day ten post insult, even though they did not exhibit symptoms of severe 

sickness. Acute signs of tissue damage argue against the post-acute nature of the CpG-

setting, a finding that can be explained by the experimental setting (Fig. 7A). The CpG-

DNA SIRS model involved the repeated administration of CpG-DNA 2, 4 and 6 days after 

the initial treatment leading to continuously high levels of CpG-DNA associated with a 

persistent systemic inflammation accompanied by prolonged organ / liver damage. 

Technically, animals from the CpG-SIRS group only recovered 4 days rather than ten days 

from the final CpG-DNA administration. Nevertheless, this protocol was chosen to unify 

the experimental SIRS and sepsis settings with day ten defined as ten days post initial 

treatment / surgery. In order to confirm the post-acute nature of the CpG-protocol, one 

could determine the levels of key cytokines, such as IL-1β, IL-6, IL-10 or IFNγ that are 

released during the acute stage and are present at low levels at later stages. However, a 

number of assays employed in the present study involved T-cell analyses well beyond day 

ten post insult at unarguably post-acute CpG-SIRS time points (Fig. 13 - 16). 

5.2 The impact of systemic inflammation and sepsis on T-cell 
numbers at post-acute stages of the disease 

5.2.1 Lymphopenia and T-cell loss at post-acute stages of systemic 
inflammation and sepsis 

Lymphopenia, in particular T-cell apoptosis, is a hallmark of acute systemic inflammation 

and sepsis affecting adaptive immune responses at acute disease stages. Much less is 

known about T-cell counts at later stages of SIRS and sepsis. The data presented here 

clearly show that surviving animals at post-acute stages of SIRS and sepsis exhibit 

systemically decreased total numbers of lymphocytes (Fig. 9B) including T-cells (Fig. 9D). 

Since this finding occurred in all experimental groups, one can draw the conclusion that T-

cell loss is a consequence of the septic host response and does not rely on the presence of 

intact pathogens. Moreover, the protracted loss of T-lymphocytes does not dependent on 

the nature/origin of systemic inflammation suggesting that profound activation of either 
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TLR4 or TLR9 in SIRS can ultimately lead to lymphocyte and T-cell apoptosis. 

Importantly, T-cell death is a secondary event caused by the excessive activation of other 

immune cells rather than direct effects of LPS and CpG-DNA on T-cells, since T-cells do 

not express TLR4 and TLR9 in biological significant quantities. This notion and the 

findings discussed here, strongly support the concept that the rigorous uncontrolled release 

of cytokines by activated innate immune cells (‘cytokine storm’) is the root of (protracted) 

T-cell loss. Interestingly, the degree of persistent lymphocyte and T-cell loss does not 

correlate with the morbidity and mortality of the disease models, a notion that is from great 

medical interest for patients with non-severe SIRS or sepsis, a cohort that is 

underrepresented in many clinical research studies.

Decreased T-cell numbers unarguably affects adaptive immune responses at post-acute 

stages of SIRS / sepsis and represents a factor that contributes to disease-related protracted 

immunosuppression. As a consequence of enduring systemic loss of T-cells, the pool of T-

cells reactive to potential pathogen antigens is markedly reduced and thereby, the 

dynamics of adaptive T-cell responses are severely impaired. Moreover, the loss of naïve 

T-cells is accompanied by a decreased diversity of TCR variants, additionally reducing the 

spectrum of antigen-specific adaptive T-cell responses. The clinical significance of this 

finding is underlined by the fact that the degree of CD4+ and CD8+ T-cell apoptosis 

positively correlates with increased mortality in sepsis as shown in a retrospective analysis 

of human patients [115]. Of note, this correlation could not be observed in the present 

study since post-septic animals were kept under sterile, pathogen-free conditions. These 

findings suggest that the therapeutic blockade of T-cell apoptosis in episodes SIRS and 

sepsis would have beneficial effects far beyond acute disease stages and thus represents a 

very promising approach to prevent disease-related immune deficiencies. In line with that, 

pre-clinical studies have been successfully carried out to inhibit T-cell loss in sepsis using 

recombinant IL-7 or IL-15. In these studies prevention of T-cell loss was clearly associated 

with improved outcome [116]. However, induction of T-cell apoptosis occurs very early 

after disease onset providing only a small therapeutic window to effectively prevent T-cell 

loss. For example, IL-7 or IL-15 therapy was only effective when the compounds were 

administered within few hours after sepsis induction [116]. This notion questions the 

applicability in the daily clinical practice where the start of appropriate sepsis treatment is 

often delayed due to difficulties in diagnosis, delayed admission to ICUs and the priority of 

live-saving measures. However, in future improved and faster diagnosis and treatment 
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protocols may allow rapid targeted therapeutic interventions at early stages of SIRS and 

sepsis. 

5.2.2 Differential susceptibility of CD4+ and CD8+ T-cells to SIRS- and 
sepsis-induced apoptosis 

Since T-cell loss occurred in all tested experimental animals models, it is tempting to 

speculate that the molecular base of T-cell apoptosis is the same in all systemic 

inflammatory syndromes. On the other hand, differential loss of CD4+ or CD8+ T-cells in 

the employed animal disease models argues against one single trigger mechanism. While 

LPS-SIRS and CLP-sepsis preferentially induced profound persistent loss of CD4+ helper 

T-cells, the CpG-DNA and PCI groups exhibited a more pronounced loss of CD8+

cytotoxic T-cells resulting in increased, albeit modest, CD4/CD8 ratios (Fig. 9E). These 

controversial findings are also recapitulated in studies with human sepsis patients. Some 

studies found preferential loss of CD4+ T-cells [25, 117] whereas other studies did not 

observe this effect [61, 115]. Data from the present study and from human cohorts, did not 

allow drawing a generally eligible conclusion about the susceptibility of certain T-cell 

subsets in sepsis. This notion underlines the heterogeneity of the disease and the 

importance to employ a broad spectrum of disease models in experimental studies. 

Moreover, the present data suggest distinct mechanisms of T-ell apoptosis dependent on 

the nature of the septic insult. TLR4-mediated systemic inflammatory host responses (LPS 

model) have a much different outcome in regard of CD4/CD8 ratios than TLR9-resticted 

immune responses triggered by CpG-DNA, a finding that provides some initial insights in 

differential apoptotic regulation during SIRS and sepsis. Based on the discussed 

observations, one can further conclude that persistent loss of T-cells accompanied by 

altered CD4/CD8 ratios are not dependent on morbidity and mortality of SIRS and sepsis 

as there was no correlation between CD4/CD8 ratios and clinical outcomes of the 

employed murine disease models. 

However, the impact of altered CD4/CD8 T-cell ratios on overall T-cell immunity after 

SIRS and sepsis is unknown and was not addressed yet in human or animal studies. In 

classical models CD4+ T-helper cells are predominantly involved in humoral and cellular 

responses against bacterial infections by activation of B-cells and macrophages, 

respectively. CD8+ cytotoxic T-cells on the other hand, play essential roles in fighting viral 

infections and cancer cells by killing virus-infected cells or tumour cells. Under this light it 
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would be interesting whether the protracted increased fractional loss of CD4+ T-cells in 

LPS-SIRS and CLP-sepsis ultimately leads to higher susceptibility to bacterial infections 

and vice versa, whether preferential loss of CD8+ T-cells in CpG-SIRS and PCI-sepsis 

models is associated with elevated risk for viral infections and development of cancer. If 

this correlation corresponds well with the situation in human patients, measurement of 

CD4+/CD8+ T-cell ratios/counts could be prognostic markers for individual patients to 

assess their risk to develop particular infectious or non-infectious diseases. Consequently, 

this would help to prevent and treat diseases in septic patients thereby increasing the long-

time survival after sepsis. 

Importantly, T-cell counts and ratios can differ in different tissues in the same organism 

due to orchestrated adaptive immune responses at the sites of infection. With other words, 

CD4+/CD8+ T-cell ratios and counts in blood must not necessarily reflect the situation in 

particular tissues (e.g. lymph nodes) during infection and even more so during episodes of 

systemic inflammation and sepsis. Therefore, the investigation of the differential 

susceptibility of T-cell subtypes to sepsis-induced cell death and its consequences for 

overall T-cell immunity requires the determination of T-cell numbers in different tissue 

such as, blood, secondary lymph nodes or organs in proximity of the infection site. 

5.3 The impact of systemic inflammation and sepsis on T-cell 
function at post-acute stages of the disease 

5.3.1 T-cell function after systemic inflammation and sepsis is not 
impaired on a cellular base 

During acute stages of systemic inflammation and sepsis T-cells have been shown to enter 

a stage of hyporesponsiveness characterised by a compromised proliferation capacity, 

altered/impaired cytokine expression as well as defective effector responses (see Fig. 6). 

Protracted T-cell anergy is further believed to contribute to sepsis-acquired 

immunosuppression beyond acute stages of the disease although there is lack of 

experimental data addressing this hypothesis. To investigate T-cell function at post-acute 

disease stages an experimental setting was employed that involved purification of splenic 

CD4+ and CD8+ T-cells ten days post insult, followed by ex vivo T-cell receptor 

stimulation under controlled experimental conditions. This approach facilitates to study 

potential intrinsic, cell autonomous alterations in T-cell function, as it excludes T-cell 
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extrinsic factors that modulate T-cell activity, e.g. antigen presentation or bystander 

cytokine signals. The data presented and discussed here, strongly argue against a state of 

T-cell hyporesponsiveness at post-acute stages of SIRS and sepsis. None of the employed 

assays provided evidence for impaired T-cell responses on per cell base. The scientific 

significance of the results is increased by the fact that cellular antigen-receptor-dependent 

function of naïve CD4+ and CD8+ was investigated on multiple levels including activation 

marker up-regulation, proliferation and intracellular signal transduction of various 

signalling molecules. 

TCR complex and co-receptor stimulation of pure splenic T-cells from control and SIRS / 

sepsis animals using anti-CD3ε and/or anti-CD28 antibodies did not yield disturbed T-cell 

activation as judged by the expression profiles of the T-cell activation marker CD25 and 

CD69 (Fig. 10B and C), molecules that are commonly used to assess T-cell activation upon 

TCR or mitogen stimulation [88, 89]. The strength of the experimental design lies in the 

involvement of different TCR stimuli covering a wide range of productive and 

unproductive triggers allowing detection of even slight alterations in T-cell activation 

patterns potentially bypassed by strong stimuli. 

Since CD25 and CD69 expression are dependent on proper Ca2+ release [88] and Ras/ERK 

signalling [118], respectively, one can further conclude that SIRS and sepsis do not induce 

persistent defects in crucial TCR/co-receptor signalling cascades. This interpretation was 

largely confirmed by detailed TCR signal transduction analyses covering multiple levels 

and branches of TCR and CD28 co-receptor signalling (Fig. 11 and 12). The activation of 

major signalling molecules involved in proximal TCR and CD28 co-receptor signal 

transduction, namely ZAP-70, LAT, ERK and AKT as well as TCR-induced Ca2+ release 

was indistinguishable from the control group in all SIRS / sepsis settings. In line with these 

findings, TCR-triggered IL-2 synthesis integrating TCR and CD28 co-receptor signalling 

cascades, was not impaired as published data from colleagues of the author show [119].  

According to the finding of non-defective T-cell activation and TCR signalling, SIRS and 

sepsis did not induce protracted defects in TCR/co-receptor-mediated T-cell proliferation 

(Fig. 10D). This finding is from great significance, since proper T-cell expansion is a 

prerequisite to generate a large pool of effector T-cells eliciting adaptive immunity against 

invading pathogens (Fig. 5). One can further conclude that SIRS and sepsis did not affect 

fundamental aspects of T-cell responses since T-cell proliferation requires the integration 

of multiple signalling events, such as TCR and co-stimulatory signals, cytokine production 

(e.g. IL-2) as well as autocrine cytokine stimulation/signalling. It is important to note that 
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TCR signalling analyses did not provide molecular hints for a ‘primed’ T-cell state after 

SIRS and sepsis that was suggested by strong trends of more pronounced activation marker 

expression and proliferation upon non-immobilised anti-CD3ε/CD28 antibody stimulation. 

From a clinical point of view these result are highly interesting as they clearly show that 

Systemic Inflammatory Response Syndromes, including sepsis, do not induce protracted 

inherent functional defects in T-cells. This notion questions whether cellular T-cell 

dysfunction contributes to SIRS- or sepsis-related protracted immunosuppression. As a 

consequence, immune-stimulatory therapies targeting T-cell function is no appropriate 

approach to treat patients with disease-acquired immune suppressive states in the long run. 

Under this light, clinical sepsis research should focus on other aspects of adaptive 

immunity, e.g. T-cell apoptosis (see above) or B-cell function. 

5.3.2 Limitations of ex vivo T-cell stimulation assays 
Ex vivo stimulation of pure CD4+ and CD8+ T-cells using monoclonal anti-CD3ε and/or 

anti-CD28 antibodies are robust assays to study principle aspects of TCR-mediated T-cell 

function on cellular and biochemical levels. However, this experimental setting has certain 

drawbacks and limitations that must be considered in order to draw reasonable conclusion 

from these experiments. TCR/CD3 complex stimulation via anti-CD3ε antibodies is very 

artificial as its clusters CD3 molecules to large complexes thereby inducing strong 

proximal TCR signalling. This mode of activation does not involve MHC/antigen-peptide 

binding by the αβ-TCR-chains with simultaneous stimulation of CD4 or CD8 co-receptors. 

Similar to CD3 stimulation, strong CD28 co-receptor clustering is artificially induced by 

monoclonal anti-CD28 antibodies rather than physiological ligand/receptor interaction 

during APC-mediated T-cell (co)-activation. Moreover, under in vivo conditions APCs and 

other cells provide bystander cytokine signals (e.g. IL-4 or IL-13) that modulate T-cell 

activation, differentiation and effector responses. This notion can not be recapitulated in ex 

vivo experiments with pure T-cells. Most importantly, anti-CD3ε/28 stimulation potentially 

overcomes sepsis-induced TCR hyporesponsiveness states as documented for other disease 

backgrounds [120-122]. Taking these considerations in account, secondary infections 

models were additionally employed in the present study to confirm the previously 

described results and to extend the T-cell analyses by multiple levels. 
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5.3.3 Secondary infection models 
Infection models are frequently used to study principle mechanisms of innate or adaptive 

immunity. In particular, they are appropriate approaches to investigate antigen-specific T-

cell responses under physiological relevant conditions as they involve all fundamental 

steps of adaptive T-cell immunity occurring in vivo (Fig. 5). First, infection with viable 

viruses or bacteria induces an activation of phagocytes engulfing pathogen particles 

followed by peptide processing and MHC-mediated presentation to CD4+ and CD8+ T-

cells. Second, T-cell activation requires recognition and binding to the respective antigen 

with simultaneous interaction with the APC that provides physiological co-stimulatory 

signals. Subsequently, clonal expansion generates a pool of pathogen-specific T-cells that 

elicit effector responses upon antigen (re)encounter. Moreover, secondary infections, in 

particular nosocomial infection, are from great clinical significance in immune-

compromised human sepsis patients after the acute insult as they contribute to post-acute 

morbidity and mortality. Secondary infection models facilitate to mimic infectious diseases 

and therefore present suitable approaches for the present study.  

The Armstrong strain of Lymphocytic choriomeningitis virus (LCMV-Arm) was used as a 

secondary infection model to study antigen-specific CD4+ and CD8+ T-cell responses at 

post-acute stages of SIRS (LPS, CpG) and sepsis (CLP) (Fig. 13). LCMV-Arm infection 

induces a non-virulent systemic viral disease characterised by a profound generation of 

LCMV-specific effector CD4+ and CD8+ T-cells that mediate virus clearance [123, 124]. 

Ex vivo stimulation of whole splenocyte homogenates with titrating levels of virus peptides 

was used to assess antigen-specific T-cell responses in a dose-dependent manner. The 

advantage of this approach over polyclonal anti-CD3ε/CD28 stimulation lies in the 

physiological fashion of TCR and co-receptor activation not bypassing any potential 

defects in the TCR machinery. T-cell stimulation with LCMV-peptides requires peptide 

presentation by APCs in complexes with MHC-II (GP61) or MHC-I (GP33) as well as 

proper co-stimulatory signals provided by the same cells. 

For in vivo T-cell activation assays (Fig. 16) a novel approach was developed that 

facilitated studying T-cell activation patterns in vivo with simultaneous discrimination 

between potential T-cell intrinsic vs. extrinsic alterations at late stages of SIRS and sepsis 

in one single mouse (Fig. 16A). GP33 peptide-specific P14 T-cell populations were 

adoptively transferred prior SIRS / sepsis onset (‘pre-SIRS’) and ten days post insult 

(‘post-SIRS’). After modest accumulation of both P14 populations with non-virulent 

infection with the attenuated strain of Listeria monocytogenes expressing the GP33 
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antigen, T-cells were challenged in vivo by injection of GP33 followed by flow cytometric 

analyses. 

5.3.4 T-cell function after secondary infections in background of 
systemic inflammation and sepsis 

In vivo and ex vivo T-cell studies using secondary infection models largely confirm the 

findings of non-disturbed T-cell function on the level of individual T-cells at post-acute 

stages of SIRS and sepsis. Upon antigen stimulation of CD4+ and CD8+ effector T-cells the 

total amount of synthesised IFNγ and TNFα was not decreased on per cell base in 

activated cells (Fig. 14B, 15B, C and 16E, F). Pathogen-specific effector T-cells arise in 

infectious diseases and are the key players fighting the infectious trigger. The present data 

extend the previously discussed findings from polyclonal naïve T-cells to the population of 

antigen-specific effector T-cell clones, thereby increasing the biological relevance of these 

findings. Importantly, per cell production of IFNγ and TNFα in activated CD4+ and CD8+

T-cells is not only unaffected at peptide saturation during ex vivo stimulation but also at 

intermediate and low antigen doses (data not shown). These data further show that the 

cellular function of CD4+ and CD8+ T-cells at post-acute disease stages is not associated 

with the differential susceptibility of these T-cell subsets to SIRS- or sepsis-induced 

apoptosis. In this context it is worth to mention that T-cell hyporesponsiveness in acute 

SIRS / sepsis affects both naïve CD4+ and CD8+ T-cell populations [61] regardless their 

vulnerability to disease-induced apoptosis. 

Both secondary infection models were further employed to assess the long-time impact of 

SIRS and sepsis on environmental factors that modulate T-cell immunity. However, the 

data documented in Fig. 14 – 16 are not fully conclusive. In the LCMV-experiments T-

cells from the CpG and CLP groups exhibited attenuated fractional induction of IFNγ upon 

ex vivo stimulation with titrating doses of antigen. Since T-cells are not impaired on per 

cell base, one can conclude that T-cell extrinsic factors (e.g. antigen presentation) mediate 

disturbed T-cell dose responses. Interestingly, CD4+ and CD8+ T-cells from animals from 

the LPS-SIRS group did not show persistent impaired antigen-dose responses in these 

experiments. This notion suggests that outcomes in the present assays can not be simply 

generalised for all SIRS insults, once more underlining the heterogeneous nature of these 

syndromes. 
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However, the finding of decreased antigen sensitivity could not be recapitulated for 

effector CD8+ P14 T-cells in the in vivo T-cell assays (Fig. 16 E and F). Both ‘pre-SIRS’ 

and ‘post-SIRS’ P14 T-cell populations from all experimental groups did not exhibit 

defects in cytokine production as judged by non-disturbed IFNγ and TNFα production. 

This finding strongly argues against substantial protracted disease-induced environmental 

alterations leading to decreased CD8+ T-cell responses. Environmental defects involved in 

T-cell activation would have resulted in impaired T-cell cytokine responses in ‘post-SIRS’ 

P14 T-cells that were transferred late after the septic insult. In line with all other data 

discussed here, in vivo T-cell activation assays do also not provide evidence for functional 

disturbed cellular T-cell effector responses after SIRS and sepsis as judged by non-altered 

IFNγ and TNFα production in the ‘pre-SIRS’ T-cell populations. 

Importantly, in vivo administration of 5μg LCMV-GP33 induced a very profound IFNγ

response, potentially close to saturation and thus potentially overcomes functional defects. 

Using ten-fold lower GP33-peptide doses in the same experimental setting induced a much 

weaker P14 T-cell response (30 – 40% IFNγ(+)) but also did not reveal impaired IFNγ or 

TNFα responses (data not shown). 

Intriguingly, the CpG-SIRS group showed an attenuated CD25 and CD69 up-regulation in 

both P14 T-cell populations indicating impaired T-cell activation mediated by T-cell 

extrinsic factors (Fig. 16C – D). But experimental T-cell activation marker expression does 

not inevitably correlate with effector function, e.g. proliferation [125] and thus, the 

biological significance might not be crucial. It is important to note that impaired CD25 and 

CD69 induction does not result from T-cell inherent disturbances since both ‘pre-SIRS’ 

and ‘post-SIRS’ show indistinguishable CD25 and CD69 expression patterns upon antigen 

challenge. Defects that were solely caused by T-cell intrinsic defects would have been only 

be apparent in P14 T-cell transferred prior SIRS / sepsis onset. 

The controversial results from both ‘two-hit’ infection models could probably be explained 

by the rather weak protracted impact of SIRS and sepsis on T-cell extrinsic factors as  

judged by an only modest increase (~ two-fold) of EC50 values for ex vivo antigen-

triggered IFNγ production in CD8+ T-cells that was not even evident in both SIRS settings 

(Fig. 15A). The biological relevance is at least questionable as attenuated effector function 

of CD8+ T-cells was not recapitulated in the in vivo assays that represent the superior 

experiments to assess extrinsic alterations potentially affecting T-cell immunity in vivo. 

However, it would have been interesting to perform the same experimental in vivo
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approach using TCR-transgenic CD4+ T-cells specific for LCMV-GP61, since the long-

time impact of SIRS and sepsis on antigen-dose responses was more pronounced in CD4+ 

effector T-cells exhibiting three- to four-fold higher EC50-values for IFNγ production but 

the respective transgenic mice were not available. 

5.3.5 Secondary infections models - limitations 
Secondary infection models are useful approaches to study clonal T-cell responses as they 

bear similarity to infectious diseases occurring under in vivo conditions. However, they 

feature some limitations and drawbacks that must be considered when drawing conclusions 

from these experiments. Both ‘two-hit’ secondary infection settings induced the antigen-

dependent activation and expansion of naïve T-cell clones at post-acute stages of SIRS and 

sepsis. It is necessary to ask whether inherent disease-induced T-cell defects are still 

present after the potentially affected T-cell clones have underwent multiple activation and 

division cycles during clonal expansion. It is indisputable that the investigated T-cell pool 

is not same population that was affected by the SIRS or sepsis insult. However, epigenetic 

alterations in T-cells after sepsis, that could be transferred to daughter cells, have been 

described (see 1.4.3 and [83]). 

Moreover, it could be possible that an experimental secondary infection potentially creates 

an inflammatory environment that overcomes T-cell inherent defects. To take this 

consideration in account, low-dose non-virulent bacterial and viral infectious triggers were 

employed in the discussed experiments, albeit the profound T-cell accumulation indicates a 

significant inflammatory response. However, ex vivo and in vivo antigen challenge of 

CD4+ and CD8+ T-cells was performed when viral or bacteria infections were completely 

eliminated suggesting that no bystander T-cell activation (e.g. pro-inflammatory cytokines) 

influenced antigen-dependent T-cell responses. This notion is supported by the fact that 

non-peptide-challenged effector T-cells in both ex vivo and in vivo assays did not exhibit 

signs of activation, e.g. activation marker or cytokine expression. 

5.3.6 Impaired antigen presentation to T-cells after systemic 
inflammation and sepsis? 

While all discussed data clearly indicate that SIRS and sepsis do not induce protracted 

cellular T-cell defects, one cannot fully exclude T-cell extrinsic alterations that potentially 

impair T-cell responses at post-acute stages of SIRS and sepsis. Proper MHC-I- or II-
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restricted antigen presentation is one of the most essential prerequisite for in vivo T-cell 

stimulation by antigen-presenting cells. MHC-I is expressed on virtually all nucleated cells 

and activates CD8+ T-cells, whereas MHC-II, involved in CD4+ T-cell activation, is found 

on ‘professional’ antigen-presenting cells, such as dendritic cells, monocytes / 

macrophages or B-cells. 

In literature, there are multiple human and rodent sepsis studies describing defective 

antigen presentation due to decreased levels of MHC. In episodes of human sepsis 

decreased expression of HLA-DR (human homolog of MHC-II) has been found in 

monocytes [126-128], dendritic cells [128] and B-cells [129]. Importantly, HLA-DR levels 

on monocytes and dendritic cells remain low at post-acute stages of sepsis unarguably 

affecting adaptive immune responses at late disease stages [128]. Moreover, reduced 

MHC-II expression on APCs is recapitulated in the murine CLP sepsis model [130], also 

shown for sublethal CLP-surgery similar to the CLP model employed in the present study 

[131]. These findings support the concept of protracted sepsis-induced defects in antigen 

presentation that impact CD4+ T-cell immunity, although no study was performed directly 

linking defective antigen presentation with T-cell activation. This notion underlines the 

importance to recapitulate the employed in vivo T-cell activation assay with transgenic 

CD4+ T-cells. For MHC-I expression, no detailed studies have been carried out, so the 

impact of sepsis on antigen presentation to CD8+ T-cells remains unclear. 

Investigation of antigen presentation linked with T-cell activation is from great interest and 

essential for understanding T-cell immunity at post-acute stages of SIRS / sepsis in its 

entire complexity. For example, the discussed in vivo assay (Fig. 16) could be extended by 

additional assessment of MHC-I expression in splenic cells and its correlation with 

antigen-specific T-cell activation. Another conceivable experiment could be the 

modification of the ex vivo dose response experiments (Fig. 13) by adding APCs from 

‘post-septic’ animals to purified LCMV-specific T-cells from healthy mice followed by 

peptide stimulation. If T-cells exhibit impaired antigen-dose responses this would strongly 

indicate protracted disease-induced functional defects of APCs. The use of genetically 

modified mice bearing T-cells almost exclusively specific for one particular antigen would 

also be a very useful experimental approach. One could perform direct ex vivo or in vivo 

clonal antigen T-cell stimulation without previous infection-induced accumulation of T-

cell clones. For example OT-I (C57BL/6-Tg(TcraTcrb)1100Mjb/Crl) or OT-II (C57BL/6-

Tg(TcraTcrb)425Cbn/Crl) mice, with T-cells specific for chicken ovalbumin peptides 
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(Ova) are commonly employed mouse models in research studies investigating antigen-

specific T-cell responses. 

5.4 Summary and outlook 

5.4.1 Systemic inflammation and sepsis do not induce enduring 
defects in T-cell function 

The present study represents an in-depth analysis of multiple aspects of T-cell immunity at 

post-acute disease stages using various clinical relevant rodent models of SIRS and 

polymicrobial sepsis. All data unarguably show that Systemic Inflammatory Response 

Syndromes, including sepsis do not induce lasting functional defects on the level of 

individual T-cells. Cell biological and biochemical approaches could not reveal any 

disturbances in TCR-mediated T-cell activation, proliferation, cytokine production as well 

as TCR/co-receptor signalling. Accordingly, immunological-orientated studies using 

secondary infection models additionally indicate that antigen responses of effector CD4+

and CD8+ T-cells are not impaired on per cell base at late stages of SIRS and sepsis. The 

strength of the present study lies in the employment of four different murine models of 

SIRS and sepsis with various clinical features meeting the large heterogeneity of the 

syndromes. All models exhibited virtually the same outcome in respect of T-cell function 

enabling to adapt the main conclusions of the thesis for all episodes of systemic 

inflammation and bacterial sepsis. On the other hand, the present thesis could find strong 

evidence for persistently defective T-cell immunity due to an enduring systemic loss of T-

cells. Protracted lymphopenia occurred in both sterile SIRS models as well as in both 

polybacterial sepsis models suggesting that the inflammatory host response is the cause of 

this phenomenon and does not rely on the presence of viable pathogens. 

In conclusion from all discussed data one can propose following model for cellular 

adaptive T-cell immunity at post-acute stages of SIRS and sepsis (Fig. 17). Antigen-

specific T-cell responses are not disturbed on a cellular level and thus T-cells are capable 

to mount immunological effector functions in response to infections. Cellular malfunction 

of T-cells does not contribute to protracted immune suppressive states in patients after 

SIRS and sepsis. However, overall T-cell immunity at post-acute disease stages is 

compromised due to the persistent loss of naïve T-cells reducing the pool of T-cell clones 

reactive against invading pathogens. Moreover, T-cell extrinsic factors might play a role in 
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defective T-cell immunity after SIRS / sepsis, although the experimental data discussed 

here are limited and not fully conclusive. This model shifts the focus from T-cell immune-

stimulatory therapies in sepsis to other aspects of adaptive T-cell immunity. In first line, 

the present study suggests that prevention of early T-cell loss is sufficient to maintain 

proper T-cell immunity at post-acute stages of systemic inflammation and sepsis. 

_______________________________________________________________________ 
Figure 17. T-cell immunity after SIRS and sepsis 
Model of T-cell immunity after systemic inflammation and sepsis. An acute episode of SIRS and sepsis 
results in a profound systemic loss of T-cells and induces a state of T-cell hyporesponsiveness that 
contributes to acute disease-induced immunosuppression associated with early mortality. At later stages of 
SIRS and sepsis T-cells do not feature cellular functional defects but total T-cell numbers are persistently low 
for a protracted period of time. T-cells at post-acute disease stages exhibit normal TCR-induced T-cell 
activation (e.g. activation marker up-regulation, TCR signalling) and effector responses (e.g. proliferation, 
cytokine production, differentiation). 

5.4.2 Clinical Relevance of murine data for human patients 
When adopting this model and the data from this thesis to human patient cohorts, one must 

consider that some immunological aspects are different in mice and humans. For example, 

the composition of the leukocyte compartments is significantly different in mice, 

exhibiting much higher frequencies of T- and B-lymphocytes in blood while in humans 

granulocytes represent the main population blood [132]. Furthermore, differences of T-cell 

biology in both species have been described for development, antigen-dependent activation 

and signalling as well as for differentiation into effector cells [132]. However, functional 

inter-species differences are more relevant when studying certain T-cell subtypes or 

specific molecules and processes involved in T-cell immunity. The study here investigated 

very fundamental aspects of T-cell functionality that share great similarity in both mice 

and humans. 
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Experimental approaches and preliminary data from the present study were the fundament 

for a human pilot study conducted in the research group of the author. The aim of this 

study was to investigate the cellular function of peripheral T-cells in a cohort of critically 

ill human patients at post-acute stages of severe sepsis. The data from human patients 

largely confirm the key finding of non-disturbed cellular T-cell functions at late stages of 

sepsis discussed in this thesis (manuscript in preparation). 

5.4.3 Other aspects of T-cell immunity at post-acute stages of 
systemic inflammation and sepsis 

The present study primary focused on adaptive, TCR-dependent facets of T-cell function in 

background of SIRS and sepsis. Antigen-specific T-cell responses are unarguably the most 

important aspect of T-cell immunity. However, the capacity of CD4+ and CD8+ T-cells to 

respond to other immune mediators (e.g. cytokines) is from major interest and plays a 

significant role in T-cell differentiation and effector function. Although no particular 

experiments have been discussed in the present study, there is no single evidence for 

defective cytokine responses at post-acute stages of SIRS and sepsis. For example, non-

disturbed proximal TCR/co-receptor signalling and T-cell proliferation indicates proper IL-

2 production associated with adequate IL-2 autocrine signalling. In line with that, 

preliminary experiments using the experimental setup depicted in Fig. 13 indicate that 

effector T-cells are not compromised in their capacity to respond to ex vivo IL-7/IL-15 

stimulation at post-acute stages of SIRS and sepsis (data not shown). However, more 

detailed studies are necessary to investigate this important subject. In particular, the 

investigation of cytokine receptor signalling (e.g. IL-2, IL-4 or IL-7) and 

expression/activation of downstream mediators and genes is essential to understand 

whether SIRS and sepsis impact bystander T-cell activation. 

In Germany and many other countries, large-scale vaccination programs protect the 

recipient against numerous potentially hazardous infectious diseases upon generation of 

pathogen-specific memory T- and B-cells. Memory CD4+ and CD8+ T-cells represent 

major cellular components of anti-microbial and –viral immunity as they rapidly recognise 

and eliminate invading pathogens. Although impaired function of CD8+ T-cell memory has 

been described for murine sepsis [64], detailed functional analyses have not been carried 

out yet. In particular, the long-time consequences of SIRS and sepsis on memory T-cell 

function are poorly understood. The present study can not provide insights into memory T-



 Discussion 

81

cell immunity since all studies were performed with naïve or effector CD4+ and CD8+ T-

cells. But one can easily adapt the experimental approaches from this work to study 

functional aspects of memory T-cell immunity. Immunisation of mice with Lymphocytic 

choriomeningitis virus or Listeria monocytogenes generates a profound pool of long-living 

pathogen-specific memory CD4+ and CD8+ T-cells after the primary effector response has 

been terminated. Memory T-cells can be identified, and thus purified, by the expression of 

specific surface marker molecules, e.g. high expression of CD11a for memory CD8+ T-

cells. Upon ex vivo polyclonal TCR stimulation their functional capacity could be 

investigated analogous to the experiments depicted in Fig. 10 – 13. In vivo T-cell assays 

(Fig. 16) could also be extended to memory T-cells, just by adoptive transfer of memory 

P14 T-cells. Evaluation of functional patterns of memory T-cells would provide highly 

interesting insights in the field of protracted immunosuppression after SIRS and sepsis. 

Furthermore, all data from literature point towards impaired cellular T-cell function in 

acute stages of sepsis, while the data discussed here strongly argue against functional 

disturbances at later stages. This notion suggests that T-cells can sufficiently recover from 

acute hyporesponsiveness. This interpretation is from great medical interest, since the 

critical factors that mediate recuperation of cellular T-cell function might be promising 

targets for immune-stimulatory therapies in acute episodes of sepsis. Modern techniques of 

micro-array-based transcriptome analyses would allow screening for differential 

expression of genes that could mediate T-cell recuperation in tissue samples obtained from 

the same mouse or patient over the course of several days / weeks. In this manner 

conceivable molecules could be inhibitory T-cell receptors, such as PD-1, CTLA-4 or 

BTLA. Currently, only one rodent study is available that describes the gradual reversion of 

immunosuppression after CLP-induced sepsis, possibly linked with regaining T-cell 

functionality [86]. 

Peripheral homeostatic T-cell proliferation is another process that could play a decisive 

role in the recovery of the T-cell immunity. Under lymphopenic conditions the remaining 

naïve T-cells replenish T-cell numbers by profound cell division regulated by self-

ligand/MHC interaction and various γc cytokines, such as IL-7 and IL-15 [133]. However, 

the impact of SIRS and sepsis on peripheral homeostatic T-cell proliferation is not 

understood in detail yet and but is from great clinical interest since thymic T-cell output 

does not play a significant role in adult patients and T-cell homeostasis largely depends on 

peripheral T-cell proliferation. 
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5.4.4 Concluding remarks 
The results from the present work are an important contribution in the field of clinical 

sepsis research as they conclusively show that systemic inflammation and sepsis do not 

lead do enduring cellular defects in T-cell function. This rather unexpected finding 

indicates a non-decisive role of adaptive T-cell function to the protracted state of 

immunosuppression after SIRS and sepsis. Under this light, future research studies will 

focus on other aspects of adaptive immunity, with some of them discussed in the present 

thesis. Understanding of precise mechanisms of sepsis-induced immunosuppression will 

finally lead to better therapeutic treatment of immune suppressive patients and hopefully 

translate into improved long-time outcome with increased health-related quality of life. 
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