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Speckles appear as noisy steady light patterns caused by random phase 
disturbance of coherently propagating light. Their suppression and use in optical 
metrology make its simulation and evaluation necessary. This contribution 
addresses the issue of numerical propagation of speckle distributions.

1 Introduction

When we work on a practical setup in our lab with 
coherent light, grainy steady patterns, called 
speckles, appear. They are caused by light stray-
ing either on rough surfaces or within scattering 
volumes or can be generated synthetically by spa-
tial light modulators. They are noisy, random light 
distributions and can be evaluated statistically. 
Therefore they are applied as test distributions in 
metrology, i.e. shearing interferometry, measure-
ments of vibrations and rotations, visualization of 
aberrations and phase retrieval. If a speckle field is 
captured by a camera one gets an intensity image. 
Because of its noise, i.e. random characteristics 
statistical evaluation can be done as follows: either 
in a histogram where the counts for each intensity 
value are plotted and can be fitted to a special 
probability density function PDF, or by calculation 
of the autocorrelation function, which contains the 
information of the correlation length, i.e. the aver-
age speckle size ASS. The digital generation of 
complex amplitude U(N,M) of speckle distributions 
is performed by adding two sets of random, 
Gaussian distributed numbers; one set represents 
the real and the other the imaginary part, the in-
tensity is then calculated by the multiplication of its 
complex amplitude times its complex conjugate [1].

2 Evaluation of Speckles

In this contribution the evidence of speckle distri-
bution is given by the answer of two questions:

1. Does the intensity distribution obey the nega-
tive exponential PDF?

2. Does the average speckle size follow the rela-
tionship of �����?

Both answers should be positive for the generation 
of fully developed speckle patterns and after its 
processing by numerical propagation [2].

The statistical behavior is analyzed by making up a
histogram of intensity followed by the fitting of the 
curves by gamma as well as negative exponential 
PDF. The gamma PDF depends on 2 parameters 
of � and �, whereas the negative exponential PDF 

is described by the parameter of μ. If �	
 and �	�, 
i.e. ��μ=1, the gamma PDF reduces to negative 
exponential function what is a typical property of 
speckles. 

The autocorrelation function delivers the correla-
tion length, the distance between lateral spatial 
locations where the intensity values are still corre-
lated statistically with each other. This corre-
sponds to the average speckle size of the ob-
served distribution and is evaluated by measuring 
the distance between the central global maximum 
and the first local minimum. Meanwhile this aver-
age speckle size follows the relationship of 
ASS	����� with � as the wavelength, z the propa-
gation distance and 2W the aperture width for 
squared, but ASS=1,�������
 for circular apertures 
having a radius of R. Both criteria, i.e. the negative 
exponential PDF and the ASS are used for speckle 
validation [1].

The propagation of optical wavefields is represent-
ed by the Kirchhoff diffraction integral. This can be 
simplified to a Fresnel transform for the paraxial 
regime which corresponds to a Fourier transform 
of a multiplication of the complex amplitude distri-
bution U(x’,y’) in object plane times a parabolic 
phase propagator. This is called direct method 
(DM). The Kirchhoff diffraction integral can be seen 
as a convolution of U(x’,y’) by the impulse re-
sponse of free space which is generally performed 
in spectral domain by multiplication of its Fourier 
transforms. Then the spectral result is transformed 
back to the spatial domain by inverse Fourier 
transform. If this impulse response is approximated 
parabolically we call this spectral method (SM). 
The distributions and the following propagation can 
be only represented numerically by sampling. This 
results in 2 consequences: I) replicas appear due 
to propagation at a lateral replica period RP’	�����’
with ��’ as pixel size at object plane, II) there is a 
different pixel size �� in the diffraction plane for 
each method. For DM the pixel size scales with the 
distance by ��	�������’) with N as an integer 
number of samples while for SM �� remains 
const., i.e. ��	��’ [2]. This behavior concerns both 
lateral coordinates of x,y.
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3 Observations

The observation of the numerical propagation is 
realized in 3 steps as follows:

I) the numerical evaluation of the propagation 
integrals using DM and SM respectively, with-
out considering the sampling and pixel size,

II) the adaptation of the spatial extent ��	��� to 
the replica period RP’	�����’. This works only 
for a unique distance. For further distances RP’
increases. Holding ��	��’, the spatial extent 
�� should be enlarged by zero padding: 
��=RP’	���.

III) the expansion of the spatial extent �� to the 
diffraction area [3]. For a given distance z and 
aperture size of 2W, �� is enlarged to ��	
��������’	
�	�����. The new replica period 
RP can be achieved by a new (smaller) pixel 
size of ��	���������’+2W). The original distribu-
tion has to be interpolated followed by an ap-
propriate zero padding to the diffraction area.

The numerical algorithms of DM and SM were 
regarded versus the propagation distance. First, 
the intensity statistics were evaluated concerning 
the negative exponential PDF, where one wishes
to have the parameters �=1 and ���	
 as men-
tioned above. Second, the measured correlation 
length is compared to the relationship of average 
speckle size ASS.

Fig. 1 Observation: step 2 (violet), diffraction area (or-
ange), step 3 (green).

When just the DM and SM are programmed (step 
I), the calculated distributions are not comparable 
to each other, due to the different pixel sizes men-
tioned above. The statistics of the intensity distri-
bution follows the expectation of the negative ex-
ponential PDF, but the reproduction of ASS fails. 
The measured size corresponds to one pixel rep-
resenting the behavior of the pixel size for both DM
(scaled with distance) and SM (remains const.) [s.
Fig. 1].

The adaptation of the spatial extent to the replica 
period results in intensity statistics as expected 
and reproduces the functional behavior of the 
speckle size [s. Fig. 2]. It turned out that the ASS
was only few pixels, so that an exact confirmation 
could not be reached. Here, the DM and SM yield-
ed identical intensity distributions.

Considering the diffraction phenomenon under the 
conditions of step III) delivers once again identical 
distributions independent of SM or DM. However, 
the speckle intensities don’t follow the negative 
exponential PDF anymore. But it should not be 
surprising because of the intensity decay at the 
boundaries due to diffraction. The expectation of
the ASS could be confirmed similar to step II).

Fig. 2 Intensity statistics (left) and average speckle size 
(right) vs. propagation distance.

4 Conclusions

For the numerical propagation of speckle fields 
obeying the sampling criterion ��	
�’ is inevita-
ble. In a strict sense, this criterion is only given for 
one propagation distance. If one wished to propa-
gate to further axial distances or to expand the 
lateral region, an appropriate zero padding as well 
as sampling (interpolation of pixel size) are availa-
ble methods to adapt this new situation to the 
sampling criterion. Then, the result is independent 
on the applied method (DM, SM).
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