

TU Ilmenau | Universitätsbibliothek | ilmedia, 2016
http://www.tu-ilmenau.de/ilmedia

Füssl, Franz Felix; Streitferdt, Detlef; Shang, Weijia: Triebel, Anne:

Introducing a method for modeling knowledge bases in expert

systems using the example of large software development projects

Original published in:

International Journal of Advanced Computer Science and Applications : IJACSA. -
New York, NY. – 6 (2015), 12, pp. 1-7.
ISSN (online): 2156-5570
ISSN (print): 2158-107X
DOI: 10.14569/IJACSA.2015.061203
URL: http://dx.doi.org/10.14569/IJACSA.2015.061203
[Visited: 2016-01-28]

This work is licensed under a Creative Commons Attribution
4.0 International License.
[http://creativecommons.org/licenses/by/4.0/]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224750402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.tu-ilmenau.de/ilmedia
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Introducing a Method for Modeling Knowledge Bases
in Expert Systems Using the Example of Large

Software Development Projects
Franz Felix Füssl, Detlef

Streitferdt
Institute for Computer and Systems

Engineering
Technische Universität Ilmenau

Ilmenau, Germany

Weijia Shang
Computer Engineering Department

Santa Clara University
Santa Clara (California), United

States of America

Anne Triebel
Institute for Business Information

Systems Engineering
Technische Universität Ilmenau

Ilmenau, Germany

Abstract—Goal of this paper is to develop a meta-model,
which provides the basis for developing highly scalable artificial
intelligence systems that should be able to make autonomously
decisions based on different dynamic and specific influences. An
artificial neural network builds the entry point for developing a
multi-layered human readable model that serves as knowledge
base and can be used for further investigations in deductive and
inductive reasoning. A graph-theoretical consideration gives a
detailed view into the model structure. In addition to it the model
is introduced using the example of large software development
projects. The integration of Constraints and Deductive
Reasoning Element Pruning are illustrated, which are required
for executing deductive reasoning efficiently.

Keywords—Knowledge Engineering; Ontology Engineering;
Knowledge Modelling; Knowledge Base; Expert System; Artificial
Intelligence; Deductive Reasoning Element Pruning

I. INTRODUCTION
IT technologies are subjects to a fast changeable field of

application. Software development teams have to adapt
continuously for fitting newest stakeholder needs and finding
success in the market. Especially success of large software
development projects for example product line developments
depends on many different influencing factors, introduced in
[1]. These influencing factors determine for example the
composition of teams, the choice of software tools or the
selection of a suitable software development process.

There are a couple of previous and current projects with the
goal of developing an open source expert system (ES)
including the ability of machine learning in a specific field.
Examples are [2], the “scikit-learn” library [3], the “Mlpy”
library [4] or “Orange” library [5]. As opposed to these
projects and publications the project behind this paper focuses
on large software developments that typically have many
various influences and a large set of required or requested
software tools and business artifacts.

The most important part of an ES is the basis of decisions.
There are a couple of systems, based on a simple decision tree
or relational data models [6]. But currently in the domain of
software developments there is no appropriated model for
illustrating knowledge bases (KB) [6], which are necessary for

automated handling machine learning and deductive reasoning.
For this reason an abstract human readable meta-model
(defined in [7]) should be developed that deals as architectural
basis for further investigations in autonomous decision making
having regard to different specific influences as project-
specific, personal, economic-driven, product-related or
technology-based.

A. Knowledge bases in Expert Systems
According to basic literature as [8], [9] or [10] an ES is a

knowledge-based system that is used for intelligent assistance,
decision making or problem solving. Main goal of the research
project behind this paper is to develop a system that is able to
detect any objects that are helpful to bring a software project to
success. Thus the system needs to make decisions for solving a
specific problem. To do so, it is necessary, to have a profound
KB what can be used for inference, in particular deductive and
inductive reasoning.

So what exactly is a KB and why it is important to
consider? According to [11] or [12] KB are specialized bodies
or nets of knowledge and skills. So it is a construct of
information, data and associations, where knowledge can be
generated and derived by “heuristics or informal ‘rules of
thumb’ experts” and “reasoning methods” [13]. In the field of
this research project the KB, which is to develop, contains
knowledge of software developers, project managers, software
architects, software producer or experts and consultant in the
field of software development processes.

B. The origins of the model: Ontology, Topic Map and
Artificial Neural Network
According to [14] an artificial neural network (ANN) is

organized into layers with processing elements, called units.
Every unit has its own specific setup, but they are similar in
activation events and output functions. Associations can be
done among units of the same layer and between elements on
different layers. The units are associated by weighted
connection paths. As described in [15] “successful training [of
ANN] can result […] in performing tasks such as predicting an
output value, classifying an object […] and completing a
known pattern”.

1 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

An ANN seems to be the right KB to pursue the goal of this
paper. But there are differences to the underlying KB of this
paper. ANN work with an unspecified number of layers. They
have a known input pattern and a known output pattern. In case
of a multi-layer feedforward ANN there is at least one hidden
layer in-between these patterns [16], which leads to a worse
human readability. Also it is not provided to have different
views to the knowledge, for instance a descriptive and a
deciding view. The model should be able to perform inferring
processes, making decisions and edit knowledge with a focus
to human-readability.

With searching a possible solution for solving the human-
readability problem, Ontologies have to be mentioned. As
described in [6] they serve as method for representing
knowledge and it is possible to integrate machine learning by
‘Ontology learning’. The problem of Ontologies is the degree
of formalization, which is too low for scalable reasoning. Thus
generic usable and efficient deductive reasoning algorithms are
difficult to integrate and not a goal of Ontologies. Nevertheless
the main idea of Ontologies, the descriptive functionality, has
been used for developing the model behind this work. [6]

Another possibility to represent knowledge is creating
Topic Maps. But here are no approaches for machine learning
integration. As with Ontologies the focus of Topic Maps is the
presentational view of knowledge. [6]

Taken as a whole, the KB, which builds a foundation of the
model in this work, is lightly adopted to multi-layered
feedforward ANN with advantages of Ontologies and Topic
Maps.

II. MODELING THE KNOWLEDGE BASE
The architecture of the knowledge base can be described as

five-layered meta-model. The layers represent different
abstraction levels, where information can be stored and
processed. Fig. 1 shows these five layers of the meta-model.

Fig. 1. Multi-layerd Meta-Model: Layer Overview

One layer contains at least one element, exemplified by
repetitive geometric figures of Fig. 1. Elements are associated
by different connection types. Thus association rule learning is
possible, as it is used for example in artificial intelligence (AI)
or Data Mining [17]. With these associations, elements have
relations to each other within the same layer or through
different layers. The model provides best possibilities for using
the principle of loose coupling, which leads to high
interchangeability and extensibility of all containing elements
[18]. Each element contains implicitly a problem, a specific
way for finding the solutions (logical part) and a result for
using the element explicitly. The models hierarchical and
logical structure helps to break these problems down into

manageable pieces, which is one of the major and well known
paradigms in AI [19], [20], [21].

Beginning with the general description of terminology the
models characterization is followed below:

A. Layer description and terminology
The Layer 𝑳𝟒 contains the Data Source elements of the

KB. It serves as application layer and forms the main
communication between the AI system and project participants
(users), hardware or software interfaces. Elements are for
instance questions, measuring tools, sensor technologies or API
definitions. This layer collects primary circumstances by a
simple request-response method. Thus it is possible to gather
actual issues and specific factors of influence.

Each factor of influence is stored as Feature in layer 𝑳𝟑.
Examples of these Features are “project budget”, “operating
system”, “personal motivation” or “personal experience”.
Impacts of each feature correlate closely with research and
technological development, which is why layer 𝐿3 is subject to
high degree of variability. For simplifying the analysis of
results, features are classified in nominal scaled, ordinal scaled
and metric scaled. This classification depends on the connected
data source element and bases for example on different types
of questions as “multiple-choice” and “single-choice” or on
different types of input data, as Integer and String. Input data
mean typically data generated by measurements. Questions
could have this data type too, especially when user input is
necessary.

Each Feature is associated with at least one Cell that is
collected by another layer of the model: 𝑳𝟐. According to
Landauer each Cell could be described as context block [22],
which collects data by their associations and interprets it as
information by deposited algorithms. Thus they represent the
basis for generating knowledge. In addition to analyze
specifically adjacent Features, Cells are able to access other
Cells by connecting among each other and involving the
associated result into the own analyses. They are weighted
differently according to their number of associations. Cells can
be dependent on each other, for instance “Scrumwise” as
software solution and “Scrum” as development process.

The information that is stored in Cells is used by specific
Items, which build layer 𝑳𝟏. Each Item contains an abstract
component that could be necessary for realizing the project.
Items serve as partial solution for reacting to a determined
problem. For that reason all Items have to examine carefully,
how they conduce to project’s success. They can be used in
different parts and steps of the project. For instance, one Item
symbolizes “requirements engineering”, which is necessary for
product management and very important for project success.
Further examples of Items are “software development
process”, which has to be ascertained or “software architecture
pattern”.

For determination Cells and Items in a more understandable
manner: 𝐿1 (layer of Items) serves as ‘descriptive’ view on the
information of the KB, while 𝐿2 (layer of Cells) builds a
‘deciding’ view within the system using the KB. Cells contain
something concrete while Items are more a general view into
the KB.

2 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

The solution layer 𝑳𝟎 represents a complete build package
for solving a predefined problem, for example finding the
‘projectalized’ development process or a customized developer
environment. The decision of combining project relevant
elements bases on a simple suitability test. Each association of
every single Item verifies its project suitability. Then the Items
determine their linked Cell with the highest suitability value.
The corresponding results are abstracted to a project-specific
solution.

B. Mathematical consideration as graph
When describing the five-layered meta-model with basic

definitions of graph and set theory, for example by [23] or [24],
the model is a weighted directed graph 𝐺 = (𝑉,𝐸, 𝑖) without
loops and a non-regular property. The layers (𝐿0 𝑡𝑜 𝐿4) are
sets of ordered pairs (𝑉,𝐸) with

• 𝑉(𝐺) as finite set of all nodes (elements of the layers)

• 𝐸(𝐺) as set of all edges (associations) and

• 𝑖 = 𝑖𝐺 as mapping that assigns to each edge 𝑒 ∈ 𝐸 a
pair 𝑖(𝑒) = {𝑥,𝑦} with elements 𝑥,𝑦 ∈ 𝑉.

Set V can be divided into five subsets, as shown in Fig. 2:

𝐿0, 𝐿1, 𝐿2, 𝐿3, 𝐿4 ⊂ 𝑉(𝐺)

They contain each element of the different layers of the
model. 𝐿2 (Cells layer) and 𝐿1 (Items layer) are exceptional as
opposed to the other layers. They are induced subgraphs
𝐶1,𝐶2 ⊂ 𝐺. Within 𝐿1 and 𝐿2 it is possible to build edges
between the nodes (on the same layer). According to [25] 𝐶1
and 𝐶2 have maximum associations of

�𝑛2� = 𝑛(𝑛−1)
2

 𝑤𝑖𝑡ℎ 𝑛 = |𝐿2| or

�𝑚2� = 𝑚(𝑚−1)
2

 𝑤𝑖𝑡ℎ 𝑚 = |𝐿1|

This maximum achievable number of nodes of 𝐿2 and 𝐿1
implies the completeness of the respective subgraphs. It can
only be achieved by associating each element of one layer with
every other element of the same layer.

Fig. 2. Model illustration of an example as graph

By integration of weights deductive reasoning can be
accelerated. Goal is processing the graph on prioritized paths,

for faster reaching important elements (nodes, information).
Here the importance of an element can be concluded from the
degree centrality, similar to the PageRank-Algorithm [26].
According to this the significance of a node depends mainly on
the number of its edges. [26]

The set 𝐸𝐺(𝑣) is the set of all adjacent edges of a node
𝑣 ∈ 𝑉. Further the set 𝐸𝐺+(𝑣) is defined as a set containing all
edges to successors and 𝐸𝐺−(𝑣) as a set with all edges to
predecessors of one node 𝑣.

The weighting is made by assigning an edge 𝑒 ∈ 𝐸𝐺(𝑣) a
weight 𝜔(𝑒), which is a real number 𝜔 ∶ 𝐸 → ℝ [27]. It can be
simplified by 𝜔 ∶ 𝐸 → ℤ. Each node is able to attach its degree
𝑑𝐺(𝑣) as weight to all of its adjacent edges. If an edge has
already had a higher weight, this edge keeps the original
weight value:

∀ 𝑣 ∈ 𝑉: 𝜔(𝑒𝑣) < 𝑑𝐺(𝑣) → 𝜔(𝑒𝑣) = 𝑑𝐺(𝑣)
𝑤𝑖𝑡ℎ 𝑒𝑣 ∈ 𝐸𝐺(𝑣)

Each node has a specific result that can influence a
calculation of a neighbors result. The result of a node 𝑣 ∈ 𝑉 is
defined as 𝑟(𝑣). Calculation of results can be done in different
manner. For example it might be calculated by a linear
function, where the variable represents a dependency to an
adjacent result:

𝑟(𝑣𝑥) = 𝑟�𝑣𝑦� − 4 𝑤𝑖𝑡ℎ 𝑣𝑦 ∈ 𝑁𝐺(𝑣𝑥)

Here 𝑁𝐺(𝑣𝑥) is the set of all neighbors of 𝑣𝑥. Also it might
be possible that results are sets containing other nodes, for
instance:

𝑟(𝑣𝑥) = {𝑣𝑎, 𝑣𝑏 , 𝑣𝑐} 𝑤𝑖𝑡ℎ 𝑣𝑎 , 𝑣𝑏 , 𝑣𝑐 ∈ 𝑁𝐺(𝑣𝑥)

C. Edge types and their usage
The system should be able to distinguish between optional

and obligate connections between elements. Reason for this is
to handle optional paths while deductive reasoning, for
example by asking the user for his needs. An optional path is
an edge with a specific successor that might be interesting for
decision making, but the actual need of this successor is not
sure until the decision making process is executed. The set with
optional-edges is defined as followed:

𝐸𝑜𝑝𝑡(𝐺) = {𝑒𝑥, … , 𝑒𝑛}

As opposed to optional paths, required paths are those that
are included in a decision making process in any case. They
represent the usual edge type and are contained in the set of
required-edges:

𝐸𝑟𝑒𝑞(𝐺) = {𝑒𝑥 , … , 𝑒𝑛}

The visualization in Fig. 3 illustrates the usage of optional
(Fig. 3, a) and required (Fig. 3, b) paths as well as the usage of
four other path categories. Required and optional paths can be
visually distinguished by the end of each edge. An optional
path ends with a non-filled connection. A required (usual) path
is represented by a filled arrow head.

In addition to optional and required paths it is necessary to
distinguish between more types of paths:

3 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

An ‘is-path’ is used for building inheritance relations, for
example ‘MS Visio is Software’. It is visualized with a cross-
filled circle (Fig. 3, c) on the predecessor element: ‘𝑣5 is 𝑣6’.
This type is always a required path, otherwise the system
would not be able to decide, if an element is another or not.

Also paths that represent ‘used-for’-relations between
elements are always required edges (Fig. 3, e). An element ‘is
used for’ an activity or not; it is not consistent to say ‘perhaps
an element is used for an activity’.

For modeling characteristics or attributes the model
provides a further type of an edge, the ‘has’-path (Fig. 3, d).
These paths serve as instruments to specify elements. For
example every software ‘has’ a price and an installation type.
Modeling this knowledge means three Items: software, price
and installation type. The edges between these elements would
be ‘software has price’ and ‘software has installation type’.
Now every element, which ‘is’ software, has a price and an
installation type, too.

The sixths path type is the ‘part-of’-edge (Fig. 3, f), which
is used to build part-whole relations between elements. In
opposite to a ‘has’-relation the ‘part-of’ element is not able to
exist for its own, which means the whole-unit has to exist.

Fig. 3. Visualization of path types

Fig. 4 demonstrates an example with three Items.
‘Requirements documentation’ builds the successor,
‘Documentation of functional requirements’ and ‘Creating-

Fig. 4. Example of using optional and required paths

Wireframes’ are predecessors. Both predecessors might be
interesting for a deductive reasoning process, for example
‘Find suitable software for requirements documentation!’. In

addition to this both are connected with ‘part-of’ relations,
which means the predecessors are part of ‘Requirements
documentation’.

The difference between the relations is creating wireframes,
which is not a mandatory functionality of requirements
documentation, whereas the documentation of functional
requirements represents one of the most important topics. Thus
in case of decision making ‘Which software would be the most
suitable for a specific software development project?’, users
has to determine first, if they need the functionality of creating
wireframes.

D. Constraints and Deductive Reasoning Element Pruning
Constraints are barriers, which help excluding paths from

the set of all paths within the graph. Thus any association
between elements can define preconditions or requirements. So
the processing of an element is solely necessary if all of its
constraints are complied. Goal is:

• more efficient processing through the graph by

• more intelligent operating on elements and thereby

• shorter times of results in deductive reasoning

If at least one constraint of an element is false, the element
can be excluded from the entirety of all possible elements of
deduction. Using the example of this publication, the
integration of constraints leads faster to a list of matching
project artifacts. Visualization of constraints is done by a
dotted line as illustrated in Fig. 5.

Fig. 5. Illustration and definition of constraints

The set of constraints is defined as:

Γ(G) = {𝛾1, … , 𝛾𝑛}

Considering an example of a simple association between
Scrum and the number of regarded team members, Fig. 6
shows the functionality of constraints within the graph. A
constraint 𝛾 is assigned to the edge 𝑒(𝐸1,𝐸2) by
𝛾�𝑒(𝐸1,𝐸2)�: 𝑟(𝐸2) > 5 ∧ 𝑟(𝐸2) < 9 that means the result
of 𝐸2 has to be greater than five, but less than 9.

So 𝛾 can be interpreted as follows: Only if the result of
node 𝐸2 (the number of team members) is between five and
nine, element 𝐸1 (Scrum) is relevant for the deductive
reasoning. If the result of 𝐸2 is less than five or higher than
nine, 𝐸1 is irrelevant for the deductive reasoning, because at
least one constraint is false.

Fig. 6. Example of using constraints

4 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

By integration of constraints the entirety of nodes within a
deductive reasoning process can be decreased. This process of
reducing nodes can be named as Deductive Reasoning Element
Pruning (DREP). Element Pruning is a well-known term in
different Selection Algorithms as [28], [29] and [30] or in
Clustering Methods for example [31] and [32]. In the domain
of this model and publication DREP is an optimization
measure during deduction, which is able to reduce the number
of elements at the time 𝑇 to be proceeded until 𝑇 + 1. With
DREP parallelism can result in jumping to nodes, which are
possibly not reachable anymore, because they are on a pruned
path. This case occurs with pruning of bridges (graph theory).
Therefore it should be completely dispensed with parallelism
or an event-driven system should be used, in case of integrating
pruning.

The usage of DREP will be introduced in future work,
where an algorithm for deductive reasoning will be shown that
is suitable for the model of this paper.

E. Inference
As described above, the structure of the model should serve

as KB with the ability of self-learning functionality and
deductive reasoning. This is why the architecture of the model
is a composition of ANN, which are used in artificial
intelligence systems, and ontologies that have their usage in
knowledge engineering. Furthermore it has already been
expounded that each element within the model can output a
specific result, which can be used by any other element.
Considering it all together – artificial intelligence components,
ontology-based representation of knowledge and the specific
result of each element – lead to an architecture that is able to
handle inductive reasoning and deductive reasoning in different
ways.

By the derived structure of multi-layer feedforward ANN,
the model can be used with well-known approaches of machine
learning paradigms, as supervised learning, unsupervised
learning or reinforcement learning. In addition to these
inferring methods, it is possible to make simple decisions by
searching the result of a specific element. Example of such a
simple decision is ‘Is Scrum suitable for a specific project
team?’. Assumed that a Cell ‘Scrum suitability’ exists and that
the result of this Cell is the actual value of how suitable scrum
is, there would be no need to perform a complicated machine
learning algorithm for answering the predefined question. The
only need is to output the result. This can be done on two
different ways. On the one hand the connected knowledge of
the ‘Scrum suitability’ can be interpreted manually, by human
reading and reasoning, or on the other hand automated, by a
decision-making system. For doing it automatically, one of the
next steps of this project is defining an algorithm that handles
this behavior under consideration of constraints and DREP.

III. EXAMPLE OF APPLICATION
As outlined above, the model can be used for illustrating

information and knowledge. One of the major goals of the
research project behind this paper is to develop an automated
decision system for identification suitable project tools and
required artifacts, especially for large software development
projects. Fig. 7 shows an extract of this use case and

demonstrates the complexity of modeling a KB. The figure
illustrates four out of five layers of the model: 𝐿1 Items
(rectangular, rounded corner), 𝐿2 Cells (elliptical), 𝐿3 Features
(rectangular) and 𝐿4 Questions (rhombic). The lines between
the elements serve as connectors and represent the associations
with their corresponding types.

There are two major levels of abstraction in the model: a
descriptive and a deductive level. The first mentioned
descriptive view is represented by Items as ‘Software’ and
Features with a connection to Items as ‘Price (amount)’.
Descriptive elements are essential for learning and generating
information. Items can also represent problems or goals, for
example ‘Classification of requirements’, which is part of
‘Requirements Engineering’. For solving this problem ‘Jira’
can be used. Jira is concrete ‘Software’ and so on.

In the example, ‘Software’ and their connected elements
can be read as followed:

• ‘Software’ has ‘Price’ and ‘Installation Type’

• ‘Operating System’ is Software

• ‘Gliffy’, ‘Jira’ or ‘Astah’ is concrete Software

• ‘Jira’ can be used for ‘Documentation of non-
functional requirements’,

• ‘Documentation of non-functional requirements’ is a
part of ‘Requirements Engineering’.

Features can be connected to Cells and Items. In cases of
connection with Items, they will be executed with inductive
reasoning, which means during learning phases. As opposed to
Features that are connected to Items, Cell-Features need to be
executed within a concrete deductive reasoning process, which
is for example a decision process. Reason for this behavior is
distinction between general and specific. The following two
examples describe this approach:

Example 1: Sentence to learn: ‘Jira is software.’ The
system already learned ‘Software has a price’. Connected
question to price: How much is the price? So the system has to
ask: ‘How much is the price [for Jira]?’

Example 2: Constraint to learn: ‘Jira requires Windows 8.’
The KB knows: ‘Windows 8’ is an ‘Operating System’. So
whenever the system has to make a decision through the Cell
Jira, it has to ask: ‘What is the Operating System?’. Obviously
the system might ask directly ‘Do you use Windows 8?’, but in
this case the operating system of the user would remain
unknown and element pruning could not be made in the same
efficiency as with the question above.

IV. CONCLUSION
A new method for modeling knowledge, information and

data is introduced in this paper. It serves as architectural basis
for developing expert systems by building knowledge bases in
the field of knowledge engineering.

The abstract meta-model is constructed by five layers. They
consist of descriptive and deductive elements and are derived
by an artificial neural network. The model is illustrated both in
a descriptive way and in a mathematical view by considering it

5 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

as graph. In addition to the general description the authors give
an insight into a case of application using the example of large
software development projects.

By integration of constraints and DREP the proceeding
time of the graph can be decreased. Thus a deductive reasoning
process is more efficient and the interaction with users can be
reduced, when using the model as knowledge foundation. A
further advantage of using the model as basis for additional
research projects is the ability of extensibility. For instance it is
very easy to assimilate different approaches for realizing
deductive and inductive reasoning.

When considering deductive reasoning in one of the next
steps, it is important to give solutions for the following
problems: (1) Detecting the end of the deductive reasoning

under regard to have an arbitrary entry-point and (2) handling
conflicts in case of mutually exclusive Constraints.

In addition to use this model for knowledge engineering in
the domain of large software development projects, it can also
be used in different other domains. With the solution approach
it could be possible to model knowledge of study advisers or
career counseling, to build a basis for deciding what kind of
occupation is the most suitable in dependency of personal
characteristics. Further use cases are settled in ‘Health and
Medical’ systems for building a foundation to detected
symptoms and give suitable solutions. In case of building end-
user systems the model can be used to develop a knowledge
base for example of travel agents, fashion advisers or as
product adviser.

Fig. 7. Extract of using the model for knowledge engineering in large software development projects

REFERENCES
[1] F.F. Fuessl, J. Ciemala, "Variable Factors of Influence in Product Line

Development", Computer Software and Applications Conference
Workshops (COMPSACW), 21-25 Jul. 2014, Vasteras, pp. 390-395

[2] M.S. Mohktar, K. Lin, S.J. Redmond, J. Basilakis, N.H. Lovell, "Design
of a decision support system using open source software for a home
telehealth application." Instrumentation, Communications, Information
Technology, and Biomedical Engineering (ICICI-BME), 8-9 Nov. 2011,
Bandung, pp. 390-395

[3] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel; P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, "Scikit-learn: Machine learning
in Python" The Journal of Machine Learning Research 12, 1 Feb. 2011,
pp. 2825-2830

[4] M. H. Nguyen, F. De la Torre, "Optimal feature selection for support
vector machines." Pattern recognition 43.3, Mar. 2010, pp. 584-591

[5] J. Demšar, T. Curk, A. Erjavec, Č. Gorup, T. Hočevar, M. Milutinovič,
M. Možina, M. Polajnar, M. Toplak, A. Starič, M. Stajdohar, L. Umek,
L. Žagar, J. Žbontar, M. Žitnik, B. Zupan, "Orange: data mining toolbox
in Python." The Journal of Machine Learning Research 14.1, Jan. 2013,
pp. 2349-2353

[6] F. F. Fuessl, A. Triebel, D. Streitferdt, " Modeling Knowledge Bases for
Automated Decision Making Systems – A Literature Review ",
International Journal of Advanced Computer Science and
Applications(IJACSA), 6(9), 2015

[7] K. He, C. Wang, Y. He, Y. Ma, P. Liang, "Theory of Ontology and
Meta-Modeling and the Standard" Handbook of Research on Software
Engineering and Productivity Technologies: Implications of
Globalization, Aug. 2009, pp. 85.

[8] J.D. Ullman, "Principles of database and knowledge-base systems"
Computer Science Press, New York, 1988, p. 24

[9] R. Akerkar, P. Sajja, "Knowledge-based systems", Jones & Bartlett
Publishers, 2010, p. 21

6 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

[10] G.S. Tuthill, S.T. Levym, "Knowledge-based systems: a manager's
perspective", TAB Professional and Reference Books, 1991

[11] R. Donmoyer, M. Imber, J.J. Scheurich, "The knowledge base in
educational administration: Multiple perspectives", State University of
New York Press, Albany, 1995, pp. 17-18

[12] L.J. Heinrich, R. Riedl, D. Stelzer, "Informationsmanagement:
Grundlagen, Aufgaben, Methoden", Walter de Gruyter GmbH & Co
KG, 2014, p. 319

[13] B. Bouchon, R.R. Yager, "Uncertainty in Knowledge-Based Systems:
International Conference on Information Processing and Management of
Uncertainty in Knowledge-Based Systems", Springer Science &
Business Media, 1987, p. 3

[14] Bayya Yegnanarayana, “Artificial neural networks” PHI Learning Pvt.
Ltd., 2009., p. 29

[15] J.E. Dayhoff, J.M. DeLeo, "Artificial neural networks", Cancer 91.8,
Apr. 2001, pp. 1615-1635

[16] V.S. Desai, J.N. Crook, G.A. Overstreet, "A comparison of neural
networks and linear scoring models in the credit union environment",
European Journal of Operational Research 95.1, Nov. 1996, pp. 24-37

[17] P.D. McNicholas, Y. Zhao. "Association rules: an overview",
Information Science Reference (imprint of IGI Global), 2009, pp. 1-10

[18] H. Zhu, "Software Design Methodology: From Principles to
Architectural Styles", Butterworth-Heinemann (imprint of Elsevier),
2005, pp. 156-157

[19] P. Norvig, "Paradigms of artificial intelligence programming: case
studies in Common LISP", Morgan Kaufmann Publishers Inc., 1992

[20] E. Bonabeau, M. Dorigo, G. Theraulaz. "Swarm intelligence, From
Natural to Artificial Systems", Oxford University Press, 1999

[21] R.A. Brooks, "Achieving Artificial Intelligence through Building
Robots", Massachusetts Institute Of Technology, No. AI-M-899, May
1986.

[22] C. Landauer, "Data, information, knowledge, understanding: computing
up the meaning hierarchy", Systems, Man, and Cybernetics, San Diego
(CA), 11-14 Oct.1998, pp. 225-2260 vol.3

[23] M.C. Golumbic, "Algorithmic graph theory and perfect graphs", Vol. 57.
Elsevier B.V., second edition 2004

[24] M. Foreman, A. Kanamori, "Handbook of set theory", Springer Science
& Business Media B.V, 2010.

[25] P.C. Biswal, "Discrete mathematics and graph theory", Fourth Edition,
PHI Learning Pvt. Ltd., Delhi, 2015, P. 101

[26] C. Rousseau, Y. Saint-Aubin, "Mathematics and technology", Springer
Science & Business Media, LLC, 2008, p. 269

[27] R. Garnier, J. Taylor, "Discrete mathematics for new technology",
second edition, IOP Publishing Ltd., 2002, p. 592

[28] D. Dor, U. Zwick, "Selecting the median", SIAM Journal on Computing
28.5, 1999, pp. 1722-1758.

[29] D. Dor, "Selection algorithms", Diss., Tel-Aviv University, Sep. 1995
[30] T. Anand, P. Gupta. "A selection algorithm for X+ Y on mesh", Parallel

processing letters 08.03, Sep. 1998, pp. 363-370.
[31] G. Bisson, C. Nédellec, D. Canamero, "Designing Clustering Methods

for Ontology Building-The Mo'K Workbench", ECAI workshop on
ontology learning. Vol. 31, 2000

[32] L.A.F. Fernandes, A.C.B. García, "Association rule visualization and
pruning through response-style data organization and clustering",
Advances in Artificial Intelligence–IBERAMIA 2012, Lecture Notes in
Computer Science Volume 7637, Springer Berlin Heidelberg, 2012, pp.
71-80

7 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	A. Knowledge bases in Expert Systems
	B. The origins of the model: Ontology, Topic Map and Artificial Neural Network

	II. Modeling the Knowledge Base
	A. Layer description and terminology
	B. Mathematical consideration as graph
	C. Edge types and their usage
	D. Constraints and Deductive Reasoning Element Pruning
	E. Inference

	III. Example of Application
	IV. Conclusion
	References

