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Abstract

The ongoing evolution of hardware leads to a steady increase in the amount of data
that is processed, transmitted and stored. Data compression is an essential tool to
keep the amount of data manageable. Furthermore, techniques from data compres-
sion have many more applications beyond compression, for instance data clustering,
classification and time series prediction.

In terms of empirical performance statistical data compression algorithms rank
among the best. A statistical data compressor processes an input text letter by letter
and performs compression in two stages — modeling and coding. During modeling a
model estimates a probability distribution on the next letter based on the past input.
During coding an encoder translates this probability distribution and the next letter
into a codeword. Decoding reverts this process. Note that the model is exchangeable
and its actual choice determines a statistical data compression algorithm. All major
models use a mixer to combine multiple simple probability estimators, so-called
elementary models.

In statistical data compression there is an increasing gap between theory and
practice. On the one hand, the “theoretician’s approach” puts emphasis on models
that allow for a mathematical code length analysis to evaluate their performance,
but neglects running time and space considerations and empirical improvements.
On the other hand the “practitioner’s approach” focuses on the very reverse. The
family of PAQ statistical compressors demonstrated the superiority of the “practi-
tioner’s approach” in terms of empirical compression rates.

With this thesis we attempt to bridge the aforementioned gap between theory
and practice with special focus on PAQ. To achieve this we apply the theoretician’s
tools to practitioner’s approaches: We provide a code length analysis for several
common and practical modeling and mixing techniques. The analysis covers mod-
eling by relative frequencies with frequency discount and modeling by exponen-
tial smoothing of probabilities. For mixing we consider linear and geometrically
weighted averaging of probabilities with Online Gradient Descent for weight esti-
mation. Our results show that the models and mixers we consider perform nearly
as well as idealized competitors that may adapt to the input. Experiments support
our analysis. Moreover, our results add a theoretical justification to modeling and
mixing from PAQ and generalize methods from PAQ. Ultimately, we propose and
analyze Context Tree Mixing (CTM), a generalization of Context Tree Weighting
(CTW). We couple CTM with modeling and mixing techniques from PAQ and obtain
a theoretically sound compression algorithm that improves over CTW, as shown in
experiments.

i



Zusammenfassung

Im Zuge der stetigen Weiterentwicklung moderner Rechentechnik wächst auch die
Menge an zu verarbeitenden Daten. Es gilt diese Datenmengen zu verwalten, zu
übertragen und zu speichern. Dafür ist Datenkompression unerlässlich. Techniken
aus der Datenkompression kommen auch in anderen Bereichen zum Einsatz, z. B.
beim Klassifizieren und Clustern von Daten oder in der Zeitreihenvorhersage.

Gemessen an empirischen Kompressionsraten zählen Statistische Datenkom-
pressionsalgorithmen zu den Besten. Statistische Datenkompressionsalgorithmen
verarbeiten einen Eingabetext buchstabenweise. Dabei verfährt man für jeden Buch-
staben in zwei Phasen — Modellierung und Kodierung. Während der Modellierung
schätzt ein Modell, basierend auf dem bereits bekannten Text, eine Wahrschein-
lichkeitsverteilung für den nächsten Buchstaben. Ein Kodierer überführt die Wahr-
scheinlichkeitsverteilung und den Buchstaben in ein Codewort. Umgekehrt ermit-
telt der Dekodierer aus der Wahrscheinlichkeitsverteilung und dem Codewort den
kodierten Buchstaben. Die Wahl des Modells bestimmt im wesentlichen den statis-
tischen Datenkompressionsalgorithmus, das Modell ist also von zentraler Bedeu-
tung. Ein Modell mischt typischerweise viele einfache Wahrscheinlichkeitsschätzer.

In der statistischen Datenkompression driften Theorie und Praxis auseinander.
Theoretiker legen Wert auf Modelle, die eine mathematische Codelängenanalyse
zulassen, vernachlässigen aber Laufzeit, Speicherbedarf und empirische Verbesser-
ungen; Praktiker verfolgen den gegenteiligen Ansatz. Die PAQ-Algorithmen haben
eindrucksvoll die Überlegenheit des praktischen Ansatzes verdeutlicht.

Diese Arbeit soll Theorie und Praxis annähren. Dazu wird das Handwerkszeug
des Theoretikers, die Codelängenanlyse, auf Algorithmen des Praktikers angewen-
det. In dieser Arbeit werden Wahrscheinlichkeitsschätzer, basierend auf gealterten
relativen Häufigkeiten und basierend auf exponentiell geglätteten Wahrscheinlich-
keiten, analysiert. Weitere Analysen decken Methoden ab, die Wahrscheinlichkeits-
verteilungen durch gewichtetes arithmetisches und geometrisches Mitteln mischen
und Gewichte mittels Gradientenverfahren bestimmen. Die Analysen zeigen, dass
sich die betrachteten Verfahren ähnlich gut wie idealisierte adaptive Vergleichsver-
fahren verhalten. Methoden aus PAQ werden durch die Ergebnisse dieser Arbeit er-
weitert und mit einer theoretischen Basis versehen. Experimente stützen die Ana-
lyseergebnisse. Ein weiterer Beitrag dieser Arbeit ist Context Tree Mixing (CTM),
eine Verallgemeinerung von Context Tree Weighting (CTW). Durch die Kombina-
tion von CTM mit Methoden aus PAQ entsteht ein theoretisch fundierter Kompres-
sionsalgorithmus, der in Experimenten besser als CTW komprimiert.
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CHAPTER 1

Introduction

1.1 Background
Driven by the evolution of hardware over the last decades the amount of data
that is processed, transmitted and stored is steadily growing. This trend is
likely to continue. To keep the amount of data manageable, especially in bot-
tleneck situations, such as the distribution of documents, software, images,
videos, . . . over the Internet, a reduction of the amount of data is essential:
We can save resources, time and money. On a computer we typically repre-
sent data, or a data stream, as a sequence of fixed-size letters (bits, bytes,
. . . ). A reduction of such a data stream, i. e. the process of mapping a data
stream to a preferably smaller data stream is called data compression. Given
the compressed version of a data stream, we normally want to restore the
original data stream without losing any information, which leads to lossless
data compression. For image, audio and video compression we can discard
information that isn’t important for human perception, leading to lossy data
compression; but even such techniques employ lossless compression at some
stage.

In this work we concentrate on recent developments in statistical data
compression, a particularly efficient class of lossless data compression meth-
ods. Besides statistical data compression, dictionary-based data compression
and transform-based data compression are the other two major lossless data
compression techniques.1 The simple yet powerful idea behind statistical
data compression is to encode frequent letters in fewer bits than infrequent
letters. Similarly, in dictionary-based data compression we substitute words
with shorter references to a dictionary. Lempel-Ziv-based algorithms are the
most prominent examples. Transform-based data compression is rather dif-
ferent: A sequence of transforms, for instance the Burrows Wheeler Trans-
form or Sort Transform followed by Move To Front encoding, maps the in-

1General information on lossless (statistical) data compression given in this chapter can
be found in standard textbooks, such as [68, 80, 81], so we only give citations beyond these
basics.

1



2 CHAPTER 1. Introduction

put data stream to a representation that is easy to compress. To actually
achieve compression we apply another lossless data compression technique,
typically statistical data compression, to the transformed output. It is com-
mon wisdom that empirically top-performing compression algorithms fall
into the category of statistical data compression, whereas dictionary- and
transform-based data compression is empirically inferior, but also less de-
manding in terms of processing power and memory. Since hardware limita-
tions are likely to become less severe in the future, statistical data compres-
sion will become more and more popular. This trend is already observable:
Nowadays, in 2015, compression software for every day use, like WinZIP [2]
and 7-Zip [1] already employs statistical data compression (more precisely
variants of [84]), which was unimaginable in the 1990s, due to relatively
restrictive hardware.

At this point we want to emphasize that data compression has a wider
range of application beyond bare compression, examples include: The cre-
ation of natural language trees from a text translated to different languages
and the inference of evolutionary trees from genomes [21, 51, 93], image
recognition [21, 24], the clustering of music by similarity [20, 21], the classi-
fication of articles (text) [32], spam filtering [13], hardware branch prediction
[19], stock market prediction [6], time series prediction [47, 76] and policy
evaluation [90]. (A good overview of applications of data compression beyond
compression can be found in [21].) So (statistical) data compression is appli-
cable in clustering, classification and forecasting and improvements in data
compression are likely to translate into improvements in various fields of
application.

1.2 Crash Course – Statistical Data Compression
We will now take a closer look at the principles of statistical data compres-
sion, to be able to clearly outline the goals of this work. In statistical data
compression we process the input data stream x1x2 . . . xn (the letters are
supposed to be from a finite alphabet) letter by letter and perform compres-
sion for each letter in two stages: Modeling and coding, see Figure 1.1. Let
us now consider the procedure for a single letter xt, where 1 6 t 6 n. During
modeling a statistical model predicts a probability distribution p on the next
letter xt, given x1x2 . . . xt−1, the preceding, already processed, portion of in-
put; during coding a coder computes a codeword, typically a binary word,
for the next letter xt. Thereby, the length of a codeword for a letter depends
on the probability which the model estimated for that letter, highly probable
letters correspond to short codewords, less probable letters receive long code-
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Model Encoder
Distr. p

Sequence
x1 . . . xt−1 codeword

Letter xt

Model Decoder
Distr. p

Sequence
x1 . . . xt−1 codeword

Letter xt

Figure 1.1: The procedure of statistical data compression during compression
(top) and decompression (bottom).

words. Arithmetic Coding is the de-facto standard coder, since the implied
codeword length is very close to optimal, i. e. − log p(xt). Decompression is
the very reverse. Based on the already decompressed sequence x1x2 . . . xt−1

of letters the model, which is identical to the model from compression, pre-
dicts a probability distribution p on the next letter. The decoder examines
the compressed data stream and uses the estimated probability distribution
to decode the next codeword. As a result we obtain the next letter xt of the
uncompressed data stream.

Since there exist efficient coding algorithms, modeling is the main con-
cern in statistical data compression. In fact, different models make up differ-
ent statistical data compression algorithms. The three most popular families
of statistical data compression algorithms are Prediction by Partial Match-
ing (PPM) [22, 84, 23, 106], Context Tree Weighting (CTW) [98, 101] and
PAQ (pronounced “pack”) [56, 52, 54]. These three algorithms use a common
approach for modeling: They pass numerous simple probability estimates
(distributions) to a mixer (or multiple mixers) in order to obtain a single
probability distribution for coding. These simple probability estimates are
usually defined by simple closed-form expressions, therefore we introduce
the term elementary model to refer to such a simple estimator. Furthermore,
elementary models are conditioned on a context, to make their predictions
more accurate. (Consider the probability of the letter “u” in English text: In
general its probability is rather low, but if we read the letter “q”, i. e. use a
one letter context, then it is almost surely followed by “u”.) Consequently,
the novel term context mixing was established with PAQ to emphasize this
type of estimation procedure. We believe that it is misleading to call only
PAQ-based algorithms context mixing-algorithms, since the PPM and CTW
family work similar.
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1.3 A Gap between Theory and Practice

Statistical data compression has been tackled from two different viewpoints,
that is, from a theoretic viewpoint and from a practical viewpoint. On the one
hand, in a theoretic approach we put most effort into a model design that
allows for a mathematical analysis, but neglects algorithmical and practi-
cal aspects like running time, memory requirements and adjustments that
improve the empirical performance. The goal of the mathematical analysis
(code length analysis) is to show that a proposed model performs not much
worse than an idealized competing model. On the other hand, in a practical
approach we let the theoretic feasibility fade from the spotlight and focus
on the algorithmical and practical aspects. CTW and its derivatives are a
shining example for the theoretic approach, whereas PPM, although there
exists some theoretic work [4, 15], and especially PAQ are examples for the
practical approach.

PAQ is even more different from CTW and PPM, since it has sounded
the bell to a change in paradigm (which we mentioned earlier) [80]: Instead
of major refinements to a compression algorithm or the proposal of novel
compression algorithms from time to time many frequent and small changes
in elementary modeling and mixing, additional heuristics, etc. sum up to
considerable empirical improvements and many different PAQ variants. The
superior empirical performance of PAQ becomes apparent when we compare
the bare compression ratio of the best performing algorithms (known to the
author) from each of the major three classes on a standard data set, the
Calgary Corpus. The CTW family achieves an average compression of 2.10
bits per character (bpc), for the PPM family we have 1.82 bpc and finally
1.73 bpc for PAQ.2 The comparison is not entirely fair, since PAQ has models
for data, e. g. fax images, contained in the Calgary Corpus, whereas PPM
and CTW don’t. However, this is one of the strengths of PAQ, it is designed
to mix arbitrary models, whereas PPM and CTW by design cannot. As we
can see, the practical approach leads to superior empirical performance, but
usually doesn’t have a sound theoretical basis to explain its success. This is
the blessing and curse of PAQ, leading to an increasing gap between theory
and practice.

2 Each file is compressed individually, the compression rates for every file (in bpc) are
summed and divided by the number of files. For CTW we use the results of [10]; PPM
measured using PPMonstr J Rev. 1, a revision of [84], from http://compression.ru/
ds/, accessed 2014-07-01; PAQ measured using PAQ8L from http://mattmahoney.
net/dc/paq.html, accessed 2014-07-01.

http://compression.ru/ds/
http://compression.ru/ds/
http://mattmahoney.net/dc/paq.html
http://mattmahoney.net/dc/paq.html
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1.4 Our Contribution and Thesis Structure

With this work we want to make first steps towards bridging the aforemen-
tioned gap between theory and practice with an emphasis on PAQ. To do so,
we add a sound theoretical basis to the latest elementary modeling and mix-
ing algorithms of PAQ. The PAQ evolution of these building blocks started in
2002 with PAQ1 and eventually ended in 2005 with PAQ7. Later PAQ vari-
ants mainly added preprocessing tricks and additional models for specific
data types. Thus, by “latest elementary modeling and mixing algorithms”
we refer to PAQ variants not older than PAQ7. Our methodology to obtain a
theoretical basis is to provide a mathematical analysis of elementary model-
ing and mixing in the spirit of the theoretical approach to data compression,
as mentioned in the previous section. Whenever possible we try to give re-
sults as general as possible and sometimes generalize approaches from PAQ.

The remainder of this thesis is structured as follows: In Chapter 2 we
introduce notation, discuss the basics of elementary modeling, context mod-
eling, mixing and our approach to a code length analysis. Based on this we
present the central algorithms in statistical data compression and discuss
relevant literature. We cover Arithmetic Coding, PPM, CTW, PAQ and the
less well-known algorithms DMC and DEPLUMP. In Chapter 3 and Chap-
ter 4 we cover elementary modeling and mixing. After discussion existing
approaches from literature we provide a code length analysis for methods
that work well in practice but lack a theoretic basis (see below). In Chap-
ter 5 we propose Context Tree Mixing, a novel statistical data compression
algorithm and provide a code length analysis (see below). Chapter 6 summa-
rizes the results of this thesis and offers a perspective for future work.

Chapter 3, Chapter 4 and Chapter 5 contain our main contributions to
the state of the art in statistical data compression, which are the following.

Chapter 3: Elementary Modeling. We provide a code length analysis for
two widespread families of elementary models: First, we consider elemen-
tary models that assign probabilities by relative letter frequencies and that
apply a frequency discount (frequencies get multiplied by a number from
[0, 1), when the frequency sum exceeds a threshold); Second, we consider
elementary models that assign probabilities by exponential smoothing. We
work out a code length analysis for each method that shows that the coding
performance of these elementary models is close to that of a Piecewise Sta-
tionary Model that partitions the input sequence into segments and predicts
a fixed distribution within each segment. (Our results on elementary mod-
eling by smoothing apply to binary input sequences only; for other results
there is no restriction.) Furthermore, in this chapter we add a theoretic basis
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to the PAQ approach to elementary modeling, since PAQ employs variations
of the smoothing approach. We support our results by an experimental study.
The main results of Chapter 3 have previously been published in [60, 61].

Chapter 4: Mixing. In this chapter we systematically propose and ana-
lyze two methods for mixing, at that we proceed in two steps: First, we in-
troduce two slightly different information theoretic minimization problems.
The minimizer of either problem defines a mixture distribution that allows
for the (non-)linear weighted combination of multiple distributions. In this
way we introduce the Linear Mixture Distribution (linear weighted aver-
aging of probabilities) and the Geometric Mixture Distribution (normalized
geometrically weighted averaging of probabilities). Second, either approach
relies on a set of given weights. We adopt Online Gradient Descent to es-
timate these weights and provide a code length analysis. By our analysis
either mixture distribution coupled with Online Gradient Descent provides
a coding performance close to that of a Switching Mixer. A Switching Mixer
partitions the input sequence into segments and switches back and forth be-
tween the distributions to mix across segment boundaries. An experimental
study supports our results. Moreover, we add a theoretic justification and
code length guarantees to PAQ’s ad-hoc neural network mixing, since we
show that it is a special form of the Geometric Mixture Distribution cou-
pled with Online Gradient Descent. The results in Chapter 3 are a polished
version of results published earlier in [58, 59].

Chapter 5: Context Tree Mixing. We propose Context Tree Mixing (CTM)
and conduct a code length analysis. CTM is a statistical data compression al-
gorithm that generalizes CTW: In CTW at least mixing is fixed, CTM allows
for arbitrary mixers and arbitrary elementary models. Our theoretic results
show that CTM achieves a coding performance close to that of a sequence of
Predictive Context Trees (PCT), if elementary models and mixers are cho-
sen carefully. A PCT groups the letters of the input sequence by context and
predicts a fixed distribution per context (the way of “context-grouping” is
induced by some context tree). We extend our theoretical results by analyz-
ing CTM coupled PAQ-approaches to elementary modeling and mixing. Our
results show that this particular CTM configuration enjoys code length guar-
antees stronger than those of CTW, since its coding performance is close to
that of an arbitrary sequence of PCTs, not just close to that of a single PCT.
Experiments also indicate improved empirical performance.



CHAPTER 2

Fundamentals

CHAPTER OVERVIEW

In this chapter we introduce the basic notation we use within the re-
mainder of this work. Taking this as a basis we formally introduce
models, mixers, context modeling and sketch our approach to their the-
oretical analysis (code length analysis). We end this chapter with a de-
scription of Prediction by Partial Matching, Context Tree Weighting
and PAQ, a short summary of Arithmetic Coding and two less popular
statistical data compression algorithms: Dynamic Markov Coding and
DEPLUMP .

2.1 Basic Notation
Sets, Families, Segments and Partitions. We typeset sets using upper-
case calligraphic letters and use |S| to denote the cardinality of a set S.
For objects xj, xk, . . . of identical type (numbers, letters, . . . ) with labels
j, k, . . . ∈ S we call the indexed multiset {xi}i∈S a family (of numbers, let-
ters, . . . ). Given integers a and b, a segment a:b is the set {a, a + 1, . . . , b} of
integers (or the empty set, if b < a). A partition P of some segment a:b is a
set of non-overlapping segments whose union equals a:b.

Vectors, Unit Simplex, Projection and Gradients. Vectors are typeset us-
ing lowercase boldface letters. Within this work we use column vectors only,
“T” denotes the transpose operator, so (z1, z2, . . . , zm)T is a column vector.
The i-th component of vector z is zi and the euclidean norm of a real-valued
vector z is |z|. We denote the m-dimensional unit simplex as

∆ := {z ∈ Rm | z1 + · · ·+ zm = 1 and z1, . . . , zm > 0}.

The function proj : z 7→ v maps any z ∈ Rm to the point v ∈ ∆ closest to z in
the euclidean sense, that is, proj(z) maps to the minimizer of minu∈∆|u−z|.
For a differentiable function f : D → R, where D ⊆ Rm is an open set, let
∇zf := (∂f/∂z1, . . . , ∂f/∂zm) denote the gradient of f w. r. t. z. A p-vector is
a vector whose components are probability distributions.

7
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Alphabets, Sequences and Segments (of Sequences). For segment 1:n
we denote a sequence (x1, x2, . . . , xn) of objects of identical type by x1:n :=
x1x2 . . . xn, we further let xa:b := xaxa+1 . . . xb denote a segment (subse-
quence) of x1:n; if a:b = ∅, we have xa:b = φ, the empty sequence. We define
x<a := x1:a−1 and use xa:∞ to denote a sequence xaxa+1 . . . of infinite length.
Unless stated differently, we only consider sequences over some alphabet
X := {0, 1, . . . , N − 1} of cardinality N > 2; a letter denotes an element of
X . Moreover, we let |xa:b| := max{b − a + 1, 0} denote the sequence length.
For a set S = {i1, i2, . . . } of integers i1 < i2 < . . . and a function e : i 7→ e(i)
let 〈e(i)〉i∈S denote the sequence x1x2 . . . , where xt = e(it).

Distributions, Code Length, (Empirical) Entropy and KL-Divergence. In
general we consider probability distributions on X only. Let log := log2 and
ln := loge. For a distribution p, a sequence p1:n of distributions, a letter x
and a sequence x1:n we define the “code lengths” `(x; p) := log 1

p(x)
,

`(x1:n; p) :=
∑

16t6n

log
1

p(xt)
and `(x1:n; p1:n) :=

∑
16t6n

log
1

pt(xt)
. (2.1)

We call these quantities code length(s), since encoding a letter x with prob-
ability p(x) ideally requires log 1

p(x)
bits. There exist coding algorithms that

approximate the ideal code length arbitrarily close (see Section 2.4.1). A se-
quence x1:n has empirical entropy h(x1:n) := `(x1:n; p), where the distribution
p holds the relative letter frequencies of x1:n. We use the standard notation
H(p) for the entropy of distribution p, and D(p ‖ q) for the Kullback-Leibler-
Divergence (KL-Divergence) of the distributions p and q, that is

H(p) =
∑
x∈X

p(x) · log
1

p(x)
and D(p ‖ q) =

∑
x∈X

p(x) · log
p(x)

q(x)
. (2.2)

For p(x) = 0 we set p(x) · log 1
p(x)

= 0 in (2.2) and log 1
p(x)

= ∞ in (2.1)
to simplify notation. The conventions and notation above follow standard
literature [26].

2.2 Models, Mixers and Redundancy

Formal Definitions. As already discussed in Section 1.2, (elementary) mod-
els are a fundamental building block in statistical data compression algo-
rithms, so we specify:
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Definition 2.2.1 A model MDL maps every sequence x1:t of length t > 0 to
a probability distribution p; we call p the prediction of model MDL (given
input sequence x1:t). We define MDL(x1:t) := p, we introduce the shorthand
MDL(x;x1:t) := p(x) and we further define the code length

`(xa:b; MDL) :=
∑
a6t6b

log
1

MDL(xt;x<t)
, for 1 6 a, b 6 n.

There is a wide range of possibilities for specifying a model. On the one
hand, a simple closed-form expression suffices to specify a model; on the
other hand, a specification may be a sophisticated function of multiple (sub-)
models and parameters. Nevertheless, a particularly simple type of model,
which we already mentioned in Section 1.2, is of great importance: An el-
ementary model is defined in terms of a simple closed-form expression de-
pending only on x1:t and possibly some parameters. For instance, for the
parameter f0 > 0, we consider the probability assignment

RF(x;x1:t) :=
|{i | xi = x and 1 6 i 6 t}|+ f0

t+N · f0

, (2.3)

based on relative letter frequencies, to be an elementary model.

Let us now turn to mixers. A mixer combines predictions of a finite num-
ber of models MDL1,MDL2, . . . . In time step t we may think of this as follows:
We feed the past sequence x<t and the predictions of all models up to step t,

p1:t = 〈(MDL1(x<i),MDL2(x<i), . . . )
T〉16i6t,

into the mixer. Using the past sequence x<t and the past p-vectors p<t the
mixer determines its internal state, for instance a weight vector. Given the
internal state the mixer produces a single distribution by combining all dis-
tributions from pt = (MDL1(x<t),MDL2(x<t), . . . )

T. We now give a formal def-
inition:

Definition 2.2.2 A mixer MIX maps a sequence p1:t of p-vectors, where t > 0,
with fixed dimension and a sequence x<t to a probability distribution p. We
say p is the prediction of MIX given mixer input p1:t and input sequence x<t;
we define MIX(x<t,p1:t) := p, the shorthand MIX(x;x<t,p1:t) := p(x) and we
further define the code length

`(xa:b; MIX,p1:b) :=
∑
a6t6b

log
1

MIX(xt;x<t,p1:t)
, for 1 6 a, b 6 n.
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When the mixer input p1:t may be determined by a function in(x<t), for all
t > 1, then by setting MDL(x<t) = MIX(x<t, in(x<t)), mixer MIX essentially
induces a new model MDL, a so-called mixture model. In turn, this mixture
model may serve as part of another mixer input, etc.; following this scheme
we may stack (mixture) models almost arbitrarily.

To breathe life into Definition 2.2.2, consider Beta-Weighting [49] as an
example. Beta-Weighting combines distributions by weighted linear averag-
ing. Hence, given the weight vector wt = (w1,t, . . . , wm,t)

T in the t-th step
the prediction of Beta-Weighting is given by

BETA(x;x<t,p1:t) := w1,t · p1,t(x) + · · ·+ wm,t · pm,t(x), (2.4)

where pt = (p1,t, . . . , pm,t)
T. In step 1 the weight vector is w1 = ( 1

m
, . . . , 1

m
)T,

for a step t > 1 we may state the weight wi,t+1 of model i recursively,

wi,t+1 = wi,t ·
pi,t(xt)

BETA(xt;x<t,p1:t)
.

Later, in Section 2.4.3 will discuss a well-known statistical compression algo-
rithm, – Context Tree Weighting – that recursively stacks Beta-Weighting.

Note that the code length `(xa:b; MDL) may not only depend on the seg-
ment xa:b, but also on the segment x<a, since a prediction on xa typically
depends on x<a. The same applies to `(xa:b; MIX,p1:b).

Idealization vs. Reality. We note that Definition 2.2.1 and Definition 2.2.2
do not claim non-zero probabilities. Based on the outcome space of a model’s
prediction we may further distinguish two types of models, namely idealized
models and non-idealized models.

For a given sequence x1:n an idealized model assigns probability 0 to some
letter(s), but still guarantees MDL(xt;x<t) > 0, for 1 6 t 6 n. Idealized
models must have prior knowledge of the sequence x1:n, and thus may assign
probability 0 to some letter different from xt in step t. Of course, they are of
little use in practice. However, we still consider idealized models, since they
act as competitors in a code length analysis (see below).

In contrast, a non-idealized model always guarantees MDL(x;x<t) > 0,
for any letter x and all t. Any model whose prediction is supposed to be fed
into an encoder will guarantee MDL(x;x<t) > 0, for every letter x, and thus
be a non-idealized model. (In advance, we usually do not know which letter
appears next.) Similar considerations apply to (non-)idealized mixers.

Redundancy and Code Length Analysis. A major portion of this work is
devoted to code length analysis or redundancy analysis, for either elemen-
tary models, mixers or more complex (mixture) models. We will now briefly
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explain our approach and bring it in line with the existing literature. To
simplify the following discussion consider a model M, which could be an ele-
mentary model, a mixture model induced by a mixer, etc. and a competitor
C. We may view M and C as models in the sense of Definition 2.2.1.

Let us now describe our approach to code length analysis. Our central
goal in a code length analysis is to compare the code length `(x1:n; M) of
model M to the code length `(x1:n; C) of competitor C assuming ideal encod-
ing (a probability p corresponds to code length − log p). For a code length
analysis we strive to show that model M is close to competitor C. That is, we
provide a code length bound of type

`(x1:n; M) 6 (1 + δ) · `(x1:n; C) + r(C,M, x1:n), (2.5)

for some constant δ > 0. If δ = 0 (most results from literature are of this
form), then the amount of bits model M requires beyond competitor C is called
redundancy, so the term r(C,M, x1:n) is a bound on the (pointwise) redun-
dancy of the model M w. r. t. the competitor C for a given sequence x1:n. The
case δ > 0 provides a weaker guarantee, since the code length `(x1:n; M) of
model M may differ from the code length `(x1:n; C) of competitor C up to a
constant factor 1 + δ, apart from the additive term r(C,M, x1:n). This type of
guarantee is still useful, since achieving δ = 0 sometimes requires to have
prior knowledge on x1:n, which often is infeasible (for instance, we will en-
counter this situation in Section 3.4). Furthermore, if `(x1:n; C) is small, a
bound with δ > 0 might actually improve over a bound with δ = 0 that has
a relatively large (compared to `(x1:n; C)) additive redundancy term.

Example 2.2.3 We consider the model RF from (2.3) with f0 = 1. This
model is also known as the Laplace-Estimator, hence we write LP. If the
letter x has appeared i times in x1:t, model LP predicts LP(x;x1:t) = i+1

t+N
, so

the code length for a sequence x1:n, where letter x has frequency f(x), is

`(x1:n; LP) = log
∏

16t6n

1

LP(xt;x<t)
= log

N · (N + 1) · . . . · (n+N − 1)∏
x∈X 1 · 2 · . . . · f(x)

.

By n+t 6 (n+1) ·t, for 1 6 t < N , and `(x1:n; p) > h(x1:n) > log n!∏
x∈X f(x)!

,
for any distribution p, we obtain

`(x1:n; LP) 6 `(x1:n; p) + (N − 1) log(n+ 1), (2.6)

a code length bound in the spirit of (2.5). The model LP has redundancy at
most r(p, LP, x1:n) = (N − 1) log(n+ 1) w. r. t. any fixed distribution p.
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To maximize the effectiveness of our results, we consider code length
bounds of type (2.5) that hold for any sequence x1:n (hence, these hold in the
worst case) and for all M and C that satisfy given conditions. Example 2.2.3
illustrates bounds of type (2.5).

The approach we pursue may also be interpreted in another way. We
may view a refined version of bound (2.5) as follows. Essentially, conditions
on M span a class M of models, similarly conditions on C span a class C of
competitors. Let r′(C,M, n) > r(C,M, x1:n), for all sequences x1:n, models
C ∈ C and M ∈ M. Thus, r′ is a uniform bound on the redundancy of class
M w. r. t. class C for sequences of length n in the sense of

sup
M∈M,
x1:n

(
`(x1:n; M)− (1 + δ) · inf

C∈C
`(x1:n; C)

)
6 r′(C,M, n). (2.7)

Whenever r′(C,M, n) = o(n) and δ = 0, the average per-letter redundancy
vanishes with increasing n, so the class M (or strategy M, if |M| = 1) is
said to be asymptotically optimal, or universal, w. r. t. class C. Hence, the
ultimate goal is to design models that work well in practice and guarantee
asymptotic optimality w. r. t. a (wide and/or powerful) class of competitors,
preferably with an average redundancy as small as possible. Example 2.2.4
illustrates bounds of type (2.7).

Example 2.2.4 If we define class C := {p | p is distribution} of competitors,
then (2.6) implies the guarantee

sup
x1:n

(
`(x1:n; LP)− inf

p∈C
`(x1:n; p)

)
6 (N − 1) log(n+ 1),

in spirit of (2.7). The redundancy of LP w. r. t. class C on sequences of length
n may uniformly be bounded by r′(C, {LP}, x1:n) = (N − 1) log(n+ 1).

In either of the above settings we assumed that the sequence x1:n is ar-
bitrary and made no assumptions on a possible origin, which is called the
deterministic view in information theory [64]. In contrast, the probabilistic
view assumes that there exists a data-generating mechanism, the source,
which draws a sequence x1:n at random according to its inherent source
distribution P (here P is a distribution on sequences of length n). A com-
mon goal in this situation is to design and analyze models that attain low
expected redundancy supM∈M,source P E [`(x1:n; M) + logP (x1:n)] for a class of
sources and arbitrary n > 1. (We take the expectation over the probabil-
ity space induced by the source distribution P .) We will use the probabilistic
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view only once within this work, namely to derive a generalized form of PAQ-
mixing, see Chapter 4.

2.3 Context Modeling
In Section 1.2 we already mentioned that (elementary) models and mixers
may be conditioned on contexts. In fact, every major statistical compression
algorithm employs context conditioning in some way. At this point we in-
troduce the reader to our concept for context modeling, which will serve as a
basis for our discussion of the algorithms PPM, CTW and PAQ in Section 2.4.

Contexts, Context Histories and Context Trees. If for some sequence x1:t

we have xt−d:t−1 = c1:d, or c1:d = φ, we say the letter xt has length-d context
c. When possible, we write c in place of c1:d to avoid a cluttered notation. Let

Tc(xa:b) := {a 6 t 6 b | xt has context c}

be the set of time indices s. t. the letter xt, for a 6 t 6 b, has context c. (Notice
that Tc(xa:b) depends on the segment xa−|c|:a−1 and is independent of xb.) The
context history of context c for xa:b is xca:b := 〈xt〉t∈T , where T = Tc(xa:b).
Below we provide Example 2.3.1 (top) to clarify this notation.

Example 2.3.1 (a) Fix sequence x1:n = 101100101101 of length 12. First,
we consider our basic notation on context histories. For context c = 0 we
have

Tc(x1:n) = {3, 6, 7, 9, 12} and xc1:n = x3x6x7x9x12 = 10111;

for the segment x3:8 and context c = 0 we get

Tc(x3:8) = {3, 6, 7} and xc3:8 = x3x6x7 = 101.

(b) We now turn towards context trees, the binary
context tree on the right has set CI = {φ, 0} of non-
leaf contexts, set CL = {1, 00, 10} of leaf contexts and
set C = {φ, 0, 1, 00, 10} of contexts. Specifying any
of these sets suffices to uniquely determine the corre-
sponding tree.

φ

0

00 10

1

A context tree is an N -ary tree, where every node either has N children
or is a leaf. Every node is labeled with a unique context, so we may refer to



14 CHAPTER 2. Fundamentals

node or context interchangeably. The root context is φ, a non-leaf context c
has child contexts 0c, 1c, . . . (N − 1)c. For a finite context tree, the set of all
leaf contexts is CL, the set of all non-leaf contexts is CI and C := CL ∪ CI .
Notice that specifying either CL, CI or C suffices to uniquely determine a
context tree. One typically specifies the structure of a context tree via CL,
the so-called proper suffix-set [101]. (Often the underlying tree is ignored
and one only considers CL.) Example 2.3.1 (bottom) illustrates this notation.

Context-conditioned Modeling and Mixing. We consider the t-th step in
the course of a statistical data compressor on some input sequence x1:n. The
past sequence x<t is known and let the letter xt have context c. For this
context a context conditioned model MDLc maps the context history xc<t to its
prediction MDLc(xc<t). We write MDLc to indicate that the model inputs the
context history xc<t (not x<t) and also to indicate that the model MDLc may
depend on the context c. For instance, at some context the context condi-
tioned model may be RF with parameter f0 = 1 and at some other context
the context conditioned model may be RF with parameter f0 = 5. Hence the
model parameters may vary from context to context.

For the context c of xt a context conditioned mixer MIXc maps the context
history xc<t and its mixer input inc(x<t) to the prediction MIXc(xc<t, in

c(x<t)).
The function inc maps the input sequence x<t to a sequence of p-vectors. At
this point we leave this function unspecified, since different choices make up
different statistical data compression algorithms. In Section 2.4.2 and Sec-
tion 2.4.3 provide concrete examples. (Typically, the mixer input inc(x<t) will
hold predictions of other context-conditioned models.) Similarly to models, a
context conditioned mixer MIXc and the mixer input inc(x<t) may also depend
on the context c. To clarify our notation we refer the reader to Example 2.3.2.

Example 2.3.2 Consider the binary sequence x1:n = 1010010101 of length
10, context set C = {0, 1}, models {MDLc}c∈C and mixers {MIXc}c∈C asso-
ciated to every context c ∈ C and time step t = 8 (i. e. x<t is known,
xt, xt+1, . . . is unknown). The situation at context c = 0 for the whole se-
quence x1:n (left) and for the t-th step (right) is depicted below:

1 2 3 4 5 6 7 8 9 10

x1:n 1 0 1 0 0 1 0 1 0 1
xc1:n 1 0 1 1 1

inc(x1:n) p1 p2p3 p4 p5

1 2 3 4 5 6 7 8

x<t 1 0 1 0 0 1 0 ?
xc<t 1 0 1

inc(x<t) p1 p2p3 p4

The letter x8 has context c = 0 with context history xc<8 = 101, so we obtain
the prediction MDLc(xc<t) = MDL0(101); furthermore, we have |Tc(x1:t)| = 4,
so we encounter mixer input inc(x<t) = p1:4. Consequently, the mixer MIXc

predicts MIXc(xc<t, in
c(x<t)) = MIX0(101,p1:4).
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2.4 Algorithms in Statistical Data Compression
The previous sections provided the tools we require to thoroughly discuss
the three major statistical data compression algorithms, PPM, CTW and
PAQ. Before we immerse into details on these algorithms in Section 2.4.2
(PPM), Section 2.4.3 (CTW) and Section 2.4.4 (PAQ), we give a short primer
on Arithmetic Coding (AC) in Section 2.4.1. AC is of less importance for the
rest of this work, so the reader may just skim over Section 2.4.1, to get the
general idea. Still, we decided to include a short description of AC, since it is
such a fundamental algorithm. For completeness we include a short descrip-
tion of two less popular statistical data compression algorithms, Dynamic
Markov Coding and DEPLUMP, in Section 2.4.5.

2.4.1 Arithmetic Coding

Arithmetic Coding (AC) is a coding algorithm in statistical data compres-
sion. For encoding, it translates a distribution p and a letter x to a codeword
of length close to the ideal code length log 1

p(x)
. For decoding, it restores the

letter x given the distribution p and the codeword. AC was developed in
the late 1970s [70, 74] and popularized since then. Nowadays, AC is the de
facto standard coding algorithm in statistical data compression. (A common
implementation-variant of AC is called Range Coding [57, 82].) We now give
a simplified description of AC which follows introductions to AC within text-
books, such as [68, 80, 81]. Numerous tutorial-style papers on AC are freely
available [50, 79, 107]. An in-depth discussion and redundancy analysis is
beyond the scope of this work. It is worthwhile to note that there exists an al-
ternative to AC, viz. Asymmetric Binary Coding and generalizations thereof,
for a non-binary alphabet [28, 29, 30].

Encoding and Decoding. Roughly speaking, an arithmetic encoder injec-
tively maps a sequence x1:n and a sequence p1:n of probability distributions to
a subinterval [l, h) of the real interval [0, 1). To encode x1:n it finally outputs
a bitstring that represents a number from [l, h). AC constructs the interval
[l, h) stepwise.

Let us now consider the t-th encoding step. We are given a distribution pt,
a letter xt to encode and the interval [lt−1, lt−1 +rt−1) from the previous step.
(Initially we have l0 = 0 and r0 = 1.) The distribution pt partitions the real
interval [0, 1) s. t. every letter x corresponds to a subinterval of width pt(x).
Typically, the letter 0 is represented by [0, pt(0)), the letter 1 is represented
by [pt(0), pt(0) + pt(1)), . . . and the letter x is represented by the subinterval[∑

y<x pt(y),
∑

y6x pt(y)
)

.
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For encoding we transfer the partition of [0, 1) induced by pt to the interval
[lt−1, lt−1 + rt−1): Letter 0 is represented by [lt−1, lt−1 + rt−1 · pt(0)), letter 1 is
represented by [lt−1 + rt−1 · pt(0), lt−1 + rt−1 · (pt(0) + pt(1)),. . . . To encode xt
the next interval [lt, lt + rt) becomes the subinterval of [lt−1, lt−1 + rt−1) that
represents xt, so we set

lt := lt−1 + rt−1 ·
∑
y<xt

pt(y) and rt := rt−1 · pt(xt). (2.8)

After encoding x1:n we obtain the interval [l, h) = [ln, ln + rn). (To signal
“end-of-file” we may introduce an end-of-file letter or prepend the arithmetic
code with the sequence length, if known in advance.) The encoder outputs a
number c ∈ [l, h), by writing its binary representation 0.b1b2 . . . bm. For any
interval [l, h) we can find c s. t. it takes log 1

h−l +O(1) bits to write c.

Example 2.4.1 The table below shows the course of AC on a small sample:

Encoding: Decoding: c = 0.046875

t pt xt [lt, lt + rt) [lt−1, lt−1 + rt−1) c−lt−1

rt−1

0 (0.1, 0.5, 0.4) 0 [0.00000, 0.10000) [0.00000, 1.00000) 0.04688
1 (0.3, 0.2, 0.5) 1 [0.03000, 0.05000) [0.00000, 0.10000) 0.46875
2 (0.7, 0.2, 0.1) 1 [0.04400, 0.04800) [0.03000, 0.05000) 0.84375
3 (0.5, 0.2, 0.3) 2 [0.04680, 0.04800) [0.04400, 0.04800) 0.71875
4 (0.2, 0.7, 0.1) 0 [0.04680, 0.04704) [0.04680, 0.04800) 0.06250

Above we depict distribution pt as (pt(0), pt(1), pt(2)). Encoding yields the
interval [l, h) = [0.04680, 0.04704), so we output the binary form of

c = 0.046875 = 0.0000110000000binary (= 0.b1b2 . . . bm),

using m = 13 bits, whereas the ideal code length is −
∑

16t6n log pt(xt) =
12.0246 . . . bits. (Notice a technical detail: We pad the output with trailing
zeros, such that we have 0.b1b2 . . . bmz1z2 · · · ∈ [l, h), for any bitstring z1:∞.
This guarantees correct decoding, no matter what bits z1z2 . . . the decoder
reads past the actual end of input; this is necessary to make the code self-
delemiting.)

Decoding is straightforward, first, the decoder reads the number c and
sets l0 = 0 and r0 = 1. Now consider the t-th step, the interval [lt−1, lt−1 +
rt−1) and the distribution pt are known. Just as in encoding, pt partitions the
interval [lt−1, lt−1 + rt−1). To identify the next letter xt = x, we simply find
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the subinterval of [lt−1, lt−1 + rt−1) (determined by x) that encloses c:∑
y<x

pt(y) 6
c− lt−1

rt−1

<
∑
y6x

pt(y).

The enclosing subinterval will correspond to x. It remains to maintain lt and
rt using (2.8). Example 2.4.1 illustrates encoding and decoding.

Redundancy. An idealized implementation of AC that operates on arbi-
trary precision real numbers only suffers from at most 2 bits of redundancy
regardless of the input length [26]. In reality computations use B-bit integer
arithmetic and have to take special care of finite-precision effects. Depend-
ing on the exact setting of interest the per-letter redundancy is negligible,
ranging from O(1/2B) bits per letter [42, Theorem 1] to O(B/2B) [77, Ap-
pendix A] bits per letter. Experiments indicate redundancy in scale of 10−4

for B = 16 [42]. Nowadays we have B = 32 or B = 64, so we have good
reasons to assume that the coding redundancy is negligible.

2.4.2 Prediction by Partial Matching

Prediction by Partial Matching (PPM), introduced in 1984 [23], is the first
widely accepted statistical data compression algorithm. In contrast to CTW
and PAQ, PPM typically operates on a non-binary alphabet. The underlying
principle of PPM is to combine predictions of several elementary models con-
ditioned on order-d contexts by switching from high to low orders. (Most PPM
variants bound the maximum order, although PPM* does not [22].) Switch-
ing is explicitly signaled by encoding a so-called escape-letter “esc”, which
extends the original alphabet. On the one hand, various PPM variants such
as PPMII [84] and PPMDP [85] offer excellent empirical performance, on
the other hand, there is no code length analysis in the deterministic view
(covering any PPM variant) that provides an explanation.

In general, there are two equivalent approaches to describe PPM: First,
an approach following the original work we sketched above; second, an ap-
proach that expresses PPM as a sequential recursive mixture. The former
approach is widespread and easy to follow, many textbooks and papers are
based upon this. However, it suffers from a severe disadvantage, namely, it
neither cleanly separates modeling and coding, nor does it follow the mixture
model scheme of Section 1.2. We refer to this as the textbook approach. In
contrast, the latter approach is less well-known (although some researchers
rely on it, e. g. [4, 15]), but it separates modeling and coding and provides a
mixture model.
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Below we first introduce the reader to basic elementary modeling and
context modeling in PPM, in order to cover the textbook approach to PPM.
Thereafter, we show in a clear way how to turn the textbook approach into a
sequential recursive mixture. Altogether we concentrate on the principles of
PPM, rather than discussing particular PPM variants. Some historical notes
conclude this section.

Elementary Modeling and Context Modeling. Let us first consider ele-
mentary modeling and associated context modeling, before we proceed with
the actual description of PPM. PPM employs an elementary model that pre-
dicts a distribution MDL(x1:t, E) on X and may exclude letters during proba-
bility assignment in the following way:

MDL(x;x1:t, E) = 0, if x ∈ E or x does not appear in x1:t,
MDL(x;x1:t, E) > 0, otherwise.

(2.9)

The set of excluded letters is E . Since excluded letters receive zero probabil-
ity, even if they appear in x1:t, the probability of some non-excluded letters
increases1. Typically, the exclusion is organized s. t. for all letters y /∈ E ap-
pearing in x1:t we have MDL(x;x1:t, E ∪{y}) > MDL(x;x1:t, E), for x appearing
in x1:n and x /∈ E ∪ {y}.

Table 2.1: Elementary model and escape probabilities for PPM Variants A, B
[23], C [67], D [43]. For a sequence x1:n and the set E of excluded letters, let f(x)
be the frequency of letter x, if x is not excluded; 0, otherwise, let F =

∑
x∈X f(x)

be the length of x1:n ignoring excluded letters and letM := |{x ∈ X | f(x) > 0}|
be the number of non-excluded distinct letters in x1:n.

Algorithm MDL(x;x1:n, E) e(x1:n)

PPMA f(x)
F

1
1+F

PPMB max{0,f(x)−1}
F−M

M
F

PPMC f(x)
F

M
F+M

PPMD f(x)−1/2
F−M/2

M
2F

Since PPM extends the alphabet with an artificial escape letter esc, we
cannot directly apply the elementary model MDL for context modeling. As
a workaround we define a function e that maps a sequence to a number

1Notice that MDL(x1:t, E) with all letters from x1:t excluded will not be a distribution
anymore (by (2.9) all letters have probability zero) however, this situation will never arise
and thus, we may assume this situation to be forbidden.
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Function PPMEncode(x,x<t)
1 if t = 1 then Encode(x, u(x<t));
2 `← length, at most D, of longest
3 context c of xt with non-empty
4 context history;
5 for d = `, `− 1, . . . , 0 do
6 c← xt−d:t−1;
7 if x ∈ Xc(x<t) then
8 Encode(x,MDLc(xc<t, E));
9 return;

10 end
11 Encode(esc,MDLc(xc<t, E));
12 E ← Xc(x<t);
13 end
14 Encode(x, u(x<t));

Function PPMDecode(x<t)

1 if t = 1 then return Decode(u(x<t));
2 `← length, at most D, of longest
3 context c of xt with non-empty
4 context history;
5 E ← ∅;
6 for d = `, `− 1, . . . , 0 do
7 c← xt−d:t−1;
8 x← Decode(MDLc(xc<t, E));
9 if x 6= esc then return x;

10 E ← Xc(x<t);
11 end
12 return Decode(u(x<t));

Figure 2.1: Pseudocode for encoding a letter x (PPMEncode) and decoding a
letter (PPMDecode), given the past sequence x<t; for distribution u see (2.11).

in [0, 1]. This function estimates the probability e(xc<t) of the escape letter
esc, given a context history xc<t. Based on the escape probability we define a
context model MDLc that predicts a distribution on X ∪ {esc},

MDLc(x;xc<t, E) :=

{
e(xc<t), if x = esc,
(1− e(xc<t)) · MDL(x;xc<t, E)), otherwise,

(2.10)

after observing context history xc<t. Different choices of e(·) and MDL make up
different PPM-variants, see Table 2.1 for examples. There exist many other
variants, as we will explain at the end of this section. Below we do not rely
on a particular choice of e(·) and MDL, so we omit it.

Textbook Approach — Encoding and Decoding a Letter. To encode (or
decode) a letter x, given past sequence x<t PPM utilizes the procedures given
in Figure 2.1, where

Xc(x<t) := {yi | xc<t = y1:m and 1 6 i 6 m}

and the distribution u is defined to be

u(x;x<t) :=

{
0, if x appeared in x<t,
1/(N − |{x1, x2, . . . , xt−1}|), otherwise.

(2.11)

When no letters have previously been processed, i. e. t = 1, encoding and
decoding trivially rely on uniform distribution u. Let us now consider the
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usual situation, t > 1. During encoding, we first identify the longest con-
text of xt with non-empty context history of length ` 6 D (the maximum
context length D is a parameter of PPM) and the set E is set to ∅. Starting
at the longest context, we work on parent contexts, in order of decreasing
length d = `, ` − 1, . . . , 0: Let c be the current length-d context of xt; if the
letter x appeared before in the current context c, we encode x and stop; if
the letter x did not appear in the current context c, we encode esc to tell
the decoder about this situation. After we signaled a switch from the cur-
rent length d-context c to the next length (d−1)-context, we know that no
letter which appeared in context c matches x. Consequently, we exclude all
those letters from future probability assignments by setting E to Xc(x<t).
(We automatically exclude letters from child contexts of c, since these letters
appear in context c as well.) This process stops when we reach a context that
contains x; if no such context exists (i. e. the letter x did not appear in the
segment x<t) we use the distribution u for coding. Example 2.4.2 illustrates
the encoding process.

Example 2.4.2 Suppose that PPMA (see Table 2.1) with paramter D = 2
processes a sequence over the alphabet {0, 1, 2, 3} and reaches time step t,
where xt has context 10. We assume the letter frequencies, depicted below
left, at contexts φ, 0 and 10 and resulting elementary model prediction, es-
cape probability and excluded letters E , depicted below right (we denote a
distribution p as (p(0), . . . , p(3))):

c\x 0 1 2 3
10 0 2 0 0
0 2 2 3 0
φ 4 3 3 0

c MDL(xc<t, E) e(xc<t) E
10 (0, 1, 0, 0) 1/3 ∅
0 (2/5, 0,

3/5, 0) 1/6 1
φ (0, 0, 0, 0) 1 0,1,2

u(x<t): (0, 0, 0, 1)

To encode letter 2 we encode esc in context 10, where E = ∅, with probability

MDL10(esc;x10
<t, ∅) = e(x10

<t) = 1/3,

followed by letter 2 in context c = 0, where E = {1}, with probability

MDL0(0;x0
<t, {1}) = (1− e(x0

<t)) · MDL0(0;x0
<t, {1}) = 5/6 · 3/5 = 1/2,

so we assign probability 1/3 · 1/2 = 1/6 to letter 2. Overall, PPMA predicts
p = PPM(x<t) = PPM2(x<t) given by (p(0), . . . , p(3)) = (2/18,

12/18,
3/18,

1/18).

With encoding in mind, decoding is straightforward. First, initializing `
and E mirrors encoding. Now let c be the length-` context of xt. Based on the
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prediction of the context model MDLc(xc<t, E) we decode a letter x. If x = esc,
then we exclude all letters from the current context by setting E = Xc(x<t)
and repeat decoding at the parent context of c. (This process stops, when we
decode a letter different from esc.) If x 6= esc, then we have decoded the next
letter xt = x.

From the pseudocode in Figure 2.1 and the text above it is not hard
to check that the letter x receives probability PPM(x;x<t) = PPM`(x;x<t),
where for −1 6 d 6 ` we have

PPMd(x;x<t) :=


MDLc(x;xc<t, E), if d > 0 and x ∈ Xc(x<t),
MDLc(esc;xc<t, E) · PPMd−1(x;x<t), if d > 0 and x /∈ Xc(x<t),
u(x;x<t), if d = −1,

(2.12)

where c is the length-d context of xt, and for the length-(d+1) context c′ of
xt we set

E =

{
∅, if d = `,
Xc′(x<t), otherwise.

Sequential Recursive PPM Mixture. The distribution (2.12) computed by
PPM does not seem to be a mixture distribution. However, with a little extra
effort, we can observe that the first two cases in (2.12) collapse to the linear
mixture

PPMd(x;x<t) = (1− e(xc<t)) · MDL(x;xc<t, E) + e(xc<t) · PPMd−1(x;xc<t).
(2.13)

Note that the escape probability essentially plays the role of a weight in a
weighted linear average of two probability distributions.

Let us now justify (2.13). Keep in mind that we have c = xt−d:t−1, since
c is the length-d context of xt. In the first case of (2.12), the letter x appears
within the context history xc<t and we conclude (2.13) by adding

PPMd(x;x<t)
(2.12)
= MDLc(x;xc<t, E)

(2.10)
= (1− e(xc<t)) · MDL(x;xc<t, E)

0 = e(xc<t) · PPMd−1(x;x<t).

To see that PPMd−1(x;x<t) = 0 we distinguish:

d = 0 =⇒ PPMd−1(x;x<t)
(2.12)
= u(x;x<t)

(2.11)
= 0, since x ∈ {x1, . . . , xt−1};

d > 0 =⇒ PPMd−1(x;x<t)
(2.12)
= MDLc

′
(x;xc

′

<t, E)
(2.9)
= 0,
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Order-1 Model
(MDLc, c = xt−1)

Order-0 Model
(MDLc, c=φ)

Distribution u

...

Order-` Model
(MDLc, c= xt−`:t−1)

Order-0 Mixer
(ESCc, c= φ)

Order-1 Mixer
(ESCc, c = xt−1)

...

Order-` Mixer
(ESCc, c= xt−`:t−1)

...

. . .

PPM1(x<t)

. . .

PPM−1(x<t)

PPM0(x<t)

PPM`(x<t)

Sequence
x<t

Figure 2.2: Structure of the sequential recursive PPM mixture.

since x ∈ E = Xc(x<t), where c′ = xt−d+1:t−1 is length-(d−1) context of xt. In
case two of (2.12), the letter x does not appear in context history xc<t, and we
get

PPMd(x;x<t)
(2.12)
= MDLc(esc;xc<t) · PPMd−1(x;x<t)

(2.10)
= e(xc<t) · PPMd−1(x;x<t),

0
(2.9)
= (1− e(xc<t)) · MDLc(x;xc<t, E).

Again, adding the above equations yields (2.13).

Summary. PPM has an integer parameter D > 0, the maximum context
length, and employs an elementary model MDL and its context model counter-
part MDLc, see (2.9) and (2.10). For escape probability assignment e(·) mixing
in PPM uses the context-conditioned mixer

ESCc(x;x<t,p1:t) := e(x<t) · u(x) + (1− e(x<t)) · v(x), where pt = (u, v).

(2.14)

Given time steps T = Tc(x1:t), the mixer ESCc associated to context c has
mixer input

inc(x<t) = 〈(MDLc(xc<i, Eci ), PPM|c|−1(x<i))〉i∈T ,
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where Eci is the set of excluded letters at context c during time step i. For
the length-d context c = xt−d:t−1 of xt PPM defines the recursive probability
assignment

PPMd(x<t) :=

{
ESCc(xc<t, in

c(x<t)), if d > 0,
u(x<t), otherwise

(2.15)

and predicts the distribution PPM(x<t) = PPM`(x<t), where ` 6 D is the
length of longest context of xt with non-empty context history. The actual
choice of escape probability assignment and elementary modeling distin-
guishes different PPM variants.

If we break apart the tail recursion in the mixture (2.15) (the mixer in-
put inc depends on PPMd−1!), we observe the following: At the bottom level
of recursion PPM mixes the distribution u and the prediction of the order-0
context model MDLc, where c = φ, resulting in the distribution PPM0(x<t).
At the next level of recursion, PPM mixes the prediction of the order-1 con-
text model MDLc, where c = xt−1 and PPM0(x<t), resulting in the distribution
PPM1(x<t). This process continues up to the longest context with non-empty
context history (length `). Figure 2.2 illustrates this process. Common en-
coding and decoding routines, as in Figure 2.1, are efficient implementations
that interleave mixing, modeling and coding to avoid the explicit computa-
tion of the distribution PPM(x<t).

Historical Notes. The earliest PPM variants, PPMA and PPMB, were in-
troduced in [23], followed by PPMC [67], PPMD [43] (see Table 2.1) and,
later, PPME [5]. Variants PPMP and PPMX [106] use an approximate pois-
son process model to estimate escape probabilities. All of these PPM vari-
ants mainly differ in the choice of escape probability, although there are
minor differences in elementary modeling. In contrast to these members of
the PPM family, PPM* [22] does not limit the maximum context length. Sub-
sequently, two dissertations [4, 15] systematically investigated various PPM
variations, e. g. local order estimation (choose ` in Figure 2.1 based on more
sophisticated criteria), blending (recursively mix distributions without ex-
cluding letters) and update exclusions (if letter xt was coded in length-d
context, do not update statistics of contexts with length less than d), just
to name a few. PPMZ [12], a carefully engineered PPM variant, broke the
traditional approach for escape estimation: Instead of using a closed form
expression on the escape probability, it employed a context model for escape
probability estimation. Such a procedure is termed secondary escape esti-
mation. Many other carefully chosen refinements to PPMD, resulted in PP-
MII [84] and its implementation PPMonstr (and the stripped-down version



24 CHAPTER 2. Fundamentals

PPMd). A major innovation of PPMII is information inheritance, a heuris-
tic to initialize and maintain statistics for a novel child context based on
statistics from its parent context. Up until now, the most recent member of
the PPM family is PPMDP [85], a PPM variant that tunes parameters via
Online Gradient Descent (OGD). Out of all PPM algorithms we mentioned,
PPMII, followed by PPMDP, are state of the art. These two variants offer
excellent empirical compression performance.

2.4.3 Context Tree Weighting

In 1983 Rissanen proposed the CONTEXT algorithm [73] to combine ele-
mentary models within a context tree by picking just a single elementary
model. An improvement which was suggested later is that instead of se-
lecting a single model, mixing multiple elementary models improves perfor-
mance and still retains good code length guarantees [102]. This gave birth to
Context Tree Weighting (CTW). The probability assignment in CTW may be
stated in two equivalent ways, by using a block probability recursive mixture,
or, alternatively, using a sequential recursive mixture. The former approach
follows the original paper [101] and is well known. Unfortunately, it does not
fit the mixture model scheme of Section 1.2. The latter approach was intro-
duced as an implementation technique [105, 78] and received less attention.
However, it resembles the mixture model scheme of Section 1.2.

Below we first give an introduction to CTW based on block probabili-
ties, following the original work [101], and discuss code length guarantees.
Thereafter, we explain how to arrive at the sequential recursive CTW mix-
ture, summarize CTW and give some historical notes on CTW variations.

Block Probability Recursive CTW Mixture. Like any statistical data com-
pression algorithm CTW is essentially defined by a sequential probability
assignment rule. We will now explain how CTW assigns the probability
CTW(x;x<t) to letter x after processing the segment x<t. Our explanation
is based upon probability estimates on sequences, rather than letters. Such
a probability estimate is called block probability (of some sequence). In the
following we restrict our view to a binary alphabet. The extension to a non-
binary alphabet is straightforward [8, 100].

Consider a context tree of depthD (a parameter of CTW) with 2d contexts
on level d ∈ {0, 1, . . . , D}. Every leaf- and non-leaf context c is labeled with a
probability P c

e (x<t) and every non-leaf context c is labeled with a probability
P c
w(x<t), to be defined shortly. For some context c these number(s) estimate

the block probability of the context history xc<t, given x<t. (Note that these
numbers are probabilities, not distributions; and that they are probabilities



2.4. Algorithms in Statistical Data Compression 25

on sequences, not on letters!) The block probabilities rely on the elementary
model RF with parameter f0 = 1/N (see (2.3)). This elementary model is called
the Krichevsky-Trofimov-Estimator, we write KT to refer to this model. The
model KT assigns probabilities by

KT(x;x1:t) :=
|{i | xi = x and 1 6 i 6 t}|+ 1

2

t+ N
2

. (2.16)

For T = Tc(x<t) the block probability P c
e (x<t) only depends on the estimates

(2.16) by

P c
e (x<t) :=

∏
i∈T

KT(xi;x
c
<i). (2.17)

The block probability P c
w(x<t) depends on P c

e (x<t) and on probabilities P 0c
w

and P 1c
w from child contexts of c, and is defined by

P c
w(xc<t) :=

{
P c
e (x<t), if |c|=D,

1
2
P 0c
w (x<t)P

1c
w (x<t) + 1

2
P c
e (x<t), if |c|<D.

(2.18)

Example 2.4.3 We consider CTW for a binary alphabet with context tree
depth D = 2 on input x<t = 1011101 with initial context x−1:0 = 11 (we
supply x−1:0 to make the context of x1 and x2 well-defined), see “Block Prob-
ability Recursive CTW Mixture” in Figure 2.3. For instance the context 11
induces context history 1010 and

P 11
e (1010) = KT11(1;φ) · KT11(0; 1) · KT11(1; 10) · KT11(0; 101)

=
1

2
· 1

4
· 1

2
· 3

8
=

3

128
,

context 1 has weighted probability

P 1
w(101101) =

P 01
w (1) · P 11

w (1010) + P 1
e (101101)

2

=
1/2 · 3/128 + 3/256

2
=

3

256
.

To compute CTW(1;x<t) we first save the value of P φ
w(x<t) = 9/2048, com-

pute P φ
w(x1 . . . xt−11) = 195/65536 (in Figure 2.3 contexts c with changing

values of P c
e , P

c
w and xc and changed values themself are typeset bold) and

finally obtain

CTW(1;x<t) =
P φ
w(10111011)

P φ
w(1011101)

=
195/65536

9/2048
=

65

96
.
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φ

1234567 8

xφ<t 10111011

Pφe
9/2048; 99/32768

Pφw
9/2048; 195/65536

0

37

x0<t 11

P 0
e

3/8
P 0
w

3/8

00

x00<t φ

P 00
e 1

10
37

x10<t 11

P 10
e

3/8

1

12456 8

x1<t 101101

P 1
e

3/256; 7/1024
P 1
w

3/256; 1/128

01
4 8

x01<t 11

P 01
e

1/2; 3/8

11
1256

x11<t 1010

P 11
e

3/128

Block Probability Recursive
CTW Mixture

φ

1234567

xφ<t 1011101

KTφ 11/16
βφ 1/2

0

37

x0<t 11

KT0 5/6
β0 1/2

00

x00<t φ

KT00 1/2

10
37

x10<t 11

KT10 5/6

1

12456

x1<t 10110

KT1 7/12
β1 1/2

01
4

x01<t 1

KT01 3/4

11
1256

x11<t 1010

KT11 1/2

Sequential Recursive
CTW Mixture

Figure 2.3: Binary CTW with context tree depth D = 2 for the input x<t =
1011101, where we assume the initial context x−1x0 = 11. Every node is labeled
with its context c, and for every context cwe depict: Context history xc<t (number
i above a bit b of xc<t means b = xi); estimated block probability P ce = P ce (x<t);
weighted block probability P cw = P cw(x<t), where boldface numbers are values
for the sequence x1x2 . . . xt−11 = 10111011; weight βc = βc(xc<t) and elemen-
tary model estimate KTc given by the probability KT(1;xc<t) of a 1-bit.

Given the above definitions we may finally define the probability assignment
used by CTW:

CTW(x;x<t) :=
P φ
w(x1 . . . xt−1x)

P φ
w(x<t)

. (2.19)

For an illustration see Example 2.4.3 and Figure 2.3 (left part).

Theoretical Properties. CTW is guaranteed to perform not much worse (to
be quantified shortly) than the following competing scheme:

Definition 2.4.4 For a context tree of depth D with leaf context set CL and
family {pc}c∈CL of associated probability distributions let PCT〈CL, {pc}c∈CL〉
denote a Prediction Context Tree (PCT) model. For a sequence x−D+1:n this
PCT predicts PCT(x1:t) = pc, where xt+1 has context c; the sequence x1:n

receives code length

`(x1:n; PCT) =
∑
c∈CL

`(xc1:n; pc).
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It might look strange that Definition 2.4.4 specifies the segment x−D+1:0,
but this segment does not contribute to the code length `(x1:n; PCT). The
explanation is simple, if we do not specify x−D+1:0, then the contexts of
x1, x2, . . . xD would be undefined and in turn PCT(x;x<t) would be unde-
fined for 1 6 t 6 D. In the remainder of this work we always assume that
x−D+1:0 is known and omit it. Creating this situation in reality just requires
to transmit the first D letters x−D+1:0 of an input in O(logN) bits each. Al-
ternatively, we can assume an arbitrary fixed context x−D+1:0 for every input
x1:n.

A PCT is frequently called Tree Source [101] or Prediction Suffix Tree
[10]. In the original work [101] on CTW it was shown that for a sequence
x1:n and an arbitrary PCT model PCT〈CL, {pc}c∈CL〉 we have

`(x1:n; CTW) 6 `(x1:n; PCT) + |CL|γ
(

n

|CL|

)
+ ΓD(CL), (2.20)

where

γ(z) :=

{
z, if 0 6 z 6 1,
1
2 log z + 1, if z > 1,

ΓD(CL) := |{c | c is a context in the context tree induced by CL and |c| < D}|.
(2.21)

We may interpret the terms in the bound (2.20) as follows: |CL|γ(n/|CL|) ac-
counts for estimating the probability distributions {pc}c∈CL at each leaf con-
text from CL and ΓD(CL) bounds the cost of estimating the tree structure of
the given PCT (in fact one may encode the tree structure in exactly ΓD(CL)
bits [101]). In Chapter 5 we will take a closer look. One should note that the
actual PCT is unknown to CTW and that bound (2.20) holds simultaneously
for all PCTs of depth at most D.

Sequential Recursive CTW Mixture. We will now refine the formulation of
CTW based on block probabilities to obtain a sequential recursive mixture,
similar to (2.13), based on Beta-Weighting (see (2.4)). Such a refinement was
partially done before, as a matter of an efficient CTW implementation, but
not exactly in the way we do it here. (Even though suggested in [101] it
is cumbersome and inefficient to implement CTW using block probabilities.
One should use conditional probabilities [78, 105].) Our refinement is close
to [78, 105] with modifications due to [49]. At the end of this section we will
explain similarities and differences to previous work.

First, for the length-d context c of xt, where 0 6 d 6 D, we define the
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model

CTWd(x;x<t) :=
P c
w(x1x2 . . . xt−1x)

P c
w(x<t)

, where c = xt−d:t−1. (2.22)

(For P c
w and P c

e see (2.18) and (2.17).) Clearly, by (2.19) CTW predicts the
distribution CTW(x<t) = CTW0(x<t). In the following we will turn definition
(2.22) of CTWd into a recursive formulation. In the base case, when d = D,
we obtain

CTWd(x;x<t)
(2.22)
=

P c
w(x1x2 . . . xt−1x)

P c
w(x<t)

(2.18)
=

P c
e (x1x2 . . . xt−1x)

P c
e (x<t)

(2.17)
= KT(x;xc<t); (2.23)

in the recursive case, when d < D, we have

CTWd(x;x<t)
(2.22)
=

P c
w(x1 . . . xt−1x)

P c
w(x<t)

(2.18)
=

1

2

P 0c
w (x1 . . . xt−1x)P 1c

w (x1 . . . xt−1x)

P c
w(x<t)

+
1

2

P c
e (x1 . . . xt−1x)

P c
w(x<t)

=
1

2

P 0c
w (x<t)P

1c
w (x<t)

P c
w(x<t)︸ ︷︷ ︸

=: βc(x<t)

· P
0c
w (x1 . . . xt−1x)P 1c

w (x1 . . . xt−1x)

P 0c
w (x<t)P 1c

w (x<t)

+
1

2

P c
e (x<t)

P c
w(x<t)

· P
c
e (x1 . . . xt−1x)

P c
e (x<t)

.

(2.24)

To proceed, we make two observations: (i) By plugging the definition of βc

from (2.24) into case |c| < D of (2.18) we get

P c
w(x<t)

(2.18)
= βc(x<t) · P c

w(x<t) +
P c
e (xc<t)

2
=⇒ 1− βc(x<t) =

1

2

P c
e (x<t)

P c
w(x<t)

.

(2.25)

(ii) If xt does not have context z, then P z
w(x1 . . . xt−1x) = P z

w(x<t), for any let-
ter x. (One may easily prove this by induction on |z| = D,D− 1, . . . , 0; How-
ever, it is also evident from Figure 2.3: xt has contexts from C = {φ, 1, 01}
and block probabilities P c

w(x1 . . . xt−11) and P c
w(x<t) match, for all contexts

except those from C.) Since xt has length-(d+1) context c′ = xt−d−1:t−1 we
conclude

P 0c
w (x1 . . . xt−1x)P 1c

w (x1 . . . xt−1x)

P 0c
w (x<t)P 1c

w (x<t)
=
P c′
w (x1 . . . xt−1x)

P c′
w (x<t)

(2.22)
= CTWd+1(x;x<t).

(2.26)
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Let us now step back to (2.24) and apply the two earlier observations (i) and
(ii): We plug P c

e (x1 . . . xt−1x)/P c
e (x<t) = KT(x;xc<t) (by (2.17)) and equations

(2.25) and (2.26) into (2.24), the result is

CTWd(x;x<t) = βc(x<t) ·CTWd+1(x;x<t) + (1− βc(x<t)) · KT(x;xc<t). (2.27)

At this point we successfully turned definition (2.22) of CTWd(x<t) into a se-
quential recursive mixture that does not rely on block probabilities. If d = D,
then CTWd collapses to the elementary model KT, see (2.23); if d < D, then
CTWd is a linear mixture, see (2.27), which combines the model CTWd+1, de-
pending on length-(d+1) context of xt, and the elementary model KT condi-
tioned on the length-d context c of xt. Example 2.4.5 demonstrates how to
compute the recursive mixture.

Example 2.4.5 We consider exactly the same situation as in Example 2.4.3
and want to compute CTW(1;x<t). The part “Sequential Recursive CTW
Mixture” (right) in Figure 2.3 matches the situation of “Block Probability
Recursive CTW Mixture” (left), except that we employ the modified repre-
sentation of CTW described in the text above. So contexts do not hold block
probabilities, but estimates KT(1;xc<t) of the KT elementary model and mix-
ture weights βc(x<t). Since x<t = 1011101, the letter xt has contexts φ, 1,
01, we obtain

CTW2(1;x01) = KT(1;x01
<t) =

3

4
CTW1(1;x1) = β1(x<t) · CTW2(1;x<t) + (1− β1(x<t)) · KT1(1;x1

<t)

=
1

2
· 3

4
+

1

2
· 7

12
=

2

3

CTW(1;x) = βφ(x<t) · CTW1(1;x<t) + (1− βφ(x<t)) · KT(1;xφ<t)

=
1

2
· 2

3
+

1

2
· 11

16
=

65

96
,

just as in Example 2.4.3.

Notice that the mixture weight βc(x1:t) itself can be computed recursively: If
t = 0, then we have x1:t = φ and P c

e (φ) = P c
w(φ) = 1 for every context c (one

may easily prove this by induction on |c| = D,D− 1, . . . , 0, keeping in mind
that the empty product evaluates to 1), so

βc(φ) =
1

2

P 0c
w (φ)P 1c

w (φ)

P c
w(φ)

=
1

2
. (2.28)
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If t > 0, we use (2.22) and (2.26) with x = xt and get

βc(x1:t) =
1

2

P 0c
w (x1:t)P

1c
w (x1:t)

P c
w(x1:t)

= βc(x<t) ·
P 0c
w (x1:t)P

1c
w (x1:t)

P 0c
w (x<t)P 1c

w (x<t)
· P

c
w(x<t)

P c
w(x1:t)

(2.22),
(2.26)
= βc(x<t) ·

CTWd+1(xt;x<t)

CTWd(xt;x<t)
. (2.29)

By looking closely at the mixture formula (2.27) and at the recursive weight
definition (2.28), (2.29), we see that this is a special case of Beta-Weighting
for a mixer input of dimension m = 2, cf. (2.4).

As we already noted, similar refinements (of the block probability re-
cursive mixture (2.19) to the sequential recursive mixture (2.23) and (2.27))
have previously been proposed in [78, 105]. More precisely, for d < D (2.22)
was transformed into

CTWd(x;x<t) =
αc(x<t)

1 + αc(x<t)
· CTWd+1(x;x<t) +

1

1 + αc(x<t)
· KT(x;xc<t),

αc(x<t) :=
P c
e (x<t)

P 0c
w (x<t)P 1c

w (x<t)

(
=

1− βc(x<t)
βc(x<t)

)
,

where the term αc(x<t) may be stated recursively, similar to βc(x<t) in (2.28)
and (2.29). In [49] Kufleitner proposed Beta-Weighting to combine an arbi-
trary number of models (not in the scope of CTW) using a linear mixture. He
pointed out that Beta-Weighting has its roots in CTW, without giving an ex-
act link. Our refinement of CTW makes the connection explicit. In Chapter 4
we will examine Beta-Weighting in greater detail.

Summary. CTW has an integer parameter D > 0, the maximum context
length, and utilizes the elementary model KT and the mixture BETA. Any
context c of depth at most D has a context model KTc = KT, where a context
c of depth less than D also has a context conditioned mixer BETAc = BETA.
Based on time steps T = Tc(x1:t), the mixer BETAc has the mixer input

inc(x<t) = 〈KTc(xc<i),CTW|c|+1(x<i)〉i∈T .

For any length-d context c = xt−d:t−1 of xt CTW defines the probability as-
signment

CTW|c|(x<t) =

{
BETAc(xc<t, in

c(x<t)), if 0 6 |c| < D,
KTc(xc<t), if |c| = D

(2.30)

and predicts CTW(x<t) = CTW0(x<t).
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Order-D−2 Model
(KTc, c= xt−D+2:t−1)

Order-D−1 Model
(KTc, c= xt−D+1:t−1)

Order-D Model
(KTc, c = xt−D:t−1)

...

Order-0 Model
(KTc, c = φ)

Order-D−1 Mixer
(BETAc, c= xt−D:t−1)

Order-D−2 Mixer
(BETAc, c=xt−D+1:t−1)

...

Order-0 Mixer
(BETAc, c= φ)

...

. . .

CTWD−2(x<t)

. . .

CTWD(x<t)

CTWD−1(x<t)

CTW0(x<t)

Sequence
x<t

Figure 2.4: Structure of the sequential recursive CTW mixture.

If we expand the recursion in (2.30), we observe the following: At the
bottom level of recursion CTW combines prediction of an order-D model
(KTc(x<t), where c = xt−D:t−1) and the prediction of an order-(D−1) model
(KTc(x<t), where c = xt−D+1:t−1) using an order-(D−1) mixer (BETAc, where
c = xt−D+1:t−1), resulting in the distribution CTWD−1(x<t); at the next level
of recursion CTW combines the prediction CTWD−1(x<t) and the prediction
of an order-(D−2) model, resulting in the distribution CTWD−2(x<t), and so
on. We sketch this situation in Figure 2.4.

It is interesting to note that the structure (the way models and mixers in-
teract) of PPM and CTW mixture models share great similarity, cf. Figure 2.2
and Figure 2.4. To the best of our knowledge, this has not been observed be-
fore.

Historical Notes. As we already stated, the most influential work on CTW
is [101], although there exists prior work on CTW for an N -ary alphabet
[100]. CTW for a binary alphabet, coupled with implementation techniques
to handle N -ary alphabets by alphabet decomposition (every letter receives
a binary codeword) [103, 88], improves the empirical compression over CTW
for a N -ary alphabet [8]. Consequently, most CTW research assumes a bi-
nary alphabet. Extensions to the original work include removing the depen-
dence of CTW on a full length-D context of the firstD input letters (these ac-
tually do not haveD preceding letters, i. e. do not have a context of lengthD!)
and on the parameter D itself [98]. Recently, Veness proposed Context Tree
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Switching (CTS) [91], a CTW-spinoff that replaces the mixture within CTW,
resulting in similar theoretical properties and improved empirical perfor-
mance. An extension to CTS is SkipCTS [10], which allows for “don’t-care”-
letters within a context (tree). SkipCTS consequently extends code length
guarantees to a wider class of context trees and, in turn, improves empiri-
cal performance. Similarly to other statistical compression algorithms CTW
is demanding in terms of processing power and memory requirements, so
researchers tried to cut down time and space complexity [103, 104, 78].

2.4.4 PAQ

Among CTW and PPM, PAQ is the most recent member of the major three
statistical data compression algorithms. The PAQ family of algorithms was
introduced in 2002 [54] and has undergone heavy development since then
[53, 80]. As a result there are countless PAQ variants, and it is impossible
to sketch “the PAQ algorithm”. Nevertheless, there are two things all PAQ
variants have in common, namely that they work on a binary alphabet and
that they push the modeling-mixing approach to the extreme: Mixers com-
bine a large number (tens and even up to hundreds) of context models to
compute a single prediction. At that context models use a generous interpre-
tation of what makes up a context. In Figure 2.5 we show the typical layout
of a PAQ-based mixture model.

There is no PAQ model people have agreed on; rather, there are numer-
ous variations. Still, there are key techniques shared by many PAQ variants.
One may divide the key techniques into elementary modeling, mixing and
other common key components. Below we first describe common key com-
ponents (not related to elementary modeling), followed by a description of
PAQ-style elementary modeling and mixing. Out of many elementary mod-
eling and mixing approaches, corresponding to different PAQ variants, we
restrict our attention to the most mature variants of PAQ7, since these re-
mained unchanged from 2005 on. We conclude this section with historical
notes that offer further references to the reader.

Key Components. Despite elementary modeling and mixing, the superior
empirical performance of PAQ further rests on three pillars: data trans-
forms, a huge amount of data-specific context models and special modeling
techniques. Let us now summarize these. (For further reading we recom-
mend [53, 52, 80].)

Various PAQ variants attempt to detect the underlying data type and,
depending on it, enable special context models and/or apply data-specific
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Model 1

Model 2

...

Model m

Mixer SSE

p1

p2

pm mixture
distribution p

Sequence
x<t

final
distribution p′

Figure 2.5: Typical architecture of a PAQ-based mixture model: Multiple con-
text models predict the distributions p1, p2, . . . , pm on the next bit xt of sequence
x<t; a mixer combines these distributions, this yields distribution p, which gets
refined by a so-called Secondary Symbol Estimation (SSE) to produce the distri-
bution p′, which may be fed into a coding algorithm. The mixer and SSE may
input x<t as well, since their operation can depend on a context.

reversible transforms. For instance, common words in text files may be re-
placed by shorter phrases or machine code in executables is (reversibly) al-
tered to produce machine code that is easier to compress; in addition we may
enable context models that are specialized for text/executable files. Some
PAQ variants even revert Huffman coding in JPEG images and utilize spe-
cialized context models instead. Despite data-specific context models, PAQ
employs a large amount of “generic” context models, e. g. various types of
order-d context models (as in PPM), sparse context models (contexts that
contain “don’t cares”) and a match model (the prediction largely depends on
the length of current context). Apart from the PAQ approaches to elementary
modeling and mixing (see below) there are two special modeling techniques
found in many PAQ variants. First, there are context models conditioned on
predicted distributions (and possibly other contexts), rather than just letters
from the input sequence. This technique was derived from SEE in [84] and
is called Secondary Symbol Estimation (SSE) [53, 80]. A precise treatment
of SSE is beyond the scope of this work, see [52, 53, 80] for further reading.
Second, sometimes a context history is not directly processed by an elemen-
tary model to obtain a prediction. Instead, a Finite State Machine (FSM)
tracks the context history and, in turn, its current state is used as a context
to look up an appropriate elementary model.

It is natural that removing various tricks and heuristics from PAQ will
degrade its performance and might render PAQ inferior to PPM or CTW. So
one may argue that these tricks are the only advantages of PAQ. However,
in Chapter 5 we will see that in the vast majority of cases PAQ-style elemen-
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Figure 2.6: Logistic Mixing in PAQ interpreted as neural network.

tary modeling and mixing alone is superior to traditional approaches.

Elementary Modeling. Unlike most widespread attempts to elementary
modeling, PAQ does no more use relative-frequency based elementary mod-
els. Instead, it adopts a technique we term Probability Smoothing (PS). Given
an initial distribution p and a sequence α1:∞ of numbers from (0, 1), PS is
defined by the sequential probability assignment rule

PS(x;x1:t) :=


αt · PS(x;x<t) + 1− αt, if t > 0 and xt = x,
αt · PS(x;x<t), if t > 0 and xt 6= x,
p(x), if t = 0

.

The sequence α1:∞ is called smoothing rate sequence, hence the naming PS.
For reasons of implementation efficiency PAQ commonly employs a fixed
smoothing rate, α = α1 = α2 = . . . , where α is close to one. Another com-
mon choice is to increase smoothing rates and leave them fixed from some
stage on: α1 < α2 < · · · < αk = αk+1 = . . . . In Chapter 3 we provide a code
length analysis for various smoothing rate sequences considering a binary
alphabet.

Logistic Mixing. For mixing PAQ draws strength from a neural-network
approach (see [75] for a basic introduction to neural networks) called Lo-
gistic Mixing (LM) [53, 80]. Structurally, the neural network is simple: It
consists of m input neurons, one neuron per distribution to mix, and a single
output neuron. Every input neuron is connected with the single output neu-
ron and the connecting edge owns a real-valued weight. Figure 2.6 sketches
the setting. Every input neuron has the transfer function

st(z) := ln
z

1− z
(“stretch”), for 0 < z < 1; (2.31)



2.4. Algorithms in Statistical Data Compression 35

the output neuron relies on dot product activation and on the logistic trans-
fer function

sq(z) :=
1

1 + e−z
(“squash”), for z ∈ R. (2.32)

If we mix distributions p1, p2, . . . , pm, bit x receives the mixed probability

sq (w1 · st(p1(x)) + · · ·+ wm · st(pm(x))) . (2.33)

Note that the functions st and sq are the inverse of each other, so one may
interpret mixing as follows: First, bit probabilities get transformed nonlin-
early, then combined by a weighted linear average, and finally the transform
is reversed. PAQ tunes the neural network weights via OGD, minimizing
code length, rather than square error.

Summary. PAQ operates on a binary alphabet and employs the elementary
model PS and LM for mixing. In addition to the enormous number of con-
text models, a large set of heuristics and tricks contributes to the superior
empirical performance of PAQ.

Historical Notes. In 2002 PAQ1 was introduced [54] as a simplified real-
ization of the neural network-based compression algorithm proposed in [55].
Later PAQ variants improve compression by adding more (specialized) con-
text models, preprocessing tricks and refinements to key components (see
[53, 80] for a thorough discussion): Early variants (PAQ1, PAQ2, PAQ3) use
elementary modeling and weighting based on relative frequencies and em-
ploy SSE since PAQ2. Later refinements (PAQ4, PAQ5, PAQ6) tune weights
via OGD, PAQ6 [56] adds FSM-based elementary models. Starting from
PAQ7, elementary modeling and mixing rely on the algorithms given above.

2.4.5 Others

Besides PPM, CTW and PAQ there are two other statistical data compres-
sion algorithms worth mentioning: Dynamic Markov Coding (DMC) and DE-
PLUMP. Both algorithms have quite a shadowy existence in the domain of
statistical data compression. (DMC never gained as much attention as, e. g.
PPM or CTW; DEPLUMP was published in 2010, thus is rather novel at the
time of writing this thesis.) In terms of empirical compression, both, DMC
and DEPLUMP are inferior to state of the art PPM and PAQ variants. As
a matter of completeness we now sketch the statistical model of DMC and
DEPLUMP.
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Dynamic Markov Coding. DMC (also called Dynamic Markov Compres-
sion) pursues a fundamentally different approach to context modeling: In-
stead of conditioning elementary models on contexts, DMC conditions ele-
mentary models on states of a (huge) dynamically built FSM.

As initially proposed in [25] DMC operates on a binary alphabet. All
states within the FSM have an associated elementary model and two out-
going edges, one edge corresponds to a 0-bit (the “0-edge”), the other edge
corresponds to a 1-bit (the “1-edge”). (An outgoing edge points to a follow-up
state, depending on an input bit.) DMC uses a relative frequency based el-
ementary model similar to RF. Context modeling in DMC works as follows:
Initially the FSM has a fixed structure and we use the elementary model as-
sociated to a predefined state, the initial state, to obtain a prediction on the
first input bit. After we know about the input bit x, we examine a so-called
cloning condition. If the cloning condition is satisfied, we perform cloning:
We copy the state pointed to by the x-edge, including its outgoing transi-
tions and elementary model, and alter the x-edge to point to the newly cre-
ated state. No matter whether or not cloning took place, we follow the x-edge
to reach the follow-up state which we use for prediction in the next round.

In general there is little literature on DMC available, possibly due to a
lack of theoretical understanding. Present theoretical results [9, 14, 15] aim
to characterize in which way states correspond to conditioning contexts. Un-
fortunately, there exist no code length guarantees for DMC, “the main justi-
fication of DMC is that it works” [80]. The DMC description we gave above
lacks mixing, and it is currently unknown if an equivalent characterization
of DMC (similar to the refinement of PPM in Section 2.4.2) that utilizes a
mixture exists at all. A practical consideration, taken care of in [89], is the
extension of DMC to a non-binary alphabet. It is interesting to note that the
influential work [13] popularized DMC as a classifier in email spam filtering.

DEPLUMP. The DEPLUMP Algorithm was introduced in [34]. (PLUMP ab-
breviates Power Law Unbounded Markov Prediction, naming the compres-
sor DEPLUMP turns this into a pun.) DEPLUMP assumes that the sequence
we encounter is the outcome of a stochastic process called Sequence Mem-
orizer (SM). Based on this DEPLUMP approximates the assumed SM, the
approximation yields a sequential prediction rule.

DEPLUMP shares great similarities with PPM: It computes a recursive
sequential mixture, similar to the PPM mixture (2.15). Elementary modeling
is based on relative letter frequencies and mixing relies on a weighted linear
average (just as PPM’s escape weighting (2.14) and CTW’s Beta-Weighting
(2.4)). However, several features of DEPLUMP differ from (classical) PPM:
DEPLUMP neither makes use of exclusion, nor does it bound context length.
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As a consequence (of the unbounded context length) it requires time O(n2)
for a sequence of length n, which is inappropriate for statistical data com-
pression. So follow-up work [7] ironed out that deficit and proposed a re-
fined DEPLUMP variant that requires time O(n). Weights in the underly-
ing recursive mixture depend on parameters (which may vary depending
on context) that DEPLUMP tunes via Online Optimization techniques, such
as OGD. Furthermore, some DEPLUMP variants update parameters prob-
abilistically (a random experiment determines whether or not to update a
parameter).

Although DEPLUMP is promising in terms of empirical compression per-
formance, not much literature is available. (As we already stated, we believe
that the reason is DEPLUMP’s novelty.) Currently there exist no published
code length guarantees for DEPLUMP.

2.5 Summary

In this chapter we laid out the fundamentals of this thesis. We have estab-
lished the basic notation that will be with us throughout the remainder of
this work. On this basis we subsequently introduced the two key compo-
nents of every statistical data compressor, that is, models and mixers, to the
reader.

As we have seen, a common recipe in statistical data compression is con-
text modeling, i. e. conditioning models and mixers on contexts. In turn, we
supplied additional notation in this respect. The technical evaluation of mod-
els, mixers and ultimately of whole statistical data compressors relies on the
comparison of these entities to idealized competitors via a code length analy-
sis (or redundancy analysis). Since there exist different approaches to a code
length analysis, we have thoroughly described our approach and aligned it
with literature. We do not assume that a source generated the sequences we
encounter, rather we view sequences as arbitrary and individual. Our ap-
proach to a code length analysis aligns the coding performance of a model
to that of an idealized competitor in terms of a multiplicative factor (“the
model’s code length is off any competitor’s code length at most by the factor
1 + δ. . . ”) and an additive redundancy term (“. . . plus some additive redun-
dancy”).

Based on the decomposition of a statistical data compressor’s model into
(context conditioned) submodels and mixers we provided descriptions of the
models found in the three major statistical compression algorithms: PPM,
CTW and PAQ. The framework we fit PPM and CTW to (i. e. the sequential
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recursive mixture) gives a unifying view on these algorithms and reveals
similarities (see Figure 2.2 and Figure 2.4). Furthermore, we sketched the
models of DMC and DEPLUMP and gave a short introduction to the stan-
dard coding algorithm in statistical data compression, AC.



CHAPTER 3

Elementary Modeling

CHAPTER OVERVIEW

In the present chapter we discuss elementary modeling techniques
in great detail. We first introduce the general problem of elementary
modeling to the reader, including practical limitations and common
approaches. We provide a survey of elementary modeling techniques,
followed by a description and a code length analysis of several elemen-
tary models. In doing so, we concentrate on elementary models that
are widely used in practice, but yet poorly understood in a theoretical
sense: Relative Frequencies with Discount, Probability Smoothing and
Relative Frequencies with Smoothing. An experimental study that sup-
ports our code length bounds and a short summary end this chapter.

3.1 Introduction
The Setting. Sequential probability assignment is a key feature of any sta-
tistical data compression algorithm. More precisely, the model of a statistical
data compressor attempts to solve the following fundamental problem:

For the sequence x1x2 . . . xn of n letters, revealed letter by letter, estimate
a distribution pt on the t-th letter, given the sequence x1x2 . . . xt−1 known
so far.

As we have seen in Chapter 2, the most basic approach to this problem relies
on simple, closed-form expressions for sequential probability assignment,
previously introduced as elementary models. In a statistical data compressor
an elementary model associated to some context c solves the above problem
for the context history xc<t, rather than for the input sequence x<t; however,
the general problem statement remains unchanged, so we may just consider
elementary modeling for some input sequence x<t. In this chapter we cover
several practical and widespread approaches to elementary modeling. Unfor-
tunately these approaches lack a sound theoretical basis. We will introduce
such a theoretical basis by providing a code length analysis.

39
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Design Constraints. Possible solutions to the above problem are limited
by common complexity constraints.1 More precisely, an elementary model
can be considered practical if it may be implemented s. t. the following is
true: It takes constant time to predict a single probability and constant time
to update its state (e. g. increment the frequency of a letter), given the next
letter xt. Regarding space, the implementation ideally requires M words of
memory, where M 6 N is the number of distinct letters in the sequence
x1:n (over an alphabet of size N ). For small alphabets, such as a binary
alphabet, a space requirement of N + O(1) memory words is acceptable
as well. Despite the aforementioned complexity constraints an elementary
model should be able to adapt to varying statistics. For instance, for a se-
quence like 00 . . . 011 . . . 1 an elementary model should quickly increase the
probability of letter 1 right after the transition from the 0-block to the 1-
block. This type of desired behavior takes locality into account and is likely
to improve compression [43].

Elementary Modeling by Relative Letter Frequencies. Most practical ap-
proaches to elementary modeling follow a common design pattern. That is,
they maintain an approximate frequency ft(x) of a letter x in the already
processed sequence x<t (we use the term “frequency” in a wider sense, viz.
to refer to frequency estimates and to refer to the actual frequency of some
letter in a sequence) and assign probability

pt(x) :=
ft(x)

Ft
, where Ft =

∑
x∈X

ft(x), (3.1)

to the letter x in step t. For various reasons ft(x) does not need to match
the actual frequency of letter x: Typically, the probability pt(x) must be non-
zero, regardless of x, so ft(x) has to be non-zero as well, even if x does not
appear in x<t; a common workaround is to set ft(x) to the actual frequency
of letter x within x<t plus some small positive additive constant. In addition,
the frequencies ft(·) may get discounted to achieve adaptivity. For instance,
after we observe the letter xt = x, we may multiply all frequencies by a
discount factor from (0, 1), before incrementing the frequency of letter x. In
this way recent letters receive a higher weight than letters that appeared in
earlier stages.

Simplicity is not the only virtue of relative frequency-based elementary
modeling. It is easy to tailor an implementation so that we match the given

1We measure running time and space complexity in terms of the word-RAM model, where
we assume the register size to be sufficiently large (typically roughly log n, for input se-
quences of length n).
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running time and space constraints. Furthermore, as we described above, we
may incorporate an aging strategy with little effort and (typically) benefit
from improved compression.

Piecewise Stationary Models. As we will see in this chapter, we can sup-
plement the pleasant practical features of relative frequency-based elemen-
tary models with code length guarantees that support adaptivity. In partic-
ular, we compare the code length of several elementary models to that of a
competitor that supports adaptivity, namely a Piecewise Stationary Model
(PWS):

Definition 3.1.1 A Piecewise Stationary Model PWS〈P , {ps}s∈P〉 for se-
quences of length n is given by a partition P of the set 1:n and a fam-
ily {ps}s∈P of probability distributions. The PWS predicts PWS(x<t) = ps,
where s ∈ P is the unique segment with t ∈ s. The sequence x1:n receives
code length

`(x1:n; PWS) =
∑

s= a:b∈P

`(xa:b; ps). (3.2)

Let us take a closer look at the idea behind a PWS, to do so fix a PWS
PWS〈P , {ps}s∈P〉 for sequence length n. The model PWS essentially divides
a given sequence x1:n into segments according to the partition P . For time
steps t from segment s = a:b ∈ P the model PWS predicts a fixed distribu-
tion, i. e. we have ps = PWS(x<a) = PWS(x<a+1) = · · · = PWS(x<b). Con-
sequently, PWS assigns code length `(xa:b; ps) to the segment xa:b and code
length (3.2) to the sequence x1:n.

3.2 Previous Work
We now summarize several approaches to elementary modeling from litera-
ture. Each section below corresponds to a particular approach to elementary
modeling. For all approaches we first sketch the general idea and subse-
quently discuss relevant literature. The reader should keep in mind that
any given code length guarantee considers the deterministic view, unless
stated differently, and assumes a competing PWS for sequences of length n
given by PWS〈P , {ps}s∈P〉.

Interestingly, we may group the approaches below into two families: On
the one hand, there is the family of “practitioner’s approaches” consisting of
Relative Frequencies with Discount, Relative Frequencies with Smoothing
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and Probability Smoothing. We may characterize this family by high practi-
cal relevance (low space and time complexity, meeting the design constraints
we gave previously; widespread use and appealing empirical performance),
but the lack of code length guarantees (especially w. r. t. PWS). On the other
hand, there is the family of “theoretician’s approaches” made up of Relative
Frequencies with Windows, Transition Diagrams and Partition Tree Weight-
ing. We can support these methods by code length guarantees, often w. r. t.
PWS, but unfortunately the time and space complexity is beyond the accept-
able range. Elementary modeling based on Finite State Machines (FSMs)
is a hybrid: In most cases an implementation is fast and efficient, however,
known code length guarantees only consider PWS with |P| = 1. So known
theoretic results do not support the ability to adapt and, to our best knowl-
edge, there is no experimental evaluation.

Relative Frequencies with Discount. Classical relative frequency-based
elementary models, such as the Laplace- (model RF from (2.3) with f0 = 1)
and Krichevsky-Trofimov-Estimator (model RF from (2.3) with f0 = 1/2) [48]
are well-known and well understood [18, 26]. Refinements thereof that peri-
odically discount letter frequencies using a discount factor λ enjoy great pop-
ularity in statistical data compression: Given the initial frequencies f1( · ) we
use the prediction (3.1) and for t > 0 we update the frequencies according to

ft+1(x) :=

{
λ · ft(x) + 1, if t > 0 and x = xt,
λ · ft(x), if t > 0 and x 6= xt,

where λ ∈ [0, 1), (3.3)

when a discount takes place in step t; otherwise, we do a “usual update”
and set ft+1(x) = ft(x) + 1, if x = xt, or ft+1(x) = ft(x), if x 6= xt. Often,
frequencies have to be integer, so (3.3) is slightly altered to support rounding
and to guarantee non-zero frequencies.

In the 1970s several researchers introduced Adaptive Huffman Coding
[31, 33], which relies on the estimation of letter frequencies or, equivalently,
letter probabilities. (Adaptive Huffman Coding constructs a coding tree for
the t-th letter based on letter frequency/probability predictions due to the
segment x<t; in fact, Adaptive Huffman Coding, is a statistical compressor
with order-0 model that substitutes AC with Huffman Coding.) An early idea
for adaptive frequency (probability) estimation is to halve the integer letter
frequencies every B letters [33]. A more general version that allows for dis-
count factors other than 1

2
was later analyzed in [42]. Unfortunately, the

code length analysis given there utilizes a competitor based on the weighted
empirical entropy: The competitor partitions the input sequence into blocks
of length B, in the i-th block it assigns weight

wi(x) := λ · wi−1(x) + |{t | xt = x for (i− 1)B < t 6 iB}|, for i > 1,
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and code length log
∑
y∈X wi(y)

wi(x)
to letter x (appearing in block i). It is not clear

how to quantify if this competitor may perform well for inputs with varying
statistics. Compared to a PWS, this type of competing scheme is hard to in-
terpret, so the overall results remain hard to interpret, as well. Moreover, to
trigger a frequency discount every B letters, we require an additional fre-
quency counter. This space overhead might not seem to be a big problem,
however, a statistical compressor maintains millions of context conditioned
elementary models and for each context only few distinct letters appear.
For instance, in PPM typically 60 % to 80 % of all contexts just contain a
single letter [84]. To cut down space complexity a common approach is to
scale down letter frequencies when their sum exceeds a threshold [107]. In
this way there is no need for an additional frequency counter per elemen-
tary model. Due to its simplicity and appealing practical performance this
scheme can be found in most practical implementations of statistical data
compression algorithms.

A discount factor λ = 0 completely discards all previous statistics and
the frequency discount becomes a frequency reset. Such a harsh behavior is
typically undesirable in practice, since retaining some statistics tends to im-
prove compression. However, if we time resets carefully, then we at least ob-
tain good code length guarantees. A KT estimator that resets frequencies in
intervals of exponentially increasing length has redundancyO(|P|·

√
n log n)

w. r. t. any PWS [83].

Relative Frequencies with Smoothing. A special borderline case of Rela-
tive Frequencies with Discount is Relative Frequencies with Smoothing: By
allowing non-integer letter frequencies, it is possible to apply the frequency
discount (3.3) in every frequency update.

In experiments that consider input sequences with varying statistics fre-
quency smoothing with a fixed discount factor was found to perform remark-
ably well compared to more sophisticated elementary models [92]. Several
frequency smoothing strategies coupled with CTW have been studied exper-
imentally [69]. The basic idea is to use discount factor α · t−β for various
choices of α, β ∈ [0, 1) in the t-th step. Results indicate notable compres-
sion improvements over basic CTW with elementary model KT. Similarly,
the CTW descendant CTS [91] relies on frequency smoothing with a fixed
discount factor to improve compression. To estimate bit probabilities early
PAQ variants [56, 54] employed a variation of frequency smoothing with in-
teger frequencies: In the t-th step we set ft+1(x) = ft(x) + 1, if x = xt; and
only smooth the frequency of the other bit, ft+1(x) = bft(x)/2 + 1c, if x 6= xt.

An implementation of frequency smoothing requires multiplying all fre-
quencies by the discount factor λ and to increment the frequency corre-
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sponding to the novel letter by 1. Equivalently (prediction (3.1) remains un-
changed), we may omit the multiplication of all frequencies by λ and instead
use an increment of λ−1 for the first frequency update, an increment of λ−2

for the second frequency update, etc. This technique was suggested in [3].

Probability Smoothing. Another idea for probability prediction is to apply
smoothing not to frequencies, but to probabilities. Given a probability dis-
tribution (i. e. the prediction of the previous step or some initial estimate)
and a novel letter we compute an updated distribution as follows: First we
multiply all probabilities with the smoothing rate α ∈ (0, 1) and afterwards
we increment the probability of the novel letter by 1−α. The smoothing rate
α may vary from step to step.

To our best knowledge this common-sense approach was first mentioned
in [43] and nowadays enjoys great popularity in PAQ-based algorithms. In
reality an implementation of probability smoothing has to work with finite
precision arithmetic. Taking this into account [65] showed that a K-state
FSM approximation of probability smoothing for a binary alphabet has re-
dundancy O(K−2/3 · n) w. r. t. PWS with |P| = 1.

Finite State Machines. An elementary model based on integer letter fre-
quencies essentially maps an input segment x<t to a set of frequencies,
which we may view as a state. Moreover, for every practical elementary
model the number of such states is finite, since the amount of usable mem-
ory for frequency data is finite. Having this in mind an obvious idea is to
directly construct a Finite State Machine (FSM) for elementary modeling:
Every state has N outgoing edges and an associated probability distribu-
tion. An outgoing edge (one for each letter) points to a follow-up state. In the
t-th step the FSM is in some state (for t = 1 this is the initial state) and uses
the distribution of this state as prediction. When the upcoming letter xt be-
comes known, the FSM follows the corresponding outgoing edge and reaches
the state for step t+ 1. Before we discuss previous work, let us parenthesize
a remark: All of the following results apply to binary sequences, FSM ele-
mentary models with K states and a competing PWS with a single segment,
i. e. |P| = 1.

A simple idea is to use an FSM that counts the frequency of 0- and 1-bits
and returns to its initial state when the total frequency exceeds r (so all fre-
quency data is lost) [71]. The FSM hasK =

(
r
2

)
states, one state for each pos-

sible frequency pair, and guarantees redundancyO( logK√
K
·n). A different idea

is to simulate probability smoothing (see previous section) via an FSM [65].
Any K-state FSM predictor has redundancy at least Θ(K−4/5 ·n) [65]. Later,
this lower bound was improved [44] and the authors proposed an FSM con-
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struction algorithm: Given per-bit redundancy R, the algorithm constructs
an FSM with per-bit redundancy close to R. Other approaches rely on ran-
domization, the FSM proposed in [66] simulates an Imaginary Sliding Win-
dow (see next section) and attains expected redundancy O( logK

K
· n). All ma-

jor PAQ variants employ either randomized or non-randomized FSM ele-
mentary models. To improve compression the distribution associated to each
state is estimated online using an elementary model, rather than being fixed
[80] (also see Section 2.4.4 on PAQ).

Relative Frequencies with Windows. Frequency discount and frequency
smoothing slowly age all previous letters. To put emphasis only on a fixed
amount of past letters (rather than all letters) we can alternatively compute
relative frequencies (3.1) based on the last w letters, which we store in a
sliding window. (When a new letter enters the window, we increment its
frequency and decrement the frequency of the oldest letter that leaves the
sliding window.)

The sliding-windows approach and its time-, space- and redundancy-
tradeoffs have previously been studied in the probabilistic view [77] consid-
ering a stationary memoryless Bernoulli Source. The expected redundancy
per letter is O(N/w). If we allow for a randomization [77] suggests using
an Imaginary Sliding Window (ISW) to eliminate the space overhead of a
sliding window: In the t-th step we increment the frequency of the next
letter xt and assume that the letter x, chosen at random with probability
roughly pt(x), leaves the ISW, and thus we decrement its frequency by 1.
By choosing the bit-width of a frequency counter appropriately, the expected
redundancy remains unchanged. Another work [86] provides results on a
windowed version of the KT-Estimator considering binary, non-stationary
Bernoulli sources (probabilistic view). The expected redundancy of the t-th
bit may be bounded from above by the KL-Divergence of the source distribu-
tions in steps t and t− 1.

Transition Diagrams. Several researchers constructed models that explic-
itly aim towards low redundancy w. r. t. PWS based on transition diagrams.
A transition diagram is a set of nodes that grows while stepping through the
input x1:n. Every node holds an elementary model and possibly some auxil-
iary data (e. g. node creation time). At time instant t a node represents some
segment a:t and the associated elementary model predicts based on segment
xa:t. (So a transition diagram is actually composed of multiple elementary
models.) Unfortunately, it is unknown which node (segment) with associated
elementary model will offer the best prediction. A solution to this problem is
to mix predictions of all nodes.
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In the probabilistic view it was shown [63] that for any fixed δ > 0 and
large enough n the expected redundancy w. r. t. PWS is at least

(1− δ) ·
(

(N − 1)|P|
2

+ |P| − 1

)
· log n.

Furthermore, the authors provided algorithms that achieve this bound in
polynomial time per letter for |P| = O(1) or exponential time per letter when
|P| is unknown. Later two more practical transition diagram approaches
have been proposed [97]. They require either time O(n2) and space O(n) or
timeO(n3) and spaceO(n2). Both methods have redundancyO(|P|·N log n),
where the more complex method enjoys slightly better code length guaran-
tees. In experiments both algorithms perform similarly. To further trade
complexity for redundancy one may assign a life time to nodes, such that
there are at most O(log n) nodes at any time [99]. As a consequence the
redundancy increases to O(|P| · N log2 n) while the running time drops to
O(n log n). Along a similar line the number of nodes may even be cut down
to O(1), thus the running time becomes O(n) [83]. The redundancy of this
scheme may be tuned, depending on parameters. In the same work the au-
thors proposed a O(n2) time and O(n) space method that improves code
length guarantees over [97] while retaining identical complexity.

Partition Tree Weighting. Partition Tree Weighting (PTW) is a meta-algo-
rithm that turns any elementary model with redundancy O(g(n)) (where g
is a non-decreasing and concave function) w. r. t. PWS with |P| = 1 to an
elementary model with redundancy

O

(
|P| · g

(
n

|P| · log n

)
· log n

)
w. r. t. arbitrary PWS. For instance the KT elementary model within the
PTW framework has redundancy O(|P| · N log2(n)). The improved guaran-
tee comes at its price: We must lift the number of elementary models from 1
to O(log n), thus running time increases by a factor of O(log n).

3.3 Our Contribution
The literature survey we gave in Section 3.2 underpins the gap between the-
ory and practice (here, in terms of elementary models) which we discussed in
Section 1.3: Most elementary models that are widely used because they ad-
mit an efficient implementation – Relative Frequencies with Discount, Rela-
tive Frequencies with Smoothing and Probability Smoothing – have no thor-
ough theoretical basis. In contrast, techniques that have a theoretical basis
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(and often low redundancy w. r. t. PWS) – Relative Frequencies with Win-
dows, Transition Diagrams and Partition Tree Weighting – are beyond the
scope of practical running time and space requirements. (FSMs are some-
what in between, code length guarantees only consider PWS with |P| = 1
and no deep experimental study is available.)

In the remainder of this chapter we concentrate on the aforementioned
group of practical elementary models and provide a code length analysis
w. r. t. PWS in the deterministic view. All of our results are novel, to our
best knowledge there exist no code length guarantees that cover any of the
elementary models above. The majority of this chapter has previously been
published [60, 61]. In the remainder of this chapter we present a polished
version thereof.

Section 3.4. We provide a code length analysis of Relative Frequencies
with Discount w. r. t. the empirical entropy (Section 3.4.2) and subsequently
generalize our analysis to the class of PWS with either bounded (away from
0) or unbounded (arbitrary) letter probabilities (Section 3.4.3). Our analysis
is based on mild assumptions and holds for a N -ary alphabet.

Section 3.5. In Section 3.5.2 we first provide a code length analysis of Prob-
ability Smoothing w. r. t. the empirical entropy and in Section 3.5.3 we pro-
ceed by generalizing the code length analysis to the class of PWS. These
results holds for binary sequences and smoothing rates that satisfy a set of
mild assumptions. Finally, in Section 3.5.4, we apply our analysis machinery
to provide code length bounds for two particular smoothing rate choices, that
is, a fixed smoothing rate and a slowly increasing smoothing rate.

Section 3.6. We observe that Relative Frequencies with Smoothing is an
instance of Probability Smoothing, hence we adopt our analysis method to
provide a code length analysis w. r. t. PWS for a binary alphabet.

Section 3.7. All of the aforementioned elementary models share great sim-
ilarity. Based on approximations or the choice of parameters we may trans-
form one elementary model to become the other (e. g. by a particular choice
of parameters Probability Smoothing becomes Relative Frequencies with
Smoothing), as we will explain in this section.

Section 3.8. We provide the results of an experimental study on Relative
Frequencies with Discount, Probability Smoothing and Relative Frequen-
cies with Smoothing to support our code length bounds and to judge on
their tightness. All experiments consider a binary alphabet and take place
in a worst-case setting, since our bounds are worst-case bounds. Despite the
alignment of theoretic results and measurements, we discuss the measured
redundancy behavior of either elementary model.
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Function Init()
1 create Array f [0..N−1];
2 for i = 0 to N−1 do f[i]← f1(i);
3 F← f1(0) + · · ·+ f1(N−1);
4 return (f,F);

Function Predict(f[0..N−1], F)

1 create Array p[0..N−1];
2 for i = 0 to N−1 do p[i]←f[i]/F;
3 return p;

Function Update(f[0..N−1], F, x)

1 if F + d > T then
2 F← 0;
3 for i = 0 to N−1 do
4 f[i]← bλ · f[i]c;
5 if f[i]=0 then f[i]← 1;
6 F← F + f[i];
7 end
8 end
9 f[x]← f[x] + d;

10 F← F + d;

Figure 3.1: Pseudocode for a typical implementation of RFD consisting of: The
function Init to set up initial frequencies, the function Predict to obtain rel-
ative letter frequencies as a prediction and the function Update to maintain
relative letter frequencies.

3.4 Relative Frequencies with Discount
We now present and analyze a common variant of Relative Frequencies with
Discount (RFD). Before we start, let us sketch the roadmap. In Section 3.4.1
we first precisely describe the RFD elementary model by means of pseu-
docode, explain its operation and identify and discuss its parameters. Sub-
sequently, we conduct a code length analysis that we split into two parts. In
Section 3.4.2 the empirical entropy serves as a competitor and we only con-
sider the situation when a discount does not affect the probability assign-
ment for letters x1, x2, . . . , xn. Section 3.4.3 provides an extension: First, we
allow for an arbitrary number of discounts (that may actually affect proba-
bility assignment); second, we generalize the competitor to become a PWS
with either bounded or unbounded letter probabilities.

3.4.1 The Setting

Algorithm RFD. The pseudocode in Figure 3.1 summarizes a typical imple-
mentation of RFD and will serve as the basis for our code length analysis.
RFD requires an array f[0..N−1] to store letter frequencies, so a letter x
has frequency f[x]. All frequencies are non-zero integers. For efficiency the
variable F stores the sum of all letter frequencies. Thus, the state of RFD
is completely captured by the pair (f,F). Naturally RFD assigns probability
f[x]/F to letter x (see Predict). After we observe the next letter x, the
implementation must update the frequencies (cf. Update): If F is not too
large, in particular F + d 6 T , for some threshold T , we simply increase
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f[x] and F by an integer d. However, if F is too large, we perform a dis-
count before increasing f[x] and F, that is, we replace the content of f[i]
by bλ · f[i]c for some 0 6 λ < 1 (e. g. an integer division), for all letters i.
As a fixup we assign value 1 to any array cell which now has value 0. The
variable F is adjusted to hold the sum of all frequencies. This completes the
discount and we can now increase f[x] and F by d, as usual. A discount
reduces the influence of old statistics and limits the memory for frequency
storage to O(N log T ) bits.

Parameters of RFD. The pseudocode in Figure 3.1 has 4 parameters, in
particular, frequency increment d, discount factor λ, limit T on the sum of all
letter frequencies and the initial frequencies f1( · ). For a code length anal-
ysis, we make the following assumptions on these parameters throughout
Section 3.4:

Assumption 3.4.1 The parameters of RFD satisfy:
(a) d is a positive integer,
(b) λ is a real from [0, 1),
(c) T is an integer s. t. (1− λ) · (T −N) = d · i, for some positive integer i,
(d) f1( ·) maps to positive integers s. t.

∑
x∈X f1(x) 6 d+ (1−λ) ·N +λ ·T .

Assumption 3.4.1 does not impose severe restrictions. Assumption 3.4.1 (a)
claims a non-zero frequency increment; Assumption 3.4.1 (b) disallows a dis-
count factor of λ = 1, which would not discount frequencies at all. Assump-
tion 3.4.1 (c) essentially introduces a lower bound on T depending on the
parameters d and λ, that is T > N + d

1−λ ; furthermore, 1− λ is forced to be
a multiple of d/(T −N), which is just a technical restriction to simplify our
analysis. Finally, Assumption 3.4.1 (d) calls for non-zero initial frequencies,
f1(x) > 0, for all letters x, and limits the sum F1 of initial letter frequencies.

Model RFD. When we consider the operation of RFD on a given input x1:n

we actually observe a sequence of function calls. There is a single call to
Init, followed by a sequence of Predict- and Update-function calls,

(f, F)← Init(), p← Predict(f,F), (f,F)← Update(f,F, x1), . . . ,

p← Predict(f,F), (f,F)← Update(f,F, xn).
(3.4)

The phrase step t uniquely refers to the t-th pair of Predict- and Update-
operations. We say a discount takes place in step t, if Update executes the
lines 2 to 7 (see Figure 3.1) in step t. Having the above notion in mind, we
can finally define “the prediction of RFD in step t”.
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Table 3.1: Notation used for the code length analysis of RFD in Section 3.4.

Symbol Definition
x1:n input sequence
N alphabet size
M number of distinct letters in x1:n
c(x) frequency of letter x in x1:n

h(x1:n)
∑
x∈X c(x) log(n/c(x))

ft(x) freq. estimate for x based on x<t
(f[x] in t-th Predict-call)

Symbol Definition
Ft sum of freq. estimates ft(x)

(F in t-th Predict-call)
RFD(x;x<t) prob. estimate ft(x)/Ft

d integer frequency increment
λ discount factor from [0, 1)
T limit on total frequency Ft
L (T −N)/d

Definition 3.4.2 Let ft(x) be the value of array cell f[x] and let Ft be the
value of variable F, both at the beginning of step t in operation sequence
(3.4). The model RFD is defined by the prediction

RFD(x;x<t) :=
ft(x)

Ft
.

3.4.2 Relative Frequencies with Discount vs. Empirical
Entropy

Probability Assignment. We are now ready to start the code length anal-
ysis of RFD. Initially, just the empirical entropy will serve as a competitor.
Subsequently, we will extend the analysis to cover a competing PWS. Our
starting point is not only simple in terms of the competitor, but also in terms
of how RFD operates: We assume that there is at most one discount in step
n. In this situation the prediction of RFD collapses to

RFD(x;x<t) =
f1(x) + d · |{i | xi = x and 1 6 i < t}|

F1 + (t− 1) · d
. (3.5)

As a reminder for the reader, Table 3.1 summarizes the most important sym-
bols for the analysis.

Analysis. First, we require a technical lemma on the empirical entropy.

Lemma 3.4.3 We have
(

n
c(0),...,c(N−1)

)
6 2h(x1:n).

Proof. Case n = 0 is trivial, let n > 0. By the Multinomial Theorem we get

1 =

(∑
x∈X

c(x)

n

)n

>

(
n

c(0), . . . , c(N − 1)

)
·
∏
x∈X

(
c(x)

n

)c(x)
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=

(
n

c(0), . . . , c(N − 1)

)
· 2−h(x1:n),

rearranging completes the proof. �

Notice that by using Stirling’s formula the above bound can be improved (cf.
[26, Lemma 17.5.1]). However, in the worst case the improvement is small
(multiplicative factors independent of n), thus we omit it and use the simpler
version. We now proceed with a code length guarantee for RFD.

Proposition 3.4.4 If the operation sequence (3.4) contains at most one dis-
count in step n and N 6 F1 < ∞ (i. e. Assumption 3.4.1 (d) does not need
to hold!), then

`(x1:n; RFD) 6 h(x1:n) +

(
M−1 +

F1−1

d

)
log(n) + log

(
F1/d · eF1/d · dM

)
.

Proof. Our plan is to bound
∏

16t6n RFD(xt;x<t) from below by separately
treating numerator and denominator; finally, we combine the results. The
numerator ft(x) and denominator Ft of RFD(x;x<t) are given by (3.5).

Numerator. By Assumption 3.4.1 (d) we have f1(x) > 1, for any letter x, so∏
16t6n

ft(xt)
A3.4.1 (d)
>

∏
x∈X

∏
16i<c(x)

(1 + di) =
∏
x∈X

c(x)!

c(x)

∏
16i<c(x)

di+ 1

i

>
∏
x∈X

c(x)! ·
∏

16i6n−M

di+ 1

i
·
(
M

n

)M
,

(3.6)

where we used
∏

16i<c(x),x∈X
di+1
i
>
∏

16i6n−M
di+1
i

, since di+i
i

decreases with
i, and

∏
x∈X c(x) 6 (n/M)M , by the Arithmetic-Geometric-Mean inequality.

Denominator. We have∏
16t6n

Ft = F1 ·
∏

16i<n

(F1 + di) = n! · F1

n
·
∏

16i<n

di+ F1

i
. (3.7)

Combination. We require two simple inequalities: First,∏
16i<n

di+ F1

di+ 1
6
∏

16i<n

(
1 +

F1 − 1

di

)
6 e(F1−1)/d·Hn 6 (en)(F1−1)/d, (3.8)
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where we used 1 + z 6 ez and Hn =
∑

16i6n i
−1 6 ln(en); Second,

∏
n−M<i<n

di+ 1

i
6 dM−1 ·

∏
n−M<i<n

i+ 1

i
=

n · dM−1

n−M + 1
6M · dM−1. (3.9)

We combine (3.6) and (3.7) and use (3.8), (3.9) and MM−1 > 1, to obtain∏
16t6n

RFD(xt;x<t)

(3.6),
(3.7)
>

∏
x∈X c(x)!

n!
· MM

F1nM−1
·
∏

16i<n

di+ 1

di+ F1

·
∏

n−M<i<n

i

di+ 1
(3.8),
(3.9)
>

[(
n

c(0), . . . , c(N−1)

)
·nM−1+(F1−1)/d ·F1/d ·eF1/d ·dM

]−1

.

We apply Lemma 3.4.3 and take the logarithm of the above inequality. �

Discussion. Let us compare the code length bound of Proposition 3.4.4 to
similar results from the literature. If we set d = 1 and f1(x) = 1, for all
letters x, then we obtain the Laplace estimator LP, which satisfies (cf. Exam-
ple 2.2.3 and [26, 18])

`(x1:n; LP) 6 h(x1:n) + (N − 1) · log(n) + o(N). (3.10)

In contrast, the bound of Proposition 3.4.4 becomes

`(x1:n; LP) 6 h(x1:n) + (N +M − 2) · log(n) +O(N). (3.11)

In case of the Laplace-Estimator the sequence x1:n that maximizes the re-
dundancy `(x1:n; LP)−h(x1:n) satisfies M = 1 [18]. On the one hand, for this
worst-case situation, bounds (3.10) and (3.11) yield the same leading redun-
dancy term (N − 1) · log(n) on their r. h. s.; on the other hand, when we do
not know about the worst-case input and just consider a uniform version of
bound (3.11) (by plugging in M 6 N ), then the leading redundancy term of
(3.11) becomes 2(N − 1) · log(n) and is off by a factor of 2 compared to (3.10).
Similarly, we may set d = 2 and f1(x) = 1, for all letters x, to obtain the KT
estimator KT which guarantees [8, Theorem 7]

`(x1:n; KT) 6 h(x1:n) +
N − 1

2
· log(n) + logN , (3.12)

whereas a uniform version of our bound (we plugged in M 6 N ) yields

`(x1:n; KT) 6 h(x1:n) + 3 · N − 1

2
· log(n) +O(N). (3.13)
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Again, the leading redundancy term in (3.13) is three times as large as its
counterpart in (3.12). This inaccuracy is the price we have to pay to obtain
code length guarantees that hold for a class of elementary model strictly
larger than {LP, KT}. (As we noted, we can tighten our bounds slightly by
improving Lemma 3.4.3. However, with the above proof technique it seems
impossible to cut down the leading factor of the log n-term for a bound that
holds uniformly for all sequences.)

3.4.3 Relative Frequencies with Discount vs. Piecewise
Stationary Models

Time Spans between Discounts. For code length guarantees it turns out
to be crucial to estimate distances between adjacent discounts within the op-
eration sequence (3.4). So let us take a closer look at time steps that trigger
a discount. First, we define

L :=
T −N
d

, (3.14)

on which we will rely shortly. The first discount in operation sequence (3.4)
takes place in step t, whenever the value Ft of variable F satisfies Ft+d > T .
Hence, if F has value F1 after Init (at the beginning of step 1), then the
first discount takes place in step t = (Ft − F1)/d + 1, since in each step
1, 2, . . . , t−1 variable F increases by d. Similarly, if the most recent discount
before step t took place in step t′ and F had value Ft′+1 after step t′ (at the
beginning of step t′ + 1), then the distance t′ − t between these discounts is
(Ft − Ft′+1)/d + 1. In Figure 3.2 we depict this situation graphically. As we
observe, dealing with distances between adjacent discounts requires dealing
with Ft.

Lemma 3.4.5 In operation sequence (3.4) the letter frequency sum satisfies
(a) N 6 F1 and N + d 6 Ft, for t > 1,
(b) Ft 6 T , for any time step t, and
(c) Ft 6 d+ (1− λ)N + λT , if t = 1 or a discount took place in step t− 1.

Proof. (a) Assumption 3.4.1 (d) implies F1 > N . For step t > 1, consider the
situation at the end of the (t−1)-th call to Update: Immediately before line
10 we have F > N (since every letter has positive frequency and F stores the
letter frequency sum), thereafter we have F > N + d and F = Ft.

(b) and (c) We use induction on t to prove both bounds.
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Init()
Predict(f,F)
Update(f,F, x1)

Step 1: no disc.

. . . Predict(f,F)
Update(f,F, xt)

Step t: discount

(f,F) = (f1, F1) (f,F) = (f2, F2)

F2 = F1 + d

(f,F) = (ft, Ft)

Ft = F1 + (t− 1)d

Predict(f,F)
Update(f,F, xt′)

Step t′: discount

Predict(f,F)
Update(f,F, xt′+1)

Step t′ + 1: no disc.

. . . Predict(f,F)
Update(f,F, xt)

Step t: discount

(f,F) = (ft′+1, Ft′+1) (f,F) = (ft′+2, Ft′+2)

Ft′+2 = Ft′+1 + d

(f,F) = (ft, Ft)

Ft = Ft′+1 + (t− t′)d

Figure 3.2: Time spans between discounts. Top: first discount; Bottom: a subse-
quent discount. An arrow represents the “transmission” of RFD’s state informa-
tion,i. e. the pair (f,F), from the Update-call in one step to a succeeding step.

Base: t = 1. We consider the situation right after Init and take advantage
of Assumption 3.4.1 (d) and Assumption 3.4.1 (c), so we obtain

F1

A3.4.1 (d)
6 d+ (1− λ)N + λT = T + d− (1− λ)(T −N)

A3.4.1 (c)
6 T , (3.15)

which proves (b) and (c). (Assumption 3.4.1 (c) implies (1− λ)(T −N) > d.)
Step: t > 1. We consider the Update-call in step t− 1 and distinguish:
Case 1: No discount took place. At the beginning of this Update-call we get
Ft−1 + d 6 T , so Ft = Ft−1 + d and Ft 6 T , which proves (b).
Case 2: A discount took place. Function Update executes lines 2 to 7, so

Ft = d+
∑
x∈X

max{1, bλft−1(x)c} 6 d+ (1− λ)N + λFt−1.

The inequality is due to max{1, bλzc} 6 1−λ+λz, for z > 1 and 0 6 λ 6 1.
From Ft−1 6 T (by the induction hypothesis) we conclude (c). Based on (c)
we conclude (b) analogously to (3.15). �

By the upper and lower bounds on Ft we can immediately bound the dis-
tance between adjacent discounts (or the distance between Init and the
first discount) depending on L and λ:

Lemma 3.4.6 For a discount in step t of operation sequence (3.4) we have
(a) (1− λ)L 6 t 6 L+ 1, if this is the first discount, or
(b) (1− λ)L 6 t− t′ 6 L, if the previous discount took place in step t′.
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Proof. (a) First Discount. Since no discount takes place in steps 1, 2, . . . , t−
1, we have Ft = F1 + (t− 1)d, or equivalently

t =
Ft − F1

d
+ 1. (3.16)

We plug Ft > T − d (see Update in Figure 3.1) and F1 6 d+ (1− λ)N + λT
(by Assumption 3.4.1 (d)) into (3.16) which yields

t >
T − d− (d+ (1− λ)N + λT )

d
+ 1

(3.14)
= (1− λ)L− 1

A3.4.1 (c)
=⇒ t > (1− λ)L,

since (1 − λ)L is an integer (by Assumption 3.4.1 (c)). Analogously, we plug
Ft 6 T (by Lemma 3.4.5 (b)) and F1 > N (by Lemma 3.4.5 (a)) into (3.16)
and obtain

t 6
T −N
d

+ 1 = L+ 1.

(b) Subsequent Discount. Similarly to (a), we may write

t− t′ = Ft − Ft′+1

d
+ 1 (3.17)

Since Ft′+1 and F1 share the same upper bound (cf. Lemma 3.4.5 (c) and
Assumption 3.4.1 (d)), the lower bound on t− t′ matches the lower bound on
t from (a). For the upper bound we plug Ft 6 T (by Lemma 3.4.5 (b)) and
Ft′+1 > N + d (by Lemma 3.4.5 (a)) into (3.17) and get

t− t′ 6 T − (N + d)

d
+ 1 = L,

which concludes the proof. �

At this point the role of L is clear: It essentially determines the maximum
distance between adjacent discounts and, jointly with λ, it also determines
the minimum distance. (Note that the maximum distance may be bounded
by a function of (1 − λ)L, however this will be of little use, so we stick with
the simpler estimate depending on L only.) Based on the minimum distance,
we may now argue on the number of discounts.

Lemma 3.4.7 Operation sequence (3.4) contains at most n
(1−λ)L

discounts.

Proof. By Lemma 3.4.6 a discount takes place at least every (1− λ)L steps
and the claim immediately follows. �
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Analysis: PWS with Unbounded Letter Probabilities. In Section 3.4.2 we
analyzed RFD in a rather restrictive setting: The empirical entropy served
as a competitor and we did not allow for frequency discounts that affect
predictions. We will now lift these limitations, by generalizing the competitor
to become a PWS and by allowing for an arbitrary number of discounts. The
basis for the aforementioned enhancement is a slightly refined version of
Proposition 3.4.4:

Lemma 3.4.8 For any distribution p and steps a, a + 1, . . . , b of operation
sequence (3.4), with at most one discount in step b, we have: If a = 1, then

`(xa:b) 6 `(xa:b; p) + L log(eL)− (b− a+ 1) log(eL) + A logL+B + C.

If a > 1, then

`(xa:b) 6 `(xa:b; p) + L log(eL)− (b− a+ 1) log(eL) + A logL+B.

The terms A, B and C are defined as follows:

A :=
(d+ 1)N + d

d
, B :=

L+1
L
N + d

d
log e and C :=

L−1
L
d+ (d+1)N

L

d
log e.

These terms may be bounded from above by constants independent of L,
depending on N and d only.

Proof. For brevity let n = b−a+ 1. For the proof we first show how to apply
Proposition 3.4.4 in the current situation, then we simplify the resulting
code length bound and finally, we treat the cases a = 1 and a > 1.

Applying Proposition 3.4.4. For a 6 t 6 b the prediction RFD(x<t) only de-
pends on xa:t−1 and on the value of (f,F) at the beginning of step a, that
is f[x] = fa(x) and F = Fa. If we set y1:n = xa:b, choose initial conditions
f ′1 = fa and F ′1 = Fa and consider the corresponding RFD instance RFD′,
then we get

RFD′(y<t−a+1) = RFD(x<t) =⇒ `(y1:n; RFD′) = `(xa:b; RFD), (3.18)

since the probability assignment is deterministic. We may now apply Propo-
sition 3.4.4 for RFD′ and sequence y1:n

2 and plug in (3.18) , h(y1:n) 6 `(xa:b; p)

2Assumption 3.4.1 may not be fully satisfied in this situation: f ′1 = fa might violate As-
sumption 3.4.1 (d), since F ′1 = Fa might exceed d+(1−λ)N+λT . Luckily, Proposition 3.4.4
does not rely on this and holds nontheless.
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and M 6 N , resulting in

`(xa:b; RFD)
P3.4.4
6 `(xa:b; p) + (N − 1) log n︸ ︷︷ ︸

U

+
F1

d
log(en)︸ ︷︷ ︸
V

+ log
F1

d︸ ︷︷ ︸
W

+N log d.
(3.19)

Simplification. We bound the terms in (3.19) by using the following,

F1

d
=

Fn − (n− 1)d

d

L3.4.5 (b)
6

T + d

d
− n (3.14)

=
N + d

d
+ L− n, (3.20)

U = (N − 1) logL+ (N − 1) log
n

L
,

V
(3.20)
6

(
N + d

d
+ L− n

)
log en

n>1

6 (L− n) log eL+
N + d

d
log eL+

(
N

d
+ L

)
log

n

L
,

W

(3.20),
n>1

6 log

(
N

d
+ L

)
6 logL+

N log e

dL
.

We continue by plugging the estimates on U , V and W into (3.19) and obtain

`(xa:b; RFD) 6 `(xa:b; p) + L log eL− n log en+ A logL

+
N + d

d
log e+

N log e

dL︸ ︷︷ ︸
B

+ (A+ L− 2) log
n

L︸ ︷︷ ︸
X

. (3.21)

It remains bound X from above. To do so we distinguish two cases:
Case 1: a = 1. From n 6 L+ 1 (Lemma 3.4.6) we get log n

L
6 log e

L
, so X 6 C.

Case 2: a > 1. From n 6 L (Lemma 3.4.6) we conclude X 6 0. �

Now, we have developed the tools of trade to extend the code length
guarantees on RFD to PWS. Let us fix an arbitrary PWS with parameters
(P , {ps}s∈P). For a single segment s = a:b from P Lemma 3.4.8 allows us to
bound the code length `(xa:b; RFD) in terms of the distribution ps. So to bound
`(x1:n; RFD) it suffices to sum the bounds for every individual segment from
P . Unfortunately, there is a complication: Lemma 3.4.8 is only applicable
when among the steps a, a + 1, . . . , b there is at most one discount in step b.
In general, this may not be the case. Luckily, we can overcome this limitation
with ease: If in segment a:b there are discounts in steps j < k < . . . , then
we split `(xa:b; RFD) = `(xa:j; RFD) + `(xj+1:k; RFD) + . . . and bound the in-
dividual terms. In other words, it suffices to sum the bound of Lemma 3.4.8
over all segments from

P ′ := {u:v | there exists a:b ∈ P s. t.: 1. a 6 u 6 v 6 b,
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P : � � � � �

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
P ′ :

Figure 3.3: PWS partition P = {1:3, 4:12, 13:16} and discounts in steps 3, 6, 10,
13, 16, denoted as “�”, induce partition P ′ = {1:3, 4:6, 7:10, 11:12, 13:13, 14:16}.

2. u = a or there is a discount in step u− 1 and (3.22)
3. v = b or there is a discount in step v}.

See Figure 3.3 for an example. With the above notion in mind, we derive the
following:

Theorem 3.4.9 Suppose that Assumption 3.4.1 holds for the RFD model
RFD. For any PWS competitor PWS〈P , {ps}s∈P〉 and terms A, B and C from
Lemma 3.4.8 we have

`(x1:n; RFD) 6 `(x1:n; PWS)

+ |P| [L log eL+A logL+B] + C + n

[
λ log eL

1− λ
+
A logL+B

(1− λ)L

]
.

Proof. For the proof it suffices to sum the bound of Lemma 3.4.8 for all
segments from partition P ′, see (3.22), so

`(x1:n)− `(x1:n; PWS)
L3.4.8
6 C +

∑
s∈P ′

(L log eL− |s| log eL+ A logL+B)

= |P ′| [L log eL+ A logL+B] + C − n log eL. (3.23)

When there is no discount, then |P ′| = |P|, furthermore, every additional
discount increases |P ′| by at most one. The maximum number of discounts
is given in Lemma 3.4.7, this implies |P ′| 6 |P|+ n

(1−λ)L
, which we plug into

(3.23) and rearrange, to conclude the proof. �

Discussion. Let us take a closer look at Theorem 3.4.9. For fixed alphabet
size N and discount factor λ bounded away from 1, that is λ 6 λ′ < 1, the
redundancy of RFD w. r. t. a PWS with partition P collapses to

O
(
|P| · L logL+

n

L
· (λL logL+ logL)

)
.
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The redundancy essentially consists of two parts: First, redundancy intro-
duced by the complexity (i. e. the number |P| of segments) of the competi-
tor, secondly, redundancy due to discounts. Intuitively, it should be hard
to go head to head with a sophisticated competitor (|P| is large). Theo-
rem 3.4.9 confirms this, every segment for the competitor costs O(L logL)
bits. Keep in mind that Theorem 3.4.9 holds for any competitor. Hence, it
holds for the competitor that maximizes the redundancy, so we have a worst-
case bound. We will shortly sketch a possible worst-case situation. In total
there are Θ(n

L
) discounts and for every discount we have to pay a price of

O(λL logL + logL) bits. We now give a disastrous scenario to interpret the
cost per discount. To do so, consider a single discount. (The example can be
generalized to any number of discounts.) Before the discount we encountered
the sequence 00 . . . 0, and 11 . . . 1 afterwards. Right after the discount RFD
will still assign high probability to letter 0. However, in this scenario it would
be wise to discard the statistics from the previous segment. The smaller pa-
rameters λ and L, the better RFD will perform in this scenario, this adds
redundancy O(λL logL). But even if λ = 0, we still have to pay O(logL) bits
for adaption. Combining this gives redundancy O(λL logL+ logL) bits.

As seen in the previous section, we can vary the overall redundancy by
tuning parameters L and λ. If we choose λ = c/L (keep in mind that λ has
to be bounded away from 1!), the bound of Theorem 3.4.9 becomes

O

(
|P| · L logL+

cn logL

L

)
. (3.24)

Unfortunately, it is hard to tune the parameter L, since this requires knowl-
edge of desirable |P|. At this point we just give an example to illustrate the
influence of the parameters. The choice of L =

√
n for c = O(1) asymptot-

ically minimizes (3.24), when |P| is O(1), and we still guarantee sublinear
redundancy whenever |P| = o(

√
n/ log n). For the given parameter configu-

ration we get redundancy O(|P| ·
√
n log n).

Analysis: PWS with Bounded Letter Probabilities. Typically we do not
know the sequence length n in advance, thus we cannot easily tune parame-
ters λ and L for sublinear redundancy for specific |P|. To iron out this deficit,
we give a weaker version of Theorem 3.4.9, with the following rationale: It is
unfair to compare RFD to a (sequence of) arbitrary probability distributions,
since RFD can assign at most probability T−N+1

T
< 1, but not probability 1,

to any letter. Therefore the per-letter code length is bounded away from 0.
So it is fairer to choose a competitor based on probability distributions with
probabilities bounded away from 1. This leads to the following result.
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Corollary 3.4.10 Fix 0 < ε 6 1
N

and an arbitrary PWS competitor
PWS〈P , {ps}s∈P〉, where ps(x) > ε, for all segments s ∈ P and any letter x.
If we choose

δ :=
1

ε log e
·
[
λ log eL

1− λ
+
A logL+B

(1− λ)L

]
,

with A, B and C from Lemma 3.4.8 and if Assumption 3.4.1 holds for the
RFD model RFD, then we have

`(x1:n; RFD) 6 (1 + δ) · `(x1:n; PWS) + |P| [L log eL+A logL+B] .

Proof. For an arbitrary distribution p that satisfies p(x) > ε we have

`(x; p) > log
1

1− ε
> ε log e =⇒ `(x1:n; PWS) > nε log e. (3.25)

To end the proof, we combine the bound of Theorem 3.4.9 with

n

[
λ log eL

1− λ
+
A logL+B

(1− λ)L

]
= δ · nε log e

(3.25)
6 δ · `(x1:n; PWS). �

Discussion. Corollary 3.4.10 states that the code length of RFD will be
within 1+δ times the code length of the competing PWS plus O(|P| ·L logL)
bits of redundancy. For fixed ε, fixed alphabet size N and λ bounded away
from 1, i. e. λ 6 λ′ < 1 (these are mild restrictions, overall), we get

δ = O

(
λ logL+

logL

L

)
,

which should ideally be as small as possible. Indeed, for λ = o(log−1 L), we
can decrease δ by increasing L. So δ can be made arbitrarily small at the
cost of increasing the additive O(|P| · L logL) bits of redundancy.

3.5 Probability Smoothing
In this section we present our results on Probability Smoothing (PS). We
first introduce the model, discuss its parameters (Section 3.5.1) and subse-
quently provide a code length analysis for binary sequences. For the analysis
we first consider a special case, that is, in Section 3.5.2 we compare PS to the
empirical entropy. Subsequently, in Section 3.5.3 we generalize the analysis
to cover PWS-competitors as well. Finally, in Section 3.5.4 we provide actual
smoothing rate choices along with corresponding code length bounds.
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3.5.1 The Setting

Model PS. We now turn towards PS, allowing for varying smoothing rates
and for an arbitrary initial prediction. To be more specific we pin down the
probability assignment rule as follows:

Definition 3.5.1 For a sequence α1:∞ of smoothing rates, where 0 <
α1, α2, · · · < 1, and a probability distribution p, where p(0), p(1) > 0, we
define the model PS〈α1:∞, p〉 by its prediction rule

PS(x;x1:t) =


αt · PS(x;x<t) + 1− αt, if t > 0 and x = xt,
αt · PS(x;x<t), if t > 0 and x 6= xt

p(x), if t = 0.

Parameters of PS. Two parameters influence the behavior of PS, that is,
the smoothing rates α1:∞ and the initial distribution p. The smoothing rates
control the adaption of PS, large αt’s give high weight to old letters and
low weight to recent letters, the converse holds for small αt’s. The initial
distribution pmostly determines the early predictions, when t is small (what
“small” precisely translates to depends on the smoothing rates). Throughout
our analysis (Section 3.5) we assume the following on these parameters:

Assumption 3.5.2 We consider PS for bit sequences and parameters s. t.:
(a) For all smoothing rates we have 1

2
< α1, α2, · · · < 1,

(b) for t > 1 smoothing rates satisfy (1− αt−1) · αt 6 1− αt, and
(c) the initial distribution p guarantees p(0) 6 p(1).

Assumption 3.5.2 (a) is a major prerequisite for our analysis, since we will
rely on smoothing rates that are sufficiently large. Furthermore, Assump-
tion 3.5.2 (b) may be rewritten as

αt 6
1

2− αt−1

,

which implies that smoothing rates must not increase too fast, see Fig-
ure 3.4. Assumption 3.5.2 (c) is just a minor technical condition (which we
may actually assume w. l. o. g.; if it does not hold, we simply flip 0-bits and
1-bits) to simplify the analysis. As we will see later, the link between smooth-
ing rates and code length guarantees can be expressed depending on prod-
ucts of smoothing rates. Given the smoothing rate sequence α1:∞, we define

β0 := 1 and βt := α1 · . . . · αt, for t > 0. (3.26)
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0.5 0.6 0.7 0.8 0.9 1

0.5

0.6

0.7
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0.9

1

Smoothing rate αt−1

Figure 3.4: Set of admissible smoothing rates implied by Assumption 3.5.2:
Given a smoothing rate 1

2 < αt−1 = α < 1 the follow-up smoothing rate αt
must lie in {α′ | 1

2 < α′ 6 1
2−α}.

3.5.2 Probability Smoothing vs. Empirical Entropy

The Plan. In the remainder of Section 3.5.2 we will bound the code length
of model PS〈α1:∞, p〉 in terms of the empirical entropy for arbitrary bit se-
quences of length n. Our strategy is to identify the sequence x1:n that maxi-
mizes the redundancy

r(x1:n; PS) := `(x1:n; PS)− h(x1:n). (3.27)

To do so, we partition the set of all 2n bit sequences into deterministic and
non-deterministic sequences: A sequence x1:n is called deterministic, if x1 =
x2 = · · · = xn; otherwise x1:n is called non-deterministic. Based on this parti-
tion we identify the maximizer of (3.27) for deterministic and non-determin-
istic sequences. So the set of candidates for possible maximizers of (3.27)
boils to just two candidates. In Table 3.2 we summarize the most important
notation which we rely on in Section 3.5. With a slight abuse of notation, we
use H(p) to denote the binary entropy function given a probability p, rather
than a distribution p. We only use this convention within Section 3.5.2 and
Section 3.5.3.

Analysis. For the analysis it is crucial to understand the way probability
assignment works for deterministic sequences. As an example consider the
probability assignment for a 1-bit while PS operates on a deterministic se-
quence x1:n = 00 . . . 0 of 0-bits. Initially, we have PS(1;φ) = p(1) and after
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Table 3.2: Notation used for the code length analysis of PS within Section 3.5.

Symbol Definition
x1:n input bit sequence,

deterministic, if x1 = · · · = xn
h(x1:n) empirical entropy of x1:n
H(p) p log 1

p + (1− p) log 1
1−p

Symbol Definition
PS(x;x<t) PS’ prediction, see Definition 3.5.1

αt smoothing rate from ( 1
2 , 1) in step t

βt α1 · . . . · αt (recall that β0 = 1)
p initial distribution, PS(x;φ) = p

observing the first 0-bit, the probability of a 1-bit decreases by a factor of α1

(see Definition 3.5.1), so we have PS(1;x1) = α1 · p(1). Consequently, after
observing a 0-bit t− 1 times, the probability of a 1-bit shrinks by a factor of
α1 · . . . · αt−1 = βt−1 and we obtain

PS(1;x<t) = p(1) ·βt−1 and PS(0;x<t) = 1− p(1) ·βt−1, for x<t = 00 . . . 0.
(3.28)

With this in mind, it is easy to identify the deterministic sequence of
maximum redundancy.

Lemma 3.5.3 The sequence x1:n = 00 . . . 0 (only 0-bits) maximizes (3.27),
among all deterministic sequences.

Proof. For any deterministic sequence we have h(x1:n) = 0, so we prove
`(00 . . . 0; PS) > `(11 . . . 1; PS). For a deterministic sequence of 0-bits we get

`(00 . . . 0; PS)
(3.28)
=
∑

06t<n

log
1

1− p(1)βt

A3.5.2 (c)
>

∑
06t<n

log
1

1− p(0)βt

(3.28)
= `(11 . . . 1; PS).

�

We now shift our attention to non-deterministic sequences, for which the
following holds:

Lemma 3.5.4 The sequence 00 . . . 01 (a single 1-bit at the end) maximizes
(3.27), among all non-deterministic sequences.

We split off the following technical statement, before we proceed with the
proof of Lemma 3.5.4.

Lemma 3.5.5 Any non-deterministic sequence x1:n satisfies

h(x1:n)− h(x2:n) >

{
nH

(
1
n

)
, if x2:n is deterministic,

nH
(

1
n

)
− (n− 1)H

(
1

n−1

)
, otherwise.
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Proof. We have n > 2; let 1− p be the relative frequency of x1 in x1:n, thus

h(x1:n)− h(x2:n) = nH(p)− (n− 1)H
(

n
n−1
· p
)

=: f(p).

We distinguish two cases:

Case 1: x2:n is deterministic. We have p= n−1
n

, so f(p) = nH
(
n−1
n

)
= nH

(
1
n

)
.

Case 2: x2:n is non-deterministic. Since H(p) is concave, H ′(p) is decreasing
and f ′(p) = n

[
H ′(p)−H ′

(
n
n−1
· p
)]
> 0, i. e. f(p) is increasing and minimal

for minimum p. Since x1:n is non-deterministic the minimum value of p is 1
n

and we get f(p) > f
(

1
n

)
= nH

(
1
n

)
− (n− 1)H

(
1

n−1

)
. �

We now proceed with the proof of the main technical lemma of this section.

Proof of Lemma 3.5.4. We have n > 2. By induction on n we prove

r(x1:n; PS) 6 log
1

uβn−1

+
∑

06t<n−1

log
1

1− uβt
− nH

(
1
n

)
,

where u := max{p(0), p(1)}, for arbitrary p. This proof does not rely on
Assumption 3.5.2 (c)! (If actually u = p(1), then by (3.27), (3.28) and by
h(00 . . . 01) = nH( 1

n
) the r. h. s. of the inequality equals r(00 . . . 01; PS).)

Base: n = 2. We have x1:n ∈ {01, 10} and in either case it holds that

`(x1:n; PS) = log
1

p(x1)β1p(x2)
= log

1

uβ1

+ log
1

1− u

and furthermore, h(x1:n) = nH
(

1
n

)
= 2, so the claim follows.

Step: n > 2. We distinguish:

Case 1: x2:n is non-deterministic. By y1:n−1 = x2:n and PS′〈α′1:∞, p
′〉, where

α′t = αt+1, β′t = α′1 · . . . · α′t and p′ = PS(x61) we may write

r(x1:n; PS) = log
1

p(x1)
+ r(y1:n−1, PS′)− (h(x1:n)− h(x2:n)).

If we let u′ = max{p′(0), p′(1)}, Lemma 3.5.5 and the induction hypothesis
(it is easy to see that Assumption 3.5.2 holds for PS′ as well) yield

r(x1:n; PS)

I. H.,
L3.5.5
6 log

1

p(x1)
+ log

1

u′β′n−2

+
∑

06t<n−2

log
1

1− u′β′t
− nH( 1

n
). (3.29)
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Since we want to bound (3.29) from above, we must choose x1 s. t. p(x1) is
minimal (and the r. h. s. of (3.29) is maximal). To do so, we w. l. o. g. assume
u′ = p′(1) (the other case is symmetric) and distinguish:
Case 1a: x1 = 0. For a distribution q, with q(0) > 0, we have p(x1) = q(0),

p′(0) = α1q(0) + 1− α1 and p′(0) 6
1

2
=⇒ q(0) 6

α1 − 1
2

α1

.

(Notice the subtle detail: α1 6 1
2

implies q(0) 6 0, which contradicts q(0) > 0
and would make Case 1a impossible; however we assumed α1 > 1

2
in As-

sumption 3.5.2 (a)) Furthermore, we have q(0) 6 1
2
.

Case 1b: x1 = 1. For a distribution r, with r(1) > 0, we have p(x1) = r(1),

p′(1) = α1r(1) + 1− α1 and p′(1) >
1

2
=⇒ r(1) >

α1 − 1
2

α1

.

Since q(0) 6 r(1) (i. e. Case 1a minimizes p(x1)) we may now w. l. o. g. assume
that Case 1a occurred. In this situation we have u = max{q(0), q(1)} = q(1)
(since q(0) 6 1

2
) and u′ = p′(1) = α1u, so

u′β′t = uβt+1 and p(x1) = 1− uβ0 (β0 = 1). (3.30)

It remains to plug (3.30) into (3.29) and to rearrange.
Case 2: x2:n is deterministic. We will reduce this case to Case 1. W. l. o. g. we
assume x1:n = 100 . . . 0, set y1:n = 010 . . . 0 (y2:n is non-deterministic!) and for
the reduction we prove r(x1:n; PS) 6 r(y1:n; PS). We have h(x1:n) = h(y1:n) =
nH( 1

n
), so it suffices to show `(x1:n; PS) 6 `(y1:n; PS), which we now do by

showing `(xa:b; PS) 6 `(ya:b; PS), for all segments a:b ∈ {1:2, 3:n}:
Segment 1:2. We obtain `(x1:2; PS) = `(y1:2; PS), since

`(x1:2; PS) = log
1

p(1)α1p(0)
and `(y1:2; PS) = log

1

p(0)α1p(1)
.

Segment 3:n. For 0 < z < 1 we define

f(z) :=
∑

26t<n

log
1

1− zβt/β2

,

u := PS(1;x1:2) = α1α2 · PS(1;φ) + (1− α1)α2,
v := PS(1; y1:2) = α1α2 · PS(1;φ) + 1− α2

and may write `(x3:n; PS) = f(u) and `(y3:n; PS) = f(v) (sequences x3:n and
y3:n are deterministic sequences of 0-bits). Since f(z) is increasing and by
Assumption 3.5.2 (b) we have u 6 v, we conclude `(x3:n; PS) 6 `(y3:n; PS). �
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Lemma 3.5.3 and Lemma 3.5.4 imply the main result of this section. (We
omit the proof, since it is trivial.)

Theorem 3.5.6 Suppose that Assumption 3.5.2 holds. Either sequence
00 . . . 0 (only 0-bits) or 00 . . . 1 (a single 1-bit at the end) maximizes (3.27).

Discussion. The above theorem is a remarkable result: Out of all 2n possi-
ble candidates for a maximizer of (3.27), we just need to compare the redun-
dancy incurred by two sequence, 00 . . . 0 and 00 . . . 01, to precisely identify
the worst-case input. (If we have p(0) > p(1), the corresponding candidates
are 11 . . . 1 (only 1-bits) and 11 . . . 10 (a single 0-bit at the and), by symme-
try.) Even better, the redundancy for these candidates may be evaluated by
simple formulas,

r(00 . . . 0; PS)
(3.28)
=

∑
06t<n

log
1

1− p(1)βt
,

and

r(00 . . . 01; PS)
(3.28)
=

∑
06t<n−1

log
1

1− p(1)βt
+ log

1

p(1)βn−1

− nH
(

1
n

)
,

If we take the maximum of these formulas and rearrange, Theorem 3.5.6
implies

`(x1:n; PS) 6 h(x1:n) + max

{
log

1

1− p(1)βn−1

, log
1

p(1)βn−1

− nH( 1
n
)

}
+

∑
06t<n−1

log
1

1− p(1)βt
,

so the code length (and hence, the redundancy) may be bounded by a function
depending on products βt = α1 · . . . ·αt of smoothing rates and depending on
the initial distribution p.

3.5.3 Probability Smoothing vs. Piecewise Stationary
Models

Analysis. We generalize the code length analysis for PS (w. r. t. PWS) sim-
ilarly to the way we did for RFD. First, we consider the contribution of a
single segment of the competing PWS to the total redundancy.
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Lemma 3.5.7 We have r(xa+1:b; PS) 6 log
1

p(0)βb−1

+
∑
a<t<b

log
1

1− βt/βa
.

Proof. We define y1:b−a := xa+1:b and PS′〈α′1:∞, p
′〉, for smoothing rates α′t =

αa+t, furthermore β′t = αa+1 · . . . · αt, and initial prediction p′ = PS(x1:a). So
we get r(xa+1:b; PS) = r(y1:b−a, PS′). Below we only consider the case p′(0) 6
p′(1), the other case follows similarly. It is easy to see that Assumption 3.5.2
holds for PS′. We bound r(y1:b−a, PS′) by distinguishing:
Case 1: xa+1:b is deterministic. From Theorem 3.5.6 we conclude

r(y1:b−a, PS′)
T3.5.6
6 log

1

p′(0)
+

∑
0<t<b−a

log
1

1− p′(1)β′t

6 log
1

p(0)βa
+
∑
a<t<b

log
1

1− βt/βa
, (3.31)

where we used p′(0) > βap(0) and β′t = βt+a/βa to get inequality (3.31).

Case 2: xa+1:b is non-deterministic. Similarly to the previous case we get

r(y1:b−a, PS′)
T3.5.6
6 log

1

p′(1)β′b−a−1

+
∑

06t<b−a−1

log
1

1− p′(1)β′t
− (b− a)H

(
1
b−a

)
6 log

1

p(1)βb−1

+
∑

a<t<b−1

log
1

1− βt/βa
, (3.32)

where we used log 1
p′(1)
− (b− a)H

(
1
b−a

)
6 0 (by p′(1) > 1

2
and by b− a > 2,

since xa+1:b is non-deterministic) and β′t = βt+a/βa to yield inequaliy (3.32).
Both bounds, (3.31) and (3.32), may further be bounded from above by the
claimed inequality, since p(0)βa, βb−1p(1) > p(0)βb−1 (Assumption 3.5.2 (c)).
(For the case p′(0) > p′(1) we similarly have p(1)βa, βb−1p(0) > p(0)βb−1.) �

Based on the redundancy of a single segment we can easily argue on the
total redundancy of all segments (equivalently, the total code length of all
segments) that belong to the partition P of some PWS, by summing the
contribution in redundancy of every individual segment. The result is the
following theorem:

Theorem 3.5.8 Suppose that Assumption 3.5.2 holds for the PS model PS.
For an arbitrary PWS competitor PWS〈P , {ps}s∈P〉 we have

`(x1:n; PS) 6 `(x1:n; PWS) + |P| · log
1

p(0)βn−1

+
∑

a+1:b∈P

∑
a<t<b

log
1

1− βt/βa
.
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Proof. For any segment s = a+1:b ∈ P we have

`(xa+1:b; PS)− `(xa+1:b; PWS)
D3.1.1

= `(xa+1:b; PS)− `(xa+1:b; ps)
(3.27)
6 r(xa+1:b; PS), (3.33)

so we apply Lemma 3.5.7 to every segment of P and sum over all segments:

`(x1:n; PS)− `(x1:n; PWS)
(3.33)
6
∑

a+1:b∈P

r(xa+1:b; PS)

L3.5.7
6
∑

a+1:b∈P

(
log

1

p(0)βb−1

+
∑
a<t<b

log
1

1− βt/βa

)
.

We use βb−1 > βn−1 and rearrange to conclude the proof. �

Discussion. Theorem 3.5.8 suggests that for a good redundancy guarantee
the products of smoothing rates may neither be too large, nor too small: On
the one hand, the term log 1

βn−1
may dominate the redundancy, whenever

βn−1 = α1 · . . . · αn−1 is close to 0; on the other hand, the sum of terms
log 1

1−βt/βa dominates the redundancy, when βt/βa = αa+1 · . . . · αt is close to
1. So depending on the exact choice of smoothing rates it is crucial to balance
the contribution of these terms. We will explore this aspect for particular
smoothing rate sequences in the next section.

3.5.4 Choice of Smoothing Rates

Fixed Smoothing Rate. A straightforward choice for the smoothing rates
is to use the same smoothing rate α in every step,

α = α1 = α2 = . . . , for
1

2
< α < 1. (3.34)

This leads to a simple and fast implementation, since no smoothing rate
sequence needs to be computed or stored.

Recall that our results rely on Assumption 3.5.2, so we must verify that
the required prerequisites are met: Obviously Assumption 3.5.2 (a) is satis-
fied, Assumption 3.5.2 (b) holds automatically,

(1− αt−1) · αt 6 1− αt
αt−1=αt=α⇐⇒ 0 6 1− 2α + α2 = (1− α)2.

(Recall that Assumption 3.5.2 (c) is just a technical condition which we may
assume w. l. o. g.)

We require the following lemma for the analysis:
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Lemma 3.5.9 For 0 < α < 1 we have
∑
t>1

log
1

1− αt
6

(π log e)2

6 log 1
α

.

Proof. Since log 1
1−αz is decreasing in z and integrable for z in [0,∞) we may

bound the series by an integral,

∑
t>1

log
1

1− αt
6
∫ ∞

0

log
1

1− αz
dz = log e

∫ ∞
0

∑
j>1

αjz

j
dz. (3.35)

The equality in (3.35) follows from the series expansion ln 1
1−y =

∑
j>1 y

j/j,
for |y| < 1. To end the proof, it remains to bound the integral in (3.35) as
follows (recall that

∑
j>1 j

−2 = π2/6):∫ ∞
0

∑
j>1

αjz

j
dz =

∑
j>1

1

j

∫ ∞
0

αjzdz =
log e

log 1
α

∑
j>1

1

j2
=
π2 log e

6 log 1
α

. �

Corollary 3.5.10 Consider the PS model PS〈α1:∞, p〉 for smoothing rate
choice (3.34) and p(0) 6 p(1). For any PWS competitor PWS〈P , {ps}s∈P〉
we have

`(x1:n; PS) 6 `(x1:n; PWS) + |P| ·
[
log

1

p(0)
+

(π log e)2

6 log 1
α

+ (n− 1) log
1

α

]
.

Proof. It is easy to see that Assumption 3.5.2 is satisfied (recall the discus-
sion at the beginning of this section). We have βt = αt, thus for the segment
a+1:b ∈ P we combine∑

a<t<b

log
1

1− βi/βa
=

∑
0<t−a<b−a

log
1

1− αt−a
L3.5.9
6

(π log e)2

6 log 1
α

and log βn−1 = (n− 1) logα with Theorem 3.5.8 to conclude the proof. �

By the choice α = e−π/
√

6(n−1) we minimize the code length bound of Corol-
lary 3.5.10 and guarantee α > 1

2
(Assumption 3.5.2 (a)), when n > 5. The

optimal choice gives redundancy at most

|P| ·
[

2π log e√
6
·
√
n+ log

1

p(0)

]
< |P| ·

[
3.701 ·

√
n+ log

1

p(0)

]
. (3.36)
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Slowly Varying Smoothing Rate. It is impossible to choose an optimal
fixed smoothing rate when n is unknown. A standard technique to han-
dle this situation is the doubling trick, which will increase the

√
n-term in

(3.36) by a factor of
√

2/(
√

2− 1) ≈ 3.41. However, we can do better by
slowly increasing the smoothing rate step-by-step, which only leads to a fac-
tor
√

2 ≈ 1.41. The smoothing rate choice we propose is

αt = e−π/
√

12(t+1), for t > 1. (3.37)

Just as in the previous section, we must make sure that (3.37) satisfies
Assumption 3.5.2. Since this process is more technical, we wrap it into the
following lemma.

Lemma 3.5.11 Smoothing rate choice (3.37) satisfies Assumption 3.5.2.

Proof. Since smoothing rates increase, we have αt > α1 = 0.536 · · · > 1
2
,

hence Assumption 3.5.2 (a) is satisfied. We now show

0 6
1

αt
+ αt−1 − 2, for t > 1, (3.38)

which is equivalent to Assumption 3.5.2 (b). Using the inequalities e−z >
1 − z, for ez = αt−1, and ez > 1 + z + z2

2
, for ez = 1

αt
, and using (3.37) we

bound the r. h. s. of (3.38) from below as follows,

1

αt
+ αt−1 − 2 >

π√
12(t+ 1)

+
π2

24(t+ 1)
− π√

12t
. (3.39)

It remains to show that the r. h. s. of (3.39) is non-negative:

0 6
π√

12(t+ 1)
+

π2

24(t+ 1)
− π√

12t

⇐⇒ 0 6
π

2
√

12(t+ 1)
−
√
t+ 1−

√
t√

t(t+ 1)

⇐= 0 6
π

2
√

12(t+ 1)
− 1

2t
√
t+ 1

(3.40)

⇐⇒
√
t+ 1

t
6

π√
12

. (3.41)

Inequality (3.41) holds for all t > 1, so (3.38) holds. To obtain the the stronger
condition (3.40) we utilized

√
t+ 1 6

√
t + 1

2
√
t

(by a Taylor expansion and
concavity of

√
z). �
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We see that (3.37) meets the requested criteria, so we may now conclude
a corresponding redundancy bound.

Corollary 3.5.12 Consider the PS model PS〈α1:∞, p〉 for smoothing rate
choice (3.37) and p(0) 6 p(1). For any PWS competitor PWS〈P , {ps}s∈P〉
we have

`(x1:n; PS) 6 `(x1:n; PWS) + |P| ·
[
log

1

p(0)
+

2π log e√
3
·
√
n

]
. (3.42)

Proof. By Lemma 3.5.11 Assumption 3.5.2 is satisfied. For the proof we
bound the terms in Theorem 3.5.8 depending on βt’s from above. We have

βt
(3.26)
= α1 · . . . · αt = exp

(
− π√

12

∑
1<i6t+1

i−1/2

)
(3.43)

First, observe that

∑
1<i6n

i−1/2 6
∫ n

1

dz√
z
6 2
√
n

(3.43)
=⇒ log

1

βn−1

6
π log e√

3

√
n, (3.44)

second, for a < t < b we have βt/βa = αa+1 · . . . · αt 6 (αn−1)t−a, since t < n
and α1, α2, . . . is increasing, consequently we obtain

∑
a<t<b

log
1

1− βi/βa
6
∑
a<t<b

log
1

1− (αn−1)t−a
L3.5.9
6

(π log e)2

6 log 1
αn−1

=
π log e√

3

√
n.

(3.45)

We combine (3.44) and (3.45) with Theorem 3.5.8 to end the proof. �

3.6 Relative Frequencies with Smoothing

We now turn to the final probability estimation scheme of this chapter, Rel-
ative Frequencies with Smoothing (RFS). Similarly to the previous sections,
we first define the model, discuss its parameters and finally provide a code
length analysis w. r. t. PWS for bit sequences. In contrast to the previous sec-
tions on RFD and PS we proceed more quickly, since RFS may be viewed as
a variation of PS (see below).
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Model RFS. In this section we consider RFS where the smoothing rate λ is
fixed in every step, more formally:

Definition 3.6.1 For an integer m > 0, smoothing rate λ ∈ (0, 1) and a
probability distribution p with non-zero probabilities let

Ft :=
∑

06i<m+t

λi and ft(x) :=


λ · ft−1(x) + 1, if t > 1 and xt−1 = x,
λ · ft−1(x), if t > 1 and xt−1 6= x,
p(x) · F1, if t = 1.

We define the model RFS〈λ, p,m〉 by its prediction RFS(x;x<t) = ft(x)
Ft

.

Note that Ft, the sum of all frequencies, is a geometric series, so we have

Ft =
1− λm+t

1− λ
and Ft = λFt−1 + 1, for t > 1. (3.46)

Parameters of RFS. RFS has three parameters, the initial prediction p,
the smoothing rate λ and an integer m. Just as in case of PS, the smoothing
rate λ determines the weight of past letters, by increasing λ, the weight of
past letters increases and vice-versa. All parameters interact to set up the
initial frequencies f1: It is easy to see that f1 is chosen so that p is the initial
prediction, RFS(x;φ) = p(x). The parametersm and λ control the magnitude
of f1(x), by increasing m and/or λ, the magnitude of f1(x) increases. So by
increasing this magnitude RFS will take more time to adapt to observed
statistics (what “more time” precisely translates to also depends on λ, since
it controls how oblivious RFS acts).

A Link to PS. Below we will provide an analysis of RFS for binary se-
quences which is based on a crucial observation, that is, we may regard RFS
as an instance of probability smoothing for a particular choice of smoothing
rates α1:∞. To observe this consider an input sequence x1:t, letter x = xt and
the (probability) smoothing rate

αt :=
λFt

λFt + 1
. (3.47)

Based on Definition 3.6.1 we have

RFS(x;x1:t) =
ft+1(x)

Ft+1

=
λFt

λFt + 1
· ft(x)

Ft
+

1

λFt + 1

= αt · RFS(x;x<t) + 1− αt. (3.48)
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In the opposite case, if x 6= xt, we must drop the additive term 1 − αt in
(3.48). So Definition 3.6.1 is equivalent to

RFS(x;x1:t) =


αt · RFS(x;x<t) + 1− αt, if t > 0 and x = xt,
αt · RFS(x;x<t), if t > 0 and x 6= xt,
p(x), if t = 0,

(3.49)

matching PS, cf. Definition 3.5.1.

Verifying Assumption 3.5.2. Due to the equivalence of RFS and PS we
may apply our analysis machinery of Section 3.5.4 to RFS. However, we first
need to make sure that the smoothing rate choice (3.47) satisfies Assump-
tion 3.5.2. In particular we must verify Assumption 3.5.2 (a) and Assump-
tion 3.5.2 (b). (Recall that Assumption 3.5.2 (c) is just a technical condition
which we may assume w. l. o. g..)

Let us first consider Assumption 3.5.2 (a), i. e. any smoothing rate αt, see
(3.47), must be bigger than 1

2
. Since Ft is increasing in t, the smoothing rate

αt also increases with t. Consequently, we have

1

2
< αt

α16αt⇐⇒ 1

2
< α1

(3.47)
=

λF1

λF1 + 1
⇐⇒ 1 < λF1

(3.46)
=
∑

16i6m+1

λi, (3.50)

so we require 1 < λF1, in order to satisfy Assumption 3.5.2 (a). Obviously, if
m = 0, then (3.50) cannot hold, so this case is forbidden. If m > 0 we may
easily satisfy (3.50) by increasing λ and/or m. For instance, for m = 1 (3.50)
equals

1 < λ2 + λ ⇐⇒
√

5− 1

2
< λ,

so λ must exceed the golden ratio to satisfy (3.50) and to make Assump-
tion 3.5.2 (a) valid.

It remains to check Assumption 3.5.2 (b), i. e. the smoothing rates must
satisfy (1 − αt−1) · αt 6 1 − αt, for t > 1. By substituting (3.47) and by
using (3.46), we observe that Assumption 3.5.2 (b) is always satisfied, since
the condition of consideration turns into

(1− αt−1) · αt 6 1− αt
(3.47)
⇐⇒ 1

λFt−1 + 1
· λFt
λFt + 1

6
1

λFt + 1
(3.46)
⇐⇒ λ

λFt + 1
6

1

λFt + 1
. (3.51)
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Analysis. We will carry out the analysis of RFS in brief, since it mostly
follows the lines of Section 3.5.4. First, we require a technical statement.

Lemma 3.6.2 For 1 6 a 6 b and 0 < λ < 1 we have 1−λa
1−λb >

a
b
.

Proof. Let f(z) := ln 1−λz
z

. It suffices to prove that f(a) > f(b). We obtain

f ′(z) =
g(λz)− 1

z(1− λz)
, where g(y) := y + y ln

1

y
, for 0 < y < 1.

The given range of y implies 0 6 g′(y) = ln 1
y
, so g(λz) 6 g(1) = 1, since g is

increasing. In turn we have f ′(z) 6 0, so f is decreasing. �

Corollary 3.6.3 Consider the RFS model RFS〈λ, p,m〉 s. t. the initial dis-
tribution p satisfies p(0) 6 p(1) and the parameters m > 1 and λ satisfy∑

16i6m+1 λ
i > 1. For any PWS competitor PWS〈P , {ps}s∈P〉 we have

`(x1:n; RFS) 6 `(x1:n; PWS) + |P| ·
[
log

n

p(0)
+

(π log e)2

6 log 1
λ

+ (n− 1) log
1

λ

]
.

Proof. By (3.49) RFS is equivalent to PS with smoothing rate αt chosen
according to (3.47). Furthermore, Assumption 3.5.2 is satisfied, in particular:

p(0) 6 p(1) =⇒ Assumption 3.5.2 (c) is satisfied,

1 <
∑

16i6m+1

λi (for m > 1)
(3.50)
=⇒ Assumption 3.5.2 (a) is satisfied and

(3.51) =⇒ Assumption 3.5.2 (b) is satisfied.

Consequently, the code length bound given in Theorem 3.5.8 holds. For the
remainder of this proof we simplify the terms depending on βt’s in that
bound. By Ft+1 = λFt + 1 we get

βt = α1 · . . . · αt
(3.26),
(3.47)
=

λF1

F2

λF2

F3

. . .
λFt
Ft+1

=
λtF1

Ft+1

(3.46)
= λt · 1− λm+1

1− λm+t
. (3.52)

From (3.52) we conclude

βt

(3.52),
L3.6.2
> λt · m+ 1

m+ t

m>1

>
λt

t+ 1
and

βt
βa

(3.52)
= λt−a · 1− λm+a

1− λm+t
6 λt−a, for a 6 t.

The above inequalities imply

log
1

βn−1

6 log
n

λn−1
and

∑
a<t<b

log
1

1− βt/βa
6
∑
a<t<b

log
1

1− λt−a
L3.5.9
6

(π log e)2

6 log 1
λ

.

It remains to combine Theorem 3.5.8 and the above inequalities. �
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Discussion. For t → ∞ we have Ft → 1
1−λ , thus αt → λ, i. e. we expect

RFS to perform similar to PS with a fixed smoothing rate α = λ, when the
input is large enough. Corollary 3.6.3 reflects this behavior, the derived code
length bound differs from that of Corollary 3.5.10 only by the additive term
|P| log n. Furthermore, the smoothing rate

λ = e−π/
√

6(n−1)

minimizes the r. h. s. of the code length bound we gave in Corollary 3.6.3. In
turn, this minimizer coincides with the minimizer of the code length bound
from Corollary 3.5.10.

3.7 Overall Relation
RFD, RFS and PS are closely related elementary models. On the one hand,
we may view RFS as a variation of RFD which we obtain by slight modifi-
cations; on the other hand, PS with a fixed smoothing rate is both, a special
case, and an asymptotic approximation of RFS. Let us now discuss the de-
tails.

Our starting point is RFD, which we slightly alter to yield RFS. If we
modify RFD such that we allow for non-integer letter frequencies, then we
may change the letter frequency discount (see the pseudocode in Figure 3.1)

f[i]← bλ · f[i]c;
if f[i]=0 then f[i]← 1;

to simply become f[i] ← λ · f[i]. Furthermore, if we ignore Assump-
tion 3.4.1, and choose d = 1 (the frequency increment is 1) and T = 0 (a
discount takes place in every step), then we just turned RFD into RFS.

Next, let us discuss the relation of RFS and PS with a fixed smoothing
rate. As we learned in Section 3.6, in general, RFS with (frequency) smooth-
ing rate λ is equivalent to PS with varying (probability) smoothing rate

αt =
λFt

λFt + 1
.

Moreover, by a particular choice of parameters, RFS with smoothing rate λ
also is equivalent to PS with fixed smoothing rate α1 = α2 = · · · = λ. That
particular parameter choice is as follows: We choose the initial frequencies
f1 s. t.

F1 =
∑
x∈X

f1(x) =
1

1− λ
. (3.53)
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By this choice we get F2 = λ · F1 + 1 = 1
1−λ , so F1 = F2 = · · · = 1

1−λ and

αt
(3.47)
=

λFt
λFt + 1

(3.53)
=

λ · 1
1−λ

λ · 1
1−λ − 1

= λ,

which means that for the given parameter choice RFS is equivalent to PS
with fixed smoothing rate αt = λ, as we stated. In addition, as we explained
at the end of Section 3.6, this equivalence characterizes the asymptotic be-
havior of RFS. Namely, if F1 is a polynomial in λ of type 1+λ+λ2 + . . . , then
Ft approaches 1

1−λ , as t increases, and the particular choice of parameters we
gave above resembles this situation in the asymptotic case (t → ∞). So the
asymptotic behavior of RFS with (frequency) smoothing rate λ matches that
of PS with fixed (probability) smoothing rate λ.

3.8 Experiments

We now present the results of an experimental study on the tightness of our
code length bounds for RFD, RFS and PS in comparison to PWS and binary
input sequences. (We restrict our attention to binary sequences, which al-
lows us to compare results across distinct elementary models, e. g. RFD to
RFS. This is necessary since our results on RFS and PS only hold for binary
sequences.) To do so, we measure the redundancy of RFD, RFS and PS w. r. t.
PWS in a worst-case setting (since all of our bounds are worst-case bounds)
and compare the measured redundancy to the maximum redundancy im-
plied by every individual code length bound. We also compare the measured
worst-case redundancy of RFD, RFS and PS to each other.

Our experiments evaluate RFD, RFS and PS based on artificial data. We
defer experiments on real world data to Chapter 5, where we study the in-
teraction of elementary modeling and mixing within a CTW-based statistical
data compressor. This course of action is accounted for by good reason, that
is, any major statistical data compression algorithm combines elementary
modeling and mixing. Consequently, the actual compression for real-world
data depends on the interaction of elementary modeling and mixing, rather
than the pure performance of a single elementary model on real-world data.
Hence, we omit such experiments.

In the following we sketch the experimental setup in Section 3.8.1 and
provide experimental results and an associated evaluation in Section 3.8.2.
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Table 3.3: Parameter configuration, redundancy bounds w. r. t. PWS whose par-
tition has s segments in 1:n (there are s− 1 switches) for all elementary models
we consider in our experiments. Column n0 indicates the minimum sequence
length so that the corresponding redundancy bound holds given the specified
parameters. For the terms A, B and C see Lemma 3.4.8.

Model Parameters Redundancy Bound n0

RFD L = T−N
d = d

√
ne, λ = 8

L s · [L log eL+A logL+B] + C 65

d = 1, f1(0) = f1(1) = 1 + n ·
[
λ log eL
1−λ + A logL+B

(1−λ)L

]
RFS λ = e−π/

√
6(n−1) s ·

[
2π log e√

6
·
√
n+ log 2n

]
9

p(0) = 1
2 , m = 1

PS1 p(0) = 1
2 , α = e−π/

√
6(n−1) s ·

[
2π log e√

6
·
√
n+ 1

]
5

PS2 p(0) = 1
2 , αt = e−π/

√
12(t+1) s ·

[
2π log e√

3
·
√
n+ 1

]
1

3.8.1 Experimental Setup

The Worst-Case Redundancy. Recall that our comparison should be car-
ried out in a worst case setting. More precisely, for an elementary model MDL
(e. g. PS with smoothing rate choice from Corollary 3.5.12) we measure the
worst-case redundancy

r(n) := max
x1:n

(
`(x1:n; MDL)−min

PWS
`(x1:n; PWS)

)
, for n0 6 n 6 T , (3.54)

which brings face to face the worst-case binary input x1:n and the best com-
peting PWS. To obtain a meaningful graphical representation we must only
consider PWS that share a single fixed partition (for our final choice of that
partition P see (3.56)). To evaluate the tightness of our code length bounds
we compare r(n) to the corresponding bound on redundancy `(x1:n; MDL) −
`(x1:n; PWS) (that holds for arbitrary x1:n and arbitrary PWS) implied by a
code length bound. In Table 3.3 we list all elementary models of considera-
tion along with the implied redundancy bounds. For RFS and PS1 we have
chosen smoothing rates s. t. the corresponding redundancy bounds get min-
imized, similarly, in case of RFD, the parameter choice minimizes the cor-
responding redundancy bounds in the big-Oh-sense for |P| = O(1). Notice
that we have to impose a lower bound n0 on the sequence length n in order
to satisfy all prerequisites for the redundancy bounds (e. g. in case of PS1
the smoothing rate α has to be larger than 1

2
in order to satisfy Assump-

tion 3.5.2 (a)).
Unfortunately, a direct computation of (3.54) is intractable since there
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Figure 3.5: Redundancy bounds and approximate worst-case redundancy r(t)
for elementary models from Table 3.3.

are exponentially many inputs x1:n. To lift this limitation we approximate
(3.54). Our general idea is to take the maximum in (3.54) over a large,
but finite, set of sequences x1:n that allow to easily approximate the term
minPWS `(x1:n; PWS). In the following we describe this procedure. Therein, we
will rely on the notion of generating parameters: We say a partition P and
distributions p1, p2, . . . , p|P| generate an input x1:n, if for the i-th segment
a:b ∈ P every letter within xa:b is drawn at random according to pi.

A Single Input. Suppose we are given a partition P , the distributions p1,
p2, . . . , p|P| and a generated input x1:n. We now explain how we approximate
the innermost term in (3.54),

`(x1:n; MDL)−min
PWS

`(x1:n; PWS), (3.55)

in the current situation. It is obvious that a good approximation to the PWS
that minimizes the code length for x1:n will predict the distribution pi for
any letter within the i-th segment of P . If we let PWS′ be such a competitor,
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then, for all n ∈ 1:T , we approximate (3.55) via

`(x1:n; MDL)− `(x1:n; PWS′).

All Inputs. It remains to generalize our approximation to the set of all
possible inputs. To approximately recover (3.54), we should ideally take the
maximum of (3.55) over any input x1:n that may be generated by P , p1, p2,
. . . , p|P|, for all distributions p1, p2, . . . , p|P| and n ∈ 1:T . As an approxi-
mate solution, we take the maximum over a finite subset of inputs sam-
ples across the whole input space. We generate the subset of inputs we con-
sider as follows: For every p1, p2, . . . , p|P| ∈ {p | p(0) ∈ {ε, 2ε, . . . , 1}} and
n ∈ {1, 50, 100, . . . , T} we generate R inputs. Our parameter setup is

P = {1:500, 501:1500, 1501:3500, 3501:T},
T = 5000,
R = 50 and
ε = 0.1.

(3.56)

By the choice of parameters we take the maximum in (3.54) over R/ε|P| =
500,000 inputs for every n ∈ {1, 50, 100, . . . , T}.

3.8.2 Evaluation

Evaluation — Tightness of Bounds for RFD, RFS and PS. Let us first
consider PS1, PS2 and RFS. For these elementary models our bounds pro-
vide a loose upper estimate on the measured worst-case redundancy. In case
of PS1 the bound is tighter, compared to PS2 and RFS. This behavior is not
surprising, since the code length analysis for PS2 and RFS is based on the
code length analysis of PS1, incorporating more simplifications. Across PS1,
PS2 and RFS the bounds get more loose, as we step from segment to segment
(e. g. from the first segment 1:500 to the second segment 501:1500). The ex-
planation is simple: For the code length analysis w. r. t. PWS we simply con-
catenated a bound on the worst-case code length w. r. t. the empirical entropy
(see Theorem 3.5.6 and Theorem 3.5.8). Albeit, we do not know whether or
not the worst-case situation w. r. t. the empirical entropy may occur in two
adjacent PWS segments at the same time. Our experiments indicate that
this may not be the case.

We turn to RFD. Unfortunately, the redundancy bound for RFD turns out
to be pretty loose. The term

n ·
[
λ log eL

1− λ
+
A logL+B

(1− λ)L

]
=

n log n√
n− 8

·O(1) (3.57)
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dominates the bound for small n and induces two effects. First, it causes
the redundancy bound to be “v-shaped”; second, it is the main reason for
the looseness we observe. Recall that the term (3.57) accounts for the re-
dundancy due to rescales. Hence, to fight the looseness a good starting point
would be to handle the effect of rescales in a more fine grained manner.
Overall, our results on RFD are more useful to estimate the asymptotic
worst-case behavior of RFD, rather than the worst-case behavior on finite
inputs.

Evaluation — Worst-Case Redundancy across RFD, RFS and PS. In con-
trast to the bounds, the actual worst case redundancy measurements turn
out to be more uniform in case of PS1, PS2 and RFS; RFD seems to be an
exception.

For PS1, PS2 and RFS the redundancy increases slowly within a segment
of P , but increases more drastically across the transition between adjacent
segments of P . The jump in redundancy at segment boundaries is especially
pronounced when n is large, since the smoothing rate is large and thus it gets
harder to age old statistics and to track changing statistics. If we evaluate
the measured worst-case redundancy overall, then we obtain the ranking
RFS, PS2 and PS1 in order of increasing measured worst-case redundancy.
For instance for n = 5000, RFS accumulates 213 bits, PS2 wastes 226 bits
and PS1 charges 248 bits. In our experiments this ranking remains intact,
as long as n is large enough.

As we already stated, the behavior of RFD deviates from that of the for-
mer three elementary models. This is not surprising, since PS1, PS2 and
RFS share great similarity to each other, whereas RFD is rather different.
Most notably, we observe almost no steep increase in measured worst-case
redundancy across segment boundaries, but a steady and noisy uniform in-
crease in redundancy, overall. We may explain this effect as follows: RFD
conducts discounts in intervals of length roughly equal to (1 − λ) · L ≈
d
√
ne−8. Throughout our experiments, the interval length varies from 1 (for

n = 65) to roughly 63 (for n = 5,000), so it is much smaller than the length
of a segment from P . Hence, RFD continuously tracks the input, no matter
if this effect improves (track changing statistics across segment transitions)
or degrades (track perturbations in the input within a segment) compres-
sion. Consequently, the measured worst-case redundancy should increase at
a steady rate.
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3.9 Summary
In this chapter we considered one of the fundamental problems every sta-
tistical data compressor needs to solve, that is, elementary modeling. Com-
mon approaches to elementary modeling may be subdivided into two cate-
gories, the “practitioner’s approach” and the “theoretician’s approach”. The
latter category typically enjoys powerful code length guarantees, but is out of
practical scope, due to running time and space constraints, while the former
category meets practical requirements, but lacks a sound theoretical basis.

We took a closer look at some widespread methods that fall into the claim
“practitioner’s approaches”, i. e. elementary models RFD, RFS and PS. For
these methods we provided a code length analysis. Our results reveal that
these elementary models are not only appealing in terms of their low run-
ning time and space requirements, but also in terms of code length guaran-
tees w. r. t. arbitrary competing PWS. For PS and RFS our results are valid
when compressing bit sequences, whereas our analysis of RFD holds for se-
quences over a non-binary alphabet as well.

Finally, an experimental study supports the results of our code length
analysis. The code length bounds for elementary models RFS and PS pro-
vide a loose upper estimate on the worst-case redundancy w. r. t. a PWS and
the accuracy declines as the number of PWS-segments increases. Our code
length bounds for RFD are more loose and provide an asymptotic estimate
on the worst-case redundancy, rather than a tight estimate for relatively
short inputs. Nevertheless, we provide a solid theoretical basis for a variety
of widespread, practically appealing and relevant elementary models.
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CHAPTER 4

Mixing

CHAPTER OVERVIEW

In this we consider how to mix probability distributions. For this pur-
pose we summarize relevant approaches in statistical data compres-
sion, Machine Learning and Online Optimization. We propose and
solve two divergence optimization problems in the probabilistic view
that lead to two methods for the weighted combination of probability
distributions, that is, the Linear Mixture Distribution and the Geomet-
ric Mixture Distribution. In addition, we provide a code length analysis
for the combination of either mixing technique with Online Gradient
Descent for weight estimation. In the analysis, a Switching Mixer that
may switch back and forth between components of its mixer input over
time serves as competitor. It is important to note that Geometric Mix-
ing is a generalization of Logistic Mixing used in PAQ, so we provide a
theoretical basis and a generalization of the PAQ-approach to mixing.
We end this chapter with an experimental study that supports our code
length bounds.

4.1 Introduction
The Setting. In Chapter 3 it was explained that all major statistical data
compression algorithms select a subset of elementary models, based on a
context, and mix their predictions, to produce a single prediction for cod-
ing. Hence, in addition to elementary modeling, mixing multiple predictions
is another fundamental building block in statistical data compression. We
devote this chapter to mixing, i. e. we study the following problem:

Assume a sequence x1x2 . . . xn of letters and a sequence p1p2 . . .pn of m-
dimensional p-vectors is revealed step-by-step. Estimate a distribution pt
on the t-th letter, given sequences x1x2 . . . xt−1 and p1p2 . . .pt known so
far.

Notice that during round t a mixer is aware of the past sequence x<t and all

83



84 CHAPTER 4. Mixing

p-vectors up to, and including, the t-th p-vector, that is p1:t. In general, the
sequences x<t and p<t determine the state of the mixer, e. g. a weight vector.
This state finally determines how to mix the distributions given by pt.

Mixing in a statistical data compressor such as CTW or PPM involves the
above problem at individual contexts, e. g. the input sequence x1:n actually
is a context history xc1:n, for the context c of consideration. However, the gen-
eral problem statement remains unchanged, so we omit context-conditioning
to simplify notation, similarly to Chapter 3. (In Chapter 5 we will study how
context-conditioned elementary modeling and mixing interacts in a CTW-
like statistical data compressor.) Asides from mixing in such a special set-
ting, it may be beneficial to mix the predictions of arbitrary models. PAQ has
demonstrated that this approach is very successful. If such models are of op-
posing nature, then one may add up the advantages of individual models
without cumulating the disadvantages [49].

In the remainder of this chapter we study PAQ Logistic Mixing, which
is very efficient in practice, and provide a code length analysis and a gener-
alization to a non-binary alphabet. Furthermore, we treat another practical
technique, linear mixing, in a similar fashion. Similarly to Chapter 3 our
main goal is to provide a theoretical basis for mixing methods that perform
well in practice.

Design Constraints. Since in this chapter we concentrate on practical mix-
ing methods, we must sketch common complexity constraints that character-
ize practical methods. The constraints are similar to that of an elementary
model. First, we must be able to implement a mixer with little memory, in
practice m memory words should suffice for a mixer that combines m proba-
bility distributions. (For reasons of efficiency, using a small constant amount
of additional space on top of these m words is still acceptable.) Despite space
constraints, practical methods are also limited by running time constraints.
The implementation of a mixer must allow to mix m distributions and to
update its internal state (e. g. update weights) in time O(m). Just as in el-
ementary modeling, mixing needs to be adaptive, more precisely, adaptive
in the following sense: Consider a scenario where up to some point in the
input sequence the first component of the mixer input provides good predic-
tions, and afterwards the second component of the mixer input provides good
predictions. In this situation a mixer should first produce mixed predictions
that are close (in a code length-sense) to the first component and shortly af-
ter the aforementioned transition it should produce mixed predictions that
are close to the second component.
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Mixing based on Mixture Distributions. Given a weight vector w ∈ ∆ and
a p-vector p = (p1, . . . , pm)T a mixture distribution pw maps p to a single
distribution pw(p). We write pw(x;p) to denote the probability of letter x.
Typically this mapping can be represented by a simple closed form formula
(or an algorithm) that involves some kind of weighted averaging. Given such
a formula, we write {pw}w∈∆ to denote a class of mixture distributions.

Most common approaches to mixing rely on mixture distributions in the
following way. First, we fix a class of mixture distributions and an initial
weight vector w1 ∈ ∆. Now consider the t-th step during the course of a
mixer on the input sequence x1:n with mixer input p1:n. At the beginning of
step t the weight estimate wt determines a mixture distribution pwt from
the class of mixture distributions. By this choice the mixer predicts the dis-
tribution pwt(pt) on the next letter xt. After xt is known, the mixer updates
its current weight, which yields wt+1 and we may proceed with the next step.

The Switching Mixer. Later in this chapter we will provide a code length
analysis for various mixers to add theoretical support for the desirable prop-
erty of adaptivity. More precisely, we will compare the code length of a mixer
to that of a Switching Mixer (SWM), which we now introduce formally:

Definition 4.1.1 A Switching Mixer SW〈P , {ms}s∈P〉 for sequences of
length n and m-dimensional p-vectors is given by a partition P of the set
1:n and a family {ms}s∈P of integers from {1, 2, . . . ,m}. For a sequence
p1:n = 〈(p1,t, p2,t, . . . , pm,t)

T〉16t6n of p-vectors, SW induces the prediction
SW(x<t,p1:t) = pms,t, where s ∈ P is the unique segment with t ∈ s. A
sequence x1:n receives the code length

`(x1:n; SW,p1:n) =
∑

s∈P,t∈s

`(xt; pms,t). (4.1)

Whenever clear from context, we will omit the sequence length n and the
dimension m of the p-vectors.

Let us now sketch the idea behind a SWM. Suppose that we are given
SW〈P , {ms}s∈P〉, a sequence x1:n along with a sequence p1:n of p-vectors.
Now fix a segment s = a:b ∈ P , for this segment a SWM has an associ-
ated number ms = j. For the letter xt from segment xa:b (i. e. t ∈ a:b), the
SWMs prediction is the j-th component of pt = (p1,t, p2,t, . . . , pm,t), that is
pj,t. So in this situation, the prediction is SW(x<t,p1:t) = pj,t, the letter xt
receives code length `(xt; pj,t) and, consequently, the whole sequence x1:n re-
ceives code length (4.1).
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In a code length analysis we often consider an arbitrary SWM with a
partition of size |P| as competitor. Hence our results must also hold for the
optimal SWM with a partition of size |P|. This competitor is able to adapt
to the input in the following sense: It may partition the input according
to an optimal partition and use the best component of the mixer input in
every input segment. (The choice of the partition and of the mixer input
component for every segment minimizes the code length the SWM assigns
to the input sequence.) A code length guarantee for some mixer that supports
low redundancy w. r. t. such a competitor implies that the mixer should also
be able to adapt to the input.

4.2 Previous Work

In the following we discuss approaches that are applicable to mixing in sta-
tistical data compression. We may classify these approaches into two cat-
egories, based on their origin. On the one hand, there are techniques that
directly originate in statistical data compression, i. e. the Switching Algo-
rithm and its descendants, Beta-Weighting1 and Logistic Mixing. On the
other hand, there are problem settings in Machine Learning that are closely
related to mixing in statistical data compression, namely Prediction with Ex-
pert Advice and Online Convex Programming (OCP). Our survey of previous
work intentionally concentrates on the methods that are directly related to
statistical data compression, since these methods have proven to work well
in practice and one of these methods — Logistic Mixing — will be of central
importance in the remainder of this chapter. Nevertheless, we also provide a
bit more thorough discussion of OCP, since we will later rely on techniques
from OCP. In our survey Prediction with Expert Advice plays a minor role. A
complete discussion of the huge number of algorithms that apply to a more
general setting is beyond the scope of this work.

The Switching Algorithm and its Descendants. The problem of combin-
ing arbitrary models in statistical data compression was first investigated
in [94, 95, 96].2 However, the setup was rather restrictive, since the main

1In the domain of statistical data compression Beta-Weighting was introduced as an
implementation technique for CTW, there also is a relation to Machine Learning, as we will
explain later.

2The Switching Distribution [91] from the Machine Learning community matches the
approaches of the Switching Algorithm while allowing for the combination of more than
two models in O(m) time per step. These improvements over the Switching algorithm are
due to a clever choice of wSW in (4.2). Unfortunately this hint arrived after the completion
of this work, hence we do not include the algorithm.
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intention was to combine just two models. This approach turns out to be suc-
cessful, in particular, when the two models are of opposing nature, e. g. CTW
and a LZ77-alike model [95] or CTW and PPM* [96].

In [95] the authors proposed three algorithms, namely, the Switching Al-
gorithm, the Snake Algorithm and the Reduced Complexity Algorithm. To
explain the algorithms consider the t-th step while we process an input se-
quence x1:n: We are given a sequence p1:t of 2-dimensional p-vectors (since
we combine two models) and must produce a single prediction, which may
be used for coding. In the t-th step the Switching Algorithm defines a dis-
tribution over all 2t SWMs (see Definition 4.1.1) and computes the block
probability

Pw(x1x2 . . . xt−1x) =
∑

SW

wSW · SW(x;x<t,p1:t) ·
∏

16i<t

SW(xi;x<i,p1:i) (4.2)

of the sequence x1x2 . . . xt−1x accordingly. (The number of SWMs to weight
over grows with t.) Finally, the Switching Algorithm predicts the distribution
p s. t. p(x) = Pw(x1x2 . . . xt−1x)/Pw(x<t). The Switching Algorithm relies on
an efficient computation of (4.2). In the t-th step this process requires O(t)
space to store intermediate information (from previous steps) and time O(t)
to compute a summation over O(t) terms. So to process a sequence of length
n we require time O(n2) and space O(n). For an input sequence of length n
the Switching Algorithm has redundancy O(|P| · log n) w. r. t. an arbitrary
competing SWM with partition P .

Since the complexity requirements are beyond practical scope, the time
and space payloads have been cut down by the introduction of the Snake
Algorithm and the Reduced Complexity Algorithm. The Snake Algorithm
is a coarse approximation of the Switching Algorithm using only O(n) time
andO(1) space. The Reduced Complexity Algorithm runs in timeO(s·n) and
requires O(s) space, where s is a parameter. By the choice of s we may turn
the Reduced Complexity Algorithm into the Switching Algorithm or into the
Snake Algorithm or we may even interpolate between the two. There are
no known code length guarantees for the Snake Algorithm or the Reduced
Complexity Algorithm.

Beta-Weighting. As seen in Section 2.4.3, Beta-Weighting originates from
CTW [105, 78], where it is used to recursively combine the prediction of two
models along a path in the context tree of CTW.

As proposed in [49], one may generalize Beta-Weighting (out of the scope
of CTW) to mix more than just two distributions. The generalized form of
Beta-Weighting is specified by

BETA(x;x<t,p1:t) := w1,t ·p1,t(x) + · · ·+ wm,t ·pm,t(x), for pt := (p1,t, . . . , pm,t),
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wi,t+1 = wi,t ·
pi,t(xt)

BETA(xt;x<t,p1:t)
, if t > 0, and wi,1 :=

1

m
. (4.3)

(Recall that we already discussed Beta-Weighting, see (2.4) for a more ver-
bose description.) To process a sequence x1:n, given a mixer input p1:n of
m-dimensional p-vectors, Beta-Weighting requires time O(m · n) and space
O(m). Furthermore, Beta-Weighting satisfies∏
16t6n

BETA(xt;p1:t, x<t) =
∑

16i6m

1

m

∏
16t6n

pi,t(xt), where pt = (p1,t, . . . , pm,t)
T

(4.4)

(this may be seen by induction on n) and

`(x1:n; BETA,p1:n) 6 `(x1:n; SW,p1:n) + logm, (4.5)

for all SWMs with partition {1:n}. Let us discuss (4.4), which is an impor-
tant property of Beta-Weighting. The l. h. s. of (4.4) is the block probability
Beta-Weighting assigns to the whole sequence x1:n. Each term

∏
16t6n pi,t(xt)

on the r. h. s. is the block probability that the i-th component of the mixer in-
put assigns to x1:n. So the block probability assignment of Beta-Weighting
matches the block probability given by an equally weighted average of the
block probabilities corresponding to either mixer input component. By bound-
ing (4.4) from below and by taking the logarithm it is easy to obtain (4.5).
To better understand the code length guarantee (4.5) consider the prediction
of such a SWM SW: Given the p-vector pt = (p1,t, p2,t . . . , pm,t)

T in the t-th
step it predicts SW(x<t,p1:t) = pi,t for some i that is fixed and independent
of t. So, in every step SW just forwards the i-th component of its mixer input.
On the one hand, if we have a set of m models and mix their predictions us-
ing Beta-Weighting, then the coding cost of some sequence w. r. t. the mixed
prediction exceeds the coding cost of the sequence w. r. t. the best model, out
of the m models, only by logm bits, regardless of the sequence length n.
On the other hand, by (4.5) Beta-Weighting is not guaranteed to have low
redundancy w. r. t. a SWM with an arbitrary partition P . (Recall from the
discussion in Section 4.1 that such a competitor may adapt to changes in
the input.) So there is no theoretical result that supports Beta-Weighting
to have low redundancy w. r. t. such an adaptive competitor, although there
exists empirical evidence [49].

Logistic Mixing. At this point let us just revise Logistic Mixing (LM) in
brief. For more information we refer the reader to the description of PAQ in
Section 2.4.4. There is not much literature available on LM; major references
are [53, 80].
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LM combines an arbitrary number of distributions on a binary alphabet
using a single layer neural network and tunes the network weights via On-
line Gradient Descent: If we let wt = (w1,t, . . . , wm,t) be the weight vector at
the beginning of step t and let p1:t be the mixer input up to the t-th step, and
consider a sequence α1:∞ of real numbers from (0, 1) (step size sequence for
Online Gradient Descent), then PAQ mixing is defined by

LM(x;x<t,p1:t) := sq

(∑
16i6mwi,t ·st(pi,t(x))

)
, where pt = (p1,t, . . . , pm,t),

wi,t+1 = wi,t + αt ·(1− LM(xt;x<t,p1:t)) ·st(pi,t(x)), t > 0, w1 ∈ Rm.

(See equations (2.32) and (2.31) in Chapter 2 for the functions st and sq
and Section 2.4.4 some more illustrations.) For the sake of implementation
efficiency PAQ utilizes a fixed step size sequence, α1 = α2 = . . . , similar to
PS.

To process a sequence of length n, given a corresponding sequence of
p-vectors with dimension m, LM takes time O(m · n) and requires m real-
valued weights (the weights do not need to form a point within the unit
simplex). LM shows great performance in practice, but no code length guar-
antees are known.

Prediction with Expert Advice. At this point let us first discuss the gen-
eral concept of Prediction with Expert Advice and afterwards explain how we
may cast mixing in statistical data compression into this framework. There
exists a huge amount of algorithms and relevant literature and it is beyond
the scope of this work to provide a thorough survey. For a comprehensive
overview we suggest [18], which we are guided by in this section.

The problem of Prediction with Expert Advice may be stated as a round-
wise process. In every round we must provide a decision, based on the advice
ofm experts. An algorithm for this problem combines the experts’ advice into
a single decision (the space of possible advice and decisions is identical). Af-
ter this compound decision is made, an opponent reveals his response and a
(initially fixed) loss function maps the compound decision and the response
to a loss. Finally, the expert algorithm updates its internal state (e. g. we ad-
just weights associated to individual experts) to take the loss it just suffered
into account.

Ultimately, we want to obtain expert algorithms whose cumulative loss is
close to the loss of the best expert in hindsight. The additional loss an expert
algorithm suffers over the best expert is called regret. More wider notations
of regret are shifting regret, where we compare the expert algorithm to the
best sequence of experts, or adaptive regret, where the regret of the expert
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algorithm w. r. t. the best expert during an arbitrary period a:b is of interest.
Note that shifting regret induces competitors that may adapt to the input.3

This property translates to competitors induced by adaptive regret as well,
since guarantees on the adaptive regret imply guarantees on the shifting
regret. Depending on the exact setting (especially depending on properties
of the loss function) there exist expert algorithms that run in time O(m ·
n), require space O(m) and typically attain regret guarantees ranging from
O(n2/3) over O(log n) to O(1) (the constants in the big-Oh notation typically
depend on the number of experts and on the loss function) for n rounds of
the expert prediction problem.

Given the above outline of Prediction with Expert Advice, it is straight-
forward to translate mixing from statistical data compression to this frame-
work: In the t-th round we must provide a probability distribution p (deci-
sion), given the distributions predicted by every model (expert advice). The
opponent responds the t-th letter xt of the input sequence and the coding
cost − log p(xt) of the t-th letter acts as the loss function, thus regret di-
rectly corresponds to redundancy. (So a sequence p1:n of p-vectors stores the
expert advice for rounds 1, 2, . . . and the opponent is given by the input
sequence x1:n.) It is interesting to note that in the data compression set-
ting Beta-Weighting is equivalent to several expert algorithms such as the
Exponentially Weighted Average Forecaster, the Greedy Forecaster or the
Aggregation Forecaster, see [18, Section 9.2] for details.

Online Convex Programming. We follow the lines of the previous section,
that is, we first introduce the general approach of Online Convex Program-
ming (OCP) to the reader and afterwards discuss how to link mixing in sta-
tistical data compression and OCP. We cover OCP a bit more thoroughly
than Prediction with Expert Advice, since in Section 4.5 we will adopt and
modify OCP analysis techniques.

The goal in OCP (introduced in [108]) is to solve a very general opti-
mization task: First, we fix a feasible set S ⊆ Rm, which is supposed to be
compact and convex. Then, a sequence c1, c2, . . . : S → R of n convex cost
functions is revealed to us step by step. In the t-th step we know about c<t
and we must choose a point wt ∈ S before the t-th cost function ct becomes
known and we have to pay the cost ct(wt). A strategy w1:n (e. g. computed
by an algorithm) incurs cost C(w1:n) =

∑
16t6n ct(wt), which should ide-

ally be as small as possible. As a theoretic measure of quality algorithms
for OCP should perform almost as well as an idealized competing scheme,

3Similar to SWMs, the competitor “best sequence of experts” partitions the input into
segments and predicts using a fixed expert per segment. Both, the partitioning and the
expert per segment may be chosen to minimize the cumulative loss of the competitor.
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e. g. the best constant strategy with cost C∗ = minw∈S
∑

16t6n ct(w). Simi-
larly to Prediction with Expert Advice, the cost C(w1:n)−C∗ a strategy w1:n

charges above a competitor (or a class of competitors) is called regret. There
exist the extensions shifting regret and adaptive regret [38]. All guaran-
tees below consider the standard notation of regret (w. r. t. the best constant
strategy), given above.

It might seem somewhat counterintuitive that there is no further as-
sumption on the sequence of cost functions. If these are arbitrary (or chosen
by an adversary) it seems impossible to determine a strategy w1:n that has
low cost C(w1:n). In such a setting no fixed competitor w will perform well,
soC∗ will also be large. (Hence, the competitor suffers from the same deficit.)
However, the idea in OCP is to minimize the regret C(w1:n)−C∗ (and in the
setting we have just sketched the regret might still be small). The more pow-
erful the notation of regret is, the smaller C∗ (and C(w1:n), if the strategy
w1:n is “good”) will be.

Algorithms for OCP are typically based on standard offline-optimization
techniques, the most prominent techniques are Online Gradient Descent
(OGD) [108] and Online Newton Step (ONS) [37]. (See also [36] for more de-
tails and [38] for extensions.) If the euclidean norm of the gradients |∇c1(w)|,
|∇c2(w)|, . . . is bounded, then OGD has regret O(

√
n). The regret may fur-

ther be improved to O(log n), if all cost functions are strongly convex. In
the case of exp-concave cost functions, ONS also has regret O(log n). OGD
requires time O(TOGD

proj · n) and space O(m), whereas ONS requires time
O(TONS

proj · n) and space O(m2). The terms TOGD
proj and TONS

proj account for the
time required to project a point w ∈ Rm to the point (in some sense) closest
to w within the feasible set S. These running times are usually independent
of n, but dependent of S and unfortunately these may be rather large, e. g.
ONS needs to solve a quadratic program in every step for that purpose.

Mixing in statistical data compression almost directly translates into
the OCP framework. For simplicity let us consider an example based on
a Linear Mixture Distribution (see Section 4.4.3 for a discussion of such
mixture distributions). A Linear Mixture Distribution translates a p-vector
p = (p1, . . . , pm)T, given a weight vector w drawn from the unit simplex, into
a prediction p s. t. p(x) = w1 · p1(x) + · · ·+ wm · pm(x), for all letters x. This
scheme induces (coding) cost c(w) = − log(w1 ·p1(x)+ · · ·+wm ·pm(x)), for a
letter x and a p-vector p. Similarly, when a mixer processes a sequence, the
t-th step induces the cost function ct(w) that corresponds to the letter xt and
the p-vector pt. Obviously, it is straightforward to adopt an OCP algorithm
that determines a sequence of weights for mixing. In the end all that needs
to be satisfied to cast mixing into the OCP framework is that the weight
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space is compact and convex (e. g. weights are drawn from the unit simplex)
and that ct(w) is convex and possibly differentiable, if we weight estimation
relies on gradients. (As we can see a Linear Mixture Distribution obviously
satisfies these criteria.)

If we apply OCP to estimate the weights of a mixer (recall the example
above), then guarantees on regret are equivalent to guarantees on redun-
dancy. For instance, regret O(

√
n) for linear mixing cast to OCP implies

redundancy O(
√
n) w. r. t. a SWM with partition {1:n}. Later, in Section 4.5,

we will use an OCP scheme to estimate weights for a class of mixers and
generalize redundancy (regret) guarantees to arbitrary SWMs.

4.3 Our Contribution

Let us step back to the mixing methods directly related to statistical data
compression in the survey we gave in Section 4.2. The Switching Algorithm
enjoys strong code length guarantees that imply low redundancy w. r. t. ar-
bitrary SWMs, but it is out of practical scope due to its running time and
space requirements; the Snake Algorithm and the Reduced Complexity Al-
gorithm do not offer code length guarantees, but cut down time and space
complexity. Furthermore, these algorithms are rather restrictive, since we
may only mix two distributions. Next, Beta-Weighting may be implemented
efficiently, but only satisfies rather weak code length guarantees, since the
partition of the competing SWM only consists of a single segment. Finally,
LM is of high practical relevance, it works well in practice and may be im-
plemented efficiently, but lacks a theoretical basis. Again, similarly to ele-
mentary modeling, a gap between theory and practice stands out.

In the remainder of this chapter we seek to brdige this gap. Most of the
results from this chapter have previously been published in [58, 59]. In this
chapter we present a greatly polished version thereof. We proceed as follows:

Section 4.4. We develop a framework that attacks the problem of mixing in
the probabilistic view. Based on slightly different ideas, this framework in-
duces two divergence minimization problems. We propose, discuss and solve
the first problem in Section 4.4.2, the solution to this problem yields the
Geometric Mixture Distribution for the weighted combination of probability
distributions. Moreover, this mixture distribution generalizes PAQ’s LM to
a non-binary alphabet, so we introduce an underlying theoretical basis to
LM. Next, in Section 4.4.3 we proceed similarly with the second divergence
minimization problem. This leads to the Linear Mixture Distribution.
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Section 4.5. All of the aforementioned mixture distribution rely on a given
set of weights. In general these weights are unknown. To overcome this prob-
lem, we couple OGD and a given mixture distribution to obtain an Online
Gradient Descent Mixer (OGDM). We prove that under mild assumptions on
the mixture distribution such a scheme enjoys good code length guarantees
w. r. t. a SWM.

Section 4.6. We show that the results of Section 4.5 apply to the Linear
Mixture Distribution (Section 4.6.1) and to the Geometric Mixture Distribu-
tion (Section 4.6.2), which yields the Linear- and Geometric OGDM.

Section 4.7. Finally, we underpin our findings with experiments.

4.4 A Probabilistic View on Mixing

4.4.1 Source and Models

The Setting. In Section 4.4 we assume that a sequence x1:n we attempt to
compress is generated by a probabilistic mechanism, a so-called source. We
may view the generation mechanism as a stepwise process, where in step t
the source draws the t-th letter xt at random according to its source distri-
bution, which may vary from step to step. (An alternate view is to assume
that the source draws the whole sequence x1:n at random according to its
source distribution on sequences of length n.) To encode the current letter in
step t we are given m distributions, the model distributions, wrapped into a
p-vector p = (p1, p2, . . . , pm)T, and a vector w of non-negative weights that
sum to one. We may view the model distributions as the predictions of m
models, where a weight wi quantifies how well the model (distribution) i fits
the unknown source distribution. At this point we assume that the weights
are based on prior knowledge or have been learned from previous observa-
tions. (In Section 4.5 we will see how to actually determine the weights.)
Based on the present information, that is p and w, our task is to determine
a single distribution that will be a good choice for encoding the upcoming
letter xt. Below we discuss two approaches to the present problem.

Encoding a Source Letter. Now suppose that we are given a model distri-
bution p. The source emits the next letter x according to its source distribu-
tion q and we obtain expected code length

E[`(x; p)] =
∑
x∈X

q(x) log
1

p(x)
= H(q) +D(q ‖ p) (4.6)
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for the next letter x. By (4.6) we may split the expected code length into
two parts, that is, the source entropy H(q) and the KL-Divergence D(q ‖
p) (or expected redundancy) of the model distribution p w. r. t. the source
distribution q. A good strategy to choose the model distribution p will be to
minimize the expected code length (4.6). Since the term H(q) is fixed by the
source, the distribution p should ideally minimize D(q ‖ p). We have D(q ‖
p) > 0, which is zero if and only if p = q, i. e. the best model distribution is
the source distribution itself.

4.4.2 Geometric Mixture Distribution

The Distribution. As the basis for the upcoming considerations we define:

Definition 4.4.1 For a p-vector p = (p1, p2, . . . , pm)T and a weight vector
w = (w1, w2, . . . , wm)T ∈ ∆, the Geometric Mixture Distribution pw(p) is
given by

pw(x;p) =
p1(x)w1 · . . . · pm(x)wm∑
y∈X p1(y)w1 · . . . · pm(y)wm

. (4.7)

The Geometric Mixture Distribution assigns probabilities by a weighted geo-
metric average, where the denominator acts as a normalization term, so that
probabilities sum up to one. In the following we consider the idea behind this
type of mixture distribution.

Divergence Minimization. As we explain now, (4.7) is the solution to a di-
vergence minimization problem. Recall that the best model distribution is the
source distribution itself. Unfortunately, the source distribution is unknown,
so we seek for an approximate source distribution, which may be used as
model distribution. Now if p1 is a good model distribution (w1 is high), then
the source distribution will be similar to p1 and hence p1 will have low ex-
pected redundancy w. r. t. q, so D(q ‖ p1) ≈ 0. In this situation p1 will be
a good approximation of q. However, choosing the model distribution with
the highest weight would be overzealous (e. g. because weights may be er-
roneous), moreover several distinct model distributions may have identical
weights, so we would have no hint which model distribution to choose. To
overcome this problem we pursue the following idea:

We use an approximate source distribution as model distribution. The
approximate source distribution should be “close to” good model distribu-
tions and “far away” from bad model distributions.
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The weight associated to each model distribution captures whether a model
is good or bad, and we measure proximity between source and model distri-
butions via the expected redundancy. We may translate these ideas into the
following divergence optimization problem,

min
q
w1D(q ‖ p1) + w2D(q ‖ p2) + · · ·+ wmD(q ‖ pm). (4.8)

The minimizer of this problem will be our approximate source distribution.
We next observe that we already know the solution of (4.8).

Theorem 4.4.2 The Geometric Mixture Distribution is the minimizer of (4.8).

Proof. Let p = (p1, p2, . . . , pm)T. The idea for the proof is to show that

min
q
D(q ‖ pw(p)) = log c+ min

q

∑
16i6m

wiD(q ‖ pi), for c =
∑
y∈X

∏
16i6m

pi(y)wi ,

since both optimization problems have the same minimizer and it is easy to
see that q = pw(p) is the minimizer of the l. h. s.. Simple arithmetics yield

D(q ‖ pw(p)) =
∑
x∈X

q(x) ·
(

log
c∏

x∈X pi(x)wi
− log

1

q(x)

)
= log c+

∑
x∈X

q(x)
∑

16i6m

wi ·
(

log
1

pi(x)
− log

1

q(x)

)
= log c+

∑
16i6m

wi
∑
x∈X

q(x) ·
(

log
1

pi(x)
− log

1

q(x)

)
= log c+

∑
16i6m

wiD(q ‖ pi). �

In the following we discuss special properties of the Geometric Mixture Dis-
tribution.

Over-Attracting Probability Mass. The Geometric Mixture Distribution
has a distinguishing property, namely in case of a non-binary alphabet it
may relocate probability mass s. t. the mixed probability of a letter x exceeds
the probability assigned by any model distribution. More precisely,

pw(x;p) > max
16i6m

pi(x), where p = (p1, p2, . . . , pm)T.

If this situation occurs, we say that the letter x over-attracts probability
mass. Interestingly, the converse can not happen; the mixed probability of
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any letter x is never smaller than the smallest probability assigned by either
model distribution.

pw(x;p) =

∏
16i6m pi(x)wi∑

y∈X
∏

16i6m pi(y)wi
>
∏

16i6m

pi(x)wi > min
16i6m

pi(x).

(We have
∏

16i6m pi(y)wi 6
∑

16i6mwipi(y), by the Arithmetic-Geometric-
Mean Inequality.) In Example 4.4.3 we describe a situation in which over-
attraction takes place.

Example 4.4.3 For an alphabet of cardinality N > 2, we consider weights
w = (1/2,

1/2)T and two model distributions s. t. for 0 < ε, q < 1 we have

p1(x) =


q, if x = 0,
(1− q)(1− ε), if x = 1,
(1−q)·ε
N−2 , otherwise,

p2(x) =


q, if x = 0,
(1− q)(1− ε), if x = 2,
(1−q)·ε
N−2 , otherwise.

The mixture probability pw(0) of letter 0 is

p1(0)1/2 · p2(0)1/2∑
y∈X p1(y)1/2 · p2(y)1/2

= q/

[
q + (1− q)

(
2

√
ε(1− ε)
N − 2

+
N − 3

N − 2
ε

)
︸ ︷︷ ︸

=:f(ε,N)

]
.

We now show that for any q there is an ε s. t. pw(0) > q. Clearly, pw(0) > q
is implied by f(ε,N) < 1. To observe this we bound f(ε,N) from above
and give a possible choice for ε.

f(ε,N) 6 2

√
ε

N − 2
+ (N − 3)

√
ε

N − 2
=

N − 1√
N − 2

·
√
ε

If we choose 0 < ε < (N − 2)/(N − 1)2 it follows that f(ε,N) < 1 and
pw(0) > q.

Logistic Mixing. In addition to the technical properties mentioned above a
central observation is that in case of a binary alphabet, PAQ’s LM (cf. (2.33))
is equivalent to (4.7). More precisely, for p = (p1, p2, . . . , pm)T we get

pw(x;p) =

∏
16i6m pi(x)wi∏

16i6m pi(x)wi +
∏

16i6m(1− pi(x))wi

=

[
1 +

∏
16i6m

(
pi(x)

1−pi(x)

)−wi ]−1
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=

[
1 + exp

(
−
∑

16i6mwi · ln
pi(x)

1−pi(x)

)]−1

= sq (w1 · st(p1(x)) + · · ·+ wm · st(pm(x))) .

(For functions st and sq see (2.32) and (2.31).) In other words: LM is the
closed-form solution to the optimization problem (4.8) for the special case of
a binary alphabet. This insight adds a theoretical basis to LM and, further-
more, allows us to recognize (4.7) as the generalization of LM to a non-binary
alphabet.

Other Links to Literature and Applications. Several researchers previ-
ously used a Geometric Mixture Distribution to combine multiple model dis-
tributions in various different contexts. In statistics and Machine Learning,
Logarithmic Opinion Pooling4 refers to a Geometric Mixture Distribution
[35]. Logarithmic Opinion Pooling has successfully been applied in hyper-
spectral image classification [46], gene identification [72] and object location
in robotics [45], just to name a few examples. The Product of Experts al-
gorithm [40] couples a Geometric Mixture Distribution with a fixed weight
vector w = (1, 1, . . . , 1)T (for weights that do not lie in the unit simplex the
Geometric Mixture Distribution still remains a valid probability distribu-
tion) and a procedure to train the parameters of the model distribution by
a randomized training process named contrastive divergence minimization
[41]. Applications include the recognition of handwritten digits [62] and face
recognition [87].

The Deterministic View. Above we established the minimization problem
(4.8) in the probabilistic view. Surprisingly, it turns out that there exists an-
other minimization problem in the deterministic view that shares the same
minimizer, as we will explain now. These optimization problems have a nice
symmetry. To observe this, consider the weighted difference in coding cost of
a distribution q w. r. t. each model distribution for some letter x,

w1(`(x; q)− `(x; p1)) + · · ·+ wm(`(x; q)− `(x; pm)). (4.9)

In the probabilistic view we take the expectation of (4.9) w. r. t. the probabil-
ity space induced by the source distribution q to obtain the cost function to
minimize, see (4.8). (We have E[`(x; q) − `(x; p)] = D(q ‖ p), for distribu-
tions p and q.) If we do not take the expectation of (4.9), but the maximum

4Opinion Pooling, in general, refers to the problem of combining several model distribu-
tions.
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over all letters x to obtain a cost function for minimization, then we get the
optimization problem

min
q

(
max
x∈X

w1(`(x; q)− `(x; p1)) + · · ·+ wm(`(x; q)− `(x; pm))

)
, (4.10)

belonging to the deterministic view, since the cost function does not involve
any kind of randomization. So, in summary, to measure the proximity of the
distribution q w. r. t. the set of m model distributions (which we attempt to
minimize) there are two ways: First, we may use the expected weighted re-
dundancy in the probabilistic view, leading to the cost function (4.8); second,
we may use the maximal weighted redundancy in the deterministic view,
resulting in the cost function (4.10).

We now argue that the Geometric Mixture Distribution also minimizes
(4.10). By adding the constant c = log

∑
y∈X

∏
16i6m pi(y)wi , which is inde-

pendent of x and q, to (4.10) and by rearranging we obtain the minimization
problem

min
q

(
max
x∈X

log
1

q(x)
− log

1

pw(x)︸ ︷︷ ︸
=: f(q)

)
, (4.11)

where pw is the Geometric Mixture Distribution. Both problems, (4.10) and
(4.11), have the same minimizer. Since q and pw are probability distribu-
tions, there must exist a letter y s. t. q(y) 6 pw(y), so we have f(q) > 0.
Since f(pw) = 0 the Geometric Mixture Distribution must be a minimizer of
(4.11).

4.4.3 Linear Mixture Distribution

The Distribution. In this section we treat linear averaging of probabilities.

Definition 4.4.4 For a p-vector p = (p1, p2, . . . , pm)T and a weight vector
w = (w1, w2, . . . , wm)T ∈ ∆, the Linear Mixture Distribution pw(p) is
given by

pw(x;p) = w1p1(x) + w2p2(x) + · · ·+ wmpm(x). (4.12)

Divergence Minimization. By a reasoning slightly different to that of Sec-
tion 4.4.2 we can obtain a Linear Mixture Distribution as the solution of an-
other divergence minimization problem. The idea is as follows: If the weight
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w1 of model distribution p1 is high, then model distribution p1 will be a good
approximation to the unknown source distribution q. Hence, the expected
redundancy D(q ‖ p) of a model distribution p w. r. t. the unknown source
distribution q will be approximately D(q ‖ p) ≈ D(p1 ‖ p). By the argu-
ments of Section 4.4.2 we must not rely on the single model distribution
with highest weight, but on multiple model distributions, which leads to the
following idea:

There are m candidates that approximate the source distribution. Some
candidates approximate the source distribution well, others do not. We
are to find a model distribution that is “close to” good source approxima-
tions and “far away” from bad source approximations.

Here, the weights capture the quality of approximation and we use the ex-
pected redundancy D(pi ‖ p) to measure the proximity of a model distribu-
tion p w. r. t. the approximate source distribution pi. This leads to the opti-
mization problem

min
p
w1D(p1 ‖ p) + w2D(p2 ‖ p) + · · ·+ wmD(pm ‖ p). (4.13)

The solution to this problem is straightforward.

Theorem 4.4.5 The Linear Mixture Distribution is the minimizer of (4.13).

Proof. Let p = (p1, p2, . . . , pm)T and

c =
∑
x∈X

pw(x;p) log
1

pw(x;p)
−
∑
x∈X

∑
16i6m

wipi(x) log
1

pi(x)
.

For the proof we show

min
p
D(pw(p) ‖ p) = c+ min

p

∑
16i6m

wiD(pi ‖ p) (4.14)

which implies that pw(p) minimizes (4.13), since the l. h. s. and the r. h. s.
share the same minimizer and pw(p) is the minimizer of the l. h. s.. We have

D(pw(p) ‖ p) =
∑
x∈X

pw(x;p) log
1

pw(x;p)
−
∑
x∈X

pw(x;p) log
1

p(x)
,

∑
16i6m

wiD(pi ‖ p) =
∑

16i6m

wi

(∑
x∈X

pi(x) log
1

pi(x)
−
∑
x∈X

pi(x) log
1

p(x)

)

=
∑
x∈X

∑
16i6m

wipi(x) log
1

pi(x)
−
∑
x∈X

pw(x;p) log
1

p(x)
,

so we conclude D(pw(p) ‖ p) = c+
∑

16i6mwiD(pi ‖ p) and (4.14). �
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The Switching Source. The Linear Mixture Distribution is not only the
minimizer of (4.13), but it also is equivalent to an assumption on the actual
structure of the source. More precisely, the Linear Mixture Distribution re-
sembles a Switching Source. To explain a Switching Source, we now discuss
how it draws a letter at random. A Switching Source consists of m sources
with source distributions p1, p2, . . . , pm and a probabilistic switching mecha-
nism. The switching mechanism selects source i with probability wi, in turn
source i emits a letter x with probability pi(x). Consequently, a Switching
Source emits letter x with probability (4.12). Since the minimizer of (4.8) is
unique (the cost function is convex in p and the set of all probability distribu-
tions is compact and convex), this optimization problem also is equivalent to
the assumption of a Switching Source. (Actually, the proof of Theorem 4.4.5
is based upon this argument, see (4.14).).

4.5 Online Gradient Descent Mixers

In this section we study how to use OGD to estimate weights for a mix-
ture distribution. The resulting mixer is called an Online Gradient Descent
Mixer (OGDM). (Later, in Section 4.6 we will apply these results to the Lin-
ear Mixture Distribution and to the Geometric Mixture Distribution.) First,
in Section 4.5.1 we give the general outline of an OGDM, justify this par-
ticular approach and discuss requirements we impose on a given mixture
distribution that allow to obtain code length guarantees. The main result is
presented in Section 4.5.2, where we provide code length guarantees w. r. t.
a SWM for non-increasing gradient descent step size sequences. Finally, in
Section 4.5.3 we refine the results of Section 4.5.2 for specific step size se-
quences.

4.5.1 The Setting

Online Gradient Descent Mixture. Our derivation of the Geometric Mix-
ture Distribution in Section 4.4.2 and the Linear Mixture Distribution in
Section 4.4.3 have something in common: We rely on a given set of weights,
that in the end determine the contribution of every model distribution to
the mixture distribution. Yet, we did not address the question of determin-
ing these weights. A straightforward approach to this problem is to adopt
a method from the literature that fits our running time and space require-
ments. To end this we have chosen OGD from Machine Learning and Online
Optimization. This choice is based upon several thoughts:
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• LM uses a form of OGD and has proven to work well in practice (see
Section 2.4.4 and Section 4.2).

• OGD has low running time and space requirements, thus it is a prac-
tical approach, unlike, e. g. ONS. (Recall the discussion of OCP Tech-
niques in Section 4.2.)

• We may use analysis methods tailored to OGD and other familiar meth-
ods to obtain code length guarantees. That is, most importantly, [108],
which systematically generalizes earlier approaches such as [17, 16,
39] (also see [18]).

By combining weight estimation via OGD and a Mixture Distribution we
obtain an OGDM.

Definition 4.5.1 An Online Gradient Descent Mixer (OGDM) MIX〈w1, α1:∞,
{pw}w∈∆〉 is given by an initial weight vector w1 ∈ ∆, a sequence α1:∞ of
positive real step sizes and a family {pw}w∈∆ of mixture distributions. The
mixer predicts MIX(x<t,p1:t) = pwt(pt), where

wi+1 := proj(wi − αidi), for 0 < i < t and di := ∇w`(xi; pw(pi))
∣∣
w=wi

.

Such a gradient-based mixer operates stepwise. In the t-th step the mixer
determines a mixture distribution pw out of the class {pw}w∈∆, by choosing
w = wt and it predicts pwt(pt), based on the m present model distributions
stored in pt. After the prediction is made it determines the weight vector
for the next step by an adjustment towards the direction of steepest descent
w. r. t. the coding cost `(xt; pwt(p)) of the t-th letter, i. e.

u = wt − αt · ∇w`(xt; pw(pt)
∣∣
w=wt

.

However, the (intermediate) weight vector u might not lie within the unit
simplex. A solution to this problem is to choose the next weight wt+1 to be
the point within the unit simplex closest (in the euclidean sense) to u. The
operation proj (see Section 2.1) serves for this purpose, so in the end we set
wt+1 = proj(u). There exist two popular algorithms, described in [27], for
projecting a vector u ∈ Rm onto the unit simplex. One may take either a
deterministic approach that runs in time O(m logm), or a randomized algo-
rithm which has expected running time O(m). Both algorithms are rather
simple to implement. We will soon rely on an important property of the pro-
jection operation [108], that is

|proj(u)− v| 6 |u− v|, for all u ∈ Rm and v ∈ ∆. (4.15)
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Regularization and Approximation. The above projection-based weight up-
date is not an ad-hoc technique, rather it may be defined in terms of a care-
fully engineered optimization problem. To explain this consider the gradient
update based on the t-th letter. Clearly, a weight update depending on the
code length of xt should only alter the weight estimate wt slightly: The in-
formation we are given for the weight update is little — the coding cost of
a single letter. Consequently, we should penalize dramatic changes to wt,
this is called regularization. To do so, we may determine the updated weight
estimate as the solution of the L2-regularized problem,

min
u∈∆

(
`(xt; pu(pt)) +

c · |u−wt|2

2

)
,

where c > 0 determines a trade-off between minimizing `(xt; pu(pt)) and
altering the weight vector. We may approximately solve the above problem
by replacing `(xt; pu(pt)) with its first-order Taylor-expansion at wt, so we
obtain the problem

min
u∈∆

(
`(xt; pwt(pt)) + (u−wt)

T · ∇w`(xt; pw(pt))
∣∣
w=wt

+
c · |u−wt|2

2

)
.

The solution to this problem is [11]

proj

(
wt −

1

c
· ∇w`(xt; pw(pt))

∣∣
w=wt

)
,

the gradient-projection update.

The Parameters. Not every parameter configuration of an OGDM that ex-
hibits good practical performance will have (good) theoretical guarantees.
So we impose (mild) restrictions on the parameters. As we will see below
the mixture distribution plays a central role. The assumptions we require in
Section 4.5 to provide a meaningful code length analysis are as follows:

Assumption 4.5.2 For any p-vector p = (p1, p2, . . . , pm)T, any weight vec-
tor w ∈ ∆ and any letter x the mixture distribution pw(p) satisfies:
(a) if the i-th component of w has value 1, then pw(p) = pi,
(b) the code length `(x; pw(p)) is differentiable in w and
(c) the code length `(x; pw(p)) is a convex function of w.

We remark that Assumption 4.5.2 (b) and Assumption 4.5.2 (c) resemble com-
mon assumptions of the Machine Learning and Online Optimization litera-
ture, see [108]. Even though the above requirements are rather mild, they



4.5. Online Gradient Descent Mixers 103

Table 4.1: Notation used for the code length analysis of an OGDM within Sec-
tion 4.5.

Symbol Definition
x1:n input sequence

p1:n,pt, pi,t sequence p1:n of p-vectors
s. t. pt = (p1,t, . . . , pm,t)

T

pw(x;p) pr. of letter x for mixture distr.
pw(p) of pr. vector p

SW Switching Mixer, see Def. 4.1.1

Symbol Definition
P partition of SW

MIX Online Gradient Descent Mixer,
see Def. 4.5.1

αt t-th step size, non-negative
dt t-th step direction, see Def. 4.5.1
wt t-th weight vector, see Def. 4.5.1

have been chosen with the analysis of a Geometric OGDM and a Linear
OGDM in mind. Thus, we may even relax these assumption further: The
weight space does not need to be the unit simplex, any compact convex set
suffices, in turn Assumption 4.5.2 (a) must hold for an arbitrary weight vec-
tor, not necessarily the i-th unit vector. Furthermore, the code length need
not be differentiable by w, as long as a subgradient of `(x; pw(p)) exists that
we may use as step direction dt.

4.5.2 Online Gradient Descent Mixers vs. Switching Mixers

The Plan. We will carry out a code length analysis that compares an OGDM
(when Assumption 4.5.2 is satisfied) to an arbitrary Switching Mixer. As we
already noted, there exists a rich set of helpful analysis techniques that orig-
inate in the Online Optimization and Machine Learning community. In the
following we adopt these techniques, most notably the approach of [108],
and provide an extension to allow for an arbitrary Switching Mixer as com-
petitor. (In terms of regret, our results allow for adaptive and shifting re-
gret bounds, moreover our results generalize to arbitrary convex loss func-
tions.) We split the analysis into two parts: First, we argue on the code length
`(xa:b; MIX,p1:b) of a OGDM MIX for an arbitrary segment a:b. Second, we con-
sider the code length bounds for every individual segment a:b ∈ P of a SWM
with partition P . Summing over all segments from P allows us to conclude a
code length bound for MIX w. r. t. SWMs. In Table 4.1 we summarize the most
important notation for our analysis throughout Section 4.5.

Analysis. We begin the analysis with a code length bound that considers
an arbitrary input segment. The central idea is to obtain an invariant on
the progress |wt − w|2 − |wt+1 − w|2 (proximity measures other than the
euclidean distance are possible, as well) of the sequence of weights w. r. t. a
desirable, or even arbitrary, weight vector w. This technique is well-known
and has previously been used e. g. in [108, 37, 38, 17, 16, 39].
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Lemma 4.5.3 For any 1 6 i 6 m, all input sequences sequence x1:t and all
mixer inputs p1:t = 〈(p1,k, p2,k, . . . , pm,k)

T〉16k6t a Gradient Descent Mixer
MIX〈w1, α1:∞, {pw}w∈∆〉 with non-increasing step sizes α1:∞ satisfies

`(xa:b; MIX,p1:b) 6
1

αb
+
∑
a6t6b

(
`(xt; pi,t) +

αt|dt|2

2

)
, for 1 6 a 6 b 6 t.

(4.16)

Proof. For the proof we first provide some technical inequalities, then obtain
an invariant which we finally sum to yield (4.16).

Technical Inequalities. Let w be the i-th unit vector in which all compo-
nents have value 0, except the i-th component, which has value 1. Assump-
tion 4.5.2 implies

dT
t (wt −w)

A4.5.2 (c)

> `(xt; pwt(pt))− `(xt; pw(pt))
A4.5.2 (a)

= `(xt; pwt(pt))− `(xt; pi,t) and (4.17)
|u− v|2 6 2, for u,v ∈ ∆. (4.18)

Invariant. Again, let w be the i-th unit vector. We obtain the following:

|wt −w|2 − |wt+1 −w|2
(4.15)
> |wt −w|2 − |wt −w − αtdt|2

= 2αtd
T
t (wt −w)− (αt|dt|)2

(4.17)
> 2αt

(
`(xt, pwt(pt))− `(xt; pi,t)

)
− (αt|dt|)2

=⇒ |wt −w|2 − |wt+1 −w|2

2αt
> `(xt, pwt(pt))− `(xt; pi,t)−

αt|dt|2

2
. (4.19)

Summing. By summing (4.19) for t ∈ a:b we obtain∑
a6t6b

|wt −w|2 − |wt+1 −w|2

2αt
=
∑
a6t6b

|wt −w|2

2αt
−

∑
a<t6b+1

|wt −w|2

2αt−1

6
|wa −w|2

2αa
+
∑
a<t6b

|wt −w|2

2

(
1

αt
− 1

αt−1

)
αt6αt−1,

(4.18)

6
1

αa
+
∑
a<t6b

(
1

αt
− 1

αt−1

)
=

1

αb
, (4.20)
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for the l. h. s. of (4.19) and

`(xa:b; MIX,p1:b)−
∑
a6t6b

(
`(xt; pi,t) +

αt|dt|2

2

)
, (4.21)

for the r. h. s. of (4.19), whereby
∑

a6t6b `(xt; pwt(pt))
D4.5.1

= `(xa:b; MIX,p1:b). To
end the proof we combine (4.20) and (4.21) and rearrange. �

We now generalize the previous code length bound to SWM.

Theorem 4.5.4 The code length of an OGDM MIX with a non-increasing
step size sequence α1:∞ is bounded from above w. r. t. a SWM SW with par-
tition P by

`(x1:n; MIX,p1:n) 6 `(x1:n; SW,p1:n) +
∑
a:b∈P

(
1

αb
+

1

2

∑
16t6n

αt|dt|2
)

.

Proof. Let the t-th p-vector be pt = (p1,t, p2,t, . . . , pm,t)
T. For the proof we

apply Lemma 4.5.3 to any segment s ∈ P , so

`(x1:n; MIX,p1:n) =
∑
a:b∈P

`(xa:b; MIX,p1:b)

L4.5.3
6

∑
s=a:b,
s∈P

1

αb
+
∑
t∈s

(
`(xt; pms,t) +

αt|dt|2

2

)

D4.1.1
= `(x1:n; SW,p1:n) +

∑
a:b∈P

(
1

αb
+

1

2

∑
16t6n

αt|dt|2
)

. �

Discussion. Theorem 4.5.4 relates the redundancy of an OGDM to the step
size sequence α1:∞, to the norm of step directions |dt| and to the structure
of the competing SWM, represented by the partition P . The result is of very
general nature, but will be of great use to analyze OGDM coupled with the
Linear- and Geometric Mixture Distribution for various step size sequences.
Note that minimizing the redundancy term is a balancing act: One one hand,
the step sizes must be sufficiently small (or decrease sufficiently fast), so that∑

16t6n αt|dt|2 is not too large; on the other hand, the step sizes may not be
too small (or decrease too fast), to keep the term

∑
a:b∈P

1
αb

small. Moreover,
the more complex the competing SWM is, i. e. as the number of segments in
P increases, the harder it will be for a OGDM to score well. (It is hard to go
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head to head with a sophisticated competitor.) When the step size sequence
is decreasing, the redundancy term

∑
a:b∈P

1
αb

also penalizes the location of a
segment a:b, rather than just the number of segments. The closer a segment
endpoint b lies towards the end of the sequence, the bigger the penalization
term 1

αb
will be. Such a behavior is plausible, since a small step size makes

it hard to adapt to the input.

4.5.3 Choice of Step Sizes
Code Length Bounds. We now refine our previous results by considering
a fixed step size and two varying step size choices. For either result we must
bound the squared norm |dt|2 of a step direction. We will rely on the re-
sults from the following corollary, when we analyze OGDM coupled with the
Linear- and Geometric Mixture Distribution in Section 4.6.

Corollary 4.5.5 The code length of an OGDM MIX with step sizes α1:∞ is
bounded from above w. r. t. to that of a SWM SW〈P , {ms}s∈P〉 by:
(a) If |dt|2 6 D2, for 1 6 t 6 n, and α = α1 = α2 = . . . , then

`(x1:n; MIX,p1:n) 6 `(x1:n; SW,p1:n) +
|P|
α

+
αD2

2
· n.

(b) If |dt|2 6 D2, for 1 6 t 6 n, and αt = t−1/2, then

`(x1:n; MIX,p1:n) 6 `(x1:n; SW,p1:n) +
(
|P|+D2

)
·
√
n.

(c) If αt|dt|2 6 2δ
1+δ
· `(xt; MIX(x<t,p1:t)), for 1 6 t 6 n and 1 6 i 6 m, then

`(x1:n; MIX,p1:n) 6 (1 + δ) · `(x1:n; SW,p1:n) +
|P|(1 + δ)

αn
.

Proof. In either situation, we first apply Theorem 4.5.4, then we simplify
the expression ∑

a:b∈P

1

αb
+

1

2

∑
16t6n

αt|dt|2 (4.22)

and finally rearrange.
(a) By the step size choice we have (4.22) = |P|

α
+ αD2

2
· n.

(b) We have (4.22) 6 (|P|+D2) ·
√
n, since

∑
a:b∈P

1
αb
6 |P|

αn
= |P|

√
n,∑

16t6n

αt|dt|2

2
6
D2

2

∑
16t6n

1√
t

and
∑

16t6n

1√
t
6 1 +

∫ n

1

dz√
z
6 2
√
n.
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(c) We have (4.22) 6 |P|
αn

+ δ
1+δ
· `(x1:n; MIX,p1:n), since

∑
a:b∈P

1
αb
6 |P|

αn
and

∑
16t6n

αt|dt|2

2
6

δ

1 + δ

∑
16t6n

`(xt; MIX(x<t,p1:t))
D4.5.1

=
δ

1 + δ
· `(x1:n; MIX,p1:n).

�

Discussion. Let us now inspect the different step size choices from Corol-
lary 4.5.5. From a practical perspective a fixed step size is appealing, since
there is no need to store or maintain a step size sequence. Corollary 4.5.2 (a)
allows us to tune α s. t. the corresponding code length bound becomes min-
imal. Unfortunately, we must know the sequence length n and a desirable
number of switches |P| − 1 of a competing SWM in advance. To overcome
this limitation the varying step size choice in Corollary 4.5.2 (b) gives redun-
dancy O(|P| ·

√
n) w. r. t. any SWM with partition P . As long as a compet-

ing SWM is not too complex (has |P| = o(
√
n) segments), we get sublin-

ear redundancy. This improvement is not for free, the price we have to pay
is a slight increase in processing time to maintain the step size sequence.
Finally, the step size choice from Corollary 4.5.2 (c) yields a weaker code
length guarantee than the former two step size choices, since the code length
`(x1:n; MIX,p1:n) might be off the code length `(x1:n; SW,p1:n) not just by an
additive redundancy term, but also by a multiplicative factor 1 + δ. How-
ever, this weaker guarantee might turn the tide and provide a better upper
bound, when `(x1:n; SW,p1:n) is small.

4.6 Applications

We now have assembled the tools we need to analyze OGD coupled with ei-
ther a Linear Mixture Distribution (Section 4.6.1) or a Geometric Mixture
Distribution (Section 4.6.2). In both cases we proceed similarly. First, we
introduce the corresponding mixture scheme and obtain the gradient, then
we check for the validity of Assumption 4.5.2, and finally we apply Corol-
lary 4.5.5 to conclude code length bounds for different step size choices. In
Table 4.2 we summarize the most important notation for the purposes of
Section 4.6.

4.6.1 Linear Mixture Distribution

The Linear Online Gradient Descent Mixer. We first define the subject of
interest for this section, that is, OGD with a Linear Mixture Distribution.



108 CHAPTER 4. Mixing

Table 4.2: Notation used for the code length analysis of an OGDM within Sec-
tion 4.6.

Symbol Definition
x1:n input sequence

p1:n,pt, pi,t sequence p1:n of p-vectors
s. t. pt = (p1,t, . . . , pm,t)

T

pw(x;p) pr. of letter x for mixture distr.
pw(p) of pr. vector p

p(x) (p1(x), . . . , pm(x))T, for pr.
vector p = (p1, . . . , pm)T

`(x) (log 1
p1(x)

, . . . , log 1
pm(x) )

T, for
pr. vector p = (p1, . . . , pm)T

ε, εt lower bound on pr. pi,t(x)

Symbol Definition
m dimension of pr. and weight vectors
SW Switching Mixer, see Def. 4.1.1
P partition of SW

LIN Linear Online Gradient Descent
Mixer, see Def. 4.6.1

GEO Geometric Online Gradient Descent
Mixer, see Def. 4.6.5

αt t-th step size, non-negative
dt t-th step direction, see (4.24), (4.29)
wt t-th weight vector, see Def. 4.5.1

Definition 4.6.1 For the class C = {pw}w∈∆ of linear mixture distributions
the OGDM LIN〈w1, α1:∞, C〉 is called the Linear OGDM.

For an actual application of a Linear OGDM we rely on the gradient of the
coding cost `(x; pw(p)) for a letter x based on a Linear Mixture Distribution
pw(p) of the p-vector p. The gradient works out to

∂`(x; pw(p))

∂wi
= −pi(x) · log e

pw(x;p)
=⇒ ∇w`(x; pw(p)) = − log(e) · p(x)

pw(x;p)
, (4.23)

which allows us to specify the step direction dt. To do so, we evaluate (4.23)
for the letter x = xt, weight vector w = wt, p-vector p = pt and use the
identity LIN(x;x<t,p1:t) = pwt(x;pt), this yields

dt = − log e

LIN(xt;x<t,p1:t)
· pt(xt). (4.24)

Finally, before we proceed with the code length analysis, we make an
interesting observation, that is, there is a link to Beta-Weighting: If we take
the gradient update wt+1 = proj(wt − αtdt) and replace the scalar step size
αt with a diagonal step size matrix At, s. t. the i-th diagonal position is

LIN(xt;x<t,p1:t)− pt,i(xt)
pt,i(xt)

wt,i
log e

,

then we obtain Beta-Weighting. (The intermediate weight vector w = wt −
αtdt lies within the unit simplex and proj(w) = w.) So we may view Beta-
Weighting as a variable metric method for Online Optimization.
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Analysis. Before we provide code length bounds we must verify Assump-
tion 4.5.2 and the requirements of Corollary 4.5.5 (in essence we must bound
|dt|2). To do so, we first parenthesize the following technical statement:

Lemma 4.6.2 For 0<ε6 z6 1− ε and f(z) := z2 ln 1
z

we have f(z)> f(ε).

Proof. For the proof we show the two inequalities

f(z) > min{f(ε), f(1− ε)} and f(1− ε) > f(ε), for 0 < ε 6
1

2
, (4.25)

(we have ε 6 1
2
, by the bounds on z) which imply the claim.

Bounding f(z) by f(ε) and f(1− ε). Notice that z0 = e−1/2 is the root of the
derivative f ′(z) = −z(1 + 2 ln z) of f , by examining f ′(z) we conclude:

f ′(z) > 0, for 0 < z < z0 =⇒ f(z) > f(ε), for ε < z < z0 and
f ′(z) 6 0, for z0 6 z < 1 =⇒ f(z) > f(1− ε), for z0 6 z 6 1− ε,

which implies the first inequality in (4.25).

Bounding f(1− ε) by f(ε). Let g(ε) := f(ε)/f(1 − ε), again we obtain the
derivative

g′(ε) = −
ε(1− ε) · ln 1

ε
· ln 1

1−ε(
(1− ε)2 ln 1

1−ε

)2︸ ︷︷ ︸
A

·

(
ε

ln 1
1−ε

+
1− ε
ln 1

ε

− 2

)
︸ ︷︷ ︸

B

= −A ·B.

Clearly, A > 0 and by the basic inequality ln 1
z
> 1 − z we obtain B 6 0, so

g′(ε) > 0. Since g is increasing, we have g(ε) 6 g(1
2
) = 1, and so the second

inequality in (4.25) follows. �

To proceed, we now provide the formal basis to apply Corollary 4.5.5.
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Lemma 4.6.3 For a Linear OGDM it holds that:
(a) Assumption 4.5.2 is satisfied,
(b) if any probability distribution in the mixer input p1:n assigns probabil-

ity at least ε > 0 to any letter, then

|dt|2 6
m log2 e

ε2
,

(c) we have αt|dt|2 6 2δ
1+δ
· `(xt; LIN(x<t,p1:t)), if the probability distribu-

tions of the t-th p-vector assign probability at least εt > 0 to any letter
and if we further choose

αt =
2ε2

t log 1
εt

m log2 e
· δ

1 + δ
.

Proof. (a) It is easy to see that both, Assumption 4.5.2 (a) and Assump-
tion 4.5.2 (b) (cf. (4.23)), are satisfied. For Assumption 4.5.2 (c) we observe
that the Hessian

∇2
w`(x; pw(p)) =

log e

pw(x;p)2
· p(x)p(x)T

is positive semi-definite, since zTp(x)p(x)Tz = (zTp(x))2 > 0, for arbitrary
real-valued vectors p(x) and z.
(b) By |pt(x)|2 6 m and LIN(x;x<t,p1:t) > ε we obtain

|dt|2
(4.24)
=

(
log e

LIN(xt;x<t,p1:t)
· |pt(x)|

)2

6
m log2 e

ε2
.

(c) Notice that we may bound |dt|2 similarly to (b). We proceed by writing

αt|dt|2

`(xt; LIN(x<t,p1:t))
6
αtm log2 e

z2 log 1
z

L4.6.2
6

αtm log2 e

ε2
t log 1

εt

=
2δ

1 + δ
,

where we set z = LIN(xt;x<t,p1:t) and applied Lemma 4.6.2 for ε = εt. This
proves the claim. �

A Linear OGDM meets all prerequisites for an application of Corollary 4.5.5,
so we finally conclude code length guarantees.

Corollary 4.6.4 A Linear OGDM satisfies the code length bounds of Ta-
ble 4.3, given the listed step size choices and requirements.

Proof. For the proof we combine Corollary 4.5.5 and Lemma 4.6.3. Note that
in either case the step size sequence is non-increasing.



4.6. Applications 111

Table 4.3: Code length bounds for a Linear OGDM LIN〈w1, α1:∞〉 w. r. t. a
SWM SW〈P, {ms}s∈P〉. The t-th p-vector of the mixer input p1:n is pt =
(p1,t, p2,t, . . . , pm,t)

T (dimension: m).

Step Size αt Requirement(s) Code Length Bound `(x1:n; LIN,p1:n) 6 . . .

α pi,t(x) > ε > 0 `(x1:n; SW,p1:n) +
|P|
α

+
αm log2 e

2ε2
· n

1√
t

pi,t(x) > ε > 0 `(x1:n; SW,p1:n) +

(
|P|+ m log2 e

ε2

)
·
√
n

2ε2t log 1
εt

m log2 e

δ

1 + δ

pi,t(x) > εt > 0,
δ > 0, εt 6 εt−1

(1 + δ) · `(x1:n; SW,p1:n) +
|P|(1 + δ)2m log2 e

2δε2n log 1
εn

4.6.2 Geometric Mixture Distribution

The Geometric Online Gradient Descent Mixer. We now consider the com-
bination of a Geometric Mixture Distribution and an OGDM, more formally:

Definition 4.6.5 For the class C = {pw}w∈∆ of Geometric Mixture Distri-
butions the OGDM GEO〈w1, α1:∞, C〉 is called the Geometric OGDM.

It will be very helpful to work with the following representation of a Geo-
metric Mixture Distribution,

pw(x;p) =
2−`(x)Tw∑
y∈X 2−`(y)Tw

, where `(x) =
(

log 1
p1(x)

, log 1
p2(x)

, . . . , log 1
pm(x)

)T
and p = (p1, p2, . . . , pm)T. (4.26)

This alternate formulation equals the initial formulation we gave in Defini-
tion 4.4.1 and greatly simplifies upcoming calculations that involve gradi-
ents. We now obtain the gradient of the coding cost `(x; pw(p)) of a letter x
for the Geometric Mixture Distribution pw of p-vector p by

∂`(x; pw(p))

∂wi
=

∂

∂wi

(
`(x)Tw + log

∑
y∈X

2−`(y)Tw

)

= log
1

pi(x)
−
∑
y∈X

log
1

pi(y)
· 2−`(y)Tw∑

z∈X 2−`(z)Tw

=⇒ ∇w`(x; pw(p)) = `(x)−
∑
y∈X

pw(y;p) · `(y) (4.27)
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=
∑
y∈X ,
y 6=x

pw(y;p)(`(x)− `(y)). (4.28)

By evaluating the gradient ∇w`(x; pw(p)) for the letter x = xt, the weight
vector w = wt and the p-vector p = pt we obtain the step direction as

dt
(4.27)
= `t(xt)−

∑
y∈X

GEO(y;x<t,p1:t) · `t(y), where

`t(x) =
(

log 1
p1,t(x)

, log 1
p2,t(x)

, . . . , log 1
pm,t(x)

)T
. (4.29)

We end this section with an interesting observation, namely that for
the Geometric Mixture Distribution pw(p) of p-vector p = (p1, p2, . . . , pm)T

we may express the gradient of the code length `(x; pw(p)) in terms of in-
formation theoretic quantities. To see this, consider the i-th component of
`(x; pw(p)), which works out to

log
1

pi(x)
−
∑
y∈X

pw(y;p) log
1

pi(y)
= log

1

pi(x)
−H(pw(p))−D(pw(p) ‖ pi).

(4.30)

Equation (4.30) allows for an interesting conclusion on the Geometric Mix-
ture Distribution pw∗ that minimizes the coding cost of a given letter x.
Suppose that we want to minimize the coding cost of a letter x, where we
allow for arbitrary weight vectors that do not need to lie within the unit
simplex. (Even then a Geometric Mixture Distribution is well defined, as
long as all probability distributions in p assign positive probabilities, cf. Def-
inition 4.4.1.) Since for the Geometric Mixture Distribution pw(p) the code
length `(x; pw(p)) is convex in w (Assumption 4.5.2 (c) and Lemma 4.6.6 (a),
see below), we may simply set (4.30) to 0, for all 1 6 i 6 m, to obtain the
minimizer w∗. In this situation there is an equilibrium: The weight vector
w∗ is chosen s. t. for every model distribution the code length log 1

pi(x)
of let-

ter x equals the expected code length H(pw∗(p))−D(pw∗(p) ‖ pi) of coding a
letter drawn according to source distribution pw∗(p) with model distribution
pi.

Analysis. Again, we must check the preconditions, so that we can draw
benefit from Corollary 4.5.5, which is straightforward:
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Lemma 4.6.6 For a Geometric OGDM we have:
(a) Assumption 4.5.2 is satisfied,
(b) if any probability distribution in the mixer input p1:n assigns probabil-

ity at least ε > 0 to any letter, then

|dt|2 6 m log2 1

ε
,

(c) we have αt|dt|2 6 2δ
1+δ
· `(xt; GEO(x<t,p1:t)), if the probability distribu-

tions of the t-th p-vector assign probability at least εt > 0 to any letter
and if we further choose

αt =
2 log e

m log2 1
εt

· δ

1 + δ
.

Proof. (a) It is easy to see that Assumption 4.5.2 (a) (see Definition 4.4.1)
and Assumption 4.5.2 (b) (see (4.27)) are satisfied. For Assumption 4.5.2 (c)
we first introduce some notation: Fix an arbitrary letter x, an arbitrary p-
vector p, adopt the notation given in (4.26) and define `(w) := − log pw(x;p).
It remains to show that `(w) is convex. To do so, fix two weight vectors
u,v ∈ ∆, and observe that

`(v)− `(u)
(4.26)
= `(x)T(v − u) + log

∑
y∈X 2−`(y)Tv∑
z∈X 2−`(z)Tu

= `(x)T(v − u) + log
∑
y∈X

2−`(y)u∑
z∈X 2−`(z)u

· 2−`(y)T(v−u)

= `(x)T(v − u) + log
∑
y∈X

pu(y;p) · 2−`(y)T(v−u)

Jensen’s
Ineq.
>

(
`(x)T −

∑
y∈X

pu(y;p) · `(y)T
)
· (v − u)

(4.27)
= ∇`(u)T · (v − u).

(b) Any letter probability is at least ε, so
∣∣ log

pt,i(x)

pt,i(y)

∣∣ 6 log 1
ε

and we conclude

|dt|2
(4.29)
6
∑
y∈X ,
y 6=xt

GEO(y;x<t,p1:t)
∑

16i6m

log2 pt,i(y)

pt,i(xt)

6 (1− GEO(xt;x<t,p1:t))m log2 1

ε
6 m log2 1

ε
.
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Table 4.4: Code length bounds for a Geometric OGDM GEO〈w1, α1:∞〉 w. r. t.
a SWM SW〈P, {ms}s∈P〉. The t-th p-vector of the mixer input p1:n is pt =
(p1,t, p2,t, . . . , pm,t)

T (dimension: m).

Step Size αt Requirement(s) Code Length Bound `(x1:n; GEO,p1:n) 6 . . .

α pi,t(x) > ε > 0 `(x1:n; SW,p1:n) +
|P|
α

+
αm log2 1

ε

2
· n

1√
t

pi,t(x) > ε > 0 `(x1:n; SW,p1:n) +

(
|P|+m log2 1

ε

)
·
√
n

2 log e

m log2 1
εn

δ

1 + δ

pi,t(x) > εt > 0,
δ > 0, εt 6 εt−1

(1 + δ) · `(x1:n; SW,p1:n) +
|P|(1 + δ)2m log2 1

εn

2δ log e

(c) Notice that we may bound |dt|2 similarly to (b), we proceed by writing

αt|dt|2

`(xt; GEO(x<t,p1:t))
6
αt(1− z)m log2 1

εt

log 1
z

6
αtm log2 1

εt

log e
=

2δ

1 + δ
,

where we set z = GEO(xt;x<t,p1:t) and applied ln 1
z
> 1 − z, to obtain the

last inequality. �

Since all requirements are met, we may now conclude code length bounds.

Corollary 4.6.7 A Geometric OGDM satisfies the code length bounds of Ta-
ble 4.4, given the listed step size choices and requirements.

Proof. For the proof we combine Corollary 4.5.5 Lemma 4.6.6. Note that in
either case the step size sequence is non-increasing.

4.7 Experiments
We now complement the theoretic results from the previous sections with an
experimental study. Our main goal is to judge on the tightness of our code
length bounds for a Linear- and a Geometric OGDM w. r. t. (optimal) SWMs.
In our experiments we consider bit sequences and all step size choices pro-
posed in the previous sections (see Table 4.3 and Table 4.4). Table 4.5 sum-
marizes all mixers of consideration. For the mixers LIN3 and GEO3 we have
chosen a step size that does not depend on the sequence length, in both cases
this corresponds to the choice of δ = 1

10
. For an OGDM with fixed step size
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choice we operate as follows: First, we measure the redundancy in a worst-
case setting (since all of our bounds are worst-case bounds), then we com-
pare our measurements to the corresponding redundancy bounds (implied a
code length bound). As a bonus, we may compare the measured worst-case
redundancy for Linear- and Geometric OGDMs to each other.

The present experiments are only based on artificial data. We will report
on experiments on real-world data in Chapter 5, where we study modeling
and mixing within a CTW-based model in its entirety. Our motivation for
this way matches that of the experiments on elementary modeling in Chap-
ter 3: In a statistical data compressor mixing (just as elementary modeling)
on its own will not be fully decisive for the empirical performance on real-
world data, rather the interaction of mixing and elementary modeling deter-
mines the compression performance. Hence, experiments on real-world data
should consider a statistical data compressor as a whole, not only its single
components.

In the following we first describe the experimental setup in Section 4.7.1
and provide experimental results and a discussion in Section 4.7.2.

4.7.1 Experimental Setup

The Worst-Case. As we already noted, the code length bounds we gave
in Section 4.6 are worst-case bounds, since they hold for arbitrary sequences
x1:n and arbitrary sequences p1:n of p-vectors, whose distributions have prob-
ability at least ε > 0 on any letter. Hence, we should evaluate our results in
a worst-case setting. To do so, we consider the worst-case redundancy,

r(n) := max
x1:n,p1:n

(
`(x1:n; MIX,p1:n)− (1 + δ) ·min

SW
`(x1:n; SW,p1:n)

)
, (4.31)

for n ∈ 1:T . For a meaningful graphical representation of r as a function of
n, we must restrict our attention to SWMs that have a fixed partition P of
1:T , rather than allowing for arbitrary SWMs. Hence, from now on let P be
fixed (see (4.34) for our final choice of P). Moreover, we only consider inputs
x1:n,p1:n where for a SWM it is worthwhile to switch back and forth between
the components of its mixer input p1:n, in order to minimize the code length
of x1:n. Therefore it will be useful to introduce the notation of generating
parameters: We say a partition P and distributions p1, p2, . . . , p|P| generate
an input x1:n,p1:n, if for the i-th segment a:b ∈ P every letter within xa:b

is drawn at random according to pi and p1:n = 〈(p1, p2, . . . , p|P|)
T〉16t6n (the

components do not vary over time).
A direct computation of (4.31) is intractable, since there are exponen-

tially many sequences x1:t and, even worse, there is an uncountably infinite
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Table 4.5: Parameter configuration, redundancy bounds w. r. t. SWMs whose par-
tition has s segments within 1:n (there are s − 1 switches in 1:n) for all mixers
we consider in our experiments. The bounds LIN1, LIN2, LIN3 correspond to
the redundancy bounds in rows 1, 2 and 3 of Table 4.3, similarly for GEO1 to
GEO3 and Table 4.4. In either case we have m = 4 and set w1 = (1

4 ,
1
4 ,

1
4 ,

1
4)T.

Mixer Parameters Redundancy Bound

LIN1 ε =
1

10
, α =

1√
n

(s+ 200 log2 e) ·
√
n

LIN2 ε =
1

10
, αt =

1√
t

(
s+ 400 log2 e

)
·
√
n

LIN3 εt =
1

10
, α =

log 10

2200 log2 e
, δ =

1

10

2420 log2 e

log 10
· s

GEO1 ε =
1

10
, α =

1√
n

(
s+ 2 log2 10

)
·
√
n

GEO2 ε =
1

10
, αt =

1√
t

(
s+ 4 log2 10

)
·
√
n

GEO3 εt =
1

10
, α =

log e

22 log2 10
, δ =

1

10

24.2 log2 10

log e
· s

number of p-vectors to consider. Hence, we require an approximation, which
we explain below.

A Single Input. Suppose that we are given a partition P , the distributions
p1, p2, . . . , p|P| and a generated input x1:n,p1:n. We now explain how we ap-
proximate the innermost term in (4.31),

`(x1:n; MIX,p1:n)− (1 + δ) ·min
SW

`(x1:n; SW,p1:n), (4.32)

in the current situation. It is obvious that a good approximation to the
SWM that minimizes the code length for x1:n will predict the distribution
pi for any letter within the i-th segment of P . More formally, SW = SW′,
for SW′〈P , {ms}s∈P〉, where ms = i for the i-th segment s of P , will serve
as the approximate minimizer of `(x1:n; SW,p1:n). For n ∈ 1:T we may now
approximate (4.32) as

`(x1:n; MIX,p1:n)− (1 + δ) · `(x1:n; SW′,p1:n). (4.33)

All Inputs. It remains to generalize our approximation to the set of all pos-
sible inputs. To approximately recover (4.31), we should ideally take the
maximum of (4.33) over any input x1:n,p1:n that may be generated by P ,
p1, p2, . . . , p|P|, for all distributions p1, p2, . . . , p|P| and n ∈ 1:T . As an ap-
proximate solution, we take the maximum over a finite subset of inputs
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samples across the whole input space. We generate the subset of inputs we
consider as follows: For every p1, p2, . . . , p|P| ∈ {p | p(0) ∈ {ε, 2ε, . . . , 1}}
and n ∈ {1, 50, 100, . . . , T} we generate R inputs. Our parameter setup is

P = {1:500, 501:1500, 1501:3500, 3501:T},
T = 5000,
R = 50 and
ε = 0.1.

(4.34)

By the choice of parameters we take the maximum in (4.31) over R/ε|P| =
500,000 inputs of length n for every n ∈ {1, 50, 100, . . . , T}.

4.7.2 Results

Evaluation — Tightness of Bounds for LIN and GEO. The overall im-
pression of a peek at Figure 4.1 may be summarized as follows: First of
all, the bounds are rather loose (notice the logarithmic scale), they exceed
the measured worst-case redundancy roughly by a factor of 100 for either
LIN-variant and by a factor of about 10 for all GEO-variants. This implies
that the analysis provides tighter bounds in the case of GEO. In either case
our bounds are more useful in the asymptotic regime and do not provide a
tight estimate on the redundancy for relatively short inputs. Furthermore,
the redundancy bounds for LIN1, LIN2, GEO1 and GEO2 do not increase
notably at segment boundaries (although such a transition occurs). The rea-
son is simple: The number of segments is drastically smaller then the se-
quence length (e. g. see the bound for LIN1 in Table 4.5, the bound is about
(s+ 200 log2 e) ·

√
n, so the constant term in brackets dominates, since s 6 4,

but 200 log2 e ≈ 416.3); in case of LIN3 and GEO3 these transitions are more
pronounced. Surprisingly, for LIN3 and GEO3 the measured worst-case re-
dundancy decreases after a sufficient distance to a transition, whereas our
bound is non-decreasing (also see Figure 4.2 for a plot in linear scale). We
further discuss this effect below.

Evaluation — Worst-Case Redundancy across LIN and GEO. We now
shift our attention towards the measured worst-case redundancy. Figure 4.2
depicts our worst-case redundancy measurements (no log-scale).

We first consider LIN1 and GEO1, where the step size is fixed at α = 1√
n

.
In either case the measured worst-case redundancy increases steadily and
we observe small jumps at segment boundaries. For GEO1 the rate of in-
crease and the magnitude of redundancy jumps is lower, compared to LIN1.
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Figure 4.1: Redundancy bounds and approximate worst-case redundancy r(n)
for mixers from Table 4.5. The measured worst-case redundancy for GEO3 is
discontinued, since it drops below 0.

With increasing sequence length this advantage adds up. For a sequence of
length 5000 LIN1 has a worst-case redundancy 66 % above that of GEO1.

Let us now step towards LIN2 and GEO2, where the step size slowly
decreases, that is αt = 1√

t
. For GEO2, to a more limited amount also for

LIN2, the measured worst-case redundancy steadily grows, at a decreasing
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Figure 4.2: Approximate worst-case redundancy r(n) for mixers from Table 4.5.

rate; furthermore, the segment boundaries only induce a very small abrupt
increase in redundancy, when the sequence is long enough, see the plots for
n = 1500 and n = 3500, the transition at n = 500 is barely visible. We
believe that the varying step size causes this pattern: When the step size is
large (the sequence length is small), then it is easier to track perturbations
in the input – so the redundancy within a segment of P increases quickly –,
but also it is easier to track changing statistics – so the redundancy across
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a segment boundary is rather low. The converse holds for small step sizes
(the sequence length is large), i. e. it is harder to track perturbations in the
input – the redundancy within a segment increases slowly – and it is harder
to track changing statistics – the redundancy across a segment boundary
may be high. Again, LIN2 accumulates significantly more redundancy than
GEO2, nearly twice as much, for a sequence length of 5000.

It remains to examine the plots for LIN3 and GEO3, where the step size
is fixed and independent of n. LIN3 and GEO3 show a surprising behav-
ior: Right after a transition the redundancy increases, as one would expect,
then, the rate of increase slows down and reverts – the worst-case redun-
dancy decreases. This effect is far more pronounced for GEO3, the measured
worst-case redundancy even drops below 0. We retraced this effect to the con-
servative estimation of probabilities for bits that appear rarely. To explain
this behavior we consider the competitor SW′ and GEO3 on a single input
x1:n, p1:n generated by P , p1, p2, p3, p4 (for P see (4.34)), where

p1(0) = 0.7, p2(0) = 0.1, p3(0) = 0.5 and p4(0) = 0.9.

(For the construction of the input see “A Single Input” in Section 4.7.1.) In
Figure 4.3 we depict the per-bit redundancy

`(xt; GEO(x<t,p1:t))− (1 + δ) · `(xt; SW′(x<t,p1:t)). (4.35)

For instance, consider the segment 501:1500. A 0-bit appears rarely, since
all bits are drawn according to p2 (we will roughly have 10 % of 0-bits). By
inspecting Figure 4.3 we see that the per-bit redundancy for 1-bits is above
zero, so GEO3 accumulates redundancy, if we observe a frequent bit (1-bit).
Contrary, the per-bit redundancy for 0-bits is negative and has a relatively
high absolute value, hence GEO3 improves over the competing SWM, if we
observe an infrequent bit (0-bit). In order to achieve such redundancy char-
acteristics, GEO3 must overestimate the probability of infrequent bits (these
have negative redundancy) and underestimate the probability of frequent
bits (these have positive redundancy). For LIN3 we observe the same effects,
only the figures change (so we do not provide a plot): If we compare the per-
bit redundancy of LIN3 to that of GEO3, we see that frequent bits receive
even longer codewords and infrequent bits receive even shorter codewords.
So LIN3 does more extreme probability over- and underestimation. Since
this effect is neither specific for LIN3 or GEO3, we believe that it is caused
by a similarity LIN3 and GEO3 share, that is, OGD for weight estimation.
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Figure 4.3: Measured per-bit redundancy (4.35) for GEO3. A gray dot represents
the redundancy for a 0-bit, a black dot represents the redundancy for a 1-bit.

4.8 Summary

In addition to elementary modeling, mixing is another fundamental build-
ing block in statistical data compression. Viewed from a general perspec-
tive, the problem of mixing reduces to other more general problems in other
fields of science, for instance Prediction with Expert Advice or Online Convex
Programming. In the field of statistical data compression there are few ap-
proaches to mixing that meet practical running time and space constraints.
Out of these especially PAQ’s LM stands out, since it provides good empirical
performance and allows for a low-complexity implementation. Unlike other
approaches proposed by theoreticians, such as the Switching Method and
Beta-Weighting, LM lacks a theoretical basis to support its good empirical
performance.

As we have seen in this chapter, we may iron out the the lack of knowl-
edge on LM. For this purpose we have realized three things (see Section 4.4.2
and Section 4.6.2): First, the distribution LM computes is a special case of a
more general type of mixture distribution, that is, a Geometric Mixture Dis-
tribution; Second, the Geometric Mixture Distribution may be derived from
an optimization problem that attempts to identify a data-generating source
distribution in the probabilistic view; Third, by adopting analysis techniques
from Online Convex Programming we obtain code length guarantees for a
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mixer based on a Geometric Mixture Distribution with weights estimated
by OGD. In our theoretic results an arbitrary SWM serves as competitor.
Moreover, with a slightly different idea, we may also motivate the Linear
Mixture Distribution (Section 4.4.3) by an optimization problem in the prob-
abilistic view and provide code length guarantees (Section 4.6.1). Both, the
analysis of a Linear OGDM and a Geometric OGDM, is based upon a more
general analysis technique that applies to a wide class of mixture distribu-
tions (see Section 4.5) and allows for code length bounds w. r. t. an arbitrary
competing SWM.

We finally support our theoretic results with an experimental study. Our
results indicate that the code length bounds we obtain are rather loose, so
they only allow to judge on the asymptotics of code length and redundancy.
(Bounds for Linear OGDM seem to be more loose than those for Geomet-
ric OGDM.) In every experiment we observed that Geometric OGDM has a
lower worst-case redundancy w. r. t. a fixed SWM than Linear OGDM, which
suggests that Geometric OGDM should be preferred over Linear OGDM. In
the next chapter we will collect even more empirical evidence for this conjec-
ture on non-synthetic data.



CHAPTER 5

Context Tree Mixing

CHAPTER OVERVIEW

In this chapter we introduce Context Tree Mixing (CTM), a generaliza-
tion of CTW. Unlike CTW, CTM allows for arbitrary elementary models
and mixers. In a code length analysis we show that if these models and
mixers are drawn from a sufficiently powerful class, then CTM has low
redundancy w. r. t. an arbitrary sequence of PCTs (not just w. r. t. a sin-
gle PCT, as in case of CTW). We further equip CTM with PAQ-style ele-
mentary modeling and mixing to obtain the PAQ CTM statistical com-
pressor. We show that this new algorithm satisfies the aforementioned
code length guarantee. In addition to theoretical guarantees an exper-
imental study shows that PAQ CTM outperforms traditional CTW.

5.1 Motivation
In statistical data compression practitioners aim for highest compression
rates on real world data. Astonishingly enough, we may support popular ap-
proaches from the “practitioner’s claim” for elementary modeling and mixing
with powerful code length guarantees. As we saw in Chapter 3 and Chap-
ter 4, these guarantees imply low redundancy w. r. t. a competitor that may
adapt to the input. However, the result is still not quite satisfactory — can a
statistical data compression algorithm also be supported by good code length
guarantees w. r. t. an adaptive competitor? In this chapter we will investigate
this question. (It turns out that we may answer this question in the affirma-
tive.)

We attack the problem by simple means, that is, we combine CTW, the
theoretician’s approach to statistical data compression, with mixing and el-
ementary modeling techniques that support adaptivity by code length guar-
antees. We may use relevant elementary models and mixers developed by
practitioners, hence our procedure is a further step towards bridging the
gap between theory and practice. Typically, the “practitioner’s approaches”
enjoy good empirical performance, so we may not only hope for powerful the-
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oretic code length guarantees, but also for improvements in compression on
real world data over CTW.

Let us step back to CTW for a second to give a more precise outline of our
idea. In Chapter 2 we have seen that CTW computes a recursively defined
mixture distribution. The way CTW obtains this prediction can be stated in
two equivalent ways, either as a block probability recursive mixture or as a
sequential recursive mixture. The former variant is well known, but makes
it hard to cleanly spot the components “elementary model” and “mixer”, as
defined in Section 2.2, whereas the latter method is less well known, but
does not suffer from this deficit. We will exclusively rely on the sequential
recursive mixture, since it allows us to easily identify and replace elemen-
tary models and mixers, just as intended.

5.2 Our Contribution

In this chapter we continue to narrow the gap between theory and practice.
This time we do not just study a single component of a model, but the whole
model. The results presented in this chapter have not been published previ-
ously. Our contributions are the following.

Section 5.3 We propose and analyze Context Tree Mixing (CTM), a gen-
eralization of CTW. Structurally CTM and CTW are the same, but CTM is
more flexible, since it may employ arbitrary elementary models and mixers.
In Section 5.3.1 we describe and discuss CTM and provide pseudocode. We
introduce a class of models and mixers by assumptions on their code length
guarantees. Based on these assumptions we provide a general code length
analysis in Section 5.3.2. In the analysis we compare the code length of CTM
with that of an arbitrary sequence of competing PCTs. No former result cov-
ered such a rich class of competitors. In Section 5.3.3 we demonstrate that
our general result is powerful enough to obtain several classical results quite
easily, e. g. [8, 101] (also see Section 2.4.3).

Section 5.4 In this section we couple CTM with PAQ approaches to ele-
mentary modeling and mixing and conclude code length guarantees. For this
purpose Section 5.4.1 introduces a variation of PS for elementary modeling.
Taking this and Geometric OGDM as a basis we introduce PAQ CTM. In Sec-
tion 5.4.2 we first verify the technical prerequisites for the application of the
results on CTM (from Section 5.3). Finally we apply the analysis techniques
from Section 5.3 to derive a code length guarantee that compares PAQ CTM
and a sequence of competing PCTs. Our results show that it is possible to
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(asymptotically) perform not much worse than this powerful class of com-
petitors using practical approaches.

Section 5.5 We provide experimental results on CTM variants, including
PAQ CTM, in a realistic setting. In Section 5.5.1 we first explain and justify
which elementary models and mixers we consider in our experiments. We
furthermore introduce the data set for experiments and we discuss imple-
mentation details. Section 5.5.2 provides experimental results and a discus-
sion.

5.3 Context Tree Mixing
We now describe, discuss and analyze Context Tree Mixing (CTM). In Sec-
tion 5.3.1 we describe the CTM model, discuss a typical implementation and
consider the code length guarantees that spans the classes of elementary
models and mixers applicable for a code length analysis. Subsequently, we
provide a code length analysis in Section 5.3.2 and discuss the results. Our
analysis machinery allows us to easily restore classical results on CTW for
a binary and non-binary alphabet, as we show in Section 5.3.3.

5.3.1 The Setting

Algorithm CTM. Matching the sequential recursive formalization of CTW
(see “Sequential Recursive CTW Mixture” in Section 2.4.3), we may state
the formal definition of CTM in a very compact way (as usual, c denotes
contexts):

Definition 5.3.1 For an integer D > 0, a family {MDLc}|c|6D of elementary
models and a family {MIXc}|c|<D of mixers, the Context Tree Mixing model
is defined by CTM〈D, {MDLc}|c|6D, {MIXc}|c|<D〉. The prediction CTM(x<t) is
given by the probability assignment CTM = CTM0, defined recursively,

CTMd(x<t) :=

{
MDLc(xc<t), if d = D,
MIXc(xc<t, in

c(x<t)), if 0 6 d < D,
(5.1)

where c = xt−d:t−1 is the length-d context of xt and the mixer input is

inc(x<t) := 〈(MDLc(xc<i),CTMd+1(x<i)〉i∈Tc(x1:t). (5.2)

The above definition might be somewhat overwhelming, so let us discuss the
structure of CTM and the way it operates in detail. Any context c of length
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at most D owns an elementary model MDLc to map the context history to a
prediction. In addition, every context c of length less thanD has a mixer MIXc

which combines the prediction of MDLc and that of child contexts xc (where
x is a letter) of c. (One may think of models and mixer tied to contexts in a
context tree with Nd contexts on levels d = 0, 1, . . . , D. However, we want to
avoid this view, so that the reader does not mix up the context tree of a com-
peting PCT with CTM’s context tree.) By examining (5.1) and (2.30) we see
that the CTM operates just like CTW, but replaces the KT elementary model
with an arbitrary elementary model. Similarly, Beta-Weighting is replaced
by an arbitrary mixer.

We now describe how CTM predicts the distribution CTMd(x<t) on the
t-th letter, given the sequence x<t (this suffices to understand the overall
operation, since CTM = CTM0.) Let c be the current length-d context of xt with
context history xc<t = y1:k (context c occurred k times in the past). If |c| = D,
we are done by setting CTMd(x<t) = MDLc(y1:k). If |c| < D, there is more work
to do. First, the elementary model predicts u = MDLc(y1:k) and we recursively
obtain the prediction v = CTMd+1(x<t). Next, the mixer MIXc combines these
predictions by considering the mixer input inc(x<t) = p1:k+1, where pk+1 =
(u, v)T, so we are done by setting CTMd(x<t) = MIXc(y1:k,p1:k+1).

An Implementation. As we already explained in Section 2.4.3 (see Fig-
ure 2.4), we may unravel the recursion to obtain CTMd+1 when computing
CTMd. Figure 5.1 shows a non-recursive implementation. For the pseudocode
we made the following natural assumptions:

• The implementation mdl of an elementary model MDL has the func-
tions Init(), Predict() and Update(x), where for any sequence
x1:∞ the operations

mdl.Init(), p1 ← mdl.Predict(), mdl.Update(x1),

p2 ← mdl.Predict(), mdl.Update(x2), . . .

produce the distributions p1, p2, . . . s. t. pt = MDL(x<t), for t > 1.

• Similarly, the implementation mix of a mixer MIX supports the func-
tions Init(), Mix(u, v) and Update(u, v, x). For any sequence x1:∞
and any sequence p1:∞ = (ut, vt)

T
t>1 of p-vectors, the operations

mix.Init(), p1 ← mix.Predict(u1, v1), mix.Update(x1, u1, v1),

p2 ← mix.Predict(u2, v2), mix.Update(x2, u2, v2), . . .

produce the distributions p1, p2, . . . s. t. pt = MIX(x<t,p1:t), for t > 1.
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Input : Segment x−D+1:0; uncompressed data, when encoding, or compressed
data, when decoding.

Output : Compressed data, when encoding, or decompressed data, when
decoding.

Remark : ctxMap maps contexts (strings) to tuples of elementary models and
mixers, the arrays p[0..D] and q[0..D − 1] hold distributions and the
array c[0..D − 1] holds current context.

1 c[0..D-1]← x−D+1:0;
2 while not end-of-input do

// Retrieve elementary models and mixers, c[0..− 1] represents the empty
context φ

3 for d = 0, 1, . . . , D do
4 (mdl[d],mix[d])← ctxMap.Lookup(c[0..d− 1]);
5 if mdl[d] = null then
6 (mdl[d],mix[d])← create new elementary model and mixer;
7 mdl[d].Init(), mix[d].Init();
8 ctxMap.Insert(c[0..d− 1], (mdl[d],mix[d]));
9 end

10 end
// Compute CTM0 and store in p[0] (tail recursion resolved)

11 p[D]← mdl[D].Predict();
12 for d = D − 1, . . . , 0 do
13 q[d]← mdl[d].Predict();
14 p[d]← mix[d].Predict(p[d + 1],q[d]);
15 end

// Encode or decode a letter
16 Read letter x from input and encode x using prediction p[0] or

decode letter x using prediction p[0] and write x to output;
// Update context, elementary models and mixers.

17 c[2..D]← c[1..D − 1],c[1]← x;
18 mdl[D].Update(x);
19 for d = D − 1, . . . , 0 do
20 mdl[d].Update(x);
21 mix[d].Update(x,p[d + 1],q[d]);
22 end
23 end

Figure 5.1: Pseudocode for compression and decompression using CTM.
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The Class of Models and Mixers. Our upcoming analysis of CTM is based
on assumptions on the redundancy of elementary models and mixers.

Before we give a formal specification of these assumptions, let us explain
the general idea based on an elementary model. To do so, consider an el-
ementary model MDL and an arbitrary segment yi:j of some sequence y1:m.
We assume that we may bound the code length the elementary model MDL
assigns to the segment yi:j by

`(yi:j; MDL) 6 α · h(yi:j) + f(y1:j), (5.3)

where the function f maps sequences to positive reals and α > 1. Such
a bound acts as a template, hence, we will leave α and f unspecified in
the first place. Choosing a concrete elementary model allows us to spec-
ify α and f . (We take on that task in Section 5.4.) For instance, the code
length PS assigns to a sequence may be bounded just as above (see (3.27)
and Lemma 3.5.7). Moreover, in CTM we use context models MDLc and we
require a bound like (5.3) for every context c CTM maintains. Consequently,
the sequence y1:m corresponds to a context history xc1:n and the segment yi:j
corresponds to a context history segment xca:b induced by some segment xa:b

of the input. We allow the additive function f to depend on the context, hence
we replace f with f c. All of the above thoughts translate to mixers, as well.

Throughout our analysis in Section 5.3.2 we assume the following:

Assumption 5.3.2 Fix a set S ⊆ {a:b | 1 6 a 6 b} of segments and a
CTM instance CTM〈D, {MDLc}|c|6D, {MIXc}|c|<D〉. For all sequences x1:n and
all segments a:b ∈ S, where b 6 n, there exist constants α, β > 1 s. t.:
(a) Let c be a context of length |c| 6 D and let yi:j = xca:b be the segment of

context history y1:m = xc1:n, induced by a:b. The model MDLc satisfies

`(yi:j; MDLc) 6 α · h(yi:j) + f c(y1:j),

where the function f c maps a sequence to positive reals.
(b) Let c be a context of length |c| < D, let yi:j = xca:b be the segment of

context history y1:m = xc1:n and let p1:j be the segment of mixer input
inc(x1:n) = p1:m = 〈(ut, vt)T〉16t6m, both induced by a:b. The mixer MIXc

satisfies

`(yi:j; MIXc,p1:j) 6 β · `(yi:j; pi:j) + gc(y1:j,p1:j), for pi:j ∈ {ui:j, vi:j},

where the function gc maps a string and a sequence of 2-dimensional
p-vectors to positive reals.
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Note that we must specify a segment yi:j of y1:m in order to see whether
or not Assumption 5.3.2 is satisfied. If we carefully examine previous ele-
mentary models (and mixers) and check them against Assumption 5.3.2, we
see that for arbitrary segments yi:j it may not always hold. For instance,
consider the elementary model KT, which guarantees

`(y1:j; KT) 6 h(y1:j) +
N − 1

2
log n+ logN ,

so Assumption 5.3.2 is only satisfied when i = 1 (and we may read off α = 1
and f c(y1:j) = N−1

2
log j+logN ). (In Section 5.4 we will propose variations of

PS and GEO for our purposes which satisfy Assumption 5.3.2 for arbitrary
segments yi:j .)

Discussion. To capitalize on Assumption 5.3.2 we must understand its im-
plications on models and mixers tied to some context c in CTM’s context tree.

In the course of applying CTM on an input sequence x1:n we observe
the context history xc1:n = y1:m at context c. Consequently, a segment xa:b

of x1:n induces a context history segment xca:b = yi:j at context c. Assump-
tion 5.3.2 (a) says that the code length a model assigns to a context history
segment xca:b is close to the empirical entropy of this particular segment. We
express this proximity in code length by a multiplicative factor α and an
additive redundancy term f c(y1:j).

Similarly, at the context c we observe the mixer input inc(x1:n) = p1:m

and a corresponding segment pi:j = 〈(ut, vt)〉i6t6j , induced by the segment
xa:b of x1:n. Assumption 5.3.2 (b) says that the code length a mixer assigns
to a context history segment will be close to the code lengths `(xca:b;ui:j) or
`(xca:b; vi:j). Consequently, the mixer’s coding performance simultaneously is
close to the coding performance of the elementary model at context c (the
predictions ui:j) and to that of child contexts of c (the predictions vi:j) for the
particular segment xa:b.

More Notation. We now define some abbreviations for important redun-
dancy and code length expressions.

Definition 5.3.3 Fix a context c of length |c| 6 D, the input sequence x1:n

and a segment a:b of 1:n. The context history at c is xc1:n = y1:m and the
segment xa:b induce a context history segment xca:b = yi:j ; if |c| < D, then we
observed the mixer input inc(x1:b) = p1:j up until time b at context c. Based
on this we define (see Assumption 5.3.2 for f c and gc)

`cCTM(a:b) :=
∑

t∈Tc(xa:b)

`(xt; CTM|c|(x<t)), r
c
mdl(a:b) := f c(y1:j), r

c
mix(a:b) := gc(y1:j ,p1:j).
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Table 5.1: Notation used for the code length analysis of CTM in Section 5.3.2.

Symbol Definition
D maximum context length
P, s partition of 1:n, segment from P

α, β, f c, gc, S see Asm. 5.3.2
MDLc, MIXc model, mixer tied to context c
h(x1:n)

∑
x∈X c(x) log(n/c(x))

Tc(xa:b) all t ∈ a:b s. t. xt has context c
xca:b context history seg. 〈xt〉t∈Tc(xa:b)

Symbol Definition
`cCTM(a:b) code len. of xca:b for model CTM|c|
rcmdl(a:b) red. of MDLc for xca:b w. r. t. h
rcmix(a:b) red. of MIXc for xca:b w. r. t. SWM

PCT (PCTs) PCT (associated to segment s)
CL (CL,s) leaf context set of PCT (PCTs)
CI (CI,s) non-leaf context set of PCT (PCTs)
C (Cs) set of all contexts of PCT (PCTs)

Informally, the code length `cCTM(a:b) accounts for the number of bits we would
have to pay if we encoded the context history xca:b based on the distribution
CTM|c| (see Definition 5.3.1). The terms rcmdl and rcmix capture the redundancy
of modeling and mixing in the sense of Assumption 5.3.2 for a context history
segment xca:b. Note that the functions f c and gc disappear from the discus-
sion. These functions are encapsulated by the terms rcmdl and rcmix.

5.3.2 Analysis

The Plan. To obtain code length guarantees on CTM we proceed in two
steps. First, we show that the code length `(xa:b; CTM) some CTM instance
assigns to an arbitrary segment xa:b of the input is close to an intermedi-
ate context tree model. This model is similar to a PCT. However, unlike a
PCT, the intermediate model does not predict a fixed distribution per con-
text, rather its prediction is defined in terms of CTM (this is why we call
it “intermediate”, it lies in between CTM and a PCT): It has an underlying
context tree with leaf context set CL, however it predicts the distribution
CTM|c|(xt;x<t), for the context c ∈ CL of xt, in the t-th step. We will explain
the details right after the corresponding result (see Lemma 5.3.5 and the
subsequent discussion). Second, we prove that this intermediate model as-
signs a code length to xa:b that is close to that of an arbitrary PCT.

The Effect of Modeling and Mixing. As we have seen in Chapter 3 the
code length of a carefully chosen elementary model is close to the empirical
entropy. Further, mixing brings the code length `cCTM(a:b) close to that of the
elementary model at context c and, at the same time, close to the total code
length

∑
x∈X `

xc
CTM(a:b) of child contexts of c. Hence, we expect that `cCTM(a:b)

simultaneously is close to the empirical entropy h(xca:b) of the context history
at c and to

∑
x∈X `

xc
CTM(a:b). The following lemma confirms this anticipation.

Table 5.1 summarizes our notation for Section 5.3.2.
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Lemma 5.3.4 For any context c and any segment a:b ∈ S it holds that:
(a) If |c| = D, then `cCTM(a:b) 6 α · h(xca:b) + rcmdl(a:b).
(b) If |c| < D, then `cCTM(a:b) 6 β ·

∑
x∈X `

xc
CTM(a:b) + rcmix(a:b) and

(c) `cCTM(a:b) 6 αβ · h(xca:b) + β · rmdl(a:b) + rcmix(a:b).

Proof. For brevity we omit the dependence of expressions like `cCTM(a:b) on
a:b. We distinguish two cases:

Case 1: |c| = D. The segment a:b induces a segment xca:b = yi:j of the context
history xc1:n = y1:m. By Definition 5.3.1 we have CTM|c|(x<t) = MDLc(xc<t), so

`cCTM
D5.3.1

=
∑

t∈Tc(xa:b)

`(xt; MDLc(;xc<t)) = `(yi:j; MDLc)

A5.3.2 (a),
D5.3.3
6 α · h(yi:j) + rcmdl

= α · h(xca:b) + rcmdl.

Case 2: |c| < D. Context c owns a mixer with mixer input inc(x1:n) = p1:m =
〈(ui, vi)T〉16i6m s. t.

u1:m = 〈MDLc(xc<t)〉t∈Tc(xa:b) and v1:m = 〈CTM|c|+1(x<t)〉t∈Tc(xa:b). (5.4)

The segment a:b induces a segment xca:b = yi:j of the context history xc1:n =
y1:m and a segment pi:j of the mixer input p1:m. By Definition 5.3.1 we have
CTM|c|(x<t) = MIXc(xc<t, in

c(x<t)), so

`cCTM
D5.3.1

=
∑

t∈Tc(xa:b)

`(xt; MIXc(xc<t, in
c(x<t)) = `(yi:j; MIXc,p1:j), (5.5)

`(yi:j; MIXc,p1:j)

A5.3.2 (b),
D5.3.3
6 β · `(yi:j; vi:j) + rcmix

(5.4)
= β ·

∑
t∈Tc(xa:b)

`(xt; CTM|c|+1(x<t)) + rcmix

= β ·
∑
y∈X

∑
t∈Tyc(xa:b)

`(xt; CTM|yc|(x<t)) + rcmix

D5.3.3
= β ·

∑
y∈X

`ycCTM + rcmix and (5.6)

`(yi:j; MIXc,p1:j)

A5.3.2 (b),
D5.3.3
6 β · `(yi:j;ui:j) + rcmix

(5.4)
= β ·

∑
t∈Tc(xa:b)

`(xt; MDLc(xc<t)) + rcmix

= β · `(yi:j; MDLc) + rcmix
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A5.3.2 (a),
D5.3.3
6 αβ · h(yi:j) + β · rcmdl + rcmix

= αβ · h(xca:b) + β · rcmdl + rcmix. (5.7)

We combine (5.5) with (5.6) and (5.5) with (5.7) to end the proof. �

By Lemma 5.3.4 (b) the code length `cCTM(a:b) of an arbitrary context c
is close the code length

∑
x∈X `

xc
CTM(a:b) of child contexts xc of c. (Here, we

measure the proximity in terms of a multiplicative factor β and an additive
redundancy term rcmix(a:b).) For the previous lemma we argued on a sin-
gle context. Next, we generalize this argument to multiple contexts of an
arbitrary context tree. We do this by applying Lemma 5.3.4 (b) to the root
contexts, its child contexts, etc.

Lemma 5.3.5 For an arbitrary context tree of depth at most D with set CI
of non-leaf contexts, set CL of leaf contexts and any segment a:b ∈ S we have

`(xa:b; CTM) 6
∑
c∈CL

β|c| · `cCTM(a:b) +
∑
c∈CI

β|c| · rcmix(a:b). (5.8)

Proof. For brevity we omit the dependence of expressions like `cCTM(a:b) on
a:b. We now prove the claim by induction on the number of internal contexts
in the context tree.

Base: |CI | = 0. We have CI = ∅ and CL = {φ}, so the r. h. s. of (5.8) becomes∑
c∈{φ}

β|c| · `cCTM +
∑
c∈∅

β|c|rcmix = `φCTM
D5.3.3

= `(xa:b; CTM).

Step: |CI | > 0. Consider a context tree T of depth at most D, non-leaf con-
texts CI and leaf contexts CL. Since |CI | > 0 there must exist a non-leaf
context, whose child contexts are leaf contexts, let z be such a context. We
construct (see Figure 5.2) a context tree T ′ with non-leaf contexts C ′I and leaf
contexts C ′L by removing the child contexts of z, so z becomes a leaf context
in T ′, i. e.

C ′I := CI \ {z} and C ′L := CL \ {xz | x ∈ X} ∪ {z}. (5.9)

We may now apply the induction hypothesis to T ′ and get

`(xa:b; CTM)
I. H.
6
∑
c∈C′L

β|c| · `cCTM +
∑
c∈C′I

β|c| · rcmix. (5.10)
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T :

. . . . . .

. . .

z

0z 1z . . .

. . .

. . .

Child contexts {xz | x ∈ X}
of z are leaf contexts.

T ′:

. . . . . .

. . .

z

All child contexts {xz | x ∈ X} of z
removed, z becomes a leaf context.

. . .

. . .

Figure 5.2: Construction of the context tree T ′ with leaf context set C′L and set C′I
of non-leaf contexts. In either context tree leaf contexts are drawn bold (non-leaf
contexts non-bold).

Since z is a non-leaf context in T and T has depth at most D, we must have
|z| < D, so we may apply Lemma 5.3.4 (b) to the context z,

β|z|`zCTM

L5.3.4 (b)
6 β|z|+1

∑
x∈X

`xzCTM + β|z|rzmix
(5.9)
=
∑

c∈CL\(C′L\{z})

β|c|`cCTM +
∑

c∈CI\C′I

β|c|rcmix,

(5.11)

where we used {xz | x ∈ X} = CL \ (C ′L \ {z}) and {z} = CI \ C ′I , by (5.9). To
conclude the proof, we plug (5.11) into the r. h. s. of (5.10), so

`(xa:b; CTM)
(5.11)
6
∑

c∈C′L\{z}

β|c|`cCTM +
∑
c∈C′I

β|c|rcmix +
∑

c∈CL\(C′L\{z})

β|c|`cCTM +
∑

c∈CI\C′I

β|c|rcmix

=
∑
c∈CL

β|c|`cCTM +
∑
c∈CI

β|c|rcmix. �

Discussion. Let us discuss this last important technical result. In essence
Lemma 5.3.5 states that the coding performance of CTM is close to an “inter-
mediate” context tree model. We now elaborate on this. Fix a CTM instance
CTM with depth parameter D and an arbitrary context tree with depth at
most D, non-leaf contexts CI and leaf contexts CL. Suppose that in the t-th
step we predict the distribution CTM|c|(x<t), where xt has context c ∈ CL. By
this prediction rule we define the intermediate model M(x<t) := CTM|c|(x<t).
(Such a model represents intermediate predictions that CTM computes, but
we never use these predictions for coding.)
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On the one hand, if we used the model M to encode a fragment xa:b, a sin-
gle leaf context c ∈ CL would add `cCTM(a:b) bits to the total code length (see
Definition 5.3.3); on the other hand, for CTM the context c charges at most
β|c|`cCTM(a:b) bits. For this proximity we have to pay a price, that is, rcmix(a:b),
for every non-leaf context c ∈ CI . In other words, CTM is off M by a multi-
plicative factor plus some additive redundancy terms. So by Lemma 5.3.5
we essentially state that for a segment xa:b the coding performance of CTM is
close to that of the fictitious model M. The overall redundancy balance of CTM
w. r. t. M might seem somewhat pessimistic, since β and/or rcmix(a:b) might be
large. But there is good news, for mixtures that we use in practice β can be
brought arbitrarily close to 1, or even equals 1 (recall our results on OGDMs
in Section 4.5.2). Moreover, rcmix(a:b) typically grows at rate o(b); for Beta-
Weighting we even have rcmix(a:b) = 1, as we will see in Section 5.3.3. By the
above discussion CTM with parameter D is close to (in terms of code length)
the intermediate model M induced by an arbitrary context tree of depth at
most D. As we will see below, an intermediate model M with some underly-
ing context tree is also close to any PCT with the same underlying context
tree.

Putting it all Together. We may now argue similarly to the discussion on
mixing of the previous section. For short, code length `cCTM(a:b), for any con-
text c, is close to the ideal code length h(xca:b) in hindsight, cf. Lemma 5.3.4 (a)
and Lemma 5.3.4 (c). Based on these results, we now extend Lemma 5.3.5
and obtain the following.

Lemma 5.3.6 Consider the function d(c) := min{|c| + 1, D} and an arbi-
trary context tree of depth at most D with set CL of leaf contexts and set C
of all contexts. For any segment a:b ∈ S we have

`(xa:b; CTM) 6
∑
c∈CL

αβd(c)h(xa:b) +
∑
c∈CL

βd(c)rcmdl(a:b) +
∑
c∈C,
|c|<D

β|c|rcmix(a:b).

Proof. Again, we omit the dependence of expressions like rcmix(a:b) on a:b.
First, Lemma 5.3.4 (c) implies

∑
c∈CL,
|c|<D

β|c|`cCTM

L5.3.4 (c)
6

∑
c∈CL,
|c|<D

β|c| · (αβh(xca:b) + βrcmdl + rcmix) , (5.12)
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moreover, Lemma 5.3.4 (a) implies

∑
c∈CL,
|c|=D

β|c|`cCTM

L5.3.4 (a)
6

∑
c∈CL,
|c|=D

β|c| · (αh(xca:b) + rcmdl) . (5.13)

By adding (5.12) and (5.13) we get

∑
c∈CL

β|c|`cCTM 6
∑
c∈CL

(
αβd(c)h(xca:b) + βd(c)rcmdl

)
+
∑
c∈CL,
|c|<D

β|c|rcmix. (5.14)

To conclude the proof we combine (5.14) with Lemma 5.3.5 and rearrange. �

At this point most of the technical work is done. By applying Lemma 5.3.6
to the segments (induced by some partition) of a given an input sequence, it
is now easy to obtain our first main result of this chapter.

Theorem 5.3.7 Suppose that Assumption 5.3.2 holds. Consider a partition
P of 1:n, where P ⊆ S, and a family {PCTs}s∈P of PCTs, where PCTs has
depth at most D, contexts Cs and leaf-contexts CL,s. It holds that

`(x1:n; CTM) 6 αβD ·
∑

s=a:b∈P
`(xa:b; PCTs) + βD ·

∑
c∈CL,s,
s∈P

rcmdl(a:b) + βD−1 ·
∑

c∈Cs,|c|<D,
s∈P

rcmix(a:b).

Proof. We fix a segment s = a:b from P and omit the dependence of ex-
pression like rcmix(a:b) on that segment. Next, we apply Lemma 5.3.6 to the
context tree of PCTs〈CL,s, {pcs}s∈CL,s〉 and substitute h(xca:b) 6 `(xca:b; p

c
s), so

`(xa:b; CTM)
L5.3.6
6

∑
c∈CL,s

αβd(c)`(xca:b; p
c
s) +

∑
c∈CL,s

βd(c)rcmdl +
∑
c∈Cs,
|c|<D

β|c|rcmix

d(c)6D,
D2.4.4
6 αβD`(xa:b; PCTs) + βD

∑
c∈CL,s

rcmdl + βD−1
∑
c∈Cs,
|c|<D

rcmix. (5.15)

To end the proof we sum (5.15) over all segments from P . �
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Discussion. All in all, Theorem 5.3.7 states that CTM is off the coding
performance of an arbitrary sequence of PCTs by at most a multiplicative
factor αβD plus additive terms,

βD ·
∑
c∈CL,s,
s∈P

rcmdl(a:b) and βD−1 ·
∑

c∈Cs,|c|<D,
s∈P

rcmix(a:b).

For every segment, the left term charges the cost of estimating the distri-
butions pcs at every context c ∈ CL,s online and the right term measures
the cost of estimating the context tree structure of PCTs online. Keep in
mind that the above bound holds for arbitrary sequences of PCTs, hence
also for the optimal one. By a careful choice of elementary models and mix-
ers, the multiplicative factor αβD can be made small (even equal to 1) and
the additive redundancy terms can be made o(n) (in Section 5.4 we verify
this claim). So we guarantee a vanishing per-letter redundancy w. r. t. a very
strong class of competitors. No previous work treated such a rich class of
competing schemes.

5.3.3 Example: Context Tree Weighting

Verifying Assumption 5.3.2. As we learned in Section 2.4.3 CTW employs
the KT elementary model and Beta-Weighting for mixing. Hence, CTW is
given by the CTM instance CTW = CTM〈D, {MDLc}|c|6D, {MIXc}|c|=D〉, where
we have MDLc = KT (see (2.16)), for all contexts c of length at most D, and
MIXc = BETA (see (4.3)), for all contexts c of length less than D. For the
current section we fix the set

S = {1:b | b > 1} (5.16)

of segments.
First, let us consider Assumption 5.3.2 (a). In Section 2.4.3 we have seen

that for any sequence y1:j the model KT satisfies

`(y1:j; KT) 6 h(y1:j) +
N − 1

2
log j + logN 6 h(y1:j) + γ(j), where

γ(z) =

{
z, if 0 6 z 6 1
N−1

2
log z + logN , otherwise

,

hence Assumption 5.3.2 (a) is satisfied, whenever we consider a segment
y1:j = xc1:b of the context history y1:m = xc1:n. Hence, for the set S as given in
(5.16) we have

α = 1 and f c(y1:j) = γ(j). (5.17)
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For a context history y1:j = xc1:b we subsequently obtain

rcmdl(1:b) = γ(|xc1:b|). (5.18)

Next, we check Assumption 5.3.2 (b). For any sequence y1:j and the mixer
input p1:j = 〈(ut, vt)〉16t6j , induced by the sequences u1:j and v1:j of probabil-
ity distributions, Beta-Weighting satisfies (see (4.5) and recall that m = 2)

`(y1:j; BETA,p1:j) 6 `(y1:j; p1:j) + 1, where p1:j ∈ {u1:j, v1:j},

hence Assumption 5.3.2 (b) is satisfied, whenever we consider a segment
y1:j = xc1:b of the context history y1:m = xc1:n and a segment p1:j = inc(x1:b) of
the mixer input p1:m = inc(x1:n). In turn, for the set S as given in (5.16) we
have

β = 1 and f c(y1:j,p1:j) = 1. (5.19)

For a context history y1:j = xc1:b and a mixer input p1:j = inc(x1:b) we get

rcmix(1:b) = 1. (5.20)

Applying Theorem 5.3.7. The premises of Theorem 5.3.7 are satisfied and
we may choose P = {1:n} (in fact, this is the only partition of 1:n to satisfy
P ⊆ S) and fix a single PCT whose context tree has set CI of non-leaf contexts,
set CL of leaf contexts and set C = CI ∪ CL of all contexts. We conclude

`(x1:n; CTW)

(5.17),(5.19)
T5.3.7
6 `(x1:n; PCT) +

∑
c∈CL

rcmdl(1:n) +
∑
c∈C,
|c|<D

rcmdl(1:n)

(5.18),
(5.20)
= `(x1:n; PCT) +

∑
c∈CL

γ(|xc1:n|) + |{c ∈ C | |c| < D}|︸ ︷︷ ︸
=ΓD(CL), see (2.21)

6 `(x1:n; PCT) + |CL|γ
(

n

|CL|

)
+ ΓD(CL). (5.21)

The last inequality results from Jensen’s Inequality, since γ is convex, and
from

∑
c∈CL|x

c
1:n| = n. Notice that we have just recovered the classical re-

sults on binary CTW given in [101, Theorem 2] and a slightly improved ver-
sion of the results on CTW for a non-binary alphabet in [8]. Moreover, by the
estimate

ΓD(CL) 6 |CI |+ |CL| =
N |CL| − 1

N − 1
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(complete N -ary trees satisfy |CI | = |CL|−1
N−1

) bound (5.21) becomes

`(x1:n; CTW) 6 `(x1:n; PCT) + |CL|γ
(

n

|CL|

)
+
N |CL| − 1

N − 1
,

so we precisely recover the result [8, Theorem 9].

5.4 PAQ meets Context Tree Mixing
We now equip CTM with a variation of the PAQ approaches to elementary
modeling and mixing. The roadmap for this section is as follows: In Sec-
tion 5.4.1 we describe and analyze a variation of PS that bounds letter prob-
abilities away from 0. We similarly proceed with a Geometric OGDM that
assumes p-vectors with distributions that have probabilities bounded away
from 0. Based on this choice for elementary models and mixers we define
PAQ CTM. In Section 5.4.2 we provide a code length analysis of PAQ CTM,
split into two parts: First, we verify Assumption 5.3.2; based on this we ap-
ply Theorem 5.3.7 to obtain a code length bound for PAQ CTM. All results
we present in this chapter hold for a binary alphabet only.

5.4.1 Elementary Modeling and Mixing

Elementary Modeling. For elementary modeling we consider a variant of
PS that bounds any probability estimate of the t-th step from below by εt >
0. (Note that the sequence ε1, ε2, . . . may still approach zero, we will rely on
this later.)

Definition 5.4.1 Let ε1:∞ be a sequence of reals s. t. 0 < ε1, ε2, . . . 6 1
2

and
let p be a distribution on a binary alphabet, where p(0), p(1) > ε1. The
Bounded Probability Smoothing (BPS) model BPS〈ε1:∞, p〉 predicts

BPS(x;x<t) = min{1− εt,max{εt, PS(x;x<t)}},

where PS〈α1:∞, p〉 is an instance of PS s. t. αt = e−π/
√

12(t+1), for t > 1.

Note that the way BPS clamps probabilities always results in a valid distri-
bution. To observe this consider a distribution p on a binary alphabet and a
distribution p′ defined by p′(x) := min{1−ε,max{ε, p(x)}}, where 0 < ε 6 1

2
.

If p(0), p(1) ∈ [ε, 1−ε], clamping has no effect and we have p′ = p; if p(0) < ε,
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then the clamped distribution is given by p′(0) = ε and p′(1) = 1 − ε (the
situation p(1) < ε is symmetric).

In Definition 5.4.1 we use a smoothing rate sequence that we previously
proposed in Section 3.5.4. By this smoothing rate choice BPS inherits code
length guarantees similar to that of PS.

Lemma 5.4.2 For a segment xa:b of x1:n the model BPS〈ε1:∞, p〉 satisfies

`(xa:b; BPS) 6 h(xa:b) +
2π log e√

3
·
√
b+ log

1

ε1

+
∑
a6t6b

log
1

1− εt
.

Proof. We split the proof into two parts. First we argue on the redundancy of
the induced model PS w. r. t. the empirical entropy, second on the redundancy
of BPS w. r. t. PS, finally we join the results.
Redundancy of PS w. r. t. h. By Lemma 3.5.7 we have

`(xa:b; PS) 6 h(xa:b) + log
1

p(0)βb−1

+
∑
a6t<b

log
1

1− βt/βa−1

and analogously to the proof of Corollary 3.5.12 we may bound

log
1

p(0)βb−1

6 log
1

ε1

+
π log e√

3
·
√
b and∑

a6t6b

log
1

1− βt/βa
6
π log e√

3
·
√
b

=⇒ `(xa:b; PS) 6 h(xa:b) + log
1

ε1

+
2π log e√

3
·
√
b. (5.22)

Redundancy of BPS w. r. t. PS. We first show that for 0 6 u 6 1 and 0 < ε 6 1
2

we have

v := min{1− ε,max{ε, u}} =⇒ v > (1− ε)u. (5.23)

If u < ε, then v = ε > u, if u > (1− ε), then v = 1− ε > (1− ε)u, otherwise
v = u; in either case we have v > (1 − ε)u. This implies BPS(x;x<t) >
(1− εt)PS(x;x<t), so

`(xa:b; BPS)
(5.23)
6

∑
a6t6b

log
1

(1− εt)PS(xt;x<t)
= `(xa:b; PS) +

∑
a6t6b

log
1

1− εt
.

To end the proof we plug (5.22) into the above inequality. �
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Mixing. For mixing we adopt Geometric OGDM. As we already announced,
for meaningful code length guarantees we must assume that the mixer input
only contains distributions with probabilities bounded away from 0.

Lemma 5.4.3 For a segment xa:b of a sequence x1:n and for the mixer input
p1:b = 〈(ut, vt)〉16t6b, given by the sequences of distributions u1:b and v1:b,
where ut(x), vt(x) > ε > 0, the Geometric OGDM GEO〈α1:∞,w1〉 with step
size αt = t−1/2 satisfies

`(xa:b; GEO,p1:b) 6 `(xa:b; pa:b) + (1 + 2 log2 ε) ·
√
b, for pa:b ∈ {ua:b, va:b}.

Proof. By Lemma 4.5.3 and Lemma 4.6.6 we have

`(xa:b; GEO,p1:b)− `(xa:b; pa:b)

L4.6.6 (a),
L4.5.3

6
1

αb
+
∑
a6t6b

αt|dt|2

2

L4.6.6 (b),
a>1

6
√
b+ (log2 ε)

∑
16t6b

1√
t

6 (1 + 2 log2 ε) ·
√
b,

the last inequality is due to bounding the sum by an integral. �

Model PCTM. We now equip CTM with the BPS elementary model and the
Geometric OGDM.

Definition 5.4.4 Given some input sequence x1:n we call a CTM instance
PCTM〈D〉 = CTM〈D, {BPSc}|c|6D, {GEOc}|c|<D〉 PAQ Context Tree Mixing, if:
(a) BPSc〈εc1:∞, p

c〉 is a BPS model s. t. if xt has context c, then εcj = 1
t+1

for |xc<t| = j − 1 and pc(0), pc(1) > εc1, if the context history xc1:n is
non-empty (otherwise the parameters of BPSc are arbitrary).

(b) GEOc〈αc1:∞,w
c
1〉 is a Geometric OGDM s. t. αct = t−1/2, for t > 1 and wc

1

is arbitrary.

The choice of εc1:∞ in Definition 5.4.4 (a) will be of central importance.
Let us now take a closer look. Consider a context c with non-empty context
history and a time instant t s. t. xt has context c. At context c we already
observed the context history xc<t = y<j , so we have |xc<t| = j − 1 and thus
εcj = 1

t+1
. Consequently, when xt has context c the model BPSc predicts

BPSc(x;xc<t)
D5.4.1

= min{1− εcj,max{εcj, PS(x; y<j}}
D5.4.4 (a)

= min
{

t
t+1
,max

{
1
t+1
, PS(x;xc<t

}}
> 1

t+1
, (5.24)
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where we used xc<t = y<j . Informally we may summarize this as follows. If
we predict a distribution on the letter xt, which has context c, then we first
get the intermediate prediction p = PS(xc<t). Next, we obtain the distribution
p′ by clamping the probabilities, p′(x) = min

{
t
t+1
,max

{
1
t+1
, p(x)

}}
. Finally

BPSc predicts the clamped distribution, BPSc(xc<t) = p′.

5.4.2 PAQ Context Tree Mixing vs. a Sequence of Prediction
Context Trees

Verifying Assumption 5.3.2. Our first step for the code length analysis of
PAQ CTM is to show that Assumption 5.3.2 is satisfied. Based on this, we
can adopt the analysis machinery for CTM.

By the choice of the elementary model to predict probabilities bounded
away from 0, all intermediate predictions of PAQ CTM have probabilities
bounded away from 0. The following lemma certifies this property.

Lemma 5.4.5 PAQ CTM satisfies PCTMd(x;x<t) > 1
t+1

.

Proof. Define ε := 1/(t + 1) and let c be the length-d context of xt. We use
induction on d = D,D − 1, . . . , 0 to prove the claim.

Base: d = D. We have PCTMd(x;x<t)
(5.1)
= BPSc(x;xc<t)

(5.24)
> ε.

Step: d < D. The context c owns a mixer GEOc with mixer input inc(x<t) =
p1:j The p-vector pj = (u, v)T has the components u = BPSc(xc<t) and v =
PCTMd+1(x<t). By (5.24) and by the induction hypothesis we get

u(x)
(5.24)
> ε and v(x)

I. H.
> ε. (5.25)

We have PCTMd(x<t)
(5.1)
= GEOc(y<j,p1:j) and for some 0 6 w 6 1 the mixer

GEOc induces the probability assignment

GEOc(x;p1:j, y<j) =
u(x)wv(x)1−w∑
y∈X u(y)wv(y)1−w > u(x)wv(x)1−w (5.25)

> ε.

To obtain the first inequality we bounded the denominator from above by
u(y)wv(y)1−w 6 wu(y)+(1−w)v(y) (Arithmetic-Geometric-Mean inequality)
and we used

∑
y∈X (wu(y) + (1− w)v(y)) = 1 (u and v are distributions). �

Based on the boundedness of the intermediate probabilities away from 0,
we are able to show that Assumption 5.3.2 is satisfied and we may determine
the redundancy expressions rcmdl and rcmix.
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Lemma 5.4.6 For the set S = {a:b | 1 6 a 6 b} of segments the PAQ CTM
model PCTM satisfies Assumption 5.3.2 and we have
(a) α = 1 and rcmdl(a:b) 6 2π log e√

3
·
√
b+ log(b+ 1) +

∑
t∈Tc(xa:b) log t+1

t
and

(b) β = 1 and rcmix(a:b) 6 (1 + 2 log2(b+ 1)) ·
√
b.

Proof. For the proof we first show Assumption 5.3.2 (a) by identifying α and
f c and then determine rcmdl. Assumption 5.3.2 (b) follows similarly. Now con-
sider an input sequence x1:n and fix an arbitrary segment a:b ∈ S s. t. b 6 n.
At some context c the segment xa:b of x1:n induces a context history segment
xca:b = yi:j of the whole context history xc1:n = y1:m. If |c| < D, we similarly ob-
serve the segment inc(x1:b) = p1:j of the whole mixer input inc(x1:n) = p1:m.
If the context history xca:b is empty, Assumption 5.3.2 is trivially satisfied,
otherwise we argue as follows:

Assumption 5.3.2 (a). By Lemma 5.4.2 the elementary model BPSc satisfies

`(yi:j; BPS)
L5.4.2
6 h(yi:j) +

2π log e√
3
·
√
j + log

1

εc1
+
∑
i6k6j

log
1

1− εck︸ ︷︷ ︸
= fc(y1:j)

,

so we can read off α = 1 and f c. We have

j 6 b, εc1
D5.4.4 (a)
> 1

b+1
and {εck | i 6 k 6 j} D5.4.4 (a)

=
{

1
t+1
| t ∈ Tc(xa:b)

}
=⇒ rcmdl(a:b) = f c(y1:j) 6

2π log e√
3
·
√
b+ log(b+ 1) +

∑
t∈Tc(xa:b)

log
t+ 1

t
.

Assumption 5.3.2 (b). For T = Tc(x1:b), u1:j = 〈BPSc(xc<t)〉t∈T and v1:j =
〈PCTM|c|+1(x<t)〉t∈T the segment p1:j of the mixer input is given by p1:j =
〈(uk, vk)〉16k6j . Any distribution in the sequence p1:j of p-vectors assigns at
least probability ε = 1

b+1
to any letter, since by (5.24) and by Lemma 5.4.5 we

have PCTMd(x;x<t), BPSc(x;xc<t) >
1
t+1

. Based on this Lemma 5.4.3 implies

`(yi:j; GEOc,p1:j)
L5.4.3
6 `(yi:j; pi:j) + (1 + 2 log2(b+ 1)) ·

√
j︸ ︷︷ ︸

= gc(y1:j ,p1:j)

, where p ∈ {u, v},

so β = 1. By j 6 b we finally conclude

rcmix(a:b) = gc(y1:j,p1:j) 6 (1 + 2 log2(b+ 1)) ·
√
b. �
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Applying Theorem 5.3.7. At this point all prerequisites for the analysis of
PAQ CTM are satisfied. We now apply Theorem 5.3.7 to the PAQ CTM model
to obtain a code length guarantee.

Theorem 5.4.7 Let P be a partition of 1:n so that for every segment s ∈ P
there is an associated PCT model PCTs〈CL,s, {pcs}c∈CL,s〉 with context tree
depth at most D. The PAQ CTM model PCTM〈D〉 satisfies

`(x1:n; PCTM) 6
∑

s=a:b∈P

(
`(xa:b; PCTs) + ΓD(CL,s) · (1 + 2 log2(b+ 1))

√
b

+ |CL,s| ·
(

2π log e√
3

√
b+ log(b+ 1)

))
+ log(n+ 1),

where ΓD is given by (2.21).

Proof. We fix a single segment s = a:b ∈ P , let the context tree of PCTs
have the set Cs of leaf- and non-leaf contexts and let S be the set of segments
given in Lemma 5.4.6. Since s ∈ S we now use Lemma 5.4.6 to simplify some
expressions∑
t∈Tc(xa:b),
c∈CL,s

log
t+ 1

t
=
∑
a6t6b

log
t+ 1

t
= log

b+ 1

a
(5.26)

∑
c∈Cs,
|c|<D

rcmix(a:b)
L5.4.6 (b)

=
∑
c∈Cs,
|c|<D

(1 + 2 log2(b+ 1)) ·
√
b

(2.21)
= ΓD(CL,s) · (1 + 2 log2(b+ 1))

√
b, (5.27)∑

c∈CL,s,
|c|<D

rcmdl(a:b)
L5.4.6 (a)

=
∑
c∈CL,s

(
2π log e√

3
·
√
b+ log(b+ 1) +

∑
t∈Tc(xa:b)

log
t+ 1

t

)
(5.26)
= |CL,s| ·

(
2π log e√

3

√
b+ log(b+ 1)

)
+ log

b+ 1

a
. (5.28)

Clearly, any partition P satisfies P ⊆ S, so we apply Theorem 5.3.7 and plug
in the above equalities,

`(x1:n; CTM)

(5.27),
(5.28)
6
∑

s=a:b∈P

(
`(xa:b; PCTs) + ΓD(CL,s) · (1 + 2 log2(b+ 1))

√
b+

|CL,s| ·
(

2π log e√
3

√
b+ log(b+ 1)

)
+ log

b+ 1

a

)
.

To end the proof, we note
∑

a:b∈P log b+1
a

= log(n+ 1) (a telescope sum). �
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Discussion. The code length bound in Theorem 5.4.7 essentially states

`(x1:n; PCTM) =
∑

s=a:b∈P
`(xa:b; PCTs) +O

(
√
n ·
∑
s∈P
|CL,s|+

√
n log2 n ·

∑
s∈P

ΓD(CL,s)

)
.

So the redundancy of PAQ CTM w. r. t. a sequence of PCTs associated to seg-
ments from P with depth at most D grows at rate O(|P|

√
n log2 n). (The

constants in the big-Oh notation depend on the structure of the PCTs). The
redundancy for the PCT associated to some segment s from P is composed
as follows: First, for every leaf context c ∈ CL,s the corresponding BPS ele-
mentary model pays O(

√
n) bits to estimate the distribution pcs. Second, for

every leaf- and non-leaf context of length less than D (there are ΓD(CL,s) of
them) the corresponding Geometric OGDM charges O(

√
n log2 n) bits. This

is the price the mixer associated to c has to pay in order to decide whether
or not it is worthwhile to predict using the elementary model BPS at con-
text c or using the models associated to child contexts of c. The average re-
dundancy of PAQ CTM w. r. t. a single PCT vanishes at rate O(log2(n)/

√
n),

whereas standard CTW achieves a rate of O(log(n)/n), smaller by a factor
of
√
n log n. So if we just consider a single PCT as competitor the theoretical

guarantees of CTW clearly are superior. However, the result on PAQ CTM
holds for a strictly larger and far more powerful class of competitors, which
comes at its price. It is likely for PAQ CTM to outperform CTW. The experi-
mental results in the next section shall confirm our mindset.

5.5 Experiments
Following our theoretic analysis, we conduct some experiments. Our experi-
ments evaluate the compression performance of CTM equipped with various
model-mixer-combinations on the Calgary Corpus. We direct our attention to
the characteristics of PAQ components. Our main concern is to demonstrate
that modeling and mixing from PAQ — without all of PAQ’s heuristics and
tricks — is on par with traditional approaches and shows better performance
in case of heterogeneous files. Consequently, the experiments are of theoret-
ical interest. In the following we first sketch the experimental setup and
implementation details, subsequently we present and discuss our results on
the Calgary Corpus for various CTM variants.

5.5.1 Experimental Setup

Elementary Models and Mixers. For our experiments we consider vari-
ous combinations of elementary models and mixers. We concentrate on ele-
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mentary models and mixers from PAQ that perform well without any prior
knowledge of the input. For this reason we only consider elementary mod-
els and mixers that neither fix their parameters independent of the input
length (e. g. an OGDM that chooses the step size α = 0.3, independent of the
input) nor that tune their parameters depending of the input length n (e. g.
an OGDM that chooses the step size n−1/2).

The former parameter choice is troublesome, since good parameters may
drastically vary from file to file and even from context to context [85], for
a single file. Hence we should determine different parameters by file type
or by (class of) context and store the parameters or perform some kind of
online parameter estimation. Clever methods for this purpose are object of
research [85] and beyond the scope of this work.

The latter parameter choice disqualifies, since the length of every context
history is only available after processing the whole input sequence. Hence,
it is unrealistic to assume this kind of prior knowledge, especially for ev-
ery context history. We may not easily store the context history lengths for
decompression in a few bits, since there are millions of involved context his-
tories. Furthermore, we give no results for Linear OGDM. In all our exper-
iments on Linear OGDM we found it to perform much worse than Beta-
Weighting and Geometric OGDM. Linear OGDM does not seem to be well
suited for CTM on a binary alphabet.

To end this, we consider

• the LP elementary model (RF from (2.3) with f0 = 1),

• the KT elementary model (RF from (2.3) with f0 = 1
N

),

• the ZR elementary model [88], given by the probability assignment
rule1 ZR(x;x1:t) = P (x1 . . . xtx)/P (x1 . . . xt), where

P (x1:n) =

∏
16t6n KT(xt;x<t) + Pbias(x1:n)

2
and

Pbias(x1:n) =

{
1
2
, if x1:n is deterministic

0, otherwise,

• the BPS elementary model initialized s. t. p(0) = p(1) = 1
2

and

• BPS*, a variation of BPS that utilizes a heuristic to choose p.
1By the definition of P (x1:n) and by (4.4) it can be seen that the ZR elementary model

essentially combines the KT elementary model and a model that is highly bias towards
deterministic sequences via Beta-Weighting.
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For BPS* we use a simple heuristic related to information-inheritance [84]:
Fix some time step s. t. the current length-d context c1:d has an empty con-
text history. The BPS* model at this context predicts the uniform initial
distribution p, viz. p(0) = p(1) = 1

2
. Immediately before the BPS* model at

context c1:d is updated, we reset its initial distribution to match the BPS*-
prediction of parent context c1:d−1 after the BPS* elementary model of the
parent context was updated. (Probabilities clamped to [1/(t + 1), t/(t + 1)];
this procedure does not invalidate our analysis since it does not depend on
the actual value of the initial distribution.) This heuristic demonstrates an
advantage of PS-based models over traditional models such as KT and LP —
We may use heuristics without breaking the theoretical guarantees.

For mixing we consider

• the Geometric OGDM with step size αt = 1√
t

and

• Beta-Weighting (see Chapter 4).

We tried to find heuristics to determine the initial weight of the Geometric
OGDM. Surprisingly, we were not able to find a good heuristic that improves
compression. Notice that the combination of Geometric OGDM with either
BPS or BPS* is equivalent to PAQ CTM from Section 5.4. Other CTM in-
stances we consider in our experiments correspond to already known CTW
variants. The combination of Beta-Weighting and the KT elementary model
refers to the basic CTW variant (coupled with techniques to handle a non-
binary alphabet) as introduced in [101]. If we substitute the KT estimator
by the ZR estimator, then we obtain the CTW variant proposed in [88]. The
compression rates we measure for those variants are in line with the results
reported in [103].

The Data. We use the most common form of the Calgary Corpus which con-
sists of 14 files that can roughly be divided into three categories: executable
binaries (obj1, obj2), digitized analogue data (pic, geo) and ASCII text in
various formats (the remaining files, see Table 5.2). The figures we present
here do not include redundancy due to Arithmetic Coding.

We first compress the Calgary Corpus file by file for all combinations of
elementary models and mixers for the parameter D = 6 (a context consists
of 6 letters, sized 8 bit each). Other context length parameters yield different
figures, but a similar picture overall. To explore to which extent BPS and a
Geometric OGDM handle inhomogeneous data we concatenate all files of
the Calgary Corpus into a single file before compression and vary parameter
D ∈ {1, 2, . . . , 10}. (The concatenated file interleaves different data types,
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for instance a portion of ASCII text followed by executable code, thus can be
considered to have heterogeneous statistics.)

Implementation Details. Our implementation operates on a binary alpha-
bet. We treat a file as a sequence of 8-bit letters, thus we apply the follow-
ing standard-implementation techniques: A flat binary alphabet decompo-
sition, weighting only at letter boundaries and no root weighting [88]. In
essence, a letter (over alphabet of size 28!) with length-D context c1:D re-
ceives the binary code word y1:8 and is processed in 8 binary steps. We will
now explain the i-th coding step in terms of the pseudocode Figure 5.1. We
obtain the model-mixer-pair (MDL0,MIX0) for the context (φ, y1:i), the pair
(MDL1,MIX1) for context (cD:D, y1:i), . . . , (MDLD, ∗) for context (c1:D, y1:i) (a
length D-context only requires a model); MIXD−1 combines predictions of
MDLD and MDLD−1 resulting in mixed prediction p, MIXD−2 combines mixed
prediction p and prediction of MDLD−2, etc. (just as in Figure 5.1).

We use 64-bit floating point numbers to store probabilities and weights,
and we did neither make any attempt to speed up costly computations (e. g.
square roots, logarithms, exponentials) with lookup tables, nor did we intro-
duce specifically tailored data structures (such as the hash tables in [103]
or the techniques used in PAQ [52]). (A more careful implementation should
take advantage of these improvements and use fixed-point integer arith-
metic.) Recall that our experiments are not intended to evaluate a practical
compression algorithm, rather we want to compare the performance of tra-
ditional approaches to modeling and mixing to that of the PAQ approaches.
(For efficient and empirically well-performing algorithms PAQ has demon-
strated that one should adopt other implementation techniques and further
heuristics.) Consequently, we don’t include timings and only provide com-
pression rates.

5.5.2 Evaluation

Single files, parameter D=6. Across Geometric OGDM and Beta-Weight-
ing, all elementary models align similarly, see Table 5.2 and Table 5.3. Mod-
els LP and KT show worst overall results and LP is significantly worse than
any other elementary model, e. g. on average 5.66 % worse than BPS* for
Beta-Weighting (or 4.52 % for Geometric OGDM). For textual files the model
ZR shows best overall performance, which is not surprising, since it was de-
signed for that purpose. However, on average, it outperforms the second-best
model BPS* only by a small margin, 1.08 % for Beta-Weighting and 0.77 %
for Geometric OGDM, respectively. Models BPS and BPS* show good perfor-
mance in case of non-textual files, BPS* leaves all other elementary models
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Table 5.2: CTM compression rates (in bpc) for various combinations of elemen-
tary models and mixers on the Calgary Corpus for D = 6. Best compression
rates are typeset boldface, averages are weighted according to file sizes.

Beta-Weighting Geometric OGDM
File LP KT ZR BPS BPS* LP KT ZR BPS BPS*
bib 2.047 1.924 1.836 1.917 1.860 2.007 1.904 1.858 1.944 1.902
book1 2.247 2.199 2.183 2.255 2.256 2.217 2.176 2.166 2.227 2.224
book2 2.034 1.955 1.909 1.956 1.947 1.978 1.911 1.878 1.915 1.903
geo 4.579 4.579 4.602 4.598 4.605 4.531 4.523 4.528 4.517 4.505
news 2.595 2.471 2.379 2.481 2.424 2.503 2.397 2.344 2.429 2.392
obj1 4.091 3.930 3.827 3.850 3.768 3.895 3.757 3.699 3.661 3.599
obj2 2.841 2.664 2.523 2.484 2.412 2.644 2.495 2.403 2.321 2.281
paper1 2.614 2.449 2.321 2.428 2.356 2.504 2.364 2.283 2.370 2.324
paper2 2.449 2.330 2.249 2.330 2.285 2.375 2.274 2.223 2.297 2.265
pic 0.803 0.799 0.803 0.794 0.798 0.767 0.765 0.771 0.757 0.767
progc 2.694 2.513 2.376 2.450 2.371 2.570 2.417 2.330 2.381 2.330
progl 1.926 1.781 1.666 1.703 1.654 1.849 1.728 1.655 1.676 1.635
progp 2.023 1.852 1.708 1.732 1.665 1.919 1.766 1.660 1.669 1.621
trans 1.845 1.641 1.450 1.547 1.432 1.766 1.587 1.450 1.535 1.445

Average 2.134 2.052 1.998 2.044 2.020 2.068 1.998 1.963 1.997 1.979

Table 5.3: BPS* vs. other elementary models; compression loss (in percent) of
not using elementary model BPS*. (For instance, Beta-Weighting with model
LP results in a 10.05 % larger compressed version of bib compared to Beta-
Weighting with BPS*.) Averages are weighted according to file sizes.

Beta-Weighting Geometric OGDM
File LP KT ZR BPS LP KT ZR BPS
bib 10.05 3.43 −1.30 3.08 5.54 0.10 −2.34 2.22

book1 −0.44 −2.53 −3.24 −0.05 −0.32 −2.14 −2.61 0.14
book2 4.47 0.42 −1.94 0.46 3.94 0.40 −1.33 0.61
geo −0.56 −0.55 −0.05 −0.15 0.58 0.39 0.51 0.27
news 7.05 1.92 −1.86 2.34 4.65 0.21 −1.98 1.54
obj1 8.58 4.30 1.57 2.18 8.25 4.39 2.80 1.75
obj2 17.76 10.43 4.59 2.98 15.90 9.37 5.36 1.76

paper1 10.93 3.94 −1.47 3.05 7.73 1.73 −1.74 1.98
paper2 7.16 1.98 −1.58 1.99 4.85 0.41 −1.87 1.41
pic 0.61 0.05 0.55 −0.54 0.05 −0.28 0.52 −1.21
progc 13.62 6.01 0.22 3.31 10.31 3.74 0.03 2.22
progl 16.47 7.69 0.72 2.99 13.07 5.67 1.22 2.49
progp 21.54 11.27 2.57 4.02 18.40 8.97 2.41 3.00
trans 28.81 14.56 1.23 8.00 22.19 9.81 0.32 6.20

Average 5.66 1.59 −1.08 1.22 4.52 0.97 −0.77 0.91
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Table 5.4: Beta-Weighting vs. Geometric OGDM; compression loss (in percent)
of not using a Geometric OGDM. (For instance, for elementary model LP and
Beta-Weighting result in a 1.97 % larger compressed version of bib compared
to LP and a Geometric OGDM.) Averages are weighted according to file sizes.

File LP KT ZR BPS BPS*
bib 1.97 1.05 −1.16 −1.39 −2.21
book1 1.35 1.06 0.80 1.27 1.46
book2 2.83 2.33 1.67 2.15 2.31
geo 1.05 1.25 1.63 1.77 2.21
news 3.67 3.07 1.46 2.13 1.34
obj1 5.02 4.60 3.45 5.15 4.70
obj2 7.44 6.77 4.97 7.01 5.74

paper1 4.39 3.58 1.66 2.44 1.38
paper2 3.10 2.45 1.16 1.45 0.87
pic 4.69 4.45 4.14 4.81 4.10
progc 4.84 4.00 1.97 2.87 1.78
progl 4.20 3.09 0.66 1.66 1.16
progp 5.46 4.90 2.89 3.75 2.73
trans 4.47 3.40 0.01 0.79 −0.89

Average 1.03 1.03 1.02 1.02 1.02

behind for files obj1, obj2 (other elementary models produce larger files,
between 1.57 % and 17.76 % for Beta-Weighting, and between 1.75 % and
15.9 % for Geometric OGDM, respectively). The model BPS scores over all
other elementary models in case of file pic, nevertheless BPS* is close. Sur-
prisingly, BPS* outperforms ZR for text files progc, progp, progl and
trans, the compressed output of ZR is between 0.22 % and 2.57 % larger
for Beta-Weighting, and between 0.03 % and 2.41 % larger for Geometric
OGDM, respectively. For BPS this is not the case. We contribute this to our
initialization heuristic, which seems to have a big impact for small files (for
these files sizes range from 21 kB to 90 kB): “Small” files have short con-
text histories, thus a good initialization of probability estimates may have a
big impact on compression. In summary, the elementary model BPS* shows
compression capability close to ZR, which is substantially more complex,
since ZR can be considered the fusion of Beta-Weighting and KT-modeling.

Let us now compare Beta-Weighting and Geometric OGDM across all
elementary models, see Table 5.2 and Table 5.4. In terms of average com-
pression ratio Geometric OGDM consistently outperforms Beta-Weighting
by roughly 1 %. Similarly in the vast majority of cases the compressed out-
put of Beta-Weighting is larger than the compressed output of Geometric
OGDM, by a margin of up to 7.44 %. Only for the file bib and elemen-
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Table 5.5: CTM compression rates (in bpc) for various combinations of elemen-
tary models and mixers on the concatenation of all Calgary Corpus files. Best
compression rates are typeset boldface.

Beta-Weighting Geometric OGDM
D LP KT ZR BPS BPS* LP KT ZR BPS BPS*
1 3.761 3.761 3.767 3.313 3.316 3.704 3.702 3.704 3.276 3.278
2 2.956 2.935 2.936 2.695 2.707 2.880 2.864 2.860 2.615 2.623
3 2.498 2.456 2.443 2.309 2.321 2.401 2.368 2.355 2.207 2.216
4 2.297 2.236 2.206 2.137 2.140 2.186 2.139 2.119 2.034 2.037
5 2.235 2.165 2.125 2.084 2.079 2.116 2.063 2.039 1.979 1.978
6 2.214 2.139 2.095 2.066 2.057 2.091 2.035 2.011 1.961 1.957
7 2.206 2.129 2.081 2.058 2.045 2.081 2.024 1.999 1.955 1.948
8 2.202 2.123 2.073 2.054 2.038 2.076 2.017 1.992 1.951 1.944
9 2.200 2.120 2.069 2.053 2.033 2.073 2.015 1.989 1.949 1.942
10 2.199 2.119 2.067 2.051 2.031 2.072 2.013 1.988 1.949 1.941

tary models ZR, BPS and BPS* and for the file trans and elementary
model BPS*, the output of Beta-Weighting is between 0.89 % and 2.21 %
smaller compared to that of Geometric OGDM. For non-textual files obj1,
obj2 and pic Geometric OGDM considerably boosts compression, Beta-
Weighting produces between 3.45 % and 7.44 % worse compression compared
to Geometric OGDM. The elementary models LP and KT (which can be con-
sidered worst among all given elementary models) draw most profit from Ge-
ometric OGDM. In summary, a Geometric OGDM consistently outperforms
Beta-Weighting by circa 1 % on average, whereas the per-file improvement
may be drastically larger. Only in very few case we observe a compression
loss, when we use Geometric OGDM instead of Beta-Weighting.

Concatenation, parameter D∈{1, 2, . . . , 10}. Theoretic results on BPS
and Geometric OGDM suggest that these techniques may perform well in
a non-stationary environment. We now want to experimentally undergird
this observation by compressing a concatenation of all files from the Calgary
Corpus.

We first evaluate PS-based elementary models across Beta-Weighting
and Geometric OGDM, cf. Table 5.5 and Table 5.6. Apparently models BPS
and BPS* outclass all other elementary models for both mixtures. For con-
text lengths up to 4 letters BPS is in the lead in terms of compression, af-
terwards BPS* takes the lead, for either mixture. (The BPS*-initialization
heuristic seems to slightly hurt compression for D 6 4.) Nevertheless, the
difference between BPS and BPS* is small, so we concentrate on BPS* from
now on. The advantage of BPS* over other elementary models degrades as
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Table 5.6: BPS* vs. other elementary models; compression loss (in percent) of
not using elementary model BPS*. (For instance, Beta-Weighting with model
LP results in a 13.44 % larger compressed version of bib compared to Beta-
Weighting with BPS*.) Averages are weighted according to file sizes.

Beta-Weighting Geometric OGDM
D LP KT ZR BPS LP KT ZR BPS
1 13.44 13.42 13.62 −0.08 13.00 12.94 13.00 −0.05
2 9.18 8.40 8.43 −0.47 9.78 9.16 9.02 −0.32
3 7.62 5.80 5.25 −0.53 8.34 6.85 6.29 −0.39
4 7.34 4.47 3.06 −0.14 7.30 5.00 4.02 −0.19
5 7.53 4.14 2.21 0.25 6.99 4.30 3.11 0.07
6 7.66 4.02 1.85 0.46 6.85 4.00 2.75 0.22
7 7.88 4.10 1.76 0.64 6.80 3.86 2.58 0.32
8 8.06 4.19 1.72 0.82 6.78 3.78 2.49 0.37
9 8.20 4.28 1.76 0.95 6.78 3.75 2.45 0.40
10 8.28 4.33 1.78 1.01 6.78 3.74 2.43 0.42

D increases. Still, for parameter D > 7 and Beta-Weighting, model LP pro-
duces roughly 8 %, model KT roughly 4 % and model ZR circa 1.7 % worse
compression than BPS*; for Geometric OGDM these figures are 6.7 %, 3.7 %
and 2.4 %. So far we can tell, that in the current setting the models LP, KT
and ZR are inferior to BPS* (and BPS), for Beta-Weighting and Geometric
OGDM.

We conclude the evaluation of our experiments by judging on the com-
pression loss (across all elementary models) of not using a Geometric OGDM.
A glance at Table 5.5 and Table 5.7 clearly shows that Beta-Weighting com-
presses worse than Geometric OGDM in every single situation. The com-
pression loss ranges from 1.11 % for D = 1 and model BPS up to 6.12 %
for D = 10 and model LP. For D > 4 Beta-Weighting compresses 4 % to
6 % worse than a Geometric OGDM. Similarly to single file compression,
Geometric OGDM turns out to be superior to Beta-Weighting.

Overall results. In summary our experiments consistently give empirical
evidence for the superiority of PAQ-based components, especially consider-
ing inhomogeneous files. In the vast majority of cases, a Geometric OGDM
surpasses Beta-Weighting across all elementary models in every experimen-
tal setting. Improvements are pronounced in the case of heterogeneous files.
These experimental findings underpin the advantage of a Geometric OGDM
observed in former experiments in a different setting [58].

Regarding elementary modeling, PS-based models easily outperform the
KT- and LP-model for either mixture in almost all experiments. For (mostly)
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Table 5.7: Beta-Weighting vs. Geometric OGDM; compression loss (in percent)
of not using a Geometric OGDM. (For instance, for elementary model LP and
Beta-Weighting result in a 1.55 % larger compressed version of bib compared
to LP and a Geometric OGDM.)

D LP KT ZR BPS BPS*
1 1.55 1.59 1.70 1.11 1.15
2 2.63 2.47 2.64 3.04 3.20
3 4.06 3.72 3.73 4.60 4.75
4 5.09 4.52 4.08 5.11 5.05
5 5.65 4.96 4.21 5.32 5.12
6 5.90 5.13 4.19 5.35 5.11
7 6.02 5.20 4.12 5.30 4.96
8 6.08 5.23 4.04 5.29 4.83
9 6.11 5.25 4.01 5.29 4.71
10 6.12 5.25 3.99 5.28 4.66

homogeneous files PS-based models perform slightly worse than the com-
putationally more demanding ZR-model. (Recall that ZR combines Beta-
Weighting and the KT elementary model, so a comparison to a plain ele-
mentary model is somewhat unfair.) However, the situation changes for in-
homogeneous files, where BPS turns out to be superior. Altogether PS-based
models are at least on par with other elementary models of consideration,
and take the lead for inhomogeneous data.

5.6 Summary

In the present chapter we studied the interaction of modeling and mixing in
CTM, a statistical data compressor which is based on the CTW algorithm.
CTM generalizes CTW, since it does not rely on specific elementary mod-
els and mixers. Rather CTM admits for models and mixers that are drawn
from classes of models and mixers. These classes are spanned by code length
guarantees. We have analyzed CTM and we have drawn the conclusion that
if these classes are sufficiently expressive, then CTM has low redundancy
w. r. t. a sequence of PCTs, not just w. r. t. a single PCT. The code length guar-
antees we deduced for CTM are of a very general nature, for instance these
allow us to restore previous results on CTW for a binary and non-binary
alphabet with little effort.

One may wonder whether the models and mixers from classes that allow
for low redundancy w. r. t. a sequence of PCTs are of practical interest (due
to running time and space considerations), or even if such classes exist at
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all. To tackle this issue we have equipped CTM with PAQ style elementary
modeling and mixing, which gave rise to the PAQ CTM algorithm. (More
precisely, PAQ CTM utilizes a slightly refined version of PS and Geometric
OGDM.) The PAQ CTM algorithm allows us to answer both questions in the
affermative: As our code length analysis shows PAQ CTM has low redun-
dancy w. r. t. a sequence of PCTs.

Since PAQ CTM enjoys code length guarantees far more powerful than
those of CTW it is likely for PAQ CTM to outperform classical CTW vari-
ants in experiments. To evaluate this expectation we carried out a variety
of experiments on CTM with different elementary models and mixers. The
CTM configurations within the experiments include variations of CTW and
PAQ CTM. In the vast majority of cases PAQ CTM outperforms CTW or is
at least on par. When we consider non-stationary data PAQ CTM is superior
to CTW. This behavior is evidence for the ability of PAQ CTM to adapt to
varying statistics, even for relatively short input sequences. In turn, we may
conclude that PAQ style elementary modeling and mixing is not only supe-
rior to traditional approaches in terms of code length guarantees, but also in
terms of empirical performance. So the PAQ approaches with all heuristics
and tricks cut off still outperforms traditional approaches.
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CHAPTER 6

Conclusion

The family of statistical data compression algorithms is a particularly pow-
erful approach to data compression. In statistical data compression there
is an increasing gap between theory and practice: Ad-hoc techniques pro-
posed by practitioners often show superior empirical performance, but lack
a sound theoretical basis. In contrast, techniques proposed by theoreticians
are often inferior in terms of empirical performance, but rest on a theoretical
basis. PAQ, a modern approach to statistical data compression, is a shining
example for this contrast.

In this work we made first attempts to close the aforementioned gap be-
tween theory and practice, concentrating on PAQ. In doing so we first iden-
tified a common design pattern that all major statistical data compression
algorithms follow and fit these algorithms into our framework. The general
recipe is to combine multiple simple predictions, produced by elementary
models, using a mixer (or multiple mixers). Based on this we identify ap-
proaches to elementary modeling and mixing that are commonly used in
practice but lack a theoretical basis. Our main contribution is to support
these approaches by theoretical code length guarantees. In addition, our
code length guarantees utilize competitors that have the ability to adapt
to changing inputs. It is well-known that this property is beneficial for com-
pression.

Our work added a theoretical basis to the elementary models RFD, RFS
and several variations of PS. We may further support our theoretical results
by experiments. Note that PS is the PAQ approach to elementary model-
ing, hence we add a theoretical justification to PAQ-style elementary mod-
eling. For mixing we first proposed the Linear- and Geometric Mixture Dis-
tribution that allow for the weighted combination of multiple probability
distributions. We obtained these techniques as the minimizer of two slightly
different information theoretic minimization problems. Since these mixture
distributions rely on a given set of weights we adopted OGD for weight esti-
mation. This choice has two advantages: PAQ has proven that this technique
works well in statistical data compression and it is known to have a theoret-
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ical basis. Consequently, we derived the class of OGDMs that, as we show,
are supported by code length guarantees. These results translate to the com-
bination of the Linear- and Geometric Mixture Distribution with OGD, so we
add a theoretical basis to Linear and Geometric OGDMs. This basis is sup-
ported by experiments. Note that the Geometric OGDM is a generalization
of LM from PAQ to an alphabet of arbitrary size. Hence, we provide a the-
oretical basis for the PAQ approach to mixing and even a generalization.
Elementary modeling and mixing on their own do not make up a statisti-
cal data compressor, rather the way these components interact. A statistical
data compressor may be equipped with PAQ-style elementary modeling and
mixing to improve its empirical performance over classical methods and still
retain theoretic guarantees. To demonstrate this we introduced CTM, a gen-
eralization of CTW that allows for arbitrary elementary models and mixers.
If these components are drawn from a sufficiently rich class, then our results
on CTM show that it enjoys code length guarantees stronger than those of
CTW. These guarantees certify the ability to perform not much worse than
a sequence of competing PCTs. We equip CTM with a variation of PS ele-
mentary model and Geometric OGDM for mixing, which gives birth to the
PAQ CTM statistical compressor. (Note these techniques are the PAQ ap-
proaches to elementary modeling and mixing.) PAQ CTM outperforms vari-
ants of CTW and enjoys low redundancy w. r. t. a sequence of PCTs.

For all of the approaches from the “practitioner’s claim” we considered in
this work we were able to determine a theoretical justification. In addition,
experiments indicate that PAQ-style elementary modeling and mixing out-
classes classical approaches, even with all of PAQ’s heuristics and bells and
whistles cut off. Nevertheless, there is still work to take up:

• Our results on the family of PS and RFS elementary models only hold
for a binary alphabet. A generalization of these results to an alphabet
of arbitrary size should be part of future research.

• The code length analysis of PS and RFS is based on an input that max-
imizes the redundancy w. r. t. the empirical entropy. Since candidates
for the worst-case input are known, it seems worthwhile to precisely
characterize the worst-case redundancy in the Θ-sense.

• In general, neither code length analysis (for elementary models and
mixers) takes the similarity of adjacent input segments into account:
Suppose an elementary model (mixer) performs well w. r. t. its competi-
tor for some input segment xa:b, since it obtained a good estimate on
the locally optimal distribution (weight vector). Consequently, the ele-
mentary model (mixer) should also perform well in the segment xb+1:c,
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if the locally optimal distribution (weight vector) is close to that of the
former segment xa:b. Future research should enhance code length guar-
antees to take this effect into account.

• Based on further mathematical properties of code length, e. g. strong
convexity, we might be able to enhance the code length guarantees for
OGDM.

• As we have seen, PPM and CTM (or CTW) share great structural sim-
ilarity. We conjecture that based on assumptions on the escape proba-
bility assignment of PPM we should be able to adopt our methods for
the analysis of CTM to obtain code length guarantees for PPM. This is
especially exciting, since in the deterministic setting there is no anal-
ysis of any PPM variant available.

• PAQ utilizes a variety of other ad-hoc techniques to improve its com-
pression. Most notably SSE and FSMs for probability estimation. To
further bridge the gap between theory and practice we consider a the-
oretical justification of these approaches for future research.

By the results of this thesis we made first steps towards closing the gap
between theory and practice in statistical data compression. But still, there
is a lot of work to do to carry on this process.
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BPS Bounded Probability Smoothing
CTM Context Tree Mixing
CTS Context Tree Switching
CTW Context Tree Weighting
DEPLUMP PLUMP abbreviates Power Law Unbounded Markov Prediction
DMC Dynamic Markov Coding
FSM Finite State Machine
ISW Imaginary Sliding Window
KT Krichevsky Trofimov (Estimator)
LM Logistic Mixing
LP Laplace (Estimator)
OCP Online Convex Programming
OGD Online Gradient Descent
OGDM Online Gradient Descent Mixer
ONS Online Newton Step
PAQ “pack”
PCT Prediction Context Tree
PPM Prediction by Partial Matching
PS Probability Smoothing
PTW Partition Tree Weighting
PWS Piecewise Stationary Model
RFD Relative Frequencies with Discount
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ZR Zero-Redundancy (Estimator)
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