
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Fuel Processing Technology

                                         

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa51273

_____________________________________________________________

 
Paper:

Plácido, J., Bustamante-López, S., Meissner, K., Kelly, D. & Kelly, S. (2019).  Comparative study of the characteristics

and fluorescent properties of three different biochar derivedcarbonaceous nanomaterials for bioimaging and heavy

metal ions sensing. Fuel Processing Technology, 196, 106163

http://dx.doi.org/10.1016/j.fuproc.2019.106163

 

 

 

 

 

 
Released under the terms of a Creative Commons Attribution Non-Commercial No Derivatives License (CC-BY-NC-

ND).

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/224750074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa51273
http://dx.doi.org/10.1016/j.fuproc.2019.106163
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Comparative study of the characteristics and fluorescent 1 

properties of three different biochar derived-carbonaceous 2 

nanomaterials for bioimaging and heavy metal ions sensing  3 

 4 

J. Plácido1*, S. Bustamante-López1,2, K.E. Meissner2, D.E. Kelly1 and S.L. Kelly1* 5 

 6 

1 Institute of Life Science (ILS 1), Swansea University Medical School, Swansea University, 7 

Swansea, SA2 8PP, Wales, UK 8 

2 Department of Physics, Centre for NanoHealth, Swansea University, Swansea, SA2 8PP, 9 

Wales, UK 10 

 11 

ABSTRACT 12 

Three types of biochar (microalgae, rice straw and sorghum straw) from biomass thermal 13 

conversion production were tested for producing biochar-derived carbonaceous nanomaterials 14 

(BCN). BCN were obtained after using chemical depolymerisation and solvent extraction, 15 

NanoRefinery process. Microalgae biochar-derived carbonaceous nanomaterials (MAB-CN), 16 

rice straw biochar-derived carbonaceous nanomaterials (RSB-CN) and sorghum straw biochar-17 

derived carbonaceous nanomaterials (SSB-CN) were characterised using spectroscopic and 18 
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microscopic techniques. This characterisation evidenced significant differences among the 19 

three BCN with MAB-CN exhibiting greater structural differences compared to RSB-CN and 20 

SSB-CN.  Biocompatibility, cellular uptake, and cellular localisation were evaluated using 21 

three yeast species, Saccharomyces cerevisiae, Candida albicans, and Yarrowia lipolytica. 22 

While all BCN were biocompatible, the degree of biocompatibility for each species was 23 

dependent on pH, BCN concentration and BCN type. Additionally, BCN were evaluated as 24 

transducers for the detection of 12 heavy metal ions.  MAB-CN, RSB-CN, and SSB-CN had 25 

different responses to the 12 heavy metal ions. The SSB-CN/Cu (II) and the MAB-CN/Zn (II) 26 

combinations evidenced selectivity over the other metal ions with these combinations having 27 

limits of detection of 0.0125 μM and 9 μM, respectively. The results from this research pave 28 

the way for BCN novel applications for bioimaging and heavy metal ions sensing probes.  29 

 30 

Keywords: Biochar; Carbonaceous nanomaterials; Heavy metal ions sensing; Bioimaging; 31 

Fluorescence probes;  32 

 33 

1 INTRODUCTION 34 

To achieve their objectives for growth, jobs and sustainability, the energy strategies of many 35 

governments around the world include, as a major component, the use of biomass as a 36 

sustainable source of electricity, heating, and biofuels. By 2030, the European Union aims to 37 

generate at least 27% of energy from renewable energy, and a minimum share of advanced 38 

biofuels of at least 6.8% [1].  Likewise, by 2030, the United States expects to sustainably 39 

produce 1 billion dry tons of non-food biomass and use them to expand the bioeconomy, 40 

contributing $260 billion and 1.1 million jobs to the US economy [2]. To achieve these goals, 41 



a fundamental shift toward increased production of biofuels and renewable energy from 42 

biomass is required. Therefore, the current technologies for biomass transformation need to 43 

reach further levels of sophistication to maximise the value derived from biomass feedstocks 44 

and by-products obtained from their transformation [1,2].  45 

 46 

Thermal conversion is one of the most important techniques for biofuels and bioenergy 47 

production. Gasification and pyrolysis processes are two core thermal conversion processes. 48 

Gasification is conducted at temperatures higher than 700 ºC, ambient or high pressure, and 49 

reduced oxygen concentration. Pyrolysis is conducted at lower temperatures (400‒600 ºC), 50 

under higher pressure, and without oxygen. Both processes generate synthesis gas (syngas, 13‒51 

85%), biooil (5‒75%), and biochar (10‒30%). Syngas can be employed directly to generate 52 

electricity (combustion) or liquid fuels using the Fischer-Tropsch process [3]. Biooil can be 53 

upgraded to generate liquid biofuels or chemicals [4].  Biochar’s principal applications are soil 54 

amendment [5-7] and activated carbons [8,9]. 55 

 56 

The upsurge in the worldwide goals for biofuels and bioenergy production will raise the 57 

number of industrial processes using thermal conversion for biomass transformation. Syngas 58 

and biooil are high value products employed for energy and biofuel generation, and their 59 

production rise can be easily managed. In contrast, the current lack of biochar applications 60 

makes it difficult to manage the massive amounts of biochar associated with the worldwide 61 

increase in thermal conversion processes. Therefore, it is critical to find new processes for the 62 

transformation of biochar into value-added products.  63 

 64 



In recent years, new processes for the transformation of biochar into different added-value 65 

products have been reported. Humic and fulvic acids were generated as a product of the 66 

chemical and biological depolymerisation of cotton gin trash (CGT) biochar [10,11]. Similarly, 67 

humic substances were generated via alkaline depolymerisation of municipal solid waste 68 

(MSW) biochar. This work optimised and modelled humic acid production from MSW biochar 69 

using an artificial neural network [12].  CGT biochar chemical depolymerisation produced 70 

nano-silica as an additional material from biochar [11].  71 

 72 

The production of carbon-based nanomaterials is one of the most recent developments in the 73 

production of add-value products from bioenergy production biochar. Placido et al. [13] 74 

recently reported the production and purification of carbonaceous nanomaterials from 75 

microalgae biochar by using chemical depolymerisation and solvent extraction 76 

(NanoRefinery). These nanomaterials were evaluated as a transducer for the detection of heavy 77 

metal ions in aqueous systems. The fluorescence emitted by the microalgae biochar-derived 78 

carbonaceous nanomaterials (MAB-CN) was quenched by four heavy metal ions, Ni (II), Pb 79 

(II), Cd (II), and Cu (II). The MAB-CN fluorescence reduction was dependent on the heavy 80 

metal ion concentration.  81 

 82 

Biomass thermal conversion uses several feedstocks and diverse types of production processes. 83 

Therefore, the resulting biochar from these diverse processes have various chemical structures 84 

and properties. Carbon dots (Cdots) and other carbonaceous nanomaterials (CN) produced 85 

from other carbonaceous sources exhibit diverse physicochemical properties and variable 86 

biocompatibility [14-17]. Therefore, CN generated from different types of biochar are 87 

predicted to have diverse structures and properties.  The effect of different feedstocks and 88 



production processes on the structure and properties of biochar-derived carbonaceous 89 

nanomaterials (BCN) has not yet been studied. The objective of this research was to study three 90 

types of biochar ((microalgae, rice straw and sorghum straw)) for the production of BCN, and 91 

compare/contrast their physicochemical properties as well as their application as bioimaging 92 

fluorescent probes and as transducers for heavy metal ions detection in aqueous systems.  93 

 94 

2 MATERIALS AND METHODS 95 

2.1 Substrate 96 

Microalgae, rice straw and sorghum straw biochars were the initial substrates for BCN 97 

production. Dr Sergio Capareda and his laboratory Bio-Energy Testing and Analysis 98 

Laboratory (BETA Lab) at Texas A&M University kindly donated all the biochars. Sorghum 99 

straw biochar (SSB) was obtained from sorghum straw in a fluidised bed/pyrolysis process at 100 

500 °C for 30 min. Whereas, rice straw biochar (RSB) and microalgae biochar (MAB) were 101 

obtained in a pyrolysis process using a batch pressure reactor at 500 °C for 30 min (Series 4580 102 

HP/HT, Parr Instrument Company, Moline, IL). After collecting the biochars from the reactor, 103 

they were crushed using a mortar and sieved using a 1 mm mesh. 104 

 105 

2.2 Chemicals  106 

All chemicals were analytical grade: Potassium permanganate (KMnO4) (Alfa Aesar), 107 

Acetone (Acros Organics), potato dextrose broth (PDB) medium (ForMedium). The heavy 108 

metal ions included: Nickel sulphate (Ni(II)) (Fisher Scientific), Copper sulphate (Cu (II)), 109 

Cadmium sulphate (Cd (II)), Lead Nitrate (Pb (II)), Cobalt nitrate (Co (II)) (Sigma‒Aldrich), 110 

Barium chloride (Ba (II)) (Sigma‒Aldrich), lithium acetate (Li (I)) (Sigma‒Aldrich), iron 111 



sulphate (Fe(II)) (Sigma‒Aldrich), manganese chloride (Mn (II)) (Acros Organics), zinc 112 

sulphate (Zn (II)) (Sigma‒Aldrich), silver nitrate (Ag (I)) (Sigma‒Aldrich), sodium molybdate 113 

(Mo (VI)) (Sigma‒Aldrich). Deionised and filtered (Milli‒Q ultrapure water system with a 114 

0.22 µm filter, Merck Millipore) water was utilised in all the procedures. 115 

 116 

2.3 Biochar-derived carbonaceous nanomaterials preparation  117 

The biochar depolymerisation reaction was as follows: 10% solutions of KMnO4 were mixed 118 

with biochar (5%) in 125 mL Erlenmeyer flasks. The depolymerisation was performed at 120 119 

°C for 1 h at 15 psi in an autoclave (Med 12, Selecta) [11]. After the chemical depolymerisation, 120 

the biochar solutions were centrifuged at 5000 rpm for 20 min at room temperature to separate 121 

the liquid and solid phases. The liquid phases were filtered using 0.22 µm filters (Millex) and 122 

refrigerated at 4 °C until use. The depolymerised biochar (solid phase) was dried in a 123 

convection oven at 105 °C for 24 h. The liquid phase was purified by repeated solvent 124 

extraction. Acetone was mixed with the liquid phase until the production of a second liquid 125 

phase [18,19]. The phases were separated by centrifugation at 5000 rpm for 20 min (Legend 126 

RT, Sorvall). The upper phase was withdrawn and roto-evaporated (miVAc Quattro 127 

concentrator, Genevac) until dry.  After weighing, the solids were re-suspended in ultrapure 128 

water and ultrasonicated for 1 minute at 50% amplitude (200 W) (Branson, Emerson). The 129 

BCN were obtained after repeating the organic solvent precipitation process two additional 130 

times. The extracted BCN were suspended in water and kept at 4 °C until use.  131 

 132 

2.4 Biochar-derived carbonaceous nanomaterials characterisation  133 



The BCN were characterised with diverse spectroscopic and microscopic techniques. The BCN 134 

solutions were diluted to lower concentrations to facilitate characterisation. The fluorescence 135 

emission and excitation spectra of the BCN were determined on a Hitachi F2500 136 

spectrophotometer. FT‒IR spectra were collected using a Frontier FT-IR spectrophotometer 137 

with sampler (PerkinElmer) from 4000−600 cm-1. The FT-IR spectra were analysed with 138 

Spectragryph software version 1.1 (Spectroscopy Ninja). UV-Vis absorption spectra were 139 

recorded using a U3310 spectrophotometer (Hitachi). Atomic force microscopy (AFM) images 140 

were captured on the BioScope AFM (BrukerCorporation) in ScanAssistant mode (tip radius 141 

nominal 2 nm and maximum 12 nm) and image analysis was performed using the Brucker 142 

NanoScope software package v8.15 (Bruker Corporation). For AFM imaging, the BCN were 143 

diluted to 100 ppm, filtered through a 0.2 μm filter and dried on mica substrate. The BCN size 144 

and zeta potential in solution were obtained using the Zetasizer Nano ZS (Malvern). The 145 

measurements were performed using 0.2 μm filtered solutions in a DTS1070 cell, with water 146 

as dispersant (Refractive Index: 1.330) and a BCN refractive index of 2.418 [20]. The size and 147 

zeta potential were obtained using the instrument’s software.  148 

 149 

2.5 Biocompatibility studies  150 

The biocompatibility of the Biochar-derived carbonaceous nanomaterials (BCN) was studied 151 

in three yeast species: Saccharomyces cerevisiae AH22, Candida albicans SC 5314, and 152 

Yarrowia lipolytica (ATCC 46483). The yeast growth curve studies were performed in a 153 

Bioscreen C (Oy Growth Curves Ab Ltd). The instrument assessed five BCN concentrations 154 

(50, 100, 250, 500, 1000 ppm) in wells with 200 µL of PDB and 100 µL of 1×105 cells mL‒1 155 

inoculum with 3 replicates for each treatment. The cell concentration change in each well was 156 



evaluated via optical density change at a wavelength of 600 nm for 72 h and 30 °C. The growth 157 

curves were also evaluated using BCN at pH 10, 7, and 3. 158 

 159 

2.6 Cell Imaging  160 

2.6.1 Biochar-derived carbonaceous nanomaterials bioimaging 161 

The capabilities of BCN for cell bioimaging were tested in three yeast species (S. 162 

cerevisiae, C. albicans, and Y. lipolytica). Yeast species were initially cultured in PDB for 24 163 

h at 30 °C and then inoculated with a BCN concentration of 250 ppm for 2 h at 30 °C. After 164 

incubation, the samples were centrifuged at 1000 rpm and washed with fresh PDB. This process 165 

was repeated twice. Finally, the samples were re‒suspended in PDB at 1:10 of the original 166 

volume. After washing, the cells were imaged using confocal microscopy using a Zeiss LSM 167 

710 confocal system with Zeiss AXIO Observer Z1 inverted microscope stand with transmitted 168 

light (HAL), Illuminator HXP 120C and laser illumination sources. The images were collected 169 

under bright field and 405 nm fluorescence excitation.  170 

 171 

2.6.2 Bioimage Processing 172 

To evaluate and identify differences in the fluorescence emitted by the BCN in the yeast 173 

cells, the images were analysed using the ImageJ software version 1.50i (Wayne Rasband, 174 

National Institutes Of Health, USA) and the SAS® Studio software 3.71 (University Edition, 175 

SAS Institute Inc., Cary, NC, USA). The analysis in image J software was performed on three 176 

separate images of each combination of yeast species and BCN type.  Each image was 177 

processed to calculate the corrected total cell fluorescence (CTCF) through cell selection, 178 

fluorescence and area measurement, background correction, and CTCF calculation. The CTCF 179 



was the response variable for the statistical analysis. As CTCF distribution did not follow a 180 

normal distribution, a Y=X1/4 variable transformation was performed. The transformed variable 181 

was analysed in a two way non-balanced ANOVA because the yeast species and BCN type 182 

combinations had different sample sizes.  the yeast species and BCN type were used as factors, 183 

and the three yeast species (S. cerevisiae, C. albicans, and Y. lipolytica) and the three BCN 184 

types (SSB-CN, RSB-CN and MAB-CN) as levels for each factor. The unbalanced ANOVA 185 

was calculated with the PROC GLM from the SAS® Studio software 3.71 (University edition, 186 

SAS Institute Inc., Cary, NC, USA). 187 

 188 

2.7 Heavy metal ions quenching assays 189 

Stock solutions of the metal ions were prepared at concentrations of at least 25 mM and for 190 

BCN at concentrations of 1000 ppm. All the solutions were prepared using deionised and 191 

0.22 µM filtered water. The metal ions titration quenching studies utilised BCN solutions of 192 

50 ppm diluted from the 1000 ppm solutions. The fluorescence of the BCN solution was 193 

measured and then the metal ions solutions were added to the cuvette containing BCN (50 194 

ppm) to reach a concentration of 50 μM.  Then, the fluorescence of metal/ BCN solution was 195 

measured. The reduction in fluorescence was calculated as fluorescence reduction percentage 196 

(%) (see Equation 1). Metal ions titration quenching studies were determined using the metal 197 

ions with highest effect in the BCN fluorescence. Cu (II) and Hg(II) were used at 198 

concentrations from 0.0125 μM to 50 μM. Whereas, Zn (II) was prepared at concentrations 199 

between 0.0125 μM to 1000 μM. The concentration range was selected to include the 200 

minimum regulatory limit for these metal ions and concentrations reported on wastewaters 201 

effluents. The heavy metal ion solution was added to the cuvette containing BCN starting 202 

from 0.0125 μM up to 50 μM or 1000 μM. Fluorescence spectra were collected after each 203 



heavy metal ion aliquot was added. The reduction in fluorescence was calculated as 204 

fluorescence reduction percentage (%) (see Equation 1). 205 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝐹𝑟𝑟𝐹𝐹𝐹𝐹𝑟𝑟𝑟𝑟𝐹𝐹𝐹𝐹 % = �  𝐹𝐹𝐹𝐹0− 𝐹𝐹𝐹𝐹 𝐻𝐻𝐻𝐻𝐻𝐻
 𝐹𝐹𝐹𝐹0

� × 100             Equation 1 206 

Where FL0 is the BCN fluorescence without the addition of heavy metal ions and FLHMt 207 

corresponds to the BCN fluorescence after a specific concentration of heavy metal ions was 208 

added.  209 

 210 

3 RESULTS  211 

3.1 Biochar chemical depolymerisation  212 

The chemical depolymerisation of MAB, RSB and SSB produced modification of their 213 

chemical structure. These modifications were followed by FT-IR spectroscopy (Figure 1). The 214 

three non-depolymerised biochar spectra display similar bands between 400 and 500 cm-1, 900 215 

and 1200 cm-1, 1700 and 1250 cm-1 and 2800 and 3000 cm-1. A signal at 455 cm-1 was shared 216 

by all the non-depolymerised biochars and it was associated with the presence of silica in the 217 

biochar. The silica found in MSB and RSB was explained by the composition of the raw 218 

material, which has significant amounts of silica in their composition [21,22]. In contrast, the 219 

presence of silica in SSB was explained by the presence of remaining bed material from the 220 

fluidised bed pyrolysis process [23,24]. The MAB peaks at 873 and 1415 cm-1 were more 221 

intense than RSB and SSB.  These signals demonstrated a structure with greater amounts of 222 

aromatic compounds in MAB than that of RSB and SSB. Likewise, the RSB and SSB peaks at 223 

775, 1027 and 1415 cm-1 demonstrated a structure rich in carbon molecules linked to oxygen 224 

and hydrogen atoms. The loss of intensity and sharpness in the peaks related to carbon linkages, 225 



such as 775, 873, 1078, 1415, 2920 and 2851 cm-1, evidenced modification of the biochars’ 226 

structure and release of carbonaceous compounds into the liquid phase. 227 

 228 

The non-depolymerised MAB FT-IR spectrum included ten signals at 455, 705, 873, 1027, 229 

1415, 1574, 2851, and 2920 cm-1. The strongest signals corresponded to 450, 873, 1027, and 230 

1415 cm-1. The strong and sharp signals observed at 873 cm-1 (aromatic C‒H), 1415 cm-1 (C=O, 231 

C‒C ring stretch), 2851 cm-1 (C‒H aliphatic) and 2920 cm-1 (C‒H aromatic and unsaturated) 232 

were the key signatures of the MAB spectra. In contrast, the depolymerised MAB spectrum 233 

exhibited three bands (400 to 700, 800 to 1200, and 1200 to 1700 cm-1) dominating the peak 234 

profile. The 400 to 700 cm-1 band contained a new strong peak at 415 cm-1 connected with 235 

potassium presence (K‒OH). The bands of 800 to 1200, and 1200 to 1700 cm-1 shared signals 236 

with the non-depolymerised MAB. The chemically depolymerised MAB carbon associated 237 

peaks (873, 1027, 1415 and 1574 cm-1) showed considerable reduction in the intensity and 238 

sharpness of the peaks. In a like manner, the carbon related peaks at 2851 and 2020 cm-1 were 239 

also reduced considerably. The reduction in the carbon related peaks demonstrates the 240 

reduction in carbonaceous linkages resulting from the depolymerisation process, and the 241 

possible release of carbonaceous compounds to the liquid phase. 242 

 243 

The non-depolymerised RSB FT-IR spectrum had eight peaks at 455, 775, 873, 1078, 1415, 244 

1574, 2851 and 2920 cm-1. The most intense band associated with carbon linkages was the 245 

band between 900 and 1200 cm-1 with a maximum at 1078 cm-1 (C‒OH hydroxyl). The band 246 

between 1700 and 1250 cm-1 contained two strong signals, 1415 cm-1  (C=O, C‒C ring stretch)  247 

and 1574 cm-1 ( C=O, COO¯). The aromatic signals at 873, 2851 and 2920 cm-1 were present, 248 

but were less intense than MAB. However, the signal at 775 cm-1 was sharper and more intense. 249 



On the other hand, the chemically depolymerised RSB spectrum had three principal changes 250 

in their spectra compared with the non-depolymerised biochar. First, a significant increase 251 

between 400 and 600 cm-1 with a max at 415 cm-1 (K‒OH). Second, an intensity reduction in 252 

the band between 800 and 1200 cm-1. Third, the disappearance of the signal at 775 cm-1. The 253 

aromatic signals at 873, 1415, 1574, 2851 and 2920 cm-1 decreased significantly between 254 

spectra, although they were still observed in the depolymerised RSB spectrum. The RSB 255 

depolymerisation reaction produced a reduction of intensity in the signals associated with 256 

carboxyl, hydroxyl and methyl linkages, indicating possible release of this type compounds 257 

into the liquid phase. 258 

 259 

The SSB spectrum had nine peaks at 455, 775, 873, 1078, 1320, 1415, 1574, 2851 and 2920 260 

cm-1. The most intense peaks were 455, 1078, 1415 and 1574 cm-1. The 455 cm-1 signal is 261 

associated with potassium linkages and the final three are correlated with carbon linkages 262 

between aromatic carbons and with substituents such as hydroxyl, carboxyl, or ester. In contrast 263 

to non-depolymerised SSB, the chemically depolymerised SSB spectrum had four significant 264 

changes. First, a significant rise between 400 and 600 cm-1 with a max at 415 cm-1 (K‒OH).and 265 

two shoulders. Second, an intensity reduction in the band between 850 and 1200 cm-1 including 266 

a shift in the maximum signal wavenumber from 1078 cm-1 to 1027 cm-1. Third, the complete 267 

reduction of the signals at 873, 1078, 2851 and 2920 cm-1. Fourth, a significant reduction of 268 

the signals at 775, 1415 and 1574 cm-1. Aromatic, carboxylic and hydroxyl linkages 269 

participated the most in the depolymerisation reaction, which indicates possible release of 270 

compounds with these linkages into the liquid phase.  271 

 272 

3.2 Biochar-derived carbonaceous nanomaterials characterisation.  273 



The liquid phases obtained from the biochar depolymerisation were mixed with an organic 274 

solvent sequentially until obtaining BCN. The liquid phases obtained differed among the three 275 

biochars. The RSB and SSB generated a liquid with a dark brown colour while MAB produced 276 

a dark orange liquid. After the purification process, all the BCN solutions had yellowish and 277 

light brown colours. The BCN yield varied for each material, evidencing the effect in the initial 278 

feedstock and the production process. The highest yield (BCN g/ Biochar g) was obtained by 279 

MAB-CN (13%), followed by SSB-CN (7%)  and RSB-CN (4%). Lower yields can be 280 

increased by including more biochar depolymerisation cycles.  281 

Figure 2 illustrates the characterisation of the MAB-CN. AFM microscopy (Figure 2a) was 282 

employed to study MAB-CN topography. The particles height had a normal distribution 283 

confirmed by the Kolmogorov-Smirnov test (Annex 1, Supplementary material). The MAB-284 

CN had an average height of 4.7 ± 0.96 nm with a minimum height of 2.9 nm and a maximum 285 

height of 7.3 nm (Figure 2b). The MAB-CN had a lateral dimension of 68 ± 25 nm, with the 286 

smallest lateral dimension of 38 nm and the maximum lateral dimension of 153 nm.  The AFM 287 

section (diagonal line white line) described the height and distance among particles. The 288 

section included particles of different heights, but in quantities similar to the height distribution 289 

(Figure 2c). The spectroscopic characterisation was performed using fluorescence, UV-Vis 290 

and FTIR spectroscopy. MAB-CN emission and excitation spectra at various pH. MAB-CN 291 

exhibited their maximum excitation and emission wavelengths at 328 and 400 nm, respectively. 292 

The particles emitted fluorescence when excited up to 450 nm, where an increase in the 293 

excitation wavelength produced a reduction in the fluorescence emitted and a corresponding 294 

increase in the emission wavelength (see Annex 2, supplementary material).  The MAB-CN 295 

pH studies exhibited a small variation (±2%) in the magnitude of the emitted fluorescence. In 296 

contrast, the peak of excitation scan fluorescence (328 nm) decreased around 2% after each pH 297 

unit reduction from pH 8 to 5. The maximum emission and excitation wavelengths were not 298 



affected by the pH changes (see Annex 2, supplementary material). The MAB-CN’ FTIR 299 

spectrum (Figure 2e) indicated a mixture of chemical bonds (see Annex 2, supplementary 300 

material). However, the majority of the wavenumbers and the strongest signals were 301 

associated with the presence of carbon linkages (648, 719, 1413, 1561, 1667, 2957, 2933 and 302 

2871 cm-1). Bonds associated with aromatic carbons were the strongest signals (1561, 1413 303 

cm-1) with C‒H bonds, C‒O or C=O bonds and aromatic bonds comprised 62% of the 304 

wavenumbers identified. Additionally, the MAB-CN FTIR spectra demonstrated the probable 305 

presence of sulphur (1013 and 648 cm-1), nitrogen (1377 cm-1) and silica (753, 404 and 511 306 

cm-1) linkages. The hydrodynamic diameter and zeta potential in solution of MAB-CN (see 307 

Annex 2, supplementary material) described molecules with a hydrodynamic diameter of 308 

approximately 200 nm. The zeta potential described negatively charged molecules with 309 

moderate stability (-39.9 mV).  310 

 311 

Figure 3 exhibits the spectroscopic and morphologic characterisation of RSB-CN.  The AFM 312 

images (Figure 3a) described a wide range of heights and lateral dimensions. The RSB-CN 313 

average height was 6.7 ± 2.8 nm with a minimum height of 3.3 nm and a maximum height of 314 

16 nm (Figure 3b). The particle height distribution did not fit a normal distribution (Annex 1, 315 

Supplementary material). However, the majority of the RSB-CN heights (89%) were below 10 316 

nm. The RSB-CN average lateral dimension was 95.8 ± 47.4 nm with a maximum of 319.7 nm 317 

and a minimum of 45.1 nm. The AFM section (Figure 3c) described a horizontal section (white 318 

line) in which it was possible to identify the different particles heights in the sample. RSB-CN 319 

fluorescence spectra (Figure 3d) showed the maximum emission and excitation signals at 420 320 

and 330 nm, respectively. The excitation spectra contained a series of small peaks that became 321 

sharper with the pH reduction. At alkaline pH, the peaks formed a band from 300 to 350 nm, 322 

with three peaks at 340, 330 and 313 nm where the 340 nm peak was largest. From pH 6 to pH 323 



3, the strongest excitation peak was observed at 330 nm. The emission peak sharpness changed 324 

with the pH reduction, but the maximum emission wavelength was located at 420 nm for all 325 

pHs. The pH strongly influenced the emission and excitation fluorescence generated by RSB-326 

CN. The pH reduction created a 7.5% linear increase in both the emission and excitation 327 

fluorescence for each pH unit reduced. The difference between the fluorescence emitted by 328 

RSB-CN at pH 8 and pH 3 was almost 40% (Annex 2, supplementary material).   The RSB-329 

CN FTIR spectrum (Figure 3e) had signals grouped in three large bands from 400 to 1100 cm-330 

1, from 1100 to 1800 cm-1 and from 2000 to 4000 cm-1. The most intense signals were located 331 

in the 1100 to 1800 cm-1 with three peaks at 1563 (C‒C stretching, C=C aromatic stretching), 332 

1393 (‒COO¯ symmetrical vibrations), and 1367 cm-1 (−COOH). The 400 to 1100 cm-1 band 333 

included half of the spectrum’ peaks and diverse functional groups such as C‒O and C=O 334 

bonds, S‒C bonds, aromatic signals, and Si‒O bonds (see Annex 2,  supplementary material). 335 

The 2000 to 4000 cm-1 band comprised three wide signals with a flat peak revealing the 336 

presence of OH and C‒H linkages in the RSB-CN structure. The FTIR spectrum indicated 337 

nanoparticles rich in aromatic structures with a significant amount of substituents especially, 338 

carbonyl hydroxyl and methyl groups.  The hydrodynamic diameter and zeta potential in 339 

solution of RSB-CN (see Annex 2, supplementary material) described molecules with a 340 

hydrodynamic diameter of approximately 200 nm and a large negative zeta potential (-65.8 341 

mV) indicating particles with high stability in solution.   342 

 343 

Figure 4 depicts the spectroscopic and morphologic characterisation of SSB-CN.  The AFM 344 

morphologic characterisation (Figure 4a) evidenced an average height of 2.5 ± 1.7 nm with a 345 

minimum of 0.4 nm and a maximum of 9.2 nm. The particle height’s distribution did not fit a 346 

normal distribution (Annex 1, Supplementary material) as it was a positive skewed 347 

distribution (skewness: 1.85) (Figure 4b). In this distribution, 90% of the particles had a height 348 



below 5 nm and 50% below 2 nm. The lateral dimension average of the particles was 54.6 ± 349 

43.5 nm with a minimum lateral dimension of 17.6 nm and a maximum lateral dimension of 350 

223.3 nm. The AFM section analysis (Figure 4c), exhibits a horizontal section (white line) 351 

with a majority of particles below 5 nm, corresponding with the height distribution. The 352 

fluorescence spectra (Figure 4d) revealed the maximum excitation peak around 310 nm and 353 

the maximum emission peak at 420 nm.  A pH decrease caused an increase in SSB-CN 354 

fluorescence of almost 10% between pH 8 and pH 4, with the increase linear between pH 8 and 355 

5 (see Annex 2, supplementary material). pH 3 generated a 6% reduction in the emission 356 

fluorescence versus pH 4. The excitation fluorescence increased with a reduction from pH 8 to 357 

pH 5, and reduced from pH 4 and pH 3. The maximum emission wavelength was constant at 358 

all pHs. Whereas, the maximum excitation wavelength shifted 8 nm at pH 3. The SSB-CN 359 

FTIR spectrum (Figure 4f) had three bands at 400 to 1100, 1100 to 1800 and 2800 to 4000 cm-360 

1. The most intense signals were 1562 and 1395 cm-1 and the maximum peaks in the 1100 to 361 

1800 band cm-1. These peaks were associated with the presence of aromatic compounds and 362 

carbonyl groups. The 400 to 1100 cm-1 band comprised wavenumbers correlated with 363 

functional groups such as aromatic, carbonyl, C‒H, C‒S and O‒Si (see Annex 2, 364 

supplementary material). The band between 2800 and 4000 cm-1 contained two peaks, 365 

indicating hydrogenation in the SSB-CN structure. The SSB-CN hydrodynamic diameter was 366 

on average below 150 nm and the majority of the particles were in only one distribution peak 367 

(see Annex 2, supplementary material). SSB-CN had a large negative zeta potential (-63 368 

mV) indicating particles with high stability in solution .  369 

 370 

SSB-CN and RSB-CN AFM images exhibited a more intersected configuration, which 371 

resembled a honeycomb organisation. These levels of organisation can be related to chemical 372 

interactions, such as between BCN itself or the mica and the BCN, or to BCN structural changes 373 



associated with water removal. The fluorescence spectra provided one of the most significant 374 

differences among the three BCN. The SSB-CN, RSB-CN and MAB-CN had Stokes shifts of 375 

109 nm, 90 nm and 72 nm, respectively. The pH effect on the emission and excitation spectra 376 

differed as well. In SSB-CN and RSB-CN, decreasing the pH increased the emission and 377 

excitation fluorescence while MAB-CN were not affected by pH changes. The increase in the 378 

fluorescence is likely associated with the structure of these nanomaterials since SSB-CN and 379 

RSB-CN are richer in carboxylic and hydroxyl groups than MAB-CN. As these groups are 380 

commonly identified as fluorophores for carbonaceous nanomaterials [25,26], changes in the 381 

pH will modify the carboxylic and hydroxyl groups by producing dissociation and association 382 

of the hydrogen atoms. As illustrated by the FTIR spectra, the BCN had an aromatic structure 383 

with several types of substituents in their structure. The principal differences among the three 384 

FTIR spectra were observed in the number and intensity of the peaks and shoulders between 385 

400 and 1100 cm-1 and between 1200 and 1800 cm-1. The three BCN shared the signals at 1561, 386 

1008, 701, 646 and 620 cm-1. All these signals are carbon bonds involved in aromatic rings, 387 

carbonyl linkages and S‒C linkages. These signals indicated the prominence of aromatic 388 

groups in BCN structures, which is a constant component on Cdots from lignocellulosic 389 

material [27].  A significant difference was observed between 1200 and 1500 cm-1. MAB-CN 390 

had a max peak at 1413 cm-1 with four shoulders. RSB-CN had two maximum peaks at 1393 391 

and 1367 cm-1 without shoulders. SSB-CN had only a maximum signal at 1395 cm-1 with three 392 

shoulders. Additionally, the relationship between the two peaks between 1200 and 1800 cm-1 393 

is another indicator of structural differences. In MAB-CN, the 1800 cm-1 peak was significantly 394 

greater than the 1200 cm-1 peak, while in RSB-CN and SSB-CN both peaks have similar sizes. 395 

RSB-CN and SSB-CN had a considerable number of common peaks, but with different 396 

intensity and sharpness. The majority of uncommon signals in the RSB-CN spectrum were 397 

from shoulders or bands associated with hydroxyl and C‒H bonds (2800-2200, 1800-1900, 398 



1688, 1617, 1438, and 880 cm-1). The uncommon bands in the SSB-CN correlated with 399 

aromatic C‒H and S‒O bonds. The presence of sulphur, nitrogen and silica bonds in all the 400 

samples indicate that the BCN had a different composition than other carbonaceous 401 

nanomaterials such as Cdots or graphene carbon dots but with similar optical properties as 402 

other nanomaterials from lignocellulosic material [16].  All the BCN had moderate to high 403 

negative zeta potential indicating their facility to interact with positive particles such as heavy 404 

metal ions.  405 

 406 

3.3 Biocompatibility studies  407 

The effect of the BCN in the yeast growth is summarised in Table 1. Additionally, the growth 408 

curves from the biocompatibility studies for each yeast species are in the Annex 3 of the 409 

supplementary material. At all pH, yeast species, and BCN types, concentrations of 100 ppm 410 

or below did not generate significant changes in the yeasts’ growth curves. MAB-CN produced 411 

various effects in the three yeast species.  MAB-CN did not modify the Y. lipolytica growth 412 

curves at any pH or MAB-CN concentrations. In contrast, S. cerevisiae and C. albicans 413 

evidenced modifications in their growth curves. S. cerevisiae growth was inhibited at pH 10 414 

and concentrations above 100 ppm. The growth inhibition was correlated with the increase of 415 

the MAB-CN concentration. At pH 7, a slight inhibition occurred at 500 and 1000 ppm. 416 

However, the inhibition did not correlate with the MAB-CN concentration. At pH 4, the only 417 

inhibition was observed at 1000 ppm and was similar to that observed at pH 7. C. albicans was 418 

inhibited at 250, 500 and 1000 ppm at basic and neutral pH,  1000 ppm and 500 ppm generated  419 

considerable inhibition. At pH 4, MAB-CN at 1000 ppm inhibited C. albicans growth. 420 

However, the inhibition was less significant than the other pHs. In general, at acid pH the yeast 421 

species experienced less inhibition.  422 



 423 

RSB-CN exhibited an inhibitory effect at alkaline pH and concentrations of 500 ppm and 1000 424 

ppm.  S. cerevisiae and Y. lipolytica were partially inhibited at 500 ppm and completely 425 

inhibited at 1000 ppm. In contrast, C. albicans was completely inhibited at both concentrations. 426 

At neutral and acidic pH, the RSB-CN concentrations tested did not inhibit C. albicans, but the 427 

log phase of the curves were less sharp with the pH rise. In S. cerevisiae and acidic pH, RSB-428 

CN did not produce inhibition at any concentration. At concentration above 250 ppm and 429 

neutral pH, RSB-CN generated a low inhibition in S. cerevisiae. Y. lipolytica at neutral and 430 

acid pH was not inhibited by any concentration of RSB-CN 431 

 432 

SSB-CN was the most bio-compatible material, as S. cerevisiae, C. albicans, and Y. lipolytica 433 

were not inhibited at any of the pHs and SSB-CN concentrations. The changes in the growth 434 

curves patterns were associated with the pH changes instead of the concentration or presence 435 

of SSB-CN.  This evidenced SSB-CN’s favourable characteristic as it can be used at any 436 

concentrations at neutral and alkaline pHs without generating inhibition.   437 

 438 

3.4 BCN bioimaging  439 

Figure 5 displays confocal fluorescence microscopy images recorded after 2 h of growth with 440 

BCN. The image illustrated BCN uptake by the three yeast that depended on a combination of 441 

BCN type and yeast. Figure 5a describes the effect of MAB-CN in the three yeast species. S. 442 

cerevisiae exhibited a less intense signal with the fluorescence observed throughout the entire 443 

cell. C. albicans fluorescence was localised in a cellular organelle for some cells and distributed 444 

the entire cell possibly indicating multiple uptake/distribution processes. Y. lipolytica 445 



fluorescence was localised in one of the cytoplasmic organelles. RSB-CN fluoresced in all the 446 

yeast (Figure 5b) with a varied localisation and fluorescence intensity dependent on the yeast. 447 

S. cerevisiae fluorescence localisation was low with small points inside the cells. This can be 448 

associated with some interaction between RSB-CN and molecules in the cytosol. C. albicans 449 

evidenced a diverse distribution of RSB-CN inside the cells. However, it was possible to 450 

identify particles concentrated in specific zones in the cells. In Y. lipolytica, RSB-CN exhibited 451 

a well-localised fluorescence inside the cells demonstrating the introduction of these materials 452 

in a specific organelle.  SSB-CN exhibited fluorescence in all the yeast species (Figure 5c). In 453 

S. cerevisiae, SSB-CN had fluorescence throughout the entire cell. In C. albican and Y. 454 

lipolytica, SSB-CN the fluorescence was localised in cellular compartments. The control using 455 

only PDB did not generate any fluorescence either associated with the BCN or any 456 

autofluorescence from the cells.   457 

 458 

The CTCF differences among the combinations of yeast species and BCN types were analysed 459 

with a two-way non-balanced ANOVA (Annex 3, supplementary material). As the ANOVA 460 

p-value (<0.0001) was lower than the alpha (0.05), at least one of the 9 combinations of BCN 461 

and yeast species were different. Additionally, the two main factors (yeast: (<0.0001 and BCN: 462 

(<0.0001) and the interaction between factors (YEAS*BCN: 0.0018) were significant for the 463 

model. As the interaction between the factors was significant, the interaction plots (Figure 6) 464 

were necessary to analyse the fluorescence emitted by the yeast cells with each BCN. Figure 465 

6a describes how the yeast species were influenced by each BCN. S. cerevisiae had the lowest 466 

CTCF for all the BCN. C. albicans and Y. lipolytica had similar CTCF when grown with RSB-467 

CN and SSB-CN. In contrast, the cultures with MAB-CN had a CTCF significantly higher in 468 

Y. lipolytica than C. albicans. Moreover, MAB-CN was the only BCN presenting significant 469 

CTCF differences among the three yeast species CTCF. Figure 6b depicts the effect of each 470 



BCN in the yeast species. RSB-CN exhibited the lowest CTCF in all the yeast species. C. 471 

albicans had the highest CTCF with SSB-CN and was significantly different from RSB-CN 472 

and MAB-CN, which had a similar CTCF. In contrast, Y. lipolytica and S. cerevisiae generated 473 

the largest CTCF when mixed with MAB-CN and SSB-CN. In those BCN, the CTCF was not 474 

significantly different. MAB-CN present advantages as a future discrimination probe since the 475 

yeast species’ CTCF varied. However, the SSB-CN exhibited the highest CTCF in all the yeast, 476 

making this BCN the most appropriate for fluorescence imaging 477 

 478 

3.5 Heavy metal ions detection in aqueous systems 479 

The interactions between 12 heavy metal ions and the three BCN is depicted in Figure 7. Hg 480 

(II) and Cu (II) ions quenched MAB-CN significantly, having fluorescence reduction 481 

percentages of 41.5% and 27%, respectively (Figure 7a). Pb (II), Ni (II), Co (II) and Ag (I) 482 

ions quenched MAB-CN in percentages between 10% and 15%. Mn (II), Mo (IV), Li (I), and 483 

Ba (II) ions did not quench the MAB-CN fluorescence. In contrast with the other heavy metal 484 

ions, Zn (II) ions increased MAB-CN fluorescence significantly (15%).  RSB-CN was 485 

significantly quenched by Cu (II) and Pb (II) ions with fluorescence reduction percentages of 486 

39% and 29%, respectively (Figure 7b).  Similar to MAB-CN, the second tier of quenching 487 

included metal ions with fluorescence reduction percentages between 10% and 15% including 488 

Ni (II), Co (II), Fe (II) Hg (II), Mn (II) and Ag (I).  Cu (II) (43%) was the only heavy metal ion 489 

that significantly quenched SSB-CN fluorescence. Pb (II) ions obtained the second highest 490 

quenching with 15%, while the rest of the heavy metal ions achieved fluorescence reductions 491 

below 10%. The significant difference between the quenching obtained by Cu (II) ions and the 492 

other metal ions indicates a selectivity between SSB-CN and Cu (II) ions that was not observed 493 

in the other BCN (Figure 7c). Similar to MAB-CN, Mo (IV), Li (I), and Ba (II) ions did not 494 



quench RSB-CN and SSB-CN. Whereas, Zn (II) ions increased the fluorescence emitted by 495 

RSB-CN and SSB-CN, but the fluorescence rise in those BCN was 50% and 75% lower than 496 

the rise in MAB-CN, respectively. The lowest heavy metal ions quenching in all the BCN was 497 

obtained by Mo (IV), Li (I) and Ba (II) ions.  498 

 499 

The metal ions with the highest quenching in each BCN were used to evaluate the correlation 500 

between heavy metal ion concentration and BCN fluorescence reduction or increase (Figure 501 

8). The RSB-CN and SSB-CN emission fluorescence spectra at different concentrations of Cu 502 

(II) ions are shown in Figures 8a and 8b. The limit of detection (LOD) for the RSB-CN and 503 

Cu (II) ions and SSB-CN and Cu (II) combinations was 0.5 μM. The Stern-Volmer plot for 504 

these combinations evidenced a liner correlation (Figure 8a and 8b embedded figures). A 505 

linear Stern-Volmer plot indicates collisional quenching and can be modelled using the Stern-506 

Volmer equation: F0/F = 1 + KSV[Q], where Ksv is the Stern-Volmer quenching constant and 507 

[Q] is the concentration of the quencher molecule, in this case the Cu (II) ions. The SBB-508 

CN/Cu(II) combination had a KSV of 0.017 L.μMol-1 while the RSB-CN/Cu(II) combination 509 

had a KSV of 0.0162 L.μMol-1. A larger Ksv indicates a larger interaction between heavy metal 510 

ions and the fluorophores. Therefore, the greater quenching observed in SSB-CN/Cu (II) is 511 

explained by the higher SSB-CN’s Ksv. As Hg (II) was the metal ion with the largest 512 

fluorescence reduction in MAB-CN, the effect of Hg (II) ions concentration on MAB-CN 513 

concentration was evaluated (Figure 8c). The LOD for the MAB-CN/ Hg (II) combination was 514 

0.4 μM. The Stern-Volmer plot for the MAB-CN/ Hg (II) combination evidenced a nonlinear 515 

behaviour with a downward curvature (Figure 8c embedded figure). Such curves are obtained 516 

by pure collisional quenching when some of the fluorophores are less accessible than others 517 

[28,29]. The non-linear downward behaviour depends of diverse variables and could not be 518 

empirically modelled. Although, the fluorescence reduction percentage obtained by MAB-519 



CN/Hg (II) had a similar percentage as the RSB-CN/Cu(II) and SBB-CN/Cu(II), the difference 520 

between their Sten-Volmer plots evidenced a lower interaction between the MAB-CN/Hg (II) 521 

than the RSB-CN/Cu(II) and SBB-CN/Cu(II).  522 

 523 

As the Zn (II) ions produced a fluorescence increase, the influence of the Zn (II) ions 524 

concentration was evaluated using the MAB-CN/Zn (II) combination.  This combination was 525 

selected because it achieved the highest fluorescence increase. The Zn (II) ions did not increase 526 

the MAB-CN fluorescence at concentrations below 5 μM (Figure 8d). At 5 μM, the 527 

fluorescence increased until 1000 μM. However, the fluorescence increase from 500 μM to 528 

1000 μM was less than 15% of the total fluorescence rise. The limit of detection for this ion 529 

was 9 μM with a range of detection between 10 and 1000 μM. As the MAB-CN fluorescence 530 

increased, the Stern-Volmer plots could not been used. Therefore, the fluorescence increase 531 

percentage (%) (Equation 2) was calculated to describe the interaction between MAB-CN and 532 

Zn (II) ions (Figure 8d embedded image). In the concentration range between 5 and 1000 μM, 533 

the MAB-CN fluorescence and Zn (II) ions were correlated with a logarithmical equation (Y = 534 

7.0187ln(x) - 12.773, R² = 0.9814). As the model is an empirical approach, it was not possible 535 

to correlate the constants with measurable properties from the Zn (II) ions or MAB-CN. 536 

 537 

4 DISCUSSION 538 

This is the first article showing the versatility of chemical depolymerisation and solvent 539 

extraction (NanoRefinery) for producing biochar-derived carbonaceous nanomaterials from 540 

different feedstocks (rice straw, sorghum straw and microalgae) and different thermal 541 

conversion processes. These carbonaceous nanomaterials had different optical and chemical 542 



properties, evidencing the importance of the original biochar feedstock and the production 543 

process in the resulting materials. The effect of the thermal conversion process conditions, such 544 

as reactor type, heating rate, final temperature, residence time, catalyst presence, oxygen 545 

concentration etc. are significant variables that can affect the type of carbonaceous 546 

nanomaterials produced. In this case, MAB and RSB were obtained with batch pyrolysis 547 

whereas SSB was obtained with fluidized bed pyrolysis. However, it was not possible to 548 

identify specific properties associated with the initial processing conditions. Further studies are 549 

necessary to understand the details of the interaction between process conditions and feedstock 550 

for the combined production of bioenergy and carbonaceous nanomaterials.   551 

 552 

Biochar from bioenergy production used as a raw material for the production of nanomaterials has 553 

the advantages of utilising a high variety of wastes, being coupled with bioenergy production, and 554 

generating a diversity of carbonaceous nanomaterials with different properties. These differences 555 

can be tuned to develop new types of renewable nanomaterials and novel application such as 556 

the treatment of polluted water or bioimaging. BCN exhibited different heights and lateral 557 

dimensions, and different chemical groups in their structure. In all cases, the materials had a 558 

high negative zeta potential that can be associated with the ability to interact with heavy metal 559 

ions, which generally have positive charge. Further research needs to be focused on the 560 

modification of BCN, BCN applications and the development of other types of nanomaterials.   561 

 562 

Microalgae, rice straw and sorghum straw have been utilised for the production of other 563 

carbonaceous nanomaterials. Microalgae carbon dots were obtained from eutrophic algal 564 

bloom (EAB-Cdots) and microwave thermolysis [30]. Rice straw has been employed for the 565 

production of carbon dots [14] and a combination of silica and carbon dots materials [27]. 566 



Whereas, sorghum straw has been used for producing Cdots as a tool for detecting chromium 567 

(Cr3+) ions in aqueous media [31]. In contrast with SSB-CN, sorghum straw carbon dots detected 568 

Cr3+ ions via fluorescence enhancement instead of quenching.  569 

 570 

In this work, BCN biocompatibility experiments demonstrated that SSB-CN were the most 571 

biocompatible material as none of the yeast species, in any of the conditions evaluated, exhibited a 572 

modification in their growing curves. This result is comparable with other carbonaceous 573 

nanomaterials that did not demonstrate a toxic effect on yeast [32].  Y. lipolytica was the most 574 

compatible yeast species as only RSB-CN concentrations of 500 ppm and 1000 ppm at alkaline 575 

pH were able to inhibit these yeast. S. cerevisiae and C. albicans were affected by RSB-CN 576 

and MAB-CN at alkaline pH and neutral pH.  In all BCN, acidic pH was associated with yeast 577 

resistance to higher concentrations of carbonaceous nanomaterials. This is principally associated 578 

with yeast’s physiological conditions where acidic pH is the most favourable condition for growing 579 

this type of microorganisms. At all pH, MAB-CN was the only nanomaterial able to inhibit the 580 

growth of S. cerevisiae and C. albicans using concentrations of 1000 ppm. This result opens 581 

the door to a possible application of MAB-CN as an antifungal. The concentrations that achieved 582 

inhibitory effect by MAB-CN are below the concentrations that achieved antifungal effect in Pichia 583 

pastoris using citric acid-derived carbon dots (25 mg mL-1= 25000 ppm) [33] and close to the 584 

concentrations of Vitamin C derived-Carbon dots (300μg mL-1= 300 ppm) with antifungal effect in 585 

Rhizoctonia solani and Pyricularia grisea [34]. At neutral pH, the MAB-CN inhibitory effect can 586 

be achieved with a lower concentration (500 ppm) evidencing the potential of this carbonaceous 587 

nanomaterial as an antimicrobial. Future work will focus on the evaluation of BCN as antimicrobial 588 

agents and the mechanisms associated with the antimicrobial effect. 589 

 590 



This article proved that yeast species had a differential uptake and localisation of BCN. The 591 

differential uptake was identified by the differences in the fluorescence emitted by the BCN 592 

inside the yeast species. Differential uptake of carbonaceous nanomaterials (Cdots and CN) 593 

has been previously demonstrated in human and bacterial cells. In human cells, these 594 

differences were employed to differentiate between healthy and cancerous cells. Whereas in 595 

bacterial cells, it was utilised to differentiate between live and dead cells [35] as well as gram 596 

positive and gram negative bacteria [36]. In yeast species, to our knowledge, this is the first 597 

research reporting the differential uptake of carbonaceous nanomaterials. As evidenced by the 598 

confocal images (Figure 5), the BCN localisation inside the yeast cells also varied with some 599 

yeast localising these compounds in cellular organelles (C. albicans and Y. lipolytica) while 600 

others distributed them in the whole cell (S. cerevisiae). Additionally, these results showed the 601 

effective internalisation of BCN into the yeast’s cytosols and organelles, indicating the possible 602 

use of BCN as nano-carriers for drug delivery or for imaging specific organelles. The 603 

differences, in localisation and uptake, reported in this article are the initial steps for developing 604 

fast microbial identification methods based on the combination of BCN and the different 605 

interactions between microbial species and the BCN.  606 

 607 

BCN interact with various heavy metal ions. The different quenching levels and dynamics 608 

registered by each heavy metal ion/BCN combination can be correlated with the chemical, 609 

electronic and vibrational characteristics of each material [37]. SSB-CN had the most 610 

selective quenching as it only had high quenching with Cu (II) ions. Whereas, MAB-CN was 611 

selective for Zn (II) detection as it was the only heavy metal ion producing a fluorescence 612 

enhancement. Selectivity is a common property in other types of carbonaceous nanomaterials 613 

such as Lotus root-derived carbon dots, chocolate derived Cdots and pigeon feathers Cdots, 614 

which were selective to Hg (II), Pb (II) and Fe(III), respectively [38-40]. Compared with 615 



these materials SSB-CN had similar limits of detection and a slightly wider range of 616 

detection. The high selectivity evidenced by these materials make them the most promising 617 

BCN for developing a sensing method to detect Cu (II) and Zn (II) in aqueous systems. BCN-618 

CN can be used as a heavy metal ion detection probe. However, other strategies are necessary 619 

to improve the selectively in detection of heavy metal ions using these materials. Some of 620 

these strategies include the addition of phosphorous or nitrogen groups, introduction of a 621 

secondary set of materials, and the use of multivariate statistics and additional sets of 622 

measurements [13].  BCN structure is rich in C‒O, C=O and C-OH linkages, these functional 623 

groups with unshared electron pairs are responsible for forming coordination bonds with 624 

heavy metal ions and producing the fluorescence reduction. The fluorescence increase 625 

observed in all the BCN with some heavy metal ions is a significant result as the increased 626 

fluorescence by the interaction with CNs has only been reported in Cdots synthesised from 627 

rice using a microwave assisted method [41]. The chemical interaction between Zn (II) and 628 

other carbonaceous compounds for enhancing the fluorescence is associated with linkages to 629 

nitrogen groups (amide and amine) and carbon oxygen linkages with free electron pairs 630 

(C=O) [42]. The presence of some nitrogen groups was evidenced in the FT-IR spectra. 631 

However, the most significant signals come from carbon linkages with free electron pairs. As 632 

the nitrogen groups were lower than the C=O groups, it is possible that the fluorescence 633 

enhancement followed similar interactions as other fluorescent compounds such as 634 

fluorescein, coumarin and rhodamine [43-45]. In these compounds, the fluorescence 635 

enhancing interactions have a reduced participation of nitrogen compared with the C=O 636 

linkages. Future work will focus on evaluating the combination of BCN and heavy metal ions 637 

with multivariate analysis for improving their selectivity, the evaluation of matrices for easy 638 

and portable detection of heavy metal ions, and the evaluation of BCN as probes for the 639 

detection of biomarkers.  640 



 641 

5  CONCLUSIONS 642 

This work demonstrated the significant effects of initial biochar feedstock and production 643 

process on the final physicochemical properties as well as biocompatibility, bio-imaging, and 644 

heavy metal sensing applications of BCN. The three types of BCN exhibited different optical 645 

and chemical characteristics. However, the SSB-CN and RSB-CN were more similar than 646 

MAB-CN. The biocompatibility between yeast species and BCN depended of the BCN type, 647 

pH and BCN concentration. SSB-CN did not produce a negative effect to the yeast species at 648 

any of the conditions evaluated. RSB-CN had a negative effect at alkaline pHs, In contrast, 649 

MAB-CN inhibited the growth of S. cerevisiae and C. albicans at all the tested pHs and 650 

concentrations above 500 ppm and evidenced its possible use as an antifungal agent.  All the 651 

BCN were suitable as a bioimaging probe for yeast bioimaging and had different 652 

fluorescence intensity and the localisation depending of the yeast cells. The intensity of the 653 

signals and lack of toxicity of SSB-CN suggest this nanomaterial as the most suitable for 654 

bioimaging applications. On the other hand, an initial investigation of BCN as heavy metal 655 

ions sensors demonstrated the possible use of SSB-CN and MAB-CN as transducers for the 656 

detection of Cu (II) and Zn (II) ions, respectively. Cu (II) selectively quenched SSB-CN 657 

(LOD 0.4 μM) and Zn (II) enhanced MAB-CN  fluorescence (LOD 9 μM). This research is 658 

the first steps to understand the differences between BCN and further utilise them to develop 659 

novel and sustainable methods for cell bioimaging and chemical compounds detection. 660 
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