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Abstract
Background:Oneof themain challenges for extrusion 3Dbioprinting is the identificationof non-
synthetic bioinkswith suitable rheological properties and biocompatibility.Our aimwas to optimize
and compare the printability of crystal,fibril andblend formulations ofnovel pulp derivednanocellulose
bioinks and assess biocompatibilitywithhumannasoseptal chondrocytes.Methods:Theprintability of
crystalline,fibrillated and blend formulations of nanocellulosewas determined by assessing resolution
(grid-line assay), post-printing shapefidelity and rheology (elasticity, viscosity and shear thinning
characteristics) and compared these to pure alginate bioinks. The optimized nanocellulose-alginate
bioinkwas bioprintedwithhumannasoseptal chondrocytes to determine cytotoxicity,metabolic
activity andbioprinted construct topography.Results:All nanocellulose-alginate bioink combinations
demonstrated a highdegree of shear thinningwith reversible stress softening behaviorwhich
contributed to post-printing shapefidelity. The uniqueblend of crystal andfibril nanocellulose bioink
exhibitednano- aswell asmicro-roughness for cellular survival and differentiation, aswell as
maintaining themost stable construct volume in culture.Humannasoseptal chondrocytes demon-
stratedhighmetabolic activity post printing and adopted a rounded chondrogenic phenotype after
prolonged culture.Conclusions:This study highlights the favorable rheological, swelling and
biocompatibility properties of nanocellulose-alginate bioinks for extrusion-basedbioprinting.

1. Introduction

The ability to print biological ‘inks’ rather than
traditional 3D printing of metals and plastic has
resulted in the birth of the new bioprinting research
field [1–4] which is gaining interest in engineering
customized tissues for reconstructive surgery [5–7].
Developments in automative bioprinting technology,
cell biology and material science has allowed produc-
tion of an increasing range of ‘printable’ bioinks,
consisting of cells and biocompatible materials, in an
attempt to simultaneously replicate native tissuemicro
and macroarchitectures, overcoming the problems of
repeatability and scalability of conventional tissue
engineering strategies [6, 8].

Of the three-main 3D bioprinting technologies:
extrusion, inkjet and laser-assisted, extrusion is the

most versatile, fast, scalable and cost-effective [9, 10].
This technique relies on extruding bioinks with sui-
table mechanical properties (viscosity, elasticity, shear
thinning) through a nozzle using either mechanical
(piston or screw driven) or pneumatic forces. Suitable
bioinks must also exhibit cellular viability, adhesion,
proliferation and differentiation [8, 11]. Although it is
easier to tailor the biomechanical properties of synth-
etic bioinks such as polyacrylamides and polyethylene
glycols to suit extrusion techniques, their biocompat-
ibility and tissue regenerative potential are inferior to
non-synthetic bioinks such as gelatin, agarose, algi-
nate, hyaluronic acid and collagen, which mimic the
natural extracellularmatrix environment [12].

Reconstruction of facial cartilage defects, from
trauma, burns, skin cancer and congenital conditions,
currently relies on using autologous grafts, most
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commonly from the costochondral site [13], with sig-
nificant donor site morbidity [14–17]. Current avail-
able tissue-engineered cartilage constructs, based on
non-specific cell seeding of scaffolds, fail to replicate
native tissue anisotropy [6, 18] and are therefore
mechanically unstable [19–21] and prone to degrada-
tion [22, 23], calcification [18, 21] and inflammation
in vivo, especially when synthetic biomaterials are used
[24, 25], prompting research into non-synthetic
alternatives.

Contemporary research into 3D bioprinting of
cartilage has identified several potential natural
bioinks, including fibrin, alginate, gelatin, Matrigel,
and nanocellulose [26, 27], which have been used as
scaffolds for facilitating cell homing from neighboring
healthy tissue or deposition of extracellular matrix fol-
lowing the addition of cellular components such as
chondrocytes or mesenchymal stem cells [28]. How-
ever, the application of the more commonly used
bioinks can be a challenge due to suboptimal print-
ability and pure alginate formulations, in particular,
have been identified as providing poor post-printing
shapefidelity evenwhen viscosity is increased [8, 29].

Nanocellulose, a linear polysaccharide extracted
from the biosynthesis of plants or bacteria, is an emer-
ging class of advanced naturally derived nanomaterial.
It is promising due to its attractive physicochemical
properties, extraordinarily high stiffness (100–200 GPa)
and strength, alongside its abundance and sustainability
[30–32]. It is currently classified into three groups: (1)
biomass-derived cellulose nanocrystals (CNC) (2) bio-
mass-derived cellulose nanofibrils (CNF) and (3) bac-
terial nanocellulose (BNC) [10]. BNC has shown
promise for tissue engineering applications due to
its biocompatibility, nanostructure, functionalization
potential, water-holding capacity and similarities in
morphology to collagen, thereby providing cell support
[33–42]. The unique biomechanical and rheological
properties due to the high aspect ratio of bacterial cellu-
lose have also meant that it has potential utility as a
bioink for 3D bioprinting [10, 33, 43–47]. Compared to
industrial scale production of CNF and CNC, obtained
through chemical andmechanical treatment of biomass
or wood pulp [32], the current techniques for produ-
cing BNC are limited by the huge substrate costs of sup-
porting bacterial growth, low yield of products and
concerns regarding residual bacterial toxins/epitopes,
whichhas precludedwidespreaduse [48–50].

There have been recent reports in the literature
concerning pulp biomass derived CNC and CNF
[27, 51, 52] bioinks which rely on ‘top-down’ NC
extraction using an expensive enzymatic treatment
step and concentrated acids with poor chemical recov-
ery, making clinical translation and ‘up-scaling’ pro-
blematic [53–55]. A lower cost, scalable solution has
presented itself in the form of American Value-Added
Pulping (AVAP®) technology, using a tunable pre-
treatment step without enzymes to produce CNF,
CNC and a unique blend (NCB) formulation at low

cost, high purity and with efficient, low cost chemical
recovery [56]. Characterization of these formulations
has revealed promising rheology for bioprinting and
found that NCB exhibits porous fibrillar networks
with interconnecting compact nanorods with favor-
able pore sizes for cellular ingress and maintenance
[57]. This study optimizes pulp biomass derived CNF,
CNC and NCB as bioinks for extrusion bioprinting
and investigates their printability and biocompatibility
using human nasoseptal chondrocytes.

2.Methods

2.1. Extrusion 3Dbioprinting set up
A custom-built extrusion bioprinter with a variable
speed control syringe driver mounted on a motor-
driven XY-Z system featuring custom RepRap firm-
ware was used to print 3D structures from NC/
alginate hydrogel bioinks. Bioink was loaded into 5 ml
syringes (Sterile BD Plastipak slip tip) and extruded
through 610 μm precision nozzles (Adhesive Dispen-
sing Ltd). Slic3r (open source software) allowed
adjustment of print settings to suit the individual
bioinks; including print-headmovement speed, extru-
sion speed, layer height, infill pattern and density. The
3D model was sliced and exported as G-code to
command the bioprinter. Initial calibration of the
printer and software resulted in a minimum pre-
fabrication ‘single layer’ of 1.7 mm to allow for
continuous, uniform printing. Sterile printing was
achieved in a class II laminar flow hood following
cleaning of all external bioprinter components using
70% ethanol andUV treatment for 60 min.

2.2. Bioink preparation and optimization
2.2.1. Nanocellulose bioink production
Nanocellulose particles were produced as an aqueous
slurry from raw wood chip biomass using patented
AVAP® technology which fractionated biomass into
cellulose, hemicelluloses and lignin using ethanol and
sulfur dioxide, with morphology controlled by the
time and temperature of the pre-treatment step
[56, 57] (figure 1). The final nanocellulose formula-
tions; hydrophilic BioPlus CNCs gel (pure cellulose,
wt. 3%), hydrophilic BioPlus CNFs gel (wt. 6%) and
hydrophilic BioPlus Blend gel (NCB, wt. 3%) consist
of their respective nanocellulose particles andwater.

CNC, NCB, and CNF were centrifuged at 1500G
for 5 min to remove any residual bleaching chemicals
and lignin fragments and steam sterilized in an auto-
clave (100 kPa, 121 °C, for 30 min). Alginic acid
sodium salt (medium viscosity from brown algae,
Sigma-Aldrich, Poole, UK) was UV sterilized for one
hour prior to being dissolved in sterile culture med-
ium to make up 0.625%, 1.25%, 2.5%, 5%, 7.5% and
10% alginate concentrations (w/v). One part alginate
was combined with four parts nanocellulose (to create
CNC-AG, NCB-AG and CNF-AG bioinks) as
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described by Markstedt et al [27] to allow crosslinking
with calcium chloride (CaCl2) following bioprinting.
Alginate solutions from 0.625% to 10% were qualita-
tively assessed against four criteria set to define opti-
mal bioink preparations; ease of dissolution, ease of
flow at room temperature, ease of mixing with NC,
and structural retention when printed with NC
(table 1).

2.2.2. Crosslinking optimization
Different concentrations (0.1, 0.5, and 1M) of aero-
solized CaCl2 solutions (anhydrous CaCl2 powder
Sigma-Aldrich, Poole, UK, dissolved in distilled water)
were tested for crosslinking time (from print comple-
tion to cessation of structural changes on application
of an indentation force). All solutions were sterilized
and filtered by a 0.22 μm cell filter (Merck Millipore,
Watford, UK) and stored in an incubator at 37 °C
before use. Cylindrical constructs measuring 27 mm
in diameter and 7 single layers (11.9 mm) in height
were printed using alginate concentrations of 2.5%
and 5% mixed with nanocellulose in 1:4 ratio respec-
tively as described above. Crosslinking was performed
by aerosolizedCaCl2 between each layer.

2.2.3. Transmission electronmicroscopy (TEM)
Each sample (2 mg)was dispersed in 5 ml of deionized
water and sonicated for 30 min. After sonication 50 μl
of the sample was immediately taken and further
dispersed into 1 ml of deionized water to prevent

coalescence. This solution (10 μl) was added to 300
mesh copper grids coated with lacey carbon film. The
grid was allowed to air dry prior to staining with a
1.5% uranyl acetate solution. For staining, a drop of
the uranyl acetate solution was placed on a parafilm
strip and the grid inverted onto the droplet for a few
seconds. The samples were then allowed to air dry.
Analysis was performed on a Jeol 2100 JEM operating
at 200 KV.

2.3. Printability testing
2.3.1. Resolution
Print resolution using the three different formulations
of NC (CNC-AG, CNF-AG and NCB-AG) was tested
by printing 40×40 mm square grids a single layer tall
(1.7 mm) with 27% rectilinear infill and crosslinked
with 0.5 M CaCl2 (figure 2), adapted from Markstedt
et al [58]. Grid line thickness was measured at the
halfway points of the infill diagonal lines using a digital
caliper (figure 2(B)). Shape fidelity of bioprinted and
crosslinked structures using the three formulations of
NC (CNC-AG, CNF-AG and NCB-AG) was assessed
by bioprinting 27 mm diameter cylinders with 7-layer
height (11.9 mm) and measuring diameter and height
immediate post-printing, at 24 and 72 h following
immersion in culturemedia at 37 °C.

2.3.2. Shape fidelity
Complex structure testing utilized 3D geometrical
shapes and anatomical STL models of auricular

Figure 1.Process route for nanocellulose bioink production fromwood pulp biomass.

Table 1.Alginate bioink additive qualitative analysis. Alginate concentrations were assessed against ease of dissolution, flow andmixingwith
nanocellulose blend (NCB) at room temperature and uncrosslinked post printing construct stability. Very easy (++++), easy (+++),
average (++), difficult (+), not possible (−).

Alginate concentration (wt%) Ease of dissolution

Ease

offlow

Ease ofmixing

withNCB

Uncrosslinked printed construct

stability

0.625 ++++ ++++ ++++ Unstable

1.25 ++++ ++++ ++++ Unstable

2.5 +++ +++ +++ Good

5 ++ ++ ++ Good

7.5 + + ++ Very good

10 − − − Untested
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Figure 2.Grid thickness assay to testing bioprinting resolution for nanocellulose bioinks. (A)Crosslinked lattices printed usingNCB-
AG, showing structural retention on agitationwith a spatula. (B)Electronic callipermeasurement offilaments printed usingNCB-
AG. (C) Schematic diagram to illustratemeasurement points of construct for resolution testing. (D) Filament thickness for CNC-AG,
CNF-AG andNCB-AG formulations. Data is expressed as themean, error bars indicate SD. Statistical differences was calculated by
one-wayANOVA (P=0.424, pooled data from four constructs, eachwithN=11).

Figure 3.G-code in graphical format of the shapes used for complex structure testing. (A)Hollow cylinder, (B) cylinder, (C)nasal
cartilage, (D) cube, (E) right ear, (F) 4-sided pyramid.
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cartilage, obtained from an online open source reposi-
tory, BodyParts3D© (The Database Center for Life
Science, licensed under CC Attribution-Share Alike
2.1 Japan (http://lifesciencedb.jp/bp3d/) (figure 3).
Cylindrical shapes were created using Microsoft 3D
Builder software (Microsoft Corporation, New Mex-
ico, USA) and exported in STL file format for 3D
bioprinting. The volume was calculated by measuring
the diameter (2r) and height (h) of the 3D printed
cylindrical constructs using V=πr2h to assess post
printing shape fidelity after 24 and 48 h under culture
conditions.

2.3.3. Rheology
The rheological properties of bioinkmixtures (alginate
1.25%/2.5%/5% and NC mixtures with alginate
1.25%, 2.5% and 5% to create CNC-AG, NCB-AG
andCNF-AG bioinks (with overall alginate concentra-
tions of 0.25%, 0.5% and 1% (w/w) respectively)were
measured using an AR-G2 (TA instruments, UK)
Controlled Stress Rheometer fitted with a 40 mm
diameter parallel plate geometry. Solutions were
mixed on a rolling rocker for ∼15 min before sample
loading. Prior to each experiment, the zero gap was set
on the rheometers and the geometry was calibrated
using rotational mapping. Approximately 0.65 ml of
sample was carefully loaded using a spatula onto the
center of the lower plate of the rheometer and the
upper plate was gradually lowered onto the sample
until the gap was totally filled (gaps ranged from 350 to
500 μm). Any excess sample around the edge of the
geometry was trimmed using a spatula. The normal
force measured at the lower plate was set at a
maximum of 0.1 N to ensure that any mechanical
damage to the sample during gap setting procedure
was minimized. The rheometers lower plate was
controlled at a temperature of 22 °Cand a low viscosity
silicon oil (Fisher Scientific: Brookfield, Viscosity
standard 0.920 specific gravity silicone oil 5 mPa s—
Ref: 10543108) was used to surround the outer edges
of the sample, in order to reduce sample evaporation.

Following a sample equilibration period of 2 min,
a frequency sweep (0.1–10 Hz) was performed at a
constant stress of 0.5 Pa. Each measurement was
within the linear viscoelastic range of the sample as
confirmed by stress sweeps (data not shown). The
values of storage modulus (G′) and loss modulus (G″)
were recorded over the entire frequency range
employed. Following the completion of the frequency
sweep, the sample was allowed to equilibrate for a per-
iod of 10 s before a shear flow ramp was carried out
over logarithmically increasing shear rates from 0.1 to
100 s−1 for a period of 2 min. Both frequency sweep
and shear flow ramp experiments were repeated at
least three times for each sample.

2.4. 3Dbioprintingwith humannasoseptal
chondrocytes
2.4.1. Cell culture, encapsulation and bioprinting
Chondrocytes were isolated from human nasoseptal
cartilage samples obtained after informed consent
(IRAS ID 99202) during routine septorhinoplasties.
Cartilage tissue was minced into 1 mm3 pieces and
digested by 0.4% pronase (Roche,West Sussex, UK) at
in culture media for 1 h at 37 °C (5%CO2)with gentle
agitation, followed by digestion with 0.2% collagenase
type I for 18 h [59]. The solution was filtered through a
40 μm cell strainer (VWR, Leicestershire, UK) and
then centrifuged at 500G for 5 min to replace the
enzymemixture with culture media. Cells were grown
in 5% CO2 at 37 °C and culture medium was changed
every 2–3 d. Culture medium used consisted of
Dulbecco’s Modified Eagle Medium without glucose
(Sigma-Aldrich, Poole, UK) supplemented with 10%
fetal bovine serum (Sigma-Aldrich, Poole, UK),
100 μg ml−1 penicillin and 100 Uml−1 streptomycin
(Sigma-Aldrich, Poole, UK), 1 mM glucose (Sigma-
Aldrich, Poole, UK), and 0.1% non-essential amino
acids (Thermo Fisher Scientific, Paisley, UK). Cells
were passaged using 0.05% trypsin-EDTA (Thermo
Fisher Scientific, Paisley, UK) when they reached
80%–90% confluency. The number of total and viable
cells was estimated by 0.4% trypan blue staining using
the Invitrogen™Countess™ II automated cell counter
(Thermo Fisher Scientific, Paisley, UK).

Passages 5–7 were chosen for subsequent experi-
ments because it yielded the adequate number of
chondrocytes for extrusion 3D bioprinting using
2×106 cells ml−1 of bioink [60]. Immediately prior
to bioprinting of cell-laden bioinks, cell suspensions
were drawn up into a syringe and gently mixed with a
syringe of NC/Alginate bioink using a two-way tap
under sterile conditions for one minute to ensure uni-
form distribution. Immediately post printing the cell-
bioink constructs were washed in culture medium to
remove the excess CaCl2 before culturing in the
incubator.

Table 2.Optimization of crosslinkingwith different
CaCl2concentrations. Quantitative analysis of crosslinking time
(min) and qualitative analysis of crosslinking strength. Crosslinking
strength defined by ability towithstandmechanical indent pressure:
very light pressure (−), light pressure (+), moderate pressure (++).

CaCl2 con-

centration

(M)

Alginate con-

centration

(wt%)
Crosslinking

time (min)
Crosslinking

strength

0.1 2.5 4 −
5 4 −

0.5 2.5 2 +
5 2 +

1 2.5 0

(Immediate)
+

5 0

(Immediate)
++

5
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2.4.2. Biocompatibility
A LIVE/DEAD® Cell Viability Kit (Thermo Fisher
Scientific, Paisley, UK) was used for assessment of cell
viability according to themanufacturer’s instructions at
24 and 48 h after bioprinting. The samples were stained
with 2 μM calcein AM (green) and 1 μM ethidium
homodimer-1 (red). Labeling was examined using
confocal microscopy (Zeiss LSM 710 inverted confocal
microscope), where green labeled cells represented live
cells and red labeling indicated dead cells. Images were

taken fromat least six different areas of three bioprinted
constructs for each condition, the number of live and
dead cells were counted using NIH ImageJ software,
and cell viabilitywas then expressed as the percentage of
the number of live cells to total cells.

Cell metabolic activity was quantified using 10%
(v/v) AlamarBlue® cell viability reagent (Thermo
Fisher Scientific, Paisley, UK) at 4, 12 and 24 h after
bioprinting. The fluorescence was measured (at
530–560 nm excitation wavelength and 590 nm

Figure 4.Transmission electronmicroscopy of nanocellulose-alginate bioinks before and after crosslinking. CNC-AG (A) and (B),
CNF-AG (C) and (D) andNCB-AG (E) and (F) before (A), (C), (E) and after crosslinkingwith 0.5 MCaCl2 (B), (D), (F).
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emission wavelength) with plate reader (POLARstar
Omega spectrophotometer, BMG LABTECH, Orten-
berg, Germany). Matched concentration of cells in
media were used as controls. The cross reactivity of
Alamar Blue with nanocellulose in the medium was
also tested. The OD values were normalized against
that at t=0. The cell viability was determined by plot-
ting fluorescence emission intensity versus cell
concentration.

2.4.3. Cytotoxicity
Cytotoxity of NCB bioink was assessed using lactose
dehydrogenase (LDH) cytotoxicity assay. The plate
containing cells with NCB-AG (n=6) as well as cells
only (n=6), media only (n=3) and NC controls

(n=3) were incubated at 37 °C, 5% CO2 overnight.
Then 50 μl of each sample medium was transferred to
a 96-well plate andmixed with 50 μl ReactionMixture
for 30 min at room temperature, protected from light,
at which point Stop Solution was added. The absor-
bance measurements (at 490 and 680 nm) was used to
determine LDHactivity.

2.4.4. Scanning electronmicroscopy (SEM)
Bioprinted and crosslinked cellular constructs grown
for 3 weeks in culture were washed three times with
50 mM Sodium Cacodylate-HCl Buffer solution
(pH 7.2–7.4, SPI Supplies) at 10–20 min intervals
to remove excess salt. The sample were fixed overnight
in 2% Glutaraldehyde (Sigma Aldrich, UK) and

Figure 5.Bioprinted construct swelling properties. Comparison cylindrical construct volume bioprinted using three different bioink
formulations (CNC-AG,NCB-AG andCNF-AG) crosslinkedwith either 0.1 Mor 0.5 MCalCl2 (A). Change in construct volume
relative to time 0 at 24 (B) and 48 (C) hours. Data is expressed as themean±SD (N=3 for all groups). Statistical differences calculated
by one-wayANOVAwithTukey’smultiple comparison post-hoc test. *P<0.05, **P<0.01, **P<0.001.

Figure 6.Nanocellulose bioinks for bioprinting complex structures. (A)Geometric structures printed usingNCB-AG for complex
shape testing; hollow cylinder (top left), cylinder (top right), pyramid (bottom left), and cube (bottom right). (B)Right ear.
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dehydrated with a series of graded concentrations
(30%–100%) of ethanol. The dehydrated sample was
then rinsed with 50% hexamethyldisilazane solution
(HMDS) in 100% ethanol for 10 min in a fume hood

and then three times in 100% HMDS and left over-
night to dry. The sample was coatedwith a thin layer of
gold (∼15 nm) using sputter coating and was imaged
using SEM (Hitachi 4800s).

Figure 7.Rheological properties of pure alginate bioinks.G′, storagemoduli (dark gray);G″, lossmoduli (light gray) for pure alginate
bioink formulations at varyingwt%, 1.25%, 2.5%, 5%, 7.5%.Data is expressed as themean±SD (N=5 for all groups).

Figure 8.Viscosity of pure alginate bioinks as a function of shear rate. Data is expressed as themean±SD (N=5 for all groups).

Figure 9.Rheological properties of nanocellulose-alginate bioinks at 1 Hz.G′, storagemoduli (dark gray);G″, lossmoduli (light gray)
for blend (NCB), crystal (CNC) andfibril (CNF)nanocellulose bioinks combinedwith 1.25%, 2.5%and 5%wt alginate. Data is
expressed as themean±SD (N=3 for all groups). Statistical differences calculated by one-wayANOVAwithTukey’smultiple
comparison post-hoc test. *P<0.05.

8
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2.4.5. Compression testing
Mechanical tests were performed on bioprinted NCB-
AG cylinder discs (5 mm diameter and 4 mm height),
crosslinked with 0.5 M of CaCl2 for 5 min and
incubated in phosphate buffered saline (Thermo
Fisher Scientific, Paisley, UK) at room temperature for
1 h to reach swelling equilibrium, using the BOSE
ElectroForce® 3200mechanical loadingmachine (Bose

Corporation, ElectroForce® Systems Group, Minne-
sota, USA). The compressive strength of the samples
was tested at 1 Hz. The compression (mm) and load
(N) were recorded and Young’s modulus was deter-
mined as the slope of the linear region of the stress/
strain curve:

sYoung’ Modulus N m or Pa Stress Pa Strain.2 =-( ) ( )/

Figure 10.Viscosity for different nanocellulose-alginate bioinks as a function of shear rate. CNC,NCB andCNF bioinks combined
with 1.25%, 2.5% and 5%alginate (AG). Data is expressed as themean±SD (N=3 for all groups). Statistical differences calculated
using T-test’s, *P<0.05.

Figure 11.Humannasoseptal chondrocyte post bioprinting viability. Nanocellulose crystal; CNC-AG (A), blend;NCB-AG (B) and
fibril; CNF-AG (C) bioink formulations. Data is expressed as themean±SD (N=5 for all groups). Statistical differences calculated by
one-wayANOVAwith Tukey’sHSDmultiple comparison post-hoc test (P=0.1502,N=5with 3 biological repeats).
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2.5. Statistical analysis
Quantitative results are expressed asmean±standard
deviation (SD), and the statistical analyses were
performed using the GraphPad Prism 6.0 (GraphPad
Software, La Jolla, CA, USA). Statistical analyses for
single comparisons were performed using the Mann-
WhitneyU test for non-Gaussian distributions and the
t test for Gaussian distribution. Multiple comparisons
were performed by one-way ANOVA, followed by a
Tukey’s post hoc test. Number of biological replicates
are indicated in each figure legend. A value of p<0.05
was considered statistically significant.

3. Results

3.1. Nanocellulose bioink formulation and
crosslinking optimization
0.625% alginate solution exhibited superior properties
with regards to dissolution and mixing but quickly
collapsed at room temperature post printing. 7.5%
and 10% alginate solutions were difficult to dissolve
and too viscous to mix evenly with NC. Concentra-
tions 1.25%, 2.5% and 5% were found to have
promising viscosities and mixing potential and went
on to rheological testing. Optimum alginate concen-
tration 2.5% was chosen for further experiments due
its ability to balance ease of dissolution and mixing
with uncrosslinked structure stability post printing
(table 1).

Crosslinking optimization is summarized in
table 2. 1 MCaCl2 was crosslinked in the shortest time
(immediately, compared to 2 min for 0.5 M and 4min
for 0.1 M), with final constructs able to withstand lar-
ger mechanical force compared to 0.5 and 0.1 M.
However, it was found that the immediate cross-
linking time of 1M CaCl2 resulted in crosslinking of
the filament during deposition, causing dragging and
ultimately spoiling the final printed structure.
Figure 2(A) illustrates crosslinked lattice structures
using 0.5 M CaCl2 withstanding agitation using a
spatula.

All three formulations displayed varying degrees of
nanofiber entanglements and extensive porous net-
works as seen on TEM prior to crosslinking due to
agglomeration (figures 4(A), (C), (E)) as reported in
other studies [61]. NCB-AG shows fibrillar entangle-
ments of NC nanofibrils interspersed with CNCs
(figure 4(E)). On crosslinking with CaCl2 the alginate
pulls the nanofibrils and crystals together to reduce
voids within thematerial and produce a firm structure
that can be manipulated and withstand cell culture
conditions (figures 4(B), (D), (F)).

3.2. 3Dbioprinting ofmacrostructures using
nanocellulose bioinks
NCB-AG had the highest resolution demonstrated by
themedianfilament thickness of 1.01mmcompared to
1.07mm and 1.04 mm for CNC-AG and CNF-AG
respectively (figure 2(D)), however, this was not found
to be statistically significant (p=0.42, one-way
ANOVA). Crosslinked CNC-AG and NCB-AG cylind-
rical constructs swelled, especially at low crosslinker
concentrations, over 24 h under culture conditions (in
media at 37 °C), but these changes were not statistically
significant (figures 5(A) and (B)). After 72 h there was a
significant increase in volume for CNC-AG
(697.6 mm3, p-value 0.003) and NCB-AG (523.9 mm3,
p-value 0.021) constructs crosslinked with 0.1M versus
0.5M CalCl2 concentrations whereas constructs
printed using CNF-AG decreased in volume, with
0.5M crosslinked constructs having a greater reduction

Figure 12.Humannasoseptal chondrocyte viability in 2D
versus 3D culture in nanocellulose blend bioink. Viability
post bioprintingwithNCB-AG after 24 and 48 h in culture
(white bars) versus 2D culture after 24 and 48 h (black bars).
Data is expressed as themean±SD (N=4 for all groups).
Statistical differences calculated byMann–Whitney test.
*P<0.05, ***P<0.001.

Figure 13. Lactate dehydrogenase (LDH) cytotoxicity assay.
Cytotoxicity analysis of humannasoseptal chondrocytes in
2D culture versus post bioprintingwithNCB-AG.Data is
expressed as themean±SD. Statistical differences between
media with cells andNCB-AGwas calculated byUnpaired t
test (P=0.322,N=3–6).
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in volume (488.3 mm3) than 0.1M crosslinked ones
(186.8 mm3) from their original size (figure 5(C)).
NCB-AG constructs crosslinked with 0.5M CalCl2
were the most stable under culture conditions with a
reductionof 62.3 mm3 from its original size.

Since NCB-AG crosslinked with 0.5 M CaCl2
demonstrated themost stable construct volume under
culture conditions this was the formulation chosen for
complex shape testing, including hollow cylinders and
anatomical auricular cartilage (figure 6) and bio-
compatibility experiments.

3.3. Rheological properties of pulp-derived
nanocellulose enable bioprinting
Pure alginate bioinks showed increasing G′ and G″
with increasing frequency (figure 7). The mean loss
moduli (G″) were consistently higher than mean
storage moduli (G′) for all concentrations (1.25%,
2.5%, 5% and 7%) demonstrating a dominance of
viscous over elastic properties in pure alginate bioinks
(figure 7). Shear rate ramps were performed to
investigate the flow properties of bioinks bymeasuring
the viscosity as a function of increasing shear rate. This
revealed limited shear thinning behavior at 5% and
7.5% and near Newtonian behavior at 1.25% and
2.5% concentrations of pure alginate bioinks over the
entire shear rates studied (figure 8).

However, unlike alginate bioinks, the mean G′ for
all NC bioinks is greater than the G″ over all fre-
quencies studied indicating a dominance of elasticity
and demonstrating strong interconnecting networks
between nanostructures (figure 9). Shear rate ramps
were performed to investigate the flow properties of
CNF-AG, CNC-AG and NCB-AG bioinks by measur-
ing the viscosity as a function of increasing shear rate
(figure 10(A)). All nanocellulose containing bioinks
exhibited a higher degree of non-Newtonian, shear
thinning (pseudoelastic behavior) compared to pure

alginate bioinks. CNF-AG and NCB-AG formulations
demonstrated greater and statistically different viscos-
ities compared to all CNC formulations. This differ-
ence is best seen at shear rate=0.12 s−1 but is still
present at higher shear rates (figure 10(B)). This
implies that there are stronger particle–particle inter-
actions or increased entanglements between nano-
and microstructures within the NCB-AG and CNF-
AG compared to CNC-AG bioinks, providing better
shapefidelity post printing [27].

3.4. Nanocellulose is biocompatible with human
nasoseptal chondrocytes
Immediately following bioprinting, cell viability was
highest for NCB-AG (83.9%±16.7% live cells),
followed by CNC-AG (80.1%±17.4%) and lastly
CNF-AG (71.6%±17.4%) but differences were not
statistically significant (P=0.1502) (figure 11).

Constructs bioprinted using NCB-AG and cross-
linked with 0.5 M CaCl2 demonstrated the greatest
volume stability and favorable cell viability and was
therefore used for further biocompatibility experi-
ments. Cell viability in NCB-AG (90.1% ±13.8%)
after 24 h in culture was comparable to cells on tissue
culture plastic alone (85.3%±3.4%). However, by
48 h cell viability was significantly higher for cells
cultured in NCB-AG (97.3%±4.5%) compared to
cells on cultured on plastic alone (94.0%±6.4%,
P=0.0326) (figure 12).

Median LDH activity, an indicator of cytotoxicity,
was not found to be significantly different between cells
cultured onplastic versus bioprinted and cultured 3D in
NCB-AG (0.05 versus 0.049 respectively, P=0.1138)
(figure 13). Human nasoseptal chondrocytes had sig-
nificantly increased metabolic activity between 4 and
12 h in culture at all cell densities and conditions tested
(P<0.0001) but not between 12 and 24 h (figure 14).
Chondrocytes demonstrated significantly increased

Figure 14.Metabolic activity of human nasoseptal chondrocytes inNCB-AG at 4, 12 and 24 h. The graph shows thefluorescence
signal caused by reduction of alamarBlue (with themediumormediumplusNCvalue subtracted) inwells with increasing numbers of
cells. Data is expressed as themean±SD (N=5 for all groups). Statistical differences calculated by one-wayANOVAwithTukeyHSD
multiple comparison post-hoc test. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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metabolic activity in NCB-AG compared to culture in
2D on plastic after four hours as measured by the fluor-
escence intensity for 2×105 (122.2±23.9 versus
293.0±118.1 respectively, P=0.0005) and 5×105

(257.8±21.0 versus 403.0±120.5 respectively,
P=0.0068) cells (figure 14). At 12 and 24 h, the differ-
ences between the conditions are no longer significant.

SEM images demonstrate the relatively homo-
genous nature of 2.5% alginate bioink (figures 15(A)
and (C)) compared to the highly porous structure of

nanocellulose blend bioink consisting of varied nano
andmicro architecture, providing a larger surface area
for cell adhesion (figures 15(E) and (G)). Humannaso-
septal chondrocytes maintain a rounded cell morph-
ology in both pure alginate (figures 15(B) and (D)) and
nanocellulose blend (figures 15(F) and (H)) after 3
weeks in culture. Unconfined compression testing of
bioprinted NCB-AG constructs crosslinked with
0.5 M CaCl2 demonstrated a compressive/Young’s
Modulus of 52.6 kPa (figure 16).

Figure 15. Scanning electronmicroscopy (SEM) of alginate and nanocellulose constructs following bioprinting. Alginate (A) and (C)
andNCB-AG (E) and (G) bioinkswithout cells and alginate (B) and (D) andNCB-AG (F) and (H) bioinks after 21 d in culture with
human nasoseptal chondrocytes, Scale bar (A), (B), (E), (H) is 50 μmand (C), (D), (G), (H) is 10 μm.
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4.Discussion

Nanocellulose is rapidly gaining interest for biomedi-
cal applications due to its unique physical, chemical
and biological properties [50]. Results demonstrate
that our optimized crystal, fibril and blend nanocellu-
lose-alginate bioink formulations have comparable
resolution, suitable rheology and biocompatibility
with human nasoseptal chondrocytes to enable utility
for cartilage bioprinting using extrusion-based techni-
ques. The unique blend nanocellulose-alginate bioink
(2.5% alginate, crosslinked with 0.5 M CaCl2) offers
the advantages of exhibiting nano- as well as micro-
roughness for cellular functionality, as well as main-
taining the most stable construct volume, to more
reliably maintain the shape of patient specific cartilage
constructs under culture conditions in the future. It
was therefore chosen as the optimum bioink for our
metabolic and topographical studies.

The few studies investigating bioprinting with
pulp based nanocellulose have assessed crystal or fibril
formulations individually [27, 51, 62] with none
directly comparing CNC, NCB and CNF. Our pre-
vious work has demonstrated that AVAP technology
produces nanocellulose with promising pore and fiber
networks for tissue engineering applications [57].
TEM and SEM data in this study shows that even with
addition of alginate all three NC formulations con-
tinue to be highly porous both in the nano and micro
range, unlike pure alginate bioinks which are typically
only nanoporous (approx. 5 nm) [63]. NCB hydrogels
exhibited a combination of fibrillar networks and
interconnecting compact nanorods and have been
shown to have a broader variation in pore sizes (55 nm
to over 12 μm,mean 934 nm) compared to those from
CNC alone, which would allow chondrocyte migra-
tion (approx. 10 μm diameter) and provide a tunable
nanotopography for a greater variety of bioactive sig-
nals [57].

The addition of alginate to allow crosslinking cap-
ability did not adversely affect the elasticity or shear
thinning behavior of nanocellulose bioinks, which

depends on the dry content of the ink rather than the
ratio between the two components [27]. The storage
modulus was greater than the loss modulus for all
combinations of nanocellulose-alginate bioinks, over
all frequencies studied, and therefore dominance of
elasticity similar to pure nanocellulose materials [57].
This was in contrast to pure alginate bioinks, which are
predominantly viscous. The large aspect ratio and
ability to form interconnected network structures
through hydrogen bonding makes nanocellulose both
stiff due to the ordered (crystalline) regions and flex-
ible due to the disordered (amorphous) regions of the
nanoparticle [50]. These nanocellulose network struc-
tures can disentangle and align parallel to the direction
of flow when placed in suspension which also accounts
for the high degree of shear thinning exhibited in our
study and has also been confirmed for other types of
nanocellulose formulations in the literature [27, 62, 64].
Shear thinning enables bioprinting through fine
deposition nozzles at low shear rates with reduced
mechanical forces exerted on cells [27]. This is in con-
trast to themore commonly used pure alginate bioinks,
which exhibit only limited shear thinning even at high
shear rates requiring higher forces (shear stress) for
extrusion which can impact post-printing cell viability
[65–67]. Reversible stress softening behavior of nano-
cellulose means that post printing the storage modulus
(G′) is recovered under static conditions and is higher
than that for pure alginate bioinks (in the 1.25%–7.5%
range) contributing to shape fidelity and preventing
collapse of complex 3D bioprinted constructs [47]. The
rigidity of NCB was significantly higher than for CNC
but similar to CNF indicating that the double network
hydrogel structure previously reported for NCB is not
disruptedby the addition of alginate [57].

Nanocellulose is broadly considered to be bio-
compatible using in vivo animal studies of BNC
demonstrating no foreign body reaction or inflamma-
tion [68, 69]. Although it is well known that cellulose is
not readily degraded by the human body due to the
lack cellulolytic enzymes, non-enzymatic, sponta-
neous hydrolysis of cellulose chains have been sug-
gested to account for slow breakdown which can be
enhanced through oxidation [34, 70]. Even if not fully
broken down, cellulose is biologically inert and theo-
retically should not interfere with homeostatic pro-
cesses such asmatrix remodeling [71].Most reports on
the nanotoxicology of nanocellulose use BNC and
show no evidence of damage at the genetic, cellular
and in vivo animal level [72] but few studies use human
cells and none directly compare pulp based crystal,
fibril and blend formulations [50]. Our study shows
that pulp based nanocellulose is non-cytotoxic to
nanoseptal chondrocytes with no significant differ-
ences in cell viability post-printing with CNC, NCB
and CNF. NCB not only significantly increased the
proportion of viable nasoseptal chondrocytes in cul-
ture after two days, it also encouraged them to bemore
metabolically active after the first four hours post

Figure 16. Stress strain curve for bioprinted constructs.
Unconfined compression testing of bioprintedNCB-AG
constructs crosslinkedwith 0.5 MCaCl2 demonstrated a
compressive/Young’smodulus of 52.6 kPa.
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printing, whilst maintaining a rounded chondrogenic
phenotype after three weeks in culture, suggesting a
suitable 3D environment, nanotopography and poros-
ity for cartilage matrix formation. These findings are
consistent with previous studies indicating that main-
tenance of a round cell morphology is a prerequisite
for overt chondrogenic differentiation [73]. The nano-
cellular fibrillary structures can mimic the properties
of extracellular matrix components, which are also
nanofibrillar networks composed of glycosaminogly-
cans and fibrous proteins, such as collagen, elastin,
laminin and fibronectin, thereby encouraging cells to
differentiate [74, 75]. The 3D bioprinted constructs
themselves are immature and do not have the
mechanical properties (Young’s modulus 52.6 kPa) of
native nasoseptal cartilage (in the region of 2–4MPa
[76]) and would require maturation via cartilage
matrix secretion in a bioreactor before implantation to
determine utility as cartilage tissue substitutes.

The AVAP process does not introduce post-
hydrolysismodifications to the nanocellulose prepara-
tions which provides exiting potential for functionali-
zation [56, 57]. The three available hydroxyl groups
and negative surface charge allow the possibility of
protein immobilization based on chemical conjuga-
tion and electrostatic adsorption respectively, in order
to enhance cell attachment, migration, proliferation
and differentiation [77].

5. Conclusion

3D bioprinting research has been gaining traction to
transition from theory into practice and to ultimately
allow biofabrication of customized and anatomically
accurate replacement tissue using the patient’s own
cells for surgical reconstruction. Pulp derived nanocel-
lulose was found to be extremely shear thinning with
reversible stress softening behavior, thereby contribut-
ing to post-printing shape fidelity. The unique blend
of crystal and fibril nanocellulose bioink exhibited
nano- as well as micro-roughness for cellular survival
and differentiation, as well as maintaining the most
stable construct volume in culture. One of the major
challenges in bioprinting any tissue type are bioinks
that are printable, capable of maintaining complex
macrostructures structures and able to provide an
environment in which cells can thrive and differenti-
ate, making pulp based nanocellulose a promising
addition to the bioink research field.
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