
Lorentz force sigmometry: a novel technique to

measure the electrical conductivity of solid and

fluid metals

DISSERTATION

zur Erlangung des akademischen Grades

DOKTORINGENIEUR

(Dr.-Ing.)

vorgelegt der

Fakultät für Maschinenbau der

Technischen Universität Ilmenau

von Frau

M.Sc. SHATHA ALKHALIL

geboren am 15.09.1984 in Homs, Syrien

Tag der Einreichung: 27.11.2015
Tag der wissenschaftlichen Aussprache: 25.02.2016

Gutachter: 1. Univ.-Prof. Dr. André Thess
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Zusammenfassung

Lorentzkraft Sigmometrie, ”LOFOS,” ist eine neuartige Technik zur Messung
unterschiedlicher physikalischer Eigenschaften von Flüssigmetall, wie der elek-
trischen Leitfähigkeit, Viskosität oder Dichte. Der Fokus dieser Arbeit liegt auf
der Messung der elektrischen Leitfähigkeit von festen und flüssigen Metallen mit
dem sogenannten mobilen LOFOS.

Diese Technik basiert auf den Grundsätzen der Magnetohydrodynamik: Durch
die Bewegung eines elektrischen Leiters in einem von außen angelegtem Mag-
netfeld werden Wirbelströme innerhalb des Leiters induziert. Nach dem Am-
pereschen Gesetz erzeugen diese Wirbelströme wiederrum ein sekundäres Mag-
netfeld. Durch Wechselwirkung zwischen den Wirbelströmen und dem magnetis-
chen Gesamtfeld entstehen Lorentzkräfte, die den Fluss abschwächen. Nach
Newtons drittem Gesetz (actio und reactio) wirken die Lorentzkräfte auch auf
den Magneten mit gleichem Betrag, aber in entgegengesetzter Richtung [Thess
et al., 2007]. Diese Kraft kann gemessen werden und ist proportional zu der
elektrischen Leitfähigkeit des flüssigen oder festen Leiters. Diese Tatsache wird
für die kontaktlose Geschwindigkeitsmessung ”Lorentz force velocimetry” und für
die Erkennung von Defekten in Festkörpern ”Lorentz force eddy current testing”
genutzt.

Ziel dieser Arbeit ist es zu testen und zu zeigen, dass LOFOS erfolgreich die
elektrische Leitfähigkeit von festen und flüssigen Metallen messen kann. Mehrere
Experimente wurden durchgeführt um dieses zu zeigen, beginnend mit festen
Zylindern aus Kupfer, Aluminium und Messing, die eine Länge von 300mm und
einem Durchmesser von 10mm haben. Die ersten Experimente wurden an fes-
ten Metallen mit bekannter elektrischer Leitfähigkeit durchgeführt (Aluminium
und Kupfer), um den Kalibrierungsfaktor zu ermitteln. Dieser Kalibrierungs-
faktor wurde dann benutzt um die Leitfähigkeit eines Zylinders aus Messing zu
messen. Die Anordnung von LOFOS für die Messung an festen Metallen be-
darf einiger technischer Veränderungen im Vergleich zu der Messung an Fluiden.
Diese Veränderungen sind nötig um die Zeit der Wechselwirkung zwischen festen
Metallen und externen magnetischen Feld, welches durch einen Halbach Zylinder
Magneten erzeugt wird, zu verlängern [Alkhalil et al., 2015].

Die zweite Reihe an Experimenten erfolgte mit Flüssigmetall. Zu Beginn wurde
die Legierung Ga67In20.5Sn12.5 verwendet, deren physikalische Eigenschaften bekannt
sind. Diese eutektische Legierung hat einen Schmelzpunkt von Tm = 10.5 ◦C
und ist daher flüssig bei Raumtemperatur, wohingegen die zweiten Versuche



mit flüssigem Zinn durchgeführt wurden, welches einen Schmelzpunkt von Tm =
232 ◦C hat. Für die Strömungsmessungen fertigten wir einen speziellen kegelförmi-
gen Behälter aus Quarz an, welcher Temperaturen von Raumtemperatur bis zu
1000 ◦C aushält. Die Düse hat einen Durchmesser von 8mm und ermöglicht
den Durchfluss von flüssigem Metall durch das Magnetsystem in ∆t ≈ 5 s, was
notwendig für die Messung der Lorentzkraft mit hoher Genauigkeit ist. Um das
LOFOS Lorentzkraft Messsystem vor hohen Temperaturen zu schützen, haben
wir eine externe Luftkompressor Pumpe hinzugefügt.

Beide Experimente bestätigen, dass Lorentzkraft Sigmometrie die elektrische
Leitfähigkeit von festen und flüssigen Metall ermitteln kann. Der Fehler für die
Messungen an festen Metallen beträgt bis zu 6.5%, für die Messungen an flüssigen
Metal bis zu 10%.
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Abstract

Lorentz force sigmometry, ”LOFOS,” is a novel technique with three different
configuration setups for measuring different physical properties of molten metals
such as electrical conductivity, viscosity, and density . However, this thesis focuses
on measuring the electrical conductivity of the solid and molten metals using the
so-called mobile LOFOS setup.

The interaction of an electrically conducting fluid with an externally applied mag-
netic field leads to a force that acts upon the magnetic field generating system
and drags it along the flow direction [Thess et al., 2007]. This force linearly de-
pends on the electrical conductivity of the conducting fluid and can be measured
using force sensors. The aim of this study was to test and successfully prove
that LOFOS can measure the electrical conductivity of solid and molten metals.
Several experiments were performed to achieve this goal, starting with experi-
ments using three solid cylindrical bars made of copper, aluminum, and brass
300mm in length and 10mm in diameter. The first series of experiments were
carried out with known electrically conductive metals, aluminum and copper, in
order to compute the calibration factor of the device. We then used the same
calibration factor to estimate the unknown electrical conductivity of a brass bar
[Alkhalil et al., 2015]. The setup of LOFOS for solid measurements required some
technical changes as compared to the one for fluid measurements. This modifica-
tion was necessary to extend the interaction time between the solid bar and the
external magnetic field generated by a Halbach cylinder magnet.

The second series of experiments were with molten metals. The first series with
known physical properties alloy having the composition of Ga67In20.5Sn12.5. This
is a eutectic alloy at room temperature, and its melting temperature is Tm =
10.5 ◦C, whereas the second series was carried out with high-temperature molten
tin at Tm = 232 ◦C. For fluid measurements, we fabricated a special quartz
conical vessel able to withstand temperatures ranging from room temperature up
to 1000 ◦C. The nozzle had a diameter of 8mm, and it allowed the flow of molten
metal across the magnet system during some seconds, which is reasonable for
measuring the Lorentz force with good accuracy. In order to protect the LOFOS
force measurement system from high temperatures, we added an external air
compressor pump to the LOFOS setup.

Both experiments with solid and molten metals prove that Lorentz force sigmom-
etry is able to measure the electrical conductivity of solid and molten metals. The
uncertainty of solid measurements is in total up to 5% , while for molten metals
measurements is less than 10% .
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Chapter 1

Introduction

1.1 Motivation

Metallurgical processes such as continuous casting [Blair & Stevens, 1995] and

powder production (see Fig. 1.1) were proposed as early as the mid-1800s. The

extensive industrial application of these processes started in the late 1960s and

early 1970s. Currently, as an example, the continuous casting ratio of crude steel

output is approximately 90%. In spite of this growth, however, the quality of

the finished products and efficiency of these processes are still not sufficient. For

precise control of the production process in industry, the following is needed:

• First, precise knowledge of the physical properties of molten metals (such as

electrical conductivity, density, viscosity, and surface tension) is crucial for

the proper optimization and control over the metallurgical processes. Until

today, these factors have been known in metallurgy with an uncertainty

higher than 10%. Among all these properties, the electrical conductiv-

ity is of particular interest because it helps in determining the local skin

depth of metal melts, which determines the energy efficiency in the electro-

magnetic processing of materials, including electromagnetic stirring [Sivak

et al., 2009]. It also helps us draw inferences about the electronic transport

properties and the structural heterogeneity of the metal [Brodova et al.,

2002].

• Second, flow rate measurements of liquid metal at several locations is de-

sirable because the quality of the final product of a metallurgical process

strongly depends on the quantity of individual alloy components involved
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1. Introduction

in the production process. This task remains challenging. Because molten

melts in metallurgy are hot and aggressive and because the wetting charac-

teristics between the melt and the probe are mostly unknown, contact meth-

ods for flow measurements such as mechanical flow meters, pressure-based

flow meters, thermal flow meters, and electromagnetic flow meters cannot be

applied [Baker, 2000; Jensen, 2004; Shercliff, 1962]. Thus, non-contact mea-

surement techniques are of interest. However, because liquid metals have

high opacity, optical measurement systems such as laser Doppler anemom-

etry and particle image velocimetry cannot be applied. On the other hand,

liquid metals are excellent electrical conductors, and so electromagnetic

measurement techniques are promising candidates to meet the challenge.

Among these candidates, flow meters based on the measurement of (i) flow-

induced Lorentz forces [Thess et al., 2006], [Kolesnikov et al., 2011] that

act as a braking force on the flow but also as a counteracting pulling force

on an externally arranged magnet system and (ii) flow-induced phase shifts

[Priede et al., 2011] of electrical fields between a submitting coil and two

receiving coils have been developed and already successfully applied under

industrial conditions. However, these methods require precise knowledge of

the electrical conductivity of the melt in order to evaluate the melt velocity

from the measured data.

From the above discussion, we notice that accurate measurements of the electrical

conductivity of molten metals is important for improving the current metallurgi-

cal process and thus the quality of the finished product.

2 Dissertation Shatha Alkhalil



1. Introduction

(a) (b)

Figure 1.1: Continuous casting process of steel. (a) Manufacturing process of continuous casting

of steel in industry (courtesy of Vizag Steel). (b) Continuous casting process. 1: Ladle. 2:

Stopper. 3: Tundish. 4: Shroud. 5: Mold. 6: Roll support. 7: Turning zone. 8: Shroud. 9:

Bath level. 10: Meniscus. 11: Withdrawal unit. 12: Slab. A: Liquid metal. B: Solidified metal.

C: Slag. D: Water-cooled copper plates. E: Refractory material (courtesy of Wikipedia).

In the present thesis, we address the problem of non-contact measurement of the

electrical conductivity of liquid metals in order to support the flow measurement

techniques described above, which need this melt property as an input quantity.

We term the method “Lorentz force sigmometry,” where the term “sigmometry”

refers to the letter sigma, σ, which is often used to denote the electrical con-

ductivity. The Lorentz force sigmometry method is based on the phenomenon

of eddy current generation in a moving conductor exposed to a magnetic field

(see Fig. 1.2). Based on Ampere’s law, the eddy currents in turn generate a sec-

ondary magnetic field; as a result of the interaction between eddy currents and

the magnetic fields, the Lorentz force is generated. This force acts as a brake on

the conductor. Owing to Newton’s third law (the law of action-reaction), a force

that is equal to the Lorentz force and is directly proportional to the electrical

conductivity of the conductive fluid or solid acts on the magnet. We can measure

this force using a force sensor located beneath the magnet. This phenomenon has

been used in contactless velocity measurements in the form of “Lorentz force ve-

locimetry” (LFV) and for detecting defects in a solid bar in the form of “Lorentz

force eddy current testing” (LET).

3



1. Introduction

Figure 1.2: Schematic of the working principle of Lorentz force velocimetry. (a) A moving

electrically conductive fluid is exposed to a magnetic field. (b) An eddy current is induced

inside the fluid by the external magnetic field. (c) The eddy current induces a secondary

magnetic field. (d) The interaction of the magnetic field with the eddy current generates a

Lorentz force (braking force) on the fluid. Then, owing to Newton’s third law, a force equal to

the Lorentz force acts on the magnet, which can be measured using a force sensor.

1.2 Objective and overview of this thesis

Lorentz force sigmometry with its simple concept can measure three important

physical properties—electrical conductivity, density, and viscosity—using three

different configurations. However, in this study, we aim to prove experimentally

that Lorentz force sigmometry can measure the electrical conductivity of solid

and liquid metals with good accuracy. The other two physical properties must

be left open for the future owing to the time constraints of this Ph.D. project.

Our goal, therefore, is to investigate solid and molten metals. The first series of

measurements were carried out with three cylindrical bars made of copper, alu-

minum, and brass, whereas the second series of measurements were carried out

with a special alloy named galinstan at room temperature and tin at 232 ◦C in

the lab.

To accomplish the aims and objectives of the project, the entire thesis has been

structured as follows:

Chapter 2 presents the traditional methods that have been used up to now for

measuring the electrical conductivity of solid and liquid metals.

4 Dissertation Shatha Alkhalil



1. Introduction

Chapter 3 presents the fundamental theory for measuring the electrical conduc-

tivity of conductive materials and explains in detail the two experimental setups

of Lorentz force sigmometry that were used for both solid and fluid measure-

ments. Details of the Halbach magnet and the force measurement system are

also explained in sections 3.4 and 3.5. Calibration of the force measurement sys-

tem to find the calibration factor that transfer volt to newton has been done in

3.6. Following, the uncertainty of measurements has been explained in 3.7. The

results from the solid measurements are presented in Chp. 4. The first setup was

used to prove the ability of Lorentz force sigmometry to measure the electrical

conductivity of solid metals, using copper and aluminum bars to calculate the

calibration factor of the LOFOS setup. This calibration factor was then imple-

mented into the equation to find the electrical conductivity of the brass bar.

In Chp. 5, the results from the fluid measurements are presented. The first series

of measurements were done with the eutectic alloy galinstan Ga67In20.5Sn12.5 at

room temperature. It has the same function as the copper and aluminum bars

in the solid measurements, which was to find the calibration factor because we

changed the nozzle geometry of the filling funnel for fluid measurements. Then,

we used this calibration factor to find the electrical conductivity of the molten

tin.

Finally in chapter 6, we present some concluding remarks of the research and

provide a brief overview and ideas for future work.

5
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Chapter 2

State of the art

2.1 State of the art of electrical conductivity of

solid metals

We present some of the most widely used methods of measuring conductivity in

the branch of solid-state physics in this section [Lark-horovitz & Johnson, 1959].

Ohm’s law: The potential difference across both the ends of a conductor will be

directly proportional to the current flowing through that conductor [Consoliver

& Mitchell, 1920], given that the physical conditions such as temperature and

mechanical stress do not change. It is represented by the equation below.

V = I · R (2.1)

In the equation, R denotes the resistance, I denotes the electrical current, and

the potential difference (voltage) across the ends of the conductor is denoted by

V . Resistivity: The resistance, R, of a conductor is directly proportional to its

length, L, and inversely proportional to its cross-sectional area, A, given that the

temperature remains constant. It can be equated as follows:

R = ρ
L

A
(2.2)

Here, ρ denotes the resistivity of the material of the conductor.

7



2. State of The Art

2.1.1 Two-probe method for measuring the electrical con-

ductivity of solid metals

The resistivity of a solid can be calculated by measuring the range of voltage

drop caused by the passage of a constant current provided by a current source,

such as a DC battery, in a long parallel pipe-shaped sample having a uniform

cross section. An AM meter is used to measure the current in the specimen, I.

The potential difference, V , between the two ends of the specimen is measured

using a voltmeter. If the length between the two ends of the specimen is denoted

by L and A denotes the cross-sectional area, then the resistivity can be found by

employing equations 2.1 and 2.2.

ρ =
V A

IL
(2.3)

The conductivity of an object is denoted by σ, and it is defined as the inverse of

the resistivity. Therefore, the conductivity can be calculated by using equation

2.3 as follows:

σ =
IL

V A
(2.4)

where the current I is measured in amperes, the voltage drop V across the ends

of the specimen is given in volts, and the length L of the sample is measured in

meters.

8 Dissertation Shatha Alkhalil



2. State of The Art

Figure 2.1: Two-probe method for measuring the electrical conductivity of a conductor. It

consists of an AM meter to measure the current in the specimen and a voltmeter to measure

the potential difference between the two ends of the long parallel pipe-shaped sample.

This method is not completely perfect, and it has some certain disadvantages.

These disadvantages include the errors caused by the contact resistance between

the measuring leads. Also, it is not possible to apply it to a simple shape and

to certain types of samples. It is also quite difficult to solder the testing leads.

Soldering creates impurities in the material while dealing with semiconductors,

and therefore it also affects the intrinsic electrical resistivity.

A significant collinear equidistant four-probe method is used to overcome the two-

probe method and its disadvantages. This method can measure the resistivity of

conductors with different shapes but they should have a uniform cross section.

To eliminate the errors discussed above, the soldering contacts are replaced by

pressure contacts.

2.1.2 Four-probe method for measuring the electrical con-

ductivity of solid metals

The four-probe method of measuring the electrical conductivity of solid metals

comprises four equally spaced tungsten metal probes having a predetermined

radius [Keithley, 2005]. All four probes are individually supported by springs on

their ends so that the sampling damage during probing can be minimized. The

sample is supplied with an electrical current through a high-impedance source

9



2. State of The Art

using the outer two tubes. A voltmeter is used to measure the voltage across

the inner two probes. Given that the area of contact of every point is considered

to be quite small, the contact area is not included in the calculations. For bulk

sample with thickness much bigger than the probe spacing, we assume protrusion

of current emanating from the outer probe tips. The conductivity is computed

to be :

σ =
I

2πV a
(2.5)

Here ”a” denotes the distance between the probes.

Because of the high input impedance voltmeter, the inner probes do not draw any

current from the circuit. Therefore, the voltage drop at points 2 and 3 are trig-

gered by the contact resistance and are eliminated from potential measurements

between the probes and the sample.

Figure 2.2: Four-probe method for measuring the electrical conductivity of a conductor. It con-

sists of four equally spaced tungsten metal probes and two voltmeters (courtesy of Wikipedia).

In laboratory and industrial evaluations of semiconductors, the four-point probe

technique is very widely used. Given that the apparatus is carefully and precisely

constructed, the results obtained using this technique are possibly 5% more ac-

10 Dissertation Shatha Alkhalil



2. State of The Art

curate than two-probe method. This is not the best and recommended method

where the chief considerations are reliability and reproducibility. There are many

sources of error that can affect the accuracy of measurements [Keithley, 2005]

such as electrostatic interference, leakage current, light and temperature. Some

of these errors can be avoided, for example we can avoid the error due to light by

placing the sample in dark chamber. The homogeneity of the sample, the probe

geometry and size of the sample are also affecting the measurements accuracy.

Using correction factors is very important for accurate measurements [Miccoli

et al., 2015]. Bowler & Huang [2005a] used this method to measure the electrical

conductivity of metal plates and his measurements have an uncertainty of∼ 0.5%.

The four-point probe method has been determined to be very useful for studies

of earth conductivity, in addition to its application on semiconductors.

2.1.3 Bridge methods [direct current (DC) and alternat-

ing current (AC)]

An additional method capable of determining the conductivity can precisely mea-

sure the resistance of the sample.

Figure 2.3: The Wheatstone bridge (direct current DC) consists of four resistances consists of

four impedance.

An electrical circuit is used to measure the unknown electrical resistance by bal-

ancing the two legs of a Wheatstone bridge circuit in such a way that one of

its legs includes the unknown component. The bridge will be balanced and the

pointer will indicate zero when

Ra = Rx

R1

R2

(2.6)

11



2. State of The Art

Figure 2.4: The Wheatstone bridge [ alternating current (AC) ].

DC measurements tend to show certain drawbacks, including polarization effects

in ionic conductors and electrolytes, barriers at internal surfaces, and contact

resistance, which arises in powders, films, and certain micellar structures such as

selenium. Therefore, alternating current measurements are used to overcome the

problems that arise in AC bridges. Impedances and resistances must be kept in

proper balanced ratio. If we consider Z as a nonspecific impedance, then the AC

bridge can be balanced if the impedance ratios of each branch are equal.

Z1

Z2

=
Z3

Z4

(2.7)

The impedance quantities in the abovementioned equation must be complex,

accounting for both the magnitude and the phase angle. It is not enough that the

impedance magnitudes alone are balanced. Without having the phase angles in

balance as well, there will still be a voltage across the terminals of the null detector

and the bridge will not be in a balanced state. The use of bridge techniques for

conductivity measurements is much more restricted than the previously described

probe methods.

2.1.4 Eddy current method

The eddy current testing method is based on the electromagnetic induction phe-

nomenon of physics [Bean et al., 1959; Bowler & Huang, 2005b]. In an eddy

current probe, an alternating current is passed through a wire coil, which gener-

ates an oscillating magnetic field. If the probe and its magnetic field are brought

close to a conductive material such as a metal test piece, a circular flow of elec-

trons will then begin to move across the metal like swirling water in a stream,

known as an eddy current. The eddy current that flows through the metal gen-

12 Dissertation Shatha Alkhalil



2. State of The Art

erates its own magnetic field, which then interacts with the coil and its field

through mutual inductance. This reaction can be measured as a change in the

impedance of the coil or sample arrangement. Figure 2.5 shows that the goal

of eddy current testing is to determine the physical and metallurgical features

(electrical conductivity, magnetic permeability, dimensions, coating, and defects)

of the sample by the variation of impedance of the probe.

Figure 2.5: Electrical conductivity measurement using the eddy current method (courtesy of

Victor Aviation).

Eddy current sensing methodologies [Ma & Peyton, 2006]

I. Diffusion Phenomenon

The applied magnetic field will induce eddy currents inside the sample. This

magnetic filed will attenuate with depth δ which is mainly governed by the mag-

netic permeability µ, the electrical conductivity of the sample σ and the applied

frequency f . For plane geometry sample, the attenuation is given by

δ =
1√

πfµσ
. (2.8)

For nonmagnetic electrically conductive sample, the magnetic permeability µ is

13



2. State of The Art

equal to 4π × 10−7 H/m. Apparently, the low frequency measurements probes

the surface of the sample deeper than the high frequency ones.

II. Coil impedance

The equation that describes the penetration of eddy currents into the sample

is:

▽
2A+ jωσA = −µJ (2.9)

where A is the magnetic vector potential, J denotes the current source density

which passes through the excitation coil and ω is the angular frequency. So the

physical principle of electromagnetic induction problems can be described as a

diffusion equation in terms of A as given in a complex phasor notation for the

sinusoidal waveform excitation cases by Eq. 2.9.

The electric field intensity E can be calculated through E = ∂A

∂t
. If we take the

line integral of the vector E around the coil loop, we can calculate the induced

voltage in sensing coil. An analytically solution to a circular coil of rectangular

cross section above two-conductor plane has been done by Dodd & Deeds [1968].

The variation of real and imaginary impedance components of conductive sample

under different values of reference number r/δ and lift-off (coil-to-sample spacing)

is illustrated in Fig. 2.6. The reference number is defined as the ratio of mean

coil radius r and skin depth δ.

14 Dissertation Shatha Alkhalil



2. State of The Art

Figure 2.6: Normalized impedance curves for planar circular coil varying with reference numbers

r/δ (coil radius/skin depth) and lift-off (coil-to-sample spacing)[Ma & Peyton, 2006].

Figure 2.6 shows that the reference number controls the data points shifting along

the curve. The effect of decreasing lift-off causes the impedance curve to shrink,

the smaller the value of lift-off, the closer the impedance curve approaches to the

empty coil impedance point (0 , j). Apperantly, the magnitude of eddy currents

is dependent on the test geometry and as the phase angle θ is virtually lift-off

invariant, so the phase signature is only dependent on the sample under test

and indicates the existence of a relationship between phase angle θ and reference

number r/δ. .

III. Equivalent electrical conductivity

A linear relation has been observed between the cotangent of the phase angle and

the reference number r/δ for a block sandwich-shaped sample under test using

pancake coils.

cotθ = b+ a
r

δ
(2.10)

Then, the electrical conductivity of the conductive sample can be measured by:

σ =
(cotθ − b)2

πa2r2f
(2.11)

15



2. State of The Art

where the parameters a and b in equations 2.10 and 2.11 depend on the coil

sensor geometry and can be know from calibration using bulk materials with

known electrical conductivity σ.

The eddy current method is presently being applied in commercial devices such

as SigmaTest device. It is very sensitive method when it comes to the variation

of the distance between the sensor and the sample and the penetration depth of

the magnet is limited by the skin effect.

Bowler & Huang [2005a] used this method to measure the electrical conductivity

of brass and stainless steel plates. It is determined with 3 and 2 % uncertainty.

This method has been used also in other application like finding the defect in

conductive sample [Uhlig et al., 2012b].

2.2 State of the art of electrical conductivity of

fluid metals

Previous methods employed for measuring the electrical conductivity of molten

metals can be divided into three groups:

• contact measurements

• containerless and contactless measurements

• contactless inductive measurements.

2.2.1 Contact measurements

In contact measurements, two- or four-probe sensors stay in direct contact with

the sample. These probes are normally composed of platinum, molybdenum,

etc., and they measure the potential drop of the constant current applied on the

molten metal sample [Monaghan, 1999; Plevachuk et al., 2006, 2008]. Some hot

and aggressive molten metals may undergo dissolution and chemical reactions,

after which there might not be a proper material for the probes to measure.
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Figure 2.7: The four-probe method for electrical conductivity measurement of molten metal

consists of two current electrodes, two potential electrodes, and one thermocouple.

[Monaghan, 1999] used this method to measure the electrical conductivity of

gallium, tin, lead, copper, a lead tin alloy, a copper tin alloy, and a zinc alloy

with uncertainty up to 1%. Updated and recent information about this method

was presented at the MTLM-2015 conference in Dresden by Prof. Gasser, who

claimed that he and his team can formulate a new probe material that can be

used for any type of fluid that melts up to 1500 ◦C.

2.2.2 Containerless and Contactless Measurements

Electromagnetic levitation is used to measure the physical properties of a sam-

ple. In this method, the sample is levitated in air by a physical force (Lorentz

force) against gravity (see Fig. 2.8). Thus, it is a containerless method. Then,

the inductive method from the third group is used to measure the electrical con-
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ductivity of the sample. The sample is placed in an alternating magnetic field

inside a radiofrequency current carried on the primary coil. The induced voltage

in the secondary coil depends on the electrical conductivity of the sample (see

Fig. 2.9) . Marangoni convection [C.Marangoni, 1878] will occur if there is a

temperature or concentration gradient on the surface. In addition, the levitation

field also induces fluid flow in the sample. Therefore, the levitation method is

only applicable to those cases where the absence of convection is not manda-

tory [Egry, 2004; Lohoefer, 2005; Richardsen et al., 2002; Richardsen & Lohoefer,

1999].

Figure 2.8: Principle of electromagnetic levitation. The rf magnetic levitation field induces eddy

currents in the sample which, together with the field, generate Lorentz forces that support the

sample against gravity [Lohoefer, 2005].

18 Dissertation Shatha Alkhalil



2. State of The Art

Figure 2.9: Schematics of electromagnetic levitation: the droplet is placed in an alternating

magnetic field inside a radiofrequency current carried on the primary coil. The induced voltage

in the secondary coil depends on the electrical conductivity of the sample.

Levitation is caused by the Lorentz force, FL , given by [Seetharaman et al.,

2014]:

~FL =

∫
( ~jind × ~B)dV (2.12)

where jind is the current induced in the sample by the external electromagnetic

field. The integral can be calculated in a multipole expansion [Edmonds, 1996;

Thompson, 1994]. The relevant parameter for electromagnetic levitation is the

skin depth δ , defined as :

δ =

√
2

ωσµ0

(2.13)

here ω is the frequency of the alternating field, and µ0 is the magnetic permeability

constant.
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A levitated liquid copper drop is shown in Fig 2.10. The levitation coil is inside

a process chamber, and the levitated sample is illuminated by a laser beam in

order to produce a shadow-graph of the sample for density measurements.

Figure 2.10: Picture of a hot electromagnetically levitated sample enclosed by the alternating

current carrying levitation coil on the ground. The coil consists of a copper tube which is cooled

from within by running water. The upper counterwinding prevents the lateral escape of the

sample (courtesy of DLR-MP).

A clear study of uncertainty of measurements using this method has not been

done by references.

2.2.3 Contactless inductive measurements

Braunbek [1932] was the first physicist to adopt the inductive method of mea-

surement. This method is based on applying a rotating magnetic field to the

sample, which induces the formation of circulating eddy currents. Consequently,

the eddy currents will generate a damping torque directly proportional to the

electrical conductivity [Bakhityarov & Overfelt, 1999; Chaberski, 1971; Delaneyt

& Pippard, 1972]. Braunbek proposed the following relationship between the elec-

tric conductivity σ of the specimen and the mechanical moment caused by mutual

interaction between the external magnetic field and an additional magnetic field

induced by the eddy current:

M =
π

4
σωLR4B2 − π

192η
σ2ωLR6B4 (2.14)
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where M is the mechanical moment caused by mutual interaction between the

external magnetic field and an additional magnetic field induced by the eddy

current; L and R are the length and radius of the specimen, respectively; ω is

the angular velocity of the rotating magnetic field; B is the magnetic induction;

and η is the viscosity of the liquid specimen. According to Braunbek [1932], the

magnetic induction and the dimensions of the specimen can be selected such that

the second term in Eq. 2.15 becomes negligibly small as compared to the first

term in the case of metals of unknown viscosity.

N S

Magnet Magnet

Sample

Figure 2.11: Inductive method using rotating magnetic field for measuring the electrical con-

ductivity. It consists of a rotating magnetic field and a molten metal (sample) suspended by a

rope and located inside the magnetic field. It measures the electrical conductivity of the sample

by measuring the torque.

The uncertainty of measurements using rotating magnetic field is claim to be less

than 0.5 % Braunbek [1932].
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Chapter 3

Fundamentals and Experimental

Setup

In this chapter, the fundamental equations used to calculate the electrical con-

ductivity for both solid and molten metals is defined (section 3.1), followed by a

presentation of the two experimental setups, one for molten metals (section 3.2)

and the other for solid metals (section 3.3). The two setups consist of two main

parts: the first part is to measure the Lorentz force signal using the Lorentz force

apparatus (LOFOS-apparatus), and the second part consists of an electronic scale

and the electronic devices (amplifiers, converters, voltmeters) and a computer for

recording and analyzing the force and mass signal. More details about the differ-

ent parts of the experimental setups, namely the Halbach magnet and the force

measurement system, are described in sections 3.4 and 3.5. Calibration of the

force measurement system is described in section 3.6 and uncertainties analysis

is in section 3.7.

3.1 Fundamentals

The Lorentz force per unit volume is approximately F ∼ σvB2
0 , where σ is the

electrical conductivity of the conductor, v is the velocity of the conductor, and

B0 is the magnitude of the magnetic field [Grant & Phillips, 1990] . To obtain the

total Lorentz force, we multiply by the volume r2L, where r (radius of cross sec-

tion) and L (height) are the dimensions of the area where the fluid flow interacts

23
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with the magnetic field:

F ∼ σvB2
0r

2L ∼ σLB2
0Q (3.1)

where Q is the volumetric flow rate, given as Q = πr2v

The mass flow rate is given by:

ṁ =
Q

ρ
(3.2)

where ρ is the density of the conductor. Here, we introduce the calibration factor

K:

K =
1

cLB2
0

(3.3)

where c is the dimensionless form coefficient accounting for the distribution of

the magnetic field in LOFOS. By incorporating Eqs. 3.2 and 3.3 into Eq. 3.1, the

basic equation linking the mass flow rate ṁ with the Lorentz force F generated

by the magnetic field in the fluid can be obtained:

ṁ(t) =
ρK

σ
F (t) (3.4)

From Eq. 3.4, the cumulative mass during the operating time is determined as

follows:

M =

∫
t2

t1

ṁ(t)dt =
ρK

σ
F̃ (3.5)

where F̃ is the integral of the Lorentz force over the process time. From Eq. 3.5,

the final equation to calculate the electrical conductivity σ for molten metals can

be derived:

σ = ρK
F̃

M
(3.6)

This equation can be also used for solid metals by considering that the cumulative

mass M for solids can be immediately measured by weighing the bars with an

accurate scale. The calibration factor K obtained from the preliminary test can

be used for future experiments to measure the electrical conductivity of solid bars

with the given design of the LOFOS apparatus.
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3.2 Experimental setup for fluid measurements

The Lorentz force sigmometry setup for measuring the electrical conductivity of

fluid metals (see Figs. 3.1), and 3.2) comprises three main parts: (i) the filling

funnel, where the molten metal is poured.

(ii) a collecting vessel placed over a scale connected to a computer for measuring

the mass of the molten metal M , and (iii) an LOFOS-apparatus.

Figure 3.1: Two-dimensional (2D) schematic of the Lorentz force sigmometry setup for mea-

suring the electrical conductivity of molten metals. 1: filling funnel, 2: Halbach magnet, 3:

collecting vessel, and 4: electronic scale.
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Figure 3.2: Three-dimensional (3D) schematic of the Lorentz force sigmometry setup for mea-

suring the electrical conductivity of molten metals. 1: filling funnel, 2: LOFOS-apparatus, 3:

collecting vessel, 4: electronic scale, 5: amplifier and converter, 6: voltmeters, 7: computer,

and 8: transformer and converter.

The LOFOS apparatus consists of several parts (Fig. 3.3):

Block-1 is a circular Halbach magnet, which is a special arrangement of small

permanent magnets (12 small magnets in our case); this enhances the magnetic

field on one side of the array (magnetic field induction B0 = 250mT), while can-

celling the magnetic field on the other side. A TML strain gauge sensor is placed

under the magnet to measure the force equal to the Lorentz force acting on it.

Block-2 is a thermocouple sensor which is located near the magnet to measure

the temperature in this area.
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Figure 3.3: LOFOS-appartus diagram; 1: Circular Halbach magnet and force sensor, 2: ther-

mocouple sensor, 3: amplifier and converter, 4: converter and transformer, 5: voltmeter, 6:

computer.

Block-3 is an electronic box that performs many functions, such as supplying

power to the force sensor. It has two amplifying channels that amplify the sig-

nals of both sensors. Block-4 has two indicators that display the temperature and

Lorentz force value. It transforms the digital signal into an analog signal. Block-5

is a Keithley voltmeter model 2700 with a wide voltage measurement range [from

100 nV to 750V], which reads the force signal and sends it to the computer; here,

a special LabVIEW code reads and displays the analog signal of the Lorentz force.

3.3 Experimental setup for solid measurements

We used the same Lorentz force sigmometry setup for measuring the electrical

conductivity of fluid metals for solids but with some technical changes (see Figs.

3.4 and 3.5)
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Figure 3.4: (a) Two-dimensional (2D) schematic of Lorentz Force Sigmometry setup for electri-

cal conductivity measurements of solid metals. 1: sample of a solid metal, 2: Halbach magnet,

3: force sensor,4: Mädler motor, 5: weight. (b) A braking force acts on the conducting bar and

is matched by an accelerating force on the magnet.
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Figure 3.5: Solid metals setup: three-dimensional (3D) schematic of Lorentz force sigmometry

setup for measuring the electrical conductivity of solid metals; it consists of 1- sample of a solid

material, 2- filling funnel, 3- LOFOS-apparatus, 4- amplifier and converter, 5- Mädler motor,

6- stop elements, 7- voltmeters, 8- computer, 9- transformer and converter.

A Mädler small-geared motor type GE/I with an AC capacitor was connected to

the solid bar by a rope passing through two plastic rollers. We used two stop

elements to stop the rotation of the motor in both directions automatically. The

rotation speed of the motor was controlled by a voltage controller, by increasing

or decreasing the voltage input, or by changing the motor cylinder size (a smaller

size corresponds a slower rotation, and vice versa). The linear speed of the bar

was 10 cm s−1. The mass M of the bars is measured separately using an accurate

scale before the experiment; we hung two weights at both ends of the rope to have

an equal weight in both directions. If the weight on the side of the motor is W1,

the weight of the bar is W2; then, a weight W3 = W1−W2 would be necessary

necessary on the side of the bar to achieve perfect balance. Two voltmeters were

connected to the LOFOS apparatus to read the measurements from both sensors,

i.e., the force signal and the temperature near the force sensor.

3.4 Halbach cylinder magnet

A Halbach array is a special configuration of small permanent magnets that max-

imizes the magnetic field on one side while cancelling it to zero on the other side.

It was invented by Klaus Halbach in the 1980s at the Lawrence Berkeley National

Laboratory for a specific application: focusing particle beams without using coils.
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Since then it has been widely used in generators, motors, magnetic bearings, and

many more applications.

Figure 3.6: A zoom in of 3D schematic of Lorentz force sigmometry showing the Halbach

cylinder surrounding the nozzle of the filling funnel.

A Halbach array has many forms, different numbers of magnets, N , different sizes,

and different magnetic field flux densities. One needs to find the optimal Halbach

configuration for the application of interest. Weidermann [2013] in his Ph.D.

dissertation carried out both an analytical and a simulation study for different

types of cylindrical Halbach arrays (8, 12, and 16 trapezoidal segments). In Fig.

3.7, we see the magnetic field induction magnitude in a cylindrical Halbach array

with 8 trapezoidal segments.
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Figure 3.7: FEM model of cylindrical Halbach array with 8 magnets. The colored domains

indicate the magnitude of the magnetic induction. [Weidermann, 2013].

Another important factor in choosing the optimum Halbach cylinder is the non-

dimensional shape factor, γ, which is the ratio of the outer radius, R0, to the inner

radius, Ri, of the polygonal cross section of the Halbach cylinder (see Fig. 3.8a).

Weidermann calculated the Lorentz force generated by different Halbach cylinder

designs, and he found that the Lorentz force was greater for higher numbers of

small magnets, N . The maximum force was obtained when γ equaled 1.5, as

shown in Fig. 3.8b.
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Figure 3.8: (a)Cross section of cylindrical Halbach magnet in x–y plane shows the radii, Ri

and Ro for the inner and outer circles, respectively. (b) Optimization of Lorentz force genera-

tion using Halbach cylinder magnet system. Three magnetization patterns with 8,12, and 16

trapezoidal segments [Weidermann, 2013].

However, for the Lorentz force sigmometry setup, we chose the cylindrical ring

form, in which the magnetic field was trapped inside the ring (see Fig. 3.9, red

box) with 12 permanent magnets and a magnetic field flux density equals to 250

250mT.

Figure 3.9: Ferromagnetic cylinder showing various magnetization patterns and magnetic fields.

The red box refers to the type used in the current Lorentz force sigmometry setup. (courtesy

of Wikipedia).

Figure 3.9 shows that for a 12-element cylindrical Halbach, we have four options

for the magnetic field distribution just by changing the orientation of the mag-

netization of the small permanent magnets. The magnetic induction distribution

for the chosen Halbach cylinder shows moderate gradients along the x-axis, and

it is reasonably constant along the y-axis (see Fig. 3.10).
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Figure 3.10: Magnetic field distribution in the inner space of the Halbach magnet. The arrows

show the magnetization direction of the magnet elements.

Here, we present the exact dimensions of the Halbach cylinder with its parts that

has been used in Lorentz force sigmometry setup (Fig. 3.11). We also study

the effect of the iron housing on the magnetic field distribution, as shown in Fig.

3.11.

Figure 3.11: Design of the magnet system. a) The top view shows the diameters of the inner

and outer circles and b) the single magnet segment. c) Three-dimensional schematic of the

Halbach cylinder.
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Figure 3.12: Influence of ferromagnetic materials on the magnetic field distribution. (a) De-

pendence of the transversal component of the magnetic field from the axial coordinate along

the symmetry axis of the magnet system itself, as well as for the magnet system if installed in

the nozzle holder plate, which is shown in (b). (c) Dependence of the transversal component

of the magnetic field from the axial coordinate along the symmetry axis for the magnet system

installed in the nozzle holder plate under the additional influence of the ferromagnetic iron

block at a distance h from the bottom edge of the nozzle holder plate [shown in (d)].

Figure 3.13: Photo of Halbach cylinder magnet system picture. It shows its different; parts

housing lower part, housing top and the twelve symmetrically aligned trapezoidal permanent

magnets.

Figure 3.13 shows the upper and lower parts of the housing of Halbach magnet.

In the lower part located supporting sharp needles which enable a frictionless

turn of the magnet.
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3.5 Force measurement system

A strain gauge is the sensor that has been used in the measurement system for

Lorentz force sigmometry. It consists of a metallic foil which surrounded by an

isolating backing. Its work principle can be explained as follows (see Fig. 3.14 ).

If a strip of conductive metal is stretched, it will become skinnier and longer, both

changes resulting in an increase of electrical resistance end-to-end. Conversely, if

a strip of conductive metal is placed under compressive force (without buckling),

it will broaden and shorten. If these stresses are kept within the elastic limit of

the metal strip (so that the strip does not permanently deform), the strip can

be used as a measuring element for physical force, the amount of applied force

inferred from measuring its resistance.

Figure 3.14: A sketch explaining the working principle of the strain gauge under exaggerated

bending (courtesy of Wikipedia).

Typical strain gauge resistances range from 30Ω to 3 kΩ (unstressed). This re-

sistance may change only a fraction of a percent for the full force range of the

gauge, given the limitations imposed by the elastic limits of the gauge material

and of the test specimen. Forces great enough to induce greater resistance would

permanently deform the test specimen and/or the gauge conductor itself, so ru-

ining the gauge as a measurement device. Thus, in order to use the strain gauge

as a practical instrument, we must measure extremely small changes in resistance
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with high accuracy. Such demanding precision calls for a bridge measurement

circuit.

Figure 3.15: Bridge strain gauge circuit (courtesy of Allaboutcircuit website).

Typically, the resistance R2 of the bridge is set at a value equal to the strain

gauge resistance with no force applied, and (R1andR3) are set equal to each other.

Thus, with no force applied to the strain gauge, the bridge will be symmetrically

balanced and the voltmeter will indicate zero volts, representing zero force on the

strain gauge. As the strain gauge is either compressed or tensed, its resistance

will decrease or increase, respectively, thus unbalancing the bridge and producing

an indication at the voltmeter. As we used cylindrical Halbach magnet, we found

that it was necessary to use three bridge strain gauge circuits in three positions,

but they work as one bridge (see Fig. 3.16 ).
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Figure 3.16: Photograph of the force measurement system of the Lorentz force sigmometry,

which consisted of three bridge strain gauge circuits working as one sensor to measure the

Lorentz force of the moving conductive material.

The Halbach magnet, which was explained in the previous section, was installed

above the sensor measurement system, as shown in next photo:

Figure 3.17: Photograph of force measurement system of Lorentz force sigmometry during

installation.

After designing the magnet system and the sensor system, calibration was needed

in order to calculate the error of the force measurement.
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3.6 Calibration of Lorentz force sigmometry de-

vice

The goal of calibration process to LOFOS force measurement is to find the cali-

bration factor that convert voltage to newton. We put different weight over the

magnet system located over the force measurements and record the corresponding

force (see Fig. 3.18). Knowing that the gravity acceleration on earth is differ-

ent for different places due to the height from sea level, we need to know the

exact gravity in Ilmenau city, which is located 478m above the sea level. For

this, we used the data base from gravity information system PTB [Physikalisch-

Technische Bundesanstalt, 2006].

The gravity acceleration in Ilmenau is 9.8101m s−2 with uncertainty of±0.00002.

If we use Newton’s second law for the gravity force F = m ·a, where F is the force

applied in newton, m is the mass of the object receiving the force in kilogram,

and a is the acceleration of the object, then:

1N = 1kg · ms−2

At average gravity on earth, ( g = 9.8101m s−2 for Ilmenau), a kilogram mass

exerts a force of about 9.8101 newtons. Now, we know the formula to convert the

grams to Newtons, we can start the calibration using 0.5 g, 1 g, 5 g, 10 g, 20 g and

50 g weight over the measurement system, record the force in voltage and then

calculate the calibration factor.

Figure 3.18: Photo of force measurement system calibration of Lorentz force sigmometry. This

photo shows a weight equals to 50 g over the measurement system.
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Table 3.1: LOFOS force sensor measurements in volt when different weights placed over the
force sensor in comparison to reference values in newton

Weight [g] LOFOS sensor measurements [V] Reference value [N]

0.50031± 0.00001 0.000478 0.004908
1.00121± 0.00004 0.000957 0.009822
5.00252± 0.00003 0.004814 0.049075
10.0069± 0.00002 0.009614 0.098168
20.01513± 0.00009 0.019164 0.196350
50.01158± 0.00013 0.047794 0.490618

Now, we can calculate the calibration factor by calculating the slope of the

Newton–Volt measurement results (see Fig. 3.19).

Figure 3.19: Linear fit of force sensor measurements in volt using LOFOS with the reference

values in newton in order to calculate the slope which equals to the calibration factor.
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As we see from Fig. 3.19, the calibration factor is 10.26795±0.0059 [NV−1].

3.7 Uncertainties analysis

The random error of measurements can be estimated by the standard deviation

of the mean [Taylor, 1997].

If the measured value is X and the mean value of the N number of measurements

is X , then the standard deviation of the mean value is:

δ(X) =
δ(X)√

N
(3.7)

where the mean can be calculated as follows:

X =
1

N

N∑

i=1

Xi (3.8)

The random error often has a Gaussian normal distribution, where 68% of the

measurements lie in the interval X − δ(X) < X < X + δ(X)

The standard deviation of the measured value X is:

δ(X) =

√√√√ 1

N − 1

N∑

i=1

(Xi −X)2) (3.9)

so the measured value X can be represented as:

X = X ± δ(X) (3.10)

If Y is a function of i variables xn and these variables are independently affecting
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the function with random error, then the total error

δ(Y ) =

√√√√
i∑

n=1

(
∂Y

∂xn

δ(xn))2 (3.11)

Fortunately for our measurements in chapter 4 and 5, the error of measurements

coming from independent variable so that we can use the Eq. 3.11 to calculate

its uncertainty.

Here, we shows one example of this error analysis and we will follow the same

steps for other measurements in chapter 4 and 5 and added it directly.

We calculate the calibration factor K (see Eq. 3.12) for copper bar:

K =
σM

ρF̃
(3.12)

Using Eq. 3.11 to calculate δ(K) :

δ(K) =

√

(
∂K

∂σ
δ(σ))2 + (

∂K

∂M
δ(M))2 + (

∂K

∂ρ
δ(ρ))2 + (

∂K

∂F̃
δ(F̃ ))2 (3.13)

δ(K) =

√√√√(
M

ρ · F̃
δ(σ))2 + (

σ

ρ · F̃
δ(M))2 + (− σ ·M

F̃ · (ρ)2
δ(ρ))2 + (− σ ·M

ρ · (F̃ )2
δ(F̃ ))2

(3.14)

Now if we divide the both side of Eq. 3.14 by the mean calibration factor K, we

get what’s called the relative measurement uncertainty of the calibration factor

K :

η(K) =
δ(K)

K
=

√√√√(
δ(σ)

σ
)2 + (

δ(M)

(M)
)2 + (

δ(ρ)

(ρ)
)2 + (

δ(F̃ )

F̃
)2 (3.15)

The source of the relative uncertainty of the electrical conductivity σ is meanly

a reason of the random error (standard deviation) of ten measurements using

SigmaTest device.
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The source of error for mass measurements is the random error of measuring the

mass of copper bar ten times using electronic scale while the source error for

density measurements is the error of the mass and volume of the copper bar. The

source of the relative uncertainty of the integral of Lorentz force F̃ is from the

random error of all force measurements plus the uncertainty of the calibration

factor that convert volt to newton. This converter factor has uncertainty due

to mass uncertainty measurements and gravity uncertainty and the standard

deviation error(see section 3.6).

We can rewrite Eq. 3.15 as follows:

η(K) ≤ η(σ) + η(M) + η(ρ) + η(F̃ ) (3.16)

So the relative uncertainty of calibration factor is less than 3.8 %:

η(K) =
δ(K)

K
≤ 0.49% + 0.014% + 0.6% + 2.6% ≤ 3.8% (3.17)

We repeat these steps for calculating the relative uncertainty for all measurements

that have been done and add them directly in Chp. 4 and Chp. 5.
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Chapter 4

Electrical conductivity

measurements of solid metals

This chapter presents the results obtained with the Lorentz force sigmometry for

solid metals setup. We initially tested the device with short cylindrical bars made

of copper, aluminum, and brass using the free-fall method. The test procedure

and the initial results are presented in detail in section 4.1. We then made some

technical changes to the device in order to improve the results and repeated the

measurements with longer bars. The measurement procedure with the new device

is explained in detail in section 4.2. We conducted two series of measurements.

The first measurements were used to determine the calibration factor of the given

LOFOS geometry with copper and aluminum cylindrical bars. These results are

presented in section 4.3. The second measurements, given in section 4.4, were

conducted with a brass bar to determine its electrical conductivity using the

calibration factor obtained in the first experiment. The results of this section

(solid measurements) have been published [Alkhalil et al., 2015].

4.1 First test of the device / short solid bars

measurements

For this test, we prepared three cylindrical bars made of copper, aluminum and

brass with the same geometry (length = 149.7 ± 0.4mm, diameter = 9.98 ±
0.03mm).
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Figure 4.1: Three cylindrical bars made of copper(red), aluminum(gray) and brass(yellow).

They have identical dimensions: L = 150mm and Q = 10mm. (taken with a camera).

The solid bar was fixed, but at time t= 0 s, it was disconnected and accelerated

by gravity, g = 9.8101m s−2 into the filling funnel with a 12mm diameter nozzle,

passing the magnetic field with a free-fall velocity of 0.2m s−1 (see Fig. 4.2 ).

Thus, the time of interaction between the bar and the magnetic field was very

short, less than 1 s (750m s). We recorded the Lorentz force signal simultane-

ously.

Figure 4.2: Illustration of the first test experiment. The solid bar is accelerated by gravity and

passes the magnetic field lines with a velocity of 0.2m s−1.The Lorentz force acts to slow the

conductor movement, while simultaneously another force equal to the Lorentz force acts on the

magnet.
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Even for this short time, we could register the Lorentz force for the bars (see Fig.

4.3 ). The figure shows that when the bar was outside the magnetic field, the

Lorentz force was equal to zero; then, when the bar passed through the magnetic

field, the force increased and remained stable for a very short period time as the

bar passed through the magnetic area very fast. When the whole bar had passed

through the magnetic field, the force returned to zero. However, the sampling rate

is rather small (5Hz). In future measurements, we plan to increase the sampling

rate in order to collect more information from the signal.

Figure 4.3: Lorentz force signal for copper bar when it passes the magnetic field with gravity

acceleration (free-fall velocity).

In some cases, we obtained a single peak signal (Fig. 4.4). This is because the

bar did not pass the magnetic field with the proper orientation (vertical, without

touching the walls) and the sensor was unable to record the Lorentz force. The

time that the Lorentz force amplitude is constant for all bars was very short and

insufficient for accurate results, so we needed to decrease the velocity of the bar

in order to increase the interaction time between the conductor and the magnetic

field. In order to achieve better results, we made some technical changes to the

setup (see Fig. 4.5) and repeated the experiments.
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Figure 4.4: Lorentz force signal for copper bar when it passes the magnetic field with gravity

acceleration (free-fall velocity). It is a single peak signal because the orientation of the bar as

it passed through the magnetic field was incorrect.

4.2 Measurement procedure with long solid bars

The setup for this experiment has been explained in detail in a previous chapter

(section 3.3). We repeat the figure in this section so the reader can follow the

procedure better.
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(a) (b)

Figure 4.5: 2D and 3D schematic of Lorentz force sigmometry setup for conductivity measure-

ments of solid metals after adding some technical modifications to the LOFOS used for fluid

measurements. (a) 2D schematic of Lorentz force sigmometry setup for electrical conductivity

measurements of solid metals. 1: sample of a solid metal; 2: Halbach magnet; 3: force sensor;

4: Mdler motor; 5: weight. (b) 3D schematic of Lorentz force sigmometry setup for electrical

conductivity measurements of solid metals.

When the motor is switched on, the 30 cm rod (Fig. 4.5a , pos. 1) moves through

the magnetic field of the Halbach magnet with a linear speed of 10 cm s−1. The

bar needs 3 s to pass through the magnetic field. By increasing the Lorentz

force, the magnet acts on the sensor. When the bar exits the magnetic field,

the stop element automatically turns the motor off. During the experiment, the

Lorentz force and temperature near the force sensor were continuously measured.

During the 3 s exposure of the solid bar to the magnetic field, eddy currents were

generated inside the metal (Fig. 3.4b). By Ampere’s law, the eddy currents give

rise to a secondary magnetic field. As a result, the Lorentz force acts to slow

the movement of the solid bar and, owing to Newton’s third law, a measurable

force equal to the Lorentz force acts upon the magnet. This force is directly

proportional to the electrical conductivity of the solid bar. The force acting on

the magnet presses the strain gauge sensor located beneath the magnet system.

The signal from the sensor, after being processed by the second and third device

(see Fig. 3.3), is fed to a voltmeter and then to the computer defining the Lorentz

force F and force integral F̃ within the operating time. The density ρ is measured

by calculating the volume V and the mass M of the bar, using the equation

ρ =
M

V
. We conducted two series of measurements. The first measurements were

used to determine the calibration factor of the given LOFOS geometry with the
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copper and aluminum cylindrical bars; the electrical conductivity of the bars had

been previously measured with the help of a commercial device using the eddy

current testing method called SigmaTest 2.069. This commercial device has a

wide measuring range, 0.5MS to 65MS, with an absolute accuracy of ±0.5% , as

well as five selectable operating frequencies; we used an operating frequency of

60 kHz, for which the resolution was equal to 0.1% of the measured value. The

second measurements were conducted with a brass bar to determine its electrical

conductivity using the calibration factor obtained in the first experiment. To

calculate the statical error of the electrical conductivity using the Lorentz force

sigmometry method, we measured the electrical conductivity of the brass bar

using the SigmaTest device and compared it with that measured by LOFOS.

4.3 Determination of calibration factor using cop-

per and aluminum bars

In this section, we discuss the conductivity measurements of the copper and

aluminum bars. The goal of these experiments was to determine the calibration

factor, K, which can be calculated after transformation of Eq. 3.6 as follows:

K =
σM

ρF̃
(4.1)

Both bars (copper and aluminum) had a length of L = 299.5±0.7 mm [using Eq.

3.11 from section 3.7] and diameter ⊘ = 9.98± 0.02 mm.

Their electrical conductivities, σ, were measured by a commercial device, Sig-

maTest, based on the eddy current testing method. We connected its probe to

the surfaces of the bars and recorded the values; these experiments were repeated

ten times at room temperature(20 ◦C). Subsequently, the mean values of the

measurements were calculated as σcu = 58.106MSm−1 and σal = 21.698MSm−1.

If we add the standard deviation for copper and aluminum then the electri-

cal conductivity of copper is σcu = 58.106 ± 0.29 MSm−1 and for aluminum

is σal = 21.698± 0.11 MSm−1

As we mentioned before, the interaction time between the bar and the magnetic

field was 3 s. We repeated the measurements several times over several days.
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4.3.1 Copper measurements

Here, we present selected results as an example for copper measurements:

(a) (b)

(c) (d)

Figure 4.6: Lorentz force signal for the copper bar shows that the Lorentz force equals zero

when the copper bar is outside the magnetic field. It then increases to its maximum value and

remains constant for some seconds before the bar leaves the magnetic field, at which point the

Lorentz force returns to zero.

Figure 4.6 shows that when the bar is outside the magnetic field, the Lorentz force

is equal to zero; then, when the bar passes through the magnetic field, the force

increases and remains stable for a few seconds, depending on the linear speed

of the motor and the length of the solid bar. When the whole bar has passed

through the magnetic field, the force becomes zero again. The magnitude of the

force is ∼ 0.016 N and its integral equals to 0.0372N s. Notably, these are raw

signals obtained directly from the source; no filter has been applied to them. The

motor had two directions of movement (up and down). We recorded the Lorentz

force also in the other direction, as shown in Fig 4.7.
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(a) (b)

Figure 4.7: Lorentz force signal for copper bar when it passes the magnetic field in the opposite

direction. These curves shows the same behavior but in the opposite direction.

We noticed that the amplitude of the Lorentz force was smaller in this direction

because the velocity was not equal to the one in the up direction. A slower

velocity led to slower amplitude of Lorentz force as it is proportional to the linear

velocity of the conductor. Figure 4.7 shows the integration of the Lorentz force

signal between t1 and t2; where t1 is the time when the conductive bar starts to

interact with magnetic field and it equals as an example to 1.5 s in Fig. 4.6 in

the upper right orange curve and t2 is when the bar leaves the area of magnetic

field and t equals as an example to 4 s in the same orange curve. However, we use

for calculating the integral a commercial program named ”Origin 9.0G”. This

program use the trapezoidal rule to approximate the definite integral. Trapezoidal

Rule is based on the Newton-Cotes Formula that states if one can approximate

the integrand as an nth order polynomial [Abramowitz & Stegun, 1965]. The

integral of Lorentz force equals to 0.0372± 0.001 [N s].
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Figure 4.8: Integral of Lorentz force for copper bar between t1 and t2, which is the time period

during which the copper bar interacts with the magnetic field, moving up case.

4.3.2 Aluminum measurements

We repeated the same experiment with an aluminum bar in both directions.

Figure 4.9 shows the same behavior as for the copper bar. We notice that the

Lorentz force amplitude is smaller as compared to the Lorentz force of the copper

bar. This is because the conductivity of aluminum is smaller than that for copper.

The Lorentz force is ∼ 0.009 N .
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(a) (b)

(c) (d)

Figure 4.9: The Lorentz force signal for the aluminum bar shows that the Lorentz force equals

to zero when the aluminum bar is outside the magnetic field. It increases to a maximum value

and remains constant for some seconds. When the bar leaves the magnetic, the Lorentz force

returns to zero.

We notice the same behavior in the opposite direction: a smaller amplitude of

Lorentz force signal for the aluminum bar.
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(a) (b)

Figure 4.10: The Lorentz force signal for the aluminum bar when it passes the magnetic field

in opposite direction. These curves shows the same behavior but in the opposite direction.

The integral of the Lorentz force is 0.0214± 0.0003 [N s]:

Figure 4.11: Integral of the Lorentz force for the aluminum bar between t1 and t2, which is the

time period during which the aluminum bar interacts with the magnetic field.

Equation 4.1 was used to calculate the calibration factor of the device (see

Tab.4.1).

A small difference is observed between the calibration factors obtained from cop-

per and aluminum. This difference can be attributed to the uncertainty mea-

surements of the calibration factor. We decided to use the mean value of the
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Table 4.1: Calculation of the calibration factor K from copper and aluminum measurements

Material σ [MSm−1] Mass [g] Density [ kg
m3 ] F̃ [N s] K [m

2 S
N s

]

Copper 58.106 ±0.29 195.02 ±0.023 8935.3 ±55.3 0.0372 ± 0.001 34094.9 ± 1295.6
Aluminum 21.698 ±0.11 59.16 ±0.031 2786.7 ± 15.6 0.0214 ± 0.0003 34637 ± 845.14

calibration factor from copper and aluminum measurements to determine the

electrical conductivity of brass, as the calibration factor should not depend on

the type of material. The mean value of the calibration factor is 34366 m2 S
N s

.

4.4 Electrical conductivity measurement of brass

bar

To prove that the Lorentz force sigmometry device can measure the electrical con-

ductivity of solid metals, we prepared a brass bar with the same geometry as the

copper and aluminum bars and repeated the same measurement procedure.
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(a) (b)

(c) (d)

Figure 4.12: Lorentz force signal for brass bar shows that Lorentz force equals to zero when

the copper bar is outside the magnetic field area and then it rises to its maximum and keep

constant for some seconds before the bar leaves the magnetic area and goes back to zero again.
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Figure 4.13: Integral of Lorentz force for brass bar between t1 and t2 which is the time period

that brass bar interacts with the magnetic field.

To calculate the electrical conductivity, we used Eq. 3.6 and adopted the mean

value of the calibration factor obtained from the first series of measurements.

Table 4.2: Calculation of the electrical conductivity of brass bar

K [m
2 S
N s

] Mass [g] ρ [ kg
m3 ] F̃ [N s] σ [MSm−1]

34366 ± 383.3 187.47 ±0.025 8376.6 ± 44.3 0.00892 ± 0.0001 13.75 ± 0.38

As reported in Tab.4.2, the electrical conductivity for brass was equal to 13.75±
0.38 [MSm−1], as measured by the Lorentz force sigmometry method. To check

the statistical error of our result, we measured the electrical conductivity of the

brass bar ten times using the commercial device SigmaTest at room temperature,

and then calculated the mean value of the ten measurements. This value was

equal to 14.03 ± 0.21 MSm−1. The difference between the values obtained with

the two methods is very small and the possibility of error was 1.9%; this result

ensures that the Lorentz force sigmometry method is able to measure the electri-

cal conductivity of solid metals. Figure 4.14 shows the Lorentz force signals for

the three metal bars. High electrical conductivity metals, such as copper, have

a strong effect on the magnetic system, and vice versa; low electrical conductiv-

ity metals, like brass, affect the magnets with a low force. After finishing the

experiments with solid metals, we investigated the fluids.
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(a) (b)

Figure 4.14: Figure comparing the Lorentz force signal for the three bars that were measured

in the lab. The curves show that high electrical conductivity metals ( copper) have a strong

effect on the magnetic system and vice versa; low electrical conductivity metals, such as brass,

affect the magnets with a low force. (a) Lorentz force signal for copper (1, red), aluminum (2,

blue), and brass (3, green) bars. (b) Integral of Lorentz force for copper (1, red), aluminum (2,

blue), and brass (3, green) bars
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Chapter 5

Electrical conductivity

measurements of molten

metals

In this chapter, we present the results obtained using the Lorentz force sigmome-

try setup for fluid measurements. After explaining the procedure of measurements

in section 5.1.1, we calibrate the device using the known physical properties of

a eutectic alloy named galinstan, GaInSn, in order to find the calibration fac-

tor, K, of the setup, which is necessary to calculate the electrical conductivity

of molten metals using Lorentz force sigmometry. This is explained in detail in

section 5.1.2. After knowing the calibration factor, we repeat the measurement

with the unknown electrical conductivity of molten tin at different temperatures

and compare our results with the reference values in section 5.2.

5.1 Calibration factor calculation using eutectic

alloy GaInSn

The goal of this experiment was to find the calibration factor K of the de-

viceby using the known physical properties of an alloy with the composition of

Ga67In20.5Sn12.5. This is a eutectic alloy at room temperature and its melting

temperature is Tm = 10.5 ◦C. For fluid measurements, we fabricated a special

quartz conical vessel capable of withstanding temperatures ranging from room

temperature up to1000 ◦C. The nozzle had a diameter of 8mm and it allowed
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the flow of molten metal across the magnet system during some seconds, which

is reasonable for measuring the Lorentz force with good accuracy.

Figure 5.1: 3D schematic of the Lorentz force sigmometry setup for fluid measurements.1: filling

funnel; 2: Halbach magnet and force sensor; 3: collecting vessel; 4: electronic scale; 5: amplifier

and converter; 6: voltmeters; 7: computer; 8: transformer and converter.

The dependence of physical properties such as density and electrical conductivity

on the temperature is determined by: ρ = 6492.12 − 0.44T [kgm−3] and σ =

1/(R0T [0.9632 + 2.9 × 10−3] where R0 = 30.32 × 10−8 [Ωm]. We have this

formula from Russian federal state research and design institute of rare metal

industry GIREDMET, who analysis the physical properties of this special alloy

at different temperatures (see appendix for details).

Because the nozzle geometry of the filling funnel for fluid measurements was

smaller than that of the funnel used for solid measurements, a new calibration

factor was necessary for an accurate fluid measurement.

5.1.1 Measurements procedure

The setup for this experiment was explained in detail in a previous chapter (sec-

tion 3.2). We repeat the figure in this section so the reader can follow the proce-

dure better.
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(a) (b)

Figure 5.2: (a) Principle sketch of Lorentz force sigmometry. The molten metal is poured into a

filling funnel and then projected through a magnetic field generated by the cylindrical Halbach

magnet. (b) 3D schematic of the Lorentz force sigmometry setup for fluid measurements.1:

filling funnel; 2: Halbach magnet and force sensor; 3: collecting vessel; 4: electronic scale; 5:

amplifier and converter; 6: voltmeters; 7: computer; 8: transformer and converter.

A vessel with the volume V = 600mL is filled with galinstan alloy. Before be-

ginning the experiment, an empty vessel with the volume of 1 L is placed on the

scale platform under the LOFOS nozzle, as shown in Fig. 5.2b.

The experimental procedure is as follows: first, we measure the temperature

of the eutectic alloy before each experiment, and then pour the alloy into the

filling funnel (Fig. 5.2b, pos.1) placed above the LOFOS device. The liquid

metal under gravitation force penetrates in the LOFOS device (Fig. 5.2b, pos.2)

passing through the nozzle in the presence of a magnetic field.

The interaction of the metal flow with the magnetic field generates the Lorentz

force in the molten metal in a direction opposite to that of the flow, and induces

force acting on the magnet system directed along the flow, which is exactly equal

to Lorentz force in the liquid metal. The molten metal passing through the

LOFOS setup is accumulated in the collecting vessel (Fig. 5.2b, pos.3) placed on

the platform of the electronic scale (Fig. 5.2b, pos.4) for the direct determination

of the cumulative mass M. The scale is connected to a computer (Fig. 5.2b, pos.7),
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and special software is used for the mass measurement during the process. The

force acting on the magnet presses the sensor located underneath the magnet

system. The signal from the sensor is fed to a commercial voltmeter (Fig. 5.2b,

pos.6), and then to a computer determining the Lorentz force F and its integral

F̃ within the operating time △t = t2 − t1.

5.1.2 Lorentz force signal of galinstan alloy

In this section, we present some examples of the measurements with galinstan.

We did more than 80 experiments in total and then we calculate the mean value

of the calibration factor of all this experiments. Here are some selected signals of

Lorentz force measurements of galinstan alloy.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The Lorentz force signal for galinstan alloy shows that the Lorentz force equals zero

when the copper bar is outside the magnetic field, and then it increases to its maximum and

remains constant for some seconds before the bar leaves the magnetic area, at which time the

Lorentz force returns to zero.

Figure 5.3 shows the same behavior for the Lorentz force. When the conducting

fluid is outside the magnetic field, the Lorentz force equals zero; it then increases

during the interaction and remains stable for ∼ 5 second. It then returns to
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zero when the conducting fluid leaves the magnetic field. For calculating the

calibration factor, we use the integral of the Lorentz force(Fig. 5.4)

(a) (b)

Figure 5.4: Integral of Lorentz force for galinstan alloy between t1 and t2, which is the time

period during which the eutectic alloy interacts with the magnetic field.

Next figure shows the histogram diagram of the calibration factor that we mea-

sured using galinstan alloy:

Figure 5.5: Histogram diagram of the calibration factor K of 83 measurements using galinstan

alloy.

The mean value for the calibration factor calculated from the measurements with
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its standard deviation is 30925±718 m2 S
N s

. After finding the new calibration factor

for the fluid measurements, a molten metal with unknown electrical conductivity

could be investigated. We chose to start with molten tin because it has a low

melting temperature of Tm = 232 ◦C, which is suitable for doing experiments in

lab environment.

5.2 Electrical conductivity measurement of molten

tin

We used the same setup as the one for galinstan, but because we were working

with a high-temperature liquid metal, we needed to use an air compressor pump

to cool the area around the magnet and the force measurement systems, as shown

in Figs. 5.5 a,b and Figs. 5.6 a, b.

(a) (b)

Figure 5.6: (a) 3D setup of Lorentz force sigmometry shows the air compressor pump connected

to the main setup. (b) Cross section of Lorentz force sigmometry shows the inlet and outlet of

the air to cool the area around the magnet and force sensor systems.
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(a) (b)

Figure 5.7: (a) Photograph of the air compressor pump used in the lab. (b) Photograph of the

other end of the cable that connect the air compressor pump to the LOFOS setup.

The procedure for this experiment was as follows:

• The tin (with 9.99% purity) was melted to ∼ 250 ◦C.

• The quartz vessel was preheated to decrease variation in the tin temperature

during the measurement.

• The temperature of the tin was measured before pouring it into the vessel

to assure the fast response of the sensor during the measurements.

• The cooling system was turned on to keep the temperature low and stable

in the magnetic field area.

• The liquid was poured and the Lorentz force recorded. The cumulative

mass of the metal was read to calculate the electrical conductivity.

• The quartz vessel was cleaned to avoid changing the geometry of the vessel

nozzle for the second measurement.

In our first test with molten tin, we faced significant solidification (see Fig. 5.8)

because the temperature of the molten tin was in the range of the melting tem-

perature of the tin, Tm = 232 ◦C.
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Figure 5.8: Photograph showing significant solidification of molten tin in the quartz vessel when

the molten temperature was close to the melting temperature of the tin.

However, we were able to resolve this issue by increasing the temperature of the

alloy above the melting point (> 232 ◦C for tin) ( ∼ 350 ◦C and by preheating

the quartz funnel longer using an air heater (∼ 610 ◦C). As a result, we overcame

the problem of solidification, and we observed that the nozzle walls were free of

any solidified tin after each measurement.

We recorded the Lorentz force signal for the tin. The next figure shows some of

these measurements.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: The Lorentz force signal for molten tin shows that the Lorentz force equals zero

when the molten tin is outside the magnetic field. It then increases to its maximum value and

remains constant for some seconds before the molten tin leaves the magnetic field, at which

point the Lorentz force returns to zero.

Some measurements were affected by mechanical noise from the compressor dur-

ing the experiment, as shown in Fig. 5.10.
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(a) (b)

Figure 5.10: Lorentz force signal of molten tin when it suffers form mechanical noise.

We know from chapter 3.1 that the formula to calculate the electrical conductivity

is given as:

σ = ρK
F̃

M
(5.1)

Thus, we needed to know the density of the molten tin, which depends on the

temperature of the alloy. We used the following formula to calculate the density

of tin at different temperatures [Alchagirov & Chochaeva, 1998] :

ρ = 7374.7− (676.5× 10−3T ) (5.2)

where ρ is the density of tin in kgm−3 and T is the temperature of molten tin in

kelvin. Alchagirov & Chochaeva [1998] claimed an error of 0.05%.

We calculated the integral of the Lorentz force as shown in Fig. 5.11 . We noticed

that for different measurements of molten tin, we had different integrals of the

Lorentz force because of different temperatures.
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(a) (b)

Figure 5.11: Integral of Lorentz force signal of molten tin at different temperatures..

We calculated the electrical conductivity of molten tin at different temperatures

However, when we compared our results with other methods, we noticed a signif-

icant statistical error, which ranged from ∼ 8− 20% .

We repeated the measurements without the cooling system and obtained better

results. However, they were not as good as we expected because the temperature

near the magnetic system was high. This changed the magnetic field, such that

the calibration factor was inversely proportional to the square of the magnetic

field (see Eq. 3.3).

This effect was investigated by Kolesnikov et al. in their LFF prototype. They

used commercial rare-earth permanent magnets consisting of NdFeB to charac-

terize the dependence of their magnetization on temperature. They found that

the magnetic induction decreased by 8.5 % when the temperature of the magnets

increased from 293K to 363K (20 ◦C to 90 ◦C) [Kolesnikov et al., 2011]. In par-

ticular, the dependence was calculated according to the following equation:

B(TM ) = B0[(1− α(TM − T0M )] (5.3)

where B0 is the magnetic field induction at the initial magnet temperature T0M

= 293 K and α is the coefficient of temperature variation of the magnetic field

and it equals to α = 1.116× 10−3 [K−1].

Because using the cooling system was necessary in high-temperature measure-

ments, we decided to re-calibrate the device using galinstan alloy when the air

compressor pump was on.
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Following the same steps mentioned above in section 5.1.2 , we found the new

calibration factor of the device, which was equal to 27258± 806 m2 S
N s

We repeated the measurements with molten tin at different temperatures and

then compared our results with those in the literature. Figures (5.12 and 5.13)

show the comparison between our measurements with the LOFOS setup and those

from the literature, taking into account the uncertainty of force measurements.

The uncertainty of temperature measurement ∆T is estimated to be as high as

1.1 ◦C. We use thermocouple type K and its uncertainty for temperature range

0 ◦C to 1250 ◦C has been analyzed by Nakos [2004]. The following temperature-

dependent correlations have been reported for the resistivity of molten tin using

contact methods (electrodes) of 99.95% molten tin [Roll & Motz, 2000; Scala &

Robertson, 1953; Sharafat & Ghoniem, 2000]:

For T < 588.15K

R(T ) = 40.88 + 0.0272T (5.4)

For T > 588.15K

R(T ) = 41.16 + 0.0263T (5.5)

where R(T) [µΩcm] is the resistivity of molten tin at temperature T [K].
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Figure 5.12: Dependence of electrical conductivity of molten tin at temperatures below 315 ◦C

using the Lorentz force sigmometry method and literature results.
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Figure 5.13: Dependence of electrical conductivity of molten tin at temperatures greater than

315 ◦C using the Lorentz force sigmometry method and literature results.

Figures (5.12 and 5.13) show that the electrical conductivity decreased with in-

creasing temperature. The reason for this decrease can be explained as follows.

The conductivity of a material depends directly on both the number of free elec-

trons per unit volume, n, and on the average time between collisions, τ . As we

increased the temperature, the average speed of the electrons, which act as the

carriers of current, increased, resulting in more frequent collisions. The average

time of collisions, τ , thus decreased with increasing temperature, which decreased

the conductivity of the metals. As a result of all measurements using LOFOS, we

noticed an error of as much as 6% as compared to the literature values. However,

the literature don’t show their uncertainty to be an accurate comparisons. This

type of error called statistical error (see section 3.7) which express the precision of

the used measurement method. Unfortunately, for hot liquid measurements, we
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couldn’t estimate the standard deviation so the random error for mass and force.

The reason for that is the complicated control of molten tin temperature in the

lab. Even if we measure the temperature before pouring the liquid through the

nozzle, the temperature will vary during pouring according to the temperature

of the quartz vessel and the weather condition. A good solution for this problem

is to fix a vacuum induction melting furnace over the quartz vessel and isolated

the whole setup to prevent temperature variation. Thus, a repetition of mea-

surements with the same temperature can be possible. However, we can estimate

the random error as following: we know that 0.4% error is coming from temper-

ature measurements and 0.05% is from the density measurements [Alchagirov &

Chochaeva, 1998] and 3% from calibration factor measurements with galinstan

rise the relative random error in this measurements to 3.45%.

The total error (statistical and random) of molten measurements is less than

10%.
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Chapter 6

Conclusion and Outlook

Lorentz force sigmometry is a non-contact electrical conductivity measurement

method based on the principles of magnetohydrodynamics. Because of the inter-

action of an externally applied magnetic field with a moving electrical conductor,

eddy currents within the conductor lead to a Lorentz force, which drags the

magnetic field-generating system along the flow direction. This force linearly de-

pends on the electrical conductivity of the conductor and can be measured using

an accurate force sensor.

Accurate measurements of the physical properties of aggressive and hot molten

metals is crucial for proper optimization and control over metallurgical processes

such as continuous casting and powder production. Up to today, these factors

have been known in metallurgy with an uncertainty higher than 10%. Out of

all these properties, the electrical conductivity is of particular interest because it

helps in increasing the quality of the finished products.

This thesis describes the design and laboratory tests of a Lorentz force sigmometry

mobile device for solid and liquid metals. The method has the following advan-

tages: i) because there is no direct contact between the sensor and the sample, it

can be implemented in the production process of any non-magnetic material (e.g.

copper or aluminum); (ii) it is based on simple theory and involves a simple setup;

(iii) the LOFOS setup is portable and easy to move; (iv) a relatively short period

is required for the measurement (3–5 s is sufficient). The circular shape of the

Halbach magnet does not limit the penetration depth, which is usually limited

to a few micrometers in conventional eddy current methods. The described con-

tactless method is applicable to the measurement of the electrical conductivity

of all the common high-temperature non-ferromagnetic molten metals, including
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refractory metals.

Conclusion: Electrical conductivity measurements of solid metals

We conducted two series of experiments with cylindrical solid bars. The first

was with known electrical conductive bars made of aluminum and copper (length

150mm, diameter10mm) to compute the calibration factor of the device, K. This

calibration factor was then used to estimate the unknown electrical conductivity

of a brass bar with the same geometry. Our results shows an uncertainty of as

much as 5%. This uncertainty is the sum of the random error and the statistical

error of electrical conductivity measurements .

Conclusion: Electrical conductivity measurements of molten metals

This experiment was done with molten metals. The first series was carried

out with an alloy with known physical properties having the composition of

Ga67In20.5Sn12.5. This is a eutectic alloy at room temperature and its melt-

ing temperature is Tm = 10.5 ◦C. The aim of these measurements was to find

the new calibration factor, K, of the special quartz filling funnel, which was fab-

ricated to sustain temperatures ranging from room temperature up to 1000 ◦C.

The nozzle has a diameter of 8mm, and it allowed the flow of molten metal across

the magnet system during a ∆t ≈ 5.5 [s], which is reasonable for measuring the

Lorentz force with good accuracy.

The second series of experiments were with high-temperature molten tin Tm =

232 ◦C. For fluid measurements, in order to protect the LOFOS force measure-

ment system from high temperatures, we added an external air compressor pump

to the LOFOS setup and re-calibrated the device when the cooling system was on

because we found that keeping the temperature near the magnet system at room

temperature was crucial for good results. Then, we compared the LOFOS results

with those reported in the literature. The comparison showed an uncertainty of

as much as 6% for temperature range smaller and bigger than 315 ◦C. A total

uncertainty ( statistical and random error) of these measurements is less than

10%.

Outlook

Lorentz force sigmometry can measure the electrical conductivity of solid and

molten metals using a very simple concept with good accuracy. We can use this

novel device to build a vast database of different alloys and solid metals that can
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be used in industry for increasing the quality of finished products. Two other

configurations of the LOFOS setup can be built and tested to measure the density

and viscosity of molten metals in future.
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6.1 Physical properties of galinstan alloy

This analysis has been done in Russian federal state research and design institute

of rare metal industry ”GIREDMET”.

1. Alloy compositions

It is a eutectic alloy made of gallium 67% , Indium 20.5 % and Tin 12.5 %.

2. Melting temperature

The melting temperature of galinstan alloy is Tm = 10.5 ◦C.

3. Density of alloy in dependence with temperature

After accurate analysis of the density of galinstan alloy with temperatures in the

range 298.15K to 523.15K, they found this formula:

ρ = 6492.12− 0.44T [kgm−3].

Table 6.1: The density of galinstan alloy in dependence with temperature

Temperature [K] Density [kgm−3]

298.15 6360.934
323.15 6349.934
348.15 6338.934
373.15 6827.934
398.15 6316.934
423.15 6305.934
448.15 9294.934
473.15 6283.934
498.15 6272.934
523.15 6261.934

4. Electrical resistivity of alloy in dependence with temperature
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An analysis of the electrical resistivity of galinstan alloy with temperatures in the

range 298.15K to 523.15K, gives this formula:

R[T ] = R0T [0.9632 + 2.9× 10−3]

where R0 = 30.32× 10−8 [Ωm].

Table 6.2: The electrical resistivity of galinstan alloy in dependence with temperature

Temperature [K] Electrical resistivity ×10−8 [Ωm]

298.15 3.058
323.15 3.278
348.15 3.498
373.15 3.718
398.15 3.938
423.15 4.157
448.15 4.377
473.15 4.597
498.15 4.817
523.15 5.037

6.2 Data sheet of strain gauge sensor

In the LOFOS force measurement system, we use a strain gauge which made by

Japanese company named Tokyo Sokki Kenkyujo Co., Ltd.

TML strain gauge test data

- Gauge type: UFLA-1-350-23 - Gauge factor: 2.15 ± 1% - Test condition: 23 ◦C

50% RH

- Gauge resistance: 350 ∼ 1.0 Ω

- Temperature coefficient of G. F. : +0.08 ± 0.05 %/10 ◦C

- Coefficient of thermal expansion: 23.0 ×10−6/◦C

Next figure shows the relation of thermal output (apparent strain) with temper-

ature:
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Figure 6.1: Apparent strain Vs. temperature

Influence of lead wires on measured values

A. Influence of temperature variation of lead wires (3-wire system is

independent of temperature).

εl =
rLα∆T

K(R + rL)
(6.1)

where εl is the thermal output of lead wires, r is total resistance per meter of lead

wires Ωm−1, L is the length of the lead wires m, α is the temperature coefficient

of resistance of lead wires, K is gauge factor and R is the gauge resistance.

B. Gauge factor correction due to lead wire attachment in case of 2-

wire system

K0 =
R

R + r · L ·K (6.2)

In case of 3-wire system

K0 =
R

R + r·L

2

·K (6.3)

where K0 corrected gauge factor.
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