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ABL1 
AL 
ALL 
AML 
APL 
Array-CGH 

v-abl Abelson murine leukemia viral oncogene homolog 1 
acute leukemia 
acute lymphoblastic leukemia 
acute myeloid leukemia 
acute promyelocytic leukemia 
array comparative genomic hybridization 

B-ALL B - cell acute lymphoblastic leukemia 
BAC bacterial artificial chromosome 
BCR breakpoint cluster region 
BM bone marrow 
bp base pairs 
CEP centromere probe 
CGAP cancer genome anatomy project 
CGH comparative genomic hybridization 
CLL chronic lymphocytic leukemia 
CML chronic myelogenous leukemia 
CN cytogenetically normal 
CN-AL cytogenetically normal AL 
CN-ALL cytogenetically normal ALL 
CN-AML cytogenetically normal AML 
CNAs 
CNVs 
COBRA 
CR 

copy number alterations  
copy number variations  
combined ratio labeling 
complete remission 

DGV 
del 
DNA 
FAB 
FISH 
GTG 
HSCs 
HSCT 
ins 
ISCN 
ISH 
ISIS 
Kb 
LSP 
Mb 
MDS 
m-FISH 
M-FISH 
MCB 
MLPA 
mMCB 
MRD 
NCBI 
NGS 

database of genomic variants 
deletion 
deoxyribonucleic acid 
French-American-British  
fluorescence in situ hybridization 
Giemsa banding, G-bands by trypsin using Giemsa 
hematopoietic stem cells 
hematopoietic stem cell transplantation 
insertion 
international system for human cytogenetic nomenclature 
in situ hybridization 
in situ imaging software (MetaSystems) 
kilobasepairs 
locus-specific probe 
megabasepaires 
myelodysplastic syndrome 
multicolor FISH 
multiplex-FISH using whole chromosome painting probes 
multi-color-banding 
multiplex ligation dependent probe amplification 
multitude multicolor banding 
minimal residual disease 
national center for biotechnology information 
next generation sequencing 
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PAC 
PCP 
PCR 
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RNA 
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SNP array-
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number 
P1-derived artificial chromosome 
partial chromosome paint 
polymerase chain reaction 
primed in situ labeling  
ribonucleic acid 
spectral  karyotyping  
single nucleotide polymorphism based array comparative genomic 
hybridization 

WBC white blood cells 
WCP whole chromosome paint 
WHG whole human genome 
WHO world health organization 
t translocation 
T-ALL T -cell acute lymphoblastic leukemia 
UCSC university of California, Santa Cruz 
UPD uniparental disomy 
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Summary: 

Acute leukemia (AL) is a heterogeneous and aggressive disease, with an incidence of 

approximately 5 cases per 100.000 individuals and per year. It consists of several subgroups 

with different specific cytogenetic and molecular genetic aberrations, clinical presentations 

and outcomes. Classification of AL is done (i) by clinical parameters and (ii) based on the 

bone marrow karyotype. Banding cytogenetics plays a pivotal role in the detection of 

recurrent chromosomal rearrangements and is the starting point of genetic analysis in AL, 

still. Nowadays, molecular (cyto)genetic tools provide substantially to identify previously 

non-detectable, so-called cryptic chromosomal aberrations in AL. However, AL according to 

banding cytogenetics with normal karyotype - in short cytogenetically normal AL (CN-AL) - 

represent up to ~50% of all new diagnosed AL cases and prognosis is unclear or denominated 

as intermediate. Thus, the overall goals of this thesis were (i) to identify and characterize the 

rate of cryptic alterations in CN-AL, (ii) to detect submicroscopic structural copy number 

alterations (CNAs) in AL and (iii) to identify yet unreported clonal acquired chromosomal 

rearrangements (therefore also 8 complex rearranged AL cases were studied) and align them  

with clinical outcome, as far as possible. This work included 103 AL cases and they were 

studies comprehensively using high resolution fluorescence in situ hybridization (FISH) 

based-banding technique, locus-specific probes (LSPs), array-based comparative genomic 

hybridization (aCGH), multiplex-ligation dependent probe amplification (MLPA) and 

analyses of the breakpoints by genomic browsers. DNA sequencing and single nucleotide 

polymorphism array-based comparative genomic hybridization (SNP array-CGH) have been 

used to detect mutations for a number of target genes that are known to key roles in lymphoid 

and myeloid development. Cryptic chromosomal aberrations were identified in 34% of 

cytogenetically normal acute lymphoblastic leukemia (CN-ALL) and in 28% of 

cytogenetically normal acute myeloid leukemia (CN-AML) cases respectively. Surprisingly, 

we detected high rates of CNAs in CN-ALL, whereas AML cases showed lower rates. 

Besides, we identified three new candidate genes; CDK6 (7q12.2), CDH2 (15q26.2) and DCC 

(18q21.2) that may play a key role in leukemogensis and progression. 

In conclusion, the present study highlights, that most likely all CN-AL cases hold cryptic 

genomic alterations and that complex AL still are a valuable source for detection of yet 

unrecognized chromosomal aberrations. Overall, the molecular cytogenetic approaches 

together with molecular methods are suited to identify cryptic chromosomal aberrations in AL 

and useful to define the genetic risk–based classification and correct determination of 

treatment protocols. 
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Zusammenfassung:  

Die akute Leukämie (AL) ist eine heterogene und aggressive Erkrankung mit einer Inzidenz 

von etwa 5 Fällen pro 100.000 Individuen und Jahr. Sie besteht aus mehreren Untergruppen 

mit unterschiedlichen zyto- und molekular-genetischen Aberrationen, klinischen Bildern und 

Verläufen. Die Klassifizierung von AL basiert v.a. auf (i) klinischen Parametern und (ii) einer 

Karyotypisierung des Knochenmarks. Die Zytogenetik spielt eine zentrale Rolle beim 

Nachweis von wiederkehrenden Chromosomenaberrationen und ist immer noch der 

Ausgangspunkt für jedwede weiterführende genetische Analyse der AL. Heutzutage bieten 

moderne, molekular (zyto-)genetische Verfahren die Möglichkeit früher nicht nachweisbare, 

sog. kryptische Chromosomenaberrationen bei der AL zu identifizieren. Dennoch sind nach 

Bänderungszytogenetik heute immer noch bis zu ~50% der neu diagnostizierten ALs 

zytogenetisch unauffällig (abgekürzt CN-AL) und deren Prognose gilt als unklar oder 

intermediär. Ziele dieser Arbeit waren (i) den Anteil und die Art der vorhandenen kryptischen 

Veränderungen bei CN-AL Fällen zu bestimmen, (ii) submikroskopische Struktur- bzw. 

Kopienzahl-Veränderungen (CNAs) in ALs nachzuweisen, und (iii) bislang noch nicht 

beschriebene, erworbene klonale chromosomale Rearrangements in CN-AL sowie 8-

komplexaberranten AL Fällen zu identifizieren und mit dem klinischen Verlauf zu 

korrelieren. In der vorliegenden Arbeit wurden 103 AL Fälle umfassend mittels 

hochauflösender Fluoreszenz in situ Hybridisierungs (FISH)-Bänderungs-Techniken, lokus-

spezifischen Sonden, array-basierender vergleichender genomischer Hybridisierung (aCGH), 

MLPA (multiplex-ligation dependent probe amplification) und durch Bruchpunktanalysen 

mittels genomischer Browser untersucht. DNA-Sequenzierung und Single Nucleotide 

Polymorphismus basierte aCGH wurden verwendet, um Mutationen für eine Anzahl von 

Zielgenen, welche Schlüsselrollen bei der lymphoiden und myeloiden Entwicklung haben 

weiter zu untersuchen. Kryptische Chromosomenaberrationen wurden in 34% der 

zytogenetisch unauffälligen akuten lymphatischen Leukämiefälle (CN-ALL) und in 28% der 

zytogenetisch unauffälligen akuten myeloischen Leukämien (CN-AML) identifiziert. Es 

fanden sich mehr CNAs in CN-ALL als in CN-AML Fällen. Schließlich wurden 3 neue AL-

assoziierte Kandidaten-Gene gefunden: CDK6 (7q12.2), CDH2 (15q26.2) und DCC 

(18q21.2), die eine wichtige Rolle in der Leukemogenese und Progression spielen könnten. 

Insgesamt ergab die vorliegende Arbeit, dass wohl alle CN-AL Fälle kryptische genomische 

Veränderungen tragen, und dass komplexe AL Fälle eine wertvolle Quelle für noch nicht 

erfasste Chromosomenaberrationen darstellen. Zusammenfassend konnte weiterhin gezeigt 

werden, dass molekularzytogenetische zusammen mit molekularen Methoden zur 

Klassifizierung kryptischer Chromosomenaberrationen in AL geeignet sind; diese Daten 

können künftig verwendet werden für eine korrekte Risikobestimmung und Auswahl 

geeigneter Behandlungsmethoden bei AL-Patienten. 
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1. Introduction 

Hematological malignancies are the most common cancer disease worldwide, particularly 

acute leukemia (AL). AL is the severest life threatening acquired disorder, studies are 

required for better understanding of underlying disease biology. The latter is primarily based 

on identification and characterization of acquired genetic alterations in AL. This chapter, first 

covers the molecular cyto(genetic) techniques nowadays used to identify acquired cryptic 

alterations in AL as well as to characterize complex chromosomal rearrangements (chapter 

1.1). Afterwards an overview on AL is provided, including definition, classification, 

cytogenetics and molecular genetics (chapters 1.2 to 1.5). These data will lead to the questions 

treated in this work (chapter 1.6). The present work is cumulative and based on ten own 

papers; thus, after showing them (chapter 2) they are discussed (chapter 3) and a finally 

conclusion and outlook on further possible developments based on presented data is given 

(chapter 4).  

 

1.1. Cytogenetic and molecular (cyto)genetics 

The beginning of human cytogenetics is ascribed to the end of 19th century. Tjio and Levan 

reported in 1956, based on their study of human embryonic lung tissues from several 

individuals, that the human diploid chromosome number is 46 (2n = 46) (Tjio and Levan 

1956). Continued developments of cell culture and harvesting techniques allowed for the 

identification of chromosomal abnormalities correlated with specific disorders and diseases. 

Thus, in 1959, Lejeune and colleagues described an extra chromosome in patients with Down 

syndrome (Lejeune et al. 1959). The first and most important finding of tumor cytogenetics in 

these early years was attributed to Peter Nowell and David Hungerford in 1960. They found a 

small acrocentric chromosome in the white blood cells (WBCs) of patients with chronic 

myelogenous leukemia (CML). This abnormal chromosome appeared to be terminally 

deleted, and was denominated as “Philadelphia chromosome” (Nowell and Hungerford 1960).  

The development of chromosome banding techniques started in the end of the 1960s. They 

allowed the chromosomes to be individually identified and specifically addressed in inherited 

diseases, and in case of acquired alterations in human malignancies (Caspersson et al. 1968). 

Therefore, the reciprocal translocation t(8;21)(q22;q22) was the first by means of banding 

approaches characterized alteration in acute myeloid leukemia (AML) in 1972 (Caspersson et 

al. 1972, Rowley 1973a). Shortly afterwards also the “Philadelphia chromosome” was 

identified to be part of a balanced translocation between the long arms of chromosomes 9 and 

chromosome 22; specifically a t(9;22)(q34;q11) (Rowley 1973b).  
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1.1.1. Chromosome banding 

A number of banding and staining techniques directed towards metaphase chromosomes have 

been developed between 1968 and 1980s. Thus, since the 1970s chromosome analysis became 

an essential tool in diagnosis of leukemia and lymphoma, as many recurrent numerical and 

structural aberrations were recognized (Lawler 1977). G-banding still known as a gold 

standard of banding techniques; it is considered as the most commonly used method in routine 

clinical and tumor cytogenetic diagnostic worldwide. G-bands are obtained, when the 

chromosomes are pretreated with a proteolytic enzyme, like trypsin and then stained with 

Giemsa, to produce reproducibly dark and light bands along the human chromosomes, which 

can be seen and analyzed by standard light microscopy. G-banding enables to detect both 

numerical (gain or loss of a chromosome) and structural aberrations (e.g., translocation, 

deletion, inversion, etc.). This method has, however, several weaknesses. The resolution of 

this technique is still limited, with a count of approximately 400-550 bands per haploid tumor 

cytogenetic genome; due to this many important chromosomal alterations can be missed and 

complex aberrations are too difficult to be interpreted (Wang and Fedoroff 1972, Yunis 1976, 

Othman et al. 2014). The designation of the regions, bands and sub-bands for each 

chromosome are describe in the International System for Human Cytogenetic Nomenclature 

(ISCN) (Shaffer et al. 2013). 

 

1.1.2. Molecular cytogenetics 

The term molecular cytogenetics refers to the study of DNA or genes visualised at 

chromosome or cell-level (Speicher and Carter 2005). In 1986, the first successful 

fluorescence in situ hybridization (FISH) experiments was carried out by the group of Dan 

Pinkel using chromosome-specific probe sets and to recognize the numerical and structural 

chromosomal abnormalities (Pinkel et al. 1986). Indeed, introducing of molecular 

cytogenetics, namely the FISH approach (see 1.1.2.1) is to overcame the lower resolution of 

banding techniques (>5-10 Mb). Nowadays, one of the best ways to characterize 

chromosomal breakpoints, particularly in leukemia, is application of the FISH-technique. 

Currently, major advances in molecular technology and bioinformatics, precisely comparative 

genomic hybridization (CGH), array-CGH and single nucleotide polymorphism array-based 

comparative genomic hybridization (SNP array-CGH), are powerful tools used to study copy 

number alterations (CNAs) across the genome. The goal of such studies is to improve the 

understanding of leukemia/cancer genesis, the identification of new biomarkers and potential 

therapeutic targets (Glassman and Hayes 2005, Le Scouarnec and Gribble 2012).  
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1.1.2.1. The technique of fluorescence in situ hybridization (FISH) 

The principle of FISH technique is based on the ability of a single-stranded DNA sequence to 

hybridize to its complementary target DNA sequence. The targets DNA are metaphase 

chromosomes, interphase nuclei, or tissue sections fixed to a glass slide (Fig. 1.1). The 

potential of all FISH-technologies is their ability to detect also submicroscopic deletions, 

duplications or rearrangements of single genes. Additionally, cryptic aberrations and complex 

chromosomal rearrangements can be fully characterized by FISH. Furthermore, interphase 

directed FISH is possible in case of low mitosic yield in leukemia (Liehr 2009, Bishop 2010).   

 

Figure 1.1. Principle of a FISH experiment performed on metaphase chromosomes. Fluorescent-
labeled DNA probe complementary to a chromosomal region of interest is used together with the 
target DNA which is fixed onto the slide surface. DNA probes and target DNA are denatured and 
hybridized together. Not shown in the figure, the Cot-1 DNA is necessary to cohybridized with the 
probe to reduce the binding of repetitive sequences. After washing the slides they can be visualized 
under a fluorescence microscope. If the DNA complementary to the probe is present a signal with the 
color of the emission wavelength of the fluorochrome of the probe is seen [figure adapted from the 
Department of Medical Genetics, Université de Sherbrooke, Sherbrooke, Quebec, Canada]. 
 



1.Introduction                                                                                                                                                         6 
 

1.1.2.2. Probes used for FISH 

For FISH many different DNA probes can be applied, which can be grouped as outlined 

below.  

 

1.1.2.2.1. Locus-specific probes (LSP) 

LSP cover chromosomal regions or loci of 0.1 to several megabase pairs (Mb) in size. In 

leukemia diagnostics and research LSP are applied to identify amplified oncogenes, deletion 

of tumor suppressor genes, or fusion genes or fissions (Liehr et al. 2015). 

 

1.1.2.2.2. Chromosome painting probes 

Whole chromosome painting (WCP) probes are generated by flow sorting or whole 

chromosome microdissection. The short and long arm of a particular chromosome can be 

painted by so-called partial chromosome painting (PCP) probe; PCPs can only be generated 

by microdissection. PCPs and WCPs have been particularly valuable in leukemia where 

specific chromosome rearrangements (numerical or structural) correlate with the severity of 

disease and may influence the plan of therapy (Cremer et al. 1988, Pinkel et al. 1988, Guan et 

al. 1994).  

 

1.1.2.2.3. Centromeric probes 

Chromosome‐specific centromeric probe (CEP) hybridize to centromeric regions of one (in 

case of D13/21Z1 and D14/22Z1 to two and in case of D1/5/19Z1 to three) specific human 

chromosome(s). They are commercially available and used to detect aneuploidy in both 

interphase and metaphase. In clinical diagnosis, for example, CEP are useful to confirm a 

trisomy of chromosome 21 in Down syndrome, while in AL typically monosomy 7 and/or 

trisomy 8 need to be checked, as they implicate in the prognosis of AML during therapy 

(Liehr et al. 2015). 

 

1.1.2.2.4. Multicolor FISH probe (mFISH) 

Several methods have been developed to paint each of the 24 human chromosomes in a 

specific color combination: spectral karyotyping (SKY) (Schröck et al. 1996), multiplex FISH 

(M-FISH) (Speicher et al. 1996), m-FISH (Senger et al. 1998), COmbined Binary Ratio 

labelling-FISH (COBRA-FISH) (Tanke et al., 1999) and 24-color-FISH (Azofeifa et al., 

2000). These approaches use four to seven different fluorochromes in a combinatorial labeling 

and/or ratio-labeling (Riegel 2014, Liehr et al. 2004, Liehr 2009). Nowadays, SKY, M-FISH, 
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and COBRA-FISH are the most advanced WCP-based FISH approaches, and allow the 

simultaneous visualization of all 24 human chromosomes, in a single hybridization, and in 

one metaphase spread. It is useful in defining complex translocations and marker 

chromosomes with unknown origin (Liehr 2015). 

 

1.1.2.2.5. FISH-banding approaches  

Many different FISH-banding approaches were introduced in the end of last century. 

Multitude multicolor banding (mMCB) is a FISH-banding technique which provides the 

possibility to characterize simultaneously subregions in each chromosome, using overlapping 

microdissection derived libraries, that are differentially labeled, and produce reproducible 

multicolored bands and unique patterns of fluorescence ratios along all chromosomes. These 

fluorescence ratios can be transformed into pseudocolour banding by specific software. This 

approach allows the differentiation of chromosome region specific areas at the band and 

subband level, with resolutions between 400-800 bands per haploid karyotype, and provides 

the possibility to analyses chromosomes irrespective of their condensation grades (Weise et 

al. 2003, Liehr et al. 2002a). mMCB is applied to characterize inter-and intra-chromosomal 

rearrangements of the whole human karyotype in one single experiment, to describe marker 

and/or derivative chromosomes in clinical and tumor cytogenetics (Liehr et al. 2002b, Liehr 

2009). Besides, this approach is also available, and was first introduced as a single-

chromosome directed application, called multicolor banding (MCB) (Liehr et al. 2002a).  

 

1.1.2.3. Array comparative genomic hybridization (array-CGH) 

Array-CGH was developed based on the same principles as CGH on chromosome level. The 

latter was already introduced in 1992 and enabled the characterization of genetic imbalances 

in tumors, which could not be karyotyped (Kallioniemi et al. 1992). The development of 

array-CGH technology for ‘molecular karyotyping’  with a much higher resolution than CGH 

(i.e. ~50-100 kilobases (kb)) is an example of the tremendous technical advances in 

cytogenetics. It offers higher resolution for genome-wide detection of chromosomal 

alterations and enables diagnostic and research to analyze hundreds to thousands of genes in 

one experiment. This lead to massive changes in clinical diagnostics and tumor research 

approaches (Le Scouarnec and Gribble 2012). In array-CGH the target-DNA are large 

numbers of mapped genomic clones, initially BAC or PAC (bacterial/P1-derived artificial 

chromosomes), which are spotted onto a standard glass slide (Fig.1.2) (Pinkel et al. 1998). 

The resolution of the different platforms is dependent on the size, number, and uniformity of 
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the genomic distribution of the probes. Array-CGH has been widely used to identify 

chromosomal imbalances through the detection of CNAs especially in leukemia and 

lymphoma, to distinguish the candidate genes that involved in the pathogenesis of cancer, and 

leading to cancer classification proposals. Indeed, array-CGH is not suitable technique to 

detect the recurrent balanced translocations, inversions or insertions but only to identify 

submicroscopic imbalances (Riegel 2014, Le Scouarnec and Gribble 2012). 

Besides, SNP array-CGH based approaches greatly improved the resolution of this approach 

down to ~1kb and enables the detection of stretches of homozygosity, which may be hints on 

deletions or uniparental disomy (UPD) (Le Scouarnec and Gribble 2012).  

 

 

Figure 1.2. Principle of array-CGH. Test DNA and control DNA are differentially labeled. Here 
shown examples of a T-ALL case with deletion in 9p21.3 to 9p21.3 and duplication in 9q34.12 to 
9q34.13 were identified [adapted from Othman et al. 2015]. 
 
 
1.1.3. Molecular genetics 

In the 1980s technical improvements led to the discovery of genes. Our understanding of the 

mechanisms and pathways involved in leukemogenesis became to be uncovered. In 1983 and 

1984 Grosveld and colleagues cloned the genes involved in the CML-specific translocation 

t(9;22). They could show, that the 5’ ABL gene which maps to chromosome 9q34 fused to the 

3’ BCR gene mapping to chromosome 22q11. Also they could show that a novel chimeric 

BCR-ABL gene was formed (Heisterkamp et al. 1983, Groffen et al. 1984, Rowley 1999). 

Nowadays there are countless molecular genetic approaches available (Murphy and Bustin 

2009, Kohlmann et al. 2013). In the following emphases is given only to three selected 

approaches that are of special interest for this work. 

 

1.1.3.1. Multiplex ligation-dependant probe amplification (MLPA) 

MLPA is one of the many different polymerase chain (PCR) reaction based approaches 

invented during the last 2 decades. It was first described for the detection of exon deletions 
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and duplications for BRCA1, MSH2 and MLH1 genes and for detection of trisomies (Schouten 

et al. 2002). So far, several modifications of MLPA technique have been developed, that 

include expression profiling (RT-MLPA), detection of known point mutations (array-based 

MLPA), and determination of the methylation status for imprinted genes and promoter 

regions (MS-MLPA) (Hömig-Hölzel and Savola 2012). MLPA is a multiplex polymerase 

chain reaction (M-PCR)-based technique, used to detect small CNAs within DNA sequences 

in a quantitative way. It enables to detect an aberrant copy number of up to 50 genomic DNA 

sequences in a single experiment (Fig 1.3). Still it cannot differentiate between a point 

mutation hampering PCR itself from a loss of copy numbers. MLPA is relatively fast, easily 

interpreted, cost effective, and e.g. method of choice for routine diagnostic of chronic 

lymphocytic leukemia (CLL). MLPA has also limitation and not suitable for the detection of 

the balanced translocations, inversions, unknown point mutations and distinguish diploid from 

haploid sets (Hömig-Hölzel and Savola 2012, Alhourani et al. 2014). 

 

1.1.3.2.  New high throughput approaches  

DNA sequencing is considered to be the gold standard tool for detection of point mutations 

associated with inherited and acquired genetic disease. Full sequencing of genes or genomes 

was not involved in routine cancer diagnostics until to date. Currently, next generation 

sequencing (NGS) technology (also known as “massively parallel” sequencing) allows to 

sequence the whole human genome (WHG), exome or transcriptome within a few days. It is 

based on sequencing of millions of DNA molecules simultaneously, after library preparation 

with production of sequence reads of 30-400 base pairs (bp) (Ilyas et al. 2015, Koboldt et al. 

2013). 

 

1.1.3.3.  Quantitative Real-time polymerase chain reaction (qRT-PCR) 

PCR provides a method for amplifying and studying alleles of specific genes or the mRNA 

transcribed from those genes. qRT-PCR is an in vitro method for reverse transcription of 

RNA followed by amplification of complementary DNA (cDNA). qRT-PCR is also very 

useful in detecting of the recurrent chromosomal translocations and rearrangements that 

generate oncogene fusion transcripts. For example, translocations t(4;11), t(8;21), t(9;22), 

t(12;21) and t/inv(16) can be simultaneously screened. Moreover, this technique is an efficient 

and highly sensitive in diagnostic that assist in selection of appropriate therapy and monitor 

the minimal residual disease (MRD) (Murphy and Bustin 2009, Olesen et al. 2004). 
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Figure 1.3. Principle of MLPA reaction including: 1) DNA denaturation and hybridization of MLPA 
probes; 2) ligation reaction; 3) PCR reaction; 4) separation of amplified products by electrophoresis 
and data analysis [adapted from Hömig-Hölzel and Savola 2012]. 
 

 

1.2.  The biology of leukemia 

All lineages of blood cells originate from a pool of self-renewing hematopoietic stem cells 

(HSCs) that resides in the bone marrow (BM). They can differentiate into two main lineages: 

lymphoid and myeloid progenitor cells (Longo 2013). Lymphoid progenitors can differentiate 

into B-lymphocytes, or T-lymphocytes. B-lymphocytes (or B-cells) differentiate in BM, while 

T-lymphocytes (or T-cells) proliferate and differentiate in the thymus (Hardy and Hayakawa 

2001, Rothenberg et al. 2008). Mature B- and T-cells leave to peripheral lymphoid organs 

through the bloodstream. The myeloid progenitors can give rise to bipotent granulocyte-

monocyte progenitors, whose final progeny are nucleated cells (monocytes and granulocytes); 
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besides they can differentiate into megakaryocyte-erythroid progenitors, which give rise to 

mature thrombocytes and erythrocytes. Mature granulocytes and monocyte are released into 

the bloodstream. Abnormalities in the normal blood cells differentiation and/or proliferation 

program result in hematological diseases, particularly leukemia.  

Leukemia is a neoplastic proliferation of hematopoietic precursor cells, arises from a mutated 

myeloid progenitor or lymphoid progenitor cell. These cells infiltrate the blood-forming 

tissues and circulate in the bloodstream. Commonly, leukemia is divided into two main 

classes: acute and chronic leukemia, which are further classified into lymphoid and myeloid 

types, depending on the cell lineage represented by the leukemic clone.  

Numerous transcription factors are involved in expression of genes during the progression of 

lymphoid cell precursors from the immature stage till they migrate into periphery. Though, 

mutations in transcription factors and/or overexpression of genes are tightly connected to 

lymphoid malignancies; for example mutations in the PAX5, IKZF1 and EBF1 genes which 

are important for B-cell development and differentiation, and thus associated with B-cell 

acute lymphoblastic leukemia (B-ALL) (O'Brien et al. 2011, Mullighan 2013). In contrast, 

somatic mutations leading to overexpression or acquired deletions in transcription factors 

have been described for myeloid cell development. In most of these cases they lead to 

inhibition of proliferation, block of differentiation and/or lead to altered lineage commitments. 

For example, mutation in C/EBP alpha which regulates proliferation and controls terminal 

granulocytic differentiation is associated with AML (Ho et al. 2009).   

 

1.3.  Acute leukemia (AL) 

AL is an aggressive and heterogeneous disease characterized by uncontrolled clonal 

proliferation and accumulation of poorly differentiated blast cells in the BM. AL shows a fast 

clinical pattern in comparison to chronic leukemia which is generally less aggressive. Without 

treatment AL can result in death within a few months. AL constitutes 95% of all childhood 

leukemias (Coebergh et al. 2006, Estey and Döhner 2006, Inaba et al. 2013). The severity of 

AL depends on leukemic cells infiltrating the BM and extramedullary organs and on the 

extent to the BM failure. Typical signs and symptoms of AL are fever, fatigue, pallor, bruises, 

bleeding, hepatosplenomegaly, lymphadenopathy, thrombocytopenia, coagulopathy, 

hyperleukocytosis and bone pain. In addition, central nervous system (CNS) involvement is 

possible (Reman et al. 2008, Nowak-Gottl et al. 2009). Overall, classification of AL plays an 

essential role in determining both treatment options and prognosis.   
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1.4.  Acute lymphoblastic leukemia (ALL) 

ALL is a malignant disease with clonal proliferation of lymphoid progenitor cells. It arises 

from recurrent genetic alterations that block precursor B and T cell differentiation and affect 

children (Teitell and Pandolfi 2009). ALL represents ~80% of childhood AL and ~25% of all 

childhood cancers (ages 0-15 years) but only ~20% of adult AL (Bassan et al. 2004, Inaba et 

al. 2013, ACS 2015). Worldwide, a sharp peak in incidence is observed among ALL children 

aged 2 to 5 years. In other words in Western Europe and in USA ALL appears in up to 40 

cases / million  and year, while in Eastern Europe and Japan the rate is only around 30 cases/ 

million and year; in sub-Saharan Africa, India, and in the Middle East the rate is only 20 

cases/million and year. This suggests either that in the industrialized Western countries there 

are higher exposures to environmental leukemogenes or that the genetic backgrounds are 

different (Stiller 2004, Howard et al. 2008, Hrusak et al. 2002, Linabery and Ross 2008).  

 

1.4.1. Classification of ALL 

ALL was initially classified into three major subgroups: L1 (80%), L2 (15%), and L3 (5%) 

based on French-American-British (FAB) Cooperative Group criteria using morphological 

features of lymphoblasts. L1 was correlated with the best prognosis, higher relapse rates were 

found for L2 and for L3 cases an adverse prognosis was given (Bennett et al. 1981). As 

mentioned ALL also classified into B and T cell ALL according to the expression of specific 

antigens easily identifiable by flow cytometry (appendix Tab. 1.1). B-ALL constitutes 80-

85% and T-ALL the remainder of ALL cases. B-ALL patients have a favorable prognosis 

with an overall complete remission (CR) rate of 95% for children between 1-15 years, and of 

60% for adults. Adverse prognosis in T-ALL was correlated with male gender, older age, 

leukocytosis and mediastinal mass (Perez-Andreu et al. 2015, Faderl et al. 2010, Goldberg et 

al. 2003). Hence, immunophenotype (Benter et al. 2001) and genetic and cytogenetic 

classifications of ALL are important aspects of diagnosis, risk assessment, treatment and 

prognosis in ALL (Vardiman 2010). Nowadays, around 80% of ALL patients can be readily 

classified into therapeutically relevant subgroups based such data (appendix Tab. 1.2).  

 

1.4.2. Clinical prognostic factors in ALL  

Prognostic factors to be assessed during ALL diagnostics are:   

Age: Children between 1 and <10 years of age with B-ALL tend to have favorable prognosis, 

while infants, adolescents, and adults are considered high-risk for treatment failure. For T-

ALL patients no effect of age for clinical outcome is know, yet (Hilden et al. 2006, de Bont et 

al. 2004). WBC count is a crucial variable for describing the nature of leukemia. Children 
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who have WBC counts more than 50,000/µl are classified as a high risk of relapse and need 

more intensive treatment (Vaitkevičienė et al. 2011).  

 

1.4.3. Cytogenetic aberrations in ALL 

Cytogenetic chromosomal abnormalities are detected in 50-60% of ALLs and may be 

structural or numerical (Fig. 1.4). Such aberrations are prognostic factors, too. Chromosome 

numbers: High hyperdiploidy (51-65 chromosomes) has been connected with good survival 

and excellent outcome in B-ALL, while hypodiploidy (<44 chromosomes) has worse 

prognosis (Chilton et al. 2014, Holmfeldt et al. 2013). Chromosomal translocations: 

Patients with a translocation t(12;21)(p13;q22)/ETV6/RUNX1 are more likely to be excellent 

cured, while those with a translocation t(9;22) or t(4;11) tend to have unfavorable outcomes 

(Bhojwani et al. 2012, Woo et al. 2014, Pui et al. 2003). In appendix Tab. 1.2 summarized the 

most common cytogenetic prognostic marker in ALL subtypes.  

 

 

 

Figure 1.4. Summary of the frequency of cytogenetic and molecular genetic aberrations frequently 
detected in ALL. Left side refers to childhood ALL and right side to adulthood ALL; B-ALL 
aberrations are indicated in black letters while T-ALL in blue ones [adapted from Downing et al. 
2012]. 
 
In ALL hyperdiploid karyotypes, the translocation t(9;22)(q34;q11), 11q23 (MLL gene) 

rearrangements, translocations t(12;21)(p13;q22), t(1;19)(q23;p13) and t(8;14)(q24;q32) are 

the most frequent structural cytogenetic abnormalities, while the genetic alterations associated 

with ALL hypodiploidy are: deletion in/of the genes TP53, RB1, and IKZF1 (Paulsson et al. 

2003, Chilton et al. 2014, Nachman et al. 2007, Holmfeldt et al. 2013). The most recurrent 

structural chromosomal aberrations in ALL are summarized in appendix Tab. 1.3.  
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1.4.3.1. Cytogenetically normal ALL (CN-ALL)  

CN-ALL represent up to ~50% of ALL cases. T-ALL- showed a normal karyotype more 

frequently than B-ALL patients and accordingly here cytogenetic markers cannot be 

determined. Based on the knowledge that chromosomes in ALL show a low banding 

resolution and that a good part of ALL cases present with a normal karyotype, it is not far to 

seek, that small aberration can easily be missed when analyzing ALL derived chromosomes 

by banding cytogenetics (Karst et al. 2006, Mrózek et al. 2009).  

 

1.4.3.2. Complex karyotypes in ALL 

Complex karyotypes are also well known and typical for approximately 5% of ALL cases. 

Such complex karyotypes include more than three to five chromosomal abnormalities. This 

group has been reported to indicate a significantly increased risk of treatment failure. Still, 

this prognostic marker has been incorporated in the definition of high-risk ALL groups 

(Moorman et al. 2007). 

 

1.4.4.  Molecular genetics of ALL 

CNAs are changes that alter the genome structure. They can be simple abnormal numbers of 

chromosomes (losses or gains) or, smaller, down to submicroscopic deletions or duplications. 

CNAs can be detected by technologies like MLPA, array-CGH, SNP-array-CGH and FISH 

using LSP. As submicroscopic CNAs have been revealed focal deletions, but also less 

frequently duplications or sequence/point mutations in genes that primarily serve as 

transcriptional regulators of the lymphoid development pathway (Mullighan 2012, Van 

Vlierberghe and Ferrando 2012, Inaba et al. 2013, Woo et al. 2014, Faderl et al. 2010). 

Common CNAs in ALL are listed in appendix Tab. 1.4. Numerous new genetic alterations 

have been discovered in ALL by using high throughput technologies such as NGS. 

Appreciation of these genomic abnormalities and mutations led to redefining 

subclassifications of ALL, recently (Pui et al. 2012, Mullighan 2013). For a number of target 

genes that play a key role in lymphoid development (e.g., PAX5, IKZF1, EBF1, LMO2) 

somatic mutations have been identified in B and T-ALL. For instance, deletion of PAX5 has 

been detected in 30% of B-ALL (Mullighan et al. 2007). JAK2 is a member of a family of 

tyrosine kinases involved in cytokine receptor signaling. Mutations in JAK2 were identified in 

10% of high-risk childhood B-ALL and frequently associated with other abnormalities, 

including deletions or mutations of IKZF1 and overexpression the CRLF2 gene (Mullighan et 

al. 2009a). In T-ALL, NOTCH1-activating gene mutation have been found in 60% and 
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FBXW7-inactivating gene mutation occurs in 20% of pediatric T-ALL (Gallo Llorente et al. 

2014). Less commonly, mutations in PTEN, WT1, amplification of MYB and sequence 

mutations in ras signaling (NRAS, KRAS, and NF1) and tumor suppression (TP53) have been 

identified in ALL (Mullighan 2013). 

 

1.5.  Acute myeloid leukemia (AML) 

AML is clinically and biologically a heterogeneous disease, characterized by clonal 

proliferation of myeloid precursors. These immature cells accumulated in BM or can escape 

into the peripheral blood, and infiltrate other organs (Ferrara and Schiffer 2013, Estey 2013). 

AML accounts for ~20% of childhood AL and is the most common AL type in adults over 60 

years of age. AML represents ~80% of all adult AL. The frequency of AML remains stable 

throughout childhood with a slight increase during adolescence age can be observed. 4-10 

cases per million children develop an AML annually (Stiller 2004, Belson et al. 2007). In 

advanced ages, the frequencies dramatically change: 3-10 cases per 100,000 per individuals 

over 65 years old per year are diagnosed with AML (Yamamoto and Goodman 2008, Dores et 

al. 2012).  

1.5.1. Classification of AML 

AML has been classified as to FAB into eight different subtypes (M0–M7) which depend on 

morphological and cytochemical evaluation. Some subtypes of AML tend to have a better 

outcome than others. For example, M3 subtype has a more favorable outcome, while 

undifferentiated AML-M0 and M7 are harder to treat effectively and have poorer outcome 

(Craig and Foon 2008, Vardiman et al. 2009). Cell surface and cytoplasmic expressed 

antigens help in diagnosis and classification of AML (appendix Tab. 1.5) (Vardiman et al. 

2009). Recently, WHO classified seven subtypes of AML with recurrent (cyto)genetic 

abnormalities (appendix Tab. 1.6). Each of these translocations or inversions results in a 

fusion gene encoding a chimeric protein that participates in leukemogenesis (Vardiman et al. 

2009, Dores et al. 2012). 

 

1.5.2. Clinical prognostic factors in AML 

Age: Children younger than 2 years suffering from AML have better prognosis than older 

children, while adult less than 60 years have favorable outcome with higher rates of achieving 

CR compared to those older than 60 years (Shah et al. 2013, Creutzig et al. 2008).  WBC 

count: AML patients with WBC counts higher than 100,000/µl are classified as having a high 

risk of relapse and need more intensive treatment (Löwenberg et al. 1999).  
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1.5.3. Cytogenetic aberrations in AML 

Abnormal karyotypes can be detected in 50-60% of AML patients. To date, many specific 

translocations and inversions have been described in AML (appendix Tab. 1.7).  AML 

patients who have translocations t(15;17), t(8;21), t(16;16)/or inv(16) have better chances to 

become cured and receive a CR, whereas patients with monosomies of chromosomes 5 or 7, 

with 11q23 rearrangements, monosomic and/or complex karyotypes are associated with poor 

prognosis, and require hematopoietic stem cell transplantation (HSCT) during their first 

remission (appendix Tab. 1.8) (Grimwade et al. 2010, Kayser et al. 2012, Ferrara and Schiffer 

2013).  Gain of chromosome 8 (trisomy 8) and loss of chromosomes 5 and 7 (monosomy 5 or 

7) are the most frequent numerical chromosomal abnormalities observed in different subtypes 

of AML. The recurrent loss of chromosome material proposes the existence of a putative 

tumor suppressor gene in these regions, as well the gain of chromosome result from the 

presence of potential oncogene that regulates myeloid precursor cells in proliferation and 

differentiation. Thus, loss of function or overexpression may leads to leukemic transformation 

(Braoudaki and Tzortzatou-Stathopoulou 2012, Schoch et al. 2006).  

 

1.5.3.1. Cytogenetically normal AML (CN-AML) 

CN-AML accounts 40-50% of de novo AML and up to 10% of sAML (secondary, therapy 

related AML). It is a very heterogeneous group of patients with variable age, morphological 

features, clinical course, and response to therapy. In this group patients are thought to have 

cryptic (cyto)genetic changes and categorized in the intermediate risk group  (Gross et al. 

2009, Grimwade et al. 2010, Walker and Marcucci 2012). 

 

1.5.3.2. Complex karyotypes in AML 

Complex karyotypes with three or more numerical and/or structurally altered chromosomes 

have been well recognized in AML, too with a high degree of genomic complexity with an 

average of 14 aberrations per case. Complex karyotypes occur in ~10% of AML patients. 

Noticeably, complex karyotypes may involve TP53 deletions and/or mutations. Indeed, this 

subgroup does not appear to be associated with age, gender, or WBC count, and particularly 

abnormalities of 17p or TP53 are predictive of a high risk of treatment failure in AML 

(Mrózek 2008, Rücker et al. 2012, Middeke et al. 2014).   
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1.5.4. Molecular genetics of AML 

Mutations in certain genes include FLT3, NPM1, IDH1/2, KIT, BAALC and CEBPA have 

significant impact on the prognosis in adult AML, particularly in CN-AML (Walker and 

Marcucci 2012). Point mutations or amplification of oncogenes provided new insight into the 

pathogenesis of CN-AML and also are important for further clarifying prognosis (Ilyas et al. 

2015). E.g. NPM1 gene mutations were identified in ~35 and 50% of de novo AML and CN-

AML, respectively. Sole mutation in NPM1 has been found as well as accompanied with 

other gene mutations including FLT3 and IDH1/2 (Ferrara and Schiffer 2013, Schneider et al. 

2012, Port et al. 2014).  
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1.6.  Aim of study/Questions worked on  

 

Normal karyotypes can be observed in AL in 40-50% of all cases studied by routine GTG-

banding analysis. According to what was outlined in the introduction part, unknown cryptic 

changes must be suggested to be present in the leukemic cells of these patients. The 

aberrations to be expected are suggested to be on the submicroscopic level. Previous studies 

have found such so-called cryptic aberrations when using high resolution FISH approaches. 

The observed aberrations fall into two groups: a) such cases which were only detectable by 

FISH and b) such which would have been also possible to be picked up, if more or better 

metaphases would have been analyzed in routine cytogenetics (Karst et al. 2006, Gross et al. 

2009). Besides, identification of additional aberrations (like point mutations or epigenetic 

changes) can be expected when using other, more molecular oriented approaches.  

 

Thus, the aims of the present work were: 

1 to identify overlooked and unknown cryptic chromosomal rearrangements in both CN-

ALL (61 cases) and CN-AML (42 cases); 

2 to characterize in detail here new identified tumor-associated acquired chromosomal 

breakpoints in CN-ALL and CN-AML cases; 

3 to characterize in detail the tumor-associated acquired breakpoints also in complex 

aberrant karyotypes of one ALL and seven AML cases; 

4 to detect submicroscopic structural CNAs in ALL and AML cases using MLPA and 

array-CGH; 

5 to correlate the new tumor-associated acquired rearrangements with diagnostic, 

prognostic and therapeutic relevance.  

 

Overall, the present work led to the numerous publications, 10 of which were selected for this 

thesis, which all deal with answering the questions raised before.  
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Even though they have been called outdated
for decades [1], cytogenetics and molecular
cytogenetics still are and will stay in future
indispensable tools in diagnostics. This state-
ment is true for clinical aspects of prenatal and
postnatal patient care but also for patients suf-
fering from neoplasia, in particular leukemia,
lymphoma and solid tumors, as well. In this
review, the development of cytogenetics and
molecular cytogenetics is summarized, the
basic technique of molecular cytogenetics is
outlined together with an overview on the dif-
ferent kinds of probes available for fluores-
cence in situ hybridization (FISH) and the
current state of molecular cytogenetics in can-
cer diagnostics is given. This includes espe-
cially the commercially available probe sets
applied in routine neoplasia diagnostics and
those multicolor FISH (mFISH) tools used in
research to identify new tumor-associated criti-
cal genomic regions.

Cytogenetic & molecular cytogenetics

The history of human cytogenetics started not
before the year 1879. At this time, micro-
scopes of a certain quality were available,
which were prerequisite to localize and identify
chromosomes in a cell. All chromosomal
studies between 1879 until approximately

1970 were retrospectively summarized as hav-
ing been performed in the ‘pre-banding era’.
Only so-called ‘classical cytogenetic studies’
were possible in that time, that is, chromo-
somes could exclusively be distinguished by
size and centromere index [2]; nowadays classi-
cal cytogenetics is still essential in animal [3]

and plant cytogenetics [4]. However, the
determination of the correct modal human
chromosome number in 1956, the first charac-
terization of inborn numerical chromosome
aberrations (like Down syndrome) as well as
the detection of first tumor-associated aberra-
tions were all achieved during the early days of
classical cytogenetics [2]. As summarized by
E Gebhart (1989) [5], tumor-associated chro-
mosomal anomalies were indeed already recog-
nized by the first observer of human
chromosomes, J Arnold in 1879. In 1890, it
was D von Hansemann who highlighted that
unusual, asymmetric mitosis can be observed
only in cancer cells. Partially based on this,
T. Boveri established in 1914 a ‘chromosome
theory of cancer development’ [5], which
turned out to be basically true many years
later [6]. Between 1927 and 1956, there were
multiple attempts to characterize chromosome
content and numbers of tumor cells, which
were basically hampered by the fact that the
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constitutional chromosome number in human was not deter-
mined (correctly) at that time. It is noteworthy that the chro-
mosomal aberration being typical for chronic myelogenous
leukemia, so-called Philadelphia chromosome, was already
detected in the ‘pre-banding era’ (in 1960). The same holds
true for characterization of monosomy 22 as being typically
observed in meningioma (in 1967), and double minutes (in
1962) later being identified as one of the cytogenetic equiva-
lents of oncogene amplification [5]. Interestingly, even
G Mendel, the ‘father of modern genetics’ postulated the exis-
tence of linkage groups (in German ‘Kopplungsgruppe’) for the
features he studied in peas [7]; and these linkage groups were
nothing else than chromosomes.

Logically, after ‘pre-banding era’ came the ‘pure banding era’,
starting with the invention of the Q-banding method by Lore
Zech (Uppsala) in 1968 [8]. Based on this, the GTG-banding
approach (G-bands by trypsin using Giemsa) was established in
1971, which remained the gold standard of all cytogenetic tech-
niques until now [2,5]. Using banding cytogenetics, more chro-
mosomal abnormalities, like translocations, inversions, deletions
and insertions, could be detected and precisely characterized,
which was impossible before. Many tumor-specific aberrations
were clearly identified since then, like the aforementioned Phila-
delphia chromosome which was characterized to be the result of
a reciprocal translocation t(9;22)(q34;q11) in 1973. Also the
acquired translocation t(8;14)(q24;q32) detected in Burkitt’s
lymphoma in 1976 and the characterization of homogeneously

staining regions in 1978 were important findings enabled due to
banding cytogenetics [5].

As black and white banding pattern together with chromo-
some morphology are the only two parameters that can be evalu-
ated in GTG-banding, origin of additional material in a
derivative chromosome often remains unclear. In order to over-
come this kind of limitations, molecular cytogenetic approaches
were and are necessary. In situ hybridization allows for examina-
tion of nucleic acid sequences inside cells or on chromosomes
and was first described in 1969 as a radioactive approach. As
nonradioactive probe labeling was not invented before 1981,
non-radioactive FISH was needed until 1986, until it was ready
to be used in human cytogenetics. Apart from avoidance of
health-threatening radioactivity, FISH speeds up analysis time
and comprises the possibility to detect several targets simulta-
neously (see below in section “FISH-techniques”) [2].

Thus, ‘pure banding era’ finished in 1986 with the first suc-
cessful molecular cytogenetic experiment on human chromo-
somes by D Pinkel and colleagues. The period since then may
be denominated ‘banding and molecular cytogenetic era’ as
banding cytogenetics and molecular cytogenetics complemented
each other and became important tools on an equal footing in
many fields of human diagnostics, including the care of cancer
patients. Initially, there were two basic approaches in molecular
cytogenetics: FISH and primed in situ hybridization (PRINS).
However, the latter never acquired the importance of FISH, as
it is much less robust and was never developed in a multicolor
variant [2,9].

Especially important for tumor cytogenetics was inventing a
molecular cytogenetic approach called comparative genomic
hybridization (CGH). In CGH, two genomes are analyzed for
gains and losses of genomic material at a low resolution of
5–10 Mb. Even though a main feature of many solid tumors is
their abnormal rapid in vivo growth, corresponding tumor cells
often refrain from growing in cell culture. Thus, originally
CGH gave first insights into chromosomal imbalances of many
previously not cytogenetically analyzed solid tumor types.
Indeed, CGH was applied more in research rather than as a
diagnostic tool [10]. An advancement of this chromosome-based
CGH approach is the so-called array-CGH, providing much
higher resolution of approximately 50 kb or even less, and
being used routinely in clinical rather than cancer diagnostics,
however, applied in cancer research [2,11,12].

Before discussing molecular cytogenetic applications in can-
cer diagnostics, some aspects about how the FISH technique
itself is performed need to be stressed.

FISH – technical aspects

DNA probes applied in FISH can be grouped in different
ways; here we suggest doing it as follows:

. locus-specific, single-copy probes;

. probes specific for repetitive sequences;

. whole chromosome painting probes (wcp);

. partial chromosome painting probes (pcp) (FIGURE 1).

Unstained Probe 1 Probe 2

A B

C D

Figure 1. Schematic drawing depicting the four different
kinds of fluorescence in situ hybridization-probes as
differentiated in this review. (A) Locus-specific, single-copy
probes, including subtelomeric probes. (B) Probes specific for
repetitive sequences like telomeric (probe 1) and centromeric
regions (probe 2). (C) A whole chromosome painting probe and
(D) partial chromosome painting probes.

Review Liehr, Othman, Rittscher & Alhourani

Expert Rev. Mol. Diagn. 15(4), (2015)

2.Results 21



All four kinds of probes may be used in diagnostics and
should be applied at least in two-color FISH experiments: one
probe as specific for the region of interest, the second one as a
control. Most commercially available probes are locus- and/or
centromere-specific ones (see TABLES 1–3) [2].

Besides, mFISH probe sets can be of importance in molecu-
lar tumor-cytogenetic diagnostics, and they are even more con-
siderable in research. mFISH is defined as the simultaneous use
of at least three different ligands or fluorochromes for the spe-
cific labeling of DNA, excluding the counterstain. The first
commercially available and still diagnostically relevant mFISH
probe sets were put together in 1996 by M Speicher and col-
leagues and E Schröck and coworkers, respectively, enabling
the staining of each of the 24 human chromosomes in different
colors using wcp probes. This kind of probe set was developed
in parallel, with slight modifications and described under dif-
ferent names as mFISH (=multiplex FISH), SKY (=spectral
karyotyping), multicolor FISH, COBRA-FISH (=COmbined
Binary RAtio labeling FISH) or 24-color FISH [2]. A summary
on possible applications besides cancer diagnostics can be
found elsewhere [13].

As mFISH methods applying wcp probes are not suited for
exact chromosomal breakpoint characterization, different
approaches summarized as ‘FISH banding methods’ were
developed. The latter ‘are any kind of FISH technique, which
provide the possibility to characterize simultaneously several
chromosomal subregions smaller than a chromosome arm with
resolution down to 5 Mb (excluding the short arms of the
acrocentric chromosomes). FISH banding methods fitting that
definition may have quite different characteristics, but share the
ability to produce a DNA-specific chromosomal banding’ [14].
The most often applied FISH-banding approach is the
microdissection-based multicolor banding (MCB or m-band).
Other mFISH probe sets such as for all subtelomeric regions
(M-Tel-FISH) or variants of centromere-specific multicolor
FISH (=cenM-FISH) are commonly not applied in cancer
diagnostics [2]. Array-CGH and next-generation sequencing
(NGS) methods are not considered as ‘molecular cytogenetic’
approaches, even though some authors surprisingly do this [15].
The latter may be warranted by the recent description of chro-
mothripsis based on NGS [16]. However, it has to be empha-
sized that complex chromosomal rearrangements and even
conditions like ‘chromosome-pulverization’, which may be one
step of chromothripsis, are known for decades already from
pre-banding era of cytogenetics [5].

Molecular cytogenetics in cancer diagnosis

It goes without saying that in neoplasia the identification
of cytogenetic markers1 is of high clinical significance for diag-
nostics, follow-up studies and prognosis [5,17,18]. In the first
years after introduction of molecular cytogenetics into cancer

Table 1. List of most important commercially available
fluorescence in situ hybridization-probes for leukemia.

Leukemia subtype Target region Gene

Myelodysplastic
syndrome

3q26
4q24
5q31.2
6p22 and 9q34
7q22 and 7q31
11q21
16p13 and 16q22
20q12 and 20q13.12

EVI1
TET2
EGR1
DEK/NUP214
RELN/TES
MAML2
MYH11/CBFB
PTPRT/MYBL2

Chronic myeloid
leukemia

4q12
5q32~33
9p24
9q34 and 22q11
11q22
17p13

FIP1L1/CHIC2/PDGFRa
PDGFRB
JAK2
BCR/ABL
ATM
P53

Acute myeloid
leukemia (AML)

3q26
4q12
5q31.2
5q32
5q35
6p22 and 9q34
6q23
6q27
7q22 and 7q31
9p24
9p21.3
11p15
11q23
15q24 and 17q21.2
16p13 and 16q22
20q12 and 20q13.12
21q22
22q22 and 8q21

EVI1
KIT
EGR1
CSF1R
NPM1
DEK/NUP214
MYB
MLLT4
RELN/TES
JAK2
MLLT3
NUP98
MLL
PML/RARa
MYH11/CBFB
PTPRT/MYBL2
ERG
RUNX1/RUNX1T1

Chronic lymphocytic
leukemia

3q26
5q32
6q21
6q23
11q22
11q13
11q22 and 18q21
12q13
13q14.3
14q32 and 11q13
17p13
19q13

TERC
CD74
SEC63
MYB
ATM
Cyclin D1
BIRC3/MALT1
GLI
DLEU2 or D13S25
IGH/CCND1
P53
BCL3

Acute lymphocytic
leukemia

Xp22.3
Xp22.3
1p32
1q23 and 19p13.3
4q21 and 11q23
5q35
6q23
7q34
8q24
9p21
9p13
9q34 and 22q11
10q23
10q24.3
11q23
12p13 and 22q22
14q11
14q32.13
14q32.3
19p13
22q22 and 8q21

CRFL2
P2RY8
SIL/TAL1
PBX1/TCF3
MLL/AFF1
TLX3
MYB
TCRB
C-MYC
P16 or CDKN2A
PAX5
BCR/ABL
PTEN
TLX1
MLL
TEL/AML1
TCR A/D
TCL1
IGH
E2A
RUNX1/RUNX1T1

1A ‘cytogenetic marker’ is a set phrase in tumor cytogenetics. It can
be, for example, a trisomy 8 as well as a translocation leading to onco-
gene activation or a deletion leading to tumor-suppressor gene loss.
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diagnostics, FISH was most often considered as a tool to con-
tinue and refine previous cytogenetic studies. This way to
choose and apply corresponding FISH-probes represents still a
major part of molecular cytogenetic diagnostics [19–21]. Besides,
molecular cytogenetics is more and more performed indepen-
dently from banding cytogenetic analyses in all kinds of
tumors, too [22]. This development was, among others, sup-
ported by the fact that every cytogenetic analysis is in need of
dividing cells to produce metaphase spreads. In other words,
time-consuming cell culture is necessary. Thus, interphase-
directed FISH (iFISH) analyses on tumor cell smear, touch
preparations or tissue sections are more and more in use with
the goal to achieve a quick result [23–25].

FISH approaches are especially suited to characterize chro-
mosomal and subchromosomal copy number changes and gene
fusions due to translocations or other rearrangements. All these
features are characteristically found acquired aberrations in
cancer [5,18,19].

In the following, different FISH-probe types and possible
applications in cancer diagnostics are summarized to the best
of our knowledge. Various FISH probes may be applied in a
specific case due to a finding in banding cytogenetics, indica-
tion specific and/or in follow-up studies.

Application of centromeric probes

Exclusive probes directed against the centromeric regions of one
specific human chromosome, each, are available for all human
gonosomes and most autosomes except for #5, #13, #14, #19,
#21 and #22 [26]. As centromeric probes provide dot-like signals
after FISH, they can be evaluated in metaphase and interphase
easily. They are commercially available and highly suited to
determine and/or confirm mono-, tri- or tetrasomies of single
chromosomes in tumor cells. Due to often low banding resolu-
tion of tumor chromosome, preparations such a metaphase-
directed FISH test may even be necessary in routine diagnostics,
for example, to determine or confirm the origin of a trisomic
chromosome derived from C-group. Numerical aberrations may
be observed for practically all human chromosomes in cancer.
So just three examples where these probes may be of importance
are given here as monosomy 7, trisomy 8 or tetrasomy 8, which
may all be present in acute leukemia [27,28]. Another important
field where especially gonosomal centromere-directed probes are
regularly applied is follow-up of sex-mismatched bone marrow
transplantation [29,30].

For application of all centromeric probes, one possible pitfall
has to be highlighted here: centromeric regions may be subject
to so-called chromosomal heteromorphisms. There are reports
on false-positive and false-negative results after pure iFISH
diagnostics using this kind of FISH-probes [26]. Thus, centro-
meric probes should only be applied if metaphase FISH was
done at least once with the corresponding probes. Nowadays,
locus-specific probes (see below) suited for iFISH are available
for all human chromosomes, which should preferably be
applied in all neoplastic samples of patients where no informa-
tion is available on potential centromeric heteromorphisms.

Table 2. List of most important commercially
available fluorescence in situ hybridization-probes
for lymphoma.

Lymphoma subtype Target region Gene

Anaplastic large-cell l 2p23

5q35

ALK

NPM1

Burkitt l 2p11

8q24
14q32.3

17p13

21q11

IGK

C-MYC
IGH

P53

IGL

Diffuse large B-cell l 2p16

2p11

3q27
8q24

9p21

14q32 and 18q21.33

17p13
19q13

21q11

REL

IGK

BCL6
C-MYC

P16 or CDKN2A

IGH/BCL2

P53
BCL3

IGL

Follicular l 3q27

6q23

9p21

14q32 and 18q21.33
17p13

BCL6

MYB

P16 or CDKN2A

IGH/BCL2
P53

Mantel cell l 5q32
9p21

11q22 and 18q21

13q14.3

14q32 and 11q13
17p13

19q13

CD74
P16 or CDKN2A

BIRC3/MALT1

DLEU2

IGH/CCND1
P53

BCL3

Multiple myeloma 1q21 and 1p36

1q21 and 8p21

4p16.3

5q32
6q23

11q22

13q14

14q32 and 4p16

14q32 and 11q13
14q32 and 16q23

14q32 and 20q12

15q22 and 9q34

17p13

c-MAF/SRD

c-MAF/n.a.

FGFR3

CD74
MYB

ATM

DLEU2

IGH/FGFR3

IGH/CCND1
IGH/MAF

IGH/MAFB

n.a. ! detection

of hyperdiploidy
P53

Others 2p23
3q12

3q27

5q35

6q23
10p11.2

11q21 and 18q21

11q22

13q14.3
14q32 and 18q21.33

17p13

ALK
TFG

BCL6

NPM1

MYB
KIF5B

API/MALT1

ATM

DLEU2
IGH/BCL2

P53

l: Lymphoma; n.a.: Not available.
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Table 3. List of most important commercially
available fluorescence in situ hybridization-probes
for solid tumors.

Tissue type probe
to cancer

Target region Gene

Bladder 9p21

17p13

P16 or CDKN2A

P53

Bone and soft tissue 1p36.2 and 3q25

1p36

2q33

2q36

3q12

6p21

7p21

9q22

11p15.5

11p13

11q24 and 22q12

12q13

12q13~q14

12q14

12q15

13q14

16p11

17q21 and 22q13

18q11.2

21q22

22q12

CAMTA1/WWTR1

PAX7

CREB1

PAX3

TFG

PHF1

ETV1

NR4A3

CARS

WT1

FLI1/EWSR1

DDIT3

CDK4

HMGA2

MDM2

FOXO1

FUS

COL1A1/PDGFB

SS18

ERG

EWSR1

Breast 1q32

1q41

3q26

5q31.2

6q23

6q25

7p12

8p11.2

8q24

10q23

10q26

11q13

11q22.3

12p12

12q14

15q25

17p13.1

17q11.2~12

17q21~22

20q13

MDM4

CENPF

SOX2

EGR1

MYB

ESR1

EGFR

FGFR1

C-MYC

PTEN

FGFR2

CCND1

ATM

KRAS

HMGA2

NTRK3

P53

HER2/NEU1/ERBB2

TOP2A

ZNF217

CNS 1p36.2 and 3q25

1p36

1q25

1q41

2p24

3p25

3q26

6q22

7p11.2

9p21

10q23

CAMTA1/WWTR1

MEGF6

ABL2

CENPF

NMYC

VHL

SOX2

ROS1

EGFR

CDNK2A

PTEN

Table 3. List of most important commercially
available fluorescence in situ hybridization-probes
for solid tumors (cont.).

Tissue type probe
to cancer

Target region Gene

12q13~q14

15q25

17p13

19p13

19q13

CDK4

NTRK3

P53

ZNF44/ZNF

CRX

Colorectal 3q26

6q23

6q24.3

7q34

10q23

12p12

17p13.1

18p11.32

SOX2

MYB

RREB1

BRAF

PTEN

KRAS

P53

TYMS

Esophagus 8q24

9p21

17p13.1

17q11.2~12

18p11.32

20q13

C-MYC

P16 or CDKN2A

P53

HER2/NEU1/ERBB2

TYMS

ZNF217

Eye 1q32

13q14

MDM4

RB1

Head and neck 1q41

3p25

5q32

11q21

12p13.3

19p13.2

CENPF

VHL

CD74

MAML2

FOXM1

BRD4

Kidney Xp11.23

3p25

3p14

6p21

7q31

10q23

17p13

TFE3

VHL

FHIT

TFEB

MET

PTEN

YWHAE

Liver 4q12

8q24

9p21

11q13.3

12p12

17p13.1

18q21

KIT

CMYC

P16

FGF3,4,19

KRAS

P53

BCL2

Lung 1q32

2p23 and 2p21

3p14

3q12

3q26

4q12

5q32

6q22

7p12

7q34

10p11.2

10q26

MDM4

ALK/EML4

FHIT

TFG

SOX2

PDGFRA

CD74

ROS1

EGFR

BRAF

KIF5B

FGFR2
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Application of locus-specific probes

In TABLES 1–3 major parts of the presently commercially available
locus-specific probes for metaphase FISH and iFISH applica-
tions in human cancer diagnostics are listed [31–37]. According
to tumor type, application of one or more of these probes may
be indicated.

The sheer amount of available locus-specific probes hampers
a detailed discussion of each of them in this review. Use of
locus-specific probes in neoplasia was reviewed before for leuke-
mia [29,38–44], lymphoma [44–46] and solid tumors [44,47], like
skin [44,47–49], lung [50] or breast cancer [51,52].

However, the commercially available probes can be catego-
rized as follows (FIGURE 2):

. dual-color break-apart probes, detecting oncogene activa-
tion [5] by disruption of the corresponding tested gene;

. dual-color (dual) fusion probes, which normally are separated
from each other in the human genome, but can come into
close proximity due to different kinds of rearrangements,
leading in the end also to oncogene activation [5];

. dual-color probes meant to detect deletion of tumor-
suppressor genes [5];

. dual-color probes for detection of copy number alterations of
parts of the genome – especially oncogene amplification [5];

. dual-color probes just for detection of copy number altera-
tions of major parts of or the entire genome (hypo- or hyper-
diploidy [5]) localized at different chromosomes.

The same probe may be suited to detect oncogene disruption,
translocation and amplification or hyper-/hypodiploidy.

Table 3. List of most important commercially
available fluorescence in situ hybridization-probes
for solid tumors (cont.).

Tissue type probe
to cancer

Target region Gene

Skin (melanoma) 6q23

6p25

7p21

7q34

9p21

10q23

11q13

22q12

MYB

RREB1

ETV1

BRAF

P16

PTEN

CCND1

EWSR1

Stomach 3q26

4q12

4q12

7q31

8q24

10q23

10q26

11q22 and 18q21

17p13.1

17q21

18p11.32

SOX2

KIT

PDGFRA

MET

CMYC

PTEN

FGFR2

BIRC3/MALT1

TP53

ERBB2

TYMS

Ovary 3q26

8q24

9p21

10q26

11q13

12p12

17p13.1

19q13

20q13

PIK3CA

CMYC

P16

FGFR2

CCND1

KRAS

P53

CRX

NCOA3(AIB1)

Pancreas 5q32

6q24.3

7q34

9p21

10q23

11q22.3

12p12

17q13

CD74

RREB1

BRAF

P16

PTEN

ATM

KRAS

P53

Prostate Xq12

3p14

3q27

7p21

8q24

9p21

10q23

12p13.3

12q13q14

17p13.1

21q22

AR

FHIT

ETV5

ETV1

C-MYC

P16

PTEN

FOXM1

CDK4

P53

ERG

Thyroid gland 1q22~q23

2q13

3q12

7q34

10q11.2

10q23

NTRK1

PAX8

TFG

BRAF

RET

PTEN

Table 3. List of most important commercially
available fluorescence in situ hybridization-probes
for solid tumors (cont.).

Tissue type probe
to cancer

Target region Gene

Uterus 3q26

5q32

6p21.3

7p15

8q24

9p21

10q23

10q26

12p12

17p13

17p13.1

17q12

PIK3CA

CSF1R

PHF1

JAZF1

CMYC

P16

PTEN

FGFR2

KRAS

YWHAE

P53

HER2/NEU1/ERBB2

Others 1p36

1p32 and 1q21

3p14

3q26

5p15

6q22

7q31

12p13.3

SRD

CKS1B/CDKN2C

FHIT

TERC

TERT

MET

ROS1

FOXM1
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Here it must especially be stressed that molecular cytogenetic
methods (except for CGH) are single-cell-directed tests. Thus,
low-level mosaics can be detected that may be missed by
molecular genetic approaches [53]. On the other hand, molecu-
lar approaches have the advantage of being inexpensive and
able to cover more targets at once. An approach that could the-
oretically have the potential to partially replace (molecular)
cytogenetics in tumor diagnostics is multiplex ligation-
dependent probe amplification. This PCR-based technique can
be used to screen for fusion genes, point mutations and copy
number variations [54]. However, it has to be checked carefully
when information on low-level mosaics can be renounced, and
it is necessary for accurate patient care. This statement is true
for all molecular approaches testing millions of cells at a time.
Best may be to combine the available approaches in a tumor-
specific scheme such as, for example, recently suggested for
chronic lymphocytic leukemia [39].

Application of whole chromosome painting probes

Metaphase-directed two- or three-color FISH using wcp probes
may be necessary in cancer diagnostics regularly, especially after
derivative chromosomes were detected during banding cyto-
genetic analyses [55]. Still banding cytogenetics and/or the
tumor-subtype need to provide clear hints that correct wcp
probes are chosen for further characterization of an acquired
derivative chromosome; otherwise, if available, mFISH using all
wcp probes in different fluorochrome combinations may be
indicated [56,57]. Of course, wcp probes may also be combined
with other probes like pcp-, locus-specific or centromeric ones.
Finally, it is a truism that wcp- and pcp-probes are not suited
for routine iFISH studies [58].

Application of mFISH probe sets

In neoplasia, characterization of complex rearrangements (CCR)
may also be necessary in routine diagnostics [57]. However, as
CCR are considered to implicate an adverse diagnostics, often no

further analyses are performed [5,17,18]. Besides, it is a matter of
financial issues and of the technical possibilities available in the
laboratory executing the diagnostics if expensive mFISH studies
can be applied in a specific case. In a worldwide perspective, the
majority of laboratories and oncologists will not be able to per-
form mFISH studies on a routine bases. Some countries in West-
ern Europe, Northern America and some other more wealthy
places around the world may be able to apply them on a routine
base at present; these may be the same which can offer array-
CGH and NGS as a routine setting [59–62].

In majority of cases, mFISH approaches (as well as array-
CGH and NGS) will be applied only in individual cancer cases
in research-associated settings [63–67]. Besides mFISH using wcp
probes, also FISH-banding approaches and other probes will be
used to resolve the individual case [68].

Clinical genetic aspects of molecular cytogenetics

diagnostic performed in cancer diagnosis

Any kind of FISH study performed in a case with diagnosis can-
cer needs to be done according to the results of tumor cytogenet-
ics and/or the input of the referring clinician. Genetic counseling
will not be necessary in most of neoplastic cases. However, excep-
tions are the hereditary cancers, like breast cancer [69–71].

Moreover, one has to consider that during cytogenetic and
molecular cytogenetic analysis incidental findings are possible.
Mosaic Turner or Klinefelter syndrome or carriers of small super-
numerary marker chromosomes may be detected [71,72]. Such
findings, even though being rare, also should be expected by the
clinician when a tumor-cytogenetic analysis has been requested.

Expert commentary

Molecular cytogenetics, together with cytogenetics provided, pro-
vides and will provide in future major input into the characteriza-
tion of molecular defects in neoplasia. Morphological and
clinical data, together with (molecular) cytogenetics and, as far as
available, data from more sophisticated molecular approaches,
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Figure 2. Schematic depiction of how locus-specific probes are normally combined in commercially available probe sets; the
signal distribution as observed in an normal interphase cell is shown in the upper, the abnormal situation in the lower row.
(A) Dual-color break-apart probe; (B) dual-color dual fusion probe; (C) dual-color probe-set for detection of a tumor-suppressor gene
deletion; (D) dual-color probe-set for detection of an oncogene-amplification – in D1 a gene amplification due to double minutes and in
D2 a corresponding amplicon due to a homogeneously staining region is shown; and (E) dual-color probe-set for detection hypo- or
hyperdiploidy – here a triploidy is detected.
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should all be considered to obtain correct diagnoses of studied
malignancies. However, as in majority of the world, banding
cytogenetics supplemented by the use of locus-specific probes is
that what routine malignancy diagnostics consists of we clearly
disagree with the statement of others [44] that FISH and mFISH
approaches are ‘early methods’ for routine cancer diagnostics and
‘recent high throughput genomic methods’, that is, array-CGH
and NGS are the new routine ‘molecular cytogenetic’ methods.
Array-CGH and NGS are wonderful research tools. They will for
sure lead in future to more insights into altered genome structure
of malignancies. And maybe in some wealthy ‘Western’ countries
these approaches, together with expensive mFISH techniques,
may reach routine diagnostic status. The main importance of
these sophisticated approaches in terms of implementation, and
especially interpretation, will be the identification of new tumor-
relevant genetic markers. The latter will be accessible by targeted
and simpler tests, later.

Five-year view

In future, cytogenetics and molecular cytogenetics still will be a
standard approach in cancer diagnostics. Specifically, the

impact of metaphase as well as interphase-directed locus-specific
FISH-probes will increase, especially as it can also be combined
with immunohistochemistry [73]. This is among others
highlighted by the fact that more and more companies enter
the market offering increasing portfolios of tumor-related
FISH-probes [31–37]. Thus, we expect molecular cytogenetics to
remain a stable field in terms of necessity and application in
cancer diagnostics. Thus, we suggest that not only for the next
5 years but for definitely longer, molecular cytogenetics would
be a key diagnostic, prognostic and follow-up tool in routine.
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Key issues

. Molecular cytogenetics evolved in 1986 from cytogenetics.

. Cytogenetics started to gain major relevance in cancer diagnostics after identification of the first tumor-associated chromosomal

aberration in 1960.

. Molecular cytogenetics uses different kinds of probes, such as locus-specific ones, whole and partial chromosome painting probes and

probes specific for repetitive sequences.

. Two-color fluorescence in situ hybridization (FISH) is applied in routine cancer diagnostics, while multicolor FISH (mFISH) methods are

applied more in research-associated settings.

. Locus-specific probes are routinely applied for the detection of tumor-suppressor gene deletion, oncogene amplification and/or gene

fusions, as well as hypo- and hyperdiploidies.

. Molecular cytogenetics routine applications are used in leukemia, lymphoma and solid tumor diagnostics.

. Cytogenetics and molecular cytogenetics is single cell directed and thus able to detect even acquired low-level mosaics.

. One has to be prepared to meet also in cancer diagnostics from time to time hereditary cases, which need special attention.

. mFISH as well as array-comparative genomic hybridization and next-generation sequencing are highly suited for research settings, able

to identify new tumor-relevant genetic markers.

. mFISH, array-comparative genomic hybridization and next-generation sequencing are and will in the near future be too expensive to

become routine cancer diagnostic tools from a worldwide perspective.

. Cytogenetics and molecular cytogenetics are and will stay in the future indispensable tools in cancer diagnostics.
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Article

Introduction

B cell acute lymphoblastic leukemia (B-ALL) is a heteroge-

neous disease accounting for approximately 20% of adult 

leukemia. B-ALL is also the most common leukemia in 

pediatrics, representing up to 80% of childhood leukemia, 

with a peak of prevalence between the ages of 1 and 6 years 

(Zuckerman and Rowe 2014; Pui et al. 2008).

One of the most common recurrent chromosomal rear-

rangements in B-ALL (observed in approximately 50% of 

the rearrangements) is the balanced translocation t(4;11)

(q21;q23), which leads to fusion of the MLL (mixed-lin-

eage-leukemia) gene on 11q23 to the AFF1 gene in 4q21 

(Woo et al. 2014). MLL encodes for a protein with histone 
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Summary 

MLL (mixed-lineage-leukemia) gene rearrangements are typical for acute leukemia and are associated with an aggressive 

course of disease, with a worse outcome than comparable case, and thus require intensified treatment. Here we describe 

a 69-year-old female with adult B cell precursor acute lymphoblastic leukemia (BCP-ALL) with hyperleukocytosis and 

immunophenotype CD10- and CD19+ with cryptic MLL rearrangements. G-banding at the time of diagnosis showed 

a normal karyotype: 46,XX. Molecular cytogenetics using multitude multicolor banding (mMCB) revealed a complex 

rearrangement of the two copies of chromosome 11. However, a locus-specific probe additionally identified that the 

MLL gene at 11q23.3 was disrupted, and that the 5′ region was inserted into the chromosomal sub-band 4q21; thus the 

aberration involved three chromosomes and five break events. Unfortunately, the patient died six months after the initial 

diagnosis from serious infections and severe complications. Overall, the present findings confirm that, by far not all MLL 

aberrations are seen by routine chromosome banding techniques and that fluorescence in situ hybridization (FISH) should 

be regarded as standard tool to access MLL rearrangements in patients with BCP-ALL.

Keywords

array-comparative genomic hybridization, B-cell precursor acute lymphoblastic leukemia, cryptic rearrangements, 

fluorescence in situ hybridization, MLL, mixed-lineage-leukemia gene
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methyltransferase activity, which plays a critical role in the 

hematopoietic regulation of HOXA as well as embryonic 

development (Ansari and Mandal 2010). The translocation 

t(4;11) or MLL/AFF1 gene fusion is almost exclusively 

seen in infant B-ALL (<1 year of age) and in highest fre-

quency in childhood B-ALL. Up to 93% of affected infants 

under the age of 90 days harbor MLL rearrangements such 

as translocations t(4;11), t(11;19), or t(1;11), and most of 

these children cannot be rescued with the currently avail-

able therapies. These MLL rearrangements are also approxi-

mately four times more common in children than in adults 

(Braoudaki and Tzortzatou-Stathopoulou 2012; van der 

Linden et al. 2009), and the most frequently observed trans-

location t(4;11), has a dismal prognosis (Pui et al. 2002; 

Biondi et al. 2000).

Cryptic structural abnormalities often remain undetected 

by routine chromosomal banding techniques in acute leuke-

mia. However, molecular (cyto)genetics has been proven to 

be a reliable tool for identification of such cryptic aberra-

tions. Well known examples are the recurrence of cryptic 

translocation t(12;21)(p13;q22), which is solely associated 

with childhood B-ALL, and the cryptic translocation t(5;14)

(q35;q32), which is known to be present in children and 

adolescents with T-ALL (Lazic et al. 2010; Su et al. 2006). 

Overall, chromosomal translocations found in childhood 

and/or adult B-ALL may result in the production of chime-

ric fusion proteins with leukemogenic potential.

Here, we report the case of a patient with adult BCP-ALL 

with a novel cryptic submicroscopic balanced translocation 

and an additional cryptic insertion of 5’MLL region into the 

AFF1 locus at 4q21, with an unfavorable prognosis.

Materials & Methods

Clinical Description

A 69-year-old female presented in 2008 with hyperleukocy-

tosis (white blood cell (WBC) count of 259.7×109/l; hemo-

globin of 14.2 mmol/l and platelets of 103×109/l). The bone 

marrow (BM) aspiration showed hypercellularity, with 98% 

blasts. Immunophenotyping identified a variety of B-cell-

specific antigens, with 96% of cells positive for CD15, 

CD19, CD22, CD34, CD45 and HLA-DR and all cells neg-

ative for CD10, CD13, CD20, and CD117. These findings 

were consistent with a diagnosis of BCP-ALL. It is note-

worthy that the immunophenotypes CD10- and CD19+ as 

seen here are associated with MLL rearrangements in BCP-

ALL. The patient was treated by induction therapy: Epi 

(4-epi-doxorubicin)/ VCR (vincristine)/ PEGAsp (polyeth-

yleneglycole asparaginase)/ PDN (prednisone), two courses 

of consolidation and maintenance treatment (Mercaptopurin, 

Metotrexat). Unfortunately, she died six months after the 

initial diagnosis from serious infections and severe 

complications.

Diagnosis

Banding cytogenetic anaylsis was performed using an 

unstimulated bone marrow aspiration obtained at diagnosis 

and according to standard procedures (Claussen et al. 2002). 

A total of 20 metaphases were available for cytogenetic 

evaluation and analyzed on a level of 300 bands per haploid 

karyotype (Shaffer et al. 2013). Standard G-banding revealed 

a normal female karyotype as 46,XX and FISH test for a 

cryptic translocation t(9;22)(q34;q11.2) was negative.

Retrospective Analyses

Molecular Cytogenetics. FISH was performed according to 

standard procedures and/or to manufacturer’s instructions. 

The probes and probe sets were made in-house. FISH-

banding probe-sets were created using genome-wide mul-

titude multicolor banding (mMCB) and chromosome 

specific array-proven multicolor-banding (aMCB) (Weise 

et al. 2003, 2008; Liehr et al. 2002). BAC (bacterial artifi-

cial chromosome) clones of interest were identified 

through the Human Genome Browser Database of the 

Genome Bioinformatics Group at the University of Cali-

fornia at Santa Cruz (http://genome.ucsc.edu/) and 

Ensembl Genome Data Resources of the Sanger Institute 

Genome Database (http://www.ensembl.org/). DNA 

probes (Table 1) obtained from the Resources Center 

(Oakland, USA) were labeled by PCR with Spec-

trumGreen, SpectrumOrange or TexasRed-dUTP and 

applied in two- or three-color FISH-approaches.

Additionally, the following commercially available probes 

were used: LSI MLL (11q23 Break probe, Abbott Molecular/

Vysis, Mannheim, Germany), POSEIDON NUP98 (11p15 

Break probe, Kreatech Diagnostics, Amsterdam, The 

Netherlands), SPEC TFG Break probe (TFG in 3q12.2, 

Zytovision, Bremerhaven, Germany), Centromere 4 (CEP4: 

4p11-q11 Alpha Satellite DNA, Abbott Molecular/Vysis), 

and subtelomeric probes for 11p, and 11q (11p in D11S2071; 

11q in D11S1037, Abbott Molecular/Vysis).

A total of 10–15 metaphase spreads were analyzed, 

using a fluorescence microscope (AxioImager.Z1 mot; 

Zeiss, Oberkochen, Germany) equipped with appropriate 

filter sets to discriminate between a maximum of five 

fluorochromes and the counterstain DAPI 

(Diaminophenylindol). Image capturing and processing 

were carried out using an ISIS imaging system 

(MetaSystems; Altlussheim, Germany).

DNA Isolation. Genomic DNA was extracted from cells fixed 

in acetic acid:methanol (1:3) by Puregene DNA Purification 

Kit (Gentra Systems; Minneapolis, MN). DNA concentra-

tion was determined using a Nanodrop spectrophotometer 

(NanoDrop Technologies, Inc., Thermo Scientific; Wilm-

ington, DE). The quality of DNA was checked using agarose 
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gel electrophoresis. DNA samples extracted from fixed cells 

of two healthy males and two healthy females by the same 

method were used as reference samples.

Multiplex Ligation-dependent Probe Amplification (MLPA). The 

P377-A1 Hematologic malignancies probemix and SALSA 

reagents were used for this study (MRC-Holland; Amster-

dam, The Netherlands). Amplified probes and Genescan 

500 ROX standard were separated by capillary electropho-

resis using a 4-capillary ABI-PRISM 3130XL Genetic Ana-

lyzer (Applied Biosystems; Foster City, CA). Sizing of 

peaks and quantification of peak areas and heights were 

performed using GeneMarker v1.9 software (Applied Bio-

systems). A minimum of four healthy control samples were 

included in each run.

Array-Comparative Genomic Hybridization (aCGH). aCGH 

was performed using the Agilent SurePrint G3 Human 

Genome microarray 180 K (Agilent Technologies, Santa 

Clara, CA), an oligonucleotide microarray containing 

approximately 180,000 probes 60-mer with a 17 kb aver-

age probe spacing. Genomic DNA from the patient was co-

hybridized with a male control DNA (Agilent Technologies). 

Labeling was performed using the Agilent Genomic DNA 

enzymatic labeling kit according to the manufacturer’s 

instructions. After hybridization, the aCGH slide was 

scanned on an Agilent scanner, processed with Feature 

Extraction software (v10.7) and results were analyzed 

using Cytogenomics (v2.9.1.3) using ADM2 as aberration 

algorithm.

Results

At diagnosis, banding cytogenetics at low resolution did not 

show any chromosomal aberrations. However, after sub-

jecting the cytogenetic preparations in retrospective to 

FISH-banding probe-sets, mMCB identified a complex 

rearrangement for chromosome 11 involving reciprocal 

translocation and inversion (data not shown). The break-

points were determined in more detail by further FISH 

experiments, such as aMCB, using a chromosome 11 spe-

cific probe set (Fig. 1) and by locus-specific FISH probes at 

11p15.4 and 11q24.2 as shown in Table 1.

Additionally, dual-color FISH using a commercially avail-

able Break Apart Rearrangement probe specific for the MLL 

locus (LSI MLL) revealed an insertion of the 5′MLL gene into 

chromosome 4q21. According to the manufacturers of LSI 

MLL, a 350-kb portion (5’ region) centromeric of the MLL 

gene breakpoint cluster region was labeled in SpectrumGreen 

and includes exons 1–6, whereas the ~190-kb portion of the 3’ 

MLL region is labeled by SpectrumOrange; the latter remained 

on one of the two derivative chromosomes 11, while the 

green-labeled part of LSI MLL went to the der(4) (Fig. 2). 

This cryptic insertion was observed as signal splitting of the 

probe LSI MLL in 6/6 metaphases and 158/200 interphase-

nuclei. Thus, the 5′ MLL region was inserted most likely into 

the AFF1 gene in chromosome 4q21.

Table 1. Results of Locus-Specific Probes Used for Breakpoint Characterization.

Cytoband Location [hg18] Probe Result

3q12:2 Chr3:101,910,850-101,950,501 SPEC TFG signal on der(3); no split signal

4p11q11 Chr4:48,200,001-52,700,000 CEP4 signal on der(4); no split signal

11p15.4 Chr11:2,907,721-3,231,290 SHGC-84145 to RH75370 signal on der(11p) and (11q); split signal

11p15.4 Chr11:3,193,128-3,312,588 RP11-11A9 signal on der(11p) and (11q); split signal

11p15.4 Chr11:3,652,816-3,775,468 NUP98 n.a.

11p15.4 Chr11:3,573,461-3,758,006 RP11-120E20 signal on both der(11)

11p15.4 Chr11:3,694,708-4,295,038 D11S4525 to SHGC-79113 signal on both der(11)

11p15.5~p15.4 Chr11:2,755,275-2,927,014  RP11-81K4 signal on both der(11q); no split signal

11p15.5 Chr11:872,364-1,051,564 RP11-401C19 signal on both der(11q); no split signal

11p15.5 Chr11:135,611-335,808  D11S2071 signal on der(11p) and (11q); no split signal

11q23.3 Chr11:117,812,415-117,901,146  LSI MLL split signal on der(4) and der(11)

11q24.1 Chr11:120,790,892-120,960,991 RP11-142I2 signal on both der(11)

11q24.1 Chr11:121,326,327-121,516,640 RP11-166D19 signal on both der(11)

11q24.2 Chr11:123,265,105-123,469,312 RP11-485A5 signal on both der(11)

11q24.2 Chr11:124,585,478-124,761,531 RP11-100P11 signal on der(11q) and (11p); split signal

11q24.2 Chr11:125,827,475-126,006,340 RP11-432I22 signal on der(11q) and (11p); no split signal

11q24.3 Chr11:127,930,598-128,090,778 RP11-264E20 signal on der(11q) and (11p); no split signal

11q25 Chr11:133,964,875-134,130,595 RP11-267D5 signal on der(11q) and (11p); no split signal

11q25 Chr11:134,125,133-134,325,470 D11S1037 signal on der(11q) and (11p); no split signal
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The karyotype can be described as follows:

46,XX,der(4)(4pter->4q21.3::11q23.3->11q23.3::4q21.3-> 

4qter),

der(11)(11pter->11q23.3::11q23.3->11q24.2::11p15.4-> 

11pter), der(11)(11qter->11q24.2::11p15.4->11qter).

In summary, the present case presents genetic changes 

involving three chromosomes and five break events.

The breakpoints in 11q24.2 and 11p15.4 were further 

delineated by locus-specific probes, as summarized in Table 

1. The positions are given according to NCBI36/hg18, as a

number of the used BAC-probes could not be found in later 

genomic browser versions.

For 11q24.2, the break was narrowed down to lying 

between the positions 124,585,487 and 124,761,531; one 

OMIM gene is located there: PKNOX2 (PBX/KNOTTED 1 

HOMEOBOX 2). The breakpoint in 11p15.4 was found to 

be spanned by a probe from locus SHGC-84145 to locus 

RH75370 that was part of a dual color/Break Apart probe 

from Kreatech (The Netherlands) flanking the NUP98 gene 

(Fig. 3). Additionally, BAC RP11-11A9 showed a split sig-

nal and the position of the break event can be given between 

3,193,128 and 3,231,290; two OMIM genes are located 

there: MRGPRE and MRGPRG.

MLPA analysis showed no copy number variants; how-

ever, the array-CGH revealed an amplification of 83.4 Kb in 

the region of 3q12.2, which involves two genes, GPR128 

and TFG; the latter result was confirmed using locus-spe-

cific FISH probes, which showed intrachromosomal ampli-

fication in 12% of the interphase nuclei (data not shown).

Discussion

Structural chromosomal abnormalities can be readily 

detected by metaphase analysis or FISH in B-ALL. The 

most common balanced or unbalanced translocations have 

been correlated with variable prognostic significance. Here, 

included aberrations such as translocations t(4;11) (MLL/

AFF1), t(12;21) (ETV6/RUNX1), t(1;19) (E2A/PBX1), and 

t(9;22) (BCR/ABL) (Zhou et al. 2012; Pui et al. 2008). These 

alterations can be found in different incidences in childhood 

and adult B-ALL (Lazic et al. 2010).

In the present B-ALL case, a normal karyotype was ini-

tially reported, since the here-described translocation and 

insertion events were submicroscopic and only identifiable by 

a combination of different molecular (cyto)genetic approaches. 

Figure 1. Result of the aMCB probesets for chromosome 11. 
Characterization of the complex rearrangements occurring in 
the derivative chromosomes. A normal chromosome 11 pattern 
(topmost) is provided as a comparison to the two derivative 
patterns of chromosome 11.

Figure 2. LSI MLL Break Apart probe showed one yellow fusion 
signal, and split of green signal and orange signal. Surprisingly the 
5’MLL probe signal was inserted in a derivative chromosome 4.

Figure 3. POSEIDON NUP98 (11p15 Break probe) revealed a 
split of green signal upstream of the NUP98 gene (see Table 1) 
and translocation to 11q24 due to an inversion (see Table 1). 
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The main problems hampering banding cytogenetics are the 

well-known difficulties in obtaining evaluable metaphases 

with well-spread chromosomes instead of clumsy ones or 

those that appear fuzzy with indistinct margins (Othman et 

al. 2014; De Braekeleer et al. 2011).

The patient whose case is presented here had high counts of 

WBC and blast cells, with a pre-B phenotype (CD19+, CD10-) 

-hallmarks of patients carrying a translocation t(4;11). 

Unfortunately, these hints were not further followed initially.

The MLL gene plays an important role in normal hema-

topoietic growth and differentiation. Abnormalities to this 

region can occur very early in hematopoietic stem cell 

development (Ansari and Mandal 2010; Ferrando et al. 

2003). The translocation t(4;11)(q21;q23) is solely observed 

in B-ALL patients and presents in ~50% of MLL rearrange-

ments as well as in the ins(4;11)(q21.3;q23.3) insertion as a 

typical variant of this translocation. In addition, an absence 

or low expression of CD10- in BCP-ALL and a very high 

WBC count are particularly common with the translocation 

t(4;11)(q21;q23) (Woo et al. 2014; De Braekeleer et al. 

2011; Burmeister et al. 2009). MLL is well known to be 

rearranged in myeloid and lymphoid leukemia and can be 

classified into two groups. The first group includes MLL 

rearrangements, such as translocations or insertions, some 

of which are cryptic. These rearrangements result in the 

generation of in-frame fusion transcripts with various part-

ner genes, with more than 120 loci already identified. The 

second group comprises amplification of 11q23, leading to 

the presence of multiple copies of the MLL gene located 

either intrachromosomally as a homogeneously staining 

region (hsr), or extrachromosomally in double minutes 

(dmin) (Meyer et al. 2013; De Braekeleer et al. 2011). The 

prognosis of MLL rearrangements in infants (<1 year of 

age) is extremely poor due to a high risk of treatment fail-

ure. Young children (1 to <10 years) have a better response 

to therapy than infants. Finally, for adults, event-free sur-

vival (EFS) is seen in 80% of cases. In general, the out-

comes for adolescents and adults have improved 

significantly over time (van der Linden et al. 2009; Bassan 

2005; de Bont et al. 2004; Pui et al. 2002; Morel et al. 2003). 

The present case, which involves 3 chromosomes and 5 

break events in connection with an MLL gene rearrange-

ment, is more complex than other comparable cases, but 

still belongs to the aforementioned first group.

Interestingly, it is considered that the fusion product of 

MLL-AFF1 is transcribed from the der(4) and not from the 

der(11), which supports the idea that the MLL-AFF1 is a 

protein with oncogenic potential. A review of the literature 

revealed that 10 cases with an insertion of chromosome 11 

material in chromosome 4 have been identified in six chil-

dren (all females) and four adult (3 elderly females and one 

male) B-ALL patients (Mitelman et al. 2014). Still, no other 

comparable cases have shown an additional reciprocal 

translocation between the two homologous chromosomes 

11 and amplification in 3q12.2.

The chromosomal breakpoint 11p15 is recurrently 

involved in translocations in acute leukemia. The gene 

NUP98 can fuse with DOX10 in 11q22 or with MLL in 

11q23 in acute myeloid leukemia (AML) (Kaltenbach et al. 

2010; Romana et al. 2006). In the present case, the break-

point at 11p15.4 involved two other genes MRGPRE and 

MRGPRG, which are related to the MAS1 oncogene and 

mainly expressed in sensory neurons. The proteins derived 

from the MRG gene contain transmembrane, extracellular, 

and cytoplasmic domains that regulate nociceptor function 

(Dong et al. 2001). In the second breakpoint observed here, 

11q24.2, there is only one OMIM gene located: PKNOX2. 

PKNOX2 belongs to a homeodomain protein superfamily 

comprising a large number of sequence-specific transcrip-

tion factors that share a highly conserved DNA-binding 

domain; they play fundamental roles in cell proliferation, 

differentiation, and death (Imoto et al. 2001). Thus, it can be 

speculated that MRGPRE and/or MRGPRG fused with 

PKNOX2 may lead to gene expression with oncogenic 

potential.

In the present case, it remains rather unclear which of the 

rearrangements—MLL with MRGPRE and/or MRGPRG, 

fusion of MLL with AFF1 or 3q12.2 amplification—were 

causative in the adverse outcome. In terms of the latter 

alteration, the TFG gene located at 3q12.2 is known to play 

a role in the NF-κB pathway and, thus, multiple copies of 

the gene may have contributed to oncogenic potential of the 

tumor cells. Indeed, translocations involving this gene have 

been observed in hematological malignancies (Chase et al. 

2010).

Overall, this case shows that it is necessary to screen 

for further unbalanced submicroscopic abnormalities by 

molecular approaches such as MLPA and aCGH in acute 

leukemia. The present report highlights that MLL gene 

rearrangements should be considered and tested by molec-

ular approaches in case of a normal cytogenetic result. 

This holds especially true for such patients with a BCP-

ALL who are diagnosed as a result of high WBC counts 

and CD10-negative staining. However, if, in such cases, 

MLL rearrangements are detected, further cryptic aberra-

tions with potential influence on the disease may be pres-

ent. Overall, a normal routine chromosome banding 

karyotype in acute leukemia needs to be considered as a 

stimulus and reason for more detailed molecular (cyto)

genetic analyses.
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Abstract. Cytogenetic classiication of acute lymphoblastic 
leukemia (ALL) is primarily based on numerical and struc-

tural chromosomal abnormalities. In T-cell ALL (T-ALL), 
chromosomal rearrangements are identiied in up to 70% 
of the patients while the remaining patients show a normal 
karyotype. In the present study, a 16-year-old male was diag-

nosed with T-precursor cell ALL and a normal karyotype 
after standard GTG-banding, was studied retrospectively 
(>10 years after diagnosis) in frame of a research project 
by molecular approaches. In addition to molecular cyto-

genetics, multiplex ligation-dependent probe ampliication 
(MLPA) and high resolution array-comparative genomic 
hybridization (aCGH) were also applied. Thus, the following 
yet unrecognized balanced chromosomal aberrations were 
detected: der(3)t(3;5)(p23;q31.1), der(5)t(3;5)(p23;q35.3), 
der(5)t(5;10)(q31.1;p12.3) and der(10)t(5;10)(q35.3;p12.3). 
The oncogene MLLT10 was involved in this rearrangement 
as was the IL3 gene; in addition, trisomy 4 was present. All 
of these clonal aberrations were found in 40% of the cells. 
Even if this complex karyotype would have been identiied 
at the time of diagnosis, most likely no other protocol of 
anticancer therapy (ALL-BFM 95) would have been applied. 
Three months after the end of a successful 2-year treatment, 
the patient suffered from isolated bone marrow relapse and 
died of sepsis during ALL-REZ-BFM protocol treatment.

Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive 
leukemia derived from malignant transformation of T cell 
progenitors and is more common in males than in females. 
T-ALL affects mainly older children and adolescents and 
represents 10-15% of pediatric and 25% of young adult ALL 
cases (1). Hyperdiploidy (>46 chromosomes) is found in 30% 
of childhood and 10% of adulthood ALL cases. Notably, high 
hyperdiploidy (51-65 chromosomes) has been connected with 
high survival rates and excellent outcome (2,3), while low 
hyperdiploidy (47-50 chromosomes) has been associated with 
worse prognosis (4). The most commonly gained chromosomes 
in ALL are #4, #6, #10, #14, #17, #18, #21 and X (5). Trisomy 
4 is rarely observed as a sole cytogenetic abnormality in 
T-ALL (6). However, the mechanism for chromosomal gains in 
ALL and their role in leukemogenesis are still ambiguous (7,8). 
In hyperdiploid karyotypes, the t(9;22)(q34;q11), 11q23 (MLL 

gene) rearrangements, t(12;21)(p13;q22), t(1;19)(q23;p13) and 
t(8;14)(q24;q32) are the most common structural cytogenetic 
abnormalities in ALL. However, in T-ALL, involvement of 
the T cell receptor (TCR) gene in 14q11 in rearrangements 
such as t(1;14)(p31;q11), t(10;14)(q24;q11) or t(8;14)(q24;q11) 
are frequently observed; also del(6)(q15) and del(1)(p32) have 
been described (3,9-11).

Still, cryptic structural chromosomal abnormalities were 
and are a challenge in the cytogenetics of T-ALL. For example, 
as the cryptic t(5;14)(q35;q32) is known to be present in ~20% 
of childhood and in 13% of adult T-ALL cases, this aberra-

tion is currently routinely tested by molecular (cyto)genetics, 
addressing the breakpoint on the TLX3 (HOX11L2) gene in 
5q35 and to the promoter of the BCL11B gene in 14q32 (12). 
In addition, recent reports on newly detected cryptic chromo-

somal rearrangements such as the MLLT10 gene (previously 
AF10, in 10p13), and MLL (in11q23) or PICALM (in 11q14) 
highlight the necessity to further study clinical cases as 
detailed as possible (13,14). The goal of these studies must be, 
on the one hand, to provide the most accurate diagnosis to each 
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individual patient and, on the other hand, to achieve insights 
into the biology and pathogenesis of T-ALL.

In the present study, an adolescent T-precursor cell ALL 
case with an MLLT10 and IL3 gene rearrangement together 
with trisomy 4 in complex four-way translocation is character-
ized in detail retrospectively using molecular cytogenetics and 
molecular genetics. This leukemia subtype would currently be 
classiied as early T-cell precursor ALL (15-17).

Case report

Clinical description. A 16-year-old male presented in 1998 
for diagnostics due to fever and unclear symptoms of malaise. 
Immunophenotypic analysis of bone marrow cells revealed the 
following results: HLA-dR+, TdT+, cyCd3+, Cd5 weak, Cd7+, 

Cd8+, Cd10+, Cd13+, Cd33+ and Cd34+. This supported a 
diagnosis of early T-ALL; at present, it would be classiied as 
early T-cell precursor ALL (Fig. 1A).

The patient was treated according to the ALL-BFM 95 
protocol; the continuation therapy was completed 24 months 
after the initial diagnosis. Three months later an isolated bone 

marrow relapse with acute thrombocytopenia was diagnosed, 
and treatment according to the ALL-REZ-BFM protocol was 
initiated. one month later the patient died due to an Aspergillus 

sepsis and still with 100% blasts in the bone marrow.

Tests conducted at diagnosis. Banding cytogenetic analysis 
was performed on an unstimulated bone marrow aspirate 
according to standard procedures. A total of 20 metaphases 
were available for cytogenetic evaluation and analyzed on 
a banding level of 300 bands per haploid karyotype (22). 
GTG-banding revealed a normal male karyotype in our labora-

tory, and also a second cytogenetic analysis on 25 metaphases 
performed 4 months after the initial diagnosis in another labo-

ratory conirmed this test result. Molecular diagnostic PCR 
tests for gene fusions BCR/ABL, MLL/AF4 and TEL/AML1 

were negative (data not shown).

Test conducted in retrospect

Molecular cytogenetics. Fluorescence in situ hybridization 
(FISH) was performed according to standard procedures and/
or according to the manufacturer's instructions.

Figure 1. (A) Early T-cell precursor ALL cells of the presented patient depicted after Pappenheim staining. (B) Application of M-FISH revealed derivative 
chromosomes 3, 5, 5 and 10 (arrows). (C) mMCB results are shown as an overlay of three of the six used color channels. Evaluation was carried out as previ-
ously reported (21) using all 6 color channels and pseudocoloring. Breakpoints were determined as 3p23, 5q31.1, 5q35.3X and 10p12.3. (d) aMCB probesets for 
chromosomes 3, 5 and 10 conirmed the observed breakpoints after mMCB application. The breakpoint in 5q35.5 was conirmed by a subtelomeric probe 5qter. 
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The following homemade probes and probe sets were 
used: i) 24-color-FISH using all human whole chromosome 
painting (WCP) probes (19); ii) FISH-banding probe sets as 
follows: genome-wide multitude multicolor banding (mMCB) 
and chromosome-specific high resolution array-proven 
multicolor banding (aMCB) (20-22); iii) dNA from bacterial 
artiicial chromosome (BAC) probes (Table I) obtained from 
Resources Center (oakland, CA, uSA) were labeled by PCR 
with SpectrumGreen, Spectrumorange or TexasRed-duTP 
and applied in two- or three-color FISH approaches.

Additionally, the following commercially available probes 
were used: LSI EGR1/d5S23, d5S721 (EGR1 in 5q31; d5S23, 
d5S721 in 5p15.2; Abbott Molecular/Vysis, Mannheim, 
Germany), PoSEIdoN PdGFRB (5q33 Break probe; Kreatech 
diagnostics, Amsterdam, The Netherlands), and subtelomeric 
probes for 3p, 5p, 5q and 10p (3p in d3S4559; 5p in C84c11/
T3, 5q in d5S2907; 10p in Z96139; Abbott Molecular/Vysis).

A total of 10-15 metaphase spreads were analyzed, using a 
luorescence microscope (Axio Imager Z1 mot; Carl Zeiss AG) 
equipped with appropriate ilter sets to discriminate between 

Table I. Results of the locus-speciic probes used for breakpoint analyses in metaphase FISH are listed.

Cytoband Position [hg18] Genes/locus Probe Results (signals on…)

3pter chr3:131,486-331,767 d3S4559 3pTEL (Vysis) der(5)t(3;5)
3p24.1 chr3:30,275,517-30,447,565 n.d. RP11-69K20 der(5)t(3;5)
3p24.1 chr3:30,541,893-30,705,070 STT3B RP11-7I16 der(5)t(3;5)
3p22.3 chr3:32,453,732-32,650,841 GPD1L RP11-524o15 der(5)t(3;5)

GADL1

OSBPL10

CMTM7

CMTM8

3p22.2 chr3:38,928,115-39,088,251 n.d. RP11-159A17 der(3)t(3;5)
5q22.2 chr5:112,073,070-112,236,540 n.d. RP11-107C15 der(5)t(5;10)
5q23.1 chr5:117,308,035-117,479,091 n.d. RP11-567A12 der(5)t(5;10)
5q23.3 chr5:126,045,879-126,232,850 n.d. RP11-434d11 der(5)t(5;10)
5q23.3~q31.1 chr5:130,306,745-130,460,728 5' of IL3 RP11-114H7 der(5)t(5;10)
5q31.1 chr5:131,424,246-131,426,795 IL3 n.a. n.a.
5q31.1 chr5:131,817,004-131,977,063 3' of IL3 RP11-729C24 der(3)t(3;5)
5q31.1 chr5:135,739,999-135,916,051 n.d. RP11-114H21 der(3)t(3;5)
5q31.2 chr5:137,829,080-137,832,903 EGR1 LSI EGR1 der(3)t(3;5)
5q32.1 chr5:149,473,595-149,515,615 PdGFRB PoSEIdoN der(3)t(3;5)

PdGFRB
(Kreatech)

5q35.1 chr5:170,996,421-171,159,856 n.d. RP11-20o22 der(3)t(3;5) and der(5)t(3;5)
5q35.2 chr5:173,985,900-174,153,222 n.d. RP11-47J7 der(3)t(3;5) and der(5)t(3;5)
5q35.2 chr5:175,502,694-175,558,904 n.d. RP11-844P9 der(3)t(3;5) and der(5)t(3;5)
5q35.3 chr5:176,550,923-176,735,050 n.d. RP11-265K23 der(3)t(3;5) and der(5)t(3;5)
5q35.3 chr5:178,243,600-178,455,573 5' HNRNPH1 RP11-281o15 der(3)t(3;5) and der(5)t(3;5)
5q35.3 chr5:178,973,785-178,983,328 HNRNPH1 n.a. n.a.
5q35.3 chr5:179,360,362-179,524,360 3' HNRNPH1 RP11-39H3 der(5)t(5;10) and der(5)t(3;5)
5q35.3 chr5:180,142,710-180,335,838 n.d. RP11-516K1 der(5)t(5;10) and der(5)t(3;5)
5qter chr5:180,510,748-180,711,420 d5S2907 5pTEL (Vysis) der(5)t(5;10) and der(5)t(3;5)
10pter chr10:292,280-292,670 Z96139 10pTEL (Vysis) der(5)t(3;5)
10p12.31 chr10:20,782,567-20,938,614 n.d. RP11-51E20 der(5)t(3;5)
10p12.31 chr10:21,321,413-21,495,264 5' MLLT10 RP11-165o3 der(5)t(3;5)
10p12.31 chr10:21,863,580-22,072,560 MLLT10 n.a. n.a.
10p12.31 chr10:22,399,352-22,575,929 3' MLLT10 RP11-108B14 der(5)t(5;10)

n.d., not determined; n.a., not available.
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a maximum of ive luorochromes and the counterstain dAPI 
(diaminophenylindol). Image capturing and processing were 
carried out using an ISIS imaging system (MetaSystems, 
Altlussheim, Germany).

DNA isolation. Genomic dNA was extracted from cells 
ixed in acetic acid-methonal (1:3) using the Puregene dNA 
puriication kit (Gentra Systems, Inc., Minneapolis, MN, 
uSA). dNA concentration was determined by a Nanodrop 
spectrophotometer. The quality of dNA was checked using 
agarose gel electrophoresis. dNA samples extracted from 
ixed cells of 2 healthy males and 2 healthy females by the 
same method were used as reference samples.

Multiplex ligation-dependent probe ampliication (MLPA). 
The P377-A1 hematologic malignancies probemix and SALSA 
reagents were used for the present study (MRC-Holland, 
Amsterdam, The Netherlands). Ampliied probes and 
GeneScan 500 RoX standard were separated by capillary 
electrophoresis using a 4-capillary ABI PRISM 3130XL 
Genetic Analyzer (Applied Biosystems, Foster City, CA, uSA). 
Sizing of peaks and quantiication of peak areas and heights 
were performed using the GeneMarker v1.9 software (Applied 
Biosystems). A minimum of 4 healthy control samples were 
included in each run.

High resolution array-comparative genomic hybridization 

(aCGH). aCGH was performed using the Agilent SurePrint 
G3 Human Genome Microarray 180K (Agilent Technologies, 
Santa Clara, CA, uSA), an oligonucleotide microarray 
containing ~180,000 probes 60-mer with a 17-kb average 
probe spacing. Genomic dNA of the patient was co-hybridized 
with a male control dNA (Agilent Technologies). Labeling 
was performed using the Agilent Genomic dNA Enzymatic 
Labeling kit (Agilent Technologies) according to the manufac-

turer's instructions. After hybridization, the aCGH slide was 
scanned on an Agilent scanner, processed with the Feature 
Extraction software (v.10.7) and results were analyzed using 
Cytogenomics (v2.9.1.3) using AdM2 as aberration algorithm.

Results of the retrospective analyses. Genome-wide 24-color 
FISH using all human WCP probes and FISH-banding anal-
ysis using the mMCB probe set were applied as initial tests 
in this retrospective case. Thereby, a previously unrecognized 
numerical aberration, trisomy 4, and balanced translocations 
were identified between one chromosome 3 and 10, each, 
and both chromosomes 5. overall, an abnormal karyotype 
was characterized as 47,Xy,+4,der(3)t(3;5)(p23;q31.1),der(5)
t(3;5)(p23;q35.3), der(5)t(5;10)(q31.1;p12.3),der(10)t(5;10)
(q35.3;p12.3)[8]/46,Xy[13] (Fig. 1B and C).

Chromosome-specific aMCB confirmed these results 
(Fig. 1d) and locus-specific probes narrowed down the 
breakpoints according to NCBI36/hg18 as follows (Table I). 
i) The breakpoint in 3p23 was determined between the posi-
tions 30,705,070 and 32,453,732; 6 oMIM genes are located 
there: STT3B, GPD1L, GADL1, OSBPL10, CMTM7 and 
CMTM8. ii) The breakpoint 5q31.1 locates between positions 
130,460,728 and 131,817,004 and those lank the gene IL3 

(interleukin 3 precursor) in 131,424,246-131,426,795. iii) The 
second breakpoint on chromosome 5 in subband q35.3 was 

mapped to positions 178,455,573 to 179,360,362; here the 
HNRNPH1 (heterogeneous nuclear ribonucleoprotein H1) 
gene is included in 178,973,785-178,983,328. iv) Finally, the 
breakpoint in 10p12.3 was narrowed down to localize between 
positions 21,495,264 and 22,399,352, where the MLLT10 

(myeloid/lymphoid or mixed-lineage leukemia) gene has been 
mapped to 21,863,580-22,072,560.

No submicroscopic changes were detected by MLPA and 
aCGH; only the trisomy 4 was observed in aCGH (data not 
shown).

Discussion

Chromosomal translocations in ALL may be missed in 
banding karyotyping due to several reasons. They may be 
cryptic, as they are not resolvable due to a similar or identical 
GTG-banding pattern; an example is the t(12;21)(p13;q22) in 
childhood ALL (23). In addition, known aberrations may be 
masked in a complex karyotype (24). Finally, it may simply be 
dificult to obtain evaluable metaphases where chromosomes 
are well-spread and not clumsy or appearing as fuzzy with 
indistinct margins (25). In the present case the latter was the 
major problem. In the reanalyses, all well-spread metaphases 
were normal and all aberrant metaphases were clumsy and 
not evaluable in standard GTG-banding. Thus, cytogenetic 
analyses in two different laboratories missed the aberra-

tions present in this case. otherwise gross structural and a 
numerical aberration would not have been overlooked like 
in this case which were detected in retrospect by molecular 
cytogenetics.

Trisomy 4 as a sole abnormality is rare in acute myeloid 
leukemia (AML) (26) but is scarce in ALL and is not asso-

ciated with a clear prognosis (6,27,28). In pediatric ALL, 
trisomy 4 has been reported to be associated with a favorable 
outcome suggesting that children who have trisomies of both 
chromosomes 4 and 10 may have a particularly low risk of 
treatment failure (3,5). Here, trisomy 4 was observed together 
with additional structural chromosomal aberrations. Most 
likely the oncogene MLLT10 in 10p12.31 was activated by 
the strong promoter of HNRNPH1 in 5q35.3. In addition, the 
translocation of 5q31.1 to 3p23 brought in close proximity the 
gene IL3, which has been shown to have an oncogenic effect 
on hematopoietic cells (29), to 6 oMIM genes listed in Table I, 
which could also potentially lead to overexpression of IL3.

MLLT10 gene. Rearrangements have previously been identiied 
in both child and adulthood acute leukemia (30). The t(10;11) 
is a recurrent reciprocal translocation present in two common 
variants: t(10;11)(p12;q23) and t(10;11)(p12;q21); the latter 
tending to be more frequent in T-ALL patients (31). In addi-
tion, the t(10;11)(p12;q23) mainly found in childhood AML is 
rarely observed in B-ALL and T-ALL (32). The MLLT10 gene 

encodes a leucine zipper protein that functions as a transcrip-

tion factor. MLLT10 gene rearrangements are associated with 
a poor outcome due to the poor response to therapy (33,34). 

HNRNPH1 gene. While unbalanced structural aberration of 
chromosome 5 are common in myelodysplastic syndrome 
or AML (35,36), they are less common in ALL. Still 
Brandimarte et al (14) previously identiied the HNRNPH1 
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gene as a new MLLT10 fusion partner in pediatric T-ALL, as 
we observed in our case of T-precursor cell ALL.

IL3 gene. Located in 5q31.1, the IL3 gene is a multipotent 
hematopoietic growth factor produced by activated T cells (37). 
Its involvement in malignancies was previously reported in 
B-ALL cases due to a t(5;14)(q31;q32). overexpression of IL3 

was associated with unfavorable outcome in such cases (38).

3p23 region. Six oMIM genes are located in the breakpoint 
region of chromosome 3 in subband p23. These include: 
STT3B (source of immunodominant MHC-associated), 
GPD1L (glycerol-3-phosphate dehydrogenase 1-like), GADL1, 

(glutamate decarboxylase-like 1), OSBPL10 (oxysterol-binding 
protein-like protein 10), CMTM7 (CKLF-like MARVEL 
transmembrane domain containing 7) and CMTM8 (CKLF-
like MARVEL transmembrane domain containing 8). It is 
dificult to determine which one might have provided a strong 
promoter for IL3 gene expression.

In conclusion, the study in particular of ALL cases with 
unexpectedly adverse outcome in retrospect and in detail by 
high resolution molecular approaches is warranted. In the 
present case the combination of FISH-banding, FISH with 
locus-speciic probes and aCGH revealed trisomy 4 but apart 
from that a balanced aberrant karyotype, explaining the severe 
course of the disease in this case with adverse outcome. Even 
if this complex karyotype would have been identiied at the 
time of diagnosis most likely no additional therapy other than 
the applied protocol (ALL-BFM 95) would have been used. 
yet, the recurrence may have been detected much earlier in the 
case of available cytogenetic markers. Thus, the most compre-

hensive molecular (cyto)genetic analyses should be offered to 
each individual ALL case. Even though aCGH would not have 
detected the balanced translocations, the detectable trisomy 4 
would have hinted at the malignant clone missed by banding 
cytogenetics. In conclusion, the present case is the irst one 
presenting with combined trisomy 4 with a four-way transloca-

tion activating IL3 together with MLLT10.
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An adult B-cell precursor acute lymphoblastic
leukemia with multiple secondary cytogenetic
aberrations
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Abstract

Background: We report a clinically diagnosed acute lymphoblastic leukemia (ALL) with yet unreported secondary

chromosomal aberrations.

Results: A complete cytogenetic and molecular cytogenetic analysis, using GTG banding, fluorescence in situ

hybridization (FISH) and array-proven multicolor banding (aMCB), for a female patient with clinically diagnosed

ALL and immunophenotypically confirmed pre-B ALL (FAB classifications), revealed the presence of a complex

structural rearrangement, der (2) (20qter- > 20q13.33::2q21- > 2p14::2q21 > 2qter) along with t (9;22) (q34;q11),

t (12;14) (q12;p12) and a monosomy of chromosome 7.

Conclusions: Molecular cytogenetic studies are suited best for identification and characterization of chromosomal

rearrangements in acute leukemia. Single case reports as well as large scale studies are necessary to provide further

insights in karyotypic changes taking place in human malignancies.

Keywords: Acute lymphoblastic leukemia, Secondary chromosomal abnormalities, Philadelphia chromosome,

Fluorescence in situ hybridization, Array-proven multicolor banding, Prognostic factors

Background

Acute lymphoblastic leukemia (ALL) is a heterogeneous

disease characterized by multiple subtypes [1]. To date,

several structural and numerical chromosomal abnor-

malities have been characterized in ALL and according

to the WHO classification the following, seven genetic

subtypes are defined for B lymphoblastic leukemia, t

(9:22) (q34;q11.2), 11q23 traslocations, t (12;21) (p13;q22),

t (1;19) (q23;p13.3), t (5;14) (q31;q32), hyperdiploidy and

hypodiploidy [2]. Among the genetic subtypes, Philadel-

phia (Ph) chromosome, which results from a reciprocal

translocation between Abelson (ABL1) from chromosome

9 and breakpoint cluster region (BCR) from chromosome

22, is the most frequent cytogenetic aberration which is

found in ~ 25% of adult ALL cases, and in more than 50%

of patients, aged 50 years or more [3,4]. The presence of

the BCR-ABL1 rearrangement worsens the prognosis of

ALL and represents the most significant adverse prognos-

tic marker that influences the disease outcome [5]. Ph

positive (Ph+) ALL is a more aggressive disease than

chronic myeloid leukemia (CML), indicating that other

factors than BCR-ABL1 are involved in its development

and progression [5,6]. Ph + precursor-B-ALL is highly ag-

gressive, frequently resistant to chemotherapy and with a

short survival time [6,7]. Here, we are presenting a Ph +

pre-B-ALL case with yet unreported translocation events

involving six different chromosomes and a monosomy 7.

These chromosomal rearrangements appeared after un-

successful chemotherapy treatment.

Case presentation

A 31-year-old woman was diagnosed as suffering from

ALL in September 2011. Anemia, thrombocytopenia, diar-

rhea, fatigue and weight loss were the indicative symp-

toms. She was treated as follows: after the first GM-ALL

protocol (phase I and II) failed, Flag-IDA protocol was
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used, which also did not succeed. Then again GM-ALL

protocol (phase I and II) was applied and after being un-

successful hyper-CVAD was applied. At this point the first

cytogenetics and hematology were determined. The

patient's hematologic parameters were white blood cells

(WBC) at 123×109/l, consisting of 12% neutrophils, 75%

lymphocytes, 11% monocytes and 1% basophiles. Red

blood cell (RBC) count was 3.26×106/mm3, hemoglobin

level 9.7 g/dl and the platelet count 34×109/l. Serum lac-

tate dehydrogenase (LDH) value was 2,712 U/l (normal

value up to 480 U/l), serum alkaline phosphates value 208

U/l (normal value up to 128 U/l), serum alanine amino-

transferase 198 U/l (normal value up to 40 U/l) and serum

aspartate aminotransferase value 139 U/l (normal value

up to 40 U/l). The patient was treated further according

to standard ALL chemotherapy protocols for fourteen

months, however, without clinical success of chemother-

apy. Unfortunately she died under the treatment.

Results

A sample of a female patient diagnosed as pre B-ALL,

according to FAB classifications, was received after the

completion of three different protocols of chemotherapy.

The conventional cytogenetics analysis by GTG banding

revealed the karyotype as 45, XX, -7, der (2) t (2;20)

(?;?), t (9;22) (q34;q11), t (12;14) (q?;p?) [12] / 46, XX, t

(12;14) (q?;p?) [10] (Figure 1). The dual color FISH using

the probe specific for BCR and ABL and WCP probes

specific for chromosomes 2, 7, 12, 14 and 20 confirmed

the presence of BCR/ABL fusion on der (22) (data not

shown), and the presence of the other rearrangements.

To further characterize the breakpoints, aMCB was

performed, as previously reported [8] (Figure 2) and the

final karyotype was redefined as: 45, XX,-7, der (2)

(20qter- > 20q13.33::2q21- > 2p14::2q21 > 2qter), t (9;22)

(q34;q11), t (12;14) (q12;p12) [12] / 46, XX, t (12;14)

(q12;p12) [10].

The abnormal cell population showed the following

immunophenotype, which was consistent with pre-B-

ALL (FAB classifications): CD45+, HLADr+, CD117+,

CD34+, CD19+, CD10+, CD38+ and expressed CD123

and CD11c (52%) heterogeneously. The abnormal cells

negatively reacted with antibodies to CD5, CD64 and

CD3.

Conclusions

We characterized a Ph + adult pre-B-ALL case with a

complex secondary chromosomal abnormality, a trans-

location and a monosomy 7. According to the literature,

not a single case of ALL showed a der (2) (20qter- >

20q13.33::2q21- > 2p14::2q21- > 2qter) plus a t (12;14)

(q12;p12) [9]. Moreover, a t (12;14) (q12;p12) was ob-

served only in two cases of mantle cell lymphoma [9]

and in a case of acute myeloid leukemia [10]. On the

other hand, the chromosomal bands, 2p14, 2q21, 12q12,

and 14p12 are listed in 5, 32, 20, and 4 cases, respect-

ively, in other rearrangements involving different chro-

mosomes than the ones which are involved in the

present case, in previously reported ALL cases [9]. In

addition, inv (2) with 2q21 as one of the breakpoints has

also been reported in 3 cases of ALL [9].

Till date, several chromosomal aberrations such as t

(9;22), t (4;11), t (1;9), and hyperdiploid or hypodiploid

karyotype have been associated with the prognostic

Figure 1 GTG-banding revealed a 45, XX-7, der (2) t (2;20), t (9;22), t (12;14). All derivative chromosomes are shown with arrows.
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outcome in ALL cases. Apart from t (9;22) (q34;q11)/

BCR-ABL and t (4;11) (q21;q23)/MLL-AF4, an elevated

white blood cell count, age over 40 and non-responders/

slow responders to chemotherapy are commonly

regarded as high risk criteria in ALL [11]. Monosomy 7,

as a sole secondary abnormality, is also related with a

poor prognosis and shorter survival in adult ALL cases

[12,13]. In addition, deletions of 7p confer with an infer-

ior outcome in children with ALL, regardless of the

presence of other poor prognostic features, whereas de-

letions of 7q are not associated with an adverse outcome

[14]. The tendency for an adverse prognosis in patients

with secondary loss of chromosome 7 or 7p in Ph + ALL

may be the cumulative result of these events. Mullighan

et al. [15] recently described a deletion of IKZF1 gene

which encodes the transcription factor Ikaros, located

on 7p12 in 83.7% of Ph + ALL cases but not in chronic-

phase CML, suggesting that loss of Ikaros, a prototypical

member of the Krüppel-like zinc finger (ZnF) transcrip-

tion factor subfamily, which is required for normal

hematopoietic differentiation and proliferation, particu-

larly in lymphoid lineages, [16-18] is an important step

in the progression of Ph + ALL. Recently, two of seven

myeloproliferative neoplasms patients with loss of IKZF1

due to monosomy 7 have also been reported which sug-

gests that IKZF1 may represent an important tumor-

suppressor gene affected by monosomy 7 [19].

The presence of the underlying BCR/ABL gene re-

arrangement in CD10 B-cell precursor ALL has been

reported previously [20] and it has already been demon-

strated that the occurrence of BCR-ABL positive ALL in

comparison to BCR-ABL negative disease represents a

subgroup with a worse prognosis within the CD10+ B-

lineage ALL [21].

In conclusion, the present case is a de novo case of

adult pre-B-ALL with yet unreported translocation

events involving six different chromosomes in addition

to monosomy 7.

Materials and methods

Chromosome analysis

Chromosome analysis using GTG-banding was performed

according to standard procedures [22] 12 months after ig-

nition of the chemotherapeutic treatment. A minimum

of 20 metaphase cells derived from unstimulated bone

marrow culture were analyzed. Karyotypes were de-

scribed according to the International System for Hu-

man Cytogenetic Nomenclature [23].

Molecular cytogenetics

Fluorescence in situ hybridization (FISH) using LSI

BCR/ABL three-color dual-fusion translocation probe

(Abbott Molecular/Vysis, Des Plaines, IL, USA) was

applied according to manufacturer's instructions together

Figure 2 Array-proven multicolor banding (aMCB) was applied to characterize the breakpoint locations. Each image shows the results of

MCB analysis using probe sets for chromosomes 2, 9, 12, 14, 20 and 22. The normal chromosomes are shown in the left side of each image and

the derivative chromosomes on the right. The MCB-probes unstained regions on the derivative chromosomes are shown in gray. Abbreviations:

# = chromosome; der = derivative chromosome; Ph = Philadelphia chromosome.
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with a whole chromosome painting (WCP) probe for chro-

mosomes 2, 7, 12, 14 and 20 (MetaSystems, Altlussheim,

Germany) [22]. FISH using the corresponding chromosome

specific array-proven multicolor banding (aMCB) probe

sets based on microdissection derived region-specific librar-

ies was performed as previously reported [8]. A minimum

of 20 metaphase spreads were analyzed, using a fluores-

cence microscope (AxioImager.Z1 mot, Carl Zeiss Ltd.,

Hertfordshir, UK) equipped with appropriate filter sets to

discriminate between a maximum of five fluorochromes

plus the counterstain DAPI (4',6- diamino-2-phenylindole).

Image capture and processing were performed using an

ISIS imaging system (MetaSystems).

Flow cytometric immunophenotype

Flow cytometric analysis was performed using a general

panel of fluorescent antibodies against the following an-

tigens typical for different cell lineages and cell types:

CD1a, CD2, CD3, CD4, CD5, CD8, CD10, CD11b,

CD11c, CD13, CD14, CD15, CD16, CD19, CD20, CD22,

CD23, CD32, CD33, CD34, CD38, CD41a, CD45, CD56,

CD57, CD64, CD103, CD117, CD123, CD138, CD209,

CD235a and CD243; In addition to antibodies to Kappa

and Lambda light Chains, IgD, sIgM, and HLADr. All

antibodies were purchased from BD Biosciences. Sam-

ples were analyzed on a BD FACSCalibur™ flow cyt-

ometer. Autofluorescence, viability, and isotype controls

were included. Flow cytometric data acquisition and

analysis were conducted by BD Cellquest™ Pro software.

Consent

Written informed consent was obtained from the patient

for publication of this Case Report. A copy of the writ-

ten consent is available for review by the Editor-in-Chief

of this journal.
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Acute leukemia oten presents with pure chromosomal resolution; thus, aberrations may not be detected by banding cytogenetics.
Here, a case of 26-year-old male diagnosed with T-cell acute lymphoblastic leukemia (T-ALL) and a normal karyotype ater
standard GTG-banding was studied retrospectively in detail by molecular cytogenetic and molecular approaches. Besides
luorescence in situ hybridization (FISH), multiplex ligation-dependent probe ampliication (MLPA) and high resolution array-
comparative genomic hybridization (aCGH) were applied. hus, cryptic chromosomal aberrations not observed before were
detected: three chromosomes were involved in a cytogenetically balanced occurring translocation t(2;9;18)(p23.2;p21.3;q21.33).
Besides a translocation t(10;14)(q24;q11) was identiied, an aberration known to be common in T-ALL. Due to the three-way
translocation deletion of tumor suppressor genes CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, andMTAP/ARF/p14 in 9p21.3 took
place. Additionally RB1 in 13q14 was deleted. his patient, considered to have a normal karyotype ater low resolution banding
cytogenetics, was treated according to general protocol of anticancer therapy (ALL-BFM 95).

1. Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is a quite rare
and heterogeneous disease, more common in males than in
females. It accounts for 15% of childhood and 25% of adult
ALL cases [1]. Underlying genetic causes of T-ALL are poorly
understood and this is highlighted by the fact that T-ALL is
associated with a normal karyotype in 30–50% of the cases [2,
3]. In abnormal karyotypes recurrent chromosomal aberra-
tions are reported [4]. Regularly, promoter and enhancer ele-
ments of genes involved in T-cell development are juxtaposed

with translocations in close proximity of oncogenes [5, 6].he
most common structural chromosomal abnormalities in T-
ALL are TCR (T-cell receptor) loci rearrangements. Break-
points in 14q11 (TCRA/D) and 7q34 (TCR�) are observed
frequently. Besides, deletions in the long arm of chromosome
6 may be found; the common deleted region involves mainly
subband 6q16; however, candidate gene(s) have not been
formally identiied yet [7, 8]. Also tumor suppressor genes
have been seen to be involved in T-ALL [9].

Cryptic structural chromosomal abnormalities are still
a challenge in cytogenetic standard diagnostics of acute
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leukemia. However, many cryptic aberrations have been
identiied by molecular cytogenetics already. Examples in
T-ALL are cryptic deletions in 9p21 involving the genes
CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, and MTAP/
ARF/p14 leading to loss of G1 checkpoint control of the cell
cycle or the RB1 locus in 13q14, which also plays a role as
tumor suppressor gene in cell cycle regulation [9].

Here, a case of a young adult T-ALL patient with a novel
cryptic three-way translocation, a reciprocal translocation,
and submicroscopic deletions is reported.

2. Material and Methods

2.1. Clinical Description. A 26-year-old male presented in
1998 initially with a total white blood cell count of 20.2 ×
109/L, hemoglobin of 9.2mmol/L, and platelets of 126 ×
109/L. Bone marrow examination was consistent with T-ALL
having 91% blast cells. According to low cytometry the
immunophenotype of bone marrow lymphocytes was as
follows: the cells were positive for CD2 (96%), CD8 (96%),
CD4 (92%), CD7 (92%), CD1A (89%), CD10 (87%), CyCD3
(86%), and TdT (85%) and negative for �F1, �F1, CD3, CD13,
CD19, CD20, CD24, CD33, CD34, HLA-DR, MPO-7, slg,
TZR-�/�, and TZR�/�. he patient was treated according
to ALL-BFM 95 protocol and died eight months ater initial
diagnosis from serious infections and severe complications
while being in complete hematological remission.

2.2. Test Done at Diagnosis. GTG-banding was done accord-
ing to standard procedures. A total of 7 metaphases were
available for cytogenetic evolution derived from unstimu-
lated bone marrow of the patient and were analyzed on
a banding level of 180–250 bands per haploid karyotype
[11] and determined as 46,XY [7, 12]. RT-PCR performed
for TEL/AML1 and BCR/ABL fusion genes was reported to
be negative and luorescence in situ hybridization (FISH)
analysis carried out according to manufacturer’s instructions
for the same loci was negative (probes used: LSI BCR/ABL
and LSI TEL/AML1, Abbott Molecular/Vysis, Mannheim,
Germany).

2.3. Test Done in Retrospective

2.3.1. Molecular Cytogenetics. FISH was done according to
standard procedures and manufacturer’s instructions for the
following commercially available probes: LSI 13 in 13q14.2
(RB1, Abbott Molecular/Vysis, Mannheim, Germany), LSI
IGH/BCL2 (IGH in 14q32; BCL2 in 18q21, Abbott Molec-
ular/Vysis, Mannheim, Germany), SPEC ALK/2q11 (ALK
in 2p23, Zytovision GmbH, Bremerhaven, Germany), SPEC
p16/CEN9 (p16 in 9p21.3, Zytovision GmbH, Bremer-
haven, Germany), SPEC BIRC3/MALT1 (BIRC3 in 11q22.2,
MALT1 in 18q21.32, Zytovision, Bremerhaven, Germany), and
POSEIDONMLL/MLLT3 (MLL in 11q23.3,MLLT3 in 9p21.3;
Kreatech Diagnostics, Amsterdam, Netherland).

Whole chromosome painting (WCP) probe for chromo-
somes 2, 9, 10, 14, and 18 and bacterial artiicial chromo-
some probes (BACs) for chromosomes 2 and 9 (Table 1)

were homemade [13]. he homemade multitude multicolor-
banding (mMCB) and chromosome speciic high resolution
array-proven multicolor-banding (aMCB) probe sets were
also applied as previously reported [10, 14, 15].

A total of 10–15 metaphase spreads were analyzed,
using a luorescence microscope (AxioImager.Z1 mot, Zeiss)
equipped with appropriate ilter sets to discriminate between
amaximumof ive luorochromes and the counterstain DAPI
(Diaminophenylindol). Image capturing and processing were
carried out using an ISIS imaging system (MetaSystems,
Altlußheim, Germany).

2.3.2. DNA Isolation. GenomicDNAwas extracted from cells
ixed in acetic acid :methanol (1 : 3) by Puregene DNA Purii-
cation Kit (Gentra Systems, Minneapolis, MN, USA). DNA
concentration was determined by a Nanodrop spectropho-
tometer. he quality of DNA was checked using agarose gel
electrophoresis. DNA samples extracted from ixed cells of 2
healthymales and 2 healthy females by the samemethodwere
used as reference samples.

2.3.3. Multiplex Ligation-Dependent Probe Ampliication
(MLPA). he P377-A1 hematologic malignancies probemix
and SALSA reagents were used for this study (MRC-Hol-
land, Amsterdam, he Netherlands). Ampliied probes and
Genescan 500ROX standardwere separated by capillary elec-
trophoresis using a 4-capillary ABI-PRISM 3130XL Genetic
Analyzer (Applied Biosystems, Foster City, USA). Sizing of
peaks and quantiication of peak areas and heights were
performed using GeneMarker v1.9 sotware (Applied Biosys-
tems). A minimum of 4 healthy control samples were includ-
ed in each run.

2.3.4. High Resolution Array-Comparative Genomic Hybridi-
zation (aCGH). aCGH was performed using Agilent Sure-
Print G3 Human Genome microarray 180K (Agilent Tech-
nologies, Santa Clara, CA, USA), an oligonucleotidemicroar-
ray containing approximately 180,000 probes 60-mer with a
17 kb average probe spacing. Genomic DNA of patient was
cohybridized with a male control DNA (Agilent Technolo-
gies, Santa Clara, CA, USA). Labeling was performed using
Agilent Genomic DNA enzymatic labeling kit (Agilent)
according to the manufacturers’ instructions. Ater hybridi-
zation, the aCGH slide was scanned on an Agilent scanner
and processed with Feature Extraction sotware (v10.7) and
results were analyzed using Cytogenomics (v2.9.1.3) using
ADM2 as aberration algorithm.

3. Results of Retrospective Analysis

As an initial test of retrospective analysis a genome wide
FISH-banding applying mMCB was performed. hereby, a
previously unrecognized reciprocal and apparently balanced
translocation between the three chromosomes 2, 9, and
18 was identiied. Besides a known recurrent translocation
of chromosomes 10 and 14 was recognized and the kary-
otype was suggested as 46,XY,t(2;9;18)(p23.2;p21.3;q21.33),
t(10;14)(q24;q11) (Figure 1). aMCB and WCP probes as
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Table 1: (a) Probes used for characterization of the three-way translocation, their location, and obtained results. (b) Probes used for
characterization of the in aCGH detected deletions, their location, and obtained results.

(a)

Cytoband Location [hg19] Probe Result for derivative chromosomes

2p24.3
chr2:

RP11-119F22 Signal on der(9); no split signal
16,014,784–16,140,647

2p23.3
chr2:

RP11-106G13 Signal on der(9); no split signal
26,967,697–27,136,688

2p23.2
chr2:

SPEC ALK Signal on der(9); no split signal
29,415,640–29,447,593

9p22.1
chr9:

RP11-503K16 Signal on der(18); no split signal
18,717,972–18,718,524

9p22.1
chr9:

RP11-513M16 Signal on der(18); no split signal
19,371,384–19,371,943

9p21.3
chr9:

RP11-15P13 Signal on der(18); no split signal
20,182,493–20,361,132

9p21.3
chr9:

MLLT3 MLLT3-gene signal on der(18); no split signal
20,344,968–20,621,872

9p21.3
chr9:

SPEC p16 Deletion on der(9) and/or der(18)
21,967,751–21,975,132

9p21.3
chr9:

RP11-946B6 Deletion on der(9) and/or der(18) ish 9p21.3(RP11-946B6x0)[8]
23,608,612–23,790,449

9p21.2
chr9:

RP11-438B23 Signal on der(9); no split signal
27,937,615–27,944,495

18q21.32
chr18:

MALT1 MALT1-gene signal on der(18); no split signal
56,338,618–56,417,370

18q21
chr18:

BCL2 BCL2-gene signal on der(2); no split signal
60,985,282–60,985,899

(b)

Cytoband Location [hg19] Probe Result for derivative chromosomes

9p21.3
chr9:

21,967,751–21,975,132
SPEC p16

ish 9p21.3(p16x1)[4]
nuc ish 9p21(p16x0)[64]/9p21(p16x1)[83]/

9p21(p16x2)[53]

13q14.2
chr13:

48,920,000–49,140,000
LSI 13 = ��1

nuc ish 13q14.2(��1x0)[36]/
13q14.2(��1x1)[43]/
13q14.2(��1x2)[121]

shown in Figure 2 conirmed these suggestions. Locus
speciic probes narrowed down the breakpoints as shown
in Table 1(a). Unfortunately there was no suicient cell
pellet available to characterize the breakpoints in more
detail than listed in Table 1(a). Even though closely located
to the observed chromosomal breakpoints, direct involve-
ment of the following oncogenes was excluded using
locus speciic FISH-probes for ALK in 2p23.2, MLLT3 in
9p21.3, and MALT1 and BCL2 in 18q21.33. However, MLPA
(result not shown) and aCGH (Figure 3) revealed that the
t(2;9;18) is not really balanced: a deletion in 9p21.3 includ-
ing CDKN2A/INK4A/p16, CDKN2B/INK4B/p15, andMTAP/
ARF/p14 could be found as chr9: 21,252,517–21,798,676x1
and 21,817,082–23,515,821x0 (hg19) (Figure 3; Table 1(b)).
Moreover, a deletion in 13q14.2 was detected as chr13:

48,982,000–49,062,000x1 (hg19, Figure 3). FISH showed a
mosaic condition of mixed heterozygous and homozygous
deletion of 9p21.3 and 13q14.2 (Table 1(b)).

4. Discussion

Chromosomal translocations are considered to be the pri-
mary cause of leukemia for both acute and chronic phase. In
this study, we retrospectively identiied previously undetected
balanced and unbalanced chromosomal and subchromoso-
mal changes by application of molecular cytogenetics includ-
ing FISH-banding, locus-speciic FISH-probes, and aCGH
plus MLPA. FISH-banding, especially mMCB, allows the
identiication of balanced and unbalanced inter- and intra-
chromosomal rearrangements of the whole human karyotype
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Figure 1: Application of mMCB showed no normal karyotype
but derivative chromosomes 2, 9, 10, 14, and 18 (arrows). mMCB
results are shown as overlay of three of the six used color channels.
Evaluation was done as previously reported [10] using all 6 color
channels and pseudocoloring. Breakpoints were determined as
2p23.2, 9p21.3, 10q24, 14q11, and 18q21.33.

in one single experiment [10]. It might be indicated to apply
mMCBor comparable FISH-banding approaches routinely in
T-ALL cases exhibiting poor quality of the metaphase, that
is, not well spreading ones with chromosomes appearing as
fuzzy with indistinct margins [16, 17].

In this study one well-known and one yet unreported
balanced translocation event were identiied for a T-ALL
as t(10;14)(q24;q11) and t(2;9;18)(p23.2;p21.3;q21.33), respec-
tively. While a direct involvement of the cancer-related
oncogenes ALK in 2p23.2, MLLT3 in 9p21.3, and BCL2 in
18q21.33 could be excluded, loss of two tumor suppresser gene
loci in 9p21 and in 13q14 was found.

Data from the literature conirmed that the oncogenes
tested and located nearby the chromosomal breakpoints of
the three-way translocation were not yet found to be involved
in T-ALL: ALK located in 2p23.2 was previously detected in
a variety of B- and T-cell lymphomas and nonhematopoietic
solid tumors [18–23], the BCL2 gene is overexpressed in
lymphomas [24, 25], and theMLLT3 genewas one of themost
highly upregulated transcripts and the most common fusion
partner of MLL in de novo acute myeloid leukemia (AML)
subtype M5 and therapy-related AML [26–28]; however,
Meyer et al. [29] found that MLLT3 also plays a role in
pediatric rather than adult ALL.

In the present case, an additional chromosomal translo-
cation t(10;14)(q24;q11), known as sole abnormality in 10%
of T-ALL patients, was identiied. Also it is present in 5% of
pediatric and 30% of adult T-ALL [20, 30, 31]. he TLX1 gene
at 10q24 is a transcription factor becoming overexpressed as
oncogene due to its juxtaposition to a strong promoter and
enhancer elements of the TCR loci at 14q11 [5, 32–34]. A
favorable outcome was reported in pediatric and adult T-ALL

MCB 2

MCB 9

MCB 18

Normal der(2) der(9) der(18)

(a)

wcp10
wcp14

der(14)der(10)#10 #14

(b)

Figure 2: (a) Results of aMCB probe sets for chromosomes 2, 9, and
18 are shown in pseudocolor depiction, which conirmed the char-
acterization of these three chromosomes involving rearrangement
as t(2;9;18)(p23.2;p21.3;q21.33). (b)Whole chromosomepaints (wcp)
for chromosomes 10 and 14 conirmed that the t(10;14)(q24;q11) was
independent of the t(2;9;18).

to be associatedwith the t(10;14) or TLX1 gene overexpression
[5, 20, 35].

Even though balanced rearrangements are known to be
typical for hematopoietic malignancies to date, only a limited
number of studies have used whole genome directed FISH
approaches to identify cryptic chromosomal abnormalities
in ALL patients [36–38]. Still, in ALL it is uncommon to
see three-way translocations. However, due to lowmetaphase
resolution in ALL the real incidence of three-way transloca-
tions is currently unknown.

he present report highlights that ater identiication
of apparently balanced chromosomal aberrations, it is still
necessary to screen for further unbalanced submicroscopic
abnormalities by molecular approaches such as MLPA and
aCGH. However, also a conirmation of the results by molec-
ular cytogenetics is necessary, as aCGH was partially mis-
classiied a mix of homo- and heterozygote deletions as pure
homozygote ones.

9p21.3 deletions, which lead to the loss of CDKN2A/
INK4A/p16, CDKN2B/INK4B/p15, and MTAP/ARF/p14
tumor suppressor genes expression, are the most predomi-
nant aberrations seen in precursor B-cell ALL (∼20% of the
cases) and T-ALL (>60% of the case) [39–42]. Besides also
a deletion of RB1 gene resulting in inactivation of another
tumor suppressor gene expression was identiied. RB1 is
rarely reported to be deleted in T-ALL. In contrast, deletion
of RB1 has been detected in 30% of B-ALL and nearly to 60%
in B-CLL cases [43, 44]. hus, RB1 pathway was identiied as
potential targets for therapy of ALL [45, 46].
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Figure 3: aCGH conirmed deletions in 9p21.3 and 13q14.2 (arrows) detected initially byMLPA (result not shown). FISH conirmed presence
of these deletions in metaphase and/or interphase. Examples for heterozygote deletions of 9p21.3 and 13q14.2 are depicted; probes speciic for
the corresponding tumor suppressor genes were labeled in red; centromeric probe for chromosome 9 (D9Z3) was labeled in green.

5. Conclusion

In conclusion, we report a case of T-ALL with complex chro-
mosomal aberrations. Even if at time of diagnosis the deletion
on 9p21.3 would have been detected and accordingly treated,
it remains unclear what inluence the other tumor suppres-
sors and oncogenes (possibly) activated by the complex rear-
rangements would have had for the clinical outcome. Overall,
the present case stresses the necessity to study hematological
malignancies by diferent means to get a comprehensive pic-
ture of the genetic changes in connection with the acquired
disease, as aCGH or MLPA alone would only have identiied
the imbalanced rearrangements, while molecular cytogenet-
ics predominantly gave hints on the presence of balanced
rearrangements.
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Witt, “T-cell acute lymphoblastic leukaemia: recent molecular
biology indings,” British Journal of Haematology, vol. 156, no. 3,
pp. 303–315, 2012.
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Abstract 

Acquired copy number changes are common in acute leukemia. They are reported as 

recurrent amplification or deletion and may be indicative for involvement of oncogenes or 

tumor suppressor genes in the acquired disease and can serve as potential biomarkers for 

prognosis or even as a target for molecular therapy. Here, we report a gain of copy 

numbers of 14q13 to 14q32 leading to an IGH@ locus splitting in a young adult female, 

present as a yet unreported rearrangement in B-cell acute lymphoblastic leukemia (B-

ALL). Low resolution banding cytogenetics at the time of diagnosis revealed a normal 

karyotype. However, retrospective application of fluorescence in situ hybridization- 

(FISH-) banding, locus specific FISH-probes, as well as multiplex ligation-dependent 

probe amplification and high resolution array-comparative genomic hybridization revealed 

previously cryptic aberrations. Overall a karyotype 46,XX,del(9)(p21.3p21.3),der(14)(pter-

>q32.33::q32.33->q13::q32.33->qter) was determined. The patient was treated according 

to PALG 5-ALL7-3 protocol and achieved complete remission. These findings indicate 

that a favorable prognosis is linked to these aberrations under the mentioned treatment. 
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Introduction  

B-cell acute lymphoblastic leukemia (B-ALL) is a malignant neoplasm derived from B-cell 

progenitors. It is the most common malignancy in pediatric patients, accounting for up to 

80% of childhood leukemia. Thus, it is the leading cause of cancer-related death in 

children and young adults (1-2).  

Rearrangements involving the immunoglobulin heavy chain (IGH@) locus on 

chromosomal band 14q32.33 are rare in B-ALL, occurring in <5% of the childhood cases 

and detected in approximately 10% of adult patients (3-4). IGH@ rearrangements occur 

more frequently in adolescent and appear to have a favorable clinical outcome. The same 

holds true for such cases of B-ALL associated with genetic aberrations like deletion in 

9p21.3 (CDKN2A/B) and 9p13.3 (PAX5) (5). In B-ALL, the most common IGH@ 

rearrangement is translocation to partner genes like C-MYC in 8q24 as the well 

characterized translocation t(8;14)(q24.1;q32). Another possible partner is the inhibitory 

transcription factor ID4 in 6p22 being cytogenetically visible as translocation 

t(6;14)(q32;p22). The translocation t(14;19)(q32;q13) leads to overexpression of the CEBP 

(CCAAT/enhancer binding protein) gene family, the translocation t(5;14)(q31;q32) 

involves IL3 in 5q31, and the translocation t(X;14)(p22;q32) or translocation 

t(Y;14)(p11.2;q32) result in deregulated expression of CRLF2 (cytokine receptor-like 

factor 2). Translocations between IGH@ and EPOR (erythropoietin receptor) in 19p13 

have also been reported together with other translocations appearing less frequently (6-8). 

In all of these translocations an oncogene located near the breakpoint of the translocation 

partner is activated by juxtaposing to IGH@ regulatory sequences (4). Interestingly, all 

rearrangements involving IGH@ at 14q32.33 have unique biological characteristics and 

correlate with clinical, morphological, and immunophenotypic features.  

Cryptic deletions in chromosomal band 9p21.3 involve the CDKN2A gene which encodes 

for two transcripts: p16/INK4A and p14/ARF, and the CDKN2B gene (p15/INK4B). Their 

functions in cell cycle are to control the transition of G1 phase to S phase. The size of 

9p21.3 deletions in ALL patients seem to vary substantially, but in most cases CDKN2A is 

co-deleted with CDKN2B and MTAP (9-11). 

We report here a new IGH@ rearrangement in a young adult of B-ALL associated with 

deletion in CDKN2A/B. The way how the chromosome 14 rearrangement may have been 

evolved is also discussed.  
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Material and Methods  

Clinical description 

A 20-year-old female presented in 2008 with white blood cell (WBC) count of 3.7x109/l, 

hemoglobin of 11.0 mmol/l and platelets of 334 x109/l. In bone marrow about 93% of blast 

cells were observed. Immunophenotype was characterized by the expression of a variety of 

B-cell-specific antigens being positive for CD10, CD19, CD22, CD34, CD38, CD45, 

CD52, CD79a, TdT, HLA-DR, and being negative for CD2, CD15, CD20, CD33, CD56, 

CD66c, and cIgM. These findings were consistent with common acute B-cell 

lymphoblastic leukemia (B-ALL).  

The patient was treated by induction therapy according to PALG 5-ALL7-3 (Epirubicin, 

Vincristine, PEG Asparaginaza, steroids), two courses of consolidation and maintenance 

treatment. From December 2011 till to date patient is under the observation in out-patient 

clinic with complete remission 1 (CR) and without signs for mininal residual disease 

(MRD). 

 

Cytogenetic results at diagnoses 

Banding cytogenetic analyses was performed on unstimulated bone marrow aspirate 

according to standard procedures (12). A total of 25 metaphases were available for 

cytogenetic evaluation and analyzed on a banding level of 300 bands per haploid karyotype 

(13). GTG-banding revealed a normal female karyotype as 46,XX. 

 

Retrospective analyses 

Molecular cytogenetics 

Fluorescence in situ hybridization (FISH) was done according to standard procedures 

and/or according to manufacturer’ s instructions.  

Homemade were the following probes and probe sets:  

- BAC (bacterial artificial chromosome) clones of interest were identified through the 

Human Genome Browser Database of the Genome Bioinformatics Group at the University 

of California at Santa Cruz (http://genome.ucsc.edu/) and Ensembl Genome Data 

Resources of the Sanger Institute Genome Database (http://www.ensembl.org/). DNA 

probes (Table 1) obtained from Resources Center (Oakland, USA) were labeled by PCR 

with SpectrumGreen, SpectrumOrange or TexasRed-dUTP and applied for two- or three-

color FISH-approaches. 
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- FISH-banding probe-sets as follows: genome wide multitude multicolor banding 

(mMCB) and chromosome specific high resolution array-proven multicolor-banding 

(aMCB) (14-16).  

Additionally, commercially available probes were used: LSI IGH (14q32 Break probe, 

Abbott Molecular/Vysis, Mannheim, Germany), POSEIDON p16 (9p21 and 9q21 Control 

probe, Kreatech Diagnostics, Amsterdam, Netherland), SPEC ERG/TMPRSS2 TriCheck™ 

Probe (ERG in 21q12.13-q22.3, TMPRSS2 in 21q22.3 Zytovision, Bremerhaven, 

Germany), and subtelomeric probe for 14q (14q in D14S1420, Abbott Molecular/Vysis, 

Mannheim, Germany). 

A total of 10-15 metaphase spreads were analyzed, using a fluorescence microscope 

(AxioImager.Z1 mot, Zeiss) equipped with appropriate filter sets to discriminate between a 

maximum of five fluorochromes and the counterstain DAPI (Diaminophenylindol). Image 

capturing and processing were carried out using an ISIS imaging system (MetaSystems, 

Altlussheim, Germany). 

 

DNA isolation  

Genomic DNA was extracted from cells fixed in acetic acid-methonal (1:3) by Puregene 

DNA Purification Kit (Gentra Systems, Minneapolis, MN, USA). DNA concentration was 

determined by a Nanodrop spectrophotometer. The quality of DNA was checked using 

agarose gel electrophoresis. DNA-samples extracted from fixed cells of 2 healthy males 

and 2 healthy females by the same method were used as reference samples. 

 

Multiplex ligation-dependent probe amplification (MLPA)  

The P377-A1 Hematologic malignancies probemix and SALSA reagents were used for this 

study (MRC- Holland, Amsterdam, The Netherlands). Amplified probes and Genescan 500 

ROX standard were separated by capillary electrophoresis using a 4-capillary ABI-PRISM 

3130XL Genetic Analyzer (Applied Biosystems, Foster City, USA). Sizing of peaks and 

quantification of peak areas and heights were performed using GeneMarker v1.9 software 

(Applied Biosystems). A minimum of 4 healthy control samples were included in each run. 

 

High resolution array-comparative genomic (aCGH)  

aCGH was performed using Agilent SurePrint G3 Human Genome microarray 180 K 

(Agilent Technologies, Santa Clara, CA, USA), an oligonucleotide microarray containing 

approximately 180,000 probes 60-mer with a 17 kb average probe spacing. Genomic DNA 
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of patient was co-hybridized with a male control DNA (Agilent Technologies, Santa Clara, 

CA, USA). Labeling was performed using Agilent Genomic DNA enzymatic labeling kit 

(Agilent) according to the manufacturers’  instructions. After hybridization, the aCGH slide 

was scanned on an Agilent scanner, processed with Feature Extraction software (v10.7) 

and results were analyzed using Cytogenomics (v2.9.1.3) using ADM2 as aberration 

algorithm. 

 

Results  

G-banding at a low resolution did not show any chromosomal aberrations. Retrospective 

application of mMCB revealed only one gross chromosomal alteration, an inverted 

duplication on a chromosome 14. To characterize the rearrangement in more detail further 

FISH experiments like aMCB for chromosome 14 (Fig. 1A) and locus-specific FISH 

probes (Tab. 1) were applied revealing a which der(14)(pter->q32.33::q32.33-

>q13::q32.33->qter). 

Dual-color-FISH using a commercial available break apart rearrangement probe specific 

for IGH, both interphase nuclei and metaphases studies revealed splitting of IGH variable 

region (IGHV) and 3′ flanking region, both located downstream to the IGH locus (results 

not shown). MLPA analysis showed heterozygous deletion of p16/INK4A, p15/INK4B and 

p14/ARF and confirmed by interphase FISH (iFISH – results not shown).  

aCGH revealed two large genomic imbalances: a gain of 70.6 Mb in the region of 14q13.2-

q32.3 between the positions (GRCh37/hg19) 35,918,265 and 106,513,022 and loss of 3 Mb 

in the region of 9p21.3 between the positions 21,252,517 and 24,289,720. Both findings 

are compatible with FISH and MLPA result (Fig. 1C).   

Besides, aCGH revealed five small genomic imbalances with loss of copy number variants 

in: 

- 3q26.32 between the positions 176,825,586 and 177,697,157; 1 OMIM gene is 

located there: TBL1XR1;  

- 10p15.3 between the positions 1,491,986 and 1,582,072; 2 OMIM genes are located 

there: ADARB2 and NCRNA00168; 

- 16q13 between the positions 57,275,940 and 57,331,381; 2 OMIM genes are 

located there: ARL2BP and PLLP; 

- 21q22.2 between the positions 39,764,621 and 39,865,171; 1 OMIM gene is located 

there: ERG; 
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- Xq13.3 between the positions 47,330,212 and 47,335,227; 1 OMIM gene in is 

located there: ZNF41 (results not shown). 

 

Discussion  

Copy number variants of specific target genes are important in the development and 

progression of acute leukemia and may serve as potential biomarkers for prognosis and/or 

as targets for molecular therapy. Gene amplification is an important mechanism of 

oncogene activation in acute leukemia. However, it is difficult to identify or resolve 

genomic imbalances less than 10 Mb in size by banding cytogenetics due to poor quality of 

chromosomes being often not well-spread and clumsy or appearing as fuzzy with indistinct 

margins. Thus, molecular cyto(genetic) approaches such as FISH, MLPA, and aCGH have 

been shown to be potent means for detection of previous cryptic genomic imbalances (7; 

17). Consequently, application of aforementioned approaches unraveled here a yet 

unreported genomic imbalance in a B-ALL case as 46,XX,del(9)(p21.3p21.3),der(14)(pter-

>q32.33::q32.33->q13::q32.33->qter). The characterization of that aberration revealed the 

involvement of the cancer-related oncogene IGH@ at 14q32.33 being critical in 

leukaemogenic process (4). 

Inversions (inv) within the long arm of a chromosome 14 are common karyotypic 

abnormalities in T-cell lymphoid malignancies like T-chronic lymphocytic leukemia 

(CLL) and adult T-cell leukemia. In contrast, in B-cell lineage ALL inv(14)(q11q32) 

involving CEBPE and IGH@ is an exceedingly rare phenomenon associated with better 

prognosis and repeatedly reported with complete remission (4; 18-19). The good outcome 

of the present cases thus fits in that line. 

To the best of our knowledge a derivative chromosome 14 like the here reported one has 

not been seen in ALL yet. In Fig. 1B a suggestion is depicted how the rearrangement might 

have happened. As it is a rearrangement involving an interstitial part of the long arm of 

chromosome 14, U-type exchange mechanisms as reported in comparable cases from 

clinical genetics (20) can be discarded. 

Homozygous deletions of tumor suppressor genes p16/INK4A, p15/INK4B and p14/ARF at 

9p21 represent a marker of unfavorable outcome. Thus the heterozygote deletion seen in 

the present case may be a hint for a careful follow-up of the patient, especially as there are 

hints that the prognosis is here closely linked to and depend on the treatment received (6-

10).  
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Finally, the present patient showed copy number changes of five regions with yet unclear 

clinical significance. The identification of new copy number change can lead to 

identification of functional important genes in leukemogenesis:  

• Deletion of TBL1XR1 gene on 3q26.32 has been recently detected in ETV6-RUNX1 

positive ALL, primary central nervous system lymphomas and diffuses B large cell 

lymphoma. Remarkably, TBL1XR1 is widely expressed in hematopoietic tissues 

and may play a key regulatory role in the NF-kappaB pathway, hence suggesting 

that TBL1XR1 could have a potential biological role in ALL pathogenesis (21-22).  

• ADARB2 at 10p15.3 encodes a member of the double-stranded RNA adenosine 

deaminase family of RNA-editing enzymes and may play a regulatory role in RNA 

editing and function as tumor suppressor gene. Overall, reduction of RNA level of 

ADARB2 due to a deletion may favor cancer development and progression (23-24).  

• Also a recurrent deletion was found on 21q22.22 targeting exclusively ERG. ERG 

gene is a transcriptional factor which belongs to the erythroblast transformation-

specific (ETS) family. The latter has a key regulatory role in hematopoietic 

differentiation during early T and B cell development. Overexpression of ERG gene 

was shown in acute myeloid leukemia and T-ALL and was associated with poor 

prognosis. Currently, deletion of ERG gene associated with a very good outcome in 

older children and young patient with BCP-ALL, as also seen in our case with 

complete remission and without MRD (25-26).  

• Submicroscopic losses of ARL2BP, PLLP and ZNF41 genes were reported here for 

the first time in ALL. ARL2BP is a member of ARF family of RAS-related 

GTPases and has an essential role in photoreceptor maintenance and function. 

Homozygous mutation in ARL2BP gene was identified in retinitis pigmentosa with 

or without situs inversus (27). Overexpression of PLLP gene has been detected in 

malignant pleural mesothelioma (28). ZNF41 is a transcription factor belongs to a 

cluster of human zinc finger genes on chromosome Xp11.23. Mutations in ZNF41 

gene was identified in X-linked mental retardation (29). 

Overall, we found unbalanced acquired gross and submicroscopic rearrangements in a case 

of B-ALL not reported before in this unique combination. The clinical consequences of the 

individual changes remain to be determined in detail. However, it is noteworthy that 

treatment according to PALG 5-ALL7-3 protocol achieved complete remission. 
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Conclusion  

Molecular cyto(genetic) approaches are a helpful tool for identification of cryptic 

rearrangements and potential new target genes for leukemogenesis and progression of the 

disease as well as for clinical outcome and treatment options. Our results suggest that, the 

detection of submicroscopic alterations in B-ALL such as deletion of TBL1XR1, 

CDKN2A/B and ERG genes with a good outcome would be useful for diagnosis and risk 

stratification, especially in future protocols that include B-ALL patients. 
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Table 1 

Used probes, their location and obtained results are listed according to GRCh37/hg19. 

Cytoband Location [GRCh37/hg19] Probe  Result 

3q26.32 
chr3: 
177,272,863-177,430,308 RP11-114M1 

deletion on der(3)  
ish     3q26.3(RP11-114M1x1)[5] 

3q26.32 
chr3: 
177,488,843-177,646,481 RP11-91K9 

deletion on der(3)  
ish     3q26.3(RP11-91K9)[5] 

9p21.3/ 
 
9p11.1q11 

chr9: 
21,967,751-21,975,132 
chr9: 
47,300,001-50,700,000 

SPEC p16/ 
 
CEN9 

deletion on der(9)  
ish        9p21.3(p16x1)[8] 
nuc ish 9p21(p16x1)[147]/ 
9p21(p16x2)[53] 

14q11.2 
chr14: 
20,814,125-20,814,672 RP11-332N6 1 signal on der(14)  

14q11.2 
chr14: 
20,940,682-21,103,092 RP11-14J7 1 signal on der(14)   

14q12 
chr14:  
29,511,827-29,698,386 RP11-125A5 1 signal on der(14)   

14q13.1 
chr14:  
32,299,162-32,460,130 RP11-501E21 1 signal on der(14)   

14q13.2 
chr14:  
35,335,072-35,521,841 RP11-26M6 1 signal on der(14)   

14q13.3 
chr14:  
36,683,813-36,704,814 RP11-259K15 2 signals on der(14) 

14q21.1 
chr14:  
39,897,747-40,060,823 RP11-111A21 2 signals on der(14) 

14q21.1 
chr14:  
40,408,068-40,537,355 RP11-34O18 2 signals on der(14) 

14q21.3 
chr14: 
49,809,988-49,981,102 RP11-346L24 2 signals on der(14) 

14q21.3 
chr14:  
50,148,020-50,148,604 RP11-831F12 2 signals on der(14) 

14q23.1 
chr14:  
59,967,413-60,142,554 RP11-701B16 2 signals on der(14) 

14q24.2 
chr14:  
70,701,212-70,701,81 RP11-486O13 2 signals on der(14) 

14q31.1 
chr14:  
80,030,106-80,193,689 RP11-242P2 2 signals on der(14) 

14q32.3 
chr14:  
106,053,226-106,518,932 

LSI IGH split signals on der(14) 

14qter 
chr14:  
107,038,129-107,238,316 

D14S1420 1 signal on der(14)   
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Figure 1 

A) Result of aMCB 14 probe set suggested the breakpoints of der(14) as 14q13 and 14q32.33; 

those were confirmed by locus-specific FISH probes as detailed in Tab. 1. For aMCB the 

normal (#14) and the derivative chromosome 14 (der(14)) is shown in pseudocolor banding 

pattern and the corresponding underlying fluorochrome profiles. Schematic depiction of 

the der(14)(pter->q32.33::q32.33->q13::q32.33->qter) is also shown. 

B) A mode of formation for the der(14) from Fig. 1A is suggested in this self-explaining 

schematic drawing.  

C) aCGH revealed substantial genomic imbalances; loss in 9p21.3 detected initially by 

MLPA (result not shown) and gain of 14q13.2-q32.33 (arrows).  
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Abstract

Background: Acute lymphoblastic leukemia (ALL) is not a single uniform disease. It consists of several subgroups

with different cytogenetic and molecular genetic aberrations, clinical presentations and outcomes. Banding

cytogenetics plays a pivotal role in the detection of recurrent chromosomal rearrangements and is the starting

point of genetic analysis in ALL, still. Nowadays, molecular (cyto)genetic tools provide substantially to identify

previously non-detectable, so-called cryptic chromosomal aberrations in ALL. However, ALL according to banding

cytogenetics with normal karyotype - in short cytogenetically normal ALL (CN-ALL) - represent up to ~50 % of all

new diagnosed ALL cases. The overall goal of this study was to identify and characterize the rate of cryptic alterations

in CN-ALL and to rule out if one single routine approach may be sufficient to detect most of the cryptic alterations

present.

Results: Sixty-one ALL patients with CN-ALL were introduced in this study. All of them underwent high resolution

fluorescence in situ hybridization (FISH) analysis. Also DNA could be extracted from 34 ALL samples. These DNA-samples

were studied using a commercially available MLPA (multiplex ligation-dependent probe amplification) probe set directed

against 37 loci in hematological malignancies and/or array-comparative genomic hybridization (aCGH). Chromosomal

aberrations were detected in 21 of 61 samples (~34 %) applying FISH approaches: structural abnormalities were

present in 15 cases and even numerical ones were identified in 6 cases. Applying molecular approaches copy number

alterations (CNAs) were detected in 27/34 samples. Overall, 126 CNAs were identified and only 34 of them were

detectable by MLPA (~27 %). Loss of CNs was identified in ~80 % while gain of CNs was present in ~20 % of the

126 CNAs. A maximum of 13 aberrations was detected per case; however, only one aberration per case was found in 8

of all in detail studied 34 cases. Of special interest among the detected CNAs are the following new findings:

del(15)(q26.1q26.1) including CHD2 gene was found in 20 % of the studied ALL cases, dup(18)(q21.2q21.2) with

the DCC gene was present in 9 % of the cases, and the CDK6 gene in 7q21.2 was deleted in 12 % of the here in

detail studied ALL cases.

Conclusions: In conclusion, high resolution molecular cytogenetic tools and molecular approaches like MLPA

and aCGH need to be combined in a cost-efficient way, to identify disease and progression causing alterations in

ALL, as majority of them are cryptic in banding cytogenetic analyses.

Keywords: Multitude multicolor banding (mMCB), Acute lymphoblastic leukemia (ALL), Cryptic rearrangements,
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Background
Acute lymphoblastic leukemia (ALL) is a malignant dis-

ease of the hematological system with clonal proliferation

of lymphoid progenitor cells. It arises from genetic alter-

ations that block precursor B and T cell differentiation

and predominantly affects children [1]. B-ALL constitutes

80-85 % of ALL cases and T-ALL the remainder ones. B-

ALL patients have a favorable prognosis with an overall

complete remission rate of 95 % for pediatric (children

and adolescent between 1–15 years) but of only 60 % for

adults. Adverse prognosis in T-ALL was correlated with

presence of hyperleukocytosis, enhanced mediastinal

mass, central neural system involvement, male gender and

advanced age [1–5]. Cytogenetically detectable structural

or numerical chromosomal abnormalities are detected

in ~50 % of ALL cases. Such aberrations have prognos-

tic significance [1, 6]. High hyperdiploidy (51–65 chro-

mosomes) has been connected with good survival and

excellent outcome in B-ALL, while hypodiploidy (<44

chromosomes) has an adverse prognosis [7–9]. Recur-

rent structural chromosomal abnormalities found in

ALL can also be reciprocal translocations. ALLs with a

translocation t(12;21)(p13;q22) leading to the ETV6/

RUNX1 gene-fusion are more likely to be cured, than

those with a translocation t(9;22) or t(4;11), which tend

to have unfavorable outcomes. Complex karyotypes, in-

cluding three to five or more chromosomal abnormalities,

are typically found in ~5 % of ALL cases and are also asso-

ciated with an adverse outcome [10]. Finally, ALL cases

with according to banding cytogenetics normal karyotype -

in short cytogenetically normal ALL (CN-ALL) - are classi-

fied into intermediate risk group [6, 11, 12]. Malignant bone

marrow of T-ALL patients shows a normal karyotype more

frequently than those of B-ALL patients. Accordingly in

those cases cytogenetic markers cannot be determined and

therapeutic decisions may be hampered.

Based on the knowledge that chromosomes in ALL

show a low banding resolution and that a good part of

ALL cases present with a normal karyotype, it is not far

to seek, that small aberration can easily be missed

when analyzing ALL derived chromosomes by banding

cytogenetics alone [6, 13]. Copy number alterations

(CNAs) at the microscopic or submicroscopic level, i.e.

focal deletions, but also duplications or sequence/point

mutations in genes that primarily serve as transcrip-

tional regulators of the lymphoid developmental pathway

can nowadays be detected by approaches like multiplex

ligation-dependent probe amplification (MLPA) or array-

comparative genomic hybridization (aCGH) [12, 14, 15].

The present study includes 61 CN-ALL cases, which

were retrospectively studied for the rate of cryptic (sub)-

chromosomal changes to rule out if one single molecular

(cyto)genetic routine approach may be sufficient to de-

tect most if not all of the cryptic alterations present.

Results
Standard cytogenetic analysis by G-banding revealed

normal karyotypes in 61 ALL cases included in this

study (Additional file 1: Table S1). In a first step all 61

cases were studied by the whole genome oriented fluor-

escence in situ hybridization (FISH)-banding based probe

set multitude multicolor banding (mMCB) [16]. For fur-

ther delineation of mMCB results appropriate FISH-

probes and probe sets were applied (Additional file 1:

Table S1). Based on these results 21/61 (34 %) cases were

not cytogenetically normal but had gross acquired

chromosomal aberrations: structural abnormalities were

found in 15/61 cases (24 %) and even numerical ones were

observed in 6/61 cases (10 %) (Table 1). Overall, in GTG-

banding cryptic balanced and unbalanced translocations,

derivative chromosomes, isochromosomes, interstitial de-

letions, inverted duplications and/or numerical aberrations

were identified in 34 % of the studied CN-ALL cases by

means of molecular cytogenetics. In Fig. 1 case P66 is ex-

emplified with a three-way translocation between chromo-

somes #10, #11 and #14, inversion of second chromosome

# 14 and insertion (11;10). The breakpoints of this P66

case were characterized as 10p12.3, 10q11.23, 11p15.3,

11q23.3, 14q11, 14q24.2, and 14q32.3.

34/61 studied CN-ALL cases (18 B-ALL, 8 T-ALL and

8 with undefined ALL) were studied further using MLPA

and aCGH. Overall, 126 CNAs were detected by MLPA

and aCGH in those cases. CNAs were identified in 27/

34 (80 %) of the studied cases. 1 to 13 CNAs per case

were detected (Table 1). The distribution of CNAs per

chromosome and frequencies of gains and losses are

summarized in Fig. 2; i.e. all chromosomes apart from 8

and Y were involved in CNAs in this study.

Deletions and duplications could be grouped accord-

ing to their sizes as follows:

– focal CNAs (e.g. deletion of CHD2 gene in 7 cases

or duplication of DCC gene in 3 cases – Table 1);

– CNAs involving variable numbers of genes (e.g.

deletion on 9p21.3 in 8 cases or amplification of

9q34.12q34.13 in one case – Table 1);

– CNAs involving large parts of whole chromosomal p

and/or q arms (e.g. deletion on 4p16.3p14 in one case

or duplication of 7p22.3p14.1 in one case – Table 1)

– CNAs of whole chromosomes (e.g. monosomy X in

one case or trisomy #14 in one case – Table 1).

Most frequently observed deletion was 9p21.3 in 8/34

ALL cases (3x in B-ALL, 4x in T-ALL and 1x in undefined

ALL); the CDKN2A/B genes were affected in all these eight

cases. Furthermore, PTEN in 10q23.31 (6/34) and IKZF1 in

7p12.2 (5/34) were the hit by deletions regularly. Besides,

deletion in 15q26.1 (CHD2 gene) was detected in 7/34

cases and duplication in 18q21.2 (DCC gene) in 3/34 cases.
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Table 1 Summary of aberrations detected by metaphase directed FISH, interphase FISH to determine the percentage of specific aberrations, and aCGH in 34 ALL patients

Case number Age [y] Metaphase directed FISH MLPA LSPs for genes aCGH – affected
cytobands

Localization acc. to
GRCH37/hg19

Size of imbalance
[bp]

B-ALLs

P1 1 46,XX normal normal dup(11)(p15.5p15.4) chr11:1,960,555-3,626,932 1,666,377

P8 30 47,XY,+21[5]/46,XY[2] dup of 21q22.12 RUNX1: dup (72 %) n.d. n.d. n.d.

P13 34 46,XY[8] del of 10q23.3 del(10)(q23.2q23.31) chr10:88,906,902-91,189,599 2,282,697

del of 17p13.1 TP53: del (9 %) del(17)(p13.1p13.1) chr17:7,579,695-8,281,928 702,233

P17 27 46,XX[7] n.d. normal normal n.d. n.d.

P23 59 del(3)(p25.3p25.3) chr3:10,179,706-10,385,195 205,489

del of 7p12.2 del(7)(p12.2p12.2) chr7:50,337,405-50,482,274 144,869

del(10)(q23.3q23.3) chr10:89,570,600-89,676,741 106,141

del(11)(q14.2q14.2) chr11:85,683,188-85,944,362 261,174

47,XX,+14[2]/ IGH: dup (58 %) +14 +14 107,349,540

46,XX[3] del(15)(q26.1q26.1) chr15:93,390,484-93,463,312 72,828

del(17)(p13.1p13.1) chr17:7,581,198-7,922,308 341,110

del(17)(q11.2q11.2) chr17:30,259,053-30,271,653 12,600

del(18)(q21.32q21.32) chr18:57,517,756-57,718,190 200,434

del(21)(q22.3q22.3) chr21:45,527,941-45,565,198 37,257

P28 84 46,XY, del of 7p12.2 del(7)(p12.2p12.2) chr7:50,353,062-50,444,269 91,207

t(9;22)(q34;q11), del of 9p21.3 CDKN2A/B: del (75 %) del(9)(pterp11.2) chr9:0–47,212,321 47,212,321

del(11)(q13q25)[7] del of 9p13.2 del(9)(q34.2qter) chr9:136,917,580-141,213,431 4,295,851

del(10)(q23.3q23.3) chr10:89,619,806-89,731,258 111,452

del of 11q22.3 BIRC3: del (75 %) del(11)(q13.2qter) chr11:67,773,863-135,006,516 67,232,653

ATM: del (77 %) del(15)(q26.1q26.1) chr15:93,412,860-93,450,773 37,913

MLL: del (80 %) dup(20)(q11.23q12) chr20:37,305,876-39,130,131 1,824,255

del(20)(q12q13.12) chr20:39,245,111-45,524,952 6,279,841

dup(20)(q13.12q13.12) chr20:45,524,953-45,780,811 255,858

del(20)(q13.12q13.32) chr20: 45,780,812-58,067,678 12,286,866

del(21)(q22.2q22.2) chr21:39,764,621-39,807,169 42,548

BCR: del (94 %) del(22)(q11.23q11.23) chr22:23,584,037-23,592,537 8500

P43 69 46,XX, normal TFG: dup (15 %) dup(3)(q12.2q12.2) chr3:100,360,682-100,444,109 83,427

der(4)(4pter- > 4q21.3::11q23.3- del(7)(q21.2q21.2) chr7:92,252,341-92,475,197 222,856

>11q23.3::4q21.3- > 4qter), MLL: ins (75 %)
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Table 1 Summary of aberrations detected by metaphase directed FISH, interphase FISH to determine the percentage of specific aberrations, and aCGH in 34 ALL patients

(Continued)

der(11)(11pter- >
11q23.3::11q23.3- >
11q24.2::11p15.4- > 11pter),

der(11)(11qter- >
11q24.2::11p15.4- > 11qter)[5]

P48 39 46,XY, n.d. del(6)(q13q14.2) chr6:73,331,571-84,140,938 10,809,367

t(6;11)(q15;p12), del(6)(q16.2q21) chr6:99,282,580-109,703,762 10,421,182

ins(6;11)(q22.1;q13q14), del(6)(q22.31q22.33) chr6:124,125,069-128,841,870 4,716,801

inv(6)(q15q25.3), ESR1: del (89 %) del(6)(q25.1q25.3) chr6:151,725,897-157,531,913 5,806,016

del(11)(q21q23.2)[8] del(7)(p12.2p12.2) chr7:49,991,954-51,207,236 1,215,282

dup(11)(p15.5p15.4) chr11:1,925,114-3,143,116 1,218,002

WT1: del (91 %) del(11)(p15.1p12) chr11:20,546,133-37,403,781 16,857,648

BIRC3: del (90 %) del(11)(q14.1q14.3) chr11:85,157,088-88,557,421 3,400,333

ATM: del (77 %) del(11)(q22.1q22.3) chr11:100,992,179-114,667,959 13,675,780

del(13)(q14.2q14.2) chr13:48,980,623-49,148,073 167,450

P49 39 46,XX[10] n.d. normal dup(11)(p15.5p15.4) chr11:2,016,406-3,430,378 3,430,378

P51 59 46,XX[6] normal normal del(10)(p12.1p12.1) chr10:28,057,099-28,220,314 163,215

del(15)(q26.1q26.1) chr15:93,412,860-93,450,773 37,913

del(X)(q21.1q21.1) chrX:76,875,639-77,157,819 282,180

P52 21 46,XY[4] normal del(6)(p21.1p21.1) chr6:45,395,872-45,409,919 14,047

del(7)(q21.2q21.2) chr7:92,149,393-92,495,958 346,565

del of 10q23.3 del(10)(q23.3q23.3) chr10:89,610,886-89,722,948 112,062

del(11)(q14.2q14.2) chr11:85,683,188-85,944,362 261,174

del(15)(q26.1q26.1)) chr15:93,433,130-93,450,773 17,643

del(17)(q23.1q23.1) chr17:57,698,768-57,913,528 214,760

del(20)(q13.2q13.2) chr20:52,151,411-52,629,609 478,198

del(X)(p22.33p22.33) chrX:1,327,561-1,684,270 1,684,270

P53 34 46,XY[5] normal normal dup(22)(q11.21q11.21) chr22:18,706,001-21,561,514 2,855,514

P55 19 46,XY[6] del of 17p13.1 TP53: del (100 %) del(17)(pterp11.2) chr17:0–20,219,464 20,219,464

−20 −20 63,025,520

P56 47 45,XY,-21[2]/ normal normal del(12)(pterp11.21) chr12:0–31,260,891 31,260,891

46,XY[4]

P57 56 46,XY[3] normal normal normal n.d. n.d.

P58 20 46,XX, TBL1XR1: del (68 %) del(3)(q26.32q26.32) chr3:176,825,586-177,697,157 871,571
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Table 1 Summary of aberrations detected by metaphase directed FISH, interphase FISH to determine the percentage of specific aberrations, and aCGH in 34 ALL patients

(Continued)

der(14)(pter- > q32::q32- >
q13::q32- > qter)[10]

del of 9p21.3 CDKN2A/B: del (74 %) del(9)(p21.3p21.3) chr9:21,252,517-24,289,720 3,037,203

del(10)(p15.3p15.3) chr10:1,491,986-1,582,072 90,086

IGH: split (78 %) dup(14)(q13q32.33) chr14:35,918,265-106,513,022 70,594,757

del(16)(q13q13) chr16:57,275,940-57,331,138 55,198

del(21)(q22.2q22.2) chr21:39,764,621-39,895,171 130,550

P64 5 46,XX, n.d. del(5)(q31.3q32) chr5:142,096,863-145,891,069 3,794,206

t(16;19)(p11.2;q13.3),

der(5)t(5;9)(q31;p13.2), CDKN2A/B: del (86 %) del(9)(p21.3p21.3) chr9:21,218,548-23,002,377 1,783,829

der(9)t(5;9)(q31;p13.2),

der(9)t(9;9)(q34;p13.2)[10] FUS: split (75 %)

P66 0.5 46,XX, n.d. MLL: split (70 %) dup(11)(p15.5p15.4) chr11:1,008,688-3,669,161 3,669,161

der(10)(10pter- >
10p12.31::11q23.3- >
11q23.3::10p12.31- >
10q11.23::14q24.2- > 14qter),

IGH: inv (100 %)

der(11)(10qter- >
10q11.23::11p15.3- >
11q23.3::10p12.31- >
10p12.31::11q23.3- > 11qter),

der(14)t(11;14)(q15.3;q24.2),
inv(14)(q11q23)[8]

T-ALLs

P5 22 46,XX[12] normal normal normal n.d. n.d.

P6 16 47,XY, normal normal

+4, +4 +4 191,154,276

der(3)t(3;5)(p23;q31.1),

der(5)t(3;5)(p23;q35.3),

der(5)t(5;10)(q31.1;p12.3),

der(10)t(5;10)(q35.3;p12.3)[8]/

46,XY[13]

P7 26 46,XY, del of 9p21.3 CDKN2A/B: del (64 %) del(9)(p21.3p21.3) chr9:21,817,082-23,515,821 1,698,739

t(2;9;18)(p23.2;p21.3;q21.33), del of 13q14.2 RB1: del (25 %) del(13)(q14.2q14.2) chr13:48,982,463-49,062,316 79,853

t(10;14)(q24;q11)[10] del(16)(p13.3p13.3) chr16:3,154,954-4,568,792 1,413,838

P18 36 46,XY[5] dup of 18q21.2 DCC: dup (13 %) n.d. n.d. n.d.

P32 27 47,XX, del of 6q21 n.d. n.d. n.d.

O
th
m
a
n
et

a
l.
M
o
lecu

la
r
C
yto

g
en
etics

 (2
0

1
5

) 8
:4

5
 

2
.R
e
s
u
lts

7
1



Table 1 Summary of aberrations detected by metaphase directed FISH, interphase FISH to determine the percentage of specific aberrations, and aCGH in 34 ALL patients

(Continued)

+21, del of 6q27

t(10;14)(q24;q11), del of 9p21.3 CDKN2A/B: del (89 %)

del(6)(q15q27)[6] del of 12p13.2 ETV6: del (78 %)

del of 13q14.3 DLEU1: del (15 %)

dup of 21q22.1 RUNX1: dup (78 %)

P35 40 46,XY,i(9)(q21.11)[2] del(2)(q34q34) chr2:213,811,279-214,150,984 339,705

dup(7)(pterp14.1) chr7:0–38,218,586 38,218,586

del(7)(q21.2q21.2) chr7:92,252,341-92,460,773 208,432

del(7)(q36.3qter) chr7:156,881,580-159,138,663 2,257,083

del of 9p21.3 CDKN2A/B: del (92 %) del(9)(pterp11.2) chr9:0–47,212,321 47,212,321

del of 9p13.2 dup(9)(q21.11qter) chr9:71,035,265-141,213,431 70,178,166

del(10)(q23.2q23.31) chr10:89,570,600-89,728,844 158,244

del(11)(q22.2q22.2) chr11:102,106,046-102,529,831 423,785

del(13)(q14.2q14.2) chr13:49,004,123-49,122,923 118,800

del(15)(q26.1q26.1) chr15:93,390,484-93,466,292 75,808

del(16)(p13.3p13.3) chr16:3,808,951-3,839,782 30,831

del(18)(q21.32q21.32) chr18:57,517,756-57,617,796 100,040

del(20)(q13.2q13.2) chr20:52,151,411-52,574,928 423,517

P38 22 46,XY[3] normal normal normal n.d. n.d.

P61 18 46,XX,der(2)t(2;7)(q37.3;q34),
t(7;10)(q34;q24.1 ~ 25.1) [4]/

del(1)(p36.31p36.23) chr1:5,958,728-7,238,618 1,279,890

del(4)(p16.3p14) chr4:3,072,509-38,882,925 35,810,416

46,XX[3] dup of 6q23.3 MYB: amp (90 %) dup(6)(q23.3q23.3) chr6:134,245,761-136,118,354 1,872,593

del of 9p21.3 CDKN2A/B: del (88 %) del(9)(p21.3p21.3) chr9:21,252,517-23,002,377 1,749,860

ABL1: amp (95 %) dup(9)(q34.1q34.1) chr9:133,658,293-134,092,544 434,251

FGFR2: del (57 %) del(10)(q25.1q26.3) chr10:112,392,101-135,534,737 23,124,636

B- or T ALLs (not clinically well defined)

P11 26 46,XY[8] n.d. normal normal n.d. n.d.

P16 17 46,XX[7] del(1)(q25.3q31.1) chr1:184,771,633-185,825,795 1,054,162

del(4)(p15.33p15.31) chr4:12,322,760-18,779,457 6,456,697

del(4)(q21.22q24) chr4:82,992,997-106,476,929 23,483,932

del(7)(pterp14.2) chr7:0–36,320,986 36,320,986

dup of 7q22.1 RELN: dup (61 %) dup(7)(q21.3q22.3) chr7:96,048,870-106,348,693 10,299,823

del(9)(p23p22.2) chr9:12,656,733-17,466,907 4,810,174
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Table 1 Summary of aberrations detected by metaphase directed FISH, interphase FISH to determine the percentage of specific aberrations, and aCGH in 34 ALL patients

(Continued)

del of 9p21.3 CDKN2A/B: del (81 %) del(9)(p21.3p21.3) chr9:20,279,653-22,555,566 2,275,913

del(10)(p14p13) chr10:6,889,266-12,484,159 5,594,893

del of 12p13.2 ETV6: del (91 %) del(12)(p13.2p13.1) chr12:11,761,018-12,934,870 1,173,852

del(18)(p11.32p11.31) chr18:2,741,687-3,231,531 489,844

P21 62 46,XY[11] n.d. normal normal normal normal

P24 23 46,XY[12] dup of 18q21.2 DCC: dup (18 %) n.d. n.d. n.d.

P30 46 46,XY[6] normal normal n.d. n.d. n.d.

P33 76 45,X,-X[8] del(4)(q24q24) chr4:106,036,993-106,601,946 564,953

del(7)(q21.2q21.2) chr7:92,080,855-92,475,197 394,342

dup(7)(q36.2q36.2) chr7:153,039,830-154,467,634 1,427,804

del of 10q23.3 del(10)(q23.3q23.3) chr10:89,610,886-89,698,312 87,426

del(15)(q21.2q21.2) chr15:51,826,924-51,919,665 92,741

del(15)(q26.1q26.1) chr15:93,433,130-93,450,773 17,643

del of 17p13.1 TP53: del (10 %) del(17)(p13.1p13.1) chr17:7,583,457-8,156,734 573,277

del(17)(q11.2q11.2) chr17:30,259,193-30,267,204 8011

dup of 18q21.2 DCC: dup (10 %) dup(18)(q21.2q21.2) chr18:49,105,579-51,431,815 2,326,236

del(20)(q13.2q13.2) chr20:52,151,411-52,554,455 403,044

del(21)(q22.12q22.12) chr21:36,253,465-36,426,708 173,243

-X -X 155,270,560

P46 63 46,XY[8] normal dup(6)(q25.3q25.3) chr6:157,944,961-158,033,908 88,947

del of 7p12.2 del(7)(p12.2p12.2) chr7:50,452,798-50,492,798 40,000

dup(17)(q12q12) chr17:36,046,040-36,095,204 49,164

P47 59 46,XX[6] normal dup(1)(p13.3p13.3) chr1:107,921,895-107,970,781 48,886

del of 7p12.2 del(7)(p12.2p12.2) chr7:50,356,873-50,465,376 408,503

del of 9p13.2 del(9)(p13.2p13.2) chr9:37,006,073-37,320,759 314,686

dup(9)(q31.1q31.1) chr9:104,126,808-104,167,077 40,269

del(15)(q26.1q26.1) chr15:93,390,484-93,450,773 60,289

del(18)(q21.32q21.32) chr18:57,517,756-57,718,190 200,434

del(19)(p13.3p13.3) chr19:0–2,787,457 2,787,457

bp basepairs, LSP locus-specific probes as specified in Additional file 2: Table S2, y year
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Conclusions

Cytogenetic analysis has been and still is the standard

method for detection of diagnostically relevant recurrent

chromosomal aberrations in ALL. It is well known that

when using banding karyotyping cryptic chromosomal

aberrations may be missed due to several reasons: (i)

sensitivity of chromosomal banding techniques is lim-

ited, even in case of good chromosomal morphology, to

aberrations being at least 10 Mb in size, (ii) aberrations

may be cryptic or masked, i.e. they are not resolvable

due to a similar or identical GTG-banding pattern and/

or poor chromosome morphology, and (iii) metaphases

may be difficult to obtain and to evaluated as chromo-

somes may not be well-spread, clumsy or appearing as

fuzzy with indistinct margins; thus even numerical aber-

rations may be missed [6, 13, 17].

In the past molecular cytogenetic approaches have

shown to be efficient to detect in banding cytogenetics

cryptic chromosomal aberrations [6, 13, 17]. Besides in

metaphase also interphase nuclei can be studied in case

of low mitotic (non-dividing) cells and also alterations

being at low mosaic level can be easily detected by that

approach [12, 14, 18]. In this study, we detected previ-

ously cryptic aberrations in 21/61 (34 %) cases with

ALL using metaphase directed FISH studies; even com-

plex aberrations were identified in some of these cases

(Table 1 and Additional file 1: Table S1).

For 34/61 cases DNA could be extracted from the cy-

togenetically worked up cell suspension. Thus, in those

cases besides FISH also MLPA and aCGH could be ap-

plied additionally, i.e. approaches which have much

higher resolution than FISH, but can only detect unbal-

anced aberrations and no low level mosaics. Using

these approaches cryptic CNAs were detected in ~80 %

of those ALL cases. All 126 CNAs detected by MLPA and

aCGH have been checked by UCSC genome browser to

exclude benign copy number variations (CNVs) (http://

genome-euro.ucsc.edu/cgi-bin/hgGateway?redirect=au-

to&source=genome.ucsc.edu). Thus, all of them most

likely are leukemia-related genetic changes, which were

recognized in 27/34 ALL cases.

Of special interest may be a novel recurrent submicro-

scopic CNA expressed as loss of 15q26.1: focal deletion of

CHD2 gene located there was found in 7 of the 34 (20 %)

studied ALL cases in this study. The CHD2 gene is a

member of the chromodomain helicase DNA-binding

(CHD) protein family, which are all characterized by a

chromatin-remodeling domain (the chromodomain) and

an SNF2-related helicase/ATPase domain [19]. Thus, in

future it may be of interest to study CHD2 gene deletions

also for presence of mutations in this gene and also to

screen ALL patients in general for CHD2 gene mutations.

Besides, duplication of DCC gene in 18q21.2 was

present in 3 of the 34 (9 %) studied cases. DCC is a mem-

ber of the immunoglobulin superfamily of cell adhesion

Figure 1 Result of aMCB probesets for chromosomes 10, 11, and 14

are shown, which characterized the breakpoints seen in case P66 as

10q11.23, 11p15.3, 14q11, 14q24.2, and 14q32.3. The final karyotype

after application of all approaches as summarized in Additional file 1:

Table S1 was 46,XX,der(10)(10pter- > 10p12.31::11q23.3- >

11q23.3::10p12.31- > 10q11.23::14q24.2- > 14qter),der(11)(10qter- >

10q11.23::11p15.3- > 11q23.3::10p12.31- > 10p12.31::11q23.3- >

11qter),der(14)t(11;14)(q15.3;q24.2),inv(14)(q11q23)

Figure 2 Distribution of CNAs as detected by aCGH in 27/34 studied cases. On X-axis the chromosome number is shown, while on Y-axis the

total number of CNAs for each chromosome is depicted (scale 2).
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molecules and acts as a transmembrane dependence

receptor for netrins, key factors in the regulation of axon

guidance during development of the central nerve system.

Amplification of DCC gene was previously reported in

chronic lymphocytic leukemia (CLL) [20, 21], however,

this is the first report for DCC gene amplification in ALL.

To evaluate the role of the DCC gene and to elaborate its

potential as a molecular marker in ALL still needs more

studies.

In general, submicroscopic CNAs were identified most

frequently in chromosomes #7 and #9. CNAs in #7 in-

volved deletion of IKZF1 at 7p12.2 that encodes IKAROS

protein and is required for the development of all lymph-

oid lineages in 5 of 34 (14 %) studied CN-ALL cases.

According to the literature deletions and/or sequence mu-

tations of IKZF1 are present in 15 % of pediatric B-ALL,

including ~70 % of BCR-ABL–positive ALL and with

high-risk of relapse ~30 % of BCR-ABL–negative B-ALL

[22]. However, deletions of IKZF1 are predominantly

monoallelic and involve the N-terminal zinc-finger do-

main of IKAROS protein and result in expression of

dominant-negative isoforms with cytoplasmic localization

and oncogenic activity as well as an association with very

poor outcome [23, 24]. Thus, IKZF1 has newly been con-

sidered as a prognostic marker for B-ALL and might be

useful for risk stratification [24, 25].

Cyclin dependent kinase 6 (CDK6) at 7q21.2, is the cata-

lytic subunit of a protein kinase complex that regulates cell

cycle G1 phase progression and G1/S transition. Deletion

of CDK6 was identified in this study in 4 of 34 (12 %) of

ALL cases. It has been shown recently that inhibition of

CDK6 may lead to overcome the differentiation block seen

in acute myelogenous leukemia (AML) with MLL translo-

cations [26]. Further studied for this gene may also be

recommended for better understanding of ALL biology.

The majority of #9 abnormalities is involving deletions

of cell cycle regulatory genes at 9p21.3. The main target

to deletions is CDKN2A which encodes for the two tran-

scripts p16/INK4A and p14/ARF (alternative splicing),

followed by CDKN2B gene (p15/INK4B); both are tumor

suppressor genes. Deletions of CDKN2A/B can be found

in 30 and 50 % of B-ALL and T-ALL cases, respectively

[23, 25, 27]. In the present study such deletions were

only found in 8/34 (24 %) of the studied ALL cases,

which is most likely due to low case numbers.

CDKN2A/B deletion can be detected at initial diagnosis

or acquired at relapse, suggesting that CDKN2A/B dele-

tion is a secondary genetic event. Also, the outcome of

cases with CDKN2A/B deletion depends on the status of

the second allele, as homozygous deletions are associ-

ated with poor outcome and heterozygous deletions

represent markers for favorable outcomes [27, 28]. T-

ALL-case P61 had such a prognostically adverse homo-

zygous deletion in 9p21.3 together with amplification of

9q34.12 to 9q34.13; the latter contains the ABL1 and

NUP214 genes (Fig. 3). NUP214-ABL1 fusion gene amp-

lification was previously mainly observed in T-ALL and

associated with poor outcome [6].

Figure 3 aCGH from case Nr. P61 showed two CNAs in chromosome 9; at 9p21.3 a homozygous deletion (arrowhead) and at 9q34.12 to 9q34.13

an amplification (arrow). a FISH confirmed presence of the homozygous deletion in 9p21.3 in interphase. b An amplification present as double

minutes was confirmed using a probe specific for the ABL-gene
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Another recurrent deletion in #9 in the studied ALL

cases involved the PAX5 gene located in 9p13.2, which

encodes for a protein with key roles in lymphoid devel-

opment. It was found to be deleted in B-ALL (n = 2) and

T-ALL (n = 1 showed short arm 9p deleted) in this study.

In the literature, deletion of PAX5 was reported in

31.7 % of B-ALL and also it has been involved in several

chromosomal translocations [29, 30]. In a recent report,

PAX5 deletion was observed in only 10 % and 18 % in

children and adult B-ALL, respectively; notably PAX5

deletion was frequently accompanied by deletion of

CDKN2A (83.3 % of children and 100.0 % of adults)

[28]. Also PAX5 was found to be a common target in

leukemogenesis of B-ALL, but not associated with ad-

verse outcome [15]. In future, PAX5 could be used as

one of the molecular markers in diagnosis and monitor-

ing of the disease, especially in B-ALL [28–30].

Besides, other CNAs have been identified here,

encompassing single or few genes, only. Many of CN

losses involve cell cycle regulatory and/or putative tumor

suppressor genes like 10q23.3 (PTEN; n = 6), 13q14.2

(RB1; n = 3), and 17p13.1 (TP53; n = 4), or transcrip-

tional regulators and co-activators like 3q26.32

(TBL1XR1; n = 1), 12p13.2 (ETV6; n = 2), 21q22.12

(RUNX1; n = 1) and 21q22.2 (ERG; n = 2), or regulators

of chromatin structure and epigenetic regulators like

16p13.3 (CREBBP; n = 2). Although, oncogene overex-

pression resulting from gene duplication is infrequent in

ALL, we found MYB duplication in one case, too. These

observations of gene loss of function or overexpression

being involved in leukemic transformation [15, 31]

underline the heterogeneity of different ALL cases and

the potential of molecular approaches to identify new

subgroups of this disease.

The present study also highlights, that most likely all

CN-ALL cases hold cryptic genomic alterations. DNA

sequencing and single-nucleotide polymorphism (SNP)

arrays have been used to detect mutations for a number

of target genes that are known to key roles in lymphoid

development. Thus, somatic mutations have been identi-

fied in both B and T-ALL patients [2]. For instance,

mutations in JAK2 were identified in 10 % of high-risk

childhood B-ALL and shown to be associated frequently

with other abnormalities, including deletions or muta-

tions of IKZF1 and overexpression the CRLF2 gene [23].

In T-ALL, NOTCH1-activating gene mutation has been

found in 60 % and FBXW7-inactivating gene mutation

occurs in 20 % of pediatric T-ALL [32]. Less commonly,

mutations in PTEN, WT1, amplification of MYB and

sequence mutations in RAS signaling (NRAS, KRAS, and

NF1) and tumor suppression (TP53) have been identified

in ALL [8, 31].

Overall, sensitive methods to detect cryptic chromo-

somal aberrations in CN-ALL are useful and necessary for

genetic risk–based classification and correct determin-

ation of treatment protocols. The present study highlights

that molecular cytogenetic approaches together with mo-

lecular methods are suited to identify cryptic rearrange-

ments and potential target genes that involved in

leukemogenesis and progression of the disease. Also it

could be demonstrated that aCGH is a highly efficient

tool for detection of CNAs in CN-ALL. However, while

aCGH (and MLPA) provide data on imbalanced genomic

alterations, (molecular) cytogenetics additionally detects

different leukemic subclones within one sample, as well as

balanced translocations leading to tumor-specific fusion

genes. It seems to be valid, that there is no leukemia clone

without genetic alterations; we just have to use the appro-

priate techniques to identify them. In conclusion, to obtain

a comprehensive picture of all relevant changes in each in-

dividual ALL case data from cytogenetics, FISH, MLPA

and aCGH needs to be considered and included in diag-

nostics; however, sometimes such investigations may be

hampered by lack of sufficient cellular material, as also in

this study, where only 34/61 cases could also be studied

on DNA level or other previous studies [16, 33].

Methods

Patients and sample preparation

Cell suspensions were obtained from bone marrow col-

lected from 61 patients diagnosed with ALL (31 with

B-ALL, 12 with T-ALL and 18 with undefined ALL;

Additional file 1: Table S1). The samples were obtained

under informed consent of the corresponding patients

and according to institutional ethical committee guide-

lines (ethical commission of the university clinic Jena,

Germany; code 1105-04/03).

GTG-banding

The bone marrow cells were unstimulated cultivated for

24 hours (with and without colchicin) and 48 h, and a

standard cytogenetic cell preparation following air drying

method was done [34]. GTG-banding was routinely done

in each sample following standard procedures. Twenty

metaphases were obtained for cytogenetic evolution on a

banding level of 250–300 bands per haploid karyotype

[35]. Apart from 4 all 61 studied cases had a normal

karyotype of 46,XX or 46,XY. In one case the karyotype

could not be determined due to low metaphase quality;

one case just had (most likely age associated) loss of an X-

chromosome in a subset of the cells, one case had a ques-

tionable der(19) in all cells, and another one a trisomy 14

in 6/20 studied cells.

Molecular cytogenetics

Fluorescence in situ hybridization was done according to

standard procedures and/or according to manufacturer’s

instructions.
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Homemade were the following probes and probe sets:

– 24-color-FISH using all human whole chromosome

painting (WCP) probes [36];

– FISH-banding probe-sets as follows: genome wide

multitude multicolor banding (mMCB) and

chromosome specific high resolution array-proven

multicolor-banding (aMCB) [16, 37, 38];

– WCP probes for all chromosomes were homemade

[36].

– The following commercially available locus-specific

probes (LSPs) (Additional file 2: Table S2) were used

to validate and possibly confirm the breakpoints

found in mMCB, aCGH and/or MLPA: from Abbott/

Vysis (Wiesbaden, Germany), Kreatech Diagnostics

(Amsterdam, Netherland), ZytoVision (Bremerhaven,

Germany), and DNA from bacterial artificial

chromosome (BACs) probes obtained from Resources

Center (Oakland, USA) were labeled by PCR with

SpectrumGreen, SpectrumOrange or TexasRed-dUTP

and applied in two- or three-color FISH-approaches.

For each interphase FISH analysis to determine the

percentage of specific aberrations, at least 200

interphase nuclei were examined per sample and

FISH-probe – the applied probes can be found in

Additional file 2: Table S2.

– Homemade and previously reported chromosome-

specific sub-CTM- (= subtelomere -/ subcentromere

oriented) probe-sets were applied in selected cases

[13] (Additional file 1: Table S1).

DNA isolation

Genomic DNA was extracted from cells fixed in acetic

acid-methonal (1:3) by Puregene DNA Purification Kit

(Gentra Systems, Minneapolis, MN, USA). DNA concen-

tration was determined by a Nanodrop spectrophotom-

eter. The quality of DNA was checked using agarose gel

electrophoresis. DNA-samples extracted from fixed cells

of 2 healthy males and 2 healthy females by the same

method were used as reference samples.

MLPA analysis

SALSA MLPA P377-A1 Hematologic malignancies

probemix was used for this study (MRC- Holland,

Amsterdam, The Netherlands). This probemix contains

probes for 37 genes covered by 54 probes, which have

diagnostic or prognostic significant role in hematologic

malignancies. MLPA was performed according to the

manufacturer’s protocol, which includes three reaction

phases: hybridization, ligation, and PCR amplification.

Amplified probes and GeneScan LIZ 500 (Applied

Biosystems, Foster City, USA) standard were separated

by capillary electrophoresis using a ABI-PRISM 3130XL

Genetic Analyzer (Applied Biosystems, Foster City, USA).

GeneMarker (SoftGenetics, USA) was used to analy-

zeMLPA data. Detection threshold was set at 0.65-1.35;

control samples of four healthy donors were included in

each run.

Array-comparative genomic Hybridization (aCGH)

aCGH was performed using Agilent SurePrint G3 Human

Genome microarray 180 K (Agilent Technologies, Santa

Clara, CA, USA), an oligonucleotide microarray contain-

ing 170,334 probes 60-mer with a ~13 kb overall median

probe spacing (11 kb in Refseq-genes). Genomic DNA of

patients was co-hybridized with a sex-mismatched control

DNA (G1471 or G1521; Promega, Mannheim, Germany).

Labeling was performed using Agilent Genomic DNA en-

zymatic labeling kit (Agilent) according to the manufac-

turers’ instructions. After hybridization and washing, the

aCGH slide was scanned on an Agilent scanner, processed

with Feature Extraction software (v12.0.2.2) and results

were analyzed using Cytogenomics (v3.0) using ADM2 as

aberration algorithm.

Additional files

Additional file 1: Table S1. All 61 CN-ALL cases studied; for each case

age, gender and subtype of ALL is given. Also all FISH-probes, probe sets

and approaches applied for each case are listed. Abbreviations: n.d. = not

determined, y = year.

Additional file 2: Table S2. List of locus specific probes used in the

present study for further characterization of acquired aberrations and/or

determination of the percentage of deletions or duplications as determined

by aCGH or MLPA.
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Acute myeloid leukemia (AML) is a heterogeneous disease characterized by themalignant transformation of he-

matopoietic precursors to a pathogenic cell clone. Chromosomal band 11q23 harboring MLL (=mixed lineage

leukemia) gene is known to be involved in rearrangements with variety of genes as activating partners of MLL

in different AML subtypes. Overall, an unfavorable prognosis is associated with MLL abnormalities. Here we

investigated an 11-month-old male presenting with hyperleukocytosis being diagnosed with AML subtype

FAB-M5b. In banding cytogenetics a der(19)t(19;?)(q13.3;?) and del(Y)(q11.23)were found as sole aberrations.

Molecular cytogenetics revealed that the MLL gene was disrupted and even partially lost due to a

t(10;19;11)(p12.31;q13.31;q23.3), anMLL/MLLT10 fusion appeared, and the der(Y)was an asymmetric inverted

duplication with breakpoints in Yp11.2 and Yq11.23. The patient got hematopoietic stem cell transplantation

from his haploidentical mother. Still three months afterwards 15% of blasts were detected in bone marrow and

later the patient was lost during follow–up. The present case highlights the necessity to excludeMLL rearrange-

ments, even when there seems to be no actual hint from banding cytogenetics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Infant acute leukemia (AL) is defined as malignancy of the blood oc-

curring in the first years of life. Acutemyeloid leukemia (AML) accounts

15%–20% of childhood AL cases, while AML is themost frequent form of

adult AL providing ~80% of the cases (Rubnitz et al., 2010).

Chromosomal rearrangements involving the MLL (mixed lineage

leukemia or myeloid/lymphoid leukemia, also called ALL1 for acute

lymphoblastic leukemia 1 or KMT2A lysine (K)-specific methyltransfer-

ase 2A) gene located on chromosome 11 subband q23 are typically

found in 35%–50% of childhood and in 5% of adult AMLs (Balgobind

et al., 2011; Stasevich et al., 2006; De Braekeleer et al., 2005). The MLL

gene has been found to be “promiscuous”, being able to form fusion

genes with more than 120 different translocation partners (Meyer

et al., 2013). The t(9;11)(p22;q23) is themost frequent event involving

theMLL gene in pediatric AML (50%), and the t(10;11)(p12;q23) is the

second common one (13%) (Balgobind et al., 2011; Coenen et al., 2011;

Meyer et al., 2013; DiNardo et al., 2015).

This t(10;11) is most often found in AML French–American–

British (FAB) subtypes M4/M5; these patients present leukocytosis,

extramedullary disease, poor long-term outcomes and high risk of re-

lapse (Lillington et al., 1998; Balgobind et al., 2011; Meyer et al.,

2013). In most cases, the t(10;11) leads to fusion of the 5′ end of MLL

and 3′ of MLLT10. The mechanism of this rearrangement seems to be

more complex than a simple reciprocal translocation because of an op-

posite orientation of both genes on chromosomes 10 and 11. This impli-

cates that an inversion of one of the two genes is necessary to allow the

formation of the MLL–MLLT10 chimeric transcript (Stasevich et al.,

2006; Matsuda et al., 2006). Besides, the MLLT10 gene (previously

AF10) can also form a fusion gene with PICALM (11q14) in AL

(Brandimarte et al., 2013; Borel et al., 2012).

Overall, detection or exclusion of anMLL disruption or amplification

is extremely necessary for treatment decisions, as well as for basic re-

search enabling new insights into possible fusion genes involvingMLL.

Gene 563 (2015) 115–119
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Here we report a new case of childhood AML-M5b harboring a cytoge-

netically balanced translocation with break events in 10p12.31,

11q23.3, and 19q13.31 associated with a partial deletion of the MLL

gene. Besides, an unusual rearrangement of the Y-chromosome was

observed.

2. Material and methods

2.1. Clinical description

An 11-month-old male infant was presented in 2012 with

hyperleukocytosis (white blood cell (WBC) count of 43.6 × 109/l). Bone

marrow (BM) aspiration showed 95% blasts, being Sudan Black B stain-

ing negative and ANAE (alpha-naphthyl-acetate-esterase) stain positive.

Immunophenotyping revealed positivity for MPO (myeloperoxidase),

HLA-DR, CD4, CD33, CD45, CD15, CD11b and CD13 prompting a diagno-

sis of AML, and FAB classification as AML type M5b.

The infant was enrolled in protocol AML-BFM 98 and after induction

therapy blasts in BM were only 5%. After one year of initial therapy the

patient had medullary and extramedullary relapse, 82% blasts in BM

being positive for HLA-DR, CD4, CD33, CD45, CD15, MPO, CD11b and

CD13. The patient was further treated according to protocol AML-BFM

2004 and after induction therapy blasts in BM were again down to 5%

but skin nodes being present. Hematopoietic stem cell transplantation

(HSCT) from haploidentical mother was performed after conditioning

with thiotepa, treosulfan and fludarabine. Three months after HSCT,

15% of blasts were again detected in BM, being CD45 positive; also

skin biopsy showed extramedullary relapse. Unfortunately, later the pa-

tient was lost during follow-up.

2.2. Banding cytogenetic

Chromosome analyses were performed on unstimulated BM after

direct chromosome preparation, as well as after 24 h culture. GTG-

banding as well as C-banding were performed (Claussen et al., 2002).

A total of 30 metaphases were analyzed. Karyotype designation was

done according to International System for Human Cytogenetic Nomen-

clature (ISCN, 2009). A chromosome analysis was possible on a level of

300 bands per haploid karyotype.

2.3. Molecular cytogenetics

Fluorescence in situ hybridization (FISH) was done according to

standard procedures and according to manufacturers' instructions for

the following commercially available probes: LSI MLL (11q23 Break

probe, Abbott Molecular/Vysis, Mannheim, Germany), LSI SRY (Yp11.3,

Abbott Molecular/Vysis, Mannheim, Germany), SPEC ETV6/RUNX1

(ETV6 in 12p13, RUNX1 in 21q22, ZytoVision, Bremerhaven, Germany),

SPEC 19q13/19p13 (ZytoVision, Bremerhaven, Germany), Centromere

Y (CEPY (DYZ3): Yp11.1–q11.1 Alpha Satellite DNA; CEPY (DYZ1):

Yq12 Satellite III DNA, Abbott Molecular/Vysis, Mannheim, Germany),

and subtelomeric probes for Yp/Xp, and Yq/Xq (Yp in DXYS153, Xp in

DXYS129; Yq in D11S1037, Abbott Molecular/Vysis, Mannheim,

Germany).

Whole chromosome painting (WCP) probe for chromosomes 9, 10,

11, 19, and Y and BAC (bacterial artificial chromosome) clones of inter-

est were identified through the Human Genome Browser Database of

the Genome Bioinformatics Group at the University of California at

Santa Cruz (http://genome.ucsc.edu/) and Ensembl Genome Data Re-

sources of the Sanger Institute Genome Database (http://www.

ensembl.org/). DNA probes (Table 1) obtained from BAC/PAC Resources

Center (Oakland, USA) were labeled by PCR with SpectrumGreen,

SpectrumOrange or TexasRed-dUTP and applied in two- or three-color

FISH-approaches. The homemade multitude multicolor banding

(mMCB) and chromosome specific high resolution array-proven

multicolor-banding (aMCB) probe sets were also applied as previously

reported (Weise et al., 2003, 2008).

A total of 10–15 metaphase spreads were analyzed, using a fluores-

cence microscope (Axio Imager.Z1 mot, Zeiss) equipped with appropri-

ate filter sets to discriminate between amaximumof five fluorochromes

and the counterstain DAPI (Diaminophenylindol). Image capturing and

processingwere carried out using an ISIS imaging system (MetaSystems,

Altlussheim, Germany).

3. Results

Cytogenetic study performed at diagnosis on a bonemarrow cell cul-

ture revealed a 46,X,del(Y)(q11.23),der(19)t(19;?)(q13.3;?)[26]/

46,XY[4] without evidence for 11q23 rearrangement (Fig. 1). FISH

analysis using WCP probes for chromosomes 19 and Y revealed a

balanced translocation of 19q to another chromosome. mMCB probeset

showed that the rearrangement indeedwasmore complex: 46,X,der(Y)

(Ypter→Yq11.23::Yp11.2→Ypter),t(10;19;11)(p12;q13;q23). Chro-

mosome specific aMCB probesets for #10, #11, #19, and Y confirmed

the mMCB result (Fig. 2A). Locus specific probes narrowed down the

breakpoints as shown in Table 1 to 10p12.31, 11q23.3, 19q13.31,

Yp11.2 and Yq11.23.

The LSIMLL break apart probe gave the following result (Fig. 2B): the

5′MLL probe was given a green split signal on derivative chromosomes

10 and 11. This probe includes exons 1 to 6 of theMLL gene, according to

http://www.vysis.com and based on MLL gene nomenclature available

from http://www.ensembl.org; transcript ID ENSG00000118058. Also

Table 1

Used probes, their location and obtained results are listed.

Cytoband Positions [hg18] Probe Result on derivative chromosomes

Yp11.31 chrY: 264,089–264,253 CTC-839D20 2 signals on der(Y)

Yp11.31 chrY: 2,714,896–2,715,792 LSI SRY 2 signals on der(Y)

Yp11.32 chrY: 317,555–517,715 DXYS153 2 signals on der(Y)

Yp11.2 chrY: 6,752,454–6,919,727 RP11-115H13 2 signals on der(Y)

Yp11.1–q11.1 chrY: 11,200,001–12,500,000 DYZ3 1 signal on der(Y)

Yq11.221 chrY: 15,173,440–15,173,599 RP11-71M14 1 signal on der(Y)

Yq11.221 chrY: 15,688,562–15,841,531 RP11-59K8 1 signal on der(Y)

Yq12 chrY: 27,200,001–57,772,954 DYZ1 Deletion on der(Y)

Yqter chrY: 57,719,381–57,727,828 EST Cdy 16c07 for SYBL1 Deletion on der(Y)

10p12.31 chr10: 20,782,567–20,938,614 RP11-51E20 Signal on der(19)

10p12.31 chr10: 21,321,413–21,495,264 RP11-165O3 Signal on der(19)

10p12.31 chr10: 22,399,352–22,575,929 RP11-108B14 Signal on der(10)

11q23.3 chr11: 117,812,415–117,901,146 LSI MLL Split signal on der(10) and der(11) and deletion of 3′ part of MLL

19q13.2 chr19: 47,022,914–47,206,527 RP11-688M4 Signal on der(19)

19q13.31 chr19: 48,171,290–48,356,279 RP11-313K22 Signal on der(19)

19q13.31 chr19: 49,097,834–49,247,766 RP11-143F10 Split signal on der(19) and der(11)

19q13.31 chr19: 49,726,602–49,900,222 RP11-21J15 Signal on der(11)

19q13.32 chr19: 52,803,265–53,038,398 SPEC GLTSCR1/R2/CRX Signal on der(11)
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the 3′ MLL region of ~190 kb in size (red signal in Fig. 2B) was deleted

due to the rearrangement.

Breakpoints on chromosomes 10 and 19were narrowed down using

the BAC-probes listed in Table 1. The breakpoint in 10p12.31 was

mapped between positions 21,495,264 and 22,399,352, where the

MLLT10 gene has been mapped to 21,863,580–22,072,560. The

breakpoint in 19q13.31 was mapped between positions 49,097,834

and 49,247,766; 2 OMIM genes are located there: ZNF45, and ZNF155

(Fig. 2C). The positions are given according to NCBI36/hg18, as numer-

ous of the used BAC-probes could not be found in later genomic browser

versions. The hybridization signals of the subtelomeric (Yp and Yq)

probes were revealed: duplication in Yp subtelomeric region and dele-

tion in Yq region (Fig. 3).

4. Discussion

In the present case two independent rearrangements were ob-

served, one involving three autosomes and one of a gonosome. Both

were already partially visible after GTG-banding analyses, however,

their real nature could only be resolved by molecular cytogenetics.

Structural abnormalities involving the Y-chromosome are rare

events in hematological malignancies. A der(Y)t(Y;1)(q12;q21) is

Fig. 2. A) Results for aMCB probesets for chromosomes 10, 11, and 19 are shown, which characterized the breakpoints as 10p12, 11q23 and 19q13 aftermMCB (results not shown). B) LSI

MLL break apart probe revealed a fusion signal on normal chromosome 11 and one green signal each on der(10) and der(11); still red signal was absent in whole metaphase spread. The

breakpoint in 11q23 could be narrowed down to 11q23.3. C) Further characterization of the breakpoints in derivative chromosomes 10 and 19 by BAC-probes revealed breakpoints as

10p12.31 and 19q13.31.

Fig. 1. G-banded karyogram from bone marrow cells at diagnosis, showing mos 46,X,del(Y)(q11.23),der(19)t(19;?)(q13.3;?)[26]/46,XY[4].
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described to be a recurrent but uncommon chromosomal rearrange-

ment in AML (Manabe et al., 2013); also a t(Y;11) involving the MLL

gene was reported once (Bernasconi et al., 1999). Besides inverted du-

plication shaped derivative Y-chromosomes have not been reported in

AML yet. The observed der(Y)(Ypter → Yq11.23::Yp11.2 → Ypter)

here was only present in the malignant cell clone and a normal Y-

chromosome was present in cells with normal male karyotype. Thus,

it is unlikely that the patient originally had a mosaic karyotype 46,

der(Y)(Ypter → Yq11.23::Yp11.2 → Ypter)/46,XY even though such

cases are reported in the literature (for overview see (Liehr, 2014)).

Thus, this is to the best of our knowledge the first asymmetric inverted

duplication shaped derivative Y-chromosome ever reported. It remains

to be determined if gain of Yp11.32–p11.2 and loss of Yq12, might be

implicated in leukemogenesis due to gene dosage effects.

Gene fusion, as a result of chromosomal translocation, is an impor-

tant event in leukemogenesis.MLL rearrangements are strongly associ-

ated with AMLM4/M5 and characterized by extreme leukocytosis, skin

involvement, and central nervous system disease (Coenen et al., 2011;

DiNardo et al., 2015). Two clinical subgroups of patients have a high fre-

quency of 11q23 aberration and M5 subtypes: one is AML in infants

(b1 year) with MLL rearrangement in about 50% of cases; the other

group is adult “secondary leukemia” potentially after treatment with

DNA topoisomerase II inhibitors. However, the patients with M5a sub-

type are more likely to have a t(9;11) than patients with M5b, while

other translocations are more frequent in M5b patients (Flandrin,

2002; De Braekeleer et al., 2005; Balgobind et al., 2011).

In the present childhood AML-M5b case a yet unreported (Mitelman

et al., 2014) cytogenetically balanced but molecular proven unbalanced

translocation t(10;19;11)(p12.31;q13.31;q23.3)was described. Only by

molecular cytogenetics resolvable findings were (i) the fusion of 5′MLL

(11q23.3) toMLLT10 (10p12.31) and (ii) the deletion of 3′MLL. The fu-

sion of 10p12with 19q13.31 and that of 11q23.3 and 19q13.31 could in-

volve the following genes:MLLT10, ZNF155, and MLL.

Only four AML cases were reported with three way translocations

before involving the same three chromosomes 10, 11 and 19, still all of

them involving other chromosomal breakpoints especially in chromo-

some 19, than the present case (Pui et al., 1994; La Starza et al., 2006;

Mulaw et al., 2012; Petković et al., 1992). Also a t(11;19)(q23;q13)

MLL–ACTN4 fusion was previously seen (Burmeister et al., 2009).

ACTN4 on chromosome 19q13 is an actin-filament cross-linking protein.

Mutations in ACTN4 or ACTN4 deficiency lead to focal and segmental

glomerulosclerosis.

MLLT10 gene rearrangements have been identified to a high percent-

age in pediatric AML cases; it encodes for a leucine zipper protein that

functions as a transcription factor (Dreyling et al., 1998). The t(10;11)

is a recurrent reciprocal translocation in AL and has two common vari-

ants; t(10;11)(p12;q21) and t(10;11)(p12;q23), the latter tending to

be more frequently observed in young children AML (Lillington et al.,

1998) and rarely seen in acute lymphatic leukemia (ALL) (Coenen

et al., 2011); the second variant is t(10;11)(p12;q21) identified mainly

in T-ALL patients, as well as reported in AML and myeloid sarcoma

(Bohlander et al., 2000; Mulaw et al., 2012).

Such t(10;11) rearrangements are often described as “cryptic” be-

cause in 10%of AML cases they are not detectable by banding cytogenet-

ics. As patients with t(10;11) are associated with unfavorable outcome

due to the less response to therapy their identification is of high impor-

tance for therapy planning (DiMartino et al., 2002; Caudell and Aplan,

2008; Coenen et al., 2011). MLL and MLLT10 fusion may form due to

translocations, insertions, deletions or due to more complex rearrange-

ments (Stasevich et al., 2006; Matsuda et al., 2006). As in the present

case observed, translocations involving band 11q23 usually lead to a

breakage in the MLL gene where the 5′ part of the gene is retained on

the derivative chromosome 11. Therefore, the active fusion gene (5′

MLL–3′ partner) is almost always located on the der(11), except in

rare cases of insertion of the 5′ MLL to another chromosome. The

breakpoints within the MLL gene cluster in the 8.5 kb region, called

the breakpoint cluster region (bcr) are located between exons 5 and

11. MLL partner plays a critical role in determining the disease pheno-

type; for example: MLL–MLLT7 in T-ALL, MLL–MLLT2 in B lineage ALL,

MLL–MLLT3 and MLL–MLLT10 in AML-M5, MLL–MLLT1 in ALL/AML.

This suggests that the fusion protein affects the differentiation of the he-

matopoietic pluripotent stem cells or the lymphoid ormyeloid commit-

ted stem cells (De Braekeleer et al., 2005; Stasevich et al., 2006; Chaplin

et al., 2001). However, a deletion of 3′MLL in combination with a trans-

location is observed in approximately 20% of the cases with t(4;11) and

t(9;11),which leads toworse course of disease compared to thosewith-

out deletion (Corral et al., 1993; Kobayashi et al., 1993).

11q23 abnormalities occur predominantly in pediatric AML (FAB

type M5) and MLL rearrangements are frequently associated with

monoblastic leukemias. Abnormalities in this region can occur very

early in hematopoietic stem cell development. Due to strong prognostic

impact patients without known recurrent translocations, such as

t(8;21) and inv(16), should be investigated by FISH for MLL rearrange-

ments. We would also like to highlight that immunophenotyping is as

important as molecular (cyto)genetic analyses as both can complete

each other. The translocation partners for 11q23 are numerous and

markedly heterogeneous, thus, additional molecular methods may be

needed to further assess the partner genes for MLL. Also RT-PCR might

be suitable to detect the most frequently observed MLL fusion

transcripts.
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Abstract

Background: In acute myeloid leukemia (AML), the MDS1 and EVI1 complex locus - MECOM, also known as the

ecotropic virus integration site 1 - EVI1, located in band 3q26, can be rearranged with a variety of partner chromosomes

and partner genes. Here we report on a 57-year-old female with AML who presented with the rare translocation t(3;10)

(q26;q21) involving the MECOM gene. Our aim was to identify the fusion partner on chromosome 10q21 and to

characterize the precise nucleotide sequence of the chromosomal breakpoint.

Methods: Cytogenetic and molecular-cytogenetic techniques, chromosome microdissection, next generation

sequencing, long-range PCR and direct Sanger sequencing were used to map the chromosomal translocation.

Results: Using a combination of cytogenetic and molecular approaches, we mapped the t(3;10)(q26;q21) to the single

nucleotide level, revealing a fusion of the MECOM gene (3q26.2) and C10orf107 (10q21.2).

Conclusions: The approach described here opens up new possibilities in characterizing acquired as well as congenital

chromosomal aberrations. In addition, DNA sequences of chromosomal breakpoints may be a useful tool for unique

molecular minimal residual disease target identification in acute leukemia patients.

Keywords: AML, MECOM, Chromosomal microdissection, Next-generation sequencing, Molecular marker

Background

EVI1 is one of several protein isoforms encoded by the

MECOM locus at human chromosome 3q26 that also

yields the MDS1 and MDS1-EVI1 protein isoform [1].

The role of MDS1 and MDS1-EVI1 in malignancy is still

unclear, though the EVI1 transcription factor plays an

essential role in the proliferation and maintenance of

hematopoietic stem cells [2]. Aberrant EVI1 expression

occurs in approximately 8% of patients with de novo

acute myeloid leukemia (AML) [3]. The overexpression of

EVI1 can be achieved not only through rearrangements of

band 3q26 but also without the presence of 3q26 abnor-

malities, therefore indicating that other mechanisms can

lead to EVI1 activation [4-6]. Moreover, a substantial

number of patients with 3q26 rearrangements do not

express EVI1 [7]. In approximately 2% of AML cases,

inv(3)(q21q26)/t(3;3)(q21;q26) is observed, where it has

been suggested that the promoter of the house-keeping

RPN1 gene could be responsible for the activation of EVI1

[8]. Other EVI1 rearrangements include, e.g. 7q21

(CDK6), 7q34 (TCRB), 12p13 (ETV6) and 21q22 (RUNX1)

[6,9]. Even though partner chromosomes and molecular

consequences differ between various types of EVI1 rear-

rangements, elevated expression predicts poor prognosis

for the affected patients [4,10,11].

Here we report the rare case of chromosomal trans-

location t(3;10)(q26;q21) involving MECOM. Using

modern cytogenetic and molecular biological techniques

we were able to characterize the nucleotide sequence of

this breakpoint and thus identify the fusion partner on

chromosome 10.
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Case presentation

A 57-year old female was diagnosed with AML (FAB M2)

after a blood cell count and bone marrow examination

was initiated in June 2013. Hematologic parameters were

as follows: hemoglobin 6,2 g/dl, platelets 44 × 109/l,

and white blood cells (WBC) 3,34 × 109/l with 7,8%

neutrophils, 62,9% lymphocytes and 28,7% monocytes,

0% eosinophils and 0,3% basophils. A bone marrow

aspirate revealed slightly hypercellular marrow with normo-

cellular particles. Megakaryocytes were found in reduced

density. There was significant hiatus leucaemicus with

evidence of medium-sized blasts with poor basophilic

cytoplasm and distinct granulation. Flow cytometry

performed on the bone marrow revealed 31% myeloid-

appearing blasts with expression of CD34 and CD117,

and confirmed the diagnosis of AML.

Conventional cytogenetic analysis of a 24-h culture,

performed on bone marrow cells by standard techniques

and evaluated by G-banding, revealed a balanced t(3;10)

(q26;q21) in 20/22 metaphases. Involvement of the

MECOM gene was confirmed by FISH with the use of

a commercially available probe set.

Results

Cytogenetic and molecular-cytogenetic analyses of bone

marrow cultures revealed an aberrant karyotype 46,XX,t

(3;10)(q26;q21) – Figure 1. A commercial EVI1 break-apart

probe yielded a split signal in all dividing and 80% of the

interphase bone marrow cells, demonstrating the re-

arrangement of the 3q26 chromosomal region (Figure 2).

Ten derivative chromosome 10 breakpoint regions

were dissected, amplified and sequenced. In total, 81 753

reads were obtained and aligned to reference sequences of

chromosomes 3 and 10 (NCBI build 37.3). Long-range

PCR primer design resulted in a product that was then

subjected to Sanger sequencing. The nucleotide sequence

of the der(10) breakpoint (Figure 3) revealed a fusion of

the MECOM gene on 3q26 to C10orf107 on 10q21.

Additionally, the bone marrow sample was subjected

to reverse transcription real-time PCR analysis to deter-

mine the expression levels of cEVI1 (i.e., the sum of all

EVI1 mRNA variants) relative to those of the internal

reference gene ABL. We found that EVI1 expression was

26-fold higher when compared with healthy control (data

not shown).

Discussion

In the present report we describe a rare case of acute

myeloid leukemia with a t(3;10)(q26;q21) translocation

involving MECOM. To our knowledge [12], only one case

with this translocation has been reported [9], but the fu-

sion partner on chromosome 10 was not characterized.

Using a novel technical approach we were able to identify

the fusion partner and precise nucleotide sequence of the

breakpoint, which may serve as a patient-specific molecu-

lar target for subsequent real-time PCR-based minimal

Figure 1 Karyotype analyses. G-banding (left part) and multicolor FISH (mFISH) (right part) analyses showed aberrant karyotype 46,XX,t(3;10)

(q26;q21). The arrows indicate the derivative chromosomes.

Figure 2 FISH analysis. Metaphase-FISH analysis using EVI1 break-apart

probe shows normal fusion signal on chromosome 3 (green, purple,

blue) and split-signal on der(3) (green, blue) and der(10) (green, purple)

indicating rearrangements of 3q26 region.

Jancuskova et al. Molecular Cytogenetics 2014, 7:47

http://www.molecularcytogenetics.org/content/7/1/47

2.Results 85



residual disease (MRD) monitoring. We further demon-

strated by real-time quantitative reverse transcription PCR

that the t(3;10)(q26;q21) results in EVI1 over-expression.

Deregulated expression of EVI1 and other genes (e.g.

BAALC, WT1) involved in cell proliferation, survival and

differentiation have been used as alternative MRD targets

[13-16]. However, the sensitivity of expression assays is

dependent on the level of initial expression; therefore,

these assays are suitable only in AML cases with a high

initial expression level of a specific target normalized to

an endogenous control gene at diagnosis. Even in those

cases, the sensitivity is usually not sufficient for subse-

quent MRD monitoring. Therefore, in patients presenting

with a fusion transcript and/or gene mutation, a specific

PCR assay is preferred. These PCR-based methods are

currently the most sensitive techniques for MRD follow-

up, reaching sensitivities of 10−4 – 10−5 [17,18].

Real-time PCR-based MRD assays allow the highly

accurate quantification of residual leukemic cells and

evaluations of treatment outcome in AML patients. The

merit of MRD monitoring during patient‘s treatment and

prognostic relevance has been confirmed by various studies

[17,19,20]. Common targets for MRD detection include

fusion transcripts (e.g. RUNX1-RUNX1T1, PML-RARα,

DEK-NUP214, CBFβ-MYH11) [21] and mutations of clin-

ically relevant genes (e.g. NPM1, CEBPα, FLT3, c-KIT)

[17-22]. Unfortunately, approximately half of AML pa-

tients lack a molecular target suitable for MRD moni-

toring [23]. Therefore, introducing novel approaches

for the identification of unique clone-specific markers

is highly desirable. The procedure described here is

based on characterizing nucleotide sequences of unique

chromosomal breakpoints, allowing the design of a spe-

cific real-time PCR assay for MRD assessment. In this

way, AML patients could benefit from accurate and sensi-

tive MRD monitoring, even in the absence of other well-

introduced molecular marker [24].

Mapping chromosome breakpoints is a conventional

method for identifying specific genes in leukemic patients,

as well as patients with solid tumors and individuals with

balanced translocations [25-27]. A fundamental require-

ment is the ability to karyotype and precisely identify

derivative chromosomes using classic karyotyping or mo-

lecular cytogenetic tools such as mFISH and mBAND

analyses. Hybridization with even higher resolution, such

as BAC-FISH (Bacterial Artificial Chromosome FISH)

can help to narrow-down the chromosomal breakpoints

further, though it is still not subtle enough to allow sub-

sequent molecular methods to be used and to identify

nucleotide sequence. There have been a number of

methods proposed to address this issue, with varying

strengths and weaknesses. Array-CGH has improved in

resolution, allowing deletions, amplifications, and non-

balanced translocations to be more precisely character-

ized, but array-CGH in principle cannot detect targets

arising from balanced chromosomal translocations [28].

Conclusion

The combination of cytogenetic and molecular methods

described here enabled us to proceed from the chromo-

somal level (cytogenetically identified abnormality) to the

molecular level (unique DNA sequence) in a case of the

novel t(3;10)(q26;q21) translocation. Using this procedure,

acquired as well as congenital chromosomal aberrations

can be characterized. In contrast to other mapping

methods (e.g. BAC-FISH, array CGH) our technique

allows the rapid mapping of chromosomal breakpoints

down to the DNA sequence level and immediate elucida-

tion of possible genes involved. This can be invaluable for

studying such aberrations in a wide variety of fields,

including the evolution of diseases or the genetic basis of

inherited syndromes.

Methods

Cytogenetic and molecular cytogenetic analyses

The heparinized bone marrow sample was cultivated for

24 h in RPMI 1640 media supplemented with 10% fetal

calf serum, penicillin/streptomycin and L-glutamine (PAA

Laboratories, Austria) at 37°C/5% CO2. Karyotype was

investigated by G-banding and multiplex fluorescence in

situ hybridization (mFISH) with the 24XCyte probe kit

(MetaSystems, Germany). ISCN 2013 nomenclature

was used to describe chromosome abnormalities [29].

Interphase fluorescence in situ hybridization (FISH)

analysis was performed using a commercially available

EVI1 break-apart probe (MetaSystems, Germany).

DNA/RNA isolation, reverse transcription

DNA and RNA were isolated from the mononuclear frac-

tion of bone marrow samples at diagnosis. DNA was iso-

lated using the MagNA Pure automatic isolator (Roche,

Germany) according to the manufacturer’s instructions.

RNA was extracted by TRI Reagent (Molecular Research

Center, USA) according to the manufacturer’s recommen-

dations. Reverse transcription was performed using the

Figure 3 Derivative chromosome 10 breakpoint sequence. The

electropherogram shows the result of direct sequencing of

long-range PCR product which revealed fusion of MECOM gene

on chromosome 3q26.2 and C10orf107 on chromosome 10q21.2.

Jancuskova et al. Molecular Cytogenetics 2014, 7:47

http://www.molecularcytogenetics.org/content/7/1/47

2.Results 86



Verso cDNA Synthesis Kit (Thermo Scientific, USA)

according to the manufacturer’s instructions.

Real-time quantitative reverse transcriptase PCR

Primers and probes to amplify and quantify EVI1-

expression were forward: 5′ ACCCACTCCTTTCTTTA

TGGACC 3′, reverse: 5′ TGATCAGGCAGTTGGAATT

GTG 3′, probe: FAM - 5′ TGAGGCCTTCTCCAGGAT

TCTTGTTTCAC 3′ - BHQ1. Expression was normalized

against the expression of the control gene ABL. Primers

and probe to quantify ABL gene were as follows: forward:

5′ TCCTCCAGCTGTTATCTGGAAGA 3′, reverse: 5′ T

GGGTCCAGCGAGAAGGTT 3′, probe: FAM-5′ CCAG

TAGCATCTGACTTTGAGCCTCAGGG 3′ - BHQ1.

PCR conditions started with a denaturation at 95°C for

8 minutes, followed by 45 cycles of denaturation at 95°C

for 20 s, annealing at 57°C for 30 s and elongation at 72°C

for 30 s.

Chromosomal breakpoint identification

The cell suspension and DNA sample were treated and

analyzed as previously described [24]. Briefly, regions

around the breakpoints of derivative chromosomes

were dissected by glass microneedles manipulated by

micromanipulator using an inverted microscope (Axiovert

10, Zeiss, Germany). The microdissected fragments were

directly subjected to amplification by degenerate oligo-

nucleotide-primed (DOP) PCR and then sequenced on

the GS Junior platform (Roche, Germany) for next gener-

ation sequencing. Obtained reads were aligned to refer-

ence sequences of chromosomes 3 and 10, using in-house

developed software. The last mapped reads from both

chromosomes were used as docking sites for primers for

long-range PCR to amplify the putative breakpoint.

Primers for long-range PCR were designed in Vector

NTI Advance (v. 11.5, Invitrogen, USA). PCR amplifica-

tion was done using the Expand Long Range dNTPack

kit (Roche, Germany). The long-range PCR product was

directly sequenced using Sanger sequencing to reveal

the precise nucleotide sequence of the breakpoint.

Consent

Written informed consent was obtained from the patient

for publication of this Case Report. A copy of the written

consent is available for review by the Editor-in-Chief of

this journal.
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A de novo acute myeloid leukemia (AML-M4)
case with a complex karyotype and yet
unreported breakpoints
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Abstract

Background: Acute myelogeneous leukemia (AML) is a malignancy of the hematopoietic stem cells, for which

cytogenetic analysis is still one of the most important diagnostic and prognostic tools. Still, we are far away from

having seen and described all possible genetic changes associated with this kind of acquired disease.

Results: Bone marrow cells of a female patient with clinical diagnoses of AML and immunophenotypically

confirmed AML-M4 were studied by GTG-banding. The later was not able to resolve all karyotypic changes and the

complex karyotype was characterized in more detail by fluorescence in situ hybridization (FISH) and array-proven

multicolor banding (aMCB). To the best of our knowledge, the present case is the only one ever seen with a del(5)

(q14q34), a der(17)t(4;17)(p13;p13), a del(2)(p23), a der(4)t(4;7)(p13;q11.23), a der(22)t(11;22)(q23;q11.2) and two

complex rearranged chromosomes 11 involving chromosomes 7 and 22 as well as 2.

Conclusions: The yet unreported breakpoints observed in this case seem to be correlated with an adverse

prognosis. Overall, molecular cytogenetic studies are suited best for identification and characterization of

chromosomal rearrangements in acute leukemia and single case reports as well as large scale studies are necessary

to provide further insides in karyotypic changes taking place in human malignancies.

Keywords: Acute myeloid leukemia (AML), Chromosomal abnormalities, Fluorescence in situ hybridization (FISH),

Array-proven multicolor banding (aMCB)

Background

Acute myelogeneous leukemia (AML) is a disease of the

myeloid compartment of the hematopoietic system and

is characterized by the accumulation of undifferentiated

blast cells in the peripheral blood and bone marrow [1].

Cytogenetics is considered the most important inde-

pendent prognostic parameter in AML [2,3]. Chromo-

somal abnormalities also provide useful information for

monitoring residual disease [4]. Most of chromosomal

abnormalities are detectable by banding cytogenetic ana-

lysis, and they occur in 55% of de novo AML in adults

[5,6]. Some chromosomal aberrations in AML are recur-

rent and closely associated with specific cytomorpho-

logical subtypes according to French-American-British

(FAB) criteria [7-10]. However, 5-10% of AML patients

present with multiple chromosomal rearrangements in-

volving three or more chromosomes. These patients

usually have a poor prognosis, and it is likely that some

of these rearrangements contribute to their disease pro-

gression [2].

We present a primary AML-M4 case with yet unre-

ported translocation events including seven different

chromosomes.

Results

Prior to chemotherapy treatment banding cytogenetics

revealed a karyotype 46,XX,del(5q)[8]/46,XX,del(5q),der

(17)t(4;17)[5]/45,XX,der(2)t(2;11),der(4)t(4;7),del(5q),-7,

der(11)t(11;7;22),der(17)t(4;17),der(22)t(11;22)[9]/46,XX

[1] (Figure 1) which was further specified by molecular

cytogenetic studies (Figures 2 and 3). Dual-color FISH

using a probe specific for BCR and ABL revealed two sig-

nals of ABL on both normal chromosome 9, one BCR sig-

nal was located on chromosome 22 and the other BCR
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gene was observed on a der(11) (Figure 2A). Three-color

FISH using BCR and ABL mixed with MLL probes re-

vealed the MLL gene signal was located on the short arm

of der(11), the other MLL gene signal was observed on

der(22), BCR gene signal was located on der(22) and

the two ABL gene signals were on the both normal

chromosome 9 (Figure 2B). Dual-color FISH using WCP

and CEP-specific probes were performed to confirm the

rearrangement (data not shown). The locus-specific probe

17p13 (p53) confirmed the presence of TP53 on the nor-

mal position in short arm of chromosome 17 (data not

shown). Finally, aMCB using probes for the corresponding

chromosomes was performed as previously reported

[11] (Figure 3). Thus, the following final karyotype

was determined:

46,XX,del(5)(q14q34)[8]/46,XX,del(5)(q14q34),der(17)t

(4;17)(p13;p13)[5]/45,XX,del(2)(p23),der(4)t(4;7)(p13;

Figure 1 GTG-banding revealed a complex karyotype involving six chromosomes and monosomy 7. All derivative or clonally missing

chromosomes are highlighted by arrowheads.

Figure 2 FISH-results using locus-specific probes. (A) Metaphase FISH using probes for BCR (green) and ABL (orange) showed two orange

signals on the two chromosomes 9, one green on the chromosome 22 and the other green signal was observed on der(11). (B) Metaphase FISH

using probes for BCR (yellow) and ABL (red) mixed with MLL break-apart probe showed one fusion signal was located on the short arm of der

(11), the second fusion signal was observed on der(22), two orange signals on the two chromosomes 9, one green on the chromosome 22 and

the other green signal was observed on der(11). Abbreviations: # = chromosome; der = derivative chromosome.
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q11.23),del(5)(q14q34),-7,der(11)(11qter->11p11.2::11

p11.2->11q23::2p23->2pter),der(11)(11pter->11q13::22q

11.2->22q13.3::11q13->11q21::7p12->7pter),der(17)t

(4;17)(p13;p13),der(22)t(11;22)(q23;q11.2)[9]/46,XX[1].

The abnormal cell population (57%) showed the follow-

ing immunophenotype: CD45+dim(90.4%), HLADr+(86%),

CD117+(57%), CD34+(57%), CD18+(60%), CD38+(83%)

and expressed CD2 (50%), CD7(24.2%), CD13 (39%),

CD33 (20%), CD123 (65%), CD15 (44%) and CD11c (52%)

heterogeneously. The abnormal cells negatively reacted

with antibodies to CD10, CD64, CD14, CD16, CD5 and

CD19. This immunophenotype was consistent with AML-

M4 according to FAB classifications.

Conclusions

We described a primary AML-M4 case with cytogenetic

rearrangements involving seven different chromosomes.

According to the literature, not a single case of AML

showed a der(4)t(4;7)(p13;q11.23), a der(11)(11qter->11p

11.2::11p11.2->11q23::2p23->2pter), a der(17)t(4;17)(p13;

p13), or a der(11)(11pter->11q13::22q11.2->22q13.3::11q

13->11q21::7p12->7pter) [12]. However, a t(2;11)(p23;

q23) was observed in one case of refractory anemia with

excess blasts-1 [12]. To the best of our knowledge, the

present case is the only one ever seen case of AML with

these cytogenetic aberrations [12].

The common chromosomal abnormalities in the AML-

M4 include monosomy 5 or del(5q), monosomy 7 or del

(7q), trisomy 8, t(6;9) (p23;q34), and rearrangements in-

volving the MLL gene mapped at 11q23 [del(11)(q23);

t(9;11)(p22;q23), t(11;19)(q23;p13)], and Core Binding

Factor B (CBFβ) mapped at 16q22 [del(16)(q22), inv(16)

(p13q22), t(16;16)(p13;q22)] [13]. However, in the present

case both MLL genes were intact.

In general, a complex karyotype in MDS or AML is

associated with a median survival of less than 1 year

[11,14]. Furthermore, the adverse prognostic effect of

monosomal karyotype was evident both in the pres-

ence and absence of monosomy 5 and/or 7, which

Figure 3 Array-proven multicolor banding (aMCB) was applied to determine the involved in this complex rearrangement. In each lane

the results of aMCB analysis using probe-sets for chromosomes 2, 4, 5, 7, 11, 17 and 22 are shown. The normal chromosomes are shown in the

first column, the derivative of all five chromosomes in the following ones. In the light gray by aMCB-probes unstained regions on the derivative

chromosomes are depicted. Abbreviations: # = chromosome; der = derivative chromosome.
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suggests that tumor suppressor or other critical genes

are not necessarily clustered in specific chromosomes

but are instead distributed across several chromo-

somes [15].

Monosomy 7 is a valuable prognostic marker in AML,

and chromosome 7 defects are prominent cytogenetic le-

sions in primary myelofibrosis, associated with unfavor-

able prognosis; they present with high incidences after

leukemic transformation [16]. Similarly, deletions on

7p12 of IKZF1 gene (which encodes the transcription

factor Ikaros) are associated with a very poor outcome

and high relapse rate in B-cell acute lymphocytic leu-

kemia [17]. Monosomy 7 is known as a recurrent cyto-

genetic aberration in approximately 10% of adult and 5%

of childhood AML cases [18]. Jäger et al. [19] found two

of seven myeloproliferative neoplasms patients with loss

of IKZF1 had monosomy 7. This result suggests that

IKZF1 may represent an important tumor-suppressor

gene affected by monosomy 7 [19].

The International Prognostic Scoring System (IPSS)

classifies cytogenetic and molecular genetic data in AML

with clinical data into four risk groups: favorable, inter-

mediate-I, intermediate-II and adverse [20]. The adverse

prognostic groups included inv(3)(q21q26.2) or t(3;3)

(q21;q26.2); RPN1-EVI1; t(6;9)(p23;q34); DEK-NUP214;

t(v;11)(v;q23); MLL rearranged; -5 or del(5q); -7; abnl

(17p); complex karyotype [20].

Complex karyotypes, which occur in 10-12% of AML

patients, have consistently been associated with a very

poor outcome [21]. A complex karyotype has been de-

fined as the presence of 3 or more (in some studies ≥ 5)

chromosome abnormalities. For AML it turned out that

the presence of t(8;21), inv(16) or t(16;16), and t(15;17)

ameliorates the adverse effect of increase karyotypic

complexity [20]. As indicated in the new WHO classifi-

cation, cases with other recurring genetic abnormalities,

such as t(9;11) or t(v;11), inv(3) or t(3;3), and t(6;9)

should also be excluded from complex rearranged karyo-

type patient group [22], because these groups constitute

separate entities. One striking observation is the increas-

ing incidence of adverse versus favorable cytogenetic ab-

normalities with increasing age. This, at least in part,

contributes to the poorer outcome of AML in older

adults [23].

In conclusion, we reported a de novo case of AML-

M4 with yet unreported translocation events involving

seven different chromosomes. Taken together all fin-

dings an adverse prognosis for this specific AML-case

must be considered.

Materials and methods

Case report

A 65-year-old woman was diagnosed as suffering from

AML in September 2011. Anemia, thrombocytopenia,

fever, fatigue and weight loss were the indicative symp-

toms. Her hematologic parameters were: white blood

cells (WBC) of 34.2×109/l with 25.5% neutrophils, 36.2%

lymphocytes, and 38.3% immature cells, red blood cell

(RBC) count was 1.86×106/mm3, hemoglobin level was

6.7 g/dl and the platelet count was 19×109/l. No treatment

had been administered prior to the tests mentioned below.

All human studies have been approved by the ethics com-

mittee of the Atomic Energy Commission, Damascus,

Syria and have therefore been performed in accordance

with the ethical standards laid down in the 1964 Declar-

ation of Helsinki and its later amendments. The patient

gave his informed consent prior to its inclusion in this

study. Later the patient was lost during follow-up.

Chromosome analysis

Chromosome analysis using GTG-banding was performed

according to standard procedures [24]. A minimum of 20

metaphase cells derived from unstimulated bone marrow

culture were analyzed. Karyotypes were described accor-

ding to the International System for Human Cytogenetic

Nomenclature [25].

Molecular cytogenetics

Fluorescence in situ hybridization (FISH) using LSI

BCR/ABL dual color dual fusion translocation probe

(Abbott Molecular/Vysis, Des Plaines, IL, USA), MLL

break-apart probe (Q-Biogene, USA) mixed with LSI

BCR/ABL dual color dual fusion translocation probe chro-

mosome enumeration probe (CEP) for chromosomes 9

and 11 (Abbott Molecular /Vysis) and 17p13 (p53), dual

color probe (Q-Biogene, USA) were applied according to

manufacturer’s instructions. Whole chromosome painting

(WCP) probes for chromosomes 2, 4, 5, 7, 11, 17 and 22

were also applied (MetaSystems, Altlussheim, Germany)

[24]. FISH using the corresponding chromosome specific

array-proven multicolor banding (aMCB) probe sets based

on microdissection derived region-specific libraries was

performed as previously reported [26]. A minimum of

20 metaphase spreads were analyzed, using a fluo-

rescence microscope (AxioImager.Z1 mot, Carl Zeiss

Ltd., Hertfordshir, UK) equipped with appropriate filter

sets to discriminate between a maximum of five fluoro-

chromes plus the counterstain DAPI (4′,6- diamino-

2-phenylindole). Image capture and processing were

performed using an ISIS imaging system (MetaSystems).

Flow cytometric immunophenotype

Flow cytometric analysis was performed using a general

panel of fluorescent antibodies against the following an-

tigens typical for different cell lineages and cell types:

CD1a, CD2, CD3, CD4, CD5, CD8, CD10, CD11b,

CD11c, CD13, CD14, CD15, CD16, CD19, CD20, CD22,

CD23, CD32, CD33, CD34, CD38, CD41a, CD45, CD56,
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CD57, CD64, CD103, CD117, CD123, CD138, CD209,

CD235a and CD243; In addition to antibodies to Kappa

and Lambda light Chains, IgD, sIgM, and HLADr. All

antibodies purchased from BD Biosciences. Samples ana-

lyzed on a BD FACSCalibur™ flow cytometer. Autofluo-

rescence, viability, and isotype controls were included.

Flow cytometric data acquisition and analysis were con-

ducted by BD Cellquest™ Pro software.
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3. Discussion 

As mentioned in the introduction: normal karyotypes are found in 40-50% of all AL cases 

exclusively studied by routine GTG-banding analysis (Mrózek et al. 2009, Walker and 

Marcucci 2012, Ilyas et al. 2015). However, analyses using high resolution molecular 

(cyto)genetic techniques lead to detection of cryptic chromosomal abnormalities (Karst et al. 

2006, Tyybäkinoja et al. 2007, Gross et al. 2009, Haferlach et al. 2014). Thus, the first phase 

of the present work was dedicated to identify cryptic chromosomal aberrations in 103 CN-AL 

cases using FISH-banding technique. In the second phase a detailed characterization of newly 

identified tumor-associated breakpoints was done. The third part of this thesis was to study 

submicroscopic CNAs in AL. The fourth and final step evaluated the newly identified tumor-

associated rearrangements with regard to their potential clinical relevance. 

 

3.1.   Cytogenetic analysis in the diagnosis of AL 

Cytogenetic banding analysis has still been the standard method for detection of 

diagnostically relevant recurrent chromosomal aberrations in AL and the karyotype alone or 

together with other parameters is used to stratify patients into three prognostic groups: 

favorable, intermediate and unfavorable. For instance, APL-patients with a favorable 

prognosis due to presence of a translocation t(15;17) with the well-known PML-RARA 

rearrangement are treated by ATRA- and anthracycline- or ATRA and arsenic trioxide-based 

protocols. Other AL-patients may have an unfavorable prognosis in connection with a Ph-

translocation t(9;22), 11q23 alterations, monosomic and/or complex karyotypes; such patients 

need intensive protocols and/or allogeneic bone marrow transplantation during their first 

remission (Grimwade et al. 2010, Kayser et al. 2012, Ferrara and Schiffer 2013). As it is well 

known that, when using banding karyotyping, about 40-50% of AL patients show a 

cytogenetically normal karyotype, such patients are categorized as having an intermediate 

prognosis (Mrózek et al. 2009, Walker and Marcucci 2012, Ilyas et al. 2015). This takes into 

consideration that cryptic chromosomal aberrations may be missed due to: (i) limited 

sensitivity of chromosomal banding techniques, even in case of good chromosomal 

morphology,  the aberrations have at least 10Mb in size to be visible, (ii) cryptic or masked 

aberrations, i.e. they are not resolvable due to a similar or identical GTG-banding pattern 

and/or poor chromosome morphology, and (iii) ‘bad metaphases’ , which may be difficult to 

obtain and to be evaluated, as chromosomes may not be well-spread, clumsy or appearing as 

fuzzy with indistinct margins; thus even numerical aberrations may be missed (articles 2, 3, 

5, 6, Karst et al. 2006, Mrózek et al. 2009). In cases according to banding cytogenetics normal 
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karyotype, repeated chromosomal analysis is obviously not suited for disease monitoring 

(Murphy and Bustin 2009, Polampalli et al. 2011). 

 

3.2. Molecular cytogenetics studies of CN-AL cases  

Molecular cytogenetic approaches have shown their ability to uncover and detect cryptic 

chromosomal aberrations since more than 2 decades and also in this work (articles 2, 3, 5, 6, 

7, 8, Karst et al. 2006, Mrózek et al. 2009). Besides metaphases also interphase nuclei can be 

useful for diagnostics. In case of low mitotic index, alterations can also be detected and/or 

monitored in non-dividing cells and low mosaics level can be easily detected by that approach 

(Inaba et al. 2013, Woo et al. 2014). Such studies were also used successfully for 

determination of mosaic levels in the present work (article 7).   

Nowadays, FISH using locus-specific and chromosome enumeration probes is a routine 

technique for classification, risk stratification and predication of therapy. In (article 1) we 

reviewed the effectiveness of FISH technique in cancer diagnosis and particularly in 

leukemia. FISH approaches are especially suited to characterize chromosomal breakpoints, 

submicroscopic copy number changes and fusion genes due to translocations or other 

rearrangements. All these features are characteristically found as acquired aberrations in AL.   

 

3.2.1.  Detection of new chromosomal aberrations 

To identify yet unreported acquired chromosomal aberrations in 61 CN-ALL and 42 CN-

AML cases were studied by the whole genome oriented FISH-banding based probe set 

mMCB (Weise et al. 2003); results are summarized in articles 2, 3, 5, 6, 7, 8 plus yet 

unpublished data. Overall, balanced and unbalanced translocations, derivative 

chromosomes, isochromosomes, insertions, interstitial deletions, inverted duplications and/or 

numerical aberrations were identified in CN-ALL and CN-AML cases. It could be confirmed 

that mMCB probe set provides an optimal possibility to detect and characterize 

simultaneously all subregions in each human chromosome and for the analyses of inter-and 

intra-chromosomal rearrangements of the whole human karyotype in one single experiment 

with a resolution between 3-10 Mb. Still the sensitivity of mMCB is dependent on sizes of 

rearranged fragments and labeling of the underlying partial chromosome painting probes.  

Based on the aforementioned range of resolution it is logical to state that mMCB is not suited 

to detect submicroscopic aberrations smaller than 3 Mb. Thus, iFISH probes, LSPs, MLPA 

and array-CGH were applied additionally in the studied AL-cases. A major restriction of this 

kind of comprehensive analyses is the large amount of routine material needed. Nonetheless, 
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this kind of problem is well-known in tumor cytogenetic studies (Weise et al. 2003, Liehr 

2009, Heller et al. 2004).  

In the retrospectively studied of 61 CN-ALL cases, chromosomal abnormalities were 

identified in 34% (21/61) and new clonal cryptic rearrangements were found in 9/21 (43%) 

cases. Interestingly most of those originally considered as patients with a CN-AL had in 

reality complex karyotypes. Chromosomes 2, 3, 4, 5, 6, 7, 9, 10, 11 and 14 were most 

frequently involved in structural abnormalities. Data published in article 2 revealed a single 

cryptic and complex rearrangement for chromosome 11 involving a reciprocal translocation 

and an inversion, in article 3 a complex four-way translocation involving the chromosomes 3, 

5 and 10, in article 5 a balance three-way translocation including chromosomes 2, 9 and 18 

and in article 6 an inverted duplication on a chromosome 14 leading to an IGH@ locus 

splitting and rearrangement were reported. To the best of our knowledge these rearrangements 

have not been seen in ALL before (Cancer Genome Anatomy Project (CGAP); Atlas of 

Genetics and Cytogenetics in Oncology and Hematology; article 7, Table 1). Still, the 

majority of CN-ALL cases (66%) presented with a normal karyotype after mMCB-analysis 

(article 7). To data, only few comparable studies are available using FISH-banding 

techniques to screen for cryptic chromosomal aberrations and to define the novel 

chromosomal rearrangements. A study conducted by Karst et al. (2006) used mMCB probe 

and detected acquired cryptic chromosomal aberrations after G-banding analysis in 57% of 

ALL cases. Recently, a few similar studies have focused exclusively on the analysis of cases 

presenting with complex karyotypes (Al-Achkar et al. 2010, Ney Garcia et al. 2015).  

Several groups have applied mFISH such as SKY/M-FISH to clarify the karyotypes and 

characterize the composition of marker chromosomes or incomplete identified karyotypes 

(Rowley et al. 1999, Mathew et al. 2001, Elghezal et al. 2001, Lu et al. 2002, Nordgren et al. 

2002, Poppe et al. 2005, Mkrtchyan et al. 2006).  Rowley et al. (1999) did not find any cryptic 

abnormalities in 5 T-ALL cases with normal karyotype and clarified already known 

chromosomal rearrangements in 3 cases. Additionally, Nordgren et al. (2002) demonstrated 

that, SKY and LSPs could identify chromosomal aberrations in up to ~80% of ALL cases. 

Altogether, SKY/ M-FISH failed to detect any cryptic chromosomal abnormalities of CN-

ALL cases but, of course, could refine the result of most known chromosomal 

rearrangements. Still, mFISH technique has limitations because they enable to detect most of 

intra-chromosomal abnormalities such as interstitial deletions and inversions and inter-

chromosomal anomalies  >5 Mb (Rowley et al. 1999, Mathew et al. 2001, Elghezal et al. 

2001, Lu et al. 2002, Nordgren et al. 2002, Karst et al. 2006).  
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More specifically analyzing the data obtained here for CN-AML cases, chromosomes 9 and 

11 were found most frequently involved in structural abnormalities, and chromosome 7 in 

numerical abnormality (article 8 and yet unpublished data). This kind of chromosomal 

aberrations was recognized in 12/42 (28%) and rare clonal rearrangements were observed in 

2/42 (5%). This is in agreement with the study done by Gross et al (2009) who applied FISH-

banding technique and identified cryptic chromosomal abnormalities in 2/26 CN-AML cases. 

As well, Zhang et al. (2000) used SKY and found clonal abnormalities in 2/28 of CN-AML 

cases. In article 8 a rare cryptic three way translocation between chromosomes 10, 19 and 11 

and deletion of the 3’  MLL gene was reported by us.  

However, in the present work, there is one additional limitation of mMCB technique to be 

discussed here. Due to florescence interference of labeled subregions in each chromosome 

with same/ similar colors ambiguously identification of submicroscopic translocations, cryptic 

deletion, small amplification and cryptic insertion may happen (articles 2, 3, 5, 6, 7, 8 plus 

yet unpublished data, Karst et al. 2006, Gross et al, 2009). To overcome this problem, the 

overwhelming majority of aberrations detected here were confirmed using MCB and/or LSP 

analysis e.g. to clearly distinguish unbalanced translocations from balanced ones. 

Additionally, aCGH and MLPA, which use genomic DNA, are powerful tools in the analysis 

of unbalanced chromosomal rearrangements such as CNA gains and losses particularly in 

leukemia. Overall, iFISH, MLPA and aCGH could be the methods of choice when the mitotic 

index is low and the quality of metaphases is suboptimal (Usvasalo et al. 2009, Yasar et al. 

2010). 

Summary: The present work detected new clonal abnormalities using high resolution FISH-

banding technique in 103 AL cases reported previously to have a normal karyotype according 

to G-banding. 

 

 

3.2.2.  Further characterization of newly identified breakpoints 

Delineation of mMCB results and definition of the breakpoints, either balanced or imbalanced 

ones (losses or gains), was done using either MCB and/or (to do in more detail) large numbers 

of LSPs (BACs and commercially available probes) for the target sequences; for more details 

see articles 1-10. As the whole human genome has been sequenced and human sequences are 

harbored in BAC clones they can easily be used as FISH probes. Thus, breakpoints could be 

narrowed down and candidate genes could be determined on the molecular level using 

genome browsers. In this work, besides the CN-AL cases, seven AML and one ALL with 
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complex karyotypes were also studied in detail to characterize their breakpoints (articles 4, 

9, 10 and yet unpolished data). Interestingly, in the case published in article 9 a rare 

translocation t(3;10)(q26;q21) was detected. Other technical approaches including NGS, long-

range PCR and direct Sanger sequencing were used to map this chromosomal translocation in 

detail through co-work with a partner laboratory in Prague (Czech Republic). Thus, 

nucleotide sequence of the breakpoint revealed a fusion of the MECOM gene on 3q26 to 

C10orf107 on 10q21. Aberrant expression of MECOM gene results in disturbance of the 

normal proliferation and differentiation of HSC and finally leads to maturation arrest 

(Balgobind et al. 2010). In yet unpublished data MECOM gene rearrangements were also 

identified in two further AML cases. One case had an unbalanced translocation 

der(3)t(3;7)(q26.2q21.2). LSPs and aCGH revealed MECOM-CDK6 fusion gene. The cyclin 

dependent kinase 6 (CDK6) is disrupted or overexpressed by translocation in hematological 

malignancies, particularly in T-ALL and T cell lymphoblastic lymphoma, whereas the variant 

translocation t(3;7)(q26;q21) is less frequently reported in myeloid leukemia (Lien et al. 2000, 

Raffini et al. 2002, Storlazzi et al. 2004). The second case had a balanced translocation 

t(3;8)(q26.2;q24.2). Few such cases have been reported in the literature with PVT1-MECOM 

fusion gene and associated with loss of chromosome #7 as also observed in our CN-AML 

case (Mitelman et al. 2015). PVT1 is an oncogene and contains a long non-coding RNA. The 

role of PVT1 in leukemogenesis still is unclear, thus, aberrations in EVI1 may leads to 

deregulated expression, similar to other balanced or unbalanced chromosomal translocations 

involving chromosome 3q26 (Tseng et al. 2014, Lennon et al. 2007). However, 

overexpression of MECOM indicates for unfavorable prognosis in AML (Haferlach et al. 

2012). 

MLL gene (11q23) was identified most frequently rearrangements in the present work; in 

AML, the MLL partner genes were MLLT3 (9p21.3), MLLT4 (6q27) and MLLT10 (10p12.3) 

while in ALL the partner genes were MLLT2 (4q21) and MLLT10. In article 8 (Table 1) 

chromosomal breakpoints were narrowed down for a rare three-way translocation as 

10p12.31, 11q23.3 and 19q13.31, and the breakpoints of the altered Y-chromosome as 

Yp11.2 and Yq11.23. Additionally, 3’ MLL was deleted and aCGH confirmed the deletion 

between 118,394,728-118,952,688 according to GRCH37/hg19. Commonly, the cryptic 

insertion of MLL gene within partner genes cannot be detected by G-banding and rarely 

identified by mMCB. In article 2 (Table 1) the corresponding breakpoints were narrowed 

down and defined to be 11p15.4 and 11q24.2 on both homologous chromosomes 11. Besides, 

cryptic insertion of 5’ MLL gene into the AFF1 gene in chromosome 4q21 was detected only 
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by a dual-color break apart probe. In yet unpublished data two further cases were identified 

with cryptic MLL-gene insertions; an infant with B-ALL had an ins(10;11)(p12.3;q23.3) and 

in this case 3’MLLT10 was inserted into MLL gene. This variant translocation 

t(10;11)(p12;q23) has been frequently observed in young children with AML and very rarely 

with ALL (Lillington et al.1998, Coenen et al. 2011). The second case was an adult AML 

subtype M5 and identified insertion ins(6;11)(q27;q23). The translocation t(6;11)(q27;q23) is 

frequently seem in AML and could be detected by G-banding. To best our knowledge, yet 

only one case has been reported with an insertion of chromosome 11q13q23 into chromosome 

6 in an adult AML subtype M4 (Mitelman et al. 2015, Martineau et al. 1998). Overall, MLL 

gene plays an essential role in normal hematopoietic growth and differentiation. 

Abnormalities in this region can occur very early in HSC development (Ansari and Mandal 

2010, Ferrando et al. 2003) and MLL is important as molecular marker to be investigated in 

the early diagnosis of AL. 

In the present work, MCB and LSPs were proven to be highly useful for refining of 

conventional banding karyotypes and elucidating composition of marker chromosomes or 

incompletely identified rearrangements. All normal and complex karyotypes fall into two 

main groups: such with common and such with unique breakpoints. Thus, the potential 

pathogenic impact of the identified breakpoints is suspected to be due to non-random 

chromosomal translocations, insertions, and low or high gene dosages. The consequences of 

these abnormalities lead to identify the gene(s) which are important for leukemia 

transformation in the past (Aplan 2006) and also in the present work.  

 

Summary: Characterization of chromosomal breakpoints is required in the diagnosis of acute 

leukemia, to help in classification, risk stratification and prediction of therapy of the disease.  

 

3.3. Identifications of acquired CNAs in AL 

The better understanding of leukemogenesis and providing entries to therapy development, 

different molecular techniques for diagnostic purposes could be applied. Besides FISH, 

MLPA and aCGH are useful, i.e. approaches which have much higher resolution than FISH, 

but can only detect unbalanced aberrations and no low level mosaics. Few studies have 

applied MLPA and aCGH to identify CNAs in AL (Haferlach et al. 2014, Schwab et al. 2013, 

Strefford et al. 2007, Tyybäkinoja et al. 2007). In the present work, DNA was isolated from 

the cytogenetically worked up cell suspensions of 34/61 CN-ALL and 27/47 AML (42 normal 

and 5 complex karyotypes) cases.  Cryptic CNAs were detected in ~80% and in ~63% of 
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those CN-ALL and AML cases respectively. This is in agreement with the study conducted 

by Haferlach et al. (2014) who used aCGH and, detected CNAs in 80.3% of CN-ALL cases. 

As well, Strefford et al. (2007) also used aCGH and demonstrated that, 83% of ALL cases 

had CNAs. A study performed by Tyybäkinoja et al. (2007) also applied aCGH for 26 CN-

AML cases and found cryptic CNAs only in 4/26 (15%) of CN-AML. Additionally, a large 

study performed by Schwab et al. (2013) who used MLPA to screen for the most frequently 

deleted genes in high risk BCP-ALL found deletion of IKZF1, PAX5, CDKN2A/B and RB1 

as also reported here in article 7. 

All here reported CNAs have been checked by UCSC genome browser to exclude benign 

copy number variations (CNVs): http://genome-euro.ucsc.edu/cgi-

bin/hgGateway?redirect=auto&source=genome.ucsc.edu. Thus, all of them most likely are 

leukemia-related genetic changes, which were recognized in 27/34 of CN-ALL and in 17/27 

of AML cases. According to the result of article 7 and yet unpublished data, the CNAs in 

CN-ALL cases were identified most frequently in chromosomes  #7, #9, #10, #11, #13, #15, 

#17, #18, #20 and #21, i.e.  8-15 CNAs per chromosomes, while in AML often in 

chromosomes #7, #11, and #15, i.e. 2-3 CNAs per chromosomes (Table 6.1). One of the 

known shortcuts of aCGH is the inability to detect reliably acquired CNAs less than ~20 Kb 

in size particularly in AML. A suggestion to overcome this problem is to used high-resolution 

SNP-array-CGH analysis (article 7 plus yet unpublished data, Le Scouarnec and Gribble 

2012, Bullinger and Fröhling 2012). 

 

3.3.1. CNAs expressed as losses 

According to results shown in article 7, significant losses of CNs in CN-ALL were observed 

more frequently for chromosomes #7, #9, #10, #11, #13, #15, #17, #20 and #21. Furthermore, 

CNAs have been identified here, encompassing single or few genes, only. Chromosome 7 

involved deletion of IKZF1 at 7p12.2 in 5 of 34 (14%) studied CN-ALL cases. IKZF1 

encodes IKAROS protein that required for the development of all lymphoid lineages. 

Deletions and/or sequence mutations of IKZF1 were present in 15% of pediatric B-ALL 

(Mullighan et al. 2009b). Besides, deletion of 7q21.2 region was observed in the present work 

in 4 of 34 (12%) of CN-ALL cases and mapped for CDK6 gene. The majority of chromosome 

9 abnormalities was expressed as deletions of cell cycle regulatory genes at 9p21.3 in 8/34 

(24%) of the studied CN-ALL cases. CDKN2A/B genes deletion can be detected at initial 

diagnosis or acquired at relapse, suggesting that CDKN2A/B gene deletion is a secondary 

genetic event (Schwab et al. 2013, Kim et al. 2011, Sulong et al. 2009). 
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Table 6.1. Summary of the most common recurrent CNAs in AL detected by aCGH and 

MLPA in the present work 

CN-AL 
type of 
CNA 

chromosome band gene 
no. of 
cases 

CN-ALL 

Loss 
 

7 
p12.2 
q21.2 

IKZF1 

CDK6 

5 
4 

9 
p21.3 
p13.2 

CDKN2A/B 

PAX5 

8 
3 

10 q23.31 PTEN 6 

11 q14.2 PICALM 3 

13 q14.2 RB1 3 

15 q26.1 CHD2 7 

17 p13.1 TP53 4 

20 q13.2 ZNF217 4 

21 q22.2 ERG 2 

Gain 18 q21.2 DCC 3 

AML 

Loss 
 

7 -7/del(7q) ----- 4 

11 q23.3 MLL 2 

15 q26.1 CHD2 2 

Gain 8 q24.2 MYC 1 

 

Additionally, deletion of PAX5 gene located in 9p13.2 was found in 3/34 (9%). Deletion of 

PAX5 was reported in 31.7% of B-ALL and also it has been involved in several chromosomal 

translocations. In future, PAX5 could be used as one of the molecular markers in diagnosis 

and monitoring of the disease, especially in B-ALL (Schwab et al. 2013, Nebral et al. 2009, 

Mullighan et al. 2007). Deletion of PTEN gene at 10q23.31 was detected in 6/34 (17%) of the 

studied CN-ALL cases. Deletion of the tumor suppressor gene PTEN leads to activation of the 

PI3K/AKT pathway and in subsequent increase in protein synthesis, cell cycle progression, 

migration, and survival. Consequently, deletion of PTEN trends to poor outcome. Recently, 

numerous targeting drugs for the PI3K/AKT pathway for the therapy of cancer have entered 

in clinical trials (Zhao et al. 2013, Ciuffreda et al. 2014, Mendes et al. 2014). In chromosome 

13 was found deletions involving RB1 gene at 13q14.2 in 3/34 (9%) of the studied CN-ALL 

cases. Deletion of RB1 gene is highly frequent observed in B-CLL but rarely seen in ALL. 

Thus, RB1 pathway was identified as potential targets for therapy of ALL (Schwab et al. 

2013, Cavé et al. 2001).  

Interestingly, a novel recurrent submicroscopic CNA expressed as loss of 15q26.1: focal 

deletion of CHD2 gene located there was found in 7 of the 34 (20%) CN-ALL and in 2 of the 
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27 (7%) AML studied cases. In chromosome 17 deletion of TP53 gene at 17p13.1 was 

identified in 4/34 (12%) of studied CN-ALL cases. Deletions and sequence mutations of TP53 

gene associated with non-response of chemotherapy and unfavorable outcome in ALL (Hof et 

al. 2011, Stengel et al. 2014). Recurrent deletion was found also in 21q22.22 targeting 

exclusively ERG in 2/34 of studied CN-ALL cases. ERG gene is a transcription factor which 

belongs to the erythroblast transformation-specific (ETS) family. It has a key regulatory role 

in hematopoietic differentiation during early T and B cell development. Overexpression of 

ERG gene was shown in AML and T-ALL and was associated with poor prognosis. Currently, 

deletion of ERG gene is associated with a very good outcome in older children and young 

patient with BCP-ALL (Clappier et al. 2014, Marcucci et al. 2005).  

Besides, many of CNAs losses involving transcriptional regulators and co-activators genes 

like 3q26.32 (TBL1XR1; n = 1), 12p13.2 (ETV6; n = 2), and 21q22.12 (RUNX1; n= 1), or 

regulators of chromatin structure and epigenetic regulators genes like 16p13.3 (CREBBP; n = 

2) were identified - for more information refer to article 7.  

In AML losses of CNAs were observed less frequent than in CN-ALL (yet unpublished 

data). Overall, CNAs were found most often in chromosomes #7 and #11. Recurrent loss of 

the chromosome 7 and 7q was recognized in 4/27 (15%) of studied AML cases. Loss of -

7/del(7q) leads to leukemic transformation due to loss of function of such putative tumor 

suppressor gene in these regions that regulates myeloid growth and differentiation and 

associated with adverse outcome (Hosono et al. 2014, Braoudaki and Tzortzatou-

Stathopoulou 2012).  In chromosome 11 deletion of 11q23.3 including 3’  MLL gene was 

detected in 2/27 (7%) of the studied AML cases; one case had a translocation 

t(10;19;11)(p12;q13;q23) and the second had a translocation t(9;11)(p21.3;q23.3). The fact 

that both patients died in short time after HSCT might be due to presence of MLL gene 

rearrangements (article 8 and yet unpublished data).  

 

3.3.2.  Gains 

Gains of CNAs in CN-ALL and AML were found less frequent than losses. Gains of CNAs 

according to article 7 were seen in ~20% of CN-ALL studied cases. Interestingly, duplication 

of DCC gene in 18q21.2 was present in 3 of the 34 (9%). However, oncogene overexpression 

resulting from gene duplication is infrequent in ALL. Still, we found MYB and ABL1 

amplification in one case. In yet unpublished data of AML studied cases, gain of CNs was 

found in ~28% of the cases. Remarkable, amplification of MYC oncogene was detected in one 

of studied AML cases. MYC gene amplification was previously observed in approximately 
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1% of the AML and MDS cases and outcome still is unclear (Storlazzi et al. 2006, 

Tyybäkinoja et al. 2007, Mrózek 2008).  

 

3.3.3.  New candidate genes  

Besides the confirmation of involvement of yet rarely reported genes in AL also three new 

candidate genes were identified in the present study. 

CDK6 gene at 7q21.2 is the catalytic subunit of a protein kinase complex that regulates cell 

cycle G1 phase progression and G1/S transition. Deletion of CDK6 was identified in this 

study in 4 of 34 (12%) of CN-ALL cases. It has been shown recently that inhibition of CDK6 

may lead to overcome the differentiation block seen in AML with MLL translocations (Placke 

et al. 2014). Thus, further studies for this gene may also be recommended for better 

understanding of ALL biology.  

CHD2 gene was found to be heterozygously deleted in 7 of CN-ALL and 2 of AML cases. 

The CHD2 gene is a member of the chromodomain helicase DNA-binding (CHD) protein 

family, which are all characterized by a chromatin-remodeling domain (the chromodomain) 

and an SNF2-related helicase/ATPase domain (Carvill et al. 2013). Thus, in future it may be 

of interest to study CHD2 gene deletions also for presence of mutations in this gene and also 

to screen ALL patients in general for CHD2 gene mutations.  

The DCC gene is a member of the immunoglobulin superfamily of cell adhesion molecules 

and acts as a transmembrane dependence receptor for netrins, key factors in the regulation of 

axon guidance during development of the central nerve system. Amplification of DCC gene 

was previously reported only in CLL (Derks et al. 2010, Alhourani  et al. 2014), however, this 

is the first report for DCC gene amplification in ALL. To evaluate the role of the DCC gene 

and to elaborate its potential as a molecular marker in ALL still needs more studies. 

Overall, combination of molecular cyto(genetic) techniques are necessary to provide 

comprehensive details for each clinical case (Roberts and Mullighan 2015, Ilyas et al. 2015).  

 

Summary: High rates of CNAs were detected in CN-ALL, that mean all cases hold 

detectable cryptic genomic aberrations, whereas AML cases showed lower rate of CNAs and 

most likely hold more point mutations or epigenetic changes in relevant genes. Thus, besides 

here used approaches DNA sequencing and SNP-array-CGH may be necessary to be used for 

mutation detection in AL. 
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3.4.  Correlations with clinical data of patients 

Chromosomal alterations and breakpoints in CN-AL and/or in complex rearranged AL could 

be assessed in this work for 58% of the cases. As well known from literature, at diagnosis of 

AL different prognostic factors besides cytogenetics need to be investigated quickly and cost-

effectively such as age, gender, WBC count, cytomorphology of leukemic cells and 

immunophenotype (Pui et al. 2003, Burmeister et al. 2009, Döhner et al. 2010, Vardiman et 

al. 2009). Thus, the best way to evaluate the prognostic significant of each cytogenetic 

abnormality may be different. For instance, one of the well characterized recurrent 

chromosomal abnormalities in AL is the MLL (11q23) gene rearrangements which occurred in 

10% of ALL cases overall, the majority being infant B-ALL (<1 year of age). Up to 93% of 

affected infants under the age of 90 days harbor MLL rearrangements such as translocations 

t(4;11), t(11;19), or t(1;11), and most of these children cannot be rescued with the currently 

available therapies. On the other hand MLL is involved in 30%–50% of childhood and in 5% 

of adult AMLs. However, cytogenetic abnormality of MLL gene predicts a different outcome 

depending on the disease phenotype (articles 2, 8, Balgobind et al. 2011, Chowdhury and 

Brady 2008). It has been proposed that infant leukemia with and without MLL gene 

rearrangements are different diseases with different clinical characteristics and different 

responses to therapy (Tuborgh et al. 2013). The first indication on MLL-gene involvement in 

infant leukemia (<10%) is the presence of skin lesions which so called leukemia cutis. Thus, a 

skin biopsy can be the first screen for the presence of leukemic blast cells. BM aspiration 

revealed either lymphoblasts or monoblasts and the immunophenotyping of routinely 

processed BM specimens is very helpful in establishing the diagnosis of AL (Cho-Vega et al. 

2008, Vardiman et al. 2009), however, 11q23 abnormalities occur predominantly in AML 

(FAB types M5 and M4), high WBCs count and frequently associated with monoblastic cells, 

whereas in ALL highly associated with BCP-ALL, high WBC counts and CD10 negative and 

CD15 positive. All of these clinical parameters still to be considered at the diagnosis of AL 

because MLL rearrangements are easily to missed by G-banding, associated with unfavorable 

outcome in most cases and need correct therapeutic decision (article 2, 8, Pui et al. 2003, 

Burmeister  et al. 2009, Döhner et al. 2010, Vardiman et al. 2009).  

In the present work, three BCP-ALL cases with normal karyotype and four AML-M5 cases 

were studied; one normal and three complex karyotypes were identified including MLL gene 

rearrangements according to the above criteria (articles 2, 8 and yet unpublished data). 

Overall, detection or exclusion of MLL disruption or amplification is extremely necessary for 

treatment decisions, as well as for basic research enabling new insights into possible fusion 
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genes involving MLL. According to FISH the translocation partners for 11q23 are numerous 

and markedly heterogeneous. Thus, to detect the lower level of clonal abnormality, an 

additional molecular method may be needed such as RT-PCR to further evaluate the MLL 

partner fusion genes.  

Detection of specific recurrent chromosomal abnormalities such as deletion of CDKN2A/B 

can be evaluated. Deletions of CDKN2A/B (9p21.3) can be found in 30-50% of ALL as also 

were only found in the present work in 24% of studied CN-ALL cases. Deletions of 

CDKN2A/B result in inactivation of genes in this locus, mainly p16 and p15, suggesting in 

inactivation of these genes that contribute to leukemogenesis. The outcome of cases with 

CDKN2A/B deletion depends on the status of the second allele, as homozygous deletions are 

associated with poor outcome and heterozygous deletions represent markers for favorable 

outcomes (article 5, 6, 7, Schwab et al. 2013, Zhao et al. 2013, Kim et al. 2011, Sulong et al. 

2009).  

All cases were described here in this work with complex karyotypes in article 3, 4, 5, 8, 10 

and yet unpublished date, were associated with adverse prognosis and with maximal overall 

survival rate less than 2 years. This is in agreement with the study conducted by Moorman et 

al. (2007) who observed patients with complex karyotype had an unfavorable outcome and 

relapses occurring in the first 2 years after diagnosis. Actually, this subgroup does not appear 

to be associated with age, gender, or WBC count, as well with immunophenotype. Most of the 

abnormal chromosomes in complex karyotypes were identified as unbalanced and balanced 

translocations (article 3, 4, 5, 8, 10 and yet unpublished date), the unbalance translocations 

that was reported in article 3, suggesting that, activation of such oncogenes in 5q31.1 (IL3) 

and in 10p12.3 (MLLT10) are important in leukemogensis and associated with poor outcome. 

Thus, in AL cases with complex karyotypes, patients require intensive chemotherapy and 

allogeneic bone marrow transplantation during their first remission (Moorman et al. 2007, 

Mrózek 2008, Kayser et al. 2012, Ferrara and Schiffer 2013). Only, one case presented here in 

article 6 was observed with a good prognosis and with overall survival till date after first 

diagnosis for 4 years with CR and without signs for MRD.  

Summary: MLL gene rearrangements should be considered and tested by molecular 

approaches in case of a normal cytogenetic particularly, BCP-ALL with CD10-negative and 

high WBC count as well in AML with subtypes M5 and M4. 

 



4. Conclusions and outlook                                                                                                                              106 

 

4. Conclusions and outlook 

The present work highlights that most if not all of CN-AL cases hold cryptic genomic 

alterations. Overall, sensitive methods to detect cryptic chromosomal / genetic aberrations in 

CN-AL are useful and necessary for genetic risk-based classification and correct 

determination of treatment protocols. 

Molecular cytogenetic approaches together with molecular methods are suited to identify 

cryptic rearrangements and potential target genes that involved in leukemogenesis and 

progression of the disease. The present work demonstrated that aCGH is a highly efficient 

tool for detection of CNAs in CN-ALL. However, while aCGH (and MLPA) provide data on 

imbalanced genomic alterations, (molecular) cytogenetics additionally detects different 

leukemic subclones within one sample, as well as balanced translocations leading to tumor-

specific fusion genes. In CN-AML, DNA sequencing and SNP-array-CGH have been used to 

detect mutations for a number of target genes that are known to key roles in myeloid 

development. It seems to be valid, there is no leukemia clone without genetic alterations; we 

just have to use the appropriate techniques to identify them. In conclusion, to obtain a 

comprehensive picture of all relevant changes in each individual acute leukemia case,  data 

from cytogenetics, FISH, MLPA, aCGH, SNP-array-CGH and DNA sequencing would need 

to be considered and included in diagnostics; however, sometimes such investigations may be 

hampered by lack of sufficient cellular material and or by financial restrictions.  

 

Overall the questions studied in this thesis could be answered as follows: 

1 How many cryptic chromosomal rearrangements were present in the 103 studied CN-

AL-patients? 

In 21/61 CN-ALL and 12/42 CN-AML cases previously overlooked cryptic 

chromosomal rearrangements could be detected; new clonal cryptic rearrangements were 

found in 9/21 (43%) of CN-ALL and in 2/42 (4%) of CN-AML cases. 

2 Can the (new) identified tumor-associated acquired chromosomal breakpoints in CN-AL 

be characterized in detail?  

83% of the overall 124 cryptic chromosomal breakpoints could be characterized in detail 

here by FISH alone; those include 11 new breakpoints in CN-ALL and 3 in CN-AML. 

3 Can the (new) identified tumor-associated acquired chromosomal breakpoints in 

complex-AL cases be characterized in detail?  
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80% of the overall 35 chromosomal breakpoints could be characterized in detail here by 

FISH alone; those included 2 breakpoints in one ALL and 11 breakpoints in seven 

corresponding AML cases. 

4 How many of the cryptic changes were submicroscopic structural CNAs detectable by 

MLPA and array-CGH?  

79% of the overall 155 cryptic chromosomal breakpoints could be characterized in detail 

here by MLPA and or aCGH; those include 3 new candidate genes for ALL and 1 for 

AML: CDK6 (7q12.2), CHD2 (15q26.2) and DCC (18q21.2). 

5 Could the new tumor-associated acquired rearrangements aligned with diagnostic, 

prognostic and therapeutic relevance?  

All here included cases were retrospectively studied, but not for all cases the clinical data 

was available. Still the new three aforementioned candidate genes CDK6, CHD2 and 

DCC were found only in patients with poor therapeutic response. 

Even though during the last years and the present study already major progress was achieved 

for ALL and AML patients, still lots of work is necessary for better understanding the biology 

of these malignant disorders. Candidate genes need to be correlated with clinical outcomes, 

and it can be expected that future studies will provide more insights into mechanisms of 

leukemiogensis, identify novel molecular markers, lead to the development of new diagnostic 

tools and to new entries of therapy development.  
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6. Appendix 

 

6.1. Tables 

 

Table 1.1 Immunological classifications of ALL 

 
 
 
Table 1.2 Cytogenetic prognostic markers in ALL subtypes. 

 

 

lymphoid-lineage in ALL  Expression (CD) 

pro-B-ALL CD19, CD22, CD72, CD74, CD79a, HLA-DR, TdT 

common ALL CD10, CD19, CD20,  CD22, CD72, CD74, CD79a, HLA-DR 

pre-B-ALL CD10, CD19, CD20, CD22, CD72, CD74, CD79a, HLA-DR, 
IgM, Pax5  

mature-B-ALL CD5, CD19, CD20, CD21, CD22, CD24,CD72, CD79a, 
HLA-DR, IgD, IgG, IgM, TdT 

pro-T-ALL cyCD3, CD7, CD10, CD34, TdT 

pre-T-ALL CD2, cyCD3, CD5, CD7, CD10, CD34, TdT  

cortical-T-ALL CD1a, CD2, cyCD3, CD4, CD5, CD7, CD8, CD10, TdT  

mature -T-ALL CD2, cyCD3, mCD3, CD4, CD5, CD7, CD8, CD10, TCRβ 

ALL subtypes cytogenetic abnormality outcome 

pre-B-cell ALL  
 

t(12;21) 
hyperdiploid (>50 chromosomes) 
ERG deletion 

favorable  

t(1;19) intermediate 

t(9;22) 
 t(17;19) 
t(v;11)(v;q23); MLL rearranged 
complex karyotype 
hypodiploidy (<44 chromosomes) 
CRLF2 rearrangements 
iAMP21  

poor 

PAX5 rearrangements   
ABL1 rearrangements   
PDGFRB rearrangements   
JAK2 rearrangements   

unkown 

B-cell ALL t(8;14) 
t(8;22) 
t(2;8) 

intermediate 

T-cell ALL 7q34 or 14q11 rearrangements intermediate 

all normal karyotype intermediate 
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Table 1.3 Recurrent structural chromosomal aberrations in ALL 

 

 

 

 
 

ALL Subtypes   Aberrations Fusion genes 

Pre-B-cell ALL  
 

t(1;19)(q23;p13)  
t(4;11)(q21;q23) 
t(5;14)(q31;q32) 
t(6;11) (q27;q23) 
t(6;14)(q32;p22).   
t(9;11)(p22q23)  
dic(9;12)(p13;p13) 
t(9;22)(q34;q11) 
t(10;11)(p13-14;q14-21)  
t(12;21)(p13;q22) 
t(11;19)(q23;13.3)  
t(14;19)(q32;q13) 
t(17;19)(q22;p13) 
t(X;14)(p22;q32)/t(Y;14)(p11.2;q32) 

PBX1/E2A 

MLL/AF4  

IL3/IGH 

MLL/AF6 

ID4/IGH 

MLL/MLLT3(AF9) 

PAX5/ETV6 

BCR/ABL  

MLL/MLLT10(AF10) 

TEL/AML1 

MLL/ENL  

IGH/ CEBPA  

HLF/E2A 

CRLF2/IGH 

ins(4;11)(q21;q23 
ins(5;11)(q31;q13q23)  

MLL /AFF1 

MLL /AFF4 

inv(11)(q13q23) 
inv(14)(q11q32) 
inv(19)(p13q13) 

MLL/ BTBD18 

CEBPE/IGH 

TCF3/TFPT 

T-cell ALL  
 

t(1;7)(p34;q34)  
t(1;7)(p32;q34)  
t(1;14)(p32;q11)  
t(5;14)(q35;q32) 
t(6;7)(q23;q34) 
t(7;9)(q34;q32) 
t(7;9)(q34;q34) 
t(7;10)(q24;q24) 
t(7;11)(q34;p13) 
t(7;12)(q34;p12) 
t(7;19)(q34;p13) 
t(8;14)(q24;q11) 
t(10;11)(p13;q14) 
t(10;14)(q24;q11) 
t(11;14)(p15;q11)  
t(11;14)(p13;q11) 
t(11;19)(q23;p13) 
t(12;14)(p13;q11) 

LCK/TCRβ  
TAL1/TCRβ  
TAL1/TCRδ 
TLX3/ BCL11B 

MYB/ TCRβ 
TAL2/TCRβ 
TAN1/TCRβ 
HOX11/TCRβ   
RHOM2/TCRδ   
TCRβ/ LMO3 

TCRβ/LYL1  

MYC/TCRα/δ  
MLLT10(AF10)/HOXA 

HOX11/TCRδ   
LMO1/TCRδ    
LMO2/TCRδ  
MLL/ENL  

CCND2/ TCRδ  
inv(7)(p15q34) 
inv(14)(q13q32.33)  

HOXA/TCRβ 
NKX2.1 

Mmature B-cell 
ALL  
 

t(8;14)(q24;q32)  
t(8;22)(q24;q11)  
t(2;8)(p12;q24)  

MYC/IGH 

MYC/IgL 

MYC/Igk 
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Table 1.4 Common DNA CNAs detected in ALL  

gene/CNA detected  Location / Frequency ALL subtype  

del  TAL1  1p32/20%–30% T-ALL 
del  EBF1 5q33.3 / 2% B-ALL 
amp  MYB 6q23.3/ 8% T-ALL 

del  6q (TSG) 6q16 / 20-30% B-ALL / T-ALL 

del  IKZF1 7p12.2 / 15% B-ALL 
amp  NUP214–ABL1 9q34.12-9q34.13 /4% T-ALL 
del CDKN2A/B & MTAP 9p21.3 /30% B-ALL / T-ALL 
del PAX5  9p13.3 /30% B-ALL 
del  PTEN  10q23.3 /10% T-ALL 
del ATM 11q22.3 / 15% B-ALL / T-ALL 
del  ETV6  12p13.2 / 13% B-ALL / T-ALL 
del  RB1  13q14.2 / 4% B-ALL / T-ALL 
del  CREBBP 16p13.3 / 19% Relapsed B-ALL 
del  TP53  17p13.1 3% B-ALL / T-ALL 
amp iAMP21 (RUNX1)  21q22.12 / 2% B-ALL  
del ERG  21q22.2 / 4% B-ALL 
del CRLF2  Xp22.2 / 5% B-ALL 
 
 
 
 
Table 1.5 Immunological classifications of AML 

 
 
 
 
 

myeloid-lineage in AML  Expression (CD) 

M0 CD7, CD13, CD33, CD34, CD38, CD45, CD117, HLA-DR  

M1 CD7, CD13, CD33, CD34, CD38, CD45, CD117, HLA-DR, 
MPO 

M2 CD7, CD11b, CD13, CD14, CD15, CD19, CD33, CD34, 
CD38, CD45, CD56, CD64, CD65, CD117, HLA-DR, MPO 

M3 CD9, CD13, CD33, CD45, CD65, CD68, CD117, HLA-DR, 
MPO 

M4 CD2, CD4, CD7, CD11c, CD13, CD14, CD15, CD33, CD34, 
CD45,  CD56, CD64, CD65, CD117, HLA-DR, lyzozome, 
MPO 

M5 CD2, CD4, CD7, CD11b, CD11c, CD13, CD14, CD15, CD33, 
CD36, CD45, CD64, CD65, CD68, CD117, HLA-DR, 
Llyzozome, MPO 

M6 CD34, CD36, CD45, CD117, CD235a, GPHA, HLA-DR,   

M7 CD4, CD33, CD34, CD36, CD41, CD42a, CD45, CD61, 
CD117, HLA-DR, VWF 

acute basophilic leukemia CD11b, CD13, CD33, CD45, CD123, CD203c, HLA-DR, 
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Table 1.6 WHO classification of AML 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AML with recurrent genetic abnormalities  

AML with t(8;21)(q22;q22), RUNX1-RUNX1T1 
AML with inv(16)(p13q22) or t(16;16)(p13;q22), CEFB-MYH11 
acute promyelocytic leukemia with t(15;17)(q22;q12), PML-RARA 
AML with t(9;11)(p22;q23); MLLT3-MLL 
AML with t(6;9)(p23;q34); DEK-NUP214 
AML with inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 
AML (megakaryoblastic) with t(1;22)(p13;q13); RBM15-MKL1 
AML with mutated NPM1 (provisional entity) 
AML with mutated CEBPA (provisional entity) 
AML with myelodysplasia-related features  

Secondary, therapy related AML and MDS  

AML, not otherwise specified  

AML with minimal differentiation 
AML without maturation 
AML with maturation 
Acute myelomonocytic leukemia 
Acute monoblastic/acute monocytic leukemia 
Acute erythroid leukemia (erythroid/myeloid and pure erythroleukemia variants) 
Acute megakaryoblastic leukemia 
Acute basophilic leukemia 
Acute panmyelosis with myelofibrosis 
myeloid sarcoma 

myeloid proliferations related to Down syndrome  

transient abnormal myelopoiesis 
myeloid leukemia associated with Down syndrome 
blastic plasmacytoid dendritic cell neoplasm  
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Table 1.7 Common chromosomal abnormalities in AML subtypes 

AML 

subtypes  

cytogenetic abnormality affected genes 

M0 complex Karyotype, +4, +11, +13, +21 ? 
M1 t(9;22)(q34;q11) 

-3, -5, del(5q),-7, del(7q), +11, +13, +21 
BCR/ABL 

M2 t(8;21)(q22;q22) 
t(2;4)(p23;q35) 
t(7;11)(p15;p15) 
t(6;9)(p23;q34) 
t(11;19)(q23,p13)  
t(11;20)(p15;q11) 
del(2p), +4, -5, del(5q), -7, del(7q), +8, del(9q),+11, 
+21, -Y 

RUNX1T1/RUNX1 

? 

HOX9/ NUP98 

DEK/NUP214 

MLL/ELL 

NUP98/TOP1 

M3 t(15;17)(q22;q12-21)   
t(11;17)(q23;q12) 
del(7q), i(17q), +21 

PML/RARA 

PLZF/RARA 

M4 inv(16)(p13q22),t(16;16)(p13;q22) 
t(1;7)(q10;p10) 
t(6;9)(p23;q34) 
t(8;16)(p11;p13) 
t(10;11)(p13;q23) 
t(11;17)(q23.q25) 
t(11;19)(q23,p13)  
t(12;22)(p13;q21) 
t(16;21)(p11.2;q22) 
del(16)(q22), +4, -5, del(5q), -7, del(7q), +8, del(9q), 
del(11)(q23q24), +22 

CBFA/MYH11 

? 

DEK/NUP214 

KAT6A/CREBBP 

MLL-MLLT10 

MLL/SEPT9 

MLL/ELL 

ETV6/RUNX1 

FUS/ERG 

M5 t(6;11)(q27;q23),   
t(9;11)(p21;q23),  
t(10;11)(p13;q23), ins(10;11)(p11;q23q24),  
t(11;17)(q23;q25)  
t(11;19)(q23;p13) 
t(8;16)(p11;p13) 
abn11q23  
+8  

MLL/MLLT4 

MLL/MLLT3 

MLL/MLLT10 

MLL/SEPT9 

MLL/ELL 

KAT6A/CREBBP 

MLL 

M6 inv(3)(q21;q26), ins(3;3)(q26;q21q26), 
t(3;3)(q21;q26) 
t(3;5)(q25.1;q35) 
dup(1q), -5,-7, del(7p), del(9q), del(20)(q11), i(21q) 

RPN1/MECOM 

NPM/MLF1 

 

M7 t(1;22)(p13;q13) 
del(20q11), +21 

RBM15/MKL1 
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Table 1.8 Cytogenetic prognostic markers in AML 

outcome  cytogenetic abnormality 

favorable t(8;21)(q22;q22); RUNX1-RUNX1T1 

inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 

t(15;17)(q24.1;q21.1)/PML-RARA 

Mutated NPM1 without FLT3-ITD (normal karyotype)  
Mutated CEBPA (normal karyotype) 

intermediate t(9;11)(p22;q23); MLLT3-MLL 

Mutated NPM1 and FLT3-ITD (normal karyotype) 
del(7q), del(9q), del(11q), abn(12p). del(20q)  
-Y, +8, +11, +13, +21, 
normal karyotype 

adverse  t(v;11)(v;q23); MLL rearranged 
inv(3)(q21q26.2) or t(3;3)(q21;q26.2); RPN1-EVI1 

t(6;9)(p23;q34); DEK-NUP214 

t(1;22)(p13;q13)/RBM15-MKL1 
complex karyotype ≥3 abnormalities 
–5 or del(5q); –7; abnl(17p),  
mutations in IDH1 and/ 
or IDH2,  BAALC overexpression 
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Supplementary Table 1 (Article 7) 

case 
number 

age [y] gender banding cytogenetic result FISH probes 
molecular 

approaches 

B-ALLs 

P1 1 F 46,XX[7] mMCB MLPA  
aCGH 

P8 30 M 46,XY[8] mMCB 
LSPs #21 

MLPA 

P13 34 M 46,XY[8] mMCB 
LSPs #10, #17 

MLPA  
aCGH 

P14 18 M 46,XY[20] mMCB n.d. 

P17 27  46,XX[7] mMCB aCGH 

P22 42 F 46,XX[20] mMCB n.d. 

P23 59 F 46,XX[14]/47,XX,+14[6] mMCB 
MCB#14  
LSPs #14 

MLPA  
aCGH 

P25 71 F 46,XX[5] mMCB n.d. 

P28 84 M 46,XY[5] mMCB 
MCB#11 

LSPs #9, #11 

MLPA  
aCGH 

P29 59 M 46,XY[5] mMCB n.d. 

P37 52 M 46,XY[5] mMCB n.d. 

P40 57 F 46,XX[6] mMCB 
MCB #11 

n.d. 

P41 31 M 46,XY[4] mMCB 
MCB #15 
WCP #8 

n.d. 

P43 69 F 46,XX[20] mMCB 
MCB #11 
CEP #4 

LSPs #11 

MLPA  
aCGH 

P44 24 M 46,XY[3] mMCB 
WCP #4, #10 

n.d. 

P48 39 M 46,XY[20] mMCB 
M-FISH 

MCB #6, #11 
WCP #6, #11 
subCTM11 

LSPs #6, #11 

aCGH 

P49 39 F 46,XX[10] mMCB aCGH 

P50 21 F 46,XX[2] mMCB n.d. 

P51 59 F 46,XX[6] mMCB MLPA  
aCGH 

P52 21 M 46,XY[4] mMCB  MLPA  
aCGH 

P53 34 M 46,XY[5] mMCB  MLPA  
aCGH 

P55 19 M 46,XY[6] mMCB  MLPA  
aCGH 

P56 47 M 46,XY[20] mMCB  MLPA  
aCGH 

P57 56 M 46,XY[3] mMCB  MLPA  
aCGH 

P58 20 F 46,XX[20] mMCB 
MCB #14 

WCP #8, #14 
LSPs #9, #14 

MLPA  
aCGH 

P59 25 M 46,XY[2] mMCB  n.d. 

P62 34 F 46,XX[3] mMCB n.d. 

P64 4 F 46,XX,?der(19)[20] 
 
 

mMCB 
MCB #5, #9, #16, #19 

WCP#5, #9, #16, 
#19, X 

LSPs #5, #9, #16, 
#19    

aCGH 

P65 18 M 46,XY[10] mMCB 
MCB #8, #14,  
LSPs #8, #14 

n.d. 

P66 0.5 F n.d. M-FISH 
MCB #10, #11; #14; 
WCP #10, #11, #14, 
LSPs #10, #11, #14  

aCGH 

P67 12 M 46,XY[15] M-FISH n.d. 
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MCB #1, #7  
LSPs #1, #7, #11 

T-ALLs  

P3 19 M 46,XY[8] mMCB n.d. 

P5 22 F 46,XX[12] mMCB MLPA  
aCGH 

P6 16 M 46,XY[9] mMCB 
M-FISH 

MCB #3, #5, #10 
WCP #4  

MLPA  
aCGH 

P7 26 M 46,XY[7] mMCB  
M-FISH 

MCB #2, #9, #11, #18  
WCP #10, #14 
subCTM #11 

LSPs #2, #9, #18 

MLPA  
aCGH 

P15 44 F 46,XX[5] mMCB n.d. 

P18 36 M 46,XY[5] mMCB 
MCB5 

LSPs #18 

MLPA 

P26 28 F 46,XX[5] mMCB n.d. 

P32 27 M 46,XX[17] mMCB 
MCB #6, #10, #14 

subCTM #6 
LSPs #9, #12, #13 

MLPA 

P35 40 M 46,XY[10] mMCB 
LSPs #9 

MLPA  
aCGH 

P36 58 M 46,XY[20] mMCB n.d. 

P38 22 M 46,XY[3] mMCB MLPA  
aCGH 

P61 18 F 46,XX[20] mMCB 
M-FISH 

MCB #2, #4;#7, #10 
WCP #2, #7, #10 
LSPs #2;#7, #10   

MLPA  
aCGH 

B- or T ALLs (not clinically well defined)  

P2 23 F 46,XX[11] mMCB n.d. 

P4 18 F 46,XX[2] mMCB n.d. 

P9 4 F 46,XX[2] mMCB n.d. 

P10 15 F 46,XX[5] mMCB n.d. 

P11 26 M 46,XY[8] mMCB  
WCP #11, #22 

aCGH 

P12 24 F 46,XX [5] mMCB n.d. 

P16 17 F 46,XX[7] mMCB 
LSPs #9; #12 

MLPA  
aCGH 

P19 9 M 46,XY[5] mMCB n.d. 

P21  62 M 46,XY[11] mMCB aCGH 

P24 23 M 46,XY[12] mMCB 
LSPs #18 

MLPA 

P27 71 F 46,XX[5] mMCB n.d. 

P30 46 M 46,XY[6] mMCB 
MCB #9 

MLPA 

P31 58 M 46,XY[5] mMCB n.d. 

P33 76 F 46,XX[4]/45,X,-X[14] mMCB 
LSPs #9, #12, #18 

MLPA  
aCGH 

P34 61 M 46,XY[7] mMCB 
MCB5  

LSPs #5 

n.d. 

P39 52 F 46,XX[5] mMCB n.d 

P46 63 M 46,XY[8] mMCB 
CEP #7 

WCP#5, #10 

MLPA  
aCGH 

P47 59 M 46,XX[6] mMCB MLPA  
aCGH 
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Supplementary Table 2 (Article 7) 

probe locus 

CEB108/T7 (Abbott/Vysis) 1p36.3 
ZytoLight®SPEC ALK (ZytoVision) 2p23.2~23.1 
D2S447 (Abbott/Vysis)  2q37.3 
ZytoLight®SPEC TFG (ZytoVision) 3q12.2 
RP11-114M1 and RP11-91K9 (TBL1XR1) 3q26.32 
D3S4559 (Abbott/Vysis) 3p26.3 
CEP4 = D4Z1 (Abbott/Vysis) 4p11-q11 
C84c11/T3 (Abbott/Vysis) 5p15.33 
LSI D5S721 (Abbott/Vysis) 5p15.2 
LSI EGR1/D5S23 (Abbott/Vysis) 5q31 
POSEIDON PDGFRB (Kreatech) 5q33  
D5S2907 (Abbott/Vysis) 5q35.3 
ZytoLight®SPEC MYB (ZytoVision) 6q23.2~q23.3 
ZytoLight®SPEC CEN6 = D6Z1 (ZytoVision) 6p11.1-q11.1 
ZytoLight®SPEC ESR1 (ZytoVision) 6q25.1 
RP11-112P10 (RELN) 7q22.1 
VIJyRM2000 (Abbott/Vysis) 7q36.3 
ZytoLight®SPEC CDKN2A (ZytoVision) 9p21.3 
ZytoLight®SPEC CEN9 = D9Z3 (ZytoVision) 9q12 
LSI ABL (Abbott/Vysis) 9q34 
Z96139 (Abbott/Vysis) 10p15.3 
ZytoLight®SPEC WT1  (ZytoVision) 10p13 
ZytoLight®SPEC CEN 10 = D10Z1 (ZytoVision) 10p11.1-q11.1 
ZytoLight®SPEC PTEN (ZytoVision) 10q23.3 
ZytoLight®SPEC FGFR2 (ZytoVision) 10q26.13 
D10S2290 (Abbott/Vysis) 10q26.3 
D11S2071 (Abbott/Vysis) 11p15.5 
POSEIDON NUP98 (Kreatech) 11p15.4 
ZytoLight®SPEC BIRC3 (ZytoVision) 11q22.2 
ZytoLight®SPEC ATM (ZytoVision) 11q22.3 
LSI MLL (Abbott/Vysis) or POSEIDON MLL (Kreatech) 11q23.3 
D11S1037 (Abbott/Vysis) 11q25 
8M16/SP6 (Abbott/Vysis) 12p13.3 
ZytoLight®SPEC ETV6 (ZytoVision) 12p13.2 
LSI 13 (RB1) (Abbott/Vysis) 13q14.2 
LSI D13S25 (Abbott/Vysis) 13q14.3 
LSI IGH (Abbott/Vysis) 14q32.33 
D14S1420 (Abbott/Vysis) 14q32.33 
ZytoLight®SPEC FUS (ZytoVision) 16p11.2 
ZytoLight®SPEC TP53 (ZytoVision) or LSI p53 (Abbott/Vysis) 17p13.1 
CEP 18 = D18Z1 (Abbott/Vysis) 18p11.1-q11.1 
LSI BCL2 (Abbott/Vysis) 18q21 
RP11-346H17 (DCC) 18q21.2 
ZytoLight®SPEC MALT1 (ZytoVision) 18q21.32 
ZytoLight®SPEC 19q13 (ZytoVision) 19q13.3 
POSEIDON MLLT1 (Kreatech) 19p13.3 
ZytoLight®SPEC 19p13 (ZytoVision) 19q13.43 
ZytoLight®SPEC RUNX1 (ZytoVision) 21q22.12 
ZytoLight®SPEC ERG (ZytoVision) 21q12.13 
LSI BCR (Abbott/Vysis) 22q11.2 
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