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On the parametric eigenvalue behavior of
matrix pencils under rank one perturbations

Hannes Gernandt and Carsten Trunk

Abstract

We study the eigenvalues of rank one perturbations of regular matrix pencils de-
pending linearly on a complex parameter. We prove properties of the correspond-
ing eigenvalue sets including a convergence result as the parameter tends to infinity
and an eigenvalue interlacing property for real valued pencils having real eigenval-
ues only.
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1 Preliminaries

We consider matrix pencils A(s) = sE — A for s € C with E;A € C™*". Here
the pencil A is assumed to be regular, which means that det(sE — A) is not the zero
polynomial. Otherwise we say that A is singular. For A regular the finite eigenvalues
are given by the zeros of the characteristic polynomial det(sE — A) and oo is said
to be an eigenvalues of A if E is not invertible. The set of all eigenvalues of A is
denoted by o(.A). For regular A and A € C we denote the geometric multiplicity
of A by gm 4(A\) := dimker(AE — A) and the algebraic multiplicity am 4 () is the
zero order of det A(s) at \. For A = oo one defines gm 4(c0) := dimker E and
amy(oo) := n — degdet A(s). It is our aim to investigate the eigenvalues under
parameter dependent rank one perturbations of the form

7P(s) := 7(as — Bluv’, a,B € C, u,vcC", (1.1)

where 7 is a parameter varying over C. For an overview of the theory of regular matrix
pencils and general perturbation results see [3, 5, 8]. For previous results on low-rank
perturbations of regular matrix pencils we referto [1,2,6,9].

In this note, we follow the approach from [7], where generic results on the para-
metric eigenvalue behavior of matrices, i.e. £ = I,, were obtained. For this we fix a
perturbation P of the form (1.1) and derive properties of the eigenvalues of A + 7P in
dependence of 7, i.e. our results are non-generic.



For A(s) = sE — A regular there exists S, T € C™*" and r € N such that SA(s)T
is in Weierstraf3 canonical form (cf. [3]), i.e.

_ _ I. 0 _ J 0 rXT (n—=r)x(n—r)
S(sE A)T—S(O N) (0 In—r)’JEC ,NeC (1.2)

with J and N in Jordan canonical form and IV nilpotent. Here, the matrix J contains all
the Jordan chains at the finite eigenvalues of .4 and the matrix N contains all the Jordan
chains of A at co. In particular we have gm 4 (c0) = dimker IV and am 4(c0) = n—r.

Lemma 1.1. Let A(s) = sE — A be regular then the function s — (os — )v” (sE —
A)~Yu is holomorphic on C \ o(A) and the following numbers are equal.

(@) The order of the pole of s — (o — Bs)vT (—sA+ E)~tuat 0.
(b) The order of the pole of s + (as — B)vT (sE — A)~lu at oo, i.e. the order of
the pole of s — (al/s — B)vT (1/sE — A)"lu at 0.

(c) The smallest N € N such that lims_, o, s~ (as — B)v (sE — A)~lu exists.

Proof. From the Weiertra canonical form (1.2) with S, 7" € C™*" it can be seen that

sl —J)7!

v (sE — A tu =TT (( Su. (1.3)

1)

Thus s — (as — B)v" (sE — A)~'u is just the sum of rational functions with poles
only in a subset of o(A), hence it is holomorphic on C\ o(.A). By definition, the order
of the pole of s — (al/s — B)vT(1/sE — A)~tuat 0 is the smallest N € N such that

lim s™ (al/s — B)vT (1/sE — A)tu = lim s (a — Bs)v? (B — sA) " u
s—0 s—0
exists. This is the order of the pole of s — (a — Bs)vT (—sA + E)~tu at 0. O

For A € o(A) \ {oo} we denote by 1, (\) the order of the pole of s — (as —
BT (sE — A)~lu at X and set My, (A) := 0 if there is no pole. For oo € o(A) the
number m,,, (00) is the order of the pole of s — (o — Bs)vT (—sA + E)~lu at 0.

In the next lemma we provide a common method to characterize the eigenvalue at
0.

Lemma 1.2. Let A(s) = sE — A be regular then we define the dual pencil A'(s) =
—8A + E then the following holds.

(a) We have \ € o(A)\{0,00} ifand only if \™' € o(A)\{0, 0o} with gm 4(\) =
gm 4 (A71) and am 4 (\) = am 4 (A71).

(b) We have 0 € o(A) if and only if oo € o(A’) with gm 4(0) = gm 4, (c0) and
am4(0) = am 4/ (c0).

(c) We have 0o € o(A) if and only if 0 € o(A") with gm 4(c0) = gm 4, (0) and
am 4 (00) = am_ 4 (0).



Proof. We use the transformation matrices S, T € C™*" from (1.2) and obtain

_ _ _ J 0 I, 0 rXTr (n—r)x(n—r)
S(—=sA—E)T = 3(0 Inr)+<0 N)’ JeC*" NeC

which already in block diagonal form. It remains to transform it into Weierstral} canon-
ical from. Now let us consider a Jordan block J,,(\) of J at A € o(A) \ {0, 00}
of sizz m € N\ {0}. Then a computation of J,,(\)~! shows that there exists
U e C™™ with J,,,(\) ™' = U~ J,,(A"1)U. With the transformations S = U~
and T = J,,,(\)~'U we obtain

STmNT =U T NI N =1, SLT = Jp(A7H).

From the block decomposition we see that there exist S, 7" € C™*" such that

. - (1 0 J 0

S(—sA—E)T =s (O N) — <0 I)
where for each Jordan block J,,()) in J there is a Jordan block Tm(A"1) in J. Fur-
thermore J contains the block N which contains now the Jordan chains of A’ at 0 and

N is nilpotent and consist of the Jordan blocks of J at 0. This proves the claims (a) -
(©). O

Lemma 1.3. For A regular and P of the form (1.1) we introduce the polynomials
m(s) = I eoan oo} (5 — N Q) and p(s) == (as — B)vTm(s)(sE — A)"lu.
Then the following holds.

(2) For my,(00) > 0 we have degp = degm + My, (00).

(b) We have the polynomial factorization det(A+7P)(s) = ditzé()S) (m(s)+71p(s)).
(c) We have the dual factorization det( A" + 7P’)(s) = dcrflft/s()s) (m*(s) + Tp%(s))

with
mb(s) := gmuv () H (s — A7 H)ymue (V)
A€o (A)\{0,00}
Pi(s) == (a — Bs)vTmi(s)(—As + E)"lu
Proof.  (a) An evaluation of (aes — 8)vT (sE — A)~'u with the help of Weierstraf
canonical form shows that this function is the sum of rational functions ;Ezg with

q(s) = (s — N)F for A € o(A) \ {oco} and r is constant or r is a polynomial of
degree at most m,,, (00) and ¢ is constant. Therefore the degree of p is deg m +
My (00).

(b) We use Sylvester’s determinant identity and obtain
det(A + 7P)(s) = det(sE — A)det(I,, + (sE — A)"'r(as — BuvT)
=det(sE — A)(1 + vl (sE — A)"'r(as — B)u)
det A(s)

= W(m(s) +7p(s)).



Note that det A(s) is divisible by m(s) since my,,(A) < am 4(A) holds.

(c) This can be proven in the same way as (b) with an application of Lemma 1.2 and
Lemma 1.1 to rewrite m?.

O

2 The algebraic multiplicity and eigenvalue convergence

In the next proposition we describe the regularity of .4 + 7P and the change of the
algebraic multiplicities in dependence of 7.

Proposition 2.1. Let A(s) = sE — A be regular; let P be of the form (1.1).

(a) Assume that there exists A\ € o(A) with My, (X) > 0. Then A + 7P is regular
for all T € C and the following holds.

(i) Forall p € o(A) with my, (1) > 0 we have am 4y ,p () = am4(p) —
Mauw(A) forall T € C\ {0}

(i) Forp € o(A)\{oo} withmy,(u) = 0andp(p) = 0 we have am a4 p(p) =
amy(p) forall T € C.

(iii) Forp € o(A)\{oo} withmy,(p) = 0and p(p) # 0 we have am a1 p (1) =

am(u) forall T € C \ {—7:((:)) I3

(iv) For ji = oo € a(A) withmy,(co) = 0and p*(0) = 0 we have am 4, . p () =
amy(p) forall T € C.
(V) Forpu = oo € o(A) withm.,(c0) = 0and p*(0) # 0 we have am 4 ,p (11) =

mt
amy(p) forallT € C\ {— pu(((?)) }.

(b) Assume that m,(\) = 0 for all X € o(A). Then m = 1, the polynomial p is
constant and the following holds.

(i) Ifp = 0thendet(A+7P)(s) = det A(s) forall T € C. Hence am g4rp(\) =
amy(A) forallT € Candall A € o(A).

(i) If p = cfor some c € C\ {0} then amay,p(A) = ama(N) forall X €
o(A)and T € C\ {—1/c} and A — 1/cP is singular.

Proof.  (a) For A € o(A) with A € o(A) \ {oo} we have m(A\) = 0 and p(A) # 0.
Otherwise, for p(A\) = 0, we could divide by s — A which is a contradiction to the
definition of m,,, () as the pole order at A. This implies that (i) holds and that
m + 7Tp is not the zero polynomial. Hence Lemma 1.3 (b) implies that A + 7P
is regular for all 7 € C. For A = 0o and my,,,(0c0) > 0 we see from Lemma 1.3
(a) that deg m < degp. Therefore m + 7p is unequal to the zero polynomial for
all 7 € C and (i) holds in this case. The statements (ii) and (iii) can be verified
easily. The dual factorization from Lemma 1.3 (c) implies (iv) and (v).



(b) Assume m,,(A) = 0 for all A € o(A), then the definition of m implies m =
1. Furthermore p we see from the Weierstral3 canonical form (1.2) that p is a
polynomial. Since m,,,(0cc) = 0 implies by Lemma 1.1 (c) that p is bounded on
C we infer that p is constant. Now (i) and (ii) are easy to see.

O

In the next theorem we describe the eigenvalue behavior as 7 — oo.

Theorem 2.2. Let A be regular and let P be of the form (1.1) such that there exists
A € o(A) with my,(A\) > 0.

(a) For p € C\ o(A) with p(u) # 0 then T = —% is the only value such that
weoa(A+T1P).

(b) There exists o € C such that for all T > 1

Z amy,p(p) = Z Maw(A) = max{deg p, degm}.
neo(A+1P)\o(A) A€o (A)

(c) There are degp eigenvalues, counting with multiplicity, that converge for T —
o0 to the zero set of p and max{0,degm — degp} eigenvalues converge to co.

Proof.  (a) Consider the factorization from Lemma 1.3 (a) for s = g . From p €
C\ o(A) we conclude m(p) # 0 and det(uE — A) # 0. Hence 4 € o(A+7P)
if and only if m(u) +7p(u) = 0, but this is a linear equation in 7 with the unique

)

solution 7 = .
()

(b) From the Proposition 2.1 (a) we see that there is a 7y € C such that forall 7 > 7
the following equations hold

n= 3 amaip(n)

peo(A+7P)

= Z AMA+TP (p’) + Z amM AP (,LL)
neo(A+7P)No(A) neo(A+7P)\o(A)

= Z amA(:U‘) - Z muv()‘) + Z amA++rp (,UJ)
peo(A) A€o (A) pneo(A+7P)\o(A)

Now 3° ¢, (4)ama(p) = n implies

Z ama4,p(p) = Z Moy (A) = degm + my, (00).
peo(A+1P)\o(A) A€o (A)

For m,, (00) > 0 this is by Lemma 1.3 (c) equal to deg p. For m,,(00) = 0 we
have deg p < deg m. This proves the claim



(c) We consider the factorization from Lemma 1.3 (b) and write the last factor for
7 € C\ {0} as 771m + p and consider this polynomial in a neighborhood of
the zeros of p given by Cj(e) := {A € C| |\ — ;| < e} withj =1,... k.
Here € > 0 is chosen such that these discs are pairwise disjoint. As 7 — oo the
polynomial converges on U?lej(s) uniformly to p. By Rouche’s theorem the
number of zeros of p and 7~ 'm+p inside the discs coincide, they are eigenvalues
of A+ 7P by Lemma 1.3 (b), and they converge to the zeros of p. For degp <
deg m the convergence to oo follows from considering the dual pencil A’ + 7P’
and applying the above argument to the dual factorization from Lemma 1.3 (c)
and the expression 7'm?® + p* on a disc around 0.

O

3 Eigenvalue interlacing for real valued matrix pencils

In the following we consider matrix pencils with 0(A4) C R U {oo} and semi-simple
eigenvalues, i.e. am(A) = gm 4(A) for all A € o(A). Under the assumption that all
eigenvalues move in the same direction, we show in the next theorem that the eigen-
values interlace, i.e. roughly speaking that there is only one eigenvalue of A + 7P
between two consecutive eigenvalues of .A.

Theorem 3.1. Let A(s) = sE — A be regular with E; A € R™ "™ and only real
semi-simple eigenvalues \g < ... < A\, < oo and let P(s) = (as — B)uv” with
u,v € R", o € R\ {0}, B € Rand B/a ¢ o(A). Then there exist transformation
matrices S, T € R™ "™ in (1.2) such that J is diagonal and N = 0 we decompose

according to the eigenspaces Su = (ul,... ,ul uwI)T vTT = (vI,... 0L vL)
with u;,v; € Rmi and Use, Voo € R, Denote by 11 < ... < iy < 00 all indices
with (8 — aXi, vl ui, # 0fork =1,...,m' and assume that m' > 2.

(@) Ifviu; # 0thenam gy, p(\;) =ama(N\;) —1forall T € C\{0}. IfvIu; =0
then am 44 ,p(N\;) = am4(N\;) forall T € C\ {77;((;‘) .

(b) Assume (8 — aX;, v} u;, >0 forallk =1,...,m' —1.

@) If N, < ocand (f — oz/\im,)vz:n,ui , > 0 then for all T € (0, 00) there
exists X;, (1) € Cwith o(A+7P) N (Niys Nipyy) = {Ni (1)} U (0(A) N
()\Zk,)\ZHl))for allk =1,...,m' — 1 and o(A+ 7P) N ((Ap, 00] U
(=00, Aiy)) = A{Xi,, (1)} U (0(A) N (A, 00] U (=00, Aiy ).

(i) For \;,, = o0 and a(—1)"""v  us < 0 then for all T € (0,00) there
exists \;, (1) € Cwith o(A+7P) N (N, Nipyy) = {Ni (1)} U (0(A) N

()\Zk,)\lkﬂ))for allk =1,...,m' —land o(A+ 7P) N (=00, \;,) =
{Ame ()}
(c) Assume (8 — i, vl ui, <Oforallk=1,. -1



(i) If \i,, < ocand (B — a)\z-m,)v;{n/uim, < 0 then for all T € (0,00) there
exists N, . (1) € Cwith o (A+7P)N(Niy, Nipsr) = { Ny (T)FU(0(A)N
(Nigs Aigoy ) forall k = 1,...,m" — 1 and o(A + 7P) N ((Amr, 00] U
(=00, Ai;)) = {Ai, (1)} U (0(A) N (A, 00] U (=00, Ay, ))).

(i) If X;,, = o0 and a(—1)"""v  us > 0 then for all T € (0, 00) there exists
Nigsr (1) € Cwitho(A+7P) N ()\lk’)\lk+1) = { i (N} U (e(A) N
(Nigs Nigoy ) forallk =1,....m' —1and o(A+ 7P) N (Apr—1,00) =
{Ai, (T)} U (0(A) N (Amr—1,00)).

The assumptions of (b) and (c) imply that o (A+ 7P) C RU {oo} holds for all T € R.

Proof. First note that for £, A € R™™" and 0(A) C RU {oo} there exist S, T €
R™ "™ guch that (1.2) holds with J diagonal and N = 0 (cf. [3]). This readily implies
(B — aX)viu; € Rforalli = 1,...m and it allows us write

v (sE — A)"lu = (—1)"~ TvTuoo—i—Z

vul

3.1)
S

T (—sA+ B) Ly = (=1)"" *H;Tuoﬁz o “l 3.2)

Therefore v} u; # 0 implies m.,,(\;) = 1 and v} u; = 0 implies M, (\;) = 0.
Together with Proposition 2.1 this proves (a). We continue with the proof of (b). For
given 7 > 0and A € o(A+ 7P) \ 0(A) with A # oo we obtain from (3.1) the
equation m(\) +7p(A) = 0. We show that there is a solution to this equation A;, (7) €
(Aip, Aip., ). Under the assumption of (i) we have v uo, = 0 and the equation m(\)+
7p(A\) = 0 can be reduced with (3.1) to

< (8 — aX)vlug,

—1 1k
= _— Tk = 3.3
D D (33)
k=1
On the interval (\;,, Ai,,,) the right hand side of (3.3) is a continuous function that

maps onto R in the case 3/a ¢ (X, Ai,,,) and onto [0, c0) for B/ € (Ni, Aiy)-
Hence we conclude that for every 7 € (0, 0o) there is a solution \;, (7) € (Ai,, Aiy,,)
forall k = 1,...,m' — 1. For the interval around oo given by (X; ,,00] U (=00, A;;)
one can see that the right hand side of (3.3) can be extended continuously to A = oo
which leads to the existence of a solution of the equation (3.3). Under the assumption

Ai,,, = oo of (ii) one has to solve the equation

B — aX)vk (B = aMvj uiy

T = (D)8 — aA)uduse + Z . (3.4)

The arguments for the existence of a solution of (3.4) in (A, , A;, ,,) remain the same
fork =1,...,m’'—1. For k = m’ one uses the dual pencil A’ + 7P’ with the equation
m#(\) 4+ 7p*(\), to show the existence of a solution in (—o0, \;, ).



In summary we have shown that there are m/' eigenvalues in these disjoint intervals.
Furthermore (a) implies that m’ = degm and Proposition 2.1 shows that there are at
most deg m eigenvalues in o(A+7P)\ o(.A). Hence each of these eigenvalues \;, (7)
is simple when there are not an element of o(.4) which proves (b) and we also have
o(A+ 7P) C RU {oo} for all 7 € R under the assumptions of (b). The proof of (c)
can be carried out in the same way as the proof of (b). O

Remark 3.2. The above Theorem 3.1 remains true for m’ < 1. For m’ = 0 we see from
Proposition 2.1 that am 44,p(A) = am_4(A) holds for all A € o(A) and all 7 € C and
therefore o (A + 7P) = o(A) for all 7 € C. For m’ = 1 one considers the open and
connected set R \ {)\;, } instead of the intervals (X;, , A, ).
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