## Technische Universität Ilmenau Institut für Mathematik

Preprint No. M 16/03
Limit-point / limit-circle classification of second-order differential operators arising in PT quantum mechanics

Florian Büttner and Carsten Trunk

## Impressum:

Hrsg.: Leiter des Instituts für Mathematik
Weimarer Straße 25
98693 Ilmenau
Tel.: +49 3677 69-3621
Fax: +49 3677 69-3270
http://www.tu-ilmenau.de/math/

# Limit-point / limit-circle classification of second-order differential operators arising in $\mathcal{P} \mathcal{T}$ quantum mechanics 

Florian Büttner and Carsten Trunk


#### Abstract

We consider a second-order differential equation $-y^{\prime \prime}+q(x) y(x)=$ $\lambda y(x)$ with complex-valued potential $q$ and eigenvalue parameter $\lambda \in$ $\mathbb{C}$. In $\mathcal{P T}$ quantum mechanics the potential has the form $q(x)=$ $-(i x)^{N+2}$ and is defined on a contour $\Gamma \subset \mathbb{C}$. Via a parametrization we obtain two differential equations on $[0, \infty)$ and $(-\infty, 0]$. With a WKB-analysis we classify this problem according to the limit-point/ limit-circle scheme.


Keywords: non-Hermitian Hamiltonian, Stokes wedges, limit point, limit circle, $\mathcal{P} \mathcal{T}$ symmetric operator, spectrum, eigenvalues

## 1 Introduction

We consider a quantum system described by the Non-Hermitian Hamiltonian (see [3])

$$
\begin{equation*}
H=\frac{1}{2 m} p^{2}-(i z)^{N+2} \tag{1.1}
\end{equation*}
$$

with a natural number $N$. The associated Schrödinger eigenvalue problem

$$
\begin{equation*}
-y^{\prime \prime}(z)-(i z)^{N+2} y(z)=\lambda y(z), z \in \Gamma \tag{1.2}
\end{equation*}
$$

is defined on a contour $\Gamma$ in the complex plane and $\Gamma$ is symmetric with respect to the imaginary axis. For simplicity we choose

$$
\begin{equation*}
\Gamma:=\left\{z=x e^{i \phi \operatorname{sgn}(x)}: x \in \mathbb{R}\right\}, \quad \phi \in(-\pi / 2, \pi / 2), \tag{1.3}
\end{equation*}
$$

cf. [2]. Via the parametrization

$$
z(x):=x e^{i \phi \operatorname{sgn}(x)}
$$

we obtain two Sturm-Liouville differential equations on $[0, \infty)$ and on $(-\infty, 0]$, repectively. In 1957 A. R. Sims developed a limit-point/ limit-circle classification for complex potentials, see [7]. A further refinement was obtained in [4], see also [6]. For the eigenvalue problem (1.2) we give a full classification into limit-point/ limit-circle according to the angle $\phi$ in (1.3). In particular we show limit-point at Stokes line and limit-circle at Stokes wedges. With (1.1) we associate an operator in a $L^{2}(\mathbb{R})$ space. The associated operator is a $\mathcal{P} \mathcal{T}$-symmetric operator, where $\mathcal{P}$ is the parity operator and $\mathcal{T}$ is time reversal, cf. [3] and [1].

## 2 Limit-point/ Limit-circle classification

We recall the limit-point/ limit-circle-classification from [4, Theorem 2.1]. We consider

$$
\begin{equation*}
-w(x)^{\prime \prime}+q(x) w(x) \quad \text { on }[0, \infty) \tag{2.1}
\end{equation*}
$$

with $q$ locally integrable and complex valued. We assume

$$
\begin{equation*}
Q:=\operatorname{clconv}\{q(x)+r: x \in[0, \infty), 0<r<\infty\} \neq \mathbb{C} \tag{2.2}
\end{equation*}
$$

where clconv denotes the closed convex hull. For $\lambda_{0} \notin \mathbb{C} \backslash Q$ is $K$ the nearest point in $Q$ and $L$ a line touching $Q$ in $K$. We translate $K$ via $z \mapsto z-K$ in the origin and rotate via the angle $\eta \in(-\pi, \pi]$ so that $L$ coincide with the imaginary axis and $\lambda_{0}$ and $Q$ lie in the negative and non-negative half-planes. For such $K$ and $\eta$ define $\Lambda_{K, \eta}:=\left\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda-K) e^{i \eta}<0\right\}$. The following theorem is taken from [4, Theorem 2.1].

Theorem 2.1. For $\lambda \in \Lambda_{K, \eta}$, exactly one of the following holds.
(I) There exists $a$, up to a constant, unique solution $w$ of (2.1) satisfying

$$
\begin{equation*}
\int_{0}^{\infty} \operatorname{Re}\left[e^{i \eta}\left(\left|w^{\prime}\right|^{2}+(q-K)|w|^{2}\right)\right] d x+\int_{0}^{\infty}|w|^{2} d x<\infty \tag{2.3}
\end{equation*}
$$

and this is the only solution satisfying $w \in L^{2}\left(\mathbb{R}_{+}\right)$.
(II) There exists $a$, up to a constant, unique solution $w$ of (2.1) satisfying (2.3) but all solutions satisfy $w \in L^{2}\left(\mathbb{R}_{+}\right)$.
(III) All solutions $w$ of (2.1) satisfy (2.3) and $w \in L^{2}\left(\mathbb{R}_{+}\right)$.

Cases (I) and (II) are called limit-point cases and case (III) is called limitcircle case.

## $3 \mathcal{P} \mathcal{T}$-symmetric Problem

We can decompose the complex plane with the angle $\phi=-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi$ in $N+4$ sectors, so-called Stokes wedges,

$$
\begin{aligned}
S_{k} & :=\left\{z \in \mathbb{C}:-\frac{N+2}{2 N+8} \pi+\frac{2 k-2}{4+N} \pi<\arg (z)<-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi\right\}, \\
k & =0, \ldots, N+3
\end{aligned}
$$

and the $N+4$ Stokes lines

$$
L_{k}:=\left\{z \in \mathbb{C}: \arg (z)=-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi\right\}, k=0, \ldots, N+3
$$

Therefore $\Gamma$ is either contained in two Stokes wedges or corresponds to two Stokes lines.

We map the problem back to the real line via the parametrization

$$
z: \mathbb{R} \rightarrow \mathbb{C}, \quad z(x):=x e^{i \phi \operatorname{sgn}(x)}
$$

Thus $y$ solves (1.2) for $z \neq 0$ if and only if $w, w(x):=y(z(x))$ solves

$$
-e^{\mp 2 i \phi} w^{\prime \prime}(x)-(i x)^{N+2} e^{ \pm(N+2) i \phi} w(x)=\lambda w(x), x \in \mathbb{R}_{ \pm} .
$$

This differential equation can be written as

$$
\begin{equation*}
-w^{\prime \prime}(x)-(i x)^{N+2} e^{ \pm(N+4) i \phi} w(x)=\tilde{\lambda} w(x), x \in \mathbb{R}_{ \pm} \tag{3.1}
\end{equation*}
$$

with $\tilde{\lambda}:=\lambda e^{ \pm 2 i \phi}$.

Proposition 3.1. (i) If $\phi \neq-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi, k=0, \ldots, N+3$, then (3.1) is in the limit-point case, cf. case (I) in Theorem 2.1. In particular this implies that only one solution of $(3.1)$ is in $L^{2}\left(\mathbb{R}_{+}\right)$resp. $L^{2}\left(\mathbb{R}_{-}\right)$.
(ii) If $\phi=-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi, k=0, \ldots, N+3$, then (3.1) is in the limitcircle case, cf. case (III) in Theorem 2.1. In particular this implies that all solutions of (3.1) are in $L^{2}\left(\mathbb{R}_{+}\right)$resp. $L^{2}\left(\mathbb{R}_{-}\right)$.

Proof. The two corresponding linear independent solutions $w_{1}$ and $w_{2}$ of the Schrödinger eigenvalue differential equation $-w^{\prime \prime}(x)-(i x)^{N+2} e^{(N+4) i \phi} w(x)=$ $\tilde{\lambda} w(x), x \in \mathbb{R}_{+}$satisfy [5, Corollary 2.2.1]

$$
w_{1,2}(x) \sim q(x)^{-1 / 4} \exp \left( \pm \int_{1}^{x} \operatorname{Re}\left(q(t)^{1 / 2}\right) d t\right), \text { for } x \rightarrow \infty
$$

with $q(x):=-(i x)^{N+2} e^{(N+4) i \phi}-\lambda e^{2 i \phi}$. The notation $f(x) \sim g(x)$ means that $f(x) / g(x) \rightarrow 1$ as $x \rightarrow \infty$. The same holds for the solutions as $x \rightarrow-\infty$ with $q(x):=-(i x)^{N+2} e^{-(N+4) i \phi}-\lambda e^{-2 i \phi}$, which is easily seen by replacing $x$ by $-x$.

If $\phi \neq-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi$ and $\lambda=0$ then $\operatorname{Re}\left(q(t)^{1 / 2}\right) \neq 0$ and there exists exactly one solution in $L^{2}\left(\mathbb{R}_{+}\right)$resp. $L^{2}\left(\mathbb{R}_{-}\right)$. This implies, see [4, Remark 2.2], that we have case (I), limit point case, in Theorem 2.1.

For $\phi=-\frac{N+2}{2 N+8} \pi+\frac{2 k}{4+N} \pi$ we obtain $-w^{\prime \prime}(x)-x^{N+2} w(x)=\tilde{\lambda} w(x)$ and therefore we are in the limit-circle case with [8, Remark 7.4.2], if $N>0$, i. e. case (III) in Theorem 2.1. In particular case (II) in Theorem 2.1 is not possible.

Let $\phi$ be as in Proposition 3.1(i), limit-point case. Consider the following operators (cf. [4, Theorem 4.4])

$$
\begin{gathered}
\operatorname{dom}\left(A_{ \pm}\right):=\left\{y \in L^{2}\left(\mathbb{R}_{ \pm}\right): A_{ \pm} y \in L^{2}\left(\mathbb{R}_{ \pm}\right), y, y^{\prime} \text { loc. abs. cont., } y(0)=0\right\} \\
A_{ \pm} y(x):=-y^{\prime \prime}(x)-(i x)^{N+2} e^{ \pm(N+4) i \phi} y(x) .
\end{gathered}
$$

Theorem 3.2. The spectrum $\sigma\left(A_{ \pm}\right)$is contained in $Q$, cf. (2.2), and consists only of isolated eigenvalues of finite algebraic multiplicity.

A similar conclusion holds for $\phi$ is as in Proposition 3.1(ii) (limit-circle case), cf. [4].

Remark 3.3. One can show that the operator $A_{+} \oplus A_{-}$with the coupling $y^{\prime}(0+)=\alpha y^{\prime}(0-)(\alpha \in \mathbb{C})$ in zero is $\mathcal{P} \mathcal{T}$-symmetric if and only if $|\alpha|=1$. This gives a way to characterize all $\mathcal{P} \mathcal{T}$-symmetric operators associated with (1.2).

## References

[1] T.Ya. Azizov and C. Trunk, On domains of $\mathcal{P} \mathcal{T}$ symmetric operators related to $-y^{\prime \prime}(x)+(-1)^{n} x^{2 n} y(x)$, J. Phys. A: Math. Theor. 43 (2010), 175303.
[2] T.Ya. Azizov und C. Trunk, $\mathcal{P} \mathcal{T}$, Proc. Appl. Math. Mech. 14 (2014), 991-992.
[3] C.M. Bender and S. Boettcher, Real spectra in non-Hermitian Hamiltonians having $\mathcal{P} \mathcal{T}$ symmetry, Phys. Rev. Lett. 80 (1998), 5243-5246.
[4] B.M. Brown, D.K.R. McCormack, W.D. Evans and M. Plum, On the spectrum of second-order differential operators with complex coefficients, Proc. R. Soc. A 455 (1999), 1235-1257.
[5] M.S.P. Eastham, The Asymptotic Solution of Linear Differential Systems, London Mathematical Society, Monograph 4, 1989.
[6] J. Qi, H. Sun and Z. Zheng, Classification of Sturm-Liouville differential equations with complex coefficients and operator realizations, Proc. R. Soc. A 467 (2011), 1835-1850.
[7] A.R. Sims, Secondary conditions for linear differential operators of the second order, J. Math. Mech. 6 (1957), 247-285.
[8] A. Zettl, Sturm-Liouville Theory, American Mathematical Society, Mathematical Surveys and Monographs 121, 2005.

## Contact information

## Florian Büttner

Institut für Mathematik, Technische Universität Ilmenau

Postfach 100565, D-98684 Ilmenau, Germany
florian.buettner@tu-ilmenau.de

## Carsten Trunk

Institut für Mathematik, Technische Universität Ilmenau
Postfach 100565, D-98684 Ilmenau, Germany
carsten.trunk@tu-ilmenau.de

