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Zusammenfassung

Erste Integrale haben sowohl in der Physik als auch in der Mathematik große Bedeutung.
Sie sind konstant entlang Lösungen der geodätischen oder der Hamiltonschen Gleichungen
und werden daher auch Bewegungskonstanten oder Konstanten der Bewegung genannt (man
spricht auch verkürzt einfach von Integralen). Killing-Tensoren entsprechen Integralen, wel-
che homogene Polynome in den Impulsen sind.

Killing-Tensoren und erste Integrale im Allgemeinen sind aus mehreren Gründen in-
teressant. Zunächst einmal sind sie ein Hilfsmittel, um in der Physik Lösungen für die
Bewegung von Teilchen zu finden und besser zu verstehen. Ein klassisches Beispiel ist
das Kepler-Problem, das ein zusätzliches Integral erlaubt (Runge-Lenz-Vektor), welches
mit dem Coulomb-Potential verknüpft ist. Killing-Vektorfelder sind die einfachsten Killing-
Tensorfelder und infinitesimale Erzeuger von Isometrien. Daher werden Killing-Tensoren
auch als versteckte Symmetrien bezeichnet. Zweitens schränkt die Existenz einer ausreichen-
den Anzahl an Integralen die geodätischen Orbits im Phasenraum auf Tori oder Zylinder
ein (unter gewissen Zusatzbedingungen). Umgekehrt zeigen nicht-integrable Hamiltonsche
Systeme typischerweise chaotisches Verhalten, d.h. die Lösungskurven hängen stark von den
Anfangsbedingungen ab. Drittens gibt es den Begriff der (maximalen) Superintegrabilität,
der die Existenz einer maximalen Anzahl von Integralen voraussetzt. Viele bekannte dyna-
mische Systeme der Physik sind superintegrabel; außerdem gibt es Querverbindungen zur
Multiseparabilität (Koexistenz verschiedener Koordinaten, für welche die Hamilton-Jacobi-
Gleichung durch Variablenseparation gelöst werden kann) und zu speziellen Funktionen. Ein
weiterer Aspekt ist die Verbindung zwischen Killing-Tensoren und geodätischer Äquivalenz.
Zwei Metriken heißen geodätisch äquivalent, wenn sie bis auf Umparametrisierung dieselben
Geodäten haben. Die Bedingung, wann zwei Metriken geodätisch äquivalent sind, lässt sich
über Killing-Tensoren formulieren.

Prinzipiell existiert nur eine begrenzte Anzahl an Methoden, mit welchen sich systema-
tisch die Existenz bzw. Nicht-Existenz von Integralen nachprüfen lässt, und typischerweise
beschränken sich diese Methoden auf bestimmte Arten der Integrabilität. Wir verwenden
in dieser Arbeit einen Ansatz aus der klassischen Prolongations-Projektionstheorie (vgl.
Abschnitt 1.2). Dieser Ansatz erfuhr zuletzt mehr Aufmerksamkeit [MS10; KM12], da er
rechnergestützt verwendet werden kann und keine Approximation beinhaltet. Die Kerner-
gebnisse der Arbeit sind:

(1) Zwei neue Algorithmen werden vorgestellt, mit denen die Existenz von Killing-
Tensoren für stationär-axialymmetrische Vakuum-Metriken überprüft werden kann. Beide
Algorithmen erreichen eine hohe Effizienz (vgl. Abschnitt 2.4). In Abschnitt 3.2 zeigen wir
an Hand eines Beispiels, wie die Algorithmen auch für Metriken mit einem reellen Parameter
verwendet werden können.

Stationär-axialsymmetrische Metriken dienen in der Astrophysik als Modelle kompakter
Objekte wie Neutronensternen und Schwarzen Löchern. Typischerweise werden solche Ob-
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jekte durch Kerr-Metriken beschrieben, die ein zusätzliches quadratisches Integral besitzen
und daher Liouville-integrabel sind [Car68b; WP70]. Ob andere stationär-axialsymmetrische
Metriken z.B. für Schwarze Löcher in der Natur realisiert sind (Existenz sogenannter bumpy
black holes) ist ein offenes Problem [Bri08a; BL14]. Mit Hilfe der Algorithmen untersuchen
wir Zipoy-Voorhees-Metriken und eine Tomimatsu-Sato-Metrik. Zipoy-Voorhees-Metriken
stellen eine Verallgemeinerung der Schwarzschild-Metrik dar (statischer Grenzfall der Kerr-
Metriken). Tomimatsu-Sato-Metriken sind eine nicht-statische Verallgemeinerung von Zipoy-
Voorhees-Metriken. Als ersten Schritt geben wir in Abschnitt 3.2 einen neuen, einfachen
Beweis für die Tatsache, dass der flache Raum und die Schwarzschild-Raumzeit die einzi-
gen integrablen Zipoy-Voorhees-Metriken mit zusätzlichem quadratischem Integral sind, vgl.
[Car68a; WP70].

In Abschnitt 3.3 zeigen wir dann für eine spezielle Zipoy-Voorhees-Metrik, die Darmois-
Lösung, die Nicht-Existenz zusätzlicher Killing-Tensoren bis zum Grad 11. Dies verallgemei-
nert ein entsprechendes Resultat in [KM12] und ergänzt die Ergebnisse in [MPS13; LG12].

In Abschnitt 3.4 untersuchen wir eine Tomimatsu-Sato-Metrik und zeigen die Nicht-
Existenz eines zusätzlichen Killing-Tensors bis zum Grad 7.

(2) In Kapitel 4 zeigen wir Reduzibilität für involutive kubische Integrale in beliebigen
Weyl-Metriken, d.h. wir zeigen, dass Killing-Tensoren vom Rang 3 für solche Metriken als Li-
nearkombination symmetrischer Produkte von Killing-Tensoren niedrigeren Rangs geschrie-
ben werden können (Erstpublikation in [Vol15b]). Weyl-Metriken sind statische Vakuum-
Metriken aus der Klasse stationär-axialsymmetrischer Metriken und im Wesentlichen durch
eine Parameter-Funktion bestimmt.

Für den Beweis stellen wir eine notwendige Bedingung für die Existenz nichttrivialer
kubischer Killing-Tensoren auf und lösen das relevante System partieller Differentialglei-
chungen anschließend explizit.

(3) In Kapitel 5 untersuchen wir Liouville-Integrabilität für einige sub-Riemannsche
Strukturen auf Rang-2-Distributionen in Carnot-Gruppen der Dimension 6, 7 und 8. Carnot-
Gruppen approximieren allgemeine sub-Riemannsche Strukturen in typischen Punkten. Die-
ser Teil der Dissertation beruht auf einer gemeinsamen Arbeit mit Boris Kruglikov und
Georgios Lukes-Gerakopoulos [KVL15].

Wir zeigen, dass es solche sub-Riemannschen Strukturen gibt, die zwar ein hohes Maß an
Symmetrie, aber nicht genügend Integrale für Liouville-Integrabilität haben. Diesen unerwar-
teten Effekt beobachten wir für die Symmetriealgebren der sub-Riemannscher Strukturen
wie auch ihrer zu Grunde liegenden Distributionen. Wir verwenden dazu einen ähnlichen
Algorithmus wie für stationär-axialsymmetrische Metriken.

Offene Probleme und Perspektiven für weitere Forschung besprechen wir in Kapitel 6.



Abstract

First integrals play a crucial role in physics and mathematics. They remain constant along
geodesics or solutions of Hamilton’s equations, and are also known as constants of motion,
orbital invariants, or simply integrals. Killing tensors correspond to (first) integrals that are
homogeneous polynomials in the momenta.

Killing tensors, and first integrals in general, are interesting for a number of reasons.
Firstly, they help in finding and understanding solutions to the equations of particle motion
in physics. A classic example is the Kepler problem, which admits the Runge-Lenz vector ,
an integral connected with a Coulomb-type potential. Since the simplest Killing tensors
(i.e. Killing vectors) are the infinitesimal generators of isometries, Killing tensor fields are
often called hidden symmetries. Secondly, the existence of a sufficient number of integrals
(complete integrability) restricts geodesic orbits in phase space to tori or cylinders (under
certain additional conditions). On the other hand, non-integrable Hamiltonian systems typi-
cally show chaotic behavior, i.e. the solution curves depend heavily on the initial conditions.
Next, the existence of a maximal number of integrals is called maximal superintegrabil-
ity. Many famous dynamical systems in physics are superintegrable. Superintegrability is
also related to multiseparability (coexistence of several coordinate systems for which the
Hamilton-Jacobi equation can be solved by separation of variables) and to special functions.
Another aspect is the link between Killing tensors and geodesic equivalence. Two metrics
are called geodesically equivalent, if they have the same (unparametrized) geodesics. The
requirement for two metrics to be geodesically equivalent can be formulated in terms of
Killing tensors.

There is only a limited number of methods to check systematically the existence or
nonexistence of integrals, and these methods typically are confined to studying certain types
of integrability. We are going to work with an approach based on classical Cartan-Kähler
prolongation-projection theory (cf. Section 1.2). This approach has received more attention
lately [MS10; KM12], since it has the advantage that it can be implemented on a computer to
rigorously check the number of independent integrals polynomial in momenta with smooth
coefficient functions. The key results of this thesis are:

(1) Two new algorithms are presented for checking the existence of Killing tensors in
metrics of the stationary and axially symmetric vacuum class. Both algorithms achieve a
high computational efficiency (cf. Section 2.4). In Section 3.2 we also demonstrate with an
example how the algorithms can be used with metrics that depend on a real parameter.

Stationary and axially symmetric metrics are interesting as a model for compact astro-
physical objects such as neutron stars and black holes. A standard model for such objects
is the Kerr metric, which is Liouville integrable with an additional quadratic Killing ten-
sor [Car68b; WP70]. Whether other stationary and axially symmetric metrics are realized
in nature for instance for black holes (existence of so-called bumpy black holes) is an open
problem in astrophysics [Bri08a; BL14]. Using the algorithms, we examine Zipoy-Voorhees
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metrics and a Tomimatsu-Sato metric. Zipoy-Voorhees metrics generalize the Schwarzschild
metric (the static limit of Kerr). The Tomimatsu-Sato family is a non-static generaliza-
tion of Zipoy-Voorhees metrics. In Section 3.2, we give a novel proof for the fact that flat
space and the Schwarzschild metric are the only integrable cases with a quadratic Killing
tensor in the family of Zipoy-Voorhees metrics, cf. [Car68a; WP70], as a first step towards
higher-order integrability.

In Section 3.3, we then prove the non-existence of additional Killing tensors up to va-
lence 11, for a particular Zipoy-Voorhees metric (the Darmois solution). This extends the
result from [KM12] and complements the findings of [MPS13; LG12].

In Section 3.4, a Tomimatsu-Sato metric is examined and nonexistence of an additional
Killing tensor is proven up to valence 7.

(2) In Chapter 4, we prove reducibility of all involutive cubic integrals in arbitrary Weyl
metrics, i.e. we show that all involutive valence-3 Killing tensors for such metrics can be
written as a linear combination of symmetrized products of lower-valence Killing tensors
(the result was first published in [Vol15b]). Weyl metrics form the static vacuum subclass of
stationary and axially symmetric metrics and involve a smooth parametrizing function that
essentially characterizes the metric.

For the proof, we establish a necessary criterion for the existence of non-trivial valence-3
Killing tensors and subsequently solve the relevant system of partial differential equations.

(3) In Chapter 5, we explore Liouville integrability for certain sub-Riemannian structures
on rank-2 distributions in Carnot groups of dimension 6, 7, and 8. Carnot groups are the
nilpotent approximations of general sub-Riemannian structures in typical points. This part
of the thesis is based on collaborative research with Boris Kruglikov and Georgios Lukes-
Gerakopoulos [KVL15].

We show that sub-Riemannian structures exist that have a high degree of symmetry, but
do not possess enough integrals for Liouville integrability. This surprising effect is observed
for the symmetry algebras of sub-Riemannian structures as well as of their underlying dis-
tributions. For the proof we use an algorithm similar to that used for the stationary and
axially symmetric metrics.

Open problems and perspectives for further research are discussed in Chapter 6.



Chapter 1

Introduction

In the following, we consider a D-dimensional differentiable manifold M with (pseudo-)
Riemannian1 metric g. Its cotangent bundle T ∗M is endowed with a natural symplectic
form σ [Arn89]. Coordinates on M are usually denoted by q, and coordinates on T ∗M
by (q, p). The qi are called position coordinates, while we speak of the pi as momenta or
momentum coordinates. Sometimes we also take p ∈ T ∗M , since there is no risk of confusion.

We begin with a definition of Killing tensors and integrals, followed by a brief discussion
of their importance and applications. In Section 1.1, we are then turning to the concept
of integrability, especially Liouville integrability. Other major definitions are given in the
same section. Cartan-Kähler prolongation-projection is introduced in Section 1.2, and in
Section 1.3 we discuss the decomposition of the Poisson equation for 2-dimensional manifolds.
We conclude Chapter 1 with an overview of the assumptions that we make, see Section 1.4.

We discuss integrals that the geodesic flow of a given Hamiltonian system admits. Let
us begin with a generalization of the concept of Killing vectors.

Definition 1 (Killing tensor field). A Killing tensor field K of valence d on M is a sym-
metric (0, d)-tensor such that

∇(aKb1...bd) = 0, (1.1)

where ∇ denotes the Levi-Civita connection for the metric g. The round brackets denote
symmetrization over the indices a, b1, . . . , bd.

From the definition, it is immediately clear that the metric g is a Killing tensor, because
∇g = 0. Moreover, given two Killing tensors, their symmetrized product is also a Killing
tensor.

The metric g provides an isomorphism between T ∗M and TM , and therefore we are going
to identify co- and contravariant tensor fields as well as the corresponding homomorphisms
with mixed co- and contravariant indices.

Killing tensor fields are in 1-to-1 correspondence to (first) integrals that are homogeneous
polynomials in the momenta2. The isomorphism that maps Killing tensors to homogeneous

1We are going to consider Lorentzian metrics in Chapter 3 and 4. Later, in Chapter 5, we broaden our
view towards sub-Riemannian metrics. For ease of exposition, however, we focus on (pseudo-)Riemannian
metrics first.

2Equivalently, via the isomorphism between T ∗M and TM , we can consider polynomials in the velocities γ̇
(where γ denotes a solution trajectory).
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10 Chapter 1. Introduction

polynomial integrals is given by evaluation at the momenta,

Killing tensors→ Integrals,

K 7→ IK = K(p, . . . , p) = Ki1,...,id pi1 · · · pid .
(1.2)

Given a homogeneous polynomial integral, the corresponding Killing tensor can thus be
reconstructed by identifying the coefficients of the polynomial.

In the language of integrals, the Killing equation (1.1) takes the form3

{IK , H} = XH(IK) ≡ 0 with H = gijpipj (1.3)

where {·, ·} denotes the usual Poisson bracket on T ∗M , and where XH(IK) is the derivative
of the function in the direction of the Hamiltonian vector field XH . Note that we made use
of the usual summation convention implying summation over upper and lower indices. We
are going to often resort to this convention if there is no risk of confusion.

In general, a function I : T ∗M → R is called an integral if it Poisson commutes with the
Hamiltonian H : T ∗M → R,

{H, I} =
∂H

∂qi

∂I

∂pi
− ∂H

∂pi

∂I

∂qi
= 0. (1.4)

We refer to Equation (1.4) or, accordingly, (1.3) as the Poisson equation. It is always
satisfied for I = H. The product of two integrals is also an integral.

Dynamical systems with a Hamiltonian function H that are governed by the Hamiltonian
equations,

q̇ =
dH

dp
,

ṗ = −dH
dq

,

(1.5)

are called Hamiltonian systems. Integrals satisfying Equation (1.4) remain constant along
solution trajectories of (1.5). To distinguish between integrals of the Hamiltonian flow and
those of the geodesic flow, we refer to integrals that obey Equation (1.4) with H = gijpipj as
geodesic invariants. On the other hand, if the Hamiltonian is not of such form, the integral is
called a Hamiltonian invariant and is constant along the flow of (1.5). Often, one considers
Hamiltonians with a potential V (q), i.e. H = gij(q) pipj +V (q). In this case, T = gij pipj is
called the kinetic term. In the case of sub-Riemannian geometry, there are subtleties in the
definition of the Hamiltonian; these are discussed in Chapter 5.

If the Hamiltonian is polynomial in the momenta, then the leading-degree component of
a polynomial Hamiltonian invariant is a geodesic invariant. Moreover, for Hamiltonians that
are homogeneous polynomials in momenta, the existence of a real-analytic integral implies
the existence of an integral that is polynomial in momenta (tome III of [Dar87]).

It is well known that Killing vector fields and, via the isomorphism ξ 7→ 〈ξ, p〉 = ξipi,
homogeneous linear integrals correspond to symmetries of the metric, more precisely to local
isometries (Noether’s theorem, [Arn89; FK88]).

Since our attention is exclusively on integrals that are polynomial in the momenta (and
in fact we restrict to homogeneous integrals), let us agree on the following conventions from
now on

3Equivalence of (1.3) and (1.1) is checked by straightforward computation of the corresponding system
of PDEs.
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— any (first) integral is assumed to be polynomial in the momenta, unless explicitly stated
otherwise

— by the term degree of the integral , we refer to its degree w.r.t. momenta

— we usually use the language of integrals, rather than that of Killing tensors. This is
because the formulation in terms of integrals is more instructive when we perform sym-
plectic reduction and split the equations from (1.1) accordingly.

First integrals appear in several contexts and play an important role in fields like inte-
grability, geometry or mechanics, for instance.

Firstly, the existence of integrals can help in answering natural questions about the
behavior of trajectories of the geodesic flow. In Hamiltonian systems, integrals help in
finding and understanding solutions to Hamilton’s equations, i.e. explicit trajectories for
the motion of particles in physics. A classic example is the Kepler problem of celestial
mechanics, where the Coulomb-type 1/r-potential leads to the Runge-Lenz vector , which
allows us to solve Hamilton’s equations (1.5) explicitly. Kepler’s laws of planetary motion
make implicit use of first integrals. Since Killing vector fields are the infinitesimal generators
of isometries, Killing tensor fields for physical systems are also often described as hidden
symmetries (compare again the the Runge-Lenz vector [Iro02]).

In the phase space T ∗M , trajectories remain on level sets of the integrals. Existence of a
complete family of integrals implies (under certain additional conditions) that solutions of a
Hamiltonian system live on tori or cylinders in phase space [Arn89; FGS03], see Section 1.1
for details.

On the other hand, complete integrability implies, again under certain conditions, solv-
ability by quadrature [Arn89; FGS03]. Integrability is a desired property in physics, since it
allows one to write down the behavior of mechanical systems in an ‘explicit’ manner. There
are many important systems in physics that are (Liouville) integrable, e.g. the harmonic os-
cillator, the Euler top or the Kepler problem [Arn89; Iro02]. However, integrability may fail
even for physically relevant systems, e.g. the three-body problem is in general non-integrable.
Such systems show chaotic behavior, i.e. the solution curves depend heavily on the initial
conditions.

There are also systems with more integrals than those needed for integrability. Such
systems are called superintegrable. In particular, maximally superintegrable systems are
D-dimensional systems with 2D − 1 integrals. Many such systems appear in physics, and
superintegrable systems are related to multiseparability (existence of several coordinate sys-
tems in which the Hamilton-Jacobi equation can be solved by separation of variables) as
well as to the theory of special functions [KMP07; KMP13].

Finally, Killing tensors also play a role in the theory of geodesic equivalence. Two metrics
on the same manifold are called geodesically equivalent, if they have the same geodesics (dis-
regarding reparametrizations). The requirement for two metrics to be geodesically equivalent
can be formulated in terms of Killing tensors, e.g. [TM03].

In some way it therefore is a natural geometric problem whether a given metric has
a sufficient number of integrals. Metrics that have this property may lead to interesting
examples, as for instance in the case of the Kerr metric possessing the Carter constant
[Car68a; Car68b], see also Chapter 3. According to [Mar14], Kerr-de Sitter metrics are at
present the only known examples of integrable space-times4 with an additional integral of

4With regard to the astrophysical applications, we use the term space-time for 4-dimensional manifolds
equipped with a Lorentzian metric.



12 Chapter 1. Introduction

higher-than-linear degree, among the class of stationary and axially symmetric space-times
(with or without cosmological constant).

The study of integrals in 2-dimensional manifolds is a classical problem in differen-
tial geometry and goes at least back to Darboux [Dar87]. A general characterization of
2-dimensional metrics admitting quadratic integrals exists in terms of a separation prop-
erty, see the contribution by Kœnigs in Darboux’s multi-volume work [Dar87]. For a 2-
dimensional metric, and a Hamiltonian of the form

H =
p2x + p2y

Ω
+ V (x, y), (1.6)

an additional quadratic integral exists if there are coordinates (x, y) such that

Ω = X(x)− Y (y) and V =
X̃(x)− Ỹ (y)

X(x)− Y (y)

whereX, X̃ are functions of x and Y , Ỹ functions of y only. The quadratic integral is [Dar87;
BMP09]

I =
X p2y + Y p2x
X − Y

− X Ỹ − Y X̃
X − Y

. (1.7)

For stationary and axially symmetric metrics, which are one major application in the follow-
ing, integrability has been shown for the Kerr metric by Brandon Carter [Car68b; WP70].

A classical result on cubic integrals in dimension 2 that was given by Jules Drach can
be found in [Dra35]. In particular, Drach obtained a list of 10 potentials that admit a cubic
integral (of odd parity) on a Euclidean space with Hamiltonian H = p2x + p2y + V .

More recent results include proofs of nonexistence on the 2-torus for cubic and quartic
integrals in [Bya87; DK00; BM11] (for higher degrees almost nothing is known). On the
2-sphere, in contrast, some integrable examples are known. For instance, a new integrable
system has been presented, with the additional integral being of cubic degree, by Dullin and
Matveev in [DM04].

A review of existing literature on stationary and axially symmetric metrics can be found
in Chapter 3. Literature on sub-Riemannian structures is given in Chapter 5.

1.1 Integrability and reducibility

A family (Ii)i=1,...,k of integrals is in involution, if any two of them commute w.r.t. the
Poisson bracket, i.e. if {Ii, Ij} = 0, for any i, j ∈ {1, 2, . . . , k}. We use this terminology
on the level of Killing tensors as well and call a family of Killing tensor fields involutive if
their corresponding integrals are in involution5. A family of functions (f1, . . . , fk) is called
functionally independent if the 1-forms dfi are linearly independent at each point [Arn89].
The family (f1, . . . , fk) is said to be algebraically dependent if there is a vanishing non-trivial
polynomial of the fi.

If a Hamiltonian system possesses a sufficient number of functionally independent in-
tegrals in involution, it is called Liouville integrable or completely integrable. Complete
integrability is an important concept in the theory of Hamiltonian systems.

5Involutivity for Killing tensors can equivalently be formulated using the Schouten-Nijenhuis bracket.
Two Killing tensors are involutive if they commute w.r.t. the Schouten-Nijenhuis bracket.
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Definition 2 (Liouville integrability). A Hamiltonian system with D degrees of freedom is
called Liouville integrable if it admits D functionally independent integrals Ii in involution,
i.e.

{H, Ii} = 0, ∀ i = 1, . . . , D ; {Ii, Ij} = 0, ∀ i, j = 1, . . . , D.

We first consider the case when the mechanical system is coming from a pseudo-Rie-
mannian metric g on a manifold of dimension D = 4, i.e. H(x, p) = gijpipj , and where
the metric g possesses two commutative independent Killing vector fields (some additional
assumptions are specified later). Therefore, because H itself is an integral, one additional
integral functionally independent of the linear integrals coming from the Killing vector fields,
and in involution with them, is sufficient for (Liouville-Arnold) integrability. We assume that
this additional integral is a (w.l.o.g. homogeneous) polynomial in the momenta p, where the
coefficients may depend on the position q. Similarly, we discuss examples in sub-Riemannian
geometry for dimensions 6, 7 and 8 in Chapter 5.

We briefly note that Liouville integrability is not the only notion of integrability. Actu-
ally, one can distinguish various kinds of integrability for systems of PDEs. For instance,
there is the notion of Frobenius integrability (existence of integral manifolds). Another kind
of integrability can be found in the context of the Painlevé test, where integrability is defined
via the nonexistence of movable critical singularities [Con97; CM03]. On the other hand,
Liouville integrability is often only considered for a special class of integrals. For example,
Stäckel integrability is a form of integrability involving only integrals that are quadratic
polynomials in the momenta.

Another concept of integrability is integrability by quadrature. A system is called inte-
grable by quadrature if its solutions can be obtained through basic operations like algebraic
manipulations and the inversion or integration of known functions [Arn89]. Liouville inte-
grability implies integrability by quadrature. Furthermore, Liouville integrability restricts
the position of orbits in phase space T ∗M . The exact statement is:

Fact 1 (Liouville-Arnold Theorem [Arn89]). Let (MD, σ) define a Hamiltonian system
which admits D functionally independent integrals (F1, . . . , FD) in involution. Then the
level set Mc = {x : Fi(x) = ci, i = 1, . . . , D} is a smooth manifold and invariant under the
flow of XH with H = F1. If Mc is compact and connected, it is diffeomorphic to the D-torus
TD. The Hamiltonian equations ẋ = XH(x) are integrable by quadrature.

So, given compactness, geodesic orbits lie on tori in phase space. One can relax the
compactness requirement, and this leads to a weaker formulation of the theorem where
orbits instead lie on cylinders [Arn89; FGS03].

For the cases that we consider in this thesis, there already is a family I of known
(simple) integrals (functionally independent and in involution; homogeneous polynomial in
momenta). We refer to these integrals as trivial or standard integrals. In such situations,
we study whether or not I can be extended to an involutive family that makes the system
integrable in the Liouville sense. For later reference, let us define

Definition 3. Let I = (I2, . . . , ID) be a family of polynomial integrals in involution of degree
at most d. We say that I can be extended to a Liouville-integrable family of integrals of
degree at most d if there is an additional integral I, polynomial in momenta, that makes
(I, I) = (I, I2, . . . , ID) a family that ensures Liouville integrability, i.e. such that I is in
involution with I and such that the integrals are functionally independent.

Some of our results can be understood as reducibility results. By reducibility we mean:
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Definition 4 (Reducible integral). Let I be an integral of degree d for a Hamiltonian system,
and let I = (I1, . . . , Ik) be a family of integrals of lower degree than I. Then the integral I
is called reducible by I (or, briefly, I-reducible) if it can be written as a linear combination
of products of integrals in I, i.e. if I lies in the subalgebra generated by I.

The integral I is called reducible if there is a family I of integrals such that I is I-
reducible. In addition, we allow that I contains the Hamiltonian.

An integral is called irreducible if it is not reducible, i.e. if it cannot be written as a linear
combination of products of integrals of lower degree in momenta and the Hamiltonian. If
an integral I is reducible and if there is a family I containing solely linear integrals and the
Hamiltonian, then I is called totally reducible.

In the context of Killing tensors, reducibility implies that a Killing tensor field can be
written as a linear combination of symmetrized products of lower-valence Killing tensors
and the metric. In the case of total reducibility, a reducible Killing tensor can be written as
a linear combination of symmetrized products of Killing vector fields and the metric tensor
field.

Often we make use of the term additional integral for the integrals we investigate. By
this term we mean integrals that are irreducible w.r.t. a given family I of integrals, in
involution with and linearly independent of the integrals of I. Another term that is going to
be used frequently is final integral . By this we mean an additional integral If to a family I
of integrals, such that (I, If ) makes the Hamiltonian system under consideration Liouville
integrable (cf. Definition 3). For an instructive example, see Section 2.3.4 on pages 37ff.
For instance, the Schwarzschild metric has an additional quadratic integral (in addition to
those resulting from obvious symmetries), in spite of the fact that it has four linear integrals
(which, however, are not in involution). Therefore, it has a final integral. This final (or
additional) integral provides a complete family of four integrals. However, the final integral
is reducible, because it can be written as a sum of squares of linear integrals.

1.2 Cartan-Kähler prolongation-projection

Let E be a differential equation and S a system of differential equations, i.e. a set of one or
more differential equations. We call E an algebraic consequence of S, if E can be obtained
from S through algebraic manipulations. Similarly, we call E a differential consequence
of S if it can be obtained from S by algebraic manipulations and partial differentiation, cf.
[MS10]. Our exposition in this section follows [MS10], see also [KLV86].

The fundamental idea of prolongation-projection is as follows. Given a system S of
PDEs, add differential consequences to it, i.e.

S(0) = S

S(1) = S(0) ∪ ∂S
∂x1
∪ · · · ∪ ∂S

∂xD

S(2) = S(1) ∪ ∂2S
∂x1∂x1

∪ · · · ∪ ∂2S
∂xD∂xD

. . .

(1.8)

Here, we assume to have D base variables. We denote by ∂S
∂xi the set of equations obtained

by differentiating every equation in S w.r.t. the base variable xi etc. Prolonging the system
in this way does not add or remove solutions (we assume C∞-differentiability). Since S =
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S(0) ⊂ S(k), any solution of S(k) solves S as well. Conversely, a smooth solution of S
obviously is also a smooth solution of the k-th prolongation S(k).

Now, in each S(k), let us consider the derivatives of the unknown functions as new,
independent variables (this converts the differential system S(k) into an algebraic system of
equations). This conversion does not lose solutions since a solution of the initial differential
problem provides a solution of the algebraic problem derived from it. We are going to refer
to the algebraic system obtained in this way as the associated system.

Geometric interpretation. Jet spaces provide a geometric understanding of differential
equations, and we intend to mention this geometric formulation because it elucidates the
terminology prolongation-projection. A precise treatment of this formalism can be found,
for instance, in [KMS93; KLV86]. We follow the outline in [KMS93] .

In the general theory, jet spaces and jet bundles are a generalization of the concept of
tangent spaces and tangent bundles. Basically, jet spaces are spaces of equivalence classes
of mappings in C∞(M,N) between manifolds M and N . For our purposes, it suffices to
consider the special situation when N = R. For C∞-functions f : M → R, one defines the
equivalence relation of r-th contact as follows: Two smooth functions have r-th contact in a
point q ∈ M , if all their derivatives in q up to order r are equal. This means that the r-th
order Taylor polynomials of two functions agree if and only if they have r-th contact.

The jet of the function f is then defined as the equivalence class jrqf := [f ]q of smooth
functions that have r-th contact in q ∈ M . The respective jet space of the manifold M in
the point q is the space of equivalence classes jrqf , i.e.

JrqM := {jrqf : f ∈ C∞(M,R)}.

The corresponding jet bundle is JrM =
⋃
q∈M JrqM .

Given this construction, a partial differential equation (PDE) E on a function on M can
be understood as an algebraic restriction on the corresponding jet in JrM (with r the order
of the PDE). Now, if one differentiates E , this prolongs the restriction to a higher-order jet
space. On the other hand, eliminating highest derivatives is a projection to a lower-order
jet space.

Overdetermined PDE systems of finite type. Systems of PDEs are said to be of
finite type if after a finite number of differentiations, the equations allow us to express
highest derivatives of the unknown functions by lower-order derivatives.

Definition 5. A system S of PDEs of order n in the unknown functions u1(x), . . . , ul(x)
is said to be of finite type if, for a certain k ∈ N, its k-th prolongation S(k) allows for
expressing all partial derivatives dn+kui

dxJ , where J is a multiindex with |J | = n+ k, in terms
of lower-order derivatives, for all i = 1, . . . , l.

For systems of PDEs that are overdetermined and of finite type the number of equations
grows faster than the number of unknowns, because after a finite number of prolongations
no new unknowns are added to the system. Thus, after a finite number of prolongation
steps, an overdetermined algebraic system is obtained.

For the structural equations that govern Killing tensors, finiteness has been proven in
[Wol98]. For a Killing tensor K of valence d, this paper establishes the system S(k)d of
structural equations of the first d derivatives (k ≤ d) of the components of K, along with
integrability and algebraic conditions for them. Structural equations for (valence-2) Killing
tensors are given in [HM75a; HM75b]. In [Tho86], structural equations were employed to
study Killing tensors in constant curvature spaces.
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1.3 Decomposition of the Poisson equation for integrals

In [Hie87] methods have been collected by Jarmo Hietarinta for searching for polynomial
integrals. For quadratic Hamiltonians with known geodesic invariants, especially for Hamil-
tonian systems on a flat manifold, the (polynomial) Poisson equation (1.3) is treated in
a degree-wise manner. By this approach it is possible to construct Hamiltonian invari-
ants from the already known geodesic invariants, and in addition to find restrictions to the
Hamiltonians that admit them.

Consider the 2-dimensional case with a Hamiltonian in the form H = H(2) +H(0), where
H(2) is homogeneous quadratic and H(0) scalar w.r.t. momenta (px, py). In Section 2.2, we
argue that for such systems it is sufficient to consider separately the integrals that have odd
and even parity in the momenta px and py. Therefore consider an integral of the form

I = I(d) + I(d− 2) + · · ·+ I(e), e ∈ {0, 1},

where each I(k) is a homogeneous component of I that has degree deg(I(k)) = k in momenta.
In [Hie87], the cases d = 2, 3, 4 are considered. The requirement (1.3) for I being an integral
is a polynomial in the momenta. We decompose it into its homogeneous parts:

{H(2), I(d)} = 0

{H(2), I(d− 2)}+ {H(0), I(d)} = 0

{H(2), I(d− 4)}+ {H(0), I(d− 2)} = 0

. . .

(1.9)

Note that the first of these equations is itself a Poisson equation (1.3) for the polynomial I(d).
In [Hie87] the focus is on the 2-dimensional Euclidean case and Hamiltonians with a potential
term, i.e. the Hamiltonian is taken in the form H = H(2) +H(H) with H(2) = 1

2 (p2x + p2y).
The potential typically is of a given form H(0) = V (x, y). Since the geodesic invariants are
known for Euclidean space [Tho86; Wol98], the first equation of (1.9) can be solved explicitly
in terms of some parameters. Substituting this solution into the remaining equations, one
obtains the other components of I as well as restrictions on the parameters and the poten-
tial V . In [Hie87] several examples are worked out, in which the equations can be solved
step by step along this prescription (i.e. the system (1.9) is solved “from top to bottom”).
During this procedure, the integrability conditions for the equations in (1.9) typically turn
into restrictions on the potentials V = H(0).

A recent application of this method can be found in [Mar14], where a systematic search
has been undertaken for integrals in degree 2 and 4 of the Newtonian analogue of stationary
and axially symmetric gravitational fields.

Whereas the described method works very well for the situations discussed in [Hie87;
Mar14], it is clear that this approach cannot always work since the problem of finding
geodesic invariants in general is very difficult.

However, a similar procedure is used in Chapter 4, when we consider cubic integrals
in Weyl metrics. To circumvent the problem of finding geodesic invariants, we use the
prescription in a reverse manner, starting from the lowest-degree equation in a list similar
to System (1.9). The decomposition (1.9) also plays an important role in the construction
of Algorithms I and II in Chapter 2.
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Bertrand-Darboux equation. We consider the integrability condition obtained, in the
2-dimensional case, from the equation

{H(2), I(0)}+ {H(0), I(2)} = {T,W}+ {V,K} = 0 (1.10)

where T = gijpipj , K = Kijpipj and V (x, y), W (x, y) are functions (i, j ∈ {1, 2}). Writing
down the coefficients of the polynomial (1.10), which have to vanish independently, one
obtains equations for the derivativesWi = ∂iW . ComputingWij−Wji = 0, the integrability
condition for W is obtained.

If we identify the Killing tensor Kij with the homomorphism Ki
j , the integrability con-

dition can be written in the concise form

d(K(dV )) = 0 (1.11)

and is called the Bertrand-Darboux equation. This integrability condition is used in Sec-
tion 4.4 in the determination of integrals for the Zipoy-Voorhees metric.

1.4 Assumptions

In what follows, we are going to explore Hamiltonian systems on D-dimensional manifolds
that already possess D− 2 functionally independent linear integrals Ii : T ∗MD → R, where
i ∈ {1, . . . , D− 2}, in addition to the Hamiltonian H. The question to answer is whether or
not there exists a D-th (final) low-degree integral in addition to the family of D − 1 known
involutive integrals.

Our approach requires Hamiltonian systems with certain properties. The following para-
graphs serve to summarize the general setting for which the method, in particular that
developed in Chapter 2, is suitable. Moreover, our list contains some of the properties that
can be exploited for a simplification of the problem.

The integrals. We consider integrals that are homogeneous polynomials in the momentum
coordinates pi, i.e.

I(x, p) =
∑
i1+···+iD=d

ai1,...,iD (x) pi11 · · · p
iD
D .

Note that the coefficients depend (smoothly) on the position. The degree in momenta is
referred to as the degree of the integral.

— We are looking for families of integrals T ∗MD → R that are in involution, i.e. that
commute pairwise w.r.t. the Poisson bracket {·, ·}.

— The coefficients in these polynomials depend on position. They are smooth functions
(smoothness is here understood as the differentiability class C∞).

Recall that we adopted the shorthand convention to call integrals polynomial integrals, if
they are polynomial in the momenta, and that we refer to the degree of the integral w.r.t.
momenta as the degree of the integral . Thus, a quadratic integral is understood as an integral
that is homogeneous polynomial in momenta of degree 2 with smooth coefficient functions,
and so on for the other degrees.
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Symmetry requirements. Since we consider Hamiltonian systems with only one inte-
gral missing for Liouville integrability, the obvious question is whether or not there is an
additional integral ID such that the family (Ii)i=1,...,D is involutive. The requirement for a
homogeneous polynomial I in momenta to be an integral is the Poisson equation (1.3). It
defines a system S of PDEs on the coefficient functions of I. The prolongation of S has to
be of finite type in order that our methods can be applied. For our examples, this is ensured
by [Wol98] or Lemma 1 in Section 3.1.1.

Vacuum Requirement. In Chapters 3 and 4, we consider stationary and axially sym-
metric metrics that satisfy the vacuum condition, i.e. the Einstein tensor or, equivalently,
the Ricci tensor are required to vanish identically. This requirement is also called Ricci-
flatness. In Chapter 4, we investigate Weyl metrics. For these metrics the vacuum condition
is not satisfied automatically, but has to be imposed separately by requiring a certain set
of equations to hold. For stationary and axially symmetric vacuum (SAV) space-times, this
set of equations can be rewritten in terms of a differential equation for a complex function,
the Ernst potential , plus two secondary equations.

Sub-Riemannian structures. In Chapter 5, we discuss the connection between sym-
metries and the existence of integrals for sub-Riemannian structures. We consider Carnot
groups which are nilpotent approximations to general sub-Riemannian structures [Bel97;
MSS97]. More specifically, we consider left-invariant rank-2 distributions on Carnot groups.
Given a sub-Riemannian metric on the distribution, it is discussed on page 74f how to ob-
tain the corresponding Hamiltonian. The Hamiltonians that we consider are left-invariant.
Therefore, right-invariant vector fields automatically lead to integrals since multiplication
from the left and multiplication from the right commute.



Chapter 2

Algorithmic Method

In this chapter we are going to establish the general method and develop two algorithms,
which are applied to stationary and axially symmetric metrics in Chapter 3. Another al-
gorithm is only briefly mentioned in the present chapter and is presented in more detail in
Chapter 5 (Algorithm III on page 79), where it is applied to left-invariant sub-Riemannian
structures on Carnot groups. The concept behind the algorithms (especially Algorithms I
and II) is also the foundation for Chapter 4.

Only in very few cases can the existence or nonexistence of integrals be checked by direct
integration. For Hamiltonian systems, the method described in Section 1.3 allows us to find
Hamiltonian invariants in systems for which the geodesic invariants are already known. For
his construction of the quadratic integral in the Kerr metric, Carter starts from the separa-
bility of the Hamilton-Jacobi and the Schrödinger equation [Car68a]. Other approaches for
checking integrability have been used, for instance, in [WP70] and [GHKW11].

As noted on page 12, there are several notions of (non-)integrability. The Painlevé test,
for instance, is a method to check the existence of movable critical singularities, see [Con97;
CM03]. Another approach (e.g. Ziglin theory, Morales-Ramis theory) invokes Differential
Galois theory [MR99; Gor01; MPS13]. There are also approaches using properties of the
topological entropy [Tăı94]. Numerical evidence of (non-)integrability can be obtained using
Poincaré surfaces of section, e.g. [Bri08b; LG12]. However, some caution is required with nu-
merical observations; see [Bri08b] for an example where numerical observation misleadingly
suggested integrability [KM12; MPS13; LG12].

We use a computer implementation of the Cartan-Kähler prolongation-projection method
to make statements about the integrability of Hamiltonian systems on a D-dimensional
manifoldM with a (Lorentzian) metric g. The method itself is not restricted to Hamiltonian
systems. By integrability we refer to the existence of a final D-th integral I : T ∗M → R of a
certain homogeneous polynomial degree d in momenta, in addition to a family I of known
(simple) integrals, cf. Definition 3.

The Poisson equation (1.3) defines a system of partial differential equations on a set of
independent variables (base variables, coordinates) and dependent variables (unknown func-
tions). We consider integrals that are homogeneous polynomials in momenta with smooth
coefficient functions, see also Section 1.4. The method that we use can rigorously establish
nonexistence of smooth integrals that are polynomial in momenta of a given degree and
in involution with a family of given standard integrals. Moreover, the method can detect
additional (involutive) integrals if they exist. We study homogeneous polynomial integrals
(w.r.t. momenta) because we are interested in Killing tensors. However, studying the homo-
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geneous case is sufficient if one is interested in polynomial integrals for Hamiltonians that are
homogeneous polynomial in the momenta (geodesic invariants). It is a classical result that
nonexistence of homogeneous polynomial integrals implies the nonexistence of real-analytic
integrals, if the Hamiltonian is a homogeneous polynomial in the momenta (tome III of
[Dar87]).

The possibility of a computer implementation has clear benefits that make the method
a promising new technique. First, it is computationally efficient and allows us to address
complicated problems that cannot easily be accessed by other methods. Since the number
of equations and unknowns involved in the problems we study grows significantly with
increasing dimension and with increasing degree of the integral, manual computation is
hopeless for many interesting cases.

Second, computer implementation allows us to give a completely rigorous computer-
assisted proof in a conceptually concise way (the method does not involve any approxima-
tions). Since an application to parametrized metrics is also possible (see Section 3.3), this
opens up for a large range of applications. In recent years, computer-assisted proofs have
already helped in solving interesting and hard problems in mathematical physics and pure
mathematics, e.g. the four color theorem in the Euclidean plane, and it is likely that the
role of computer-based mathematics will increase further in the years to come.

2.1 General idea
The problem defined by the Poisson equation (1.3) formulates the requirement that a func-
tion I : T ∗MD → R that is homogeneous polynomial in momenta is a geodesic invariant
for a Hamiltonian dynamical system with Hamilton function H = gij pipj . Assume I is
polynomial of degree d. The problem can then be rewritten as a system S = Sd of partial
differential equations on the coefficient functions of I. This system of PDEs is overde-
termined1, having

(
D+d
d+1

)
differential equations on

(
D+d−1
D−1

)
unknown functions, depending

on D = dim(T∗M)/2 coordinates. Moreover, it is of finite type, cf. [Wol98] or the proof to
Lemma 1 on page 26. We adopt an approach via prolongation-projection and study the
associated algebraic system of the prolongations of Sd. We make use of the structure of S
in order to reduce the number of unknowns and equations (projection step).

In Section 1.2 we have outlined the idea of the prolongation-projection method along
general lines. Let us now study this in more detail. Provided the Hamiltonian is given
explicitly, the associated system becomes a linear system of equations, because in Equa-
tion (1.3) the coefficients of the unknowns are determined by components of the metric and
their first derivatives. Studying the number of solutions of this linear system provides a
bound to the number of independent integrals.

When we develop the algorithm, we make use of the structural properties of the con-
sidered system of PDEs. In particular, we take into account the form of the structural
equations for Killing tensors as discussed in [Wol98]. Moreover, we group the equations in
a component-wise manner w.r.t. momenta.

Prerequisites. We consider integrals that are homogeneous polynomials of degree d in
the momenta. A number of D− 2 linear integrals p3, . . . , pD is assumed to exist in addition

1Note that the initial system of PDEs is overdetermined as a differential system, i.e. the number of
equations is larger than the number of unknown functions. However, if derivatives of unknown functions are
counted as independent algebraic objects, the number of unknowns in the initial system is larger (at least
in general) than the number of equations. Only after taking enough prolongations we obtain a system with
more equations than unknowns.
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to the Hamiltonian. Imposing involutivity with the linear integrals, any final integral has to
be independent of the coordinates x3, . . . , xD corresponding to the linear integrals, because
in suitable coordinates Ii = pi (with ignorable coordinates xi, i = 3, . . . , D, see on page 23),
and thus

0 = {Ii, Ifinal} = {pi, Ifinal} = ∂iIfinal.

Moreover, the parity properties of the Hamiltonian can be used in order to decompose the
system of PDEs into smaller subsystems (cf. Section 2.2.2). Since computational efficiency
heavily depends on the number of equations and unknowns of the problem, this can signifi-
cantly improve the performance of the algorithm.

The associated linear system. Let S(k)d denote the k-th prolongation of Sd, i.e. the
system of PDEs obtained by adding derivatives of order ≤ k of the differential equations
of Sd. The total number of equations in S(k)d equals

md,k =

(
D + d

D − 1

)
·
(
k + 2

2

)
, (2.1)

but usually not all of them are independent (D denotes the dimension of the underlying
manifold).

The unknowns of the associated linear system are the derivatives of the unknown func-
tions evaluated at a point P , i.e. aτ,σ(P ) = ∂σaτ (P ) where τ and σ are multiindices2. Since
we study systems with enough symmetry, only derivatives w.r.t. the two non-ignorable co-
ordinates x1 and x2 are involved. We denote the set of unknowns by V(k)

d , and represent it
as a column vector. The number of entries is equal to

nd,k =

(
d+D − 1

D − 1

)
·
(
k + 3

2

)
. (2.2)

The associated (linear) system can be represented by a md,k × nd,k matrix M = M
(k)
d , and

this matrix system associated with S(k)d has the form

M v =


. . .
. . .
. . .
. . .

(...) = 0 (2.3)

with v being the vector of the unknowns V(k)
d . Note that the matrix in general has many

more rows than columns since we deal with an overdetermined system.

The rank computation. Computation of the rank of the matrix describing the associated
linear system provides the dimension of the space of solutions via the usual dimension
formula. These are the independent solutions for the unknown functions and their derivatives
in the chosen point of reference, see Observation 2 on page 28. The number of solutions is
an upper bound Λd to the number of linearly independent polynomial integrals of degree d,
and in general much greater than the number of integrals that the system admits.

2The multiindex τ is a tuple τ = (τ1, . . . , τD) labeling the coefficients of the integral (by denoting the
exponents of the corresponding moment monomials), while the tuple σ = (σ1, σ2) denotes the order of
differentiation w.r.t. the base variables x1 and x2, respectively. Therefore, |τ | =

∑
τi = d is the degree of

the integral and |σ| = σ1 + σ2 the order of prolongation.
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We can easily count the number of trivial integrals arising from the Hamiltonian and
the D − 2 linear integrals. It is given by the formula (for degree d of the integral)

Λ0
d =

bd/2c∑
l=0

(
D + d− 2l − 3

d− 2l

)
. (2.4)

Now, let Λd be the number of linearly independent first integrals of degree d (including
the trivial integrals Λ0

d). We have Λd ≤ Λ
(k)

d . If we achieve, after a certain number k0 of
prolongations, that the upper bound coincides with the number of known (trivial) integrals,

Λd ≤ Λ
(k0)

d = Λ0
d,

then this proves Λd = Λ0
d, because Λ0

d ≤ Λd. Thus, there cannot be additional integrals.
In the examples considered in Chapter 3, the upper bound coincides with the number of
known integrals after k0 = d steps of prolongation. In Chapter 5, the method concludes
after k0 = d+ 1 steps.

2.1.1 The Kruglikov-Matveev algorithm

A first implementation of the algorithm along the above lines has been given in [KM12]. It
determines, for a static and axially symmetric metric, more specifically the Zipoy-Voorhees
metric with δ = 2, the number of independent integrals that are homogeneous polynomials in
momenta and in involution with the integrals that follow from staticity and axial symmetry
of the system.

Nonexistence of an additional integral is shown up to degree 6 in [KM12]. For the
computation, coordinates are used that are adapted to the symmetries. In particular, [KM12]
employs prolate spheroidal coordinates. We are going to use the same coordinates in our
computations for the Zipoy-Voorhees metric, see Equation (3.17). Part of the techniques
that we describe in the following section have already been applied in [KM12].

2.2 Techniques

With increasing degree of the integral, the matrix system (2.3) grows and becomes harder
and harder to handle directly. It is therefore crucial to use tools of some kind to reduce
the number of equations and unknowns. Thereby, efficiency of the general algorithm is
increased, but in some cases the computations are only possible if suitable techniques are
applied to reduce the problem.

On the following pages, we give a short synopsis of the techniques that we employ. In
part, these tools are already used in [KM12], namely symplectic reduction, parity decom-
position w.r.t. non-ignorable coordinates and the choice of a generic, rational point. New
techniques3 include the parity decomposition w.r.t. ignorable coordinates and the use of the
inner structure (block structure for equations and unknowns). The reduction of the number
of unknowns by addition of trivial integrals is also new. Efficiency of these new techniques
is discussed in Section 2.4.

3Algorithms I, II in the form given in this thesis have not been published before. Results obtained with
a first version of Algorithm II have been presented by the author at the FDIS conference 2015 at Będlewo,
Poland [Vol15a]. Algorithm III, in slightly different form, has been presented and applied as part of the
collaborative work [KVL15].



2.2. Techniques 23

2.2.1 Symplectic reduction

Ignorable coordinates and symplectic reduction. The presence of symmetries allows
one to reduce a Hamiltonian dynamical problem to a lower-dimensional one. This fact has
been known classically, see, e.g., the book by Whittaker [Whi04].

In our context, symplectic reduction is a tool that we use to reduce the problem to
2 dimensions and it is also instructive for finding a suitable viewpoint on the equations.
When we use coordinates, some of them may not appear in the Hamiltonian, i.e. they
might be ignorable (sometimes also called cyclic). More precisely, this means that certain
coordinates do not appear in the Hamiltonian of the system, though their corresponding
momenta do. This allows us to define a new reduced Hamiltonian by fixing the ignorable
momenta. The ignorable coordinates can be recovered by an integral formula [Whi04]. If
there are k ignorable coordinates in a dynamical system with D degrees of freedom (2D-
dimensional phase space), the reduced dynamical system has (D − k) degrees of freedom
left. The corresponding coordinates are called non-ignorable.

In more modern terms, this can be understood in a coordinate-free manner via actions
of Lie groups on symplectic spaces. This is known as symplectic reduction, see e.g. [Mar92].
More precisely, assume that there is a global symmetry group G acting on a Hamiltonian
symplectic manifold (N, σ,H) and preserving the symplectic form σ (N is a manifold and
by H we denote the Hamiltonian). Any element of the Lie algebra g of G defines a natural
vector field on N via the exponential map. A moment map for G is a mapping µ : N → g∗

such that d(µ, ξ) = ıvσ, where we define a function N → R by (µ, ξ)(x) = 〈µ(x), ξ〉 and
denote the vector field corresponding to ξ ∈ g by the symbol v). The statement of the
Marsden-Weinstein reduction theorem is:

Fact 2 (Reduction theorem [Mar92]). Consider a level set for µ and identify any two points
that can be transferred into one another by a group transformation. This quotient space
inherits a symplectic structure from N , and thus it can be used as a new phase space. Also,
dynamical trajectories of the Hamiltonian H on N determine corresponding trajectories on
the reduced space.

Under an additional compactness assumption, this construction is also referred to as the
Marsden-Weinstein quotient, see e.g. [MS95].

In our context, symplectic reduction is advantageous since we study systems with enough
symmetry to be able to view the problems as effectively 2-dimensional ones, involving only
two base variables. The other coordinates are adjusted to the symmetries. This limits the
number of derivatives that we need to take into account for the prolongation. Since the
number of m-th order partial derivatives w.r.t. D independent coordinates is

(
D+m−1

m

)
, the

number of equations grows heavily with D, and reducing the number D therefore can clearly
decrease the necessary computational effort.

The Hamiltonian is always an integral and we can thus consider level sets of the Hamilto-
nian in addition to using symplectic reduction. This further reduces the dimension of phase
space by one (classical, cf. [Whi04]). We take this into account in Section 5.4, where we
deduce an explicit low-dimensional representation for the Poisson equation (1.3).

2.2.2 Parity decomposition

The reduction to a 2-dimensional space comes at a cost. In the reduced picture, the Hamil-
tonian is no longer a homogeneous polynomial in the momenta. In the initial problem, we
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are concerned with finding geodesic invariants, i.e. integrals that are homogeneous polyno-
mials in momenta for Hamiltonians that are defined solely by the metric. When performing
symplectic reduction, we go over to working on level sets, where some of the momenta
turn into constants. Therefore, on the reduced manifold we have a Hamiltonian that is
non-homogeneous,

H|pi=ci, i∈{3,...,D} =

∑
i,j∈{1,...,D}

gij pipj

∣∣∣∣∣∣
pi=ci, i∈{3,...,D}

=
∑
i,j∈{1,2}

gij pipj︸ ︷︷ ︸
kinetic

+ 2
∑

i∈{1,2}
j∈{3,...,D}

gij picj

︸ ︷︷ ︸
linear

+
∑
i,j∈{3,...,D}

gij cicj︸ ︷︷ ︸
potential term

.
(2.5)

In this way, the reduction leads to a Hamiltonian that has a potential term, and in general
also a linear term, in addition to the kinetic term defined by the (reduced) metric. As
a consequence, we have to consider Hamiltonian invariants instead of geodesic invariants.
Thus, in a sense, we trade off dimension against homogeneity.

We now present how this change of setting allows us to simplify the computational
problem.

Parity in the non-ignorable momenta. In the examples of stationary and axially sym-
metric vacuum metrics, the reduced Hamiltonian has even parity in the non-ignorable coor-
dinates, i.e. the reduced Hamiltonian consists of a quadratic and a scalar component only.
This allows one to consider integrals of odd and even parity separately, since the system of
PDEs decomposes accordingly. The restriction to pure-parity integrals is possible in all of
our cases except for the sub-Riemannian examples in Chapter 5.

Observation 1 (Parity decomposition). If the Hamiltonian is of pure even parity, then for
all homogeneous terms in the Poisson equation (1.3):

• Terms of (1.3) that are of even parity in the non-ignorable momenta contain only
coefficients of the integral from terms with odd parity in these momenta.

• Terms of (1.3) that are of odd parity in the non-ignorable momenta contain only
coefficients of the integral from terms with even parity in these momenta.

Proof. The polynomial {H, I} is of degree d+ 1 in momenta provided that I is of degree d.
Without loss of generality, let us assume that d is even, then d + 1 is odd and the leading
term w.r.t. non-ignorable momenta of {H, I} is {H(2), I(d)}, where superscripts indicate the
homogeneous degree in non-ignorable coordinates. Therefore, this first term contains only
coefficients in I from terms with even parity in the non-ignorable momenta. The next-to-
leading term similarly contains only coefficients from I(d− 1), which come from terms with
odd parity, and so on.

Parity (of the potential) w.r.t. ignorable momenta. For SAV metrics we can split the
Poisson equation (1.3) according to Observation 1. The Hamiltonian H(x1, x2, p1, . . . , pD)
is of even parity in (x1, x2) and decomposes, through symplectic reduction, into a kinetic
part T (x1, x2, p1, p2) and a potential part V (x1, x2, p3, . . . , pD) = V (x1, x2, c3, . . . , cD).

Now, in addition, we assume that the potential V = V 33p23+V 34p3p4+V 44p24 is invariant
under inversion pa 7→ ±pa for a ∈ {3, 4}. We do not require simultaneous inversion of both
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momenta. In our context, this additional symmetry requirement simply means that we
assume a coordinate system such that the metric is diagonal (hypersurface-orthogonality4).
Provided this additional requirement holds, the system of PDEs from (1.3) splits into four
separate systems of PDEs, according to the parity in the two non-ignorable coordinates and
the parity in p3 (or p4). This is worked out in detail in the context of Lemma 2 on page 36.

2.2.3 Inner structure of the system of PDEs
The system of PDEs that we consider actually has a lot of inner structure, which can be
taken advantage of. Our system of PDEs emerges from the Poisson equation (1.3), which is
a polynomial in the momenta.

This motivates considering the structure of and between equations obtained from degree-
wise decomposition of this polynomial. Similar considerations are made in [Hie87] for several
examples, see Section 1.3. By symplectic reduction, and after using Observation 1, we obtain
a non-homogeneous polynomial equation

{H, I} = {T + V, I(d) + I(d− 2) + · · ·+ I(e)} = 0 (2.6)

where e ∈ {0, 1} has to be chosen according to the parity of the integral I. As in [Hie87],
we can decompose this polynomial requirement w.r.t. degree in the non-ignorable momenta.
In this way, we obtain a list of equations

E0 {T, I(d)} = 0 (2.7a)

E1 {T, I(d− 2)}+ {V, I(d)} = 0 (2.7b)
... . . .

Efin

{
{T, I(0)}+ {V, I(2)}
{V, I(1)}

= 0 (even parity branch) (2.7c)
= 0 (odd parity branch) (2.7d)

These polynomials can be further decomposed by looking at components w.r.t. ignorable
momenta. In Chapter 3, we have two ignorable momenta, and thus we can decompose
the k-th equation Ek−1 in (2.7) into 2k − 1 new polynomial equations. The degree-wise
decomposition leads to some helpful observations:

Structuring the unknowns. We organize the unknowns (i.e. the coefficients aτ of I)
into blocks in a natural way. We define blocks by first arranging the I(i) according to the
value of l, where 2l = i − d + ẽ with ẽ ∈ {0, 1} denoting the parity of d + e. Then, for
constant i, we arrange them according to the order m of differentiation. The resulting block
structure is sketched in Figure 2.1.

This block arrangement for the unknowns suggests to find a similar structure for the
equations and then try to split the problem into smaller units. We can do this and use the
smaller units of the linear-algebraic system to (partially) solve for some of the unknowns.
This idea is invoked in the elimination scheme for SAV metrics in Algorithms I and II.

Structuring the equations. For the equations, it is possible to make an arrangement
similar to that for the unknowns. Consider the equations El obtained from the decompo-
sition (2.7). Consider derivatives ∂|J|El

∂xJ , where J is a multiindex with |J | = m. When we
arrange the sets of equations in blocks according to l and m, we obtain a structure as shown

4In the SAV examples, this hypersurface orthogonality requirement corresponds to the static limit.
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Block structure of the unknowns
m

l

...

......
. . . . . . ...

. . .

. . .

0 1 M−2 M−1 M

0

1

L−1

L

I(d) ∂
∂xJ

I(d) ∂M−2

∂xJ
I(d) ∂M−1

∂xJ
I(d) ∂M

∂xJ
I(d)

I(d− 2)

I(d−L+1)

I(d−L)

Figure 2.1: Sketch of how we arrange the unknowns into the block structure. The multiindex
J , in each block, runs over all combinations with |J | = m according to the column number
(level of prolongation).

in Figure 2.2. We use the same block structuring scheme for the partial differential equations
that we obtained from the subpolynomials El. Note, however, that the maximal number of
rows in the figures, L and L̂, need not be equal. They can differ by one.

Obviously, the blocks in Figures 2.1 and 2.2 are related, for 0 ≤ l ≤ L, and the (l,m)-
block of equations contains unknowns from the (l,m + 1)-block of unknowns (e denoting
the parity of the integral I). The crucial observation now is that for suitably large m ≥ 1
all m-th derivatives of the unknown functions connected with the l-th row in Figure 2.1
can be solved for in the equations of the (l,m − 1)-block in Figure 2.2 (analogously for
higher derivatives in the blocks following to the right). It turns out that this is possible
for m ≥ d − 2l − ẽ + 1 where the right-hand side of the inequality is the (p1, p2)-degree of
the respective subpolynomial (ẽ = 0, 1 denotes the parity of d + e). This fact can be seen
from the structural equations as treated in [Wol98]. However, in our context (only 2 base
variables), it can be understood much easier:

Lemma 1 (Partial solution of the blocks). For Hamiltonian invariants in 2-dimensional
spaces with potential, all m-th derivatives of the unknowns (m ≥ d− ẽ− 2l + 1) in the l-th
row of Figure 2.1 can be solved for (i.e. expressed by lower derivatives or unknowns with
smaller l), given the equations in the (l,m− 1)-block of Figure 2.2 with 0 ≤ l ≤ L.

Proof. The assertion is easily checked by inspecting the equations of the l-th row. The
relevant term in the corresponding polynomial equations is of the form (by ' 0 we symbolize
that the other terms are not of interest. They only involve lower-order derivatives of the
unknowns or unknowns from blocks with lower value of l)

{T, I(k)} = {Ω (p21 + p22), I(k)} ' 0, (2.8)

where I(k) is a homogeneous polynomial of degree k = d − 2l − ẽ in momenta, and where
Ω = Ω(x1, x2) is a function (we assume isothermal coordinates). Such a term does not
exist in the equations with l = L̂ in the case of odd-parity integrals, and this is where the
restriction on l appears.

The equations obtained from the polynomials (2.8) (at prolongation level m = 0) yield a
system of equations that has the qualitative structure (we denote the coordinates by x = x1
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Block structure of the equations
m

l

...

......
. . . . . . ...

. . .

. . .

0 1 M−2 M−1 M

0

1

L̂−1

L̂

E0

E1

EL̂−1

EL̂

∂E0
∂xJ

∂M−2E0
∂xJ

∂M−1E0
∂xJ

∂ME0
∂xJ

Figure 2.2: Sketch of how we arrange the equations into the block structure. The multi-
index J , in each block, runs over all combinations with |J | according to the column number
(level of prolongation).

and y = x2)

(a0)x ' 0

(a1)x + (a0)y ' 0

...
(ak)x + (ak−1)y ' 0

(ak)y ' 0,

where ai, i = 0, . . . , k, are the coefficients of I(k). Differentiating once w.r.t. the coordinates x
and y, obtain

(a0)xx ' 0, (a0)xy ' 0, (a1)xx = (a1)xx + (a0)xy ' 0 etc.

Continuing in a similar way, one can solve more and more of the equations obtained after
differentiation, beginning from ‘above’ and ‘below’. Obviously, one is done after k differen-
tiations, when all highest derivatives of the ai are explicitly obtained.

The proof for finiteness of the system of PDEs (1.3) can be obtained by an analogous
reasoning. It provides a result corresponding to that of [Wol98] for the 2-dimensional case.

For our present discussion, Lemma 1 states that we can solve the equations in the (l,m)-
block of Figure 2.2 for the unknowns of the (l,m+ 1)-block in Figure 2.1 (m = d− 2l − ẽ).
This implies that we can immediately replace a number of unknowns, namely those in these
blocks and in blocks to the right of them. We are going to see on pages 39ff that this simple
observation already helps to speed up the computations considerably.

2.2.4 Choice of a specific point
We choose a generic point on the reduced space (level sets of the linear integrals), i.e. we
consider the evaluation of (2.3) at a point, i.e.

M0 v0 = M(x1 = x10, x
2 = x20) v(x1 = x10, x

2 = x20) = 0, (2.9)
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where M and v are the matrix and the vector of unknowns describing the associated linear
system (2.3). Of course, there is the risk that the rank of M0 drops if a ‘wrong’ point is
chosen. This would misleadingly suggest the existence of an additional integral. Therefore
we have to be cautious to pick a point such that the matrix M0 has the generic rank of
the matrix M describing the associated linear system (we call such points generic). This
simplifies the problem from computing the rank of a matrix in Mat(C∞) to one in Mat(R).

Observation 2 (choice of a generic point). Given a specific metric, we choose a point such
that the rank of the matrix describing the (linear) associated system (cf. page 21) takes its
generic value. Then the upper bound Λ obtained from the matrix evaluated at this point is
the same as the upper bound generically obtained from the original matrix (before fixing the
point).

Rational metric: If the metric has entries that are rational functions in the base variables,
the resulting matrix M0 = M(x1 = x10, x

2 = x20) of the associated system can w.l.o.g. be
considered a matrix in Mat(Z) if a point with rational coordinates is chosen.
Known integrals: Assume we already know a family I of integrals. We have the freedom of
adding linear combinations of these integrals to our supposed additional integral I. Choosing
this linear combination accordingly, we can eliminate some of the coefficients of I at the
point (x10, x

2
0), i.e. we can eliminate some of the unknowns in Equation (2.9). If all known

integrals are taken into account, we do not need to compute the exact rank of the matrix
M(x10, x

2
0). In this case, it suffices to check whether this matrix has maximal rank or not.

Sparse Matrices. In case of the sub-Riemannian structures considered in Chapter 5, the
considerations of Section 2.2.3 still have an analogy. However, the described technique does
not work very efficiently due to the additional linear term in the reduced Hamiltonian. On
the other hand, this can be remedied if one can choose a point that makes the equations
particularly simple. Through such a choice, we obtain a matrix M0 with very few non-
zero entries. This allows us to iteratively solve monomial and bi-monomial equations first,
before computing the rank of the remaining matrix. In this way, the number of rows and
columns for the matrix of the rank computation is reduced considerably. In Chapter 5, we
can investigate systems with several 10,000 equations and unknowns using this tool.

2.3 Algorithm for an explicitly given metric
In this section, we develop an algorithm to check nonexistence of additional integrals (geo-
desic invariants) for metrics with certain symmetry properties. Our attention is towards
stationary and axially symmetric vacuum metrics, which in so-called Lewis-Papapetrou co-
ordinates x, y, φ, t can be written (see Chapter 3)

gSAV = e2U
(
e−2γ

(
dx2 + dy2

)
+ x2 dφ2

)
+ e−2U (dt+Adφ)2, (2.10)

with three parametrizing functions U(x, y), γ(x, y) and A(x, y). We sometimes choose other
coordinates, for instance prolate-spheroidal coordinates. Therefore, we consider metrics of
the structurally more general form5

g = g11 dx
1 ⊗ dx1 + g22 dx

2 ⊗ dx2 +
∑

i,j=3,4

gij dx
i ⊗ dxj . (2.11)

5The tensor products are written explicitly to avoid double superscripts.
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where, of course, g34 = g43, and where all gij = gij(x
1, x2) depend on the first two coordi-

nates only (i, j ∈ {1, . . . , 4}). Thus:

— We can, via symplectic reduction, ignore the coordinates x3 and x4. Then, the reduced
Hamiltonian has no linear terms in the momenta.

— We use suitable coordinates on the reduced space. Often, though not always, we choose
isothermal coordinates, i.e. g11 = g22 [Gau73; Kor14; Che55].

The central question that we pose can be written as follows:

Question 1. How many integrals of maximal degree d (and in involution with the standard
integrals) does the geodesic flow of a metric of the form (2.11) admit?

2.3.1 Outline of the algorithm
We consider metrics of the form (2.11) and explore how to address Question 1 for such
metrics. The approach follows the prolongation-projection method outlined in Section 1.2,
and we demonstrate how to use the techniques that we outlined on pages 22ff. Amongst
all tools described in Section 2.2, we stress two basic observations that are exploited for the
algorithmic computations:

• Use of symmetries of the system. On one hand, we use the action of symme-
try groups to reduce dimensionality of the computational problem to effectively two
dimensions by disregarding ignorable coordinates. We require involutivity of the in-
tegrals. On the other hand, additional symmetry properties concerning parity of the
integrals allow us to split the system of PDEs into smaller subsystems, another im-
portant simplification.

• Multi-step elimination scheme. The general algorithm described in Section 2.1
completes the projection step of prolongation-projection solely by computing the rank
of the matrix of the associated linear system. This works well for smaller matrices but
usually becomes time-consuming with larger matrix dimensions. Therefore we choose
to extend the mere rank computation by a preceding reduction step, which scales
down the number of equations (and unknowns) before computing the rank. In this
way, we can make use of the particular inner structure of the system of equations. In
turn, this also proves useful as a preparation for the (non-algorithmic) computations
in Chapter 4.

An application of the algorithm that is described in this section is given in Section 3.4 on
page 53f, where nonexistence of a final integral up to degree 7 is proven for a Tomimatsu-Sato
metric.

Use of symmetries

Metric (2.11) obviously admits two linear integrals, namely p3 and p4. Via ignoration of
coordinates, we can treat these momenta as constants and obtain the Hamiltonian in the
reduced picture on level sets as

H = gijpipj =
p21
g11

+
p22
g22︸ ︷︷ ︸

=T
kinetic term

+
g44

g33g44 − g234
p23 +

g33
g33g44 − g234

p24 −
g34

g33g44 − g234
p3 p4︸ ︷︷ ︸

=V
potential term

. (2.12)
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Hence, H has two terms of even parity in the momenta p1, p2 of the reduced problem.
By Observation 1 this allows us w.l.o.g. to restrict to integrals of pure odd or even parity.
Obviously, this yields two subproblems, namely to separately solve the problems

{H, Ieven} = 0 and {H, Iodd} = 0

where the subscripts indicate the corresponding parity w.r.t. non-ignorable momenta.
In general, both subsystems have to be investigated to obtain the full picture. However,

simplifications in case of Weyl (diagonal) metrics are exploited for Algorithm II. For such
metrics, additional symmetry exists and admits a further decomposition of the system of
PDEs. This is worked out in detail on pages 34ff.

Elimination scheme

Let us briefly review how we obtain the equations for the relevant system of PDEs. The
Poisson bracket is a polynomial

{H, I} =
d+1∑
i=0

i∑
j=0

d+1−i∑
k=0

P
(i, j)
k pi−j1 pj2 p

k
3 p

d+1−i−k
4 = 0, (2.13)

where each P (i, j)
k represents an equation in the system of PDEs. The prolongated system is

obtained by taking derivatives of the P (i, j)
k . Denote the resulting equation obtained after m

differentiations (with µ derivatives w.r.t. x1 and m− µ w.r.t. x2) by

P
(i, j,m, µ)
k ,

with i ∈ J0, d+ 1K, j ∈ J0, iK, k ∈ J0, d+ 1− iK, and µ ∈ J0,mK, where

Ja, bK = {n ∈ Z : a ≤ n ≤ b} (2.14)

denotes the set of integers between (and including) a and b. In our cases, not all P (i, j)
k are

non-zero if we consider only integrals of pure parity in (p1, p2). If we consider integrals of
odd (even) (p1, p2)-parity, then only P (i, j)

k with even (odd) value of i can be non-zero. Now,
the unknown functions are the coefficients in the polynomial that represents I,

I =

d∑
i=0

par(i)=e

i∑
j=0

d−i∑
k=0

I
(i, j)
k pi−j1 pj2 p

k
3 p

d−i−k
4 with e = 0 or e = 1. (2.15)

For the derivatives of the unknown functions, use a notation analogous to that for the P (i, j)
k ,

namely
I
(i, j,m, µ)
k , (2.16)

with i ∈ J0, dK, j ∈ J0, iK, k ∈ J0, d− iK, µ ∈ J0,mK. Here, m denotes the order of partial
differentiation, and µ is the order of differentiation w.r.t. the coordinate x1. If we write
out the polynomial (1.3) using subpolynomials obtained as coefficients w.r.t. p1 and p2, cf.
Section 2.2.3, we obtain the following picture.

{T, I(d)} = 0, (2.17)

{T, I(d− 1)
0 } = 0, {T, I(d− 1)

1 } = 0,

{T, I(d− 2)
0 }+ {V 44, I

(d)
0 } = 0, {T, I(d− 2)

1 }+ {V 34, I(d)} = 0, {T, I(d− 2)
2 }+ {V 33, I(d)} = 0,

{T, I(d− 3)
0 }+ {V 44, I

(d)
0 } = 0, {T, I(d− 3)

1 }+ {V 44, I
(d)
1 }+ {V 34, I

(d)
0 } = 0, {T, I(d− 3)

2 }+ {V 34, I
(d)
1 }+ {V 33, I

(d)
0 } = 0, {T, I(d− 3)

3 }+ {V 33, I
(d)
1 } = 0,

etc.
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where we use the shorthand notation V =
∑
V ijpipj = H(0) and T = H(2) for the homoge-

neous components of the Hamiltonian to avoid double superscripts. As we argue above, the
components of I of odd and even parity w.r.t. (p1, p2) can be treated separately.

We explain the elimination scheme for one of the two branches only, namely for the
branch whose parity equals that of d (i.e. the branch of highest degree in (p1, p2)). This
choice is only for simplicity and brevity. For the other branch, one continues analogously.
From the typical form of the polynomials arising as coefficients w.r.t. (p1, p2) in (2.13),

first subpolynomial: {H(2), I(d)}
...

(l + 1)-th subpolynomial: {H(2), I(d− 2l)}+ {H(0), I(d− 2l + 2)}
...

(2.18)

It follows that the equations are coupled in such a way that the (l + 1)-th subpolynomial
contains derivatives of I(d− 2l), but contains I(d− 2l + 2) without differentiation. When we
take prolongations, an analogous pattern remains with higher derivatives.

After some (say, m) prolongations, the highest derivatives of coefficients of I in the
(l + 1)-th subpolynomial can be expressed through lower-order derivatives, cf. the proof of
Lemma 1 on page 26. Then, the same order of differentiation for coefficients in a certain
component I(d− 2l) appears in the (l+1)-th subpolynomial at prolongation stepm and in the
(l+ 2)-th subpolynomial at prolongation step m+ 1 (i.e. unknowns from the (l,m+ 1)-block
appear in the blocks (l,m) and (l+ 1,m+ 1) of the equations). These derivatives may also
appear in these subpolynomials for higher steps of prolongation. The situation is illustrated
in Figure 2.3, which also takes into account cases where not all respective unknowns can
be expressed by lower-order expressions. By lower order, we refer to expressions involving
unknowns that belong to blocks with a lower value of l or m in the tableau of Figure 2.1.

This interaction structure suggests the following on the level of the differential equations
obtained from the subpolynomials (we reinterpret Figure 2.3 as a tabular organizing the
equations, cf. Section 2.2.3). The elimination scheme is build on this procedure as follows:

• Organize the equations P (i, j,m, µ)
k in a tableau as in Figure 2.2, with the numbers

l = d−i
2 labeling the subpolynomials in vertical direction and the prolongation level

m on the horizontal axis. (we refer to l as the block number). Any set P [i,m] of
all equations6 P (i, j,m, µ)

k with the same m and i contains unknowns I(i− 2, j,m+ 1, µ)
k

(i ≥ 2) with m+ 1 derivatives w.r.t. x1, x2.

• The subpolynomials usually7 have a term {H(2), F} where

F = I(i) =
∑
j

Fj p
j
xp
i−j
y

is some homogeneous component of I. Since we assume isothermal coordinates on the
reduced space, H(2) = Ω(p2x + p2y), and the subpolynomials with term {H(2), F} entail

6This is what we called the (l,m)-block in Section 2.2.3.
7We ignore equations of the form {H(0), I(1)} = 0, which appear in the odd-parity branch.
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Common unknowns in the subpolynomials, differentiated by (x1, x2)
m

l

...

......
. . . . . . ...

. . .

. . .

0 1 M−2 M−1 M

0

1

lm−1

lm

Figure 2.3: Sketch of the ‘interaction’ of the prolongated (w.r.t. (x1, x2)) subpolynomials
of Equation (2.13). Horizontally, the order of differentiation by (x1, x2) is shown, vertically
the number of the subpolynomial. The arrows indicate which subpolynomials contain the
same coefficients in the same order of differentiation.

expressions of the form

(F0)x ' 0

(F1)x + (F0)y ' 0

...
(Fi)x + (Fi−1)y ' 0

(Fi)y ' 0

(2.19)

where we use ' as in Lemma 1 to denote terms that are not of interest. Performing
prolongations, more and more of the expressions can be used to eliminate terms in the
other equations. After i+ 1 steps, this allows us to solve for all highest derivatives of
Fj , j ∈ {0, . . . , i}, as in Section 2.2.3.

• Having completed the previous steps, diagonal and horizontal replacements can be
performed as follows.

(i) For each pair of values (i0,m0), solve equations in P [i0,m0] for the I(i0, j,m0 + 1, µ)
k

if only one term with such unknown appears in the equation (j, k and µ run over
all permissible values).

(ii) Substitute the solutions in all equations P (i0 − 1, j,m, µ)
k with m ≤ m0. Then

substitute the solutions in all equations P (i0, j,m, µ)
k with m ≤ m0 − 1.

To get a clearer impression of how this step works, consider the equations in the block
(l,m) = (l, d−2l) of Figure 2.3. These can be completely solved for the (d−2l+ 1)-th
derivatives of I(d− 2l, j)

k .
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Now:

– the obtained expressions for the I(i, j, i, µ)k can be substituted into the equations
of the (l,m)-blocks with m > d − 2l, and of the blocks with (l + 1,m), where
m > d− 2l.

– the previous substitution can be done for each value 1 < l ≤ bd−e2 c, where e is
the (p1, p2)-parity of the integral under consideration.

– in each block (l,m) there are (2l + 1)(d − 2l + 2)(m + 1) equations. For these
equations, consider the (2l + 1)(d − 2l + 1)(m + 2) unknowns from the block
(l,m + 1). In the cases with m < d − 2l, only some of the equations can be
solved for the respective unknowns explicitly, but for m ≥ d − 2l we can solve
for all the unknowns of the respective block and obtain (at most) a number of
(2l+ 1)(m− d+ 2l) integrability equations (the reader may recall that this is for
the case when par(e) = par(d). In general, the expressions also contain ẽ ∈ {0, 1},
which denotes the parity par(d+ e). Thus, ẽ = 0 in the case displayed here).

Having performed this step, we can choose a generic point as described in Observation 2
on page 28. Thereby, we find a matrix with (in general, real) entries for the associated
system. Naturally, we want to choose points that ensure self-contained computability on
the computer. In our examples the metric usually has rational entries and we therefore
choose points with integer or rational components. The trivial integrals are still solutions of
this matrix equation (cf. page 28). Since we are only interested in additional integrals, we
can make use of the freedom to add arbitrary constant multiples of trivial integrals to our
function I, which we require via (2.13) to be an integral. This freedom can be interpreted
as the freedom to choose the value of the coefficient in I(i, 0, 0, 0)k in our point of reference for
each k and i according to our wishes. Naturally, we want to choose I(i, 0, 0, 0)k = 0, because
this eliminates these unknowns while at the same time keeping the system homogeneous (no
constant terms).

Summary

Let us briefly summarize the algorithm that we constructed:

Algorithm I. Nonexistence results for Question 1 on page 29 can be obtained for metrics
of the form (2.11) through the following algorithm:

(1) Consider pure-parity integrals. Run the algorithm for both alternatives separately.

(2) Compute the matrix of the linear system associated to the prolongation of the system
of PDEs obtained from the Poisson equation (1.3).

(3) Choose a generic point P and evaluate the matrix of the associated linear system at
this point.

(4) Add multiples of the known integrals to set as many of the unknowns as possible to
zero (in P ).

(5) Perform the vertical and horizontal reductions as described on the previous page.

(6) Perform other tricks, e.g. rewrite the matrix system such that the coefficients are in-
tegers.
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(7) Compute the rank of the resulting (reduced) matrix and determine the dimensionality
of its kernel (in particular, determine whether the matrix has full rank).

The algorithm confirms nonexistence of an additional integral if the obtained kernel dimen-
sion equals the minimal expected value (that is 0 if all trivial integrals are taken into account
in (4)). Otherwise, it has to be checked that a truly generic point had been chosen. If the
matrix kernel dimension stays larger than the minimal expected value, existence and inde-
pendence of an extra integral have to be investigated by solving the associated linear system
in all generality.

In what follows we often use the terms initial matrix and reduced matrix of the associated
linear system. The initial matrix is the matrix describing the associated linear system
obtained in Step (2). By the reduced matrix we mean the matrix obtained after completion
of Step (6).

2.3.2 Algorithm for diagonal metrics

Algorithm I is applicable to metrics of type (2.11) with two ignorable coordinates. The
downside of this generality is that the algorithm might miss particular properties of a con-
sidered system that simplify the problem. As a result, efficiency can be improved further if
additional symmetries are present. We now consider diagonal metrics of type (2.11), i.e. we
assume to have coordinates such that the metric tensor locally is represented by a diagonal
matrix.

Equivalently, we can view this as an additional symmetry of the potential V = H(0)

obtained from (2.11) as outlined on page 23. This is explored in more detail in Section 3.1.2,
when we investigate Weyl metrics. The effect is that the potential component V 34 vanishes,
see also (3.15) (actually, we just need that V 34 is constant).

The advantage of this additional symmetry, or structure of the metric tensor, is that (for
integrals of degree d) the Poisson equation (1.3) splits into four separate subsystems which
can be considered independently. Moreover, it turns out that only one of them is distinct
to degree d, and this observation allows us to iteratively answer Question 1 on page 29 in
a succinct way by regarding, for each degree, only the distinct subsystems S leadr , r ≤ d. We
make use of this observation to improve Algorithm I for diagonal metrics of type (2.11),
especially Weyl metrics. The efficiency of this modification is discussed in Chapter 3.

Use of symmetries

We use the same techniques as those described in Section 2.3.1. However, we show that di-
agonal metrics admit a refined decomposition scheme, which allows for faster computations.
The basic idea is as follows: Decompose the integral into its parts of odd and even parity
in (p1, p2). These parts satisfy separate PDE systems (see Observation 1 the explanations
for Algorithm I). The integral can thus be written in the following form, identifying the
coefficients w.r.t. p3 and p4 for each of these parts,

I =
∑
r even

k∈{0,...,d−r}

I
(r)
k pk3p

d−r−k
4 +

∑
r odd

k∈{0,...,d−r}

I
(r)
k pk3p

d−r−k
4 (2.20)

where I(r)k is a polynomial in (p1, p2) of degree r (note that each of the sums satisfies a
Poisson equation (1.3) of its own).
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(a) Graph of the decomposition (parity
of r equals parity of d). The thick-line
part is the lead component, the lower
component is drawn with thin lines.

(b) Graph of the decomposition (parity
of r opposite to parity of d). The left
component is the one with thick lines,
the other is the right component.

Figure 2.4: The graphs show the structure of the equations. Vertices of the graph correspond
to equations in (2.21). So, the top vertices correspond to a maximal value of r (according to
the respective parity branch). Going down to child vertices reduces r by 2, compare I(r)k in
the lines of (2.21). For r = const, k increases from left to right in (2.21). This corresponds to
the vertices on horizontal levels in the graphs. Edges indicate that equations have unknowns
in common.

Using (1.3), consider coefficients w.r.t. the momenta p3 and p4. This produces a set of
differential equations written in terms of Poisson brackets. We arrange these equations in
an advantageous way similar to Equations (2.17)8:

{T, I(d)} = 0, (2.21)

{T, I(d− 1)
0 } = 0, {T, I(d− 1)

1 } = 0,

{T, I(d− 2)
0 }+ {V 44, I

(d)
0 } = 0, {T, I(d− 2)

1 } = 0, {T, I(d− 2)
2 }+ {V 33, I(d)} = 0,

{T, I(d− 3)
0 }+ {V 44, I

(d)
0 } = 0, {T, I(d− 3)

1 }+ {V 44, I
(d)
1 } = 0, {T, I(d− 3)

2 }+ {V 33, I
(d)
0 } = 0, {T, I(d− 3)

3 }+ {V 33, I
(d)
1 } = 0,

etc.

These equations form a system of PDEs that we previously dubbed Sd. As in Section 2.3.1,
equations of odd and even parity w.r.t. (p1, p2) form separate systems of equations, named
Soddd and Sevend , respectively. Moreover, we now find another decomposition that is due to
the vanishing of V 34.

Since V 34 = 0, the terms of the form {V 34, · } disappeared from the equations, com-
pare (2.21) with (2.17). This entails that in any equation only those polynomials I(r)k appear
together that have their values r both of the same parity, and also k of the same parity.
This latter property is new compared to (2.17).

We therefore have four subsystems that have to be satisfied separately. We classify them
according to Table 2.1. A graphical display of the situation and the four subsystems is given
in Figure 2.4. The names that we use for the subsystems become clear from Figure 2.4 in
combination with Equations (2.21).

8We include terms both of odd and even parity in (p1, p2) here, because we need the exact structure
later. Note the differences between (2.21) and (2.17).



36 Chapter 2. Algorithmic Method

Subsystems in the diagonal case
k even k odd

par(r)=par(d) S leadd S lowerd

par(r)=par(d+ 1) S leftd Srightd

Table 2.1: The subsystems obtained by decomposition of the system of PDEs by parity in
ignorable and non-ignorable momenta. The entries in the table denote the names of the
respective subsystems. The table indicates the restrictions to r and k that have to be met
in order that the I(r)k appear in the respective subsystems. Here, par(r) denotes the parity
of the index r as a number.

For the subsystems left and right, one recognizes quickly that both systems are formally
equivalent — they are simply two copies of the same system of PDEs. Moreover, it is
fairly obvious that all the four systems are “similar” in the following sense. Consider the
corresponding decomposition into subsystems for integrals of degree d− 1 and d− 2. Then,
for instance, the lead subsystem for degree d − 1 is equivalent to the left subsystem for
degree d. Similarly, the lead subsystem for degree d− 2 is equivalent to the lower subsystem
for integrals of degree d.

Thus, out of the four subsystems of Table 2.1, only one is distinct, i.e. truly new for this
degree. This distinct subsystem is S leadd . Knowing the lead subsystem for degrees d−2, d−1
and d, we can therefore reconstruct the complete system Sd. For later reference, let us put
this result into a lemma.

Lemma 2. The solutions to Sd can be obtained by knowing the solutions to S leadd , S leadd−1, and
S leadd−2. The solutions to Sd are given by the formula

Sol(Sd) = Sol(S leadd )×
(
Sol(S leadd−1)

)2 × Sol(S leadd−2), (2.22)

where Sol(·) denotes the space of solutions of the respective subsystem.

Elimination scheme

The elimination scheme is basically the same as before, in Algorithm I. We represent the
Poisson equation (1.3) by

{H, I} =
d+1∑
i=0

par(i)=par(d+1)

i∑
j=0

d+1−i∑
k=0

par(k)=even

P
(i, j)
k pi−j1 pj2p

k
3p
d−i−k
4 , (2.23)

so each P (i, j)
k represents an equation of the system of PDEs that encodes the requirement

for I to be an integral. The prolongated system is obtained by differentiation of the P (i, j)
k .

The equation resulting from P
(i, j)
k after m differentiations, with µ derivatives w.r.t. x1 and

m−µ w.r.t. x2, is again denoted by the symbol P (i, j,m, µ)
k . Analogously, for the derivatives

of the unknown functions, write again I(i, j,m, µ)k . Then we follow the same prescription as
in the non-diagonal case.

Summary

Summarizing, we find the following algorithm, which is a refinement of Algorithm I for
diagonal metrics.
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Algorithm II. Nonexistence results to Question 1 on page 29 can be obtained for diagonal
metrics of type (2.11) and integrals of degree d through the following algorithm:

(1) For d0 ∈ {d− 2, d− 1, d} complete the following computation:

(i) Consider only the lead subsystem of Sd0 . It solely involves integrals of degree d0
that have pure parity par(d0) w.r.t. (p1, p2), and pure even parity in p3.

(ii) Compute the matrix of the linear system associated to the prolongation of S leadd0
.

(iii) Choose a generic point P and evaluate the matrix of the associated linear system
at this point.

(iv) Add multiples of the known integrals (linear integrals, Hamiltonian) to set as
many of the unknowns as possible to zero (in P ).

(v) Perform the vertical and horizontal reductions as described on page 32.
(vi) Perform other tricks, e.g. rewrite the matrix system such that the coefficients are

integers.
(vii) Compute the rank of the reduced matrix and determine the dimensionality of the

matrix kernel (and in particular decide whether the rank is maximal).

(2) Use Formula (2.22) to compute the total number of independent solutions to Sd0 .

The algorithm confirms nonexistence of an additional integral if the obtained number of
solutions equals the minimal expected value, that is 0 if all trivial integrals are taken into
account in (iv). Otherwise, it has to be checked whether a truly generic point has been chosen
or whether additional integrals exist (and whether they are independent).

Again, we use the terms initial and reduced matrix for the matrices obtained after
Steps (ii) and (vi), respectively.

2.3.3 Algorithm for sparse systems

The examples that we are going to discuss in Chapter 5 do not have symmetry properties
as nice as with metric (2.11). In particular, the Hamiltonian in these situations is of the
form H =

∑
i,j∈{1,...,4} g

ijpipj and has terms linear in the non-ignorable momenta (for the
concrete situation, see Chapter 5). Thus, we are not able to decompose the system of
PDEs into separate subsystems. On the other hand, although the elimination scheme of
Algorithms I and II can still be used in principle, it is not very efficient anymore. We are
therefore forced to deal with a larger system of equations that involve many more unknowns.

Yet, there is a cure for this problem for the case of the sub-Riemannian structures that
we discuss in Chapter 5. A suitable choice of the point of reference for the computation
yields a linear system that is described by a sparse matrix. Some equations in this system
turn out to have only one or two entries, and this allows us to solve some of the equations
immediately. Also, the partial solution can eliminate some of the redundant equations of
the overdetermined system.

This is exploited for Algorithm III on pages 77ff. Below, in Section 2.4, we see that this
simple trick actually proves very efficient in reducing the matrices of the considered linear
systems.

2.3.4 Examples

In order to give an impression of the nature of the result that the algorithm yields, let us
consider the Kerr family of metrics.
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(Extreme) Kerr metric. The Kerr family is a particular example of a family of metrics
of the type (2.11). It is discussed in more detail in Section 3.1. We use Boyer-Lindquist
coordinates (r, θ, φ, t) and consider the extreme Kerr metric (rotation parameter a = 1)
[BL67; Ste03]:

g =


r2+cos2(θ)
r2−2r+1

r2 + cos2(θ)
Pa(r,θ) sin

2(θ)
r2+cos2(θ)

−2 sin2(θ)r
r2+cos2(θ)

−2 sin2(θ)r
r2+cos2(θ) − r

2−2r+cos2(θ)
r2+cos2(θ)

 (2.24)

with Pa(r, θ) = cos2(θ)r2 + r4 − 2 cos2(θ)r + cos2(θ) + r2 + 2r. Applying Algorithm I, we
obtain the following results (we choose the point (r, θ) = (2, π/4)).

Degree 1 2 3 4
e = 0 integrals 2 5 8 14
e = 1 integrals 0 0 0 0
All integrals 2 5 8 14

The labels e = 0 and e = 1 mark results applying to the subsystems Seven and Sodd,
respectively. In the first column (degree 1), we have two integrals, which are the independent
linear integrals pφ and pt that both are of even parity in (pr, pθ). In second degree, we find 5
integrals (H, p2φ, ptpφ, p

2
t , and the Carter constant). Again, all are of even parity in (pr, pθ).

Schwarzschild metric. The Schwarzschild metric is a particular example of a Kerr metric
(namely, its static limit). In anticipation of the applications in Chapter 3, we note that it is
also a special case of the Zipoy-Voorhees family (with parameter value δ = 1). Using prolate
spheroidal coordinates (x1, x2, φ, t), the metric reads

g =


x1+1
x1−1

(x1+1)2

1−x2
2

(x1+1)2(1−x2
2)

1−x1

x1+1

 (2.25)

Algorithm II yields the following results (with (x1, x2) = (1/2, 2) as the point of reference).

Degree 0 1 2 3 4
lead integrals 1 0 4 0 10
All integrals 1 2 5 8 14

The appearance of the quadratic integral can be understood as follows. Besides the
Hamiltonian, the Schwarzschild metric admits four linear integrals, but only two of them
commute. However, a linear combination of their squares commutes with the two commuting
linear integrals. Essentially this is the fact that the angular momenta l1, l2, l3 on S2 (or the
generators of so(3)) do not commute w.r.t. the Poisson bracket, but each of them commutes
with the total angular momentum L =

∑
i l

2
i , which is a Casimir function for the system.

This demonstrates that the algorithm may find reducible integrals, if some of the re-
duction integrals are not in involution with one another. On the other hand, if we prove
nonexistence of additional integrals, this proves the nonexistence of corresponding irreducible
integrals.
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2.4 Computational efficiency
As we indicate previously, the computations as outlined above are to be performed with
computer assistance. All computations are rigorous and do not involve any kind of approx-
imation9. Let us give a quick overview on the computational efficiency of the algorithms,
including a qualitative assessment of how it is affected by the tricks and tools of Section 2.2.
As we remark earlier in this chapter, the rank computation is crucial for computation speed.
We use usual Gauß elimination, but of course one could also work with alternative algo-
rithms, such as the Bareiss algorithm, but it appears that this does not significantly change
the computation time.

In the previous sections, we describe in detail how we perform the computations. Recall
that we use two major techniques to facilitate our computations: We decompose the system
of PDEs using its symmetries, and we eliminate unknowns by partial solution of the system
via reasonably simple equations. Roughly speaking, the linear system obtained after taking
into account the symmetry has been called the initial matrix system, the one obtained after
applying the elimination scheme (and other tools) was dubbed reduced matrix system, cf.
the notes beneath Algorithms I and II.

Let us briefly look at how these tricks affect computation time, i.e. the efficiency of the
algorithms. Time indications in this section, and throughout the text, refer to a (relatively)
standard desktop computer with a 3.4GHz processor and 32GB RAM. The computations
were performed using Maple 18.

Effect of the degree on the computation time. Of course, computation time quickly
increases with growing degree d of the integral. This has two reasons. On one hand, the
number of unknowns and equations increases because, respectively, the degree of the integral
and of the Poisson bracket increases. For instance, for the number of unknown functions,
we find the following formula in dimension D = 4:(

D + d− 1

D − 1

)
D=4
=

1

6
(d+ 3)(d+ 2)(d+ 1) = O(d3).

On the other hand, if we increase the degree d, then we also have to perform more prolon-
gation steps, and this further increases the size of the associated matrix system.

Effect of symmetry decomposition schemes. Algorithms I and II differ mainly con-
cerning the implementation of the additional decomposition w.r.t. ignorable momenta that
Weyl (diagonal) metrics offer. We run both algorithms on the Zipoy-Voorhees metric with
δ = 2 to get an impression of how much this additional symmetry improves performance.
We compare the computation speed on our computer for several degrees of the integral.

Zipoy-Voorhees metric with δ = 2

d Algorithm I (e=1) Algorithm II
4 4s 1s
6 2.7m 54s
8 1.5h 25.5m

One might object that in case of Algorithm II we have to run the algorithm three times
to obtain the overall result for degree d, while in case of Algorithm I we only have to run

9We work with integers or at least rational numbers in the cases of a specific metric. In the case of
metrics with a parameter, Section 3.2, the computations are also rigorous.
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it twice. However, adding the computation times for all necessary computations for given
degree d, we obtain the following computation times.

Zipoy-Voorhees metric with δ = 2
all branches

d Algorithm I Algorithm II
6 5.4m 67s
8 2.9h 32m

Hence we see that the additional decomposition clearly speeds up the computation.

Effect of the elimination scheme. Algorithm I differs from the algorithm used in
[KM12], see page 22, mainly in the elimination scheme used to reduce the matrix of the
associated system. Algorithm II and [KM12] also differ in this respect, although, of course,
the differences are larger in this case.

For instance, the algorithm from [KM12] needs around 3 minutes for the case d = 4 on
our computer, while we achieve the same result in 8 and less than 3 seconds with Algorithms I
and II, respectively.10

For Algorithm I, the elimination scheme also works quite well. For instance, take the
case d = 7 with e = 0 in Table 3.2 on page 55 of Section 3.4.

Numbers of equations and unknowns before and after reduction
initial reduced

equations unknowns equations unknowns
2880 2700 556 356

This implies a reduction of the number of equations by about 4/5 (to 19%), while the number
of unknowns is reduced by about 7/8 (to 13% of the initial number).

Effect of dimension (sub-Riemannian examples). Let us compare the number of
equations and unknowns before and after applying our tools (refer to Chapter 5 for details
on Algorithm III). For instance, we obtain (at prolongation M = d+ 1) the following table
for the sub-Riemannian structures.

Original Reduced Percentage
example equations unknowns equations unknowns equations unknowns
6Dp (d=6) 28512 20790 11816 9155 41% 44%
6Dp (d=5) 12936 9072 2840 2262 22% 25%
6Dh (d=5) 12936 9072 5360 4013 41% 44%
7D (d=5) 25872 16632 9397 6993 36% 42%
8D1 (d=5) 48048 28512 4439 3514 9% 12%

The percentage figures give the ratio of the reduced and the initial numbers of, respectively,
equations or unknowns. We see that for the same degree d = 5, our techniques may even
work better for higher dimensions. Although they become less efficient when going from
dimension 6 (6Dp) to 7, they reduce the number of equations in the 8D case to around
10 percent of the original number (and as an effect of this, computation time in both 7D

10The mentioned figures are the sums of all relevant branches of the computation. The detailed compu-
tation times are (i) algorithm from [KM12]: 1.8m (e = 0), 1.2m (e = 1), (ii) Algorithm I: 4s (e = 0), 4s
(e = 1), (iii) Algorithm II: each computation less or around 1s.
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and 8D for degree 5 lies at around 10 hours, in spite of the fact that initially we had almost
twice the number of equations and unknowns in 8D.

In addition, we mention that it is only the tools that enabled us to perform the computa-
tions at all. Without the reduction, available memory on the computer is quickly exhausted.

Conclusions. The comparisons made above suggest that additional structure and the tools
from Section 2.2 contribute significantly to the performance of Algorithms I, II and III. In
particular, we observed the following effects:

— Additional symmetry can significantly speed up the computation when implemented into
the algorithm, e.g. the structure of the system of equations (pages 25ff) clearly improves
performance for Weyl metrics.

— The elimination scheme, extending mere rank computation by a preceding partial solu-
tion procedure, accelerates the projection step considerably.

— At least in some cases it is only due to the techniques and tools outlined in this chapter
that computation is possible with the available memory on a standard computer.

In the next chapter, we are going to apply Algorithms I and II to stationary and axially
symmetric metrics. Also, we demonstrate how to use Algorithm II in almost unchanged
form to study metrics with a real-valued parameter.





Chapter 3

Stationary and Axially Symmetric
Space-Times

Algorithms I and II outlined in Chapter 2 are fairly general for 4-dimensional metrics and
have a wide range of applicability (and some of the tools are not restricted to the symmetry
assumptions made). However, they were developed with applications to stationary and
axially symmetric metrics in mind. Such metrics are relevant to the theory of compact
astrophysical objects. In particular, our focus is on vacuum metrics of this class, i.e. we
make the additional assumption of a vanishing Ricci tensor.

Stationary and axially symmetric metrics are characterized by the existence of two Killing
vector fields.1 Stationarity is characterized by the presence of a timelike Killing vector field ξ
[Ste03]. If this Killing vector field is hypersurface-orthogonal (see below), then it is called a
static metric [CAM90; Ste03]. Axial symmetry , on the other hand, is defined via the action
of the 1-torus S1 via isometries such that the set of fixed points (called the axis of rotation)
is a (regular) 2-dimensional surface [Ste03; MS93]. Let the corresponding Killing vector field
be called η. It can be shown that for any point on the axis there is a neighborhood such
that |η| is non-negative and zero only at points on the axis, see [MS93] (spacelike character
of the symmetry). We assume (as done in [Ste03]) that η is spacelike everywhere outside
the axis and that η and ξ are involutive.

Stationary and axially symmetric metrics can (under some additional assumption) be
written in a Lewis-Papapetrou form, see Equation (3.3) and [Lew32; Pap66; Ste03]. We
examine, using Algorithms I and II, some metrics of this class to determine whether they
are Liouville integrable with integrals of low degree. In addition, we demonstrate how to use
Algorithm II (with modifications) for checking that flat space and the Schwarzschild space
are the only Zipoy-Voorhees metrics admitting an additional quadratic integral. Applying
the algorithmic approach to parameter-dependent metrics is also an important preparation
for the general nonexistence proof for Theorem 4 for additional cubic integrals in Weyl
metrics, see Chapter 4. We prove nonexistence of additional involutive integrals up to a
certain degree d for the Zipoy-Voorhees metric. The following list is a summary of the
results proven in the current chapter.

1In astrophysics, it is common to refer to the integrals connected with stationarity and axial symmetry
as respectively the energy and the angular momentum integrals. The third trivial conservation law is then
linked to the conservation of rest mass, cf. [Bri08b].

43
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Result. (1) We give a novel, algorithmic proof of the fact that flat space and the Schwarz-
schild space-time are the only Zipoy-Voorhees space-times that are Liouville integrable
with H, pt, pφ and an additional quadratic integral (this issue is also addressed in
[Car68a; Car68b; WP70]). Moreover, we see in Chapter 4 that any integral at most of
cubic degree and in involution with the standard integrals is reducible by linear integrals
and the Hamiltonian2.

(2) The Zipoy-Voorhees metric with parameter δ = 2 (Darmois solution [Dar27; Ste03])
has no additional3 irreducible integral polynomial in momenta with smooth coefficient
functions, up to degree 11 of the integral, i.e. the family (H, pφ, pt) of integrals cannot
be extended to a Liouville-integrable family of integrals of degree ≤ 11.

(3) The Tomimatsu-Sato metric from [Man12], with δ = 2, κ = 2 and p = 3/5, q = 4/5, has
no additional irreducible integral polynomial in momenta with smooth coefficients up
to degree 7 of the integral, i.e. the family (H, pφ, pt) cannot be extended to a Liouville-
integrable family of integrals at most of degree 7.

In Chapter 4, these results are complemented by a general nonexistence proof for additional
cubic integrals.

3.1 Stationary and axially symmetric vacuum metrics
The class of stationary and axially symmetric vacuum (SAV) metrics is well known in astro-
physics for its significance in the description of compact astrophysical objects. The probably
most prominent example, or rather family of examples, is the Kerr family of metrics, which
provides a model for (the exterior of) rotating neutron stars and black holes. The metric
depends on a parameter a that describes rotation. The Kerr family is also special because
it admits an additional quadratic integral, the Carter constant, that makes it Liouville
integrable [Car68a; Car68b; WP70].

Fact 3. The Kerr family of metrics in Boyer-Lindquist coordinates reads [BL67; Ste03]

ga(r, θ) =


r2+a2 cos2(θ)
r2−2r+a2

r2 + a2 cos2(θ)
Pa(r,θ) sin

2(θ)
r2+a2 cos2(θ)

−2a sin2(θ)r
r2+a2 cos2(θ)

−2a sin2(θ)r
r2+a2 cos2(θ) − r

2−2r+a2 cos2(θ)
r2+a2 cos2(θ)

 , (3.1)

with Pa(r, θ) = a2 cos2(θ)r2 + r4 − 2a2 cos2(θ)r + a4 cos2(θ) + a2r2 + 2a2r, and is integrable
with the additional integral being the quadratic Carter constant

C = p2θ + cos2(θ)

((
pφ

sin(θ)

)2

− a2 (H + p2θ)

)
(3.2)

2Note that for δ = 0, we have flat space and therefore any integral is totally reducible [Tho86]. For the
parameter values ±1, it is the Schwarzschild metric. The Schwarzschild metric is integrable and possesses the
Carter integral as its final integral, which is in involution with the three standard integrals (and functionally
independent of them). However, the Carter integral is not irreducible in the Schwarzschild case. The
Schwarzschild metric admits four (non-involutive) linear integrals and the Carter integral is reducible by
them, cf. Section 2.3.4.

3Recall that this refers to integrals in addition to the standard integrals H, pt and pφ, and in involution
with them, see Chapter 1.
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where pφ is the integral connected with axial symmetry, and pθ the one connected with
stationarity.

The original proof can be found in [Car68a; Car68b]. Another proof is given in [WP70].
A generalization of the Kerr family of metrics is the class of Tomimatsu-Sato met-

rics [TS72; TS73]. Zipoy-Voorhees metrics [Zip66; Voo70] are special cases of Tomimatsu-
Sato metrics [TS73]. Other examples of SAV metrics include the exterior of the Meinel-
Neugebauer disk of dust [NM94; NM95] or the Manko-Novikov metrics [MN92]. Static and
axially symmetric vacuum metrics form Weyl’s class [Ste03]. Examples of Weyl metrics are,
for instance, the Manko-Novikov metrics and the Zipoy-Voorhees metric.

The Zipoy-Voorhees family has recently gained some particular attention, because nu-
merical studies suggested integrability for metrics of this family [Bri08a; Bri08b; Bri10a;
Bri10b]. However, later studies with different techniques provide contradicting evidence
[KM12; LG12; MPS13]. We continue the approach followed in [KM12]. We note that this
approach considers polynomial integrals with smooth coefficient functions and that these
integrals are not completely covered by [MPS13]. In addition, we present a way to check
nonexistence of an additional integral for arbitrary values of the parameter δ of the Zipoy-
Voorhees metric. We suggest that this approach can be extended to higher degrees.

Concerning stationary and axially symmetric metrics, we restrict our attention to inte-
grals that respect stationarity and axial symmetry (involutivity assumption).

3.1.1 General properties

SAV metrics always admit two involutive Killing vectors, a timelike one (representing sta-
tionarity) and a spacelike one (representing axial symmetry, cf. page 43). Under certain
conditions, there exists a standard form for these metrics, cf. Equation (3.3). We already
saw that the finiteness requirement we mentioned in Section 1.4 is met, cf. [Wol98] and the
considerations on page 26. We can therefore apply Algorithms I and II from Chapter 2.

Standard form of SAV metrics

Stationary and axially symmetric vacuum metrics can be brought into the following standard
form by means of suitable coordinate transformations [Lew32; Pap66], see also [Ste03]. The
adapted coordinates are called Lewis-Papapetrou coordinates [Ste03].

g = e2U
(
e−2γ

(
dx2 + dy2

)
+R2 dφ2

)
− e−2U (dt−Adφ)

2 (3.3)

where U , γ, R and A depend on the non-ignorable coordinates x and y only. This coor-
dinate choice is, under certain additional assumptions, also possible if we do not require
the vacuum conditions [Ste03]. Let us also note that the static limit of metrics (3.3) is
obtained when the rotation parameter function A ≡ 0. This turns the metric (3.3) diagonal,
due to hypersurface-orthogonality (i.e. the block-diagonal form with vanishing components
gti = 0, ∀ i).

We solely consider vacuum metrics. The vacuum restriction is the requirement that
the Ricci tensor of the metric g is identically zero (Ricci-flatness). Requiring the vacuum
property is a fair assumption for the movement of test particles around astrophysical objects
as long as external fields (like electro-magnetic fields) are ignored. Since not all metrics of
the form (3.3) satisfy this requirement, we have to impose Ricci-flatness separately. We
refer to these additional requirements on the parameter functions U , γ, R, A as the vacuum
conditions.
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Vacuum conditions and the Ernst equation

For SAV space-times, Ricci-flatness implies a set of equations for the parameter functions
U , γ, R and A. From the Ricci-flatness requirement, five differential equations are obtained,
see also [Ste03; GP09],

4R = Rxx +Ryy = 0, (3.4a)

A2
x +A2

y

R2
e−4U − 2NU = 0, (3.4b)

d

dx

(
Ax
R
e−4U

)
+

d

dy

(
Ay
R
e−4U

)
= 0, (3.4c)

4e4U
(
Ryy
R
− Rx

R
γx +

Ry
R
γy − U2

x + U2
y

)
−
A2
y −A2

x

R2
= 0, (3.4d)

2e4U
(
Rxy
R

+
Rx
R
γy +

Ry
R
γx + 2UxUy

)
− AyAx

R2
= 0. (3.4e)

We denote by 4 the usual (flat) Laplace operator 4f = fxx + fyy in Lewis-Papapetrou
coordinates, while we use N for the differential operator defined by

Nf = fxx + fyy +
Rx
R
fx +

Ry
R
fy.

The Equations (3.4) break up into two sets of equations, (3.4a)–(3.4c) and (3.4d)–(3.4e),
which we refer to as primary and secondary equations, respectively. The secondary equations
contain (derivatives of) γ, while the primary equations do not. Let us first consider the
primary equations. Equation (3.4c) is the integrability condition for a function Φ that
solves the equations

Φx = −Ay
R
e−4U , Φy =

Ax
R
e−4U . (3.5)

The integrability condition for A obtained from this definition in terms of Φ leads to the
equation

e2U (NΦ− 2Ux Φx − 2Uy Φy) = 0. (3.6)

Equations (3.6) and (3.4b) can be combined to form one equation

<(E)NE − (∇E)2 = 0, (3.7)

where <(E) denotes the real part of E and where E is the complex Ernst potential ,

E = e−2U + iΦ. (3.8)

Equation (3.7) is usually referred to as the Ernst equation. In addition to the Ernst equation,
the two secondary equations (3.4d) and (3.4e) are needed explicitly in Chapter 4, and we
are going to recast them into a simpler form.

The primary equations pose restrictions on U and R. Provided that R is non-constant,
the equation 4R = 0 allows for setting R = x > 0 by a change of coordinates [Ste03].
These coordinates are called Weyl’s canonical coordinates [Ste03]. If R is constant, this
change of coordinates is impossible, but one can show that 4γ = γxx + γyy = 0 holds
and hence that the metric is flat. In case of non-constant R, we perform the mentioned
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coordinate transformation, so R = x, and we obtain from the two remaining equations,
(3.4d) and (3.4e), the following concise expressions for γx and γy:

γx = x (U2
y − U2

x)− e−4U

4x
(A2

x −A2
y) (3.9a)

γy = −2xUx Uy +
e−4U

2x
AxAy (3.9b)

In the static case, the vacuum conditions simplify significantly. We have E = e−2U and
require A = 0 for staticity. Then, the vacuum conditions read as follows

Ry Uy +Rx Ux +RUyy +RUxx = 0 (3.10a)
4R = Rxx +Ryy = 0 (3.10b)

2RU2
x − 2Ry γy + 2Rx γx +Rxx −Ryy − 2RU2

y = 0 (3.10c)

2RUx Uy +Ry γx +Rx γy +Rxy = 0 (3.10d)

In case of non-constant R, the secondary equations enable us to express derivatives of γ in
terms of derivatives of U , allowing us to eliminate them, and finally γ, from the equations.
We obtain the equations:

Uyy = −Uxx −
1

x
Ux (3.11a)

R = x (3.11b)

γx = −xU2
x + xU2

y (3.11c)

γy = −2xUx Uy (3.11d)

Note that for R = x, Nf = 0 becomes the Euler-Darboux equation fxx+ fx
x +fyy = 0 [KR05;

Zwi98].

Symmetry properties

As discussed above on page 43, stationary and axially symmetric metrics are characterized
by the existence of two Killing vector fields. The corresponding (global) symmetry group
is h = R× S1. We have 2 ignorable coordinates, φ and t in Lewis-Papapetrou coordinates,
that are adjusted to these symmetries (see also Section 2.2.1). We therefore restrict to level
surfaces {pφ = cφ, pt = ct} with constant cφ, ct (these need to be regular values). In Lewis-
Papapetrou coordinates, h acts along coordinate directions and we are able to identify the
reduced coordinates easily. The same applies for prolate-spheroidal coordinates, which we
use for the Zipoy-Voorhees metric, and for the Tomimatsu-Sato metric.

The 4-dimensional problem thus can be reformulated as a 2-dimensional problem with
metric gred, and the HamiltonianH splits into a kinetic term T := Hred =

∑
i,j∈{x,y} g

ij
redpipj

along with a potential V , which is polynomial in pφ and pt. Note that the highest-degree
component w.r.t. (px, py) of a Hamiltonian integral is a geodesic invariant (i.e. it commutes
with T ).

The commutative Killing vector fields are ∂t and ∂φ, connected with, respectively, static-
ity and axial symmetry of the metric. Via symplectic reduction, this allows us to reduce
the problem to 2 dimensions, see Section 2.2.1. Assume we work on the level hypersurface
with pφ = cφ and pt = ct. This implies a splitting of the Hamiltonian into a kinetic part
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(quadratic in px, py), and a potential V = V (x, y, cφ, ct) as established in more generality in
Equation (2.5),

H =
∑

i,j=x,y

gijpipj︸ ︷︷ ︸
=:T

kinetic part

+
∑

i,j=φ,t

gijpipj︸ ︷︷ ︸
=:V

potential

. (3.12)

The two parts are again denoted by H(2) = T and H(0) = V , as in Chapter 2. The metric
and the potential on the reduced space read

gred = e2U−2γ
(
dx2 + dy2

)
(3.13a)

V =
1

e2Ux2
p2φ +

2A

e2Ux2
pφ pt +

(
A2

e2Ux2
− e2U

)
p2t . (3.13b)

Our interest in this chapter is in integrals of the form

I(x, y) =
d∑
i=0

i∑
j=0

d−i∑
k=0

aijk(x, y) pi−jx pjy p
k
φ p

d−i−k
t (3.14)

for metrics of type (3.3).

Finiteness

In Section 1.4 we stated that finiteness of the overdetermined system of PDEs is required
for the considered method to work. We saw in Section 2.2.3 that the system of PDEs we
consider here is of finite type, see also [Wol98]. The computations in [Wol98] and in the
proof of Lemma 1 suggest that for integrals of degree d we typically need d + 1 steps of
prolongation to achieve a conclusion if no additional integral exists in this degree. However,
for the stationary and axially symmetric vacuum metrics under consideration, a conclusion
is reached after d steps of prolongation, compare also [KM12].

3.1.2 Weyl metrics

In the larger part of this and the following chapter, we are concerned with static SAV
metrics, which have a vanishing rotation parameter A(x, y) = 0 (so-called Weyl metrics).
In terms of the potential, V = V φφp2φ + V tφptpφ + V ttp2t , the vanishing of A implies the
vanishing of V tφ. On the other hand, if V tφ = 2A

e2UR2 vanishes for a SAV metric, clearly A
must vanish. We have

V = V φφp2φ + V tφ︸︷︷︸
=0

ptpφ + V ttp2t . (3.15)

From Equations (3.13), we obtain the metric and the potential on the reduced space for
Weyl metrics:

gred = e2U−2γ
(
dx2 + dy2

)
(3.16a)

V = R−2e−2U p2φ − e2U p2t (3.16b)
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3.2 Zipoy-Voorhees family
Let us first consider Zipoy-Voorhees metrics with arbitrary parameter value δ. In prolate
spheroidal coordinates they have the parametrized form [Zip66; Voo70]

g =

(
x+ 1

x− 1

)δ (
(x2 − y2)

(
x2 − 1

x2 − y2

)δ2 (
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dφ2

)

−
(
x− 1

x+ 1

)δ
dt2. (3.17)

We do not use a Lewis-Papapetrou form here, but the metric still has the form (2.11)
assumed on page 28.

Zipoy-Voorhees metrics are a special case of Weyl metrics. The parameter δ can be
viewed as a variational parameter (often δ ≥ 0 is assumed; the metric is transformed into
itself if the sign of δ and x are changed simultaneously).

For δ = 0, one obtains the flat metric. In case of δ = 1 (or δ = −1), the Schwarz-
schild metric is obtained [Ste03; KH03]. Both flat space and the Schwarzschild metric are
integrable. In the flat case, there is an involutive set of 4 functionally independent linear
integrals [Tho86]. For the Schwarzschild metric the situation is a bit more subtle: there are
four linear integrals in addition to the Hamiltonian, but only two of them form an involutive
set. A final involutive integral is provided by a sum of squares of linear integrals, see also
Section 2.3.4.

Theorem 1. A Zipoy-Voorhees metric (3.17) can admit an additional quadratic integral I =
Kij(x, y) pi pj only for parameter values δ = 0,±1.

Note that we prove nonexistence of an additional integral of degree 3 in Chapter 4. For
degree 2, we present three possible proofs using two different approaches. One approach is
presented in anticipation of Chapter 4. The other two proofs are based on Algorithm II.

We begin with a sketch of a proof that follows the procedure in Chapter 4. Afterwards,
we are going to see two other proofs that are both based on Algorithm II. We consider only
the even-parity case here, i.e.

I =
∑

i,j∈{1,2}

Kij(x1, x2) pi pj +
∑

i,j∈{3,4}

Kij(x1, x2) pi pj .

The odd-parity part is straightforward. We look into it in Example 1 in Chapter 4 (see
page 66) where we also go into the case of cubic degree.

Proof 1: Degree-wise approach

This version of the proof follows the lines along which we prove nonexistence of an additional
cubic integral. This is discussed in detail in Chapter 4 on pages 70f. The idea is as follows:

— The integral is of the form

I(x, y) = a0p
2
x + a1pxpy + a2p

2
y + b0p

2
φ + b2p

2
t .

Here, we already made use of the additional decomposition properties of Weyl metrics,
see pages 34ff.
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— Use the degree-1 components of the Poisson equation (1.3) and compute the integrability
conditions for b0 and b2 (the Bertrand-Darboux equations). We take derivatives of these
integrability conditions and add the integrability requirements to the remaining system
of PDEs (which involves only a0, a1, a2 and the metric).

— We solve for derivatives of the ai. We prove that a1 = 0 and express derivatives of a0
and a2 in terms of the functions themselves.

— We integrate the relations to find a0 and a2, and then b0 and b2

— We compare the solution with the Hamiltonian. The result is that the integral is a linear
combination of the Hamiltonian and the linear integrals

In the course of the computations, we have to require δ 6= 0,±1, as should be expected.

Proof 2: Algorithm-based approach

The second proof is closer to Algorithm II. For parametrized metrics, we obtain a matrix
system with entries that depend on the parameter (so we have a parameter-dependent
matrix instead of Mat(R)). The rank computation is the main obstacle to directly apply
Algorithm II. The routines that are implemented in typical computer algebra systems usually
appear to compute a generic matrix rank and do not recognize if the rank drops for certain
values of the parameter. We give two possible ways to circumvent this issue. Proof 2 follows
the block structure given in Section 2.2.3. Proof 3 uses usual Gauß elimination as far as
possible.

Let us consider the fairly general Hamiltonian with

H =
1

2

(
p2x
Ω1

+
p2y
Ω2

)
+ V φφp2φ + V ttp2t (3.18)

The integral is supposed to be polynomial in the momenta with smooth coefficients, i.e.

F = a0p
2
x + a1pxpy + a2p

2
y + b0p

2
φ + b1pφpt + b2p

2
t . (3.19)

Without loss of generality, we assume b1 = 0, because b1 belongs to the subsystem S lower
and therefore must be constant, see pages 34ff. The Poisson equation is a polynomial and
we extract the system of PDEs as before (one set of equations comes from the component
of the polynomial with degree 3, one from degree 1).

{T, I(2)} = 0 degree 3

{T, I(0)}+ {V, I(2)} = 0 degree 1

Differentiating the system twice already allows us to solve the equations for all third
derivatives ∂3ai

∂xi∂xj∂xk , i, j, k = 1, 2, (x1, x2) = (x, y). Thus, we only need to differentiate once
the equations coming from the degree 3 part of the Poisson equation. We solve the equations
for all second order derivatives of the ai except the mixed derivative ∂2a1

∂x∂y . Thus, the pure
derivatives ∂2a0

∂x2 and ∂2a2
∂y2 are expressed through the mixed derivative of a1.

From the degree-1 part we need the first and the second derivatives. However, since the
initial equations constitute differential equations for b0 and b2, we can restrict to the integra-
bility conditions for those and first derivatives of these integrability conditions. Eliminating
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second derivatives of the ai (those obtained in the first step), we obtain four relations for
∂2a1
∂x∂y :

Ω1V
φφ
y

∂2a1
∂x∂y

= lower-order terms (3.20)

Ω2V
φφ
x

∂2a1
∂x∂y

= lower-order terms (3.21)

Ω1V
tt
y

∂2a1
∂x∂y

= lower-order terms (3.22)

Ω2V
tt
x

∂2a1
∂x∂y

= lower-order terms (3.23)

For Weyl metrics and in particular for the Zipoy-Voorhees family, we have V φφy 6= 0. Thus,
we can solve for ∂2a1

∂x∂y .
The next step is to solve for the first derivatives of the ai (out of which ∂a0

∂x and ∂a2
∂y have

already been found). We can do this using the remaining two equations from the degree 3
polynomial and the integrability conditions (we use that 〈∇V φφ,∇⊥V tt〉 6= 0 when there is
no additional linear integral, see Lemma 4 in Chapter 4).

After this step, we are left with a system of linear equations (regarding the potential as
fixed) in the unknowns a0, a1, a2. Three of the equations originate in the derivatives of the
integrability conditions. We can consider these equations as a matrix equation

M

a0a1
a2

 = 0. (3.24)

The determinant of the 3×3 matrixM is zero, so its rank is either 2 (this is the trivial case,
since we know that there is at least one quadratic integral, the Hamiltonian), or the rank
is at most 1 (this is necessary for the existence of an additional irreducible integral). The
requirement for the rank being at most one is that the determinants of all 2× 2 submatrices
of M vanish simultaneously. This leads to

(
3
2

)2
= 9 differential equations for the potential.

— For Weyl metrics, we can use the vacuum conditions (3.11) and we obtain, from the nine
determinant equations, three (non-linear) differential equations in the unknowns Uxxx,
Uxxy, Uxx, Uxy, Ux, Uy.

— Let us restrict ourselves to Zipoy-Voorhees metrics. We use Observation 2 and choose
the point (1/2, 2). We are left with only three equations. They admit only the solutions
that we already know for δ:

δ = 0 and δ = ±1.

Proof 3: Algorithm II

The third possible proof is a direct implementation of Algorithm II. Proof 2 kept full con-
trol over the elimination of unknowns during the projection step. On the other hand, in
many cases computer-implemented solving routines can be used to check whether a given
parameter-dependent expression is always non-zero. In this case, one has to make sure that
they work reliably, e.g. by checking the pivots manually afterwards. Thus, instead of doing
the above computation, one can use usual Gauß elimination for the matrix rank compu-
tation. The Gauß elimination algorithm can be used as long as there are coefficients that
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are non-zero for arbitrary values of the parameter. In this way, one can obtain a reduced
matrix equation with fewer equations and fewer unknowns. We choose the point (1/2, 2) and
subtract suitable multiples of trivial integrals to reduce the matrix. For this reduced matrix,
it is not necessary to compute the exact rank. Instead, it suffices to determine whether and
for which values of the parameter, the rank of the reduced matrix is maximal. This can
be checked by looking at determinants of the submatrices that are obtained by deleting a
sufficient number of rows from the reduced matrix.

In the degree-2 case, we obtain through Gauß elimination a 4×3 matrix (we remove lines
and columns that are no longer of interest). Then, we compute the determinants of all 4
submatrices. Additional Killing tensors can only exist when all determinants are zero. This
leads to the immediate solutions δ = 0 and δ = ±1, and a remaining system of algebraic
equations on δ:

96δ6 − 144δ5 + 160δ4 − 105δ3 − 23δ2 + 24δ + 28 = 0

96δ4 − 324δ3 + 420δ2 − 459δ + 159 = 0

192δ6 − 720δ5 + 1288δ4 − 1266δ3 + 835δ2 + 114δ − 56 = 0

3328δ8 − 10560δ7 + 21664δ6 − 28104δ5 + 28788δ4 − 16665δ3 + 11306δ2 − 2451δ + 1064 = 0

This system of equations has no solutions and this concludes the proof.

3.3 A specific Zipoy-Voorhees metric

In Chapter 2 we developed an algorithm to answer Question 1 (how many integrals exist in
addition to a given family of standard integrals?) for metrics in Weyl’s class, see Algorithm II
on page 37.

We now apply Algorithm II to a certain example of a Weyl metric, namely the Zipoy-
Voorhees metric with parameter δ = 2. This is the so-called Darmois solution [Ste03; Dar27].
The existence of integrals for this metric has been studied in the literature [Bri08b; KM12;
LG12; MPS13], cf. also Chapter 1. Based on numerical analysis, [Bri08b] suggests Liouville
integrability for this metric. In [KM12], this suggestion is challenged with a proof of nonexis-
tence of an additional integral polynomial in momenta of degree at most 6. Non-integrability
is as well suggested by numerical methods [LG12]. Non-integrability for meromorphic inte-
grals is established in [MPS13]. We prove nonexistence of an additional integral of degree
at most 11 for integrals that are polynomials in momenta with smooth coefficient func-
tions (hence our result does not follow from [MPS13]). The computation also illustrates the
efficiency of Algorithm II.

The Darmois metric has the following form in prolate spheroidal coordinates:

g =
(
x+1
x−1

)2(
(x2 − y2)

(
x2−1
x2−y2

)4 (
dx2

x2−1 + dy2

1−y2

)
+ (x2 − 1)(1− y2)dφ2

)
−
(
x−1
x+1

)2
dt2.

(3.25)
Now, let Sd be the system of equations obtained from the Poisson equation (1.3) by consid-
ering coefficients with respect to momenta. For Weyl metrics, the system of equations Sd
splits into four separate subsystems, which have been introduced as S leadd , S lowerd , Srightd , S leftd

in Chapter 2. Each of the subsystems can be solved independently (unknowns of one of
the subsystems do not appear in other subsystems). In Lemma 2 on page 36, we establish
that two of these subsystems are equivalent (namely, S leftd ∼ Srightd ). Therefore, the Pois-
son problem (1.3) transforms into three separate subproblems defined by the subsystems
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Results for the Zipoy-Voorhees metric with δ = 2

degree d 0 1 2 3 4 5 6 7 8 9 10 11
all equations 2 15 48 140 300 630 1120 1980 3150 5005 7392 10920
all unknowns 3 12 50 120 294 560 1080 1800 3025 4620 7098 10192
matrix rows 0 0 10 38 64 157 228 452 608 1058 1358 2162
matrix columns 0 0 9 26 52 106 178 306 468 726 1043 1510
matrix rank 0 0 9 26 52 106 178 306 468 726 1043 1510
computation time <1s <1s <1s <1s 1s 12s 54s 5.1m 26m 1.8h 13h 7days
integrals in lead 1 0 3 0 6 0 10 0 15 0 21 0
all integrals of degree d 1 2 4 6 9 12 16 20 25 30 36 42
known integrals Λ0

d 1 2 4 6 9 12 16 20 25 30 36 42

Table 3.1: Results computed with Algorithm II. The numbers are for the associated linear
system obtained after M = d prolongations. For the computation, we chose the point
(x, y) = (1/2, 2)

S leadd , S lowerd and Srightd (or S leftd ). It is also already mentioned in Section 2.3.2 in the context
of Lemma 2 that the three subsystems structurally are very similar, and that in fact only
the subsystem S leadr is distinct to a certain degree r. Recall that the subsystem S leadr for
degree r is identified as the subsystem

— of parity w.r.t. (px, py) equal to the parity of d.
— of even parity w.r.t. pφ (or, equivalently, pt).

Iteratively running Algorithm II, we prove:

Theorem 2. The Zipoy-Voorhees space-time with parameter δ = 2 has no additional integral
polynomial in momenta of degree d ≤ 11 that is functionally independent of and in involution
with the linear integrals pφ, pt, and the Hamiltonian.

Algorithmic results. The considerations above suggest the following procedure:

— Consider the integral as a polynomial in momenta that includes only components of
leading parity in (px, py) and even degree in pφ (or pt)

— Iteratively run Algorithm II beginning at degree 0 using this form of the integral

— At each step, use Formula (2.22) to compute the total number of integrals for this degree

We need d steps of prolongation to reach a conclusion (where d is the degree of the integral),
cf. also [KM12]. Table 3.1 on this page gives an overview on the results of the algorithm for
the Zipoy-Voorhees metric with δ = 2. Obviously, the results agree with the values obtained
by Formula (2.4),

Λ0
d

(2.4)
= d+ 1 + d

⌊
d

2

⌋
−
⌊
d

2

⌋2
. (3.26)

This concludes the proof of Theorem 2.

3.4 A Tomimatsu-Sato metric
We finish this chapter with an application of Algorithm I from Section 2.3.1 to a Tomimatsu-
Sato metric. As we are going to see, this algorithm is still very efficient, although the metric
has less symmetry than Weyl metrics.
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We consider a metric from the Tomimatsu-Sato family, which is a natural thing to do as
the Tomimatsu-Sato family generalizes the Zipoy-Voorhees family to the case with rotation.
In particular, Tomimatsu-Sato metrics with δ = 1 return Kerr metrics.

We are going to investigate a Tomimatsu-Sato metric with δ = 2. In the Ernst-Perjés
representation, it has the general form [Ern76; Per89; Man12]

gTS = κ2 f−1
(
e2γ (x2−y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+(x2−1)(1−y2) dφ2

)
−f (dt−ω dφ)2. (3.27)

The functions f , γ and ω are defined by

f =
µ2 − (x2 − 1)(1− y2)σ2

µ2 + µν − (1− y2)((x2 − 1)σ2 − στ)
, (3.28a)

e2γ =
µ2 − (x2 − 1)(1− y2)σ2

p4 (x2 − y2)4
, (3.28b)

ω = −κ (1− y2)((x2 − 1)σν + µτ)

µ2 − (x2 − 1)(1− y2)σ2
, (3.28c)

where µ, ν, σ and τ are the polynomials

µ = p2 (x2 − 1)2 + q2 (1− y2)2, (3.28d)

ν = 4x (px2 + 2x+ p), (3.28e)

σ = 2pq (x2 − y2), (3.28f)

τ = −4qp−1 (1− y2)(px+ 1). (3.28g)

In addition, p and q have to obey the restriction, p2 + q2 = 1. The other free parameter, κ,
can in principle be removed through redefinition of some quantities, but we keep it in view
of [Man12]. The particular example that we are studying, is the one with parameter values
δ = 2, κ = 2, and p = 3/5 (q = 4/5). These parameters have also been chosen in [Man12],
where some physical properties of the Tomimatsu-Sato metric for δ = 2 are being discussed.

Theorem 3. For the Tomimatsu-Sato metric (3.27) with parameter values δ = 2, κ = 2,
and p = 3/5 (q = 4/5), the family (H, pt, pφ) of integrals cannot be extended to a Liouville-
integrable family of integrals of degree at most 7 in momenta.

Running Algorithm I for the metric (3.27) with these specified parameter values, we
obtain Table 3.2. Inspection of the column for Λ

(d)

d quickly shows that we only detect trivial
integrals, and this implies nonexistence of additional integrals up to degree 7.

In Table 3.2, note that the number of equations is the same for both branches, e = 0
and e = 1, if d is even (recall that e is the parity of the integral in (px, py), which we have to
specify for the computation). On the other hand, the numbers of unknowns agree for both
branches if d is odd. This effect is a result of the following formulas governing the numbers
of equations and unknowns. For the number of equations, we find

md,M =

d+e−ẽ
2∑
l=0

(2l + 1 + ẽ)(d+ 2− ẽ− 2l)

(
M + 2

2

)
(for degree d after M prolongations)

=
1

24
(d+ 2 + ∆)(d2 − d∆− 2∆2 + 6e∆ + 7d− 5∆ + 12) (M + 1)(M + 2)

(3.29)
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where ẽ is the parity of d+e, i.e. ẽ = 0 (resp. 1) if (d+e) mod 2 = [0] (resp. [1]), and where
we define ∆ = e− ẽ. The number of unknowns follows the formula

nd,M =

d−e−ẽ
2∑
l=0

(2l + 1 + ẽ)(d+ 1− ẽ− 2l)

(
M + 3

2

)
(for degree d after M prolongations)

=
1

24
(d+ 2− Σ)(d2 + dΣ− 2Σ2 + 4d+ 6e(Σ− 1) + 2Σ + 6) (M + 2)(M + 3),

(3.30)

where we define Σ = e+ ẽ. Hence, e cancels from (3.29) if d is even, because ẽ = e and thus
∆ = 0. Likewise, if d is odd, then e cancels from (3.30), because ẽ+ e = 1 and thus Σ = 1.

Results Tomimatsu-Sato metric

d e Λ
(d)

d md,d nd,d rows of M columns of M rk(M) time

1 0 2 12 12 0 0 0 0.1s
1 0 18 12 10 4 4 0.4s

2 0 4 60 60 13 9 9 2s
1 0 60 40 28 8 8 1s

3 0 6 160 150 34 18 18 3s
1 0 190 150 72 32 32 5s

4 0 9 420 399 91 61 61 18s
1 0 420 336 140 56 56 18s

5 0 12 840 784 172 104 104 1.5m
1 0 924 784 276 136 136 1.9m

6 0 16 1680 1584 342 230 230 32m
1 0 1680 1440 456 216 216 28m

7 0 20 2880 2700 556 356 356 21h
1 0 3060 2700 776 416 416 24h

Table 3.2: Complete table of results for the Tomimatsu-Sato metric with the parameter
values δ = 2, κ = 2, and p = 3/5 (q = 4/5). The degree of the integral is denoted by d, its
parity in (px, py) by e. The results are obtained after d steps of prolongation. The symbolM
denotes the reduced matrix. The symbols md,d and nd,d denote, respectively, the number
of equations and unknowns of the initial matrix system. The point of reference for the
computations is (x, y) = (1/2, 2). The last column provides the (approximate) computation
times, cf. Section 2.4.





Chapter 4

Cubic Integrals in Arbitrary Weyl
Metrics

In this chapter, we discuss cubic integrals in Weyl metrics. Theorem 4 is the main result
of this chapter, proving reducibility for involutive integrals of degree 3 for arbitrary Weyl
metrics. Weyl metrics and their properties have already been discussed in detail in Chapter 3,
especially on pages 44ff. The contents of the present chapter are an adaptation of the author’s
paper [Vol15b]. The chapter is organized as follows: first, we consider the existence of an
additional linear integral of odd parity in (px, py) and study its implications for the system
of equations describing the existence of an additional cubic integral. For cubic integrals
we then characterize the case of an additional linear integral. In case such an additional
integral does not exist, we construct a necessary criterion for existence of an additional
(irreducible and involutive) cubic integral. Finally, we combine this necessary criterion with
the remaining equations to prove general nonexistence of an additional cubic integral.

Recall from Section 1.1 on page 14f that when using the term additional integrals, we
count only integrals irreducible with respect to and in involution with what we consider to be
standard integrals. Since we prove nonexistence of such additional integrals in degree 3, this
implies I-reducibility according to Definition 4. For Weyl metrics, we prove reducibility of
degree-3 integrals by one degree. In addition, we prove total reducibility of degree-3 integrals
for the family of Zipoy-Voorhees metrics, continuing the considerations in Chapter 3 on
pages 49ff.

Theorem 4. Let (M, g) be a 4-dimensional manifold M endowed with a Weyl metric g.
Then, any involutive integral of third degree for the geodesic flow of the Weyl metric g is
reducible.

4.1 Method

The proof exploits prolongation-projection techniques as well as the particular structure of
the system S of PDEs obtained from the Poisson equation (1.3). For Weyl metrics, we
establish useful properties in Section 2.3.2 and these properties become helpful again in this
chapter. For instance, by Lemma 2 on page 36, we can restrict ourselves to a smaller system
of PDEs. In the following, we adopt the terminology introduced in Section 2.2.3 and refer
to homogeneous components of the Poisson equation (1.3) as subpolynomials.

57
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We assume a manifold M with Weyl metric g, and we search for integrals in addition
to the standard integrals I = (H, pφ, pt). As before, we restrict to integrals coming from
a Killing tensor (i.e. integrals that are homogeneous polynomial w.r.t. momenta) that are
irreducible w.r.t. I and in involution with I. We proceed according to the following direc-
tions:

(i) Use symplectic reduction to transform the 4-dimensional homogeneous problem with-
out potential to a 2-dimensional (non-homogeneous) problem with potential (page 23f).
The assumption that the additional integral we look for is in involution with the stan-
dard integrals means that it can only depend on the non-ignorable coordinates x and y,
rather than φ, t. Moreover, since we work with Weyl metrics, we need only consider
the distinct subsystem S lead, cf. Section 2.3.2 on pages 34ff.

(ii) The (overdetermined) system of PDEs describing the requirement that I : T ∗M → R

is an integral is obtained from the Poisson equation (1.3), i.e. from {H, IK} = 0. In
Section 1.3, we explain how this system of PDEs splits according to the degree in the
momenta (px, py), and how this yields three (sub-)polynomials. We have also seen
how to decompose these polynomials further w.r.t. the momenta (pφ, pt) to obtain a
coupled system of polynomials as in Figure 2.4 on page 35.

(iii) The equations obtained from zeroth degree in momenta (px, py) can be understood
as simple scalar product relations. We assume that there is no linear integral in
addition to (pφ, pt) (the case with an additional linear integral is simple and is discussed
separately). Two of the relations are orthogonality relations and can be solved for
components of the integral I. Together with the third equation they leave one unknown
function α that parametrizes the degree-1 component of the integral I.

(iv) The equations obtained from second degree in (px, py) lead to an integrability condition
for α.

(v) The remaining system of PDEs involves components of the metric and their derivatives.
We can eliminate the parameter function γ using the vacuum conditions (3.11) from
page 47, leaving one unknown function U(x, y) determining the metric. We treat
derivatives of U as being new, independent unknowns. The system of PDEs on the
coefficients of U is overdetermined and of finite type. By computing its differential
consequences (prolongation) and subsequently eliminating the highest derivatives of U
(projection), we end up with a simple differential equation for U .

(vi) It remains to solve an ordinary differential equation to obtain U , which can be done
explicitly and leads to a solution that describes flat space. This excludes additional
(non-trivial) cubic integrals.

The Poisson equation (1.3) is a polynomial in momenta of degree d+ 1, and I is a (homoge-
neous) polynomial of degree d. We obtain the system of PDEs from the coefficients of the
Poisson equation (1.3) in momenta. In addition, we add the vacuum conditions (3.11) to the
system, because the Ricci tensor does not vanish automatically when using Equations (3.16).

The computations made here are completely explicit, though cumbersome. The first
part can reasonably be done manually, while the second part involves tedious and lengthy
expressions. These can easily be treated using computer algebra.
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Step (i). The coordinates φ and t are ignorable, cf. page 23f. Symplectic reduction w.r.t.
the corresponding symmetry group (defined by stationarity and axial symmetry) suggests
to regard level surfaces with constant pφ = cφ and pt = ct. We distinguish the equations
of the system of PDEs according to the momenta monomials from which they emerged as a
coefficient (compare the subpolynomials in Section 2.3.1 on pages 29ff). Since we work with
Weyl metrics, the equations arrange in a structure as shown in Equation (2.21) on page 35.
We write down the Hamiltonian in component-wise form:

H = T + V φφp2φ + V ttp2t︸ ︷︷ ︸
=V

(4.1)

where T ≡ H(2) is the reduced Hamiltonian, i.e. a homogeneous polynomial in px, py, and
where V ab are the smooth coefficient functions of the monomials pa pb (a, b ∈ {φ, t}). In the
2-dimensional picture, we deal with Hamiltonian invariants instead of geodesic invariants,
and decomposition of the integral I w.r.t. (px, py) leads to

I = I(d) + I
(d− 1)
φ pφ + I

(d− 1)
t pt︸ ︷︷ ︸

=I(d − 1)

+ I
(d− 2)
φφ p2φ + I

(d− 2)
tφ ptpφ + I

(d− 2)
tt p2t︸ ︷︷ ︸

=I(d − 2)

+ · · ·+ I
(0)
tt...tp

d
t , (4.2)

where each I(k) is of degree k in the momenta px, py. We require the metric to be non-flat
such that we can choose coordinates withR = x (R has to be non-constant, see Section 3.1.1).

Step (ii). As discussed in Section 2.3 on pages 28ff, the Poisson equation (1.3) can be
split into subpolynomials w.r.t. degree in the non-ignorable momenta. On the level of the
system of PDEs obtained from (1.3), this corresponds to splitting the system into smaller
(but coupled) systems of equations. Let us first consider only the split of (1.3) into three
subpolynomials according to the degree w.r.t. (px, py):

{T, I(3)} = 0 degree 4 (4.3a)

{T, I(1)}+ {V, I(3)} = 0 degree 2 (4.3b)

{V, I(1)} = 0 degree 0 (4.3c)

The equations of odd parity in (px, py) split off from this system and form a separate sys-
tem decoupled from the other equations (cf. the split into Seven and Sodd in Section 2.3.1).
Equation (4.3a) is the condition that must hold for a geodesic invariant I(3) on the reduced
manifold. However, only some of these integrals ‘ascend’ to integrals on the initial mani-
foldM , due to the restrictions (4.3b) and (4.3c). We take the following view on the equations:
Equations (4.3b) and (4.3c) constitute relations that define I(3) and I(1), while (4.3a) is a
restriction on I(3), and hence on I(1) (note that this is in a sense reverse to the view taken
in [Hie87], where the leading-degree equation is solved first).

We split Equations (4.3) further considering coefficients w.r.t. (pt, pφ). The polyno-
mial (4.3a) does not involve these momenta, and hence does not decompose further. Equa-
tion (4.3b) is of degree 2 in (pt, pφ), and so it can be split into three parts:

{T, I(1)φφ }+ {V φφ, I(3)} = 0

0 = {T, I(1)tφ }

{T, I(1)tt }+ {V tt, I(3)} = 0
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We write the equations in this form to hint at the fact that for Weyl metrics the subsystem
Sodd of our problem decomposes into separate subsystems S lead and S lower, as discussed in
Section 2.3.2. The second of the equations implies that I(1)tφ is a geodesic invariant on the
reduced space. From (4.3c) we now see that it ascends to a Hamiltonian invariant on the level
of the initial manifold M (of course, we already know this from Lemma 2). The polynomial
equation (4.3c) splits into five parts:

{V φφ, I(1)φφ } = 0

0 = {V φφ, I(1)tφ }

{V tt, I(1)φφ }+ {V φφ, I(1)tt } = 0

0 = {V tt, I(1)tφ }

{V tt, I(1)tt } = 0

The second and fourth of these relations again belong to S lower, and we remove this subsys-
tem, since it is not interesting for our problem (see, however, Section 4.2).

Step (iii). The remaining three equations from (4.3c) can be interpreted nicely as scalar
product relations for the components of I(1). For instance,

{V φφ, I(1)φφ } = V φφx bφφ1 + V φφy bφφ2 = e−2U+2γ 〈∇V φφ, bφφ〉 = 〈dV φφ, bφφ〉

where I(1)φφ = bφφ1 px + bφφ2 py and where ∇V φφ denotes the gradient vector corresponding to
the differential dV φφ. In this way, (4.3c) turns into the scalar product relations

〈∇V φφ, bφφ〉 = 0

〈∇V tt, bφφ〉+ 〈∇V φφ, btt〉 = 0

〈∇V tt, btt〉 = 0

that can be solved for bφφ and btt in terms of a parameter function, yielding

bφφ = α1∇⊥V φφ and btt = α2∇⊥V tt, (4.4)

where we introduced the shorthand notation ∇⊥f = e2U−2γ(−fy, fx), for a function f on
the reduced space, i.e. ∇⊥f is the vector field obtained from ∇f via rotation by π/2. Defining
the angle Ψ between ∇V tt and ∇V φφ,

cos Ψ =
〈∇V tt,∇V φφ〉
‖∇V φφ‖ ‖∇V tt‖

, (4.5)

the second of the three scalar product relations can be brought into the form

(α2 − α1) sin Ψ = 0. (4.6)

Let us summarize this:

Lemma 3. The potentials ∇V φφ and ∇V tt are proportional, or the parameter functions α1

and α2 are equal.

The case sin Ψ = 0 (∇V φφ and ∇V tt proportional) is discussed shortly, in Sections 4.2
and 4.3.1. But first, let us briefly address Step (iv) of our procedure list.
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Step (iv). Return to the equations obtained from (4.3b). Consider the term {V φφ, I(3)}
and denote I(3) =

∑
i,j,k∈{x,y} I

ijk pi pj pk. We obtain

{V φφ, I(3)} = 3
(
V φφx Ixijpipj + V φφy Iyijpipj

)
= 3 (V φφk Ikijpipj),

and an analogous computation for {V tt, I(3)}. With this in mind, we interpret (4.3b) as
defining equations for the tensor field K(3) corresponding to I(3), namely as equations for
K(3)(∇V φφ, ·, ·) andK(3)(∇V tt, ·, ·). There are two more equations than components ofK(3)

and in fact we are able to find expressions for all components of K(3) if the differentials dV tt
and dV φφ are linearly independent (in this way, we express K(3) in terms of derivatives of
the function α := α1 = α2). We have the following obvious identities:

K(3)(∇V φφ;∇V φφ,∇V tt) = K(3)(∇V tt;∇V φφ,∇V φφ) (4.7a)

K(3)(∇V φφ;∇V tt,∇V tt) = K(3)(∇V tt;∇V φφ,∇V tt) (4.7b)

These can be used to obtain expressions for the derivatives of the function α in terms of the
parameter function U of the Weyl metric. Before we investigate this further, let us take a
step back and first consider linear integrals.
We proceed as follows:

1. Consider the case sin Ψ = 0. This can be linked to the existence of an additional
Killing vector.

2. In case sin Ψ 6= 0, determine K(3) in terms of α = α1 = α2 and its derivatives.
Express the derivatives of α via the parameter function U of the Weyl metric, using
the symmetry in the arguments of K(3). Then derive an integrability condition for α.

3. Combine the integrability condition with (4.3a) and the vacuum conditions (3.11).
Show that the system does not have any solution other than flat space, using algebraic
manipulations as well as prolongation-projection arguments.

We begin with a look at Killing vectors, continuing Step (iii) of our procedure from page 58.

4.2 Killing vector fields
Let us first drop our assumption of a Weyl metric and allow non-staticity (in particular
arbitrary non-constant V tφ 6= 0). Consider a 4-dimensional SAV metric and assume there is
an additional linear integral. We characterize the existence of linear integrals in terms of the
rank of the 2× 3 matrix whose columns are given by gradients of the potential components
V φφ, V tφ and V tt:

M := (dV φφ, dV tt, dV tφ). (4.8)

Since the rank of M is the dimension of the linear space spanned by dV φφ, dV tt, dV tφ, it
is a geometric object and independent of the choice of coordinates on the reduced space. If
the differential dV tφ = 0, the matrixM might be replaced by the 2×2 matrix (dV φφ, dV tt),
which is also denoted byM in the following. Then, instead of the rank of the matrix, the
determinant can be used with the obvious correspondences. In case there is an additional
linear integral present for a non-flat SAV metric (i.e. in addition to pφ and pt), the rank of
M cannot be full. More precisely,
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Lemma 4.

(a) Let (M, g) be in the SAV class.

• If there is an additional linear integral (Killing vector field), then the rank ofM
is 1, or g is a flat metric.

• Let rk(M) = 1. Then py is a linear integral (Killing vector field) when using
Weyl canonical coordinates1.

(b) Let (M, g) be in Weyl’s class.

• Let rk(M) ≤ 1 be constant. Then there is an additional linear integral on M . In
case rk(M) = 1 this vector field corresponds to py in Weyl canonical coordinates.
If rk(M) = 0 the metric is flat.

• If there is an additional linear integral, it is given by py in Weyl canonical coor-
dinates, if the metric is non-flat.

Proof. Part (a). For linear integrals we only have two polynomials after taking coefficients
w.r.t. (px, py), and they are similar to the polynomials of degree 0 and 2 in (4.3). Let us
denote the components of the (px, py)-linear part of the integral as

I(1) = b1 px + b2 py, b = (b1, b2). (4.9)

The zeroth order equations read

〈∇V φφ, b〉 = 0, 〈∇V tφ, b〉 = 0, 〈∇V tt, b〉 = 0. (4.10)

Thus we conclude that the following relations must hold2:

〈∇V φφ,∇⊥V tφ〉 = 0, 〈∇V φφ,∇⊥V tt〉 = 0, 〈∇V tφ,∇⊥V tt〉 = 0. (4.11)

This means that the potential gradients are pairwise linearly dependent, i.e. they are pointing
all in the same direction. Hence, the rank of the potential gradient matrix is 1, provided
the metric is not flat. In the flat case we may have Lewis-Papapetrou coordinates with the
parameter R constant3, making it impossible to choose R = x. In this case we may choose
another representation of the metric, or just exclude the flat case from our considerations.
This concludes the proof of the first claim.

Now, let the rank of the matrixM be 1, so its rows, or all columns, have to be linearly
dependent. This again gives us relations of the form (4.11), meaning that ∇V φφ, ∇V tφ
and ∇V tt are pairwise linearly dependent. First, let us assume ∇V tφ and ∇V φφ to be
non-zero4. We consider

〈∇V φφ,∇⊥V tφ〉 = 0

This equation amounts to the requirement

xAx Uy − (1 + xUx)Ay = 0,

1Recall that Weyl canonical coordinates are Lewis-Papapetrou coordinates with R = x.
2In case that all potential gradients vanish, the metric is flat. Then, any geodesic invariant is a Hamil-

tonian invariant for the reduced space.
3The flat metric can also be described with Weyl canonical coordinates, cf. Remark 2.
4The first assumption basically is A 6= 0 (for constant A the metric is static). The second assumption is

true except for the case when U = − ln(x), which implies constant A.
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or the relation (
Ax
Ay

)
= κ

(
1 + xUx
xUy

)
,

with a scalar function κ to be determined. Inserting this into the requirement

〈∇V φφ,∇⊥V tt〉 = 0

yields the relation
Uy x

2 e4U = 0

and forces U to be a function of x only. Turning back to the relations for A, we see that
Ay = 0, and thus A also is a function of x only.

Recalling the convention R = x, the metric depends on x only, if γ only depends on x,
or if it is constant. We invoke the vacuum conditions (3.11c) and (3.11d),

4x2 e4U U2
x −A2

x − 4x e4U γx = 0,

γy x e
4U = 0.

Consider the latter equation. It means γy = 0, so we are done. Since the metric does not
depend on y, py must be an integral, and therefore provides a Killing vector field.

Now, assume that A = 0. Then 〈∇V φφ,∇⊥V tφ〉 = 0 trivially and we have to go a
slightly different way of reasoning. We consider

〈∇V φφ,∇⊥V tt〉 = 0.

It follows that
x2 e4U Uy = 0,

which means Uy = 0 (on the entire neighborhood). Conclude U = U(x), and then γ = γ(x).
Thus, the metric is a function of x only and py is a linear integral. This concludes the proof
of part (a).

For part (b) let us first remark that if an additional linear integral exists in Weyl’s class,
it must be a multiple of py, or the metric is flat. Two cases need to be checked: Firstly, if
there is exactly one additional linear integral, it is a multiple of py. Secondly, if there are
two (independent) additional linear integrals, there are three (say b(k), k = 1, 2, 3). Looking
at the equations 〈∇V ij , b(k)〉 = 0, this forces all gradients ∇V ij to be zero (or, equivalently,
dV ij = 0). Hence, V is constant. Thus U and A are constant and the metric is flat.

With this remark, the first claim of part (b) follows immediately from part (a), keeping in
mind that rank 0 corresponds to flat space. The second claim of part (b) follows immediately
from the second statement of part (a).

4.3 Proof of Theorem 4

For the proof we assume, w.l.o.g., constant rank for the matrix M. If we do not have
constant rkM, we may still consider the subsets of points in the manifold M with constant
rank 0, 1, or 2. Then, we consider the sets of their inner points ignoring the remaining points
of M , which amount only to a null set w.r.t. the measure induced by the volume form on
the manifold M . If we prove that a degree-3 polynomial integral is identical to a product
of H, pφ and pt on an open subset, this is true everywhere.
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4.3.1 Preliminaries and preparations
We first consider the case rk(M) = 1 and then continue with the case rk(M) = 2. As we
have just seen, rank 1 is the case when there is one additional Killing vector field. Rank 2,
on the other hand, is the case when no additional Killing vector field exists (assuming
non-flatness).

Lemma 5. If rkM = 1, then a third degree integral is reducible by at least one degree.

Proof. By the hypothesis, there is the linear integral py in Weyl’s canonical coordinates.
Consider equations as in (4.3b), i.e. the equations

{V φφ, F (3)}+ {T, F (1)
φφ } = 0,

{V tφ, F (3)}+ {T, F (1)
tφ } = 0,

{V tt, F (3)}+ {T, F (1)
tt } = 0.

(4.12)

Each F (1)
ab , a, b ∈ {φ, t}, is a multiple of py, so we have

F
(1)
φφ = h1 py, F

(1)
tφ = h2 py, F

(1)
tt = h3 py,

implying for the Equations (4.12) that

{V φφ, F (3)}+ {T, h1} py = 0 (4.13a)

{V tφ, F (3)}+ {T, h2} py = 0 (4.13b)

{V tt, F (3)}+ {T, h3} py = 0 (4.13c)

Hence, the leading order term F (3) takes the form

F (3) = px ((. . . ) py) + f p3y =: F py (4.14)

where the leading factor px is there because the potential gradients (or, equivalently, the
differentials dV ab) have only px components. The final contribution, f p3y, accounts for the
fact that (4.12) only specifies components with at least one px. Now, considering (4.3a),

{T, F (3)} = {T, F py} = {T, F} py = 0.

This means {T, F} = 0, so F is a quadratic integral on the reduced space. It follows that it
can be extended to an integral on the initial space-time, because of the fact that

{V φφ, F (3)} = {V φφ, F py} = {V φφ, F} py

and so on. Thus, we obtain from (4.12) the equations

{V φφ, F}+ {T, h1} = 0

{V tφ, F}+ {T, h2} = 0

{V tt, F}+ {T, h3} = 0,

which determine h1, h2 and h3 and therefore turn F̃ = F + h1 p
2
φ + h2 pφ pt + h3 p

2
t into a

quadratic integral on the initial space-time (see Remark 1 below). Note that F̃ might still
be reducible or non-reducible.
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Remark 1. An even-parity quadratic integral

I = I(2) + I
(0)
φφ p

2
φ + I

(0)
tφ pt pφ + I

(0)
tt p2t

satisfies the polynomial equations

{T, I(2)} = 0, (4.15a)

{V φφ, I(2)}+ {T, I(0)φφ } = 0, (4.15b)

{V tφ, I(2)}+ {T, I(0)tφ } = 0, (4.15c)

{V tt, I(2)}+ {T, I(0)tt } = 0. (4.15d)

Proof. Decompose {H, I} = 0 w.r.t. (x, y, φ, t) and consider components homogeneous in
the momenta (px, py). The first equation is the component of degree 3, the other three
equations are components of degree 1 in (px, py).

Steps (iii) and (iv) continued. Let us return to our considerations on Steps (iii) and (iv)
in the list on page 58. The previous discussion already covers the case when there is an
additional linear integral in involution with the standard integrals, so we can now focus on
the case with no such additional integral. We assume a metric of Weyl’s class. Keeping in
mind the considerations of the previous sections, we see that this case requires rkM = 2. In
case of rank 2, ∇V φφ and ∇V tt must not be proportional. Then, recalling equation (4.6),
the scaling functions α1 and α2 are equal for Weyl metrics. For simplicity we therefore
introduce the new function α = α1 = α2 (cf. Step (iii) on page 60), and obtain

bφφ = α∇⊥ V φφ and btt = α∇⊥ V tt, (4.16)

where bφφ and btt are defined analogously to b in (4.9) on page 62.

Lemma 6. Derivatives of α are determined by differential equations of the form

αx = B α

αy = B̃ α,

where B and B̃ are algebraic expressions containing no higher-than-second derivatives of
components of U .

Proof. We use the relations (4.7), i.e. we basically use the six equations following from
Equation (4.3b), and combine them in a straightforward way to find expressions for the
coefficients a0 through to a3 of IT =

∑
i ai p

d−i
x piy. In this way, we find two different

expressions for a1 and two for a2, corresponding to the identities (4.7). The expressions
contain no higher-than-second derivatives of U and γ (via T and derivatives of V φφ and V tt).
The functions U and γ do not appear themselves, but only via derivatives, and therefore we
can write B and B̃ in terms of first and second derivatives of U . The coefficients of the ai
are simply integer multiples of ν = 〈∇V tt,∇⊥ V φφ〉 = 4

x3Uy, which is non-zero because we
required ∇V tt and ∇V φφ not to be proportional. We can then eliminate a1 and a2 and
deduce two equations of the following form:

〈∇V tt,∇⊥V φφ〉 αx = B′ α

〈∇V tt,∇⊥V φφ〉 αy = B̃′ α
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The expressions B′ and B̃′ are polynomials in derivatives of U and γ (the derivatives are
at most of second order). Components of the reduced metric appear at most with one
differentiation. Dividing by the non-zero coefficient of the α-derivatives yields the desired
result.

The integrability condition for α, i.e. αxy − αyx = 0, must hold and constitutes a necessary
criterion for the existence of non-reducible Killing tensor fields.

Lemma 7. Let rkM = 2 and A = 0 (∇V φφ,∇V tt 6= 0). If there is an additional Killing
tensor field of valence 3, then By − B̃x = 0.

Proof. Compute

(αx)y − (αy)x = By α+B αy − B̃x α− B̃ αx
= (By − B̃x)α+ (BB̃ − B̃B)α

= (By − B̃x)α

Thus, we need α = 0 or By − B̃x = 0. In case that α = 0, the integral F3 = F (3) +F (1) = 0.
Hence, the necessary criterion for the existence of non-trivial Killing tensor fields of valence 3
is By − B̃x = 0.

We give an example where this idea already provides information on the reducibility of cubic
integrals:

Example 1. The Zipoy-Voorhees family of metrics is a family of Weyl metrics that is
parametrized by a number δ, see also Chapter 3.
We can use the method as described above, but we take H in a modified form, namely

H =
p2x

2Ω1
+

p2y
2Ω2

+ V φφ p2φ + V tt p2t .

The Zipoy-Voorhees metric satisfies, in prolate spheroidal coordinates:

Ω1 =
1

2

(
x2 − 1

x2 − y2

)δ2 (
x+ 1

x− 1

)δ
x2 − y2

x2 − 1

Ω2 =
1

2

(
x2 − 1

x2 − y2

)δ2 (
x+ 1

x− 1

)δ
x2 − y2

1− y2

V φφ =

((
x+ 1

x− 1

)δ
(x2 − 1) (1− y2)

)−1

V tt = −
(
x+ 1

x− 1

)δ
Proceeding as in Lemma 7, we first check that det M 6= 0. Using computer algebra, we find
the following:

det M = 0 ⇔ −4yδ = 0.

which obviously is not true for δ 6= 0 and generic x, y. Then we compute the necessary
criterion as in Lemma 7. We find

By − B̃x = −2

3

4xδ2 − 3(x2 − 1)δ + 2x

y(x2 − 1)2
,

which is nonzero for generic x, y. We therefore must conclude α = 0, which means that the
integral must be zero (though it was supposed to be of degree 3).
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4.3.2 Completion of the proof

With all these preparations at hand, we can now complete the proof of Theorem 4. This
comprises Steps (v) and (vi) of the list on page 58.

Lemma 8. A polynomial equation of degree N > 0 for a function f(x, y) with coefficients
that depend on x only, is independent of y, i.e. f = f(x).

Proof. Denote the equation by
∑N
n=0 an(x) fn(x, y) = 0, aN (x) 6= 0. The assertion holds if

f ≡ 0. Thus assume f 6≡ 0. Differentiate once w.r.t. y and obtain
∑N
n=1 an(x)n fn−1 fy = 0.

Then either fy ≡ 0 (and the assertion is proven) or we divide by fy (in a neighborhood
where it is non-zero) and proceed similarly. At some point we end up with aN = 0, which
contradicts the hypothesis that the polynomial equation is of degree N . Thus, we need
fy = 0 and f is a function of x only.

To simplify notation, we use the following convention to refer to the components of
Equation (4.3a), cf. the terminology in Chapter 2.

{T, I(3)} =
4∑
i=0

P (i) p4−i1 pi2. (4.17)

Thus, by P (0) we denote the p41 component of (4.3a), by P (1) its p31p2 component etc.

Lemma 9. Let Ux = Ux(x) be a function of x only. Assume that the Weyl metric admits
an additional third-degree integral. Then Uy = 0.

Proof. The proof has two parts: (1) Show that Uy has to be constant, (2) Show that the
constant is zero.
For the first part, consider the p31p2 component P (1) of (4.3a). Use the Ernst equation (3.7)
to replace derivatives Uyy. In this way, obtain the equation

5x3 U4
y + 78x2 Ux (1 + xUx)U2

y + (18x2 Ux + 9x)Uxx

− 63x3 U4
x − 63xU2

x − 9Ux − 126x2 U3
x = 0. (4.18)

This is a polynomial equation of degree 4 for Uy, and all coefficients are functions of x only.
By Lemma 8, this means Uyy = 0, so Uy = const =: c.

For the second part of the proof, we insert this result into the p41 component P (0) of (4.3a).
If we substitute Uxx with the help of the Ernst equation (3.7), we find

Ux (1 + xUx) (1 + 2xUx) = 0.

Hence, there are 3 cases: Ux = 0, Ux = − 1
x and Ux = − 1

2x . We treat them separately:

• If Ux = 0, use again the p31p2 component P (1), which reads

5x3 c4 = 0,

so c = 0.

• For Ux = − 1
x we have the same equation, so again c = 0.



68 Chapter 4. Cubic Integrals in Arbitrary Weyl Metrics

• In case Ux = − 1
2x , the p

3
1p2 component P (1) reads

9− 312x2 c2 + 80x4 c4

x
= 0.

Therefore, xc = const and hence c = 0.

Remark 2. There are several possible choices of the parametrizing functions U and γ that
lead to flat metrics when using Weyl canonical coordinates (R = x). Obviously, U ≡ 0 and
γ ≡ 0 is a choice that represents a flat metric (in cylindrical polar coordinates). Likewise,
the choice U = − ln(x), γ = ln(x) leads to a flat metric [GP09]. However, a flat metric can
even look more complicated. Gautreau and Hoffman [GH69] show that the choice

U = −1

2
ln
(√

x2 + y2 + y
)

and γ = −1

2
ln

(√
x2 + y2 + y√
x2 + y2

)
, (4.19)

also gives rise to a flat metric, cf. also [GP09].

Lemma 10. Let rkM = 2 and A = 0 (∇V φφ,∇V tt 6= 0). Assume α 6= 0. Then there is
no non-trivial Killing tensor of valence 3.

Proof. We assume there is such a Killing tensor. Then, by the necessary criterion (see
Lemma 7), By − B̃x = 0. In addition, consider (4.3a) and the vacuum conditions (3.11).
Assuming no additional linear integral and Weyl canonical coordinates, we have Uy 6= 0.

Consider (4.3a) in combination with the necessary criterion from Lemma 7, plus the
vacuum conditions. The vacuum conditions (3.11) are basically invoked in order to substitute
Uyy, as well as γx and γy, which reduces the number of derivatives of U involved in the
equations (and eliminates γ). We take derivatives w.r.t. x and y of (4.3a). Then, we have
18 equations (those obtained from (4.3a), plus the necessary criterion By − B̃x = 0 from
Lemma 7). Using the vacuum conditions (3.11), we have only the following unknowns left:

Uxxxx, Uxxxy, Uxxx, Uxxy, Uxx, Uxy, Ux, Uy, U.

Use the x-derivative of the p31p2 component, ∂
∂xP

(1), to substitute Uxxxy, and the x-derivative
of the p21p22 component, ∂

∂xP
(2), to substitute Uxxxx in terms of lower order derivatives.

The third-order derivative Uxxy can be substituted via the x-derivative of the integrability
criterion, but only if

(1 + 2xUx) (xU2
x − 3xU2

y + Ux) 6= 0. (4.20)

In this case, we can proceed as follows: Substitute Uxxx by the help of the x-derivative of
the p41 component P (0), and use this component to substitute Uxx. Finally, substitute Uxy
using the integrability condition.

With all these substitutions at hand, we are only left with equations in the unknowns Ux
and Uy. For instance, the derivative w.r.t. y of the p41 component of (4.3a), i.e. ∂

∂yP
(0), reads

xU2
x (1 + 2xUx) (1 + xUx)2 (xU2

x + Ux + xU2
y )3 = 0.

Therefore, either Ux = 0 or Ux = − 1
x or Ux = − 1

2x , or xU
2
x + Ux + xU2

y = 0. The three
cases that we mentioned first are covered by Lemma 9, and obviously they are incompatible
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with the hypothesis Uy 6= 0. Thus, we are left with the fourth case. We can use the equation
to express U2

y in terms of Ux,

U2
y = − 1

x
Ux (1 + xUx). (4.21)

Substitute this into the integrability condition and obtain an expression for Uxy in terms
of Uy,

∂

∂x
Uy = −4xU3

y , (4.22)

which is a differential equation for Uy and can be solved in a straightforward way. The
solution is given by

Uy = ± 1

2
√
x2 − f1(y)2

. (4.23)

Use this to replace U2
y in (4.21),

f1(y)2 = −x(1 + 4xUx + 4x2 U2
x)

4Ux (1 + xUx)
,

and solve this for Ux. There are two branches of possible solutions:

Ux = − 1

2x

(
1± f1(y)√

x2 + f21

)
.

We can use the integrability criterion to find an explicit form for f1. First, obtain two
differential equations:

(f1)y ± 1 = 0

Without loss of generality, we therefore obtain

f1 = ±y.

Using Equation (4.21) for U2
y , in combination with the Ernst equation (3.7) and with Equa-

tion (4.23), one finds, after integration,

U =
1

2
ln(
√
x2 + y2 ± y)− ln(x) + c2 (4.24)

with an additional integration constant c2 ∈ R. In addition, the solution (4.19) from Re-
mark 2 is recovered. The corresponding formula for γ can be computed using the secondary
vacuum conditions (3.11c) and (3.11d).

It is straightforward to check that the Riemann curvature of the metric obtained from
Formula (4.24) is zero. Thus, the metric is flat, cf. the discussion in Remark 2. As a result,
all Killing tensors are reducible.

To complete the proof, we still have to take into account the case where Equation (4.20)
is not satisfied. Here, either Ux = − 1

x (this is covered by Lemma 9) or

Ux (1 + xUx)− 3xU2
y = 0.

We solve for U2
y and obtain

U2
y =

Ux (1 + xUx)

3x
.
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From the p41 component P (0) and the integrability criterion we can also obtain another
expression for U2

y :

U2
y =

3Ux (1 + xUx)

x
.

The only way to allow both solutions to be true is if Ux = 0 or Ux = − 1
x . Both cases are

covered by Lemma 9.

We have considered odd-parity third-degree integrals for Weyl metrics. If M is flat on
a neighborhood, then it is totally reducible there [Tho86]. Thus, assume M to be non-flat.
Briefly summarizing, we find the following lemma.

Lemma 11. Let M be non-flat with A = 0. Let F be a third-degree involutive integral of
odd parity on M . Then F is reducible by at least one degree.

Proof. First, let us consider the case of an additional Killing vector field. As we have seen in
Lemma 5, this implies that the odd-parity third-degree integral is reducible by the (linear)
integral py. Hence, the assertion is proven in this case. Second, if there is no additional
Killing vector field, Proposition 10 tells us (provided α 6= 0) that there is no odd-parity
third-degree integral. In the case α = 0, we have F = 0. Thus, the assertion is proven.

To conclude the proof of Theorem 4, we finally have to take into account the quadratic
part of the integral (3.14). We already know from Section 2.3.2 that this relates to even-
parity quadratic integrals. More specifically, the quadratic contributions F (2)

φ and F (2)
t must

obey equations

{T, F (2)
k } = 0 and {T, F (0)

abk}+ {V ab, F (2)
k } = 0, (4.25)

where a, b, k ∈ {φ, t}. These equations are precisely the equations for quadratic integrals with
leading terms F (2)

φ and F
(2)
t , respectively. Previously, we have denoted the corresponding

systems of PDEs by S left and Sright, see equations (4.15). Thus the polynomials

pa (F (2)
a + F

(0)
aφφ p

2
φ + F

(0)
atφ pt pφ + F

(0)
att p

2
t ), (4.26)

with a ∈ {φ, t}, are products of a linear and a quadratic integral, and therefore the even-
parity contributions to the cubic integral F are reducible by pφ and pt, respectively. Hence,
also the entire integral F combining the parts of odd and even parity is reducible by one
degree.

4.4 Zipoy-Voorhees metrics
Theorem 4 proves reducibility (by one degree) for involutive cubic integrals for arbitrary
Weyl metrics. Using the same methods, we can also prove complete reducibility for arbitrary
Zipoy-Voorhees metrics.

Corollary 1. LetMZV be a Zipoy-Voorhees metric and let I be an integral of the form (3.14)
of third degree on MZV. Then I is totally reducible, i.e. is generated by linear integrals (i.e.
Killing vector fields) and the Hamiltonian (i.e. the metric).

For a general coordinate representation of the family of Zipoy-Voorhees metrics see (3.17)
on page 49. The statement of Corollary 1 follows from Theorem 4 in combination with
Theorem 1. We have proven Theorem 1 in Section 3.2 based on Algorithm II. In addition,
we sketched another possible proof with degree-wise reasoning. We now develop this latter
proof in more detail.
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Proof of the corollary. Recall the form of Zipoy-Voorhees metrics from (3.17) on page 49:

g =
(
x+1
x−1

)δ (
(x2 − y2)

(
x2−1
x2−y2

)δ2 (
dx2

x2−1 + dy2

1−y2

)
+ (x2 − 1)(1− y2) dz2

)
−
(
x−1
x+1

)δ
dt2.

(4.27)
For the case δ = 1, also refer to Section 2.3.4. Third-degree odd-parity integrals are discussed
in Example 1 on page 66. Let us now consider even-parity components, assuming that δ 6= 0
and δ 6= ±1. We represent the Hamiltonian H in the form

H = Ω1 p
2
x + Ω2 p

2
y + Vφ p

2
φ + Vt p

2
t , (4.28)

and denote the integral by

F = a0 p
2
x + a1 px py + a2 p

2
y + b0 p

2
φ + b1 pφ pt + b2 p

2
t .

From each polynomial of degree 1 we obtain integrability conditions for b0 and b2, after split
w.r.t. (px, py) similar to Remark 1. The coefficient b1 belongs to the subsystem S lower and
is therefore constant and not of interest.

For quadratic integrals in 2-dimensional spaces, Equation (1.11) on page 17 is the inte-
grability condition for the zeroth-order component of the integral. Similarly, we have two
Bertrand-Darboux integrability conditions here, one for b0 and one for b2.

Combining these Bertrand-Darboux integrability conditions with the equations obtained
from the degree-3 polynomial after splitting w.r.t. (px, py), we have a system of six (indepen-
dent) linear equations for six unknowns (the derivatives of a0, a1 and a2). The system can
be solved for all these unknowns. Subsequently, by computing the expressions (ai)xy−(ai)yx
for i = 0, 1, 2, we obtain three linear equations for a0, a1 and a2. These three equations
are not independent, but are equivalent to a system of two equations. One of the resulting
equations amounts to a1 = 0, if δ2 − 1 6= 0. The second equation relates a0 and a2 to one
another (again assuming δ2 − 1 6= 0),

(y2 − 1)a2 + (x2 − 1)a0 = 0.

From the Bertrand-Darboux equations for b0, b2, we can now deduce the differential d(a0)
in terms of a0 and solve the corresponding system of differential equations, obtaining

a0 = c1 (y2 − x2)1−δ
2

(x+ 1)δ
2+δ−1(x− 1)δ

2−δ−1.

Then, we can immediately compute a2:

a2 = −c1
(
x2 − 1

x2 − y2

)δ2 (
x+ 1

x− 1

)δ
x2 − y2

y2 − 1
.

Finally, from the equations obtained from the degree-1 polynomial after splitting w.r.t. the
momenta px, py, we obtain the derivatives of b0, b2, and by integration

b0 = −c1 (y2 − 1) (x2 − 1)

(
x+ 1

x− 1

)δ
+ c2,

b2 = −c1
(
x− 1

x+ 1

)δ
+ c3.
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Comparing this result to the Hamiltonian shows that

F = c1H + c2 p
2
φ + c3 pφ pt + c4 p

2
t .

This means that every involutive quadratic integral is (H, pφ, pt)-reducible provided δ 6∈
{0,±1}. For δ = ±1 there is an additional involutive integral that is reducible by linear
integrals, including non-involutive ones. Together with Theorem 4, this proves the assertion.



Chapter 5

Sub-Riemannian Structures

In the previous chapters, we discuss astrophysical examples from the class of stationary
and axially symmetric vacuum metrics. We are now going to deal with sub-Riemannian
structures, and we address these with the algorithm briefly outlined in Section 2.3.3.

We consider left-invariant sub-Riemannian structures on rank-2 distributions in Carnot
groups, and study Liouville integrability for such structures. The results and the algorithm
presented in this chapter are part of a joint paper with Boris Kruglikov and Georgios Lukes-
Gerakopoulos [KVL15]. The exposition follows the deliberations in the paper.

Carnot groups have been described as the sub-Riemannian analog of what Euclidean
spaces are within Riemannian geometry (the term flat is used, for instance, in [Sac04]).
Carnot groups are, in typical points, an infinitesimal model (nilpotent approximation) for
generic sub-Riemannian structures [Bel97], which is compared to the fact that Riemannian
geometries are infinitesimally Euclidean in [MSS97]. Starting from this analogy, Mont-
gomery, Shapiro & Stolin discuss Liouville integrability for sub-Riemannian structures on
Carnot groups in [MSS97], asking whether Carnot groups in general are always integrable.
They observe that this is not the case and illustrate it with a precise example [MSS97].
Other examples are discussed in [Kru02].

We observe a similarly unexpected effect. Intuitively, one expects that symmetry is re-
lated to the existence of integrals. For instance, the Noether theorem links symmetries of the
Hamiltonian to linear integrals. In Chapter 1, we also mention that higher-degree integrals
are often referred to as hidden symmetries (cf. also the Runge-Lenz vector in the Kepler
problem). However, we are going to see examples of sub-Riemannian structures on Carnot
groups where a high degree of symmetry does not guarantee the existence of additional in-
tegrals of low-degree, even if similar structures with a lower-dimensional symmetry algebra
are integrable with integrals of low degree. This effect is observed both with regard to the
symmetry algebra of the sub-Riemannian structure and that of its underlying distribution
(see page 76 for the definition).

5.1 Introduction
A Carnot group G is a simply connected, finite-dimensional Lie group whose Lie algebra is
nilpotent and decomposes into a direct sum

⊕
Li of vector spaces Li such that [Li, Lj ] ⊂

Li+j , [Li, L1] = Li+1, and Ls = 0 for s > r ∈ N.
Furthermore, we require that dimL1 = 2 and that there is a sub-Riemannian metric

g ∈ Γ(S2
+L
∗
1). A sub-Riemannian structure on a connected differentiable manifold M is a

73
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bracket-generating (also called completely non-holonomic) vector distribution ∆ = L1 ⊂
TM , together with a Riemannian metric g ∈ Γ(S2

+∆∗) on the dual of the distribution.
The bracket-generating condition is the requirement that in any local frame for ∆, TM is
spanned by the frame and all of its iterated Lie brackets [Mon06].

There is a standard construction that endows G with a sub-Riemannian distance, i.e. a
mapping that assigns a distance to two points x, y ∈ G. This standard construction is the
Carnot-Carathéodory metric

dg(x, y) = inf
γ∈H(x,y)

∫ 1

0

‖γ̇‖g dt.

Here, ‖·‖g denotes the norm induced by g. H(x, y) is the space of integral (horizontal) curves
γ : [0, 1]→ G, γ̇ ∈ ∆, that join x and y, i.e. γ(0) = x, γ(1) = y. Obviously, we require that
H(x, y) is non-empty for any two points x, y ∈ G. This is assured by the Chow-Rashevskii
theorem.

Fact 4 (Chow-Rashevskii Theorem [Cho40; Mon06]). If ∆ is a bracket-generating distribu-
tion on a connected manifold M , then any two points of M can be joined by a horizontal
path.

Hamiltonian. For a given sub-Riemannian metric, we can define a Hamiltonian. However,
the construction is somewhat more subtle than in the (pseudo-)Riemannian case, because
the metric is only defined for horizontal vector fields.

Consider the completely non-holonomic distribution ∆ ⊂ TG with the sub-Riemannian
metric g ∈ Γ(S2

+∆∗). Via this sub-Riemannian metric, define the isomorphism

]g : ∆∗ → ∆.

Now, consider the cotangent bundle T ∗G equipped with the standard symplectic structure,
and the inclusion i : ∆ ↪→ TG. In the sub-Riemannian case, we cannot find an isomorphism
between TG and T ∗G. However, we can still define a vector bundle morphism Ψg by the
composition

T ∗G
i∗→ ∆∗

]g→ ∆
i→ TG,

where i∗ is the dual mapping of i. With this construction at hand, we define the Hamiltonian
H : T ∗G→ R by

H : T ∗G
i∗→ ∆∗

]g→ ∆
1
2‖·‖

2
g→ R. (5.1)

Note that this definition of the Hamiltonian uses an additional factor 1
2 compared to our

previous convention. We make this choice to be consistent with the terminology in [KVL15].
We also adopt the following notation from [KVL15]: A basis of the Lie algebra g is denoted
by (ei). The corresponding mapping g∗ → R is denoted by (ωi), with ωi(p) = 〈ei, p〉. The
same symbols ei and ωi are used, respectively, for their corresponding left-invariant vector
fields on G or left-invariant linear functions T ∗G → R. The right-invariant counterparts of
the ωi are denoted by θi.

Locally, in an orthonormal basis of vector fields (ξi)i=1,...,k (ξi ∈ H), the Hamiltonian
can be written as H = 1

2

∑k
1 ξ

2
i . A formula in local coordinates (q, p) is obtained by realizing

the basis (ei) as left-invariant vector fields on G.
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This can be done as follows. Through the Baker-Campbell-Hausdorff formula,

log(eXeY ) = X + Y +
1

2
[X,Y ]

+
1

12
([X, [X,Y ]] + [Y, [Y,X]])

− 1

24
[Y, [X, [X,Y ]]]

− 1

720
([Y, [Y, [Y, [Y,X]]]] + [X, [X, [X, [X,Y ]]]])

+
1

360
([X, [Y, [Y, [Y,X]]]] + [Y, [X, [X, [X,Y ]]]])

+
1

120
([Y, [X, [Y, [X,Y ]]]] + [X, [Y, [X, [Y,X]]]])

+ . . . ,

(5.2)

one obtains the group law for G. The series expansion of the Baker-Campbell-Hausdorff
formula terminates in our cases because of the nilpotency of the algebra of G. Then, consider
a left-invariant vector field X with local representation Xg =

∑
iX

i
g ∂i, where ∂i = ∂

∂xi . A
left-invariant basis can be constructed by computing components of X via

Xi
g = Xg(x

i) = (Lg)∗Xe(x
i) = Xe(x

i ◦ Lg) (5.3)

and collecting coefficients w.r.t. the Xi
e = Xe(x

i), e.g. [CCG07].

Pontrjagin minimum principle. A (horizontal) curve γ ∈ H is called a geodesic if it
minimizes the distance dg for neighboring points that are suitably close. Such extremals of
the sub-Riemannian distance functional are given by the Pontrjagin minimum (or maximum)
principle, see [Pon87] or any book on optimal control theory.

Typically, geodesics are described by the Euler-Lagrange variational equation, which is
a special case of the Pontrjagin principle. Such geodesics are called normal geodesics. In
sub-Riemannian geometry not all geodesics are normal. There are also abnormal geodesics,
and both cases do not exclude each other. Geodesics that are abnormal and not normal are
called strictly abnormal, see e.g. [Mon14].

In our context, abnormal geodesics play no role. Thus, we are not considering them fur-
ther and we study only geodesics that are described by the Euler-Lagrange equation, making
the procedure analogous to the previous computations for pseudo-Riemannian metrics.

Integrability. As in the standard theory, the metric g is said to be (Liouville) integrable
if the geodesic flow is Liouville integrable on T ∗G, i.e. if there are functionally independent1
integrals I1 = H, I2, . . . , ID that Poisson commute: {Ii, Ij} = 0, ∀ i, j ∈ {1, . . . , D}.

Another, and maybe more common, kind of integrability on distributions is Frobenius
integrability, i.e. the existence of integral manifolds whose tangent spaces are spanned by the
distribution. This is not the kind of integrability addressed here and the bracket-generating
distributions cannot be integrable in the Frobenius sense, since Frobenius integrability would
require that [L1, L1] ⊂ L1.

Usually, we are concerned with geodesic invariants. Now, for integrals analytic in the
momenta and a Hamiltonian that is a homogeneous (quadratic) polynomial in the momenta,

1This means that the differentials are almost everywhere linearly independent.
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the existence of such an analytic integral implies the existence of an integral that is a
homogeneous polynomial in momenta (classical, e.g. tome III of [Dar87]). Since we are
looking for only one additional involutive integral, we can thus always assume that this
integral is a homogeneous polynomial in the momenta.

We are interested here in the integrability of left-invariant sub-Riemannian structures
on Carnot groups, such that the sub-Riemannian structures are associated with rank-2
distributions. Since we consider bracket-generating systems, the smallest rank possible is 2.
We start from dimension 6, because in our context lower-dimensional cases always have
integrable geodesic flows. For a more thorough treatment of these low-dimensional cases,
refer to [KVL15].

Symmetry dimensions. We consider both the symmetry dimensions for the underlying
distribution and the sub-Riemannian structure defined on it. A vector field on G is a
symmetry for the distribution ∆ = L1 if its flow preserves ∆. It is a symmetry for the
sub-Riemannian structure if its flow not only preserves ∆, but also the sub-Riemannian
metric g. The dimension of the symmetry algebra for the underlying distribution ∆ = L1

is denoted by dim Sym(∆), while we denote the dimension of the symmetry algebra for the
sub-Riemannian structure by dim Sym(∆, g).

The dimension of the symmetry algebra Sym(∆) can be obtained as in [AK11], cf. The-
orem 4 therein and also Theorem 8.4 in [Tan70]. Some of the results can also be found in
[DZ09; AK11]. The symmetry dimensions are obtained by computing the Tanaka prolon-
gation2 of the graded nilpotent Lie algebras for the Carnot groups we consider. In Tanaka
theory, it is common to use negative indices for the grading components, so the algebras
decompose as

g = g−n ⊕ · · · ⊕ g−1. (5.4)

The Tanaka prolongation

pr(g, g−1) = g−n ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ · · · ⊕ gM

is obtained by computing, iteratively for 0 ≤ m ≤ M , the spaces of homomorphisms
ψm : g−k → gm−k (k = 1, . . . , n) that act as derivations, i.e. that obey the Leibniz rule
ψ([e1, e2]) = [ψ(e1), e2] + [e1, ψ(e2)]. Thus, the first prolongation g0 is the algebra of
grading-preserving derivations of g. The dimension of the symmetry algebra Sym(∆, g)
is then obtained by identifying symmetries that also preserve g. In our cases, the dimension
of the symmetry algebra Sym(L1, g) is bounded from above by dim Sym(L1, g) ≤ dim g+ 1.
This statement is proven in [KVL15]. A more general theorem can be found in [Mor08].

In our cases, the Tanaka prolongation is trivial after at most four prolongations and
thus g2 is the last component that may be non-trivial. Therefore, the computations can
still be done by hand. There also exist computer-algebra implementations to compute the
Tanaka prolongation.

The examples. We start from dimension 6. This is the first interesting dimension, be-
cause in lower dimensions all left-invariant sub-Riemannian structures on Carnot groups are
integrable with integrals of low degree, see [KVL15].

2The author wishes to thank Boris Kruglikov for discussions on symmetry algebras and Tanaka theory.
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We consider the following sub-Riemannian structures in Carnot groups of dimension 6,
7 and 8:

6Dp The parabolic sub-Riemannian structure with growth vector (2, 3, 5, 6). The underly-
ing distribution has an 11-dimensional symmetry algebra, see [DZ09; AK11]. More-
over, dim Sym(L1, g) = 6.

6Dh A hyperbolic sub-Riemannian structure with growth vector (2, 3, 5, 6) and symme-
try dimension dim Sym(L1, g) = 6. Its underlying distribution has an 8-dimensional
symmetry algebra [DZ09; AK11].

6De The elliptic sub-Riemannian structure with growth vector (2, 3, 5, 6) and 7-dimensional
symmetry algebra Sym(L1, g). Its underlying distribution also has 8-dimensional sym-
metry algebra.

7D The sub-Riemannian structure with growth vector (2, 3, 5, 7). It has dim Sym(L1) = 9.
Its symmetry algebra Sym(L1, g) has maximal dimension, dim Sym(L1, g) = 8.

8D1 An example of a sub-Riemannian structure on a truncated free graded nilpotent
Lie algebra with 2 generators and growth vector (2, 3, 5, 8). The structure has a 9-
dimensional symmetry algebra, dim Sym(L1, g) = 9. The underlying distribution has
symmetry dimension 12 [KVL15].

8D2 A sub-Riemannian structure with growth vector (2, 3, 5, 6, 8) and dim Sym(L1, g) = 9.
It has a 10-dimensional symmetry algebra Sym(L1).

We also refer to the cases via their growth vector, if there is no risk of confusion.

5.2 Method

We prove nonexistence of a final integral of degree up to 5 or 6, for some of the examples
given in the list on this page. In these examples, there is only one integral missing for
Liouville integrability, but this final integral does not exist. Specifically, in the examples
6Dp, 6Dh, 7D and 8D1, we have D−1 involutive integrals (D is the dimension of the Carnot
group), but there is no final integral of low degree. On the other hand, we prove Liouville
integrability for the cases 6De and 8D2 with integrals of at most quadratic degree in the
momenta.

As we already pointed out in the introduction, low-degree (Liouville) integrability is
an interesting question of its own, see, for instance, the wide literature on second-order
integrability (existence of second-degree integrals). On the other hand, virtually all known
integrable Hamiltonian systems have polynomial integrals at most of degree 4. Although
low-degree non-integrability does not exclude the possibility of higher-degree integrability, if
we take low-degree non-integrability as a hint, we might ask ourselves whether these systems
show other forms of non-integrability. Indeed, we conduct numerical analysis in [KVL15]
and find that the above examples have Poincaré sections with chaotic behavior, cf. the
figures in [KVL15]. This corroborates our finding that a high level of symmetry does not
imply Liouville integrability of sub-Riemannian structures on Carnot groups. For the 8D
example, numerical analysis has been performed in [Sac14] and our results concur with the
observations made there.
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Algorithm. We use the algorithm outlined in Section 2.3.3. This algorithm is different
from Algorithms I and II regarding the elimination scheme that is used to reduce the asso-
ciated linear system (2.3) of page 21. The reason why we should follow a different strategy
for the sub-Riemannian structures is that the Hamiltonian, after symplectic reduction, is
not of even parity w.r.t. non-ignorable momenta. It has a linear term in addition (cf. Chap-
ters 2 and 3). Specifically, we obtain a Hamiltonian H = Tc(q1, q2, p1, p2) + Vc(q1, q2) after
symplectic reduction, with a kinetic term T and a potential V (the subscript c denotes de-
pendence on p3 = c3, . . . , pD = cD). Yet for the sub-Riemannian examples we consider here,
the reduced Hamiltonian contains a term linear in (p1, p2):

Hc(q1, q2, p1, p2) = T ij(q1, q2) pipj + Li(q1, q2) pi + V (q1, q2), (5.5)

where for the indices i, j we use the summation convention over i, j ∈ {1, 2}. The existence of
the non-vanishing term L entails complications. We do not have the parity decomposition
of Section 2.2.2 any longer. Moreover, since we work in higher dimension, the number
of involved equations is (significantly) higher than those with the stationary and axially
symmetric examples of Chapter 3.

However, we can increase the efficiency compared to the standard algorithm of Section 2.1
(page 20ff). On one hand, we choose a ‘good’ point of reference for the computations. Due
to this choice, the equations become very simple and contain only very few terms. For this
reason, the matrix of the associated system is rather sparse, i.e. contains many zero entries.
This allows us to consider a special elimination scheme as follows.

First, the Hamiltonian H evaluated in a point and scaled by some integer factor, is a
polynomial with integer coefficients. As discussed in Section 2.3, we therefore do not need
to handle rational expressions, which already improves the speed of the rank computation.
Then, because of the sparsity of the matrix, we can reduce the numbers of equations and
unknowns through solving the simplest equations immediately.

We briefly outline the adapted algorithm. Let D = dimG and let d denote the degree of
the integral, i.e.

F =
∑
|τ |=d

aτ (x1, x2) pτ , (5.6)

where τ is a multiindex τ = (τ1, . . . , τD). Using the multiindex notation, we have pτ =∏D
i=1 p

τi
i , and |τ | =

∑D
i=1 τi, cf. Chapters 1 and 2. Recall that the Poisson bracket {H,F} is

a homogeneous polynomial in momenta of degree d+ 1, and that the coefficients of {H,F}
yield a system of PDEs. It is a system of

(
d+D
D−1

)
first order partial differential equations on(

d+D−1
D−1

)
unknown functions (these are the coefficients aτ ). As discussed in Section 1.2, the

system is of finite type (analogously to [Wol98]). This suggests that we should typically need
d+1 prolongation steps to arrive at a conclusion if the considered structure is non-integrable,
and this is the number of computations that we actually need. After performing k steps of
prolongation, the total number of equations is

md,k =

(
d+D

D − 1

)
·
(
k + 2

2

)
,

and after all d+ 1 steps, we have

md,d+1 =

(
d+D

D − 1

)
·
(
d+ 3

2

)
equations in the associated linear system (2.3).
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As in Chapter 2, Λd denotes the number of linearly independent first integrals of degree d.
We have, after k prolongation steps,

Λd ≤ Λ
(k)

d := nd,k − rk(M
(k)
d ) (5.7)

The value Λ
(k)

d is the bound found from the associated matrix equation that corresponds to
the system of PDEs obtained after k prolongations. Nonexistence of an additional integral
of degree d requires, for a certain k ∈ N, both equalities in the following relation,

Λ
(k)

d ≥ Λd ≥ Λ0
d :=

[d/2]∑
i=0

(
d− 2i+D − 3

D − 3

)
, (5.8)

and we achieve this for our examples after k = d+ 1 steps of prolongation.

Algorithm III. The algorithm that we use for sub-Riemannian structures on the Carnot
groups is as follows:

(1) Compute the associated linear system, and evaluate it at (x1, x2) = (0, 0). Rewrite
the equations such that all coefficients become integers. Then remove all redundant
equations.

(2) Remove unknowns that can be set to zero in a point by adding suitable multiples of
known integrals. Denote the set of respective unknowns by Vtriv.

(3) Perform a partial solution of the system, iteratively using monomial and bi-monomial
equations. Each iteration consists of two steps. First, solve all monomial equations.
Second, analogously solve the bi-monomial equations. Repeat. During each iteration,
remove duplicate equations. The iteration procedure stops when there are no more
monomial or bi-monomial equations left.

(4) Denote the matrix obtained through this reduction by Mred, and define the sets Vmon
and Vbimon of unknowns that were removed during the first or second step of the itera-
tion, respectively. Furthermore, let Vred = V \ (Vtriv ∪Vmon ∪Vbimon) denote the set of
unknowns in the reduced matrix system. The upper bound to the number of integrals
can be computed by the formula

Λ = #V − rk(M) = #Vred + #Vtriv − rk(Mred). (5.9)

If the matrix Mred has full rank, then no additional integrals exist.

For the examples of this chapter, we do not have standard integrals like in the SAV
case. However, simple integrals can be computed as follows. First, we obtain linear integrals
from right-invariant fields for the given (left-invariant) Hamiltonian. Next, integrals that
are low-degree homogeneous polynomials in the left-invariant basis can be found directly.
In addition, Casimir functions can be computed for the system. They can be obtained as
solutions for the set of differential equations (see e.g. [CS04])

Ckij Xk
∂

∂Xj
F = 0 ∀ i = 1, . . . , n, (5.10)

where Ckij are the structure constants of the Lie algebra in the basis (X1, . . . , Xn) (the
usual summation convention applies). The maximal number of Casimirs is given by the
codimension of a generic orbit of the coadjoint action. Once the solutions are obtained,
we still have to check whether the Casimir functions are functionally independent of other
integrals of the respective structures.



80 Chapter 5. Sub-Riemannian Structures

5.3 Results
We compare the examples given on page 77 concerning the existence of low-degree integrals
and the dimension of their symmetry algebras. As a result of this comparison, we find the
following:

— a higher degree of symmetry does not imply the existence of additional integrals of low
degree in momenta

— while a sub-Riemannian structure with a maximal degree of symmetry may lack a fi-
nal integral, similar structures with a lower degree of symmetry can still be Liouville
integrable with integrals of low degree

Specificly, we prove

6D There is no final integral of degree at most 6 for the left-invariant parabolic sub-
Riemannian structure with Hamiltonian (5.12) and growth vector (2, 3, 5, 6) on the
maximally symmetric (w.r.t. dim Sym(L1)), non-holonomic rank-2 distribution that
has dim Sym(L1) = 11. Similarly, there is no final integral of degree ≤ 5 for the
hyperbolic structure with Hamiltonian (5.16). However, the corresponding elliptic
structure with Hamiltonian (5.14) is Liouville integrable with integrals of at most
second degree, in spite of its lower symmetry dimension dim Sym(L1) = 8.

7D The maximally symmetric (w.r.t. dim Sym(L1, g)), left-invariant elliptic sub-Riemann-
ian structure with Hamiltonian (5.18) and growth vector (2, 3, 5, 7) has no final integral
of degree ≤ 5.

8D The left-invariant sub-Riemannian structure (dim Sym(L1) = 12) with the Hamilto-
nian (5.19) and growth vector (2, 3, 5, 8) has no final integral of degree ≤ 5. Yet,
the sub-Riemannian structure (dim Sym(L1) = 10) with growth vector (2, 3, 5, 6, 8) is
Liouville integrable with integrals of at most quadratic degree.

The exact statements can be found on the following pages, see especially Theorems 5 to 7.
In [KVL15], non-integrability of examples 6Dp, 6Dh, 7D and 8D1 is corroborated by numer-
ical analysis. It is shown that the respective Poincaré sections exhibit chaotic behavior.

5.3.1 Dimension 6
In 6D, we compare three cases with growth vector (2, 3, 5, 6), but different structure equations
for the Lie algebras.

The parabolic structure with growth vector (2, 3, 5, 6). First, the parabolic distri-
bution with growth vector (2, 3, 5, 6) has maximal symmetry dimension dim Sym(L1) = 11
[AK11]. Its structure equations are

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6. (5.11)

One obtains a set of standard integrals as follows:

• Trivially, the (left-invariant) Hamiltonian H = 1
2 (ω2

1+ω2
2) itself is an integral. Its coor-

dinate form can be obtained using the Baker-Campbell-Hausdorff formula as described
on page 75. The result is, cf. [KVL15],

2H =
(
p1 − 1

2x2p3 − x1x2p4 −
1
2x

2
1x2p6

)2
+
(
p2 + 1

2x1p3 + x1x2p5
)2
. (5.12)
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• From the right-invariant integrals, one immediately identifies the linear integrals θ3 =
p3, θ4 = p4, θ5 = p5, θ6 = p6, which form an involutive family of four integrals.

• There are two Casimir functions, ω5 = θ5 and ω6 = θ6, which we already found
together with the other right-invariant linear integrals.

The five integrals Ipar(2,3,5,6) := (H, p3, . . . , p6) form an involutive family of left- and right-
invariant integrals.We are going to prove that there is no other (irreducible and involutive)
integral of low degree (up to 6) in addition to Ipar(2,3,5,6) that would turn the family into a
Liouville-integrable family of six involutive integrals.

Theorem 5. The family (H, θ3, . . . , θ6) cannot be extended to a Liouville integrable family of
integrals of degree ≤ 6 for the left-invariant sub-Riemannian structure (5.12) on the parabolic
(2, 3, 5, 6)-distribution, i.e. there exists no irreducible integral of degree ≤ 6, in addition to
the identified 5 involutive integrals.

The assertion is proven using Algorithm III by performing the algorithmic computations
searching for a final integral of degree d = 1, . . . , 6. We denote by #S = md,d+1 the number
of equations in the initial system of PDEs.

Sextic integral (d = 6); Λ0
6 = 130

seventh step of prolongation

#S #V Λ
(7)

6 computation time
28512 20790 130 ca. 27 hours

This proves that there are no additional irreducible and involutive integrals of the studied
type. Note that additional integrals of lower degree would appear in the number Λ

(7)

6 shown
in the table, because we can construct integrals from products of lower-degree integrals. The
full results of the computation (all lower degrees) can be found in Appendix A.1.1.

The elliptic structure with growth vector (2, 3, 5, 6). The elliptic3 (2, 3, 5, 6)-distri-
bution has symmetry dimension dim Sym(L1) = 8 [AK11]. Its structure equations are

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e4] = e6, [e2, e5] = e6, (5.13)

and the Hamiltonian (in local coordinates) reads

2H =
(
p1 − 1

2x2p3 − x1x2p4 −
1
2x

2
1x2p6

)2
+
(
p2 + 1

2x1p3 + x1x2p5 + 1
2x1x

2
2p6
)2
. (5.14)

The involutive family of standard integrals is obtained as follows. We find

• two Casimir functions I6 = ω6 and C = 1
2 (ω2

4 + ω2
5)− ω3ω6,

• the Hamiltonian I1 = H = 1
2 (ω2

1 + ω2
2),

• the right-invariant linear functions I3 = θ3, I4 = θ4, I5 = θ5 and I6 = ω6, and

• the quadratic integrals I2 = ω1ω5 − ω2ω4 + 1
2ω

2
3 and I ′2 = θ1θ5 − θ2θ4 + 1

2θ
2
3.

3The considered elliptic case has a lower-dimensional symmetry algebra for L1 than the parabolic case.
However, its symmetry algebra Sym(L1, g) has maximal possible dimension 7. We come back to this on the
next page.
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The integral C is not independent, but obviously satisfies C = 1
2 (I24 + I25 )− I3I6. However,

the quadratic integral I2 turns the family I = (I1, . . . , I6) into a family of six functionally
independent and involutive integrals. Therefore, the elliptic (2, 3, 5, 6)-structure is Liouville
integrable. Actually, it is superintegrable, taking into account the integrals I ′2 and the linear
integral K obtained via I2− I ′2 = I6 ·K (its coordinate representation is K = x1p2−x2p1 +
x4p5 − x5p4). Neither I ′2 nor K commute with I1, . . . , I6.

The hyperbolic structure with growth vector (2, 3, 5, 6). For the hyperbolic distri-
bution, the underlying distribution has the same symmetry dimension dim Sym(L1) = 8 as
the elliptic case (but it has dim Sym(L1, g) = 6). The structure equations read

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5, [e1, e5] = e6, [e2, e4] = e6, (5.15)

and the Hamiltonian is, in local coordinates,

2H =
(
p1 − 1

2x2p3 − x1x2p4 −
1
4x1x

2
2p6
)2

+
(
p2 + 1

2x1p3 + x1x2p5 + 1
4x

2
1x2p6

)2
. (5.16)

Again, there are two Casimir functions I6 = ω6 and C = ω4ω5 − ω3ω6, and together with
I1 = H = 1

2 (ω2
1 + ω2

2), I3 = θ3, I4 = θ4, and I5 = θ5 (θ6 = ω6) one obtains six involutive
integrals. However, not all of them are functionally independent, since we have the integral
C = I4I5 − I3I6. We do not find another left-invariant integral that is corresponding to the
integral I2 of the elliptic structure.

We thus apply Algorithm III for the hyperbolic (2, 3, 5, 6)-structure. Indeed, we find
nonexistence of an additional integral up to degree 5.

Quintic integral (d = 5); Λ0
d = 80

sixth step of prolongation

#S #V Λ
(6)

5 computation time
12936 9072 80 ca. 1.7 hours

5.3.2 Dimension 7

The sub-Riemannian structure that we study in dimension 7 has growth vector (2, 3, 5, 7).
Note that in 6D, we were considering the parabolic case 6Dp that had maximal symmetry
dimension dim Sym(L1) = 11 for the underlying distribution. However, the 6Dp example
has only dim Sym(L1, g) = 6, while the maximally symmetric sub-Riemannian structure in
6D is the elliptic4 6De example (with dim Sym(L1, g) = 7). While the parabolic case turned
out to be non-integrable, we found the elliptic case to be integrable with integrals of a most
degree 2. Thus, let us now explore a 7-dimensional case with maximal dimension of the
symmetry algebra for (L1, g).

Its structure equations are given in [AK11; KVL15] and read

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

[e1, e4] = −[e2, e5] = e6, [e1, e5] = [e2, e4] = e7.
(5.17)

4There are also elliptic cases with dim Sym(L1, g) = 6 in 6 dimensions, depending on whether the rotation
endomorphism yields a grading-preserving derivation of L1.
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In local coordinates, the left-invariant Hamiltonian given by H = 1
2 (ω2

1 +ω2
2) can be written

as follows [KVL15]

2H =
(
p1 − 1

2x2p3 − x1x2p4 −
1
2x

2
1x2p6 − 1

4x1x
2
2p7
)2

+
(
p2 + 1

2x1p3 + x1x2p5 − 1
2x1x

2
2p6 + 1

4x
2
1x2p7

)2
. (5.18)

We can find a family of six involutive integrals for this structure.

• The (right-invariant) linear integrals θ3, . . . , θ7 (resp. p3, . . . , p7 in local coordinates)
are in involution

• The Hamiltonian extends this family to an involutive family of six functionally inde-
pendent integrals, I(2,3,5,7) = (H, θ3, . . . , θ7)

• There are 3 Casimir functions: ω6, ω7 and

ω3(ω2
6 + ω2

7)− 1

2
(ω2

4 − ω2
5)ω6 − ω4ω5ω7.

However, these Casimir functions are all generated by the integrals θ3, . . . , θ7, and
therefore we still lack one additional integral for Liouville integrability.

We prove that there are no low-degree integrals in addition to I(2,3,5,7) to ensure Liouville
integrability:

Theorem 6. The family (H, p3, . . . , p7) of involutive integrals can not be extended to a
Liouville-integrable family of integrals of degree ≤ 5, i.e. there is no irreducible involutive
integral of degree ≤ 5, in addition to the identified 6 involutive integrals, for the considered
left-invariant sub-Riemannian structure (5.18) on the (2, 3, 5, 7)-distribution.

This result is obtained using again Algorithm III.

Quintic integral (d = 5); Λ0
5 = 166

sixth step of prolongation

#S #V Λ
(6)

5 computation time
25872 16632 166 ca. 10.3 hours

5.3.3 Dimension 8

We compare two sub-Riemannian structures that have a 9-dimensional symmetry algebra
Sym(L1, g). The examples have growth vectors (2, 3, 5, 6, 8) and (2, 3, 5, 8), and their under-
lying distributions have symmetry dimension 10 and 12, respectively. In spite of its lower
symmetry dimension, the (2, 3, 5, 6, 8)-structure turns out to be Liouville integrable with
integrals of low degree, while the other does not.
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The (2, 3, 5, 8)-structure. The sub-Riemannian structure with growth vector (2, 3, 5, 8)
that we investigate has also been considered in [Sac13; Sac14]. It is the free truncated graded
nilpotent Lie algebra with the structure equations

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

[e1, e4] = e6, [e1, e5] = [e2, e4] = e7, [e2, e5] = e8.

The left-invariant Hamiltonian reads in local coordinates:

2H =
(
p1 − 1

2x2p3 −
1
2 (x21 + x22)p5 − 1

4x1x
2
2p7 − 1

6x
3
2p8
)2

+
(
p2 + 1

2x1p3 + 1
2 (x21 + x22)p4 + 1

6x
3
1p6 + 1

4x
2
1x2p7

)2
. (5.19)

For this structure we find a family of seven involutive integrals:

• We obtain an involutive family of six right-invariant linear integrals besides the Hamil-
tonian, namely I2 = θ3, I3 = θ4, I4 = θ5, I5 = θ6, I6 = θ7, I7 = θ8 (or Ii = pi, i =
3, . . . , 8 in coordinates).

• There is one cubic Casimir function (along with θ6, θ7 and θ8)

C = (ω2
5 − 2ω3ω8)ω6 + 2ω3ω

2
7 + ω2

4ω8 − 2ω4ω5ω7,

but it is not independent of the linear integrals. We find

C = 2((I26 − I5I7)I2 − I6I4I3) + I7I
2
3 + I5I

2
4 ).

We prove that there is no additional (final) integral in low degree:

Theorem 7. The family I(2,3,5,8) = (H, θ3, . . . , θ8) cannot be extended to a Liouville-
integrable family of integrals of degree ≤ 5, i.e. there exists no irreducible integral of de-
gree ≤ 5, in addition to the identified 7 involutive integrals, for the considered left-invariant
sub-Riemannian structure on the (2, 3, 5, 8)-distribution with Hamiltonian (5.19).

Applying Algorithm III, we obtain the table

Quintic integral (d = 5); Λ0
5 = 314

sixth step of prolongation

#S #V Λ
(6)

5 computation time
48048 28512 314 ca. 10.2 hours

The full list of results is provided in the appendix, see Section A.1.3.

The (2, 3, 5, 6, 8)-structure. Finally, we investigate a sub-Riemannian structure that has
growth vector (2, 3, 5, 6, 8). Its symmetry algebra for (L1, g) has the same dimension as the
previous example, while the underlying distribution has less symmetry than its (2, 3, 5, 8)
counterpart. The structure with growth vector (2, 3, 5, 6, 8) has the structure equations

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5,

[e1, e4] = [e2, e5] = e6,

[e1, e6] = [e3, e5] = e7,

[e2, e6] = [e4, e3] = e8.

The left-invariant Hamiltonian H = 1
2 (ω2

1 + ω2
2) admits the following integrals
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• The five commuting right-invariant linear integrals I2 = θ4, I3 = θ5, I4 = θ6, I5 = θ7,
I6 = θ8, plus the Hamiltonian itself. These form an involutive family of six functionally
independent integrals.

• There are 4 Casimir functions, namely ω7, ω8 and

I7 = ω1ω8 − ω2ω7 + ω3ω6 −
ω2
4 + ω2

5

2
= θ1θ8 − θ2θ7 + θ3θ6 −

θ24 + θ25
2

,

C = ω4ω7 + ω5ω8 − 1
2ω

2
6 = θ4θ7 + θ5θ8 − 1

2θ
2
6.

The second one of the latter, C, is generated by I2, . . . , I6 and thus reducible. However,
we can add I7 to the family of involutive integrals.

• We have the quadratic integral I8 = ω1ω5 − ω2ω4 + 1
2ω

2
3 . It can be checked that I1 =

H, I2, . . . , I8 are involutive and functionally independent almost everywhere on T ∗G,
and therefore that the (2,3,5,8)-structure is Liouville integrable.

• There is another quadratic integral: I ′8 = θ1θ5 − θ2θ4 + 1
2θ

2
3. This integral, together

with C, renders the structure superintegrable.

The family I(2,3,5,6,8) = (H, I2, . . . , I8) ensures that the considered (2, 3, 5, 6, 8)-structure is
Liouville integrable.

5.4 Reduction to 2 degrees of freedom
It is possible to reconsider the four non-integrable examples in a comprehensive manner.
The same uniform writing is possible with the elliptic 6D structure that we considered. To
see this, we express the Hamiltonians (5.12), (5.14), (5.16), (5.18) and (5.19) as

H =
1

2
ρ2 (cos2 z + sin2 z) =

1

2
ρ2 (5.20)

and use the conservation of H to reduce the dimension of the problem by one, setting ρ = 1.
This makes the Hamiltonian constant. All pi with i ≥ 3 are linear integrals and can be
considered as constants in the reduced picture [Whi04], i.e. we work on a level hypersurface
with constant pi = ci (i = 1, . . . , D). The Hamiltonian equation η̇ = {H, η} reduces to the
normal form5

ẋ = cos(z), ẏ = sin(z), ż = Q(x, y), (5.21)

where Q is a quadratic polynomial taking the normal form

Q =

{
Q1(x, y) = ax2 + by for D = 6 (parabolic)
Q2(x, y) = ax2 + by2 + c for D = 7, 8

, with constants a, b, c. (5.22)

In case of the elliptic 6D system, we obtain Q = Q2 with a = b 6= 0, and a degenerate
case with Q = Q1 and a = 0. For the 6D hyperbolic case, we similarly have Q = Q2 with
a = −b 6= 0, and Q = Q1 with a = 0 in a degenerate case.

5To obtain these normal forms, express ż in terms of the original coordinates x1, x2 and their corre-
sponding momenta. The normal forms are then obtained by a simple coordinate transformation.
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For non-integrable examples, the constants a and b have to be nonzero, otherwise the 3D
flow reduces to a 2D flow and cannot be chaotic. The respective integrals in such cases are

a = 0 b = 0
Q1 I = cos(z) + b/2 y2 I = sin(z)− a/3x3

Q2 I = cos(z) + c y + b/3 y3 I = sin(z)− a/3x3 − c x

Moreover, non-integrability in the case Q = Q2 requires a 6= b. This is because we can, for
a = b (cf. the 6D elliptic case), perform a polar change of coordinates [KVL15],

x = r cos(ψ), y = r sin(ψ),

followed by the change to s = z − ψ. In this way, we obtain:

ṙ = cos(s), ż = ar2 + c, ṡ = ar2 + c− sin(s)

r
.

Obviously, the system reduces to a 2D flow governed by the first and the third equation (we
can isolate the coordinate z). It follows, in case that Q = Q2 and a = b, that we have the
additional integral

F =
a

4
r4 +

c

2
r2 − r sin(s), (5.23)

which corresponds to the integral I2 of the 6D elliptic example, cf. page 81.
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Conclusions and Outlook

In the previous chapters, we demonstrate how the prolongation-projection method, in com-
bination with the structural properties of the systems considered, is a very effective tool.
We apply this tool to decide whether given Hamiltonian systems, defined via a (pseudo-)
Riemannian or sub-Riemannian metric, admit additional low-degree integrals. We briefly
summarize the results and point out some perspectives and open problems for further in-
vestigation.

Stationary and Axially Symmetric Metrics. With the help of the prolongation-
projection method, we provide computer-assisted and rigorous proofs for difficult problems
in differential geometry. Specifically, we

• extend the results from [KM12; LG12; MPS13] for the Zipoy-Voorhees metric with
parameter δ = 2,

• prove nonexistence of a final integral of degree 7 for a Tomimatsu-Sato metric with
parameter δ = 2,

• confirm algorithmically that flat space and the Schwarzschild metric are the only Zipoy-
Voorhees metrics with an additional involutive quadratic integral (these integrals are
reducible in both cases),

• give a proof of total reducibility for arbitrary Zipoy-Voorhees metrics in degree up
to 3, and

• prove reducibility for involutive cubic integrals for arbitrary Weyl metrics.

These results confirm that our method, the algorithms and the techniques in Chapter 4, can
efficiently answer questions about integrability of Hamiltonian systems in physics. Important
perspectives for future research include the generalization of the mentioned results and the
application of the methods to other contexts. For instance, we plan to relax the involutivity
assumption. For non-involutive integrals, the methods of Chapter 2 and to some extend
those of Chapter 4 can still be employed, but their application is more tedious since more
equations and unknowns are involved.

Another interesting perspective is the generalization of Theorem 4 to the stationary case.
Here, the methods from Chapter 4 work in principle, but the system is more complicated
since it involves more equations and additional parametrizing functions.
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Sub-Riemannian structures on Carnot groups. Concerning sub-Riemannian struc-
tures on Carnot groups, we explore the connection between Liouville integrability and the
degree of symmetry for the sub-Riemannian structure and its underlying rank-2 distribution
in Chapter 5.

• We observe the counter-intuitive effect that a higher degree of symmetry does not
imply the existence of additional low-degree integrals, beginning from dimension 6.
Moreover, structures of lower symmetry dimension can be integrable whereas their
maximally symmetric counterparts are not.

• The reduced picture presented in Section 5.4 provides a uniform formulation for these
cases and elucidates how the integrable cases relate to the non-integrable cases.

Since many of the tricks outlined in Chapter 2 do not work for the examples of Chapter 5,
the computations are much more demanding than the examples in Chapter 3 as the degree
of the integral increases. The associated linear systems (2.3) for the cases 6Dp, 6Dh, 7D and
8D1 on page 77 involve a huge number of equations and unknowns — in fact several 10,000
equations and unknowns. Although we could already examine integrals up to degree 5 or 6
with Algorithm III, new tricks are needed when one aims to explore higher degrees.

The algorithmic method. The approach via prolongation-projection provides an effi-
cient method to check the existence of low-degree integrals. Three implementations are
established, namely Algorithms I, II and III on pages 33, 37 and 79, respectively. These
algorithms are adapted to certain contexts and several computer-based proofs (e.g. Theo-
rems 2, 3 and 5–7) can be obtained in an entirely self-contained, computer-based manner
with these algorithms. The proof for Theorem 1 is also completed in this algorithmic way.
To have such an algorithmic method is interesting for a number of reasons:

— A quick and easy-to-use way to prove nonexistence of low-degree integrals is provided
(see the appendix for the Maple worksheets).

— For integrable systems, additional integrals can be detected by degree-wise application
of the algorithmic check.

— Parameter-dependent families of metrics can systematically be examined for integrability
with low-degree integrals (cf. the procedure used in Proof 3 of Theorem 1).

These properties are likely to make the method interesting for many applications in mathe-
matics as well as in physics. The algorithm can be used as a single method (as we did e.g.
with Theorems 1–3), but also in combination with other methods. For instance, we could
use the algorithm with a parameter-dependent metric to find candidates for integrability,
and subsequently explore the integrals with other, more tedious methods.

The degree of the integrals that can be studied in this way is conceptually unlimited,
but restricted by computer strength. If one needs to explore higher-degree integrals, other
methods (or additional tricks) might be needed. Comparing the examples of Chapter 3 with
those of Chapter 5, we see that new tools could especially be helpful for systems that do not
have the properties discussed on pages 23–27. It is possible that such tools can be found
amongst the zoo of existing matrix factorization techniques.
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The direct method of Chapter 4. In Chapter 4, we prove nonexistence of an additional
involutive integral of third degree for arbitrary Weyl metrics. For Weyl metrics, the situation
is particularly nice because we can restrict to one of the subsystems in the decomposition of
Lemma 2 on page 36. Moreover, we are in the lucky situation that the metric is characterized
by effectively one parametrizing function (see Step (v) on page 58), and that this system
has a particularly simple solution.

The method itself, however, does in principle also work for more involved systems. For
instance, we are not aware of major conceptual problems in the case of stationary and axially
symmetric vacuum metrics that are non-static. The difficulties in this case are rather that
there are more equations and that an additional parametrizing function is needed to account
for rotations.

At the same time, there are promising perspectives for the method to be applied, besides
the theory of integrable systems. For instance, we suggest that it can be used in the area
of superintegrability. There is a lot of literature on second-order superintegrability in 2-
dimensional spaces, i.e. superintegrable systems with two quadratic integrals in addition
to the Hamiltonian, e.g. [CK14; KKM05; KKPM01; Mil14]. For superintegrable systems
with integrals of higher degree, however, there are only some partial results known to date.
Superintegrable systems involving a cubic integral have recently received more attention,
e.g. [GW02; Mar09; MS11]. These results sometimes only extend to cases connected with
certain coordinate choices [Gra04]. Problems of this kind are structurally very similar to
the situations that we consider in this thesis, and we plan to examine such problems with
our methods in the near future.
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Appendix

A.1 Carnot groups: list of results

A.1.1 6D Carnot groups: list of results

In the following, the detailed results of the algorithmic computations for the non-integrable
sub-Riemannian structures are provided, including the time intervals needed to complete
the computations on our computer (the time that is needed naturally might vary if the
algorithm is run again). Recall that Λ0

d denotes the number of integrals of degree d that
arise from products of the known integrals. This number is bounded from above by Λ

(k)

d ,
and the equality Λ

(k0)

d = Λ0
d, for certain k0 ∈ N, implies that there is no additional integral

for the Hamiltonian system.

Parabolic structure

d #S #V rows of Mred #Vred rk(Mred) Λ0
d Λ

(d+1)

d time
1 126 60 0 0 0 4 4 0.1s
2 560 315 0 0 0 11 11 1s
3 1890 1176 116 86 86 24 24 13s
4 5292 3528 604 464 464 46 46 3.3m
5 12936 9072 2840 2262 2262 80 80 45m
6 28512 20790 11816 9155 9155 130 130 27.2h

Hyperbolic structure

d #S #V rows of Mred #Vred rk(Mred) Λ0
d Λ

(d+1)

d time
1 126 60 0 0 0 4 4 0.1s
2 560 315 0 0 0 11 11 1s
3 1890 1176 196 143 143 24 24 15s
4 5292 3528 1203 891 891 46 46 6m
5 12936 9072 5360 4013 4013 80 80 1.7h
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A.1.2 7D Carnot group: list of results

d #S #V rows of Mred #Vred rk(Mred) Λ0
d Λ

(d+1)

d time
1 168 70 0 0 0 5 5 0.1s
2 840 420 0 0 0 16 16 1.5s
3 3150 1764 253 187 187 40 40 36s
4 9702 5880 1684 1272 1272 86 86 14m
5 25872 16632 9397 6993 6993 166 166 10.3h

A.1.3 8D Carnot group: list of results

d #S #V rows of Mred #Vred rk(Mred) Λ0
d Λ

(d+1)

d time
1 216 80 0 0 0 6 6 0.1s
2 1200 540 0 0 0 22 22 2.3s
3 4950 2520 62 47 47 62 62 1.4m
4 16632 9240 97 82 82 148 148 33m
5 48048 28512 4439 3514 3514 314 314 10.2h
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A.2 Bases in the sub-Riemannian structures
For completeness, we list the left-invariant bases in coordinate form for the left-invariant
sub-Riemannian structures in Chapter 5.

A.2.1 6D sub-Riemannian structures
Left-invariant basis for the parabolic case.

e1 = ∂1 −
1

2
x2∂3 − x1x2∂4 −

1

2
x21x2∂6

e2 = ∂2 +
1

2
x1∂3 + x1x2∂5

e3 = ∂3 + x1∂4 + x2∂5 +
1

2
x21∂6

e4 = ∂4 + x1∂6

e5 = ∂5

e6 = ∂6

Left-invariant basis for the elliptic case.

e1 = ∂1 −
1

2
x2∂3 − x1x2∂4 −

1

2
x21x2∂6

e2 = ∂2 +
1

2
x1∂3 + x1x2∂5 +

1

2
x1x

2
2∂6

e3 = ∂3 + x1∂4 + x2∂5 +
x21 + x22

2
∂6

e4 = ∂4 + x1∂6

e5 = ∂5 + x2∂6

e6 = ∂6

Left-invariant basis for the hyperbolic case.

e1 = ∂1 −
1

2
x2∂3 − x1x2∂4 −

1

4
x1x

2
2∂6

e2 = ∂2 +
1

2
x1∂3 + x1x2∂5 +

1

4
x21x2∂6

e3 = ∂3 + x1∂4 + x2∂5 + x1x2∂6

e4 = ∂4 + x2∂6

e5 = ∂5 + x1∂6

e6 = ∂6
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A.2.2 7D sub-Riemannian structure

e1 = ∂1 −
1

2
x2∂3 − x1x2∂4 −

1

2
x21x2∂6 −

1

4
x1x

2
2∂7

e2 = ∂2 +
1

2
x1∂3 + x1x2∂5 −

1

2
x1x

2
2∂6 +

1

4
x21x2∂7

e3 = ∂3 + x1∂4 + x2∂5 +
x21 − x22

2
∂6 + x1x2∂7

e4 = ∂4 + x1∂6 + x2∂7

e5 = ∂5 − x2∂6 + x1∂7

e6 = ∂6

e7 = ∂7

A.2.3 8D sub-Riemannian structures
Left-invariant basis for the (2, 3, 5, 8)-structure.

e1 = ∂1 −
1

2
x2∂3 −

x21 + x22
2

∂5 −
1

4
x1x

2
2∂7 −

1

6
x32∂8

e2 = ∂2 +
1

2
x1∂3 +

x21 + x22
2

∂4 +
1

6
x31∂6 +

1

4
x21x2∂7

e3 = ∂3 + x1∂4 + x2∂5 +
1

2
x21∂6 + x1x2∂7 +

1

2
x22∂8

e4 = ∂4 + x1∂6 + x2∂7

e5 = ∂5 + x1∂7 + x2∂8

e6 = ∂6

e7 = ∂7

e8 = ∂8

Left-invariant basis for the (2, 3, 5, 6, 8)-structure.

e1 = ∂1 − x2∂3 +

(
−1

3
x1x2 −

1

2
x3

)
∂4 −

1

12
x22∂5 +

(
− 1

24
x32 −

5

24
x21x2 −

1

3
x1x3

)
∂6

+

(
− 1

30
x1x

3
2 −

1

24
x22x3 −

3

40
x31x2 −

1

8
x21x3

)
∂7

+

(
7

240
x21x

2
2 +

1

4
x1x2x3 +

1

3
x23 −

1

80
x42

)
∂8

e2 = ∂2 +
1

12
x21∂4 +

(
−1

6
x1x2 −

1

2
x3

)
∂5 +

(
1

24
x31 −

1

8
x1x

2
2 −

1

3
x2x3

)
∂6

+

(
1

80
x41 −

9

80
x21x

2
2 −

5

12
x1x2x3 −

1

3
x23

)
∂7

+

(
− 1

120
x31x2 −

1

24
x21x3 −

1

20
x1x

3
2 −

1

8
x22x3

)
∂8
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e3 = ∂3 +
1

2
x1∂4 +

1

2
x2∂5 +

x21 + x22
3

∂6

+

(
1

8
x31 +

7

24
x1x

2
2 +

1

3
x2x3

)
∂7 +

(
− 1

24
x21x2 −

1

3
x1x3 +

1

8
x32

)
∂8

e4 = ∂4 + x1∂6 +
1

2
x21∂7 − x3∂8

e5 = ∂5 + x2∂6 + (x1x2 + x3)∂7 +
1

2
x22∂8

e6 = ∂6 + x1∂7 + x2∂8

e7 = ∂7

e8 = ∂8

A.3 Maple worksheets
Computer-algebra calculations for this thesis have been performed using Maple 18.

The Maple worksheets can be obtained from the author (andreas.vollmer@uni-jena.de) or
on-line under the following address:

https://bitbucket.org/av122/dissertation/downloads

The archive with the files is password protected. The password is: AV15thesis

The md5 checksum is: ebca0cbf13924af1daae5dc12e6ca93c *worksheets.zip

Files in the archive:

Algorithm1.mw
Algorithm I

Algorithm2.mw
Algorithm II

Algorithm3.mw
Algorithm III

Theorem1_Proof1.mw
Proof 1 for Theorem 1; see also Section 4.4

Theorem1_Proof2.mw
Proof 2 for Theorem 1

Theorem1_Proof3.mw
Proof 3 for Theorem 1; cf. Algorithm III

Chapter4_rank1.mw
computations for Chapter 4 concerning the rank-1 case

Chapter4_rank2.mw
computations for Chapter 4 concerning the rank-2 case; see also the list on page 58

https://bitbucket.org/av122/dissertation/downloads
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Symbols and Abbreviations

D usually the dimension of a manifold.

E a differential equation

F (i) denotes the homogeneous polynomial component of degree i w.r.t. non-ignor-
able coordinates of a polynomial F , see Section 2.2 for details

F (i, j) The notation F
(i, j)
k = F

(i, j, 0, 0)
k is used for coefficients in a polynomial w.r.t.

momenta in the 4-dimensional situations, i.e. F =
∑
F
(i, j)
k pi−j1 pj2p

k
3p
d−i−k
4 .

See also F (i) and F (i, j,M,m)
k .

F
(i, j,M,m)
k differentiated version of F (i, j). The additional superscripts M and m denote

the total level of prolongation and the number of x1-derivatives, respectively.

I a family of integrals, typically assumed to be involutive

M a differentiable manifold of dimension D, usually endowed with a (pseudo-)
Riemannian or sub-Riemannian metric

N a symplectic manifold, usually N = T ∗M

S a system of differential equations; sometimes used synonymous to Sd, if the
degree d of the integral is clear

Sd the system of PDEs obtained from the Poisson equation (1.3), encoding the
requirement for a function polynomial in momenta of degree d to be an integral

S(k)d k-th prolongation of a system Sd of PDEs (the subscript d denotes the degree
of the integral)

T quadratic part of the Hamiltonian, i.e. the kinetic part of a Hamiltonian in the
reduced picture. The symbol is used in the stationary and axially symmetric
examples after symplectic reduction; mostly synonymous to H(2)

V the potential in the reduced picture; mostly synonymous to H(0).

∂i partial derivative w.r.t. the i-th coordinate, shortcut for ∂
∂qi or ∂

∂xi

fx partial derivative of f w.r.t. x, i.e. fx = ∂x = ∂f
∂x

md,k number of equations in the prolongated system of PDEs S(k)d
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nd,k number of unknowns in the prolongated system of PDEs S(k)d

p By pi, we denote the momentum coordinates associated with the position co-
ordinates qi.

par parity of a number or polynomial. If par is applied to a polynomial, we under-
stand the parity to be w.r.t. nonignorable momenta only.

q By qi, we denote coordinates on the manifold, on which a Hamiltonian system
is defined.

x By xi, we denote coordinates on the phase space T ∗M , i.e. x = (q, p).

∆ sometimes denotes a (rank-2) distribution on a Lie group (Chapter 5)

4 the Laplace operator, i.e. 4 f = fxx + fyy (see Chapter 3)

Λd number of integrals of degree d that the system admits

Λ0
d number of trivial integrals of degree d that are known for the system

Λ
(k)

d upper bound to the number of integrals of degree d, at the k-th step of prolon-
gation

ODE ordinary differential equation

PDE partial differential equation

SAV stationary and axially symmetric (axisymmetric) vacuum space-times or metrics

smooth Smoothness is understood as the differentiability class C∞.



Index

algebraic consequence, 14
algebraically dependent, 12
algorithm

for SAV metrics, 33
for sparse systems, 37, 79
for Weyl (diagonal) metrics, 37
Kruglikov-Matveev, 22

associated linear system
initial matrix, 34
reduced matrix, 34

associated linear system., 21
associated system, 15, 21
axial symmetry, 43
axis of rotation, 43

Baker-Campbell-Hausdorff formula, 75
base variables, 19
Bertrand-Darboux equation, 17, 50, 71
block number, 31
Boyer-Lindquist coordinates, 38
bracket-generating distribution, 74

Carnot group, 73
Carnot-Carathéodory metric, 74
Cartan-Kähler prolongation-projection, 7, 15
Carter constant, 11, 44
Casimir functions, 79
constants of motion, 7

Carter constant, 44
definition (integrals), 10

coordinates, 19
(non-)ignorable, 23
Boyer-Lindquist, 38
ignorable, 21, 23
Lewis-Papapetrou, 28, 45, 62
prolate spheroidal, 22, 38, 49, 52, 66
Weyl canonical coordinates, 62, 64, 68

degree of the integral, 17
differential consequence, 14
Differential Galois theory, 19

distinct subsystem, 36

Ernst equation, 46, 67, 69
Ernst potential, 18, 46
Ernst-Perjés representation, 54
Euler-Darboux equation, 47

finiteness
of a system of PDEs, 15

(first) integral, see also integral, 5, 7, 10
functionally independent, 12

generic points, 28
geodesic equivalence, 11
geodesic invariant, 10
geodesic invariants, 20
geodesics, 75

abnormal, 75
normal, 75

Hamiltonian
kinetic term, 10, 24
linear term, 24
potential term, 10, 24

Hamiltonian invariant, 10
Hamiltonian system, 10
harmonic oscillator, 11
hidden symmetries, 11

initial matrix, 34
integrability, 75

by quadrature, 11, 13
complete, 12
Frobenius, 13, 75
Liouville, 12–14
Painlevé test, 13
Stäckel, 13

integral, 5, 7, 10
additional, 14, 57
degree, 11
final, 14, 21
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geodesic invariant, 10
Hamiltonian invariant, 10
homogeneous polynomial, 9
in involution, 12, 17, 18
quadratic, 49, 65
real-analytic, 10, 20
reducible, 57
standard, 13, 43, 79–84
trivial, 13, 43, 57, 79

irreducible, 57

jet space, 15

Kepler problem, 11
Killing tensor, 7, 9

involutivity, 12
Killing vectors, 10

Liouville-Arnold theorem, 13

Marsden-Weinstein quotient, 23
matrix

for the associated linear system, 21
initial matrix, 34
of potential gradients, 61
reduced matrix, 34

metric
admitting a quadratic integral, 12
Darmois, 44
extreme Kerr, 38
Kerr, 38, 44
Schwarzschild, 14, 38, 49
static, 43
Tomimatsu-Sato, 53
Weyl, 45, 48, 57
Zipoy-Voorhees, 49, 52, 66, 70, 71

multiseparability, 11

Noether theorem, 10
non-holonomic distribution, see bracket-

generating distribution
normal geodesics, 75

orbital invariants, see integral

Painlevé test, 19
parity, 24

decomposition of PDE system, 24
in ignorable momenta, 24
in non-ignorable momenta, 24

PDE system
finiteness, 15, 20
overdetermined, 20

phase space, 11, 13
Poisson bracket, 10, 30
Poisson commutator, 10
Poisson equation, 10
polynomial integrals, 17
Pontrjagin maximum principle, 75
prolongation-projection, see Cartan-Kähler

prolongation-projection
proof

computer-assisted, 20

r-th contact, 15
reduced matrix, 34
reducibility, 14

irreducibility, 14
of an integral, 14
of integrals, 14

Ricci tensor, 45
vacuum conditions, 46

Ricci-flatness, 45
Runge-Lenz vector, 7, 11

special functions, 11
stationarity, 43
sub-Riemannian distance, 74
sub-Riemannian structure, 73
subpolynomial, 30, 31, 59
symmetry algebra, 76
symmetry dimension, 76
symplectic form, 9
symplectic reduction, 23, 47, 59

Tanaka prolongation, 76
top

Euler, 11

unknown functions, 19, 20
unknowns, 20

vacuum conditions, 45, 47, 51, 58, 61, 63, 68,
69

Ernst equation, 46
primary equations, 46
secondary equations, 46

Weyl metrics, see metric
Weyl’s canonical coordinates, 46
Weyl’s class, see metric, Weyl
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