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Geometry-based channel modelling of MIMO channels in
comparison with channel sounder measurements
G. Del Galdo, M. Haardt, and C. Schneider
Communications Research Laboratory, Ilmenau University of Technology, P.O. Box 100565, 98684 Ilmenau, Germany

Abstract. In this paper we propose a f exible geometry-
based propagation model for wireless communications de-
veloped at Ilmenau University of Technology. The IlmProp
comprises a geometrical representation of the environment
surrounding the experiment and a precise representation of
the transmitting and receiving antennas. The IlmProp is
capable of simulating Multi-User MIMO scenarios and in-
cludes a complete collection of tools to analyze the synthetic
channels. In order to assess the potentials as well as the limits
of our channel simulator we reconstruct the scenario encoun-
tered in a recent measurement campaign at Ilmenau Univer-
sity of Technology leading to synthetic data sets similar to
the ones actually measured. The measurements have been
collected with the RUSK MIMO multi-dimensional channel
sounder. From the comparisons of the two channel matri-
ces it is possible to derive useful information to improve the
model itself and to better understand the physical origins of
small-scale fading. In particular the effects of the different
parameters on the synthetic channel have been studied in or-
der to assess the sensibility of the model. This analysis shows
that the correct positioning of a small number of scatterers
is enough to achieve frequency selectiveness as well as spe-
cifi traits of the channel statistics. The size of the scattering
clusters, the number of scatterers per cluster, and the Rician
K-factor can be modifie in order to tune the channel statis-
tics at will. To obtain higher levels of time variance, moving
scatterers or time dependent reflectio coefficie ts must be
introduced.

1 Introduction

The high complexity of the propagation phenomenon sets a
vast challenge in the effort of modelling the wireless channel.
The most accurate approach would be to solve the Maxwell
equations. However the computational effort required would
be prohibitive, especially if we considered multiple antennas
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at both ends of the link, i.e. a MIMO system (Multiple Input
Multiple Output). In fact, if MR and MT are the number of
antennas at the receiver and at the transmitter, respectively,
the number of channels to be calculated grows to MR ·MT .
Furthermore a precise physical and geometrical description
of the objects would be necessary.
In order to reduce the complexity of the model the so

called GTD (Geometric Theory of Diffraction) can be em-
ployed (Correia, 2001). This approach postulates the exis-
tence of direct, diffracted and reflecte rays only. As the
wavelength λ approaches zero, this approximation becomes
increasingly accurate.
With a ray-tracing engine and a full 3D description of the

environment it is then possible to calculate all possible rays
linking the antennas. However with a GTD approach a com-
plete geometrical representation of the scenario is still re-
quired. A further approximation is to simplify the geometry
surrounding the antennas with a discrete number of refl c-
tors, called scatterers; when only direct and reflecte rays
are considered the computational complexity drops signifi
cantly. In this paper we present the IlmProp, a simplif ed
model which generates channels which mimic most charac-
teristics of measured channels. To this aim it is extremely im-
portant to determine which features of the synthetic channel
are affected by the different parameters present in the model.
A relatively low computational complexity allows us to gen-
erate channels with all possible combinations of values for
the parameters. Then we analyze the data by fin ing strong
traits which link a particular parameter to a particular feature.
At the same time we are able to assess whether a parameter
has no effect on a specifi feature.
This extensive search and its results are reported in Sect. 3.

Then we modeled the scenario found in one of the measure-
ment campaigns undertaken at Ilmenau University of Tech-
nology. Section 4 reports the direct comparison between the
synthetic and measured channels which led to a better under-
standing on the origins of the fast and slow fading processes.
Section 5 deals in particular with the comparison of the phase
responses. Lastly, Sect. 6 concludes this paper.
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Fig. 1. In this example 2 Mobiles (M’s) surrounded by scatterers
move in the proximity of one fi ed Base Station (BS).

2 The IlmProp: a geometry-based channel model

The IlmProp developed at TU Ilmenau relies entirely on a
3D geometric representation and has been designed to sim-
ulate a Multi-User-MIMO scenario. It has been simplifie
to single-bounce reflection in order to reduce the compu-
tational complexity. Clusters of scatterers can be arbitrarily
positioned in the 3D reconstruction of the environment. Each
scatterer corresponds to a single ray and is characterized by a
complex coeff cient which, for simplicity, is independent of
the Direction of Arrival (DoA) and the Direction of Depar-
ture (DoD); but may vary in time with an arbitrary law. The
coeffi ient determines the phase shift and power attenuation
introduced by the scatterer.
The receiver thus receives a number of rays equal to the

number of scatterers plus the Line Of Sight (LOS), which
links the transmitter to the receiver directly. Figure 1 shows
a simple example of this modelling approach. Such a sim-
plifie model still requires a fairly high computational com-
plexity because the total number of rays to be computed is:
MR ·MT ·Nscatt .
The advantage of a geometry-based model with respect to

a stochastic one is indeed the possibility to easily generate
a frequency selective time variant channel. In fact the fre-
quency selectiveness is caused by the multi-path effect while
the time variance is set off by the movement of the antennas
and of the scatterers as well as the varying scattering coef-
ficient with respect to time. In other words it well models
a typical frequency selective time variant radio channel. In
order to characterize such a channel we need to describe it in
one of the four possible two-dimensional domains named the
Bello domains. (Bello, 1963). Either {t, f }, {t, τ }, {fD, f }

or {fD, τ } where t , fD , f , and τ denote time, Doppler fre-
quency, frequency, and delay time, respectively. The most
convenient domain in which to compute the channel is cer-
tainly {t, f }. Having a geometrical representation of all ob-
jects in time makes the choice of t over fD quite obvious.
The choice of f over τ requires more explanation. Thanks
to the geometrical representation it is simple to calculate the
path lengths for each ray present in the scenario. Assuming
that the velocity of light, c, is equal to the velocity of all rays,
we can calculate the delay time associated with every ray, i.e.
the time needed to reach the receiver. The delay times found
will not necessarily match the sampling grid chosen. For this

Fig. 2. The geometrical representation of the model Mα . Two
scattering clusters and a strong LOS are visible. The transmitter (at
the top) moves on a linear path.

Fig. 3. The geometrical representation of the model Mβ . The
model is characterized by three scattering clusters; one of them sur-
rounds the transmitter.

reason more processing is required. On the contrary, in the
frequency domain we can calculate the channel response for
the specifi frequency bins that we are interested in. The
choice of a specifi Bello domain is at the end a matter of
convenience since it is possible to derive the other represen-
tations via Fourier transforms. For instance, having H(f, t),
i.e. the channel expressed in delay time and time, we can cal-
culate h(τ, t), the channel in frequency and time, as:

h(τ, t) =

∫
H(f, t)ej2πf τ df . (1)

The amplitude and phase of each ray are calculated sepa-
rately at the receiver. The phase of the i-th ray at a certain
time snapshot to and frequency fo are calculated as follows:

ϕi(to, fo) = 6 (e−j2π
fo
c Li )+ θi , (2)

where Li is the ray’s path-length and θi is the phase shift
introduced by the scatterer. The amplitude depends simply
on the scattering coeff cient, antenna gain, and path-loss (Van
Trees, 2002).

3 An exhaustive investigation

The f rst step in understanding how sensible the model is to
the different parameters and which features of the synthetic
channel are affected, is to model some typical scenarios and
to generate channels with all possible values for the param-
eters. We implemented two models, to which we will refer
asMα andMβ , seen in Figs. 2 and 3. Mα models a typi-
cal scenario in which the areas around the transmitter and the
receiver are free of scatterers while some are present in the
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middle of the link.Mβ , on the other hand, models a scatter-
ing cluster in the proximity of the transmitter. We generated
each channel for the following sampling grid:

– A bandwidth B of 400 MHz at a center frequency of 1
GHz sampled with a 1f = 1.3 MHz for a total of 301
samples.

– A total of 200 time snapshots were taken, one every 10
ms for a total duration of 2 s.

The choices of these parameters determine the sampling
grids in the coupled domains. In fact if the complex base-
band signal is sampled in the range [−

B
2 ,

B
2 ], then 1τ , the

resolution in delay time, is equal to 1
B
. In the same way the

bandwidth in the Doppler frequency, 2 · fD,max can be cal-
culated from the resolution in time 1t as:

fD,max =
1

2 ·1t
. (3)

– The resolution in delay time is 1τ = 2.5 ns, which
corresponds to a distance of less than a meter (75 cm).
We can successfully resolve paths (i.e. without alias-
ing), which are up to 220 meters long.

– Doppler shifts up to fD,max = ±50 Hz are visible with-
out aliasing.

The transmitter moves with a uniform velocity of about 5
m/s. Both transmitter and receiver employ a ULA (Uniform
Linear Array) withMR = MT = 4 antennas spaced by λ

2 .
After several experiments with different geometries and

different configuration we narrowed down our extensive
search to three dominant parameters:

– Cluster size

– Number of scatterers per cluster

– Rician K-factor

A fourth dominant parameter is certainly the modelling of
the reflectio coefficients and more importantly their trend
in time. This leaves, however, too many degrees of freedom
since we could implement any arbitrary function to describe
it in time. For this reason we left this important parameter
to future and more specif c investigations. In our simulations
the ref ection coefficient are kept constant along all dimen-
sions, i.e. frequency and time. The RicianK-factor is def ned
as

K =
PLOS
Pscatt

, (4)

i.e. the power attributed to the Line Of Sight divided by the
power of the scatterers. Clearly it is a function of the path-
losses which on their side are determined by the geometry,
the transmit power, and the refl ction coeffi ients. We scale
the amplitudes of the reflecti n coeffici nts to obtain a de-
sired K-factor.
We then generate many channels with different values for

these three parameters and then analyze the data to fin any
strong dependency.

3.1 K-factor

The K-factor affects several features of the channel. Firstly
it influence its variance with respect to all four domains. It
is thus very interesting to assess this information quantita-
tively computing the RMS delay spread τRMS, the coherence
bandwidth (1f )c, the RMS Doppler spread fD,RMS and the
coherence time (1t)c.
The RMS delay spread of the channel, τRMS, is derived

from the multipath intensity profil ψDe(τ ) which represents
the average power of the channel output as a function of de-
lay time (Paulraj et al., 2003; Stüber, 1996).

τRMS =

√√√√∫ τmax
0 (τ − τ̄ )2ψDe(τ )dτ∫ τmax

0 ψDe(τ )dτ
. (5)

τmax is the maximum delay spread while τ̄ is the average
delay spread given by

τ̄ =

∫ τmax
0 τψDe(τ )dτ∫ τmax
0 ψDe(τ )dτ

. (6)

The coherence bandwidth (1f )c corresponds to the fre-
quency lag in which the channel’s autocorrelation function
reduces to 0.7 (Paulraj et al., 2003). As previously described,
the channel representations in the four domains are coupled
through Fourier transforms. For this reasons (1f )c and τRMS
are connected as well. In fact the coherence bandwidth is in-
versely proportional to the RMS delay spread so that

(1f )c =
const1
τRMS

. (7)

The same concepts are applied on the {fD, t} pair. The RMS
Doppler spread, fD,RMS, is derived in a similar way from
ψDo, the Doppler power spectrum, which corresponds to the
average power as a function of Doppler frequency fD .

fD,RMS =

√∫
F (fD − f̄D)2ψDo(fD)dfD∫

F ψDo(fD)dfD

f̄D =

∫
F fDψDo(fD)dfD∫
F ψDo(fD)dfD

(8)

The integration domain, F , corresponds to the Doppler fre-
quency interval where the Doppler power spectrum is non
zero. The coherence time (1t)c is calculated in the same
way as the coherence bandwidth. It corresponds to the time
lag at which the autocorrelation function drops to 0.7 (Paulraj
et al., 2003). (1t)c indicates how time variant the channel is
and similarly to the {f, τ } pair

(1t)c =
const2
fD,RMS

(9)

Figure 4 shows typical trends for τRMS, fD,RMS, (1f )c, and
(1t)c for different K-factors. Similar plots can be observed
for both modelsMα andMβ for almost any cluster size and
number of scatterers. As K grows τRMS decreases, mean-
ing that the channel becomes rapidly less frequency selec-
tive. The same observation can be derived from the trend of
(1f )c. fD,RMS and (1t)c show the same trends. For bigger
K’s the channel becomes increasingly less time variant. The
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Fig. 4. τRMS, fD,RMS, (1f )c and (1t)c plotted for different K-
factors.
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Fig. 5. The coeff cient of variation ξ plotted against frequency f
for different K-factors.

two constants const1 and const2 are plotted as well to show
that the inverse proportionality expressed in Eqs. (7) and (9)
is a good approximation.
Another interesting measure of the variation of the chan-

nel is to look at the fluctuatio of ‖H‖
2
F . A good index is

the so called coefficie t of variation (Nabar, 2003) which is
commonly used as a quantitative measure of the spread (fluc
tuation) of a random variable. The coeffi ient of variation ξ
is defi ed as:

ξ =

√
E{(‖H‖

2
F
)2} − (E{‖H‖

2
F

})2

E{‖H‖
2
F

}
. (10)

We calculated ξ for all frequency bins to discover that for
growingK’s the coefficien of variation becomes increasingly
smaller (Fig. 5). This is actually expected if we associate
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Fig. 6. Eigenvalue distributions in dB as K grows forMα .

ξ with the effective diversity order, as described in (Nabar,
2003).
In fact the effective diversity order, Ndiv, can be written as:

Ndiv =
1
ξ2
, (11)

and it approaches infinit for a channel with only the LOS
component (AWGN channel) while Ndiv = MR · MT for
Rayleigh channels. The trend in ξ and consequently in Ndiv
can be observed for both models proposed and independently
from other parameters.
Another interesting analysis can be performed on the

statistics of the eigenvalues. Figure 6 shows their distribu-
tions for different K-factors for the modelMα . Eigenvalue
decompositions have been applied on the spatial correlation
matrices at the receiver RR calculated for each time snap-
shot. Then we generated the histograms to derive the am-
plitudes distribution on a dB scale. The spatial correlation
matrix RR at the receiver for the specifi time to is:

RR(to) =
1
F

F∑
i=1

H (:, :, i, to) · H (:, :, i, to)
H , (12)

where F is the total number of frequency bins, HH is the
Hermitian transpose ofH and the channelH has dimensions
MR×MT ×F ×T . The MATLAB like notationH (:, :, i, to)

denotes the two-dimensional channel matrix H ∈ CMR×MT

for a specifi frequency f = i and time t = to. Figure 6
shows the distributions of the eigenvalues plotted in dB. The
channels have been generated without noise and without any
normalization, i.e. the absolute amplitudes of the eigenval-
ues appear very low (around −120 dB). This has no physical
meaning and only the relative distances between the eigen-
values should be taken into account. As the K-factor grows,
the Line Of Sight becomes increasingly stronger and the
channel displays low rank traits. In other words the strongest
eigenvalue separates itself from the weaker ones as K in-
creases.
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Fig. 7. Amplitude distributions of channels considering all frequen-
cies and time snapshots for different Rician K-factors forMα .

A higher K-factor inhibits the effects of the fast-fading.
This can be easily seen by plotting the distributions of the
amplitudes of the channel considering all frequencies and
time snapshots (Fig. 7).

3.2 Cluster size and number of scatterers

While there exists a strong relationship between the different
channel statistics and the Rician K-factor, there is no strict
relation with the parameters which characterize a scattering
cluster, namely the number of scatterers, the cluster size and
the type of distribution of the scatterers inside the cluster. In
the firs simulations we investigated whether the geometrical
distribution affected the channel. We generated clusters with
scatterers distributed uniformly on a sphere, on a circle on
the horizontal plane (as seen in Figs. 2 and 3), and on the
surface of a cylinder or a sphere. All channels showed the
same trends and for this reason we continued with more de-
tailed investigations fixin the distribution of the scatterers
on a circle. We generated models characterized by cluster
sizes with diameters ranging from λ

2 to 20λ and with num-
bers of scatterers ranging from 1 up to 100 ref ection points
per cluster.
We then investigated trends in the different channel fea-

tures fixin all parameters as either the cluster size or the
number of scatterers changed. All features but the effective
diversity order did not show any strong dependency even
though they were all affected. For instance, increasing the
size of the scattering clusters affects the frequency selective-
ness of the channel, even though there is neither a direct nor
an inverse proportionality between the two. Figure 8 shows
the effective diversity orderNdiv plotted for different frequen-
cies f and for different cluster diameters expressed in λ’s
for the firs model,Mα . Analyzing Ndiv along different fre-
quencies we can recognize a slow-moving trend corrupted
by faster variations. For instance, in the firs plot of Fig. 8
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Fig. 8. The effective diversity order Ndiv plotted against frequency
f for different cluster sizes (expressed in λ’s) forMβ .

(cluster size = 0.5 λ), we see a slow moving trend which
looks like the sum of a concave semicircle and a zero mean
noise-like process which introduces fast variations. After
many simulations we observed that the magnitude of the fast
moving Ndiv changed at every realization while the variance
of the slow moving Ndiv changed with the cluster diameter
with an undoubtedly direct proportionality. In other words,
for bigger cluster sizes, Ndiv changes more rapidly along fre-
quency while this does not necessarily correspond to higher
frequency selectiveness nor to greater time variance. The
number of scatterers affects the channel in a similar way but
with a much weaker dependency.

4 A comparison with measurements

In order to assess the results derived in Sect. 3 with an even
more realistic scenario we modeled the surroundings of a
measurement campaign undertaken at TU Ilmenau. Addi-
tionally the simulation allowed us to investigate the impor-
tance of other critical parameters of the model: the positions
of the scatterers and the modelling of the reflect on coeffi
cients. The firs step was to determine whether a rough po-
sitioning of the scatterers was enough to recreate the main
features which characterize the measured channel. To this
end, we chose, among the many measurements gathered, a
channel with a strong LOS and characterized by a simple
geometry so that the position of the scatterers could easily
be estimated. Figure 9 shows the bird’s eye view of the re-
constructed scenario. The receiver was a 4 × 8 polarization
sensitive patch-array URA (Uniform Rectangular Antenna)
and it was positioned by a window on the second fl or of
a building. The transmitter was a single 2 GHz omnidirec-
tional antenna mounted on a wheeled cart pulled by hand up
a road in the direction of a second building (Fig. 10). The
transmitter path is represented by a continuous line in Fig. 9.
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Fig. 9. Bird’s eye view of the synthetic reconstruction of the sce-
nario where the measurements were taken.

In the proximity of the building the cart was turned around
and pulled in the opposite direction (towards the receiver)
approximately on the same path. The whole measurement
took approximately 1 min at a speed of 3 m/s. The measure-
ment device employed was the broadband real-time channel
sounder RUSK MIMO from MEDAV (Thomä et al., 2001).
The following parameters characterize the measurements:

– A bandwidth B of 120 MHz at a center frequency of
1.95 GHz sampled with 1f = 300 kHz for a total of
385 samples.

– A total of 6313 time snapshots were taken, one every
9.2 ms for a total of 58 s.

The same parameters were chosen for the synthetic IlmProp
model so that the two data sets had same dimensions and
sampling grids. However, in order to compare the measure-
ments with the synthetic channels, adding the noise and per-
forming a proper normalization must be taken into account.
The need for a normalization is due to the fact that the

absolute powers sent by the antennas have not been consid-
ered. Only the relative difference in power between the LOS
and the scattering components have been modeled through
the Rician K-factor which can be set at will. This simpli-
fie the modelling effort even though the results need post-
processing in order to be finall compared with the measure-
ments. The normalization is performed in such a way that
the total power received for the synthetic channel matches
the one received in the measurements. Clearly both data
sets must have the same number of samples, dimensions and
more in general, the same sampling grids. If HM denotes the
channel for the measurements andH I the one generated with

Fig. 10. The receiver (top circle) and the transmitting antenna (bot-
tom circle) mounted on a cart.

the IlmProp then the whole channel matrix must be scaled so
that∑
2

‖HM‖
2

=

∑
2

‖H I‖
2 (13)

where 2 spans the complete domain of all dimensions. In
our simulations H I has been generated without noise. The
normalization and the adding of the noise must then be done
concurrently. First we have to estimate the power of the noise
from the measurements. We assume constant AWGN (Addi-
tive White Gaussian Noise) over all dimensions (delay time,
time, antennas, etc.). An effective way to measure the noise
floo in the measurements is to observe the channel matrix in
the time and delay time domain. If the path lengths are short
enough, so that the last echoes extinguish before the maxi-
mum delay resolvable, we have a measurement of the noise
without signal. If the number of samples is sufficie t we can
use this data to estimate the power of the noise. The noisy
synthetic channel will then be

H I,noisy = H I,noiseless + Hw, (14)

where Hw is a matrix whose elements are ZMCSCG (Zero
Mean Circular Symmetric Complex Gaussian) random num-
bers with variance σ 2 (Paulraj et al., 2003).
Equation (13) then becomes:∑

2

‖HM‖
2

− γ · σ 2 =

∑
2

‖H I‖
2, (15)

where γ is the total number of samples present in H , i.e.
γ = MR ·MT ·T ·F , where T and F are the number of time
snapshots and frequency bins, respectively.
The geometry has been roughly reconstructed with the

help of blueprints of the area and through visual inspection.
Cars, buildings, light poles, and trash bins have been identi-
fie as the probable sources of scattering.
Figure 11 shows the channel impulse responses in time t

and delay time τ . The channel has been gathered originally
in the {t, f } domain; the CIRs in delay time have been com-
puted via the Fourier transform described in Eq. (1). The
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Fig. 11. Channel Impulse Responses from the measurements in
time t and delay time τ . The Line Of Sight LOS and echos are
clearly visible. The grayscale represents amplitudes in a dB scale

LOS is clearly visible and as expected its delay lag grows as
the transmitter moves further away from the receiver. When
the cart is turned around and pulled back towards the re-
ceiver, the arrival delay time decreases. Many echoes are
visible as well. Note that as the transmitter moves most
echoes arrive earlier, meaning that their path length becomes
smaller. When the curve corresponding to one echo changes
in time with the same slope characterizing the Line Of Sight,
then we can deduce that the path length of the echo changes
with the same rate of the path length of the LOS. The strong
echo labeled double-bounce echo has the same trend as the
LOS just delayed by approximately 0.8 µs, which corre-
sponds to 240 m, the distance between the top and bottom
buildings doubled. For this reason it is very likely that this ar-
rival corresponds to the signal refle ted by the bottom build-
ing first and then by the top building, thus a doble-bounce
echo. Figure 12 shows the channel generated by our model.
The trend of the LOS is extremely well reproduced. This
was, however, expected since the LOS is the only compo-
nent easily predictable once the position of the transmitter
in known. Most of the scattering contributions can be ob-
served in the synthetic data set as well, with the exception
of the double-bounce paths which have been omitted. An-
alyzing the two data sets in the {t, τ } domain suggests im-
provements in the modelling approach: in the measurements
we can observe that certain echo traces are stronger than oth-
ers. In the modeled channel this does not happen. This is a
result of the modelling of the reflectio coeffi ients. In fact
while their phase has been generated uniformly distributed in
the [0, 2π] range, the amplitude has been taken equal for all.
The comparison suggests that the reflectio coefficient need
a more sophisticated modelling. Furthermore, a closer look
on the measurements reveals that some echoes exist only in
certain time periods. This suggests that the amplitude of the
reflect on coeffici nts (perhaps their phases too) should be
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Fig. 12. The synthetically generated Channel Impulse Responses in
time t and delay time τ .
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Fig. 13. Amplitudes of the CIRs for a specif c frequency bin plot-
ted in dB against time for the measurements (top) and the IlmProp
model (bottom).

dependent on the Direction of Arrival (DoA) and Direction
of Departure (DoD). Figure 13 shows the fl ctuations of the
amplitudes of the channel for a specifi frequency fo plot-
ted against time for the firs 25 s. Fast-fading characterizes
both signals even though the measurements appear somehow
more variant. In order to assess this feature quantitatively we
compute the multipath intensity profil ψDe(τ ), the Doppler
power spectrum ψDo(fD) and the autocorrelation functions
in frequency acf(1f ) and time acf(1t) for both data sets.
From their analysis we can obtain the RMS delay spread
τRMS, the coherence bandwidth (1f )c, the RMS Doppler
spread fD,RMS and the coherence time (1t)c (Figs. 14 and
15). The RMS delay spread shows that the energy is simi-
larly distributed in delay time τ . In the measurements two
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Fig. 14. The multipath intensity profil ψDe(τ ), Doppler power
spectrum ψDo(fD) and the autocorrelation functions in frequency
acf(1f ) and time acf(1t) for the measurements

more spikes can be observed. This is due to the fact that two
specifi echoes have a signifi antly stronger magnitude com-
pared to other echoes. The RMS delay spread τRMS is any-
how very similar suggesting that the two channels will have a
similar frequency selectiveness. The RMS delay spread cor-
responds to the distance between the two vertical lines plot-
ted in Figs. 14 and 15. From the autocorrelation function in
the frequency domain acf(1f ) we can derive the coherence
bandwidth (1f )c which confirm that the two channels have
approximately the same coherence bandwidth. In the {t, fD}

pair the two channels show more differences. While the
Doppler power spectrum ψDo(fD) has very similar trends,
the autocorrelation function in the time domain shows that
the measured channel is much more time variant than the
synthetic one. Furthermore this analysis proves that Eq. (9)
only represents a good empirical law, valid in most but not all
cases. In Fig. 13 we can in fact recognize that the measure-
ments have a faster moving small-fading effect, especially
during the f rst 10 s. We then investigated how we could gen-
erate more time variance changing only positions, the size of
the scattering clusters, and the number of scatterers per clus-
ter, discovering that this was not possible. Our simulations
showed that in order to achieve higher order of time variance
it is absolutely necessary to model time variant refl ction co-
efficie ts or to introduce moving scatterers along the time
dimension.

5 A deeper look at the phase response

Looking more closely at the phase of the received signal
leads to interesting comparisons and remarks. Figure 16
shows how the phase of the received signal (in its complex
base-band representation) is constructed in a flat- ading fre-
quency selective channel. The resulting phase ϕR will be
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Fig. 15. The multipath intensity profil ψDe(τ ), Doppler power
spectrum ψDo(fD) and the autocorrelation functions in frequency
acf(1f ) and time acf(1t) for the IlmProp model
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Fig. 16. When the amplitude of the echoes is small the phase of the
received signal ϕR is a good approximation of the phase of the LOS
component only ϕLOS .

the sum of the phase introduced by the LOS ϕLOS plus the
additional phase introduced by the echoes. The smaller the
amplitude of the echoes is compared to the LOS component,
the smaller will be the difference ϕR − ϕLOS . As the radial
distance between transmitter and receiver changes, the LOS
component, ϕLOS , will change accordingly. If the movement
is slow enough and the phase-noise introduced by the echoes
is negligible, it is possible to derive the displacement from
the phase trend of the received signal. In fact, a movement
of λ in the radial direction corresponds to a full rotation of
2π radians in the phase. If this wavelength has been sam-
pled with more than two samples per wavelength, thus ful-
fillin Shannon’s theorem, the phase can be efficient y ’un-
wrapped’, or in other words, absolute jumps greater than π
are converted to their 2π complement. The spatial displace-
ment can be then derived from the phase simply multiplying
by the factor: λ

2π . Figure 17 shows the unwrapped phase
for every frequency bin derived directly from the measured
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Fig. 17. Unwrapped phase trend derived from measurements plot-
ted in radians against frequency f and time t .

channel analyzed in Sect. 4. Even though a different fl ctua-
tion perturbs each frequency bin, the overall trend is constant
and shows a descending phase for half of the time and a sym-
metrical ascending phase for the other half, in accordance
with the experiment’s geometry. The different slope is due
to the different velocity. In fact the transmitter moved faster
in the second half of the experiment. If the channel were
flat- ading we would see the slow moving LOS component
only, absolutely equal for every frequency. It is interesting
to compare the overall phase trend with the LOS component
only. In case of the synthetic channel this is very easy to
obtain. More complicated is the case of the measurements.
Once the channel has been transformed in the {t, τ } domain,
it is possible to identify the samples in delay time τ with
highest energy for every time snapshot. The changing phase
of these samples against time approximates the phase trend
introduced by the LOS component only. The comparison of
the unwrapped LOS phase with the overall phase is shown in
Fig. 18. The model and the measurements show very sim-
ilar traits. The upper curves show the phase trend for one
frequency bin derived directly from the unwrapping of the
phase. The lower curves are derived, respectively, with the
LOS approximation for the measurements, and from a direct
calculation of the displacement for the model. In fact, for
the synthetic data, the exact path of the transmitter is known.
From these coordinates it is possible to derive the radial dis-
placement and consequentially the phase. The phase trends
match for the firs 10–15 s, while they start to diverge signifi
cantly around 25 s. This can be simply explained considering
that the RicianK-factor drops in the middle part of the exper-
iment. When the amplitude of the echoes is comparable with
the LOS, then the received vector will have a phase uniformly
distributed distributed in the interval [0, 2π ]. The unwrapper
will not fin any trend and will jump from ascending to de-
scending phases randomly. The resulting unwrapped signal
will have a slope close to 0, that is horizontal. For this rea-
son, as we pass from a higher K-factor to a smaller one we
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Fig. 18. Phase comparison between the measurements and its syn-
thetic reconstruction. The upper curves are obtained simply un-
wrapping the signal received at one specifi frequency. The lower
curves represent the LOS component only.

fin increasingly less steep slopes. In other words the phase-
noise introduced by the echoes is uniformly distributed, but
due to the non-linearity of the unwrapper, the resulting error
leads always to more moderate slopes.

6 Conclusions

Our simulations show that for certain modelling applications
a simple geometry-based single-bounce model can mimic
most channel features with suff cient precision, among which
the frequency selectiveness and the time variance are the
most characterizing. A rough positioning of the scattering
clusters allows us to achieve the desired frequency selective-
ness as well as other specifi traits of the channel statistics
by tuning three basic parameters, i.e, the size of the scatter-
ing clusters, the number of scattering coeffici nts, and the
RicianK-factor. To obtain higher levels of time variance and
more realistic synthetic channels, moving scatterers and time
dependent reflectio coeffici nts must be modeled as well.
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