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Abstract  

Hypothesis 

The wetting characteristics of coatings created using functionalised nanoparticles and 

adhesive resins, depends strongly on the particle distribution within the surface layers. 

Although it has been shown that commercially available adhesives improve the durability of 

hydrophobic nanoparticle coatings, the wettability of these surfaces is governed by the 

agglomeration behaviour of the particles within the adhesive. As a consequence of this, 

coatings where the particles are highly agglomerated within the adhesive show lower 

hydrophobicity. 

 

Experiments 

The morphology and chemical composition of coatings formed from carboxylate 

functionalised Al2O3 and magnetite (Fe3O4) nanoparticles and epoxy resin on plastic was 
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studied using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy 

(XPS). Water contact angle (WCA) measurements were used to investigate how the coatings’ 

morphological characteristics and loading of the particles within the surface layers influenced 

their wettability. Infrared (IR) spectroscopy and thermogravimetric analysis (TGA) were used 

to study carboxylate adsorption onto the magnetite nanoparticles. 

 

Findings 

Combining the Al2O3 nanoparticles with epoxy resin was observed to create highly 

hydrophobic coatings that displayed water contact angles (WCAs) between 145-150°. These 

coatings displayed good durability when sonicated in isopropanol and wiped with tissue. By 

comparison, coatings formed from the magnetite nanoparticles were substantially less 

hydrophobic and displayed WCAs between 75-125° when combined with epoxy resin. SEM 

revealed that the magnetite nanoparticles in the coatings were present as large agglomerates. 

By comparison, coatings formed from the Al2O3 nanoparticles showed a more homogenous 

particle distribution. Furthermore, XPS showed that the resin engulfed the magnetite 

nanoparticles to a far greater extent. The difference in wetting behaviour of these coatings is 

largely attributed to their different morphologies, since the particles are similar sizes and 

TGA shows that the particles possess similar carboxylate grafting densities. The uneven 

distribution of nanoparticles in the magnetite/ epoxy resin coating is due to the particles’ 

magnetic properties, which drive nanoparticle agglomeration as the coatings solidify. This 

work demonstrates that it is important to consider inter-particle interactions when fabricating 

low wettability composite coatings. 

 

1. Introduction 

Fabrication of robust, easy to apply, low wettability coatings still remains a major 

challenge within the research community. Thin films created using functionalized 

nanoparticles have been shown to possess rough surface textures that show superhydrophobic 

behaviour [1-5]. Deposition of the nanoparticles onto surfaces has been readily achieved 

through dipping [3,6] and spraying [2,5], which could make it suitable for use within a 

variety of different industrial and commercial sectors. For example, low wettability 

nanoparticle coatings could assist the removal of corrosive ions in aqueous solutions from 

metals, prevent cardboard getting wet during transport or storage, and facilitate the quick-

drying of plastics. A large variety of nanoparticles have been shown to display this 

behaviour, such as metal oxides like ZnO [4] and Al2O3 [2,5], SiO2 [1,3], and amorphous 
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carbon [7]. In these reports, the surface energy of metal oxide and SiO2 nanoparticles is 

lowered through adsorption of suitable carboxylic acids [2,4,5] or alkylsilanes [1,3,8]. 

Despite their potential utility, these coatings possess relatively poor durability and can 

be easily removed through abrasion. Methods have been reported where nanoparticle 

adhesion has been improved through partial thermal embedding of the particles into materials 

such as glass [9] and graphene [10]. Alternatively, it has been shown that composite coatings 

can be prepared through embedding nanoparticles in materials such as silica [11] and 

polymers [7,12-14]. These coatings show greatly enhanced durability relative to films formed 

solely from the nanoparticles. For example, Manca et al. created a robust superhydrophobic 

coating through thermally embedding trimethylsiloxane functionalised SiO2 nanoparticles 

into an organosilica matrix [11]. The organosilica binder was prepared using a sol-gel method 

and the resulting composite material was observed to maintain low wettability in outdoor 

exposure tests [11]. Similarly, Bayer et al. fabricated a robust water-repellent coating through 

annealing alternating layers of SiO2 nanoparticles and fluoroalkyl methacrylic copolymer 

[13]. Coatings were prepared that remained superhydrophobic after pencil hardness, tape 

adhesion and linear abrasion tests [13].  

Although these coatings showed good durability, many of these approaches require 

relatively high temperatures in order to thermally embed the particles in the matrix materials. 

Lower temperature routes for creating superhydrophobic nanoparticle/ composite coatings 

have been achieved using commercially available adhesives [16-19]. In these reports, 

superhydrophobic coatings were prepared at room temperature, or at temperatures of less 

than 80 °C. By comparison, embedding functionalised SiO2 nanoparticles into organosilica 

was carried out at 350 °C [11]. In addition to their low temperatures, approaches utilising 

resin are also attractive since it has been shown that the resin and the nanoparticles can be 

combined and applied onto substrates in one step [17,19]. However, the proportions of the 

different materials need to be carefully controlled so that the resin does not engulf the 

particles. For example, Ebert and Bhushan demonstrated that highly durable, 

superhydrophobic coatings could be created using suspensions containing phosphonate 

functionalised nanoparticles and methylphenyl silicone resin [19]. It was observed that the 

coatings retained their superhydrophobic properties following water jet impact tests, 

indicating that they could function well as self-cleaning surfaces [19].  

We have investigated whether this promising methodology can be used to improve 

the adhesion of isostearate functionalised Al2O3 and magnetite (Fe3O4) nanoparticles. 

Isostearic acid is a highly branched carboxylic acid that possesses alkyl moieties terminated 
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with several methyl groups [2]. Methyl groups have lower surface energy than methylene 

groups [2]. Consequently, this acid could be better suited for use in superhydrophobic 

coatings since the CH3:CH2 ratio per alkyl chain is larger than carboxylic acids with linear 

alkyl chains2. Previously, we have reported superhydrophobic coatings formed from 

isostearate functionalised Al2O3 nanoparticles [2]. However, to the best of our knowledge, the 

wetting properties of carboxylate functionalised magnetite nanoparticles have not previously 

been reported. Magnetite nanoparticles have been used to remove harmful metallic species 

from waste water [20-22] and Fe (II and III) compounds have been shown to immobilise 

bacteria and viruses [23-25]. Consequently, the use of magnetite nanoparticles in self-

cleaning coatings would be desirable since they could remove pathogens and harmful 

materials from the environment. 

 

2. Experimental methods 

2.1. Materials and reagents 

Al2O3 nanoparticles (d = 13 nm, 99.8%) and Fe3O4 nanoparticles (d = 15-20 nm, 

99.5%) were purchased from Sigma-Aldrich and US Research Nanomaterials respectively. 

Isostearic acid was kindly provided by Nissan Chemical Industries and was used without 

further purification. Toluene and isopropanol were supplied by VWR Chemicals. SP106 

Multi-Purpose Epoxy Resin System Slow Hardener was purchased from MB Fibreglass. 

Plastic film (75 micron thickness, 5-ply ethylene-vinyl acetate/ethylene-vinyl 

acetate/polyvinylidene chloride/ ethylene-vinyl acetate/ ethylene-vinyl acetate) was selected 

as the substrate in this study.  

 

2.2. Synthesis of the isostearate functionalized metal oxide nanoparticles  

The isostearate functionalized Al2O3 nanoparticles were synthesized using a method 

that we have previously reported [2]. Functionalisation of the isostearate functionalized 

magnetite nanoparticles was conducted through a similar method. In a typical experiment, 

magnetite nanoparticles (1.0 g, 4.3 mmol, 1.0 equiv.) were refluxed in toluene (100 mL) with 

isostearic acid (3.7 g, 12.9 mmol, 3.0 equiv.) for approximately twenty-four hours, under 

mechanical stirring. Once the reaction time had elapsed, the mixture was centrifuged at 5000 

rpm for one hour to remove any physisorbed carboxylic acids from the nanoparticles. The 

supernatant was then removed and the resulting nanoparticulate slurry dried at 80 °C for at 

least three hours.  
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2.3. Preparation of the nanoparticle coatings  

Various amounts of epoxy resin were added to isopropanolic suspensions containing 

Al2O3 and magnetite nanoparticles. The mass of the metal oxide nanoparticles in the 

suspensions was controlled so that 0.33 g of Al2O3 and Fe3O4 nanoparticles were added to the 

suspension per 20 mL of isopropanol. Three layers of nanoparticle/ epoxy resin (at various 

ratios) were spray coated onto the substrates to ensure full coverage of the surface by the 

films. Following this, the coated substrates were heated at 70 °C for three hours to accelerate 

the curing of the resin. Selected samples were then also sonicated in isopropanol for ten 

minutes, in order to remove particles that were less strongly embedded in the plastic. The 

mass ratios of the nanoparticles: epoxy resin in the functionalised Al2O3: resin coatings were 

8.6:1.0, 2.0:1.0, 1.5:1.0, 1.0:1.0 and 1.0:1.5. The mass ratios of the nanoparticles: epoxy resin 

for the functionalised Fe3O4: resin coatings were 11.8:1.0, 6.5:1.0, 2.0:1.0, 1.0:1.0 and 

1.0:1.5. In these experiments, the Fe3O4 nanoparticles were observed to be far more readily 

covered by the epoxy resin than the Al2O3 nanoparticles. Consequently, slightly different 

nanoparticle: resin ratios were selected for the two coatings in order to highlight the 

differences in agglomeration behaviour of the nanoparticles. As a comparison, coatings 

formed from pure isostearate functionalised Al2O3 and Fe3O4 nanoparticles (without resin) 

were spray coated onto the substrate from a 2% wt isopropanol suspension. Three layers of 

nanoparticles were deposited onto the substrate to ensure the surface was fully covered by the 

particles. Similarly to as with the nanoparticle/ resin coatings, some samples were then 

sonicated in isopropanol for ten minutes in order to remove particles from the samples. 

During the experiments, some measurements were performed on two or more samples from 

each type of nanoparticle / resin (1.0:1.0 ratio) coating as well as the coatings formed from 

the nanoparticles without resin. This was carried out to study whether there were any 

differences between the properties of the coatings on different samples. In each case the 

coatings showed similar properties (similar static water contact angles, surface morphologies 

etc.). The remaining experiments with various nanoparticles to resin ratios were performed 

on one set of samples.  

 

2.4. Characterization 

Water contact angle (WCA) measurements were obtained by the sessile drop method 

(resulting static contact angle, advanced and receding contact angle) using a DSA25 Expert 

Drop Shape Analyzer (Krüss), under ambient conditions using DI water. The Ellipse Tangent 
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1 method was used as the fitting method to measure the WCAs. Measurements were made 

using 4 L droplets of deionised water under ambient conditions. The WCAs quoted in this 

study are the average of three measurements performed at different locations on the surfaces. 

For each surface, the uncertainty () that is associated with each WCA value is the difference 

between the average WCA and the measured WCA that was furthest away from the average. 

The measurements were not carried out as a function of time and were typically made after 

20-30 s in order to maintain consistency between samples. Scanning electron microscopy 

(SEM) was performed on the Al2O3 and magnetite nanoparticle epoxy resin coatings using a 

Hitachi S4800 scanning electron microscope equipped with a Silicon Drift X-Max EDX 

detector. EDX spectra were analysed using Inca EDX software (Oxford Instr.). SEM was 

performed on the magnetite nanoparticle coating without epoxy resin using a JSM-7800F 

scanning electron microscope. X-ray photoelectron spectroscopy was performed using an 

Axis Supra XPS using a monochromated Al K source and large area slot mode detector (ca. 

300  800 μm2) analysis area. Spectra were recorded using a charge neutralizer to limit 

differential charging and binding energies were calibrated to the main hydrocarbon peak (BE 

284.8 eV). The XPS data was analysed using CASA software with Shirley backgrounds. 

Infrared spectroscopy was performed using a Thermoscientific i510 instrument with attached 

ATR. Four scans were recorded during each measurement with a resolution of 4 cm-1. 

Thermogravimetric analysis (TGA) was performed using TA Instrument SDT Q600 in an 

open alumina crucible under continuous air flow. During TGA, the magnetite particles were 

heated from ambient temperature to 800 °C at 20 °C.min-1. BET was performed using a 

Quantachrome Nova 2000e instrument. Zeta potential measurements were performed using a 

Malvern Zetasizer nanoseries on suspensions containing 50 ppm isostearate functionalized 

Al2O3 and Fe3O4 nanoparticles in isopropanol. Atomic force microscopy (AFM) was carried 

out using a JPK Nanowizard AFM in tapping mode. Surface roughness values for the films 

were measured from 10.0 × 10 .0 µm2 areas of the surfaces (Fig. S6). 

 

3. Results and Discussion 

3.1. Characterization of the isostearate functionalized magnetite nanoparticles 

XPS and IR spectroscopy were carried out to investigate whether isostearic acid had 

adsorbed onto the surface of the magnetite nanoparticles. The characterisation of the 

isostearate functionalised Al2O3 nanoparticles has been reported previously [2]. In our 

previous study, IR spectroscopy showed that isostearic acid had chemisorbed onto the surface 

of the Al2O3 nanoparticles as a carboxylate. TGA showed that the chemisorbed isostearate on 

the Al2O3 had a grafting density of 2.0 nm-2, whilst SEM showed that spray coating the 

functionalised particles onto surfaces generated densely packed nanoparticle films [2]. 
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Consequently, it is not discussed here. The XPS spectrum of the as received Fe3O4 

nanoparticles shows Fe and O photoelectron and auger electron peaks from the metal oxide 

(Fig. S1) [26]. A C 1s photoelectron peak is also observed in the spectrum, which is ascribed 

to the presence of some adventitious carbon, which could be oxygen containing hydrocarbon 

species (alcohols, ethers etc), or biological molecules [27]. Analysis of the elemental 

composition of the particles showed that it was composed of 45.7% O, 26.8% C, and 27.4% 

Fe. 

The elemental composition of the functionalised magnetite nanoparticles was 36.6% 

O, 44.6% C, and 18.8% Fe. Since the amount of C is increased and the amount of Fe is 

reduced, relative to the as received magnetite, this suggests that isostearic acid adsorbs onto 

the surface of the nanoparticles. In line with this, the area of the C-O component of the O 1s 

peak is substantially greater than in the XPS spectrum of the as received nanoparticles (Fig. 

1a and b). In the XPS spectra, the peak ascribed to the Fe-O component is observed at about 

529.9 eV, whereas the peak ascribed to the C-O component is observed at approximately 

531.2 eV [27,28]. Prior to functionalisation with isostearic acid, the ratio of the Fe-O: C-O 

peak area is approximately 2.3. This ratio changes to about 1.6 after refluxing the particles 

with isostearic acid, providing further evidence that the carboxylic acid had adsorbed onto the 

nanoparticles. 
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Fig. 1. High-resolution XPS data of the O 1s region of the as received magnetite 

nanoparticles (a), and the magnetite nanoparticles after refluxing with isostearic acid in 

toluene (b). 

IR spectroscopy was used in order to examine the nature of the adsorbed carboxylic 

acid on the surface of the particles. The IR spectrum of the as received Fe3O4 nanoparticles 

(Fig. S2) shows a strong band ascribed to Fe-O stretching between 780-650 cm-1 [29]. In 

addition, O-H bending and stretching bands are observed at approximately 1630 cm-1 (Fig. 

2a) and between 3570 and 3100 cm-1 respectively [30]. These bands are ascribed to the 

presence of hydroxyl groups that are present on the surface of the nanoparticles. Weak bands 

ascribed to C-H stretching of some adsorbed carbonaceous material are also observed 

between 2980-2850 cm-1 [31], as is shown in Fig S2 of the supporting materials. 

Substantially more intense C-H stretching bands are observed in the IR spectrum of 

the functionalised nanoparticles (Fig. S3) [31]. In addition, bands ascribed to CH2 scissoring 

and CH3 umbrella modes from the alkyl chain of isostearic acid are also observed at about 

1454 and 1377 cm-1 respectively [31, 32]. Unlike the IR spectrum of the as received 

isostearic acid (Figure 2b), a C=O stretching band is not observed in the IR spectrum of the 

functionalised nanoparticles (Figure 2c). This indicates that isostearic acid chemisorbs onto 

the surface of the particles as a carboxylate and no unreacted acid is left in the product [2,31]. 

In our previous publication we have reported the IR spectra of isostearate chemisorbed onto 

Al2O3 nanoparticles, which show carboxylate asymmetric stretching bands at about 1560 cm-

1 [33]. A weak band at about 1515 cm-1 and a more intense band at approximately 1411 cm-1 

(α) (Fig. 2c) are observed in the IR spectrum of isostearate functionalised Fe3O4 

nanoparticles, which are not present in the IR spectra of the as received nanoparticles or the 

pure acid. We tentatively ascribe these bands to be due to carboxylate asymmetric and 

symmetric stretching of chemisorbed isostearate, in line with previously reported data [31, 

34]. 
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Fig. 2. FTIR spectra (1750-1350 cm-1) of the as received magnetite nanoparticles (a), 

isostearic acid (b), and the magnetite nanoparticles after refluxing with isostearic acid in 

toluene (c). ω O-H, ρ C=O, θ CH2, α CO2
- (symmetric stretching),  CH3. 
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observed to show a weight loss of approximately 4.28 % after heating to 800 °C (Fig. 3). The 

derivative of the TGA curve shows that the largest weight losses occur at about 95 and 200 

°C. The former of these is ascribed to loss of water and volatile compounds, whilst the latter 

is due to desorption of the adventitious carbon that is observed using IR spectroscopy and 

XPS. TGA of the functionalized magnetite showed a weight loss of 9.45 % after heating to 

the same temperature (Fig. 3). The derivative of the TGA curve for the functionalised 

nanoparticles is largest at about 300 °C. The weight loss at this temperature is ascribed to 

desorption of chemisorbed isostearate from the surface of the nanoparticles. Assuming that 

the weight loss less than 100 °C is due to the removal of water and volatile compounds, and 

taking the surface area of the as received material to be 75.7 m2g-1 (BET), the grafting density 

[5] of isostearic acid can be calculated to be 2.7 nm-2. This value is in line with our previous 

functionalization of alumina nanoparticles with isostearic acid. 

 

 

Fig 3. TGA data of the magnetite particulates, dashed curves correspond to derivatives. 
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nanoparticles (Fig. 4), despite the surface showing superhydrophobic behaviour. Typically, 

the agglomerates that were observed were less than 10 μm in size. 

It has been discussed in related reports that the dispersibility of nanoparticles in 

liquids is related to the relative magnitudes of the magnetic and van der Waals forces 

between the particles, in addition to the electrostatic forces that the particles experience [34].  

The former of these two forces are attractive and drive nanoparticle agglomeration, whereas 

the latter is repulsive and promotes the formation of stable dispersions [35]. Zeta potential 

measurements were employed to study the agglomeration behaviour of the functionalized 

nanoparticles in isopropanol. It was observed that the zeta potential of both of the 

functionalised Al2O3 and magnetite nanoparticles in isopropanol was similar (ca. 35-45mV), 

suggesting that the increased agglomeration behaviour of the magnetite nanoparticles was not 

due to weaker electrostatic forces [36]. Since both of these types particles also have similar 

diameters, it is plausible that the increased agglomeration of the magnetite nanoparticles 

could be due to their magnetic properties.  
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Fig. 4. SEM image of the isostearate functionalised magnetite nanoparticles spray coated 

onto the plastic substrate. An image of a water droplet on the surface is shown in the inset 

(scale bar = 0.5 mm). 

 

3.2. Characterization of the nanoparticle/ epoxy resin coatings 

WCA measurements were performed on the nanoparticle/ epoxy resin coatings to 

study how the incorporation of resin into the coatings affects their wettability as well as 

durability. In order to establish the optimum nanoparticle/resin ratio at which the highest 

contact angle was achieved, various nanoparticle/resin ratios were mixed and tested. Prior to 

the addition of epoxy resin, coatings formed from the isostearate functionalised Al2O3 

nanoparticles were observed to be superhydrophobic and displayed WCAs of about 151.1 ± 

1.0°. Coatings were prepared where the mass ratio of the nanoparticles: epoxy resin was 

varied between 8.6:1.0 and 1.0:1.4 (Fig. 5). It was observed that coatings prepared using 

mass ratios between 2.0:1.0 and 1.0:1.0 displayed WCAs between 149-150°. Increasing the 

mass ratio further created less hydrophobic surfaces with WCAs below 140°, suggesting that 

the resin was engulfing the nanoparticles to a larger extent. The WCA of a coating solely 

formed from the resin was measured to be 100.8  1.5°, which confirmed that the 

nanoparticles were largely responsible for increasing the hydrophobicity of the plastic. 

Following sonication in isopropanol, the WCAs of the coatings were reduced by 

about 8-15°, indicating that there were loose particles present that were not embedded in the 

resin. By comparison, sonication in isopropanol was observed to remove at least the majority 

of the nanoparticles from the substrate when resin was not incorporated into the coatings. 

Substrates showed WCAs approximately equal to that of the plastic film (ca. 86°) after 

sonication, indicating that epoxy resin substantially improves nanoparticle adhesion onto the 

substrate.  

Incorporation of epoxy resin into coatings formed from the functionalised magnetite 

nanoparticles was observed to create much more hydrophilic surfaces. Large increases in 

surface wettability occurred even when a relatively small amount of epoxy resin was added to 

the nanoparticle suspensions. For example, a coating formed from an 11.8:1.0 mass ratio of 

nanoparticles to epoxy resin displayed a WCA of 124.3  10.6° (Fig. 6). Increasing the 

amount of epoxy resin in the suspensions was found to increase the hydrophilicity of the 

surfaces further. Coatings with mass ratios between 6.5:1.0 and 1.0:1.5 were prepared and it 
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was observed that the WCAs progressively reduced until they reached values between 75-80° 

(Fig. 6), similar to that of coatings formed solely of the epoxy resin.  

These results indicate that the resin covers the magnetite nanoparticles to a much 

greater extent, relative to when the Al2O3 nanoparticles are used in the coatings. In addition 

to being less hydrophobic, the nanoparticles on the surface, which affect the WCA, are also 

easier to remove through sonication. This was evidenced from the drop in WCA when 

11.8:1.0 ratio coating was sonicated in isopropanol, as is shown in Fig. 6.  

 

 

Fig. 5. Average WCA values of the Al2O3 nanoparticle/ epoxy resin coatings. θ series show 

the WCAs of the coatings after sonication in isopropanol for ten minutes. 
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Fig. 6. Average WCA values of the magnetite nanoparticle/ epoxy resin coatings. θ series 

show the WCAs of the coatings after sonication in isopropanol for ten minutes. 

 

SEM and XPS were used to study the morphology and elemental composition of 

coatings prepared using equal masses of nanoparticles and epoxy resin. As can be seen in 

Figure 7a, the morphology of the coating containing the Al2O3 nanoparticles was relatively 

homogenous, indicating the particles were evenly distributed amongst the resin. However, the 

morphology of the coating formed from the magnetite nanoparticles showed discrete areas 

where agglomerates of particles were present (Fig. 7b). EDX showed that the areas 

surrounding the particles were largely comprised of epoxy resin (Fig. S4). Peaks assigned to 

Cu and Br were observed in the EDX spectra of this surface. However, they were also 

observed in the EDX spectrum of the as received plastic substrate (Fig. S5), indicating that 

their origin was not ascribed to material in the coating. Similarly to films formed solely from 

the magnetite nanoparticles, this behaviour is ascribed to the particles’ magnetic properties. 

Attractions between the nanoparticles could lead to agglomeration of the nanoparticles as the 

epoxy resin cures, thus explaining the morphological differences that are observed using 

SEM.  
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Fig. 7. SEM images of the nanoparticle coatings containing equal masses of nanoparticles 

and epoxy resin. (a) the morphology of the Al2O3 coating and (b) the morphology of the 

Fe3O4 coating. Images of H2O droplets on the surfaces are shown in the insets (scale bars = 

0.5 mm). 

 

XPS showed that the elemental composition of the Al2O3 coating was 29.9 0.9 % O, 

53.3 2 .2% C, 1.1  0.0% N, and 16.4  0.5% Al. A survey spectrum of this coating is 

displayed in Fig. 8a. The presence of N can be explained since amines are present in the resin 

to affect cross-linking [37]. The atomic percentages of these elements were not observed to 

change by more than about 1%, following sonication of the coating in isopropanol. This 
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indicates that the uppermost surface layers remain largely comprised of Al2O3 nanoparticles, 

in line with the highly hydrophobic WCA of this coating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. XPS survey spectra of the nanoparticle coatings containing equal masses of 

nanoparticles and epoxy resin: (a) the spectrum of the Al2O3 coating, (b) the spectrum of the 

magnetite coating. 

 

By comparison, Fe photoelectron peaks were not detected when XPS was performed 
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they had been completely covered by the epoxy resin. Photoelectron peaks ascribed to Fe 

were observed in the coating prepared using a suspension containing a mass ratio of 11.8:1.0 

magnetite nanoparticles: epoxy resin (Fig. 9b). However, the atomic percentages of this 

0

10000

20000

30000

40000

50000

60000

1200 1000 800 600 400 200 0

C
o

u
n

ts
 p

e
r 

se
c
o

n
d

Binding energy/ eV

O KLL

O 1s

C 1s

Al 2s

Al 2p

(a)

N 1s

0

10000

20000

30000

40000

50000

60000

1200 1000 800 600 400 200 0

C
o

u
n

ts
 p

e
r 

se
c
o

n
d

Binding energy/ eV

(b)

O 1s

O KLL

C 1s



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF
Submitted to J. Colloid Interface Sci. 

17 

surface were observed to be 15.5 0.5% O, 82.8 0.1% C, and 1.7 1.0% Fe, indicating that 

only small amounts of resin are required to cover the nanoparticles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. High resolution XPS data of (a)  the Fe 2p region of a magnetite coating containing 

equal masses of nanoparticles and epoxy resin, and (b) the Fe 2p region of a magnetite 

coating created using a 11.8:1.0 mass ratio of nanoparticles to epoxy resin. 
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epoxy resin coatings possessed similar surface roughness parameters, despite the substantial 

differences in the WCA values. These results show that the arrangement of nanoparticles in 

the surface layers plays a role in influencing the wettability of the surface, in addition to 

surface topography. 

 

Table 1. Surface roughness parameters of the plastic and the nanoparticle coatings. Values 

were calculated from 10.0 × 10.0 μm2 AFM images (SI fig. 6) 

Surface Average roughness (Ra) 

(nm) 

Root mean squared 

roughness (Rq) (nm) 

Peak to valley 

roughness (Rt) (nm) 

Plastic 19 24 156 

Functionalized Al2O3 

nanoparticles  

155 210 2067 

Functionalized Fe3O4 

nanoparticles                   

151 226 1829 

1.0:1.0  functionalized 

Al2O3 nanoparticles: 

epoxy resin 

276 344 2131 

1.0:1.0  functionalized  

Fe3O4 nanoparticles: 

epoxy resin 

272 374 2041 

 

Dynamic WCA measurements were also performed on the nanoparticle coatings to 

study the adhesion of H2O droplets onto the surfaces. It was observed that the hysteresis of 

the nanoparticle coatings increased when resin was incorporated in the coatings, indicating 

that the water droplets became more adherent when the surface contained epoxy resin (Table 

2). However, the hysteresis increase observed when resin was added to the Al2O3 coating was 

only approximately 6 °, indicating that water was only slightly more adherent onto the 

surface relative to when the coating solely containing the nanoparticles. By comparison, the 

hysteresis angle from the functionalised Fe3O4 nanoparticles and the resin was substantially 

larger than the plastic (Table 2), which shows that it could not function as a water repellent 

surface. 
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    Table 2. Dynamic WCA values of the plastic and the nanoparticle coatings. 
Surface Advancing WCA (°) Receding WCA (°) 

 

Hysteresis (°) 

 

Plastic 109.5  ± 0.5 83.7 ± 1.5 25.8 

Functionalized Al2O3 

nanoparticles  

159.9 ± 3.9 146.8 ± 5.4 13.1 

Functionalized Fe3O4 

nanoparticles                   

161.6 ± 3.4 150.9 ± 9.1 10.7 

1.0:1.0  functionalized 

Al2O3 nanoparticles: 

epoxy resin 

151.0 ± 4.2 131.8 ± 9.0 19.2 

1.0:1.0  functionalized  

Fe3O4 nanoparticles: 

epoxy resin 

110.5 ± 4.8 33.5 ± 3.8 77 

 

The durability of the Al2O3 coating was further investigated through subjecting the 

coated substrate to ethanol washing and tissue-wipe tests. Ethanol washing was not observed 

to significantly affect the wettability of the substrate. WCAs of about 147° were observed 

after washing (Fig. S7a). Tissue-wiping was observed to remove loose and weakly embedded 

particles from the coating causing it to become slightly less hydrophobic. However, despite 

this, the surface was still highly hydrophobic and displayed a WCA of about 140° (Fig. S7b). 

This indicates that enough particles remain embedded in the coating for it to show low 

wetting behaviour. 

 

4. Conclusions 

Durability and wetting behaviour of coatings formed from carboxylate functionalized Al2O3 

and Fe3O4 nanoparticles and epoxy resin was thoroughly studied and compared using SEM, 

Contact angle, XPS and AFM measurements. Although previous works [16-19] have shown 

that commercially available adhesives can improve the wear resistance of hydrophobic 

nanoparticle coatings, none of these approaches have studied the affect of changes in surface 

morphology and chemistry on the wettability of these composite systems. Surface geometry 

has a large bearing on wetting and water-repellent properties of a surface [1, 38]. 

Consequently, it is pertinent to study in depth how additives that are incorporated into 

coatings to improve their durability interact with the material that is added to make the 

surface hydrophobic, and how this interaction changes the surface geometry. 
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Highly hydrophobic coatings that displayed WCAs between 145-150° were prepared using 

green hydrocarbon functionalized Al2O3 nanoparticles and epoxy resin. These coatings 

showed good durability when subjected to sonication in organic solvents and tissue-wipe 

tests. By comparison, combining functionalized magnetite nanoparticles of similar size with 

epoxy resin created coatings that were far less hydrophobic and displayed WCAs between 

about 75-125°. SEM showed that the nanoparticles in the magnetite/epoxy resin coating were 

present as large agglomerates, whereas the Al2O3 nanoparticles were more evenly distributed 

across the surface of the coating. XPS also showed that the epoxy resin engulfs the magnetite 

nanoparticles to a far greater extent. Consequently, the difference in wettability of these two 

coatings can be explained on this basis. The increased agglomeration of the magnetite 

nanoparticles is largely due to their magnetic properties, since both types of particle are 

similar in size and show similar carboxylate grafting densities. 

This work advances the research into the development of durable hydrophobic coatings since 

it shows that nanoparticle agglomeration has a significant bearing of wettability when the 

particles are combined with commercially available adhesives. Furthermore, it shows that 

magnetic nanoparticles are less suitable for incorporation into hydrophobic coatings 

containing epoxy resin on the grounds of increased agglomeration behaviour, relative to non-

magnetic particles. This is important since magnetic nanoparticles, such as iron oxides, can 

also be used to remove harmful metals from water [20-22], and have been observed to 

immobilise bacteria and viruses [23-25]. Consequently, their employment in hydrophobic 

coatings could be useful. This research is important because it shows that it is necessary to 

investigate methods for creating durable hydrophobic coatings using Fe3O4 nanoparticles that 

do not involve adhesives such as epoxy resin. Further work from our group is underway to 

investigate how the durability of hydrophobic nanoparticle films can be improved through 

embedding the particles into plastics. This approach would eliminate the need for durability 

enhancement using adhesives, thereby circumventing the problem of nanoparticle 

agglomeration in discrete areas of the adhesive. 
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Appendix A. Supplementary material 

 Supplementary data associated with this article can be found, in the online version. 

XPS and IR spectra of the as received magnetite nanoparticles. SEM images and EDX 

spectra of the as received plastic substrate. AFM images of the as received plastic and 

functionalized nanoparticles with and without resin. Images of water droplet on the Al2O3 

nanoparticles/epoxy resin after washing with ethanol and wiping with tissue. 
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