

Modulhandbuch

Bachelor Optische Systemtechnik/Optronik

Studienordnungsversion: 2013

gültig für das Studiensemester 2016

Erstellt am: 02. Mai 2016

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-323

Inhaltsverzeichnis

Name des Moduls/Fachs	1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.F		
Mathematik 1-3	VSPVSPVSPVSPVSPVS	P Abschluss FP	LP Fachnr.
Mathematik 1	4 4 0	PL	8 1381
Mathematik 2	420	PL	6 1382
Mathematik 3	4 2 0	PL 90min	6 1383
Naturwissenschaften		FP	13
Physik 1	220	PL 90min	4 666
Physik 2	220	PL 90min	4 667
Praktikum Physik	0 0 2	SL	2 100170
Chemie	2 1 0	SL 90min	3 837
Experimentalphysik 2		PL 45min	8
Elektrizitätslehre und Optik	220	VL	6 724
Atome, Kerne, Teilchen	220	VL	5 7395
Informatik		FP	8
Algorithmen und Programmierung	210	PL 90min	3 1313
Technische Informatik	220	PL 90min	4 5131
Praktikum Informatik	0 0 1	SL	1 100204
Elektrotechnik 1		FP	10
Elektrotechnik 1	220220	PL	8 100205
Praktikum Elektrotechnik 1	001001	SL	2 100172
Elektronik		FP	5
Grundlagen der Elektronik	220	PL 120min	4 100250
Praktikum Elektronik	0 0 1	SL	1 100174
Signale und Systeme		FP	5
Signale und Systeme 1	2 3 0	PL 120min	5 1398
Grundlagen analoger Schaltungstechnik		МО	5
Grundlagen analoger Schaltungstechnik	230	SL	5 100175
Maschinenelemente 1-2		FP	11
CAD	0 1 0	SL	1 1423
Darstellungslehre und Maschinenelemente 1	110110	PL	4 100198
Maschinenelemente 2.2	220	PL 180min	4 263

Maschinenelemente 2.2 - Projekt		0 1 0		SL	2	6879
Technische Mechanik 1-2				FP	8	
Technische Mechanik 2.1	2 2	0		PL 120min	4	5132
Technische Mechanik 2.2		220		PL 120min	4	6702
Werkstoffe Maschinenbau				FP	5	
Werkstoffe	210			PL 90min	3	1369
Werkstoffe im Maschinenbau	0 1 0			SL	1	100179
Werkstoffpraktikum	0 0 1			SL	1	141
Fertigungsverfahren und Wärmeübertragung				FP	9	
Grundlagen der Fertigungstechnik		2 1 0		PL 90min	3	1376
Fertigungsverfahren und Werkstoffe der Optik		210)	PL 30min	3	1585
Wärmeübertragung 1		210)	PL 120min	3	1618
Technische Optik 1 und Lichttechnik 1				FP	7	
Praktikum Optronik		0 0 2	2	SL	2	877
Technische Optik 1 und Lichttechnik 1		230)	PL 90min	5	876
Physikalische Optik				FP	8	
Einführung in die Festkörperphysik für Ingenieure		210)	PL 30min	3	435
Physikalische Optik			211	PL 90min	5	717
Feinwerktechnik				FP	7	
Feinwerktechnische Funktionsgruppen 1			210	PL	4	399
Feinwerktechnische Funktionsgruppen 2			110	PL	3	1630
Mess- und Sensortechnik				FP	5	
Mess- und Sensortechnik			210	PL 90min	4	101510
Praktikum Mess- und Sensortechnik			0 0 1	SL	1	100201
Mikrorechnertechnik				FP	5	
Mikrorechnertechnik		220)	PL	5	656
Technische Optik und Lichttechnik 2				FP	6	
Lichttechnik 2			101	PL 30min	2	315
Technische Optik 2			2 1 0	PL 90min	4	878
Optische Systeme				FP	11	
Bewertung und Synthese optischer Systeme			220	PL	5	100619
Integrierte Optik und Mikrooptik			200	PL	3	879
Optische Telekommunikationstechnik 1			200	PL 30min	3	1616
Optoelektronik und Technologie				FP	8	

Optoelektronik	220)	PL 30min	5	1323
Technologie optoelektronischer Bauelemente		110	SL	3	1615
Qualitätssicherung und Bildverarbeitung			FP	6	
Digitale Bildverarbeitung 1		201	PL 90min	4	1617
Qualitätssicherung		200	SL 90min	2	1595
Nichttechnische Fächer			MO	6	
Fremdsprache			MO	2	100206
Studium generale			МО	2	100813
Grundlagen der BWL 1	200		SL	2	488
Wahlpflichtmodul			МО	6	
Angewandte Wellenoptik	200)	SL 90min	2	884
Diagnostik- und Therapietechnik der Augenheilkunde	210)	SL	3	101586
Einführung in das Recht	210)	SL 90min	3	551
Glas als Werkstoff für Optik und Optoelektronik	210)	SL 90min	3	385
Produktionswirtschaft 1	200)	SL 60min	3	5296
Quantenmechanik 1	220)	SL	4	1515
Analoge und digitale Filter		210	SL 30min	3	1317
Elektrodynamik		210	SL	4	6015
Fertigungs- und Lasermesstechnik 1		210	SL	4	408
Grundlagen der Kunststoffverarbeitung		200	SL 90min	2	101600
Partielle Differentialgleichungen		210	SL	3	1018
Praktikum Fertigungs- und Lasermesstechnik 1		0 0 1	SL	1	100223
Praktikum Grundlagen der Kunststoffverarbeitung		0 0 1	SL	1	100200
Stochastik		210	SL	3	762
Berufspraktische Ausbildung			МО	14	
Fachpraktikum (12 Wochen)			SL	12	6102
Grundpraktikum (8 Wochen)			SL	2	6092
Bachelorarbeit mit Kolloquium			FP	14	
Bachelorarbeit - Abschlusskolloquium			PL	2	6031
Bachelorarbeit - schriftliche wissenschaftliche Arbeit			BA 6	12	6079

Modul: Mathematik 1-3

Modulnummer:100181

Modulverantwortlich: Prof. Thomas Böhme

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Vorlesung Mathematik überstreicht einen Zeitraum von drei Semestern. Aufbauend auf die Mathematikausbildung in den Schulen werden mathematische Grundlagen gelegt und in steigendem Maße neue mathematische Teilgebiete zwecks Anwendung im physikalisch-technischen Fachstudium vermittelt. Der Studierende soll - sicher und selbstständig rechnen können. Dabei sollen die neuen mathematischen Inhalte, einschließlich der neuen mathematischen Begriffe und Schreibweisen verwendet werden, - die physikalisch-technischen Anwendungsfälle der neuen mathematischen Disziplinen erfassen, bei vorgelegten physikalisch-technischen Aufgaben das passende mathematische Handwerkszeug auswählen und richtig verwenden können, - in der Lage sein, den Zusammenhang und den Unterschied von mathematischen und physikalisch-technischen Modellen zu erfassen und hieraus folgernd in der Lage sein, den Geltungsbereich mathematischer Ergebnisse in Bezug auf technische Aufgabenstellungen abzuschätzen und die durch die Mathematik gelieferten Vorhersagen für das Verhalten von technischen Systemen zu beurteilen. In den Vorlesungen und Übungen werden Fachund Methodenkompetenz und zum Teil Systemkompetenz vermittelt.

Vorraussetzungen für die Teilnahme

Abiturstoff

Detailangaben zum Abschluss

siehe entsprechende Fachbeschreibungen

Modul: Mathematik 1-3

Mathematik 1

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1381 Prüfungsnummer:2400478

Fachverantwortlich: Prof. Thomas Böhme

Leistungspu	nkte:	8	Workload (h): 240	Anteil Selbststudium (h):	150	SWS:	8.0	
Fakultät für N	/lathen	natik ı	und Naturwissenschaften				Fachgebiet:	241

	1.FS		3		2.FS	3		3.FS	3		1.FS	3	·	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester	4	4	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz:

Kenntnis der relevanten Definitionen der in den Lehrinhalten genannten mathematischen Gegenstände,

Kenntnis grundlegender Aussagen über diese Gegenstände,

Verständnis von ausgewählten mathematischen Modelle physikalischer bzw. technischer Systemen

Methodenkompetenz:

Rechnen mit komplexen Zahlen und Polynomen, Berechnung von Grenzwerten (Folgen, Reihen, Funktionen), Berechnung von Ableitungen und (einfachen) Stammfunktionen,

Untersuchung der Eigenschaften von reellen Funktionen einer Veränderlichen mit Hilfe der Differenzial- und Integralrechnung (Kurvendiskussion, Extremwerte),

Rechnen mit Matrizen (reell und komplex), Lösen von linearen Gleichungssystemen mit Hilfe des Gauß-Jordan-Verfahrens, Berechnen von Determinanten

Vorkenntnisse

Abiturstoff

Inhalt

Logik, Mengen, komplexe Zahlen, Polynome, Folgen, Reihen, Grenzwerte, Differenzial- und Integralrechnung für Funktionen in einer reellen Veränderlichen,

Matrizen, lineare Gleichungssysteme, Determinanten

Medienformen

Tafelvortrag, Moodle

Literatur

- Meyberg K., Vachenauer,P.: Höhere Mathematik 1 und 2, Lehrbücher zur Ingenieurmathematik für Hochschulen, Springer Verlag 1991
- Hofmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Pearson Verlag 2005
- Emmrich, E., Trunk, C.: Gut vorbereitet in die erste Mathe-Klausur, 2007, Carl Hanser Verlag Leipzig.
- G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum Akademischer Verlag 2006

Detailangaben zum Abschluss

Semesterbegleitende Prüfungsleistung: Die Note wird aus dem Ergebnis der Abschlußklausur am Semesterende und einer Leistung im Semester (Zwischenklausur und/oder Hausaufgaben) gebildet.

Die entsprechenden Details werden zu Beginn der Vorlesung und auf der Webseite des Vorlesenden bekanntgegeben.

verwendet in folgenden Studiengängen

Bachelor Biotechnische Chemie 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Modul: Mathematik 1-3

Mathematik 2

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1382 Prüfungsnummer:2400479

Fachverantwortlich: Prof. Thomas Böhme

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	112	SWS:	6.0	
Fakultät für Mather	natik ı	und Naturwissenschaften				Fachgebiet:	241

	1	1.FS		2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester				4	2	0															

Lernergebnisse / Kompetenzen

Fachkompetenz:

Kenntnis der relevanten Definitionen der in den Lehrinhalten genannten mathematischen Gegenstände,

Kenntnis grundlegender Aussagen über diese Gegenstände,

Verständnis von ausgewählten mathematischen Modelle physikalischer bzw. technischer Systemen

Methodenkompetenz: Rechnen in lineare Vektorräume mit Skalarprodukt, Umgang mit reellen Funktionen in mehreren Veränderlichen, insbesondere Berechnen von partiellen Ableitungen, Jacobi- und Hessematrizen, Paramterdarstellung von Kurven und Flächen, Berechnen von Bereichs-, Kurven- und Oberflächenintegralen direkt und mit Hilfe von Integralsätzen

Vorkenntnisse

Vorlesung Mathematik 1

Inhalt

Lineare Vektorräume, Skalarprodukte, Differenzialrechnung für skalar- und vektorwertige Funktionen in mehreren reellen Veränderlichen, Bereichs-, Kurven- und Oberflächenintegrale, Integralsätze

Medienformen

Tafelvortrag, Moodle

Literatur

- Meyberg K., Vachenauer,P.: Höhere Mathematik 1 und 2, Lehrbücher zur Ingenieurmathematik für Hochschulen, Springer Verlag 1991
- Hofmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Pearson Verlag 2005
- G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum Akademischer Verlag 2006

Detailangaben zum Abschluss

Semesterbegleitende Prüfungsleistung: Die Note wird aus dem Ergebnis der Abschlußklausur am Semesterende und einer Leistung im Semester (Zwischenklausur und/oder Hausaufgaben) gebildet.

Die entsprechenden Details werden zu Beginn der Vorlesung und auf der Webseite des Vorlesenden bekanntgegeben.

verwendet in folgenden Studiengängen

Bachelor Biotechnische Chemie 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Modul: Mathematik 1-3

Mathematik 3

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 1383 Prüfungsnummer:2400480

Fachverantwortlich: Prof. Thomas Böhme

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	112	SWS:	6.0	
Fakultät für Mathem	atik ι	und Naturwissenschaften				Fachgebiet:	241

	1	1.FS	<u> </u>	2	2.FS	3		3.FS	3		1.FS)	Į.	5.FS	3	(3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester							4	2	0												

Lernergebnisse / Kompetenzen

Fachkompetenz:

Kenntnis der relevanten Definitionen der in den Lehrinhalten genannten mathematischen Gegenstände,

Kenntnis grundlegender Aussagen über diese Gegenstände,

Verständnis von ausgewählten mathematischen Modelle physikalischer bzw. technischer Systemen

Methodenkompetenz: analytische Lösung von ausgewählten Tpen von Differenzialgleichungen,

Anwendung der Laplacetransformation zur Berechnung der Lösung von linearen Anfangswertproblemen mit konstanten Koeffizienten, einfache Anwendungen der Fouriertransformation

Vorkenntnisse

Vorlesung Mathematik 2

Inhalt

Differenzialgleichungen, Fourierreihen, Fourier- und Laplacetransformation

Medienformen

Tafelvortrag, Moodle

Literatur

- Meyberg K., Vachenauer, P.: Höhere Mathematik 1 und 2, Lehrbücher zur Ingenieurmathematik für Hochschulen, Springer Verlag 1991
- Hofmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Pearson Verlag 2005
- G. Bärwolff: Höhere Mathematik für Naturwissenschaftler und Ingenieure. Spektrum Akademischer Verlag 2006

Detailangaben zum Abschluss

Semesterbegleitende Prüfungsleistung: Die Note wird aus dem Ergebnis der Abschlußklausur am Semesterende und einer Leistung im Semester (Zwischenklausur und/oder Hausaufgaben) gebildet.

Die entsprechenden Details werden zu Beginn der Vorlesung und auf der Webseite des Vorlesenden bekanntgegeben.

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Modul: Naturwissenschaften

Modulnummer 100182

Modulverantwortlich: Prof. Dr. Stefan Krischok

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Im Modul Naturwissenschaften werden die Studierenden in das naturwissenschaftliche quantitative Denken und das methodische Arbeiten eingeführt. Die Studierenden erhalten das für die Ingenieurpraxis notwendige theoretische und praktisch anwendbare Wissen auf dem Gebiet der Physik und Chemie. Die Studierenden erlernen in den einzelnen Fachvorlesungen, ausgehend von der klassischen Physik, die physikalischen Grundlagen der Mechanik, die Thermodynamik und die Grundlagen von Schwingungsvorgängen. Sie erhalten zudem grundlegendes Wissen über chemische Bindungen und chemische Reaktionen, die es ermöglichen, das Verhalten der Werkstoffe in der späteren Praxis abzuleiten und zu verstehen. Die Studierenden vertiefen die Anwendbarkeit des erworbenen Wissens durch begleitende Seminare und Praktika.

Vorraussetzungen für die Teilnahme

Hochschulzugangsberechtigung

Detailangaben zum Abschluss

Modul: Naturwissenschaften

Physik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 666 Prüfungsnummer:2400004

Fachverantwortlich: Prof. Dr. Stefan Krischok

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Mathen	natik ι	und Naturwissenschaften				Fachgebiet:	242

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0																		

Lernergebnisse / Kompetenzen

Die Vorlesung gibt eine Einführung in die physikalischen Grundlagen der Ingenieurwissenschaften in den Teilgebieten der Mechanik von Punktmassen, starrer Körper und deformierbarer Körper. Die Studierenden sollen die Physik in ihren Grundzusammenhängen begreifen. Sie formulieren Aussagen und Beziehungen zwischen physikalischen Größen mit Hilfe physikalischer Grundgesetze. Sie können Aufgabenstellungen aus dem Bereich der Mechanik unter Anwendung der Differential-, Integral- und Vektorrechung erfolgreich bearbeiten. Sie können den verwendeten Lösungsansatz und Lösungsweg mathematisch und physikalisch korrekt darstellen. Sie können das Ergebnis interpretieren und auf seine Sinnhaftigkeit überprüfen. Sie können den zu Grunde liegenden physikalischen Zusammenhang nennen, in eigenen Worten beschreiben, sowie graphisch und mathematisch darstellen.

Vorkenntnisse

Hochschulzugangsberechtigung/Abitur

Inhalt

Das Lehrgebiet im 1. Fachsemester beinhaltet folgende inhaltliche Schwerpunkte: • Erkenntnisgewinn aus dem Experiment: Messfehler und Fehlerfortpflanzung • Kinematik und Dynamik von Massenpunkten (Beschreibung von Bewegungen, Newtonsche Axiome, Beispiele von Kräften , Impuls und Impulserhaltung, Reibung) • Arbeit, Energie und Leistung, Energieerhaltung, elastische und nichtelastische Stossprozesse • Rotation von Massenpunktsystemen und starren Körpern (Drehmoment, Drehimpuls und Drehimpulserhaltungssatz, Schwerpunkt, Massenträgheitsmomente, kinetische und potentielle Energie des starren Körpers, Satz von Steiner, freie Achsen und Kreisel) • Mechanik der deformierbaren Körper (Dehnung, Querkontraktion, Scherung, Kompressibilität, Statik der Gase und Flüssigkeiten, Fluiddynamik, Viskosität, Innere Reibung)

Medienformen

Tafel, Skript, Folien, wöchentliche Übungsserien, Verständnisfragen in Online-Quizzen Die Unterlagen werden im Rahmen der Lernplattform moodle bereitgestellt. Der Zugang ist über Selbsteinschreibung geregelt, der Einschreibeschlüssel wird in der Vorlesung bekannt gegeben.

Literatur

Hering, E., Martin, R., Stohrer, M.: Physik für Ingenieure. Springer-Verlag, 9. Auflage 2004 Gerthsen, Kneser, Vogel: Physik. 17. Aufl., Springer-Verlag, Berlin 1993 Stroppe, H.: Physik für Studenten der Natur- und Technikwissenschaften. Fachbuchverlag Leipzig, 11. Auflage 1999 Orear, Jay: Physik. Carl-Hanser Verlag, München 1991 Für Interessierte: Demtröder, W.; Experimentalphysik 1, Mechanik und Wärme, 6. Auflage, Springer-Verlag 2013 So knapp wie möglich: Rybach, J.: Physik für Bachelors, 3. Auflage, Carl-Hanser-Verlag 2013

Alle genannten Bücher und weitere stehen in der Universitätsbibliothek zur Verfügung.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Medientechnologie 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Naturwissenschaften

Physik 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 667 Prüfungsnummer:2400005

Fachverantwortlich: Prof. Dr. Stefan Krischok

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Mathem	natik u	nd Naturwissenschaften				Fachgebiet:	242

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS	6	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden sollen die Physik in ihren Grundzusammenhängen begreifen. Sie formulieren Aussagen und Beziehungen zwischen physikalischen Größen mit Hilfe physikalischer Grundgesetze. Sie können Aufgabenstellungen aus dem Bereich der Thermodynamik und Wellenlehre, sowie eingeschränkt auf einige wesentliche Experimente in der Quantenphysik unter Anwendung der Differential-, Integral- und Vektorrechung erfolgreich bearbeiten. Sie können den verwendeten Lösungsansatz und Lösungsweg mathematisch und physikalisch korrekt darstellen. Sie können das Ergebnis interpretieren und auf seine Sinnhaftigkeit überprüfen. Sie können den zu Grunde liegenden physikalischen Zusammenhang nennen, in eigenen Worten beschreiben, sowie graphisch und mathematisch darstellen.

Im Fach Physik 2 werden die Teilgebiete Thermodynamik, Schwingungen und Wellen sowie die Grundbegriffe der Quantenmechanik als Grundlage der ingenieurwissenschaftlichen Ausbildung gelehrt. Die Studierenden sollen auf der Basis der Hauptsätze der Thermodynamik Einzelprozesse charakterisieren, Prozess- und Zustandsänderungen berechnen sowie in der Lage sein, das erworbene Wissen auf die Beschreibung von technisch relevanten Kreisprozessen anzuwenden. Fragestelllungen zur Irreversibilität natürlicher und technischer Prozesse und der Entropiebegriff werden behandelt. Im Bereich Schwingungen und Wellen werden die Grundlagen für schwingende mechanische Systeme, sowie von der Ausbreitung von Wellen im Raum am Beispiel der Schall- und elektromagnetischen Wellen gelegt, sowie Anwendungsbereiche in der Akustik und Optik angesprochen. Die Studierenden erkennen die Verknüpfung der physikalischen und technischen Fragestellungen in diesen Bereichen und können Analogien zwischen gleichartigen Beschreibungen erkennen und bei Berechnungen nutzen. Im Bereich Optik und Quantenphysik steht insbesondere der modellhafte Charakter physikalischer Beschreibungen im Vordergrund.

Vorkenntnisse

Physik 1

Inhalt

Das Lehrgebiet im 2. Fachsemester beinhaltet folgende Schwerpunkte:

Einführung in die Thermodynamik (ThermodynamischeGrundlagen, Kinetische Gastheorie, erster Hauptsatz), Technische Kreisprozesse (Grundprinzip, Carnot-Prozess, Stirlingmotor, Verbrennungsmotoren, Wirkungsgrad, Reversibilität von Prozessen, Wärme- und Kältemaschinen), Reale Gase (Kondensation und Verflüssigung), Schwingungen als Periodische Zustandsänderung (Freie, ungedämpfte Schwingung, gedämpfte und erzwungene Schwingung, Resonanz, Überlagerung), Wellen (Grundlagen, Schallwellen, elektromagnetische Wellen, Intensität und Energietransport, Überlagerung, Dopplereffekt, Überschall), Optik (Geometrische Optik, Wellenoptik, Quantenoptik - Licht als Teilchen), Quantenphysik (Welle-Teilchen-Dualismus, Heisenbergsche Unschärferelation)

Medienformen

Tafel, Skript, Folien, wöchentliche Übungsserien, Verständnisfragen in Online-Quizzen Die Unterlagen werden im Rahmen der Lernplattform moodle bereitgestellt. Der Zugang ist über Selbsteinschreibung geregelt, der Einschreibeschlüssel wird in der Vorlesung bekannt gegeben.

Literatur

Hering, E., Martin, R., Stohrer, M.: Physik für Ingenieure. Springer-Verlag, 9. Auflage 2004;

Gerthsen, Kneser, Vogel: Physik. 17. Aufl., Springer-Verlag, Berlin 1993;

Stroppe, H.: Physik für Studenten der Natur- und Technikwissenschaften. Fachbuchverlag Leipzig, 11. Auflage 1999;

Orear, Jay: Physik. Carl-Hanser Verlag, München 1991;

Für Interessierte: Demtröder, W.; Experimentalphysik 1 und 2, 6. Auflage, Springer-Verlag 2013

So knapp wie möglich: Rybach, J.: Physik für Bachelors, 3. Auflage, Carl-Hanser-Verlag 2013

Alle genannten Bücher und weitere stehen in der Universitätsbibliothek zur Verfügung.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Medientechnologie 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Naturwissenschaften

Praktikum Physik

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 100170 Prüfungsnummer:2400477

Fachverantwortlich: Prof. Dr. Stefan Krischok

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Mathen	natik u	ind Naturwissenschaften				Fachgebiet:	242

	1	I.FS)	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				0	0	2															

Lernergebnisse / Kompetenzen

Die Studierenden kennen den Ablauf eines physikalischen Experiments. Sie können in der Kleingruppe eine im Rahmen des Praktikums gestellte Messaufgabe bearbeiten. Sie können mit Messgeräten sicher und kompetent umgehen. Sie dokumentieren ihre Ergebnisse korrekt und nachvollziehbar in einem Versuchsprotokoll. Sie können experimentell ermittelte Daten auswerten und grafisch darstellen. Sie berechnen Mittelwerte und Standardunsicherheiten. Sie können einfache Aussagen über die Fortpflanzung von Messfehlern treffen und auf Grundlage ihrer Fehlerrechnung eine Einschätzung der Güte ihrer Messung vornehmen.

Vorkenntnisse

Physik 1 oder 2 wünschenswert (Prüfungsnachweis nicht erforderlich)

Inhalt

Es werden insgesamt 9 Versuche in Zweiergruppen aus folgenden Bereichen der Physik durchgeführt:

- Mechanik
- Optik
- Thermodynamik
- Atom/Kernphysik
- Elektrizitätslehre

Es stehen insgesamt 40 Versuche zur Verfügung, die konkrete Auswahl wird durch die Einschreibung festgelegt.

Medienformen

Die Praktikumsunterlagen und allgemeine Hinweise werden unter http://www.tu-ilmenau.de/exphys1/lehre/grundpraktikum/veröffentlicht.

Literatur

Allgemein:

- Hering, E., Martin, R., Stohrer, M.: Physik für Ingenieure. Springer-Verlag, 9. Auflage 2004
- Gerthsen, Kneser, Vogel: Physik. 17. Aufl., Springer-Verlag, Berlin 1993
- Stroppe, H.: Physik für Studenten der Natur- und Technikwissenschaften. Fachbuchverlag Leipzig, 11. Auflage 1999
- · Orear, Jay: Physik. Carl-Hanser Verlag, München 1991

Auf jeder Praktikumsanleitung finden sich Hinweise zu weiterführender Literatur.

Detailangaben zum Abschluss

Benoteter Schein

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Modul: Naturwissenschaften

Chemie

Fachabschluss: Studienleistung multiple choice 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 837 Prüfungsnummer:2400018

Fachverantwortlich: Prof. Dr. Peter Scharff

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Mathema	atik	und Naturwissenschaften				Fachgebiet:	2425

	1	1.FS)	2	2.FS	3	,	3.FS	3		1.FS	3	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, aufgrund der erworbenen Kenntnisse über die chemische Bindung und über chemische Reaktionen, chemisch relevante Zusammenhänge zu verstehen. Die Studierenden können die Eigenschaften von Werkstoffen aus ihrer chemischen Zusammensetzung ableiten bzw. eine Verbindung zwischen mikroskopischen und makroskopischen Eigenschaften herstellen. Das erworbene Wissen kann fachübergreifend angewendet werden.

Vorkenntnisse

Elementare Grundkenntnisse vom Aufbau der Materie

Inhalt

Struktur der Materie, Bohrsches Atommodell, Quantenmechanisches Atommodell, Schrödingergleichung, Heisenbergsche Unschärferelation, Atombindung, Ionenbindung, Metallbindung, Bindung in Komplexen, Intermolekulare Wechselwirkungen, Säure-Base-Reaktionen, Redoxreaktionen, Fällungsreaktionen, chemisches Gleichgewicht, Reaktionskinetik, Katalyse, Eigenschaften ausgewählter Stoffe, Herstellungsverfahren industriell wichtiger Stoffe.

Medienformen

Tafel, Transparent-Folien, Beamer-Präsentation, Video-Filme, Manuskript

Literatur

Peter W. Atkins, Loretta Jones: Chemie - einfach alles. 2. Auflage von von Wiley-VCH 2006 Jan Hoinkis, Eberhard Lindner: Chemie für Ingenieure. Wiley-VCH 2001 Arnold Arni: Grundwissen allgemeine und anorganische Chemie, Wiley-VCH 2004 Erwin Riedel: Allgemeine und anorganische Chemie. Gruyter 2004 Siegfried Hauptmann: Starthilfe Chemie. Teubner Verlag 1998

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Experimentalphysik 2

Modulnummer 1519

Modulverantwortlich: Prof. Dr. Jörg Kröger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden erhalten einen Einblick in die Grundlagen der Elektro- und Magnetostatik und der Elektrodynamik. Die Kombination aus Vorlesung und Übung versetzt sie in die Lage, eigenständig Probleme zu lösen.

Vorraussetzungen für die Teilnahme

Experimentalphysik 1 und 2

Detailangaben zum Abschluss

Modul: Experimentalphysik 2

Elektrizitätslehre und Optik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 724 Prüfungsnummer:2400025

Fachverantwortlich: Prof. Dr. Jörg Kröger

Leistungspunkte: 6 Workload (h): 180 Anteil Selbststudium (h): 135 SWS: 4.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2424

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS SP SP Р SP SP S SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Studierenden erhalten einen Einblick in die Grundlagen des Elektromagnetismus. Die Kombination aus Vorlesung und Übung versetzt sie in die Lage, eigenständig Probleme zu lösen. Idealerweise entwickeln die Studierenden eine Intuition für die physikalischen Vorgänge.

Vorkenntnisse

Experimentalphysik I

Inhalt

Die Vorlesung behandelt die Elektro- und Magnetostatik. Das Coulombsche Kraftgesetz und das Gaußsche Gesetz der Elektrostatik sind zentrale Ergebnisse. Magnetfelder bewegter Ladungen werden durch das Ampèresche und Biot-Savart-Gesetz beschrieben. Ein herausragendes Ergebnis stellt die Erscheinung der elektromagnetischen Induktion und das sie beschreibende Faradaysche Gesetz dar. Eine Zusammenfassung der Gesetze führt zur Formulierung der Maxwellschen Gleichungen. Es schließt sich die Wellenoptik an. Das Huygensche und Fermatsche Prinzip für die Lichtausbreitung stehen am Anfang dieses Kapitels. Es werden dann Interferenzerscheinungen und das Auflösungsvermögen optischer Instrumente behandelt. Zeitliche und räumliche Kohärenz werden diskutiert. Doppelbrechung, Phasenverschiebungsplättchen, Laser und Holographie bilden den Abschluss der Vorlesung.

Medienformen

Tafel, Computer-Präsentation

Literatur

Berkeley Physik-Kurs Band 2, Elektrizität und Magnetismus (Vieweg, 1989)

Berkeley Physik-Kurs Band 3, Schwingungen und Wellen (Vieweg, 1989)

A. Recknagel: Elektrizität und Magnetismus (VEB, 1986) und Schwingungen und Wellen (VEB, 1988) und Optik (VEB, 1988)

R. Feynman: Mainly electromagnetism and matter (Volume 2, Addison-Wesley, 1964)

E. Hecht: Optics (Addison-Wesley, 2002)

Detailangaben zum Abschluss

Schein benotet, Klausur 90 Minuten

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung PH Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Modul: Experimentalphysik 2

Atome, Kerne, Teilchen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 7395 Prüfungsnummer:2400026

Fachverantwortlich: Prof. Dr. Jörg Kröger

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathem	natik ι	ınd Naturwissenschaften				Fachgebiet:	2424

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	6	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Die Studierenden erhalten einen Einblick in die Grundlagen der Speziellen Relativitätstheorie und Quantenmechanik. Die Kombination aus Vorlesung und Übung versetzt sie in die Lage, eigenständig Probleme zu lösen. Idealerweise entwickeln die Studierenden eine Intuition für die physikalischen Vorgänge im Nanokosmos.

Vorkenntnisse

Experimentalphysik I und II

Inhalt

Die Vorlesung schärft die Begriffsbildung von Raum, Zeit und Messung. In einer kurzen Einführung in die Spezielle Relativitätstheorie wird die aus der Newton-Mechanik bekannte Galilei-Transformation durch die Lorentz-Einstein-Transformation für Inertialsysteme erweitert, die sich relativ zueinander mit großen Geschwindigkeiten bewegen. Aus diesen Transformationen werden die Längenkontraktion, die Zeitdilatation und die Äquivalenz von Masse und Energie abgeleitet. Der Hauptteil der Vorlesung beschäftigt sich mit der Physik kleinster Teilchen. Nach der Diskussion des Welle-Teilchen-Dualismus wird die klassische Atom-Physik behandelt, die schließlich in die quantenmechanische Beschreibung der Atome, Moleküle und Kerne mündet. Wichtige Ergebnisse werden das Bohrsche Atommodell, die Schrödinger-Gleichung und die Heisenbergschen Unschärferelationen sein. Radioaktivität und Elementarteilchen bilden den Abschluss der Vorlesung.

Medienformen

Tafel, Computer-Präsentation

Literatur

Berkeley Physik-Kurs Band 4: Quantenphysik (Vieweg 1989)

- R. Feynman: Quantenmechanik (Band 3, Addison-Wesley 1964)
- D. Halliday, R. Resnick, J. Walker: Fundamentals of Physics (Wiley 2001)
- P. A. Tipler, G. Mosca: Physik (Springer 2009)
- D. Meschede: Gerthsen Physik (Springer 2010)
- W. Demtröder: Experimentalphysik 1, 3 (Springer 2010)
- A. P. French: Die spezielle Relativitätstheorie (Vieweg 1986)
- L. C. Epstein: Relativity visualized (Insight Press 1985); N. D. Mermin: It's about time (Princeton University Press 2005)

Detailangaben zum Abschluss

mündliche Prüfungsleistung, 30 Minuten

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Technische Physik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung PH Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Physik 2011

Modul: Informatik

Modulnummer 100183

Modulverantwortlich: Prof. Dr. Kai-Uwe Sattler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nachdem Studierende die Veranstaltungen dieses Moduls besucht haben, können sie:

- die grundlegenden Modelle und Strukturen von Software und digitaler Hardware beschreiben
- die Wirkungsweise von Digitalrechnern sowie von einfachen Algorithmen und Datenstrukturen zu deren Programmierung verstehen.
 - einfache digitale Schaltungen synthetisieren und Automatenmodelle anwenden,
- Programme in maschinennaher Notation bzw. in einer höheren Programmiersprache wie Java entwerfen.

Sie sind in der Lage, algorithmische und hardwarebasierte (diskrete Gatterschaltungen, programmierbare Schaltkreise) Lösungen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu bewerten und in eigenen praktischen Projekten anzuwenden.

Vorraussetzungen für die Teilnahme

Abiturwissen

Detailangaben zum Abschluss

keine

Modul: Informatik

Algorithmen und Programmierung

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1313 Prüfungsnummer:2200005

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2254

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP SP S P S Ρ SP S Р S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Nachdem Studierende diese Veranstaltung besucht haben, können sie die Grundlagen algorithmischer Modelle beschreiben und verstehen die Wirkungsweise von Standardalgorithmen und klassischen Datenstrukturen. Sie sind in der Lage, kleinere Programme zu entwerfen sowie in der Programmiersprache Java zu implementieren und dabei Algorithmenmuster anzuwenden.

Die Studierenden sind in der Lage, algorithmische Lösungen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu bewerten und in eigenen Programmierprojekten anzuwenden.

Vorkenntnisse

Abiturwissen

Inhalt

Historie, Grundbegriffe, Grundkonzepte von Java; Algorithmenbegriff, Sprachen & Grammatiken, Datentypen; Struktur von Java-Programmen, Anweisungen; Entwurf von Algorithmen; Applikative und imperative Algorithmenparadigmen; Berechenbarkeit und Komplexität; Ausgewählte Algorithmen: Suchen und Sortieren; Algorithmenmuster: Rekursion, Greedy, Backtracking; Abstrakte Datentypen und Objektorientierung; Listen, Bäume, Hashtabellen

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Saake, Sattler: Algorithmen und Datenstrukturen: Eine Einführung mit Java, 4. Auflage, dpunkt-Verlag, 2010.

Detailangaben zum Abschluss

schriftliche Prüfung (90 min)

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Wirtschaftsinformatik 2013

Bachelor Medientechnologie 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Informatik

Technische Informatik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5131 Prüfungsnummer:2200001

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	4	Workload (h):	120	Anteil Selbststudium (h):	86	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2231

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu den wesentlichen Strukturen und Funktionen von digitaler Hardware und haben ein Grundverständnis für den Aufbau und die Wirkungsweise von Funktionseinheiten von Digitalrechnern. Die Studierenden verstehen detailliert Aufbau und Funktionsweise von Prozessoren, Speichern, Ein-Ausgabe-Einheiten und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der Rechnerarchitektur. Methodenkompetenz: Die Studierenden sind in der Lage, einfache digitale Schaltungen zu analysieren und zu synthetisieren. Sie können einfache Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie sind in der Lage, Automatenmodelle zu verstehen und anzuwenden. Sie können die rechnerinterne Informationsverarbeitung modellieren und abstrakt beschreiben sowie die zugehörigen mathematischen Operationen berechnen. Die Studierenden entwerfen und analysieren einfache maschinennahe Programme. Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenspiel der Baugruppen eines Digitalrechners als System. Sie erkennen den Zusammenhang zwischen digitalen kombinatorischen und sequentiellen Schaltungen, Funktionsabläufen innerhalb von Rechnern und der Ausführung von Maschinenprogrammen anhand praktischer Übungen. Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen einfacher digitaler Schaltungen, der Rechnerarchitektur und von einfachen Maschinenprogrammen in der Gruppe. Sie können von ihnen erarbeitete Lösungen gemeinsam in Übungen auf Fehler analysieren, korrigieren und bewerten.

Vorkenntnisse

Hochschulzulassung

Inhalt

1. Mathematische Grundlagen • Aussagen und Prädikate, Abbildungen, Mengen • Anwendung der BOOLEschen Algebra und der Automatentheorie auf digitale Schaltungen 2. Informationskodierung / ausführbare Operationen • Zahlensysteme (dual, hexadezimal) • Alphanumerische Kodierung (ASCII) • Zahlenkodierung 3. Struktur und Funktion digitaler Schaltungen • BOOLEsche Ausdrucksalgebra, Schaltalgebraische Ausdrücke, Normalformen • Funktions- und Strukturbeschreibung kombinatorischer und sequenzieller Schaltungen, programmierbare Strukturen • Analyse und Synthese einfacher digitaler Schaltungen • digitale Grundelemente der Rechnerarchitektur (Tor, Register, Bus, Zähler/Zeitgeber) 4. Rechnerorganisation • Kontroll- und Datenpfad • Steuerwerk (Befehlsdekodierung und -abarbeitung) • Rechenwerk (Operationen und Datenübertragung) 5. Rechnergrundarchitekturen und Prozessoren • Grundarchitekturen • Prozessorgrundstruktur und Befehlsablauf • Erweiterungen der Grundstruktur • Befehlssatzarchitektur und einfache Assemblerprogramme 6. Speicher • Speicherschalkreise als ROM, sRAM und dRAM • Speicherbaugruppen 7. Ein-Ausgabe • Parallele digitale E/A • Serielle digitale E/A • periphere Zähler-Zeitgeber-Baugruppen • Analoge E/A 8. Fortgeschrittene Prinzipien der Rechnerarchitektur • Entwicklung der Prozessorarchitektur • Entwicklung der Speicherarchitektur • Parallele Architekturen

Medienformen

Vorlesung mit Tafel/Auflicht-Presenter und Powerpoint-Präsentation, Video zur Vorlesung, eLearnig-Angebote im Internet, Arbeitsblätter und Aufgabensammlung für Vorlesung und Übung (Online und Copyshop), Lehrbuch Allgemein: Webseite (Materialsammlung und weiterführende Infos) http://www.tu-ilmenau.de/ra http://www.tu-ilmenau.de/ihs

Literatur

Primär: Eigenes Material (Online und Copyshop) Wuttke, H.-D.; Henke, K: Schaltsysteme - Eine automatenorientierte Einführung, Verlag: Pearson Studium, 2003 Hoffmann, D.W.: Grundlagen der Technischen Informatik, Hanser- Verlag, 2007 Märtin, C.: Einführung in die Rechnerarchitektur - Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003. Flik, T.: Mikroprozessortechnik. ISBN 3-540-42042-8, Springer 2001 Allgemein: Webseite (Materialsammlung und weiterführende Infos) http://www.tu-ilmenau.de/ra http://www.tu-ilmenau.de/ihs (dort auch gelegentlich aktualisierte Literaturhinweise und Online-Quellen).

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Medientechnologie 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Wirtschaftsinformatik 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Informatik

Praktikum Informatik

Fachabschluss: Studienleistung Art der Notengebung: Testat unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100204 Prüfungsnummer:2200326

Fachverantwortlich: Dr. Heinz-Dietrich Wuttke

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	24	SWS:	1.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2235

	1	I.FS	6	2	2.FS	3		3.FS	3		1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester				0	0	1															

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über grundlegende Kenntnisse zu Aufbau und Funktion von digitalen Rechnerarchitekturen sowie zu algorithmischen Modellen, Basisalgorithmen und einfachen Datenstrukturen der Informatik. Sie können einfache Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Die Studierenden sind in der Lage, einfache algorithmische Abläufe zu entwerfen und auf maschinennahem Niveau sowie in einer höheren Programmiersprache zu implementieren.

Methodenkompetenz: Die Studierenden sind in der Lage, einfache Hardwarestrukturen (digitale Schaltungen) und Softwareprogramme zu analysieren und selbst zu entwerfen. Für eigene kleine Modellier- und Programmierprojekte können sie Automatenmodelle, maschinennahe Programmiermodelle sowie die Programmiersprache Java einsetzen.

Sozialkompetenz: Die Studierenden lösen einen Teil der Aufgaben in der Gruppe. Sie sind in der Lage, auf Kritiken und Lösungshinweise zu reagieren. Sie verstehen die Notwendigkeit einer sorgfältigen und ehrlichen Arbeitsweise.

Vorkenntnisse

Vorlesung / Übung zu Algorithmen und Programmierung bzw. Technische Informatik

Inhalt

Durchführung von drei Laboraufgaben:

- · Kombinatorische Grundschaltungen
- Einfache Assemblerprogramme
- · Lösung einer komplexeren Programmieraufgabe in Java

Medienformen

Experimentalaufbauten, Schriftliche Anleitung

Literatur

Siehe Literaturempfehlungen zu den Vorlesungen

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Medientechnologie 2013

Modul: Elektrotechnik 1

Modulnummer 100184

Modulverantwortlich: Dr. Sylvia Bräunig

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nach Abschluss des Moduls verstehen die Studierenden die grundlegenden physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus, beherrschen den zur Beschreibung erforderlichen mathematischen Apparat und können ihn auf einfache elektrotechnische Aufgabenstellungen anwenden.

Die Studierenden sind in der Lage, lineare zeitinvariante elektrische Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu beschreiben und zu analysieren.

Sie haben die Fähigkeit einfache nichtlineare Schaltungen bei Gleichstromerregung zu analysieren und können die Temperaturabhängigkeit von resistiven Zweipolen berücksichtigen.

Die Studierenden kennen die Beschreibung der wesentlichen Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt, können sie auf Probleme der Ingenieurpraxis anwenden und sind mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut.

Die Studierenden verstehen die grundsätzlichen Zusammenhänge des Elektromagnetismus (Durchflutungsgesetz, Induktionsgesetz) und können sie auf geometrisch einfache technische Anordnungen anwenden.

Die Studierenden können lineare zeitinvariante elektrische Schaltungen und Systeme bei Erregung durch sinusförmige Wechselspannungen im stationären Fall analysieren. Sie kennen die notwendigen Zusammenhänge und mathematischen Methoden und verstehen die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik. Sie können ihr Wissen auf einfache praxisrelevante Aufgabenstellungen anwenden.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Einzelleistungen

Modul: Elektrotechnik 1

Elektrotechnik 1

Fachabschluss: mehrere Teilleistungen

Art der Notengebung: Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100205 Prüfungsnummer:210399

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	150	SWS:	8.0	
Fakultät für Elektrot	echnik u	und Informationstechnik				Fachgebiet:	2116

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS		7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0	2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die grundlegenden physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus, beherrschen den zur Beschreibung erforderlichen mathematischen Apparat und können ihn auf einfache elektrotechnische Aufgabenstellungen anwenden.

Die Studierenden sind in der Lage, lineare zeitinvariante elektrische Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu beschreiben und zu analysieren.

Sie haben die Fähigkeit einfache nichtlineare Schaltungen bei Gleichstromerregung zu analysieren und können die Temperaturabhängigkeit von resistiven Zweipolen berücksichtigen.

Die Studierenden kennen die Beschreibung der wesentlichen Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt, können sie auf Probleme der Ingenieurpraxis anwenden und sind mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut.

Die Studierenden verstehen die grundsätzlichen Zusammenhänge des Elektromagnetismus (Durchflutungsgesetz, Induktionsgesetz) und können sie auf geometrisch einfache technische Anordnungen anwenden.

Die Studierenden können lineare zeitinvariante elektrische Schaltungen und Systeme bei Erregung durch sinusförmige Wechselspannungen im stationären Fall analysieren. Sie kennen die notwendigen Zusammenhänge und mathematischen Methoden und verstehen die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik. Sie können ihr Wissen auf einfache praxisrelevante Aufgabenstellungen anwenden.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

Grundbegriffe und Grundbeziehungen der Elektrizitätslehre (elektrische Ladung, Kräfte auf Ladungen; elektrische Feldstärke, Spannung und Potenzial)

Vorgänge in elektrischen Netzwerken bei Gleichstrom

(Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Zweipoltheorie für lineare und nichtlineare Zweipole, Knotenspannungsanalyse)

Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen (Grundgesetze, Erwärmungs- und Abkühlungsvorgang, Anwendungsbeispiele)

Das stationäre elektrische Strömungsfeld

(Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien, Leistungsumsatz, Vorgänge an Grenzflächen)

Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

(Grundgleichungen, Berechnung symmetrischer Felder, Vorgänge an Grenzflächen, Energie, Energiedichte, Kräfte und Momente, Kapazität und Kondensatoren, Kondensatoren in Schaltungen bei Gleichspannung, Verschiebungsstrom, Auf- und Entladung eines Kondensators)

Der stationäre Magnetismus

(Grundgleichungen, magnetische Materialeigenschaften, Berechnung, einfacher Magnetfelder, Magnetfelder an Grenzflächen, Berechnung technischer Magnetkreise bei Gleichstromerregung, Dauermagnetkreise)

Elektromagnetische Induktion

(Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion; Selbstinduktion und Induktivität; Gegeninduktion und Gegeninduktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer Induktivität bei Gleichspannung)

Energie, Kräfte und Momente im magnetischen Feld

(Grundgleichungen, Kräfte auf Ladungen, Ströme und Trennflächen, Anwendungsbeispiele, magnetische Spannung)

Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich)

(Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C)

Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung

(Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, komplexe Leistungsgrößen, grafische Methoden: topologisches Zeigerdiagramm, Ortskurven; Frequenzkennlinien und Übertragungsverhalten, Anwendungsbeispiele)

Spezielle Probleme der Wechselstromtechnik

(Reale Bauelemente, Schaltungen mit frequenzselektiven Eigenschaften, Resonanzkreise, Wechselstrommessbrücken, Transformator, Dreiphasensystem)

Rotierende elektrische Maschinen

Medienformen

Handschriftliche Entwicklung der analytischen Zusammenhänge untersetzt mit Abbildung und Animationen (PowerPoint) und Simulationen (Mathematica)

Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (getsoft.net) und Lerncontentmanagementsystem (moodle) mit SelfAssessments

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik Gleichstrom - Felder – Wechselstrom;

2009 Unicopy Campus Edition

Detailangaben zum Abschluss

- schriftliche Prüfung (Sb, 120 Min) nach dem 1. Semester
- schriftliche Prüfung (sP, 180 Min) nach dem 2. Semester

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Modul: Elektrotechnik 1

Praktikum Elektrotechnik 1

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100172 Prüfungsnummer:2100382

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2116

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(6.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				0	0	1	0	0	1												

Lernergebnisse / Kompetenzen

Die Studierenden haben die Fähigkeit zur praktischen Durchführung und Verifizierung der Messergebnisse bei der Untersuchung von elektrotechnischen Zusammenhängen und physikalischen Erscheinungen der in den Vorlesungen und Übungen behandelten Lehrinhalte anhand von selbstständig aufgebauten Anordnungen und Schaltungen.

Vorkenntnisse

Elektrotechnik 1

Inhalt

6 Versuche im Praktikumslabor:

Sommersemester (2. Fachsemester)

GET 1: Vielfachmesser, Kennlinien, Netzwerke

GET 2: Messungen mit dem Digitalspeicheroszilloskop

GET 3: Schaltverhalten an C und L

Wintersemester (3. Fachsemester)

GET 4: Spannung, Strom, Leistung im Drehstromsystem

GET 6: Frequenzverhalten einfacher Schaltungen

GET 8: Technischer Magnetkreis

Medienformen

Praktikum in Gruppen von 3 Studenten mit Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

- Seidel, Wagner: Allgemeine Elektrotechnik Gleichstrom Felder Wechselstrom; 2009 Unicopy Campus Edition
- getsoft.net

Detailangaben zum Abschluss

Unbenoteter Schein

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Modul: Elektronik

Modulnummer:100186

Modulverantwortlich: Prof. Dr. Heiko Jacobs

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind in der Lage die elektronischen Eigenschaften von Metallen, Halbleitern und Isolatoren zu verstehen und diese Kenntnisse beim Design von Halbleiterbauelementen einzusetzen. Die Studenten besitzen die Fachkompetenz, um die Funktion passiver und aktiver Bauelemente sowie von Schaltungen zu verstehen und mathematisch zu beschreiben. Die Studierenden sind fähig, die wichtigsten in der Nachrichten- und Informationstechnik angewendeten Messverfahren und Messgerätekonzepte in ihren Grundzügen zu verstehen, ihre Leistungsparameter zu beurteilen und können Messaufgaben lösen. Ihre Kompetenz beinhaltet die Methoden zur Analyse von informationstechnischen Signalen und Systemen im Zeit- und Frequenzbereich sowie die Untersuchung des Einflusses von linearen und nichtlinearen Störungen. Verantwortlich: Dr. G. Ecke

Vorraussetzungen für die Teilnahme

Allgemeine Elektrotechnik 1

Detailangaben zum Abschluss

Modul: Elektronik

Grundlagen der Elektronik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100250 Prüfungsnummer:2100400

Fachverantwortlich: Prof. Dr. Heiko Jacobs

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 75 SWS: 4.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2142

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS SP SP S Ρ S S S Ρ S SWS nach Fachsemester 2

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung "Grundlagen der Elektronik" beschäftigt sich mit den Bauelementen als Bausteine der Analog- und Digitalelektronik. Zum Verständnis der Bauelementefunktion sind grundlegende Kenntnisse der elektronischen Vorgänge in Festkörpern (Metallen, Isolatoren und Halbleitern) unerlässlich. Darauf aufbauend werden passive Bauelemente mit den wichtigsten Eigenschaften, Parametern und Konstruktionsprinzipien einschließlich einfacher Zusammenschaltungen gelehrt. Wichtigstes Anliegen der Lehrveranstaltung ist jedoch das Verständnis der Halbleiterbauelemente. Nach der Einführung ihres Funktionsprinzips werden die Kennlinien, der Aufbau, die wichtigsten Parameter, die Grundschaltungen und das Gleichstrom- und Kleinsignalverhalten, Ersatzschaltbilder, das Schaltverhalten und die Temperaturabhängigkeit von Halbleiterdioden, Bipolartransistoren und Feldeffekttransistoren behandelt. Darauf aufbauend wird der Operationsverstärker als einfache Zusammenschaltung aktiver und passiver Bauelemente eingeführt. Im Abschluss der Lehrveranstaltung wird grundlegendes Wissen zur Technologie integrierter Schaltungen auf Si-Basis vermittelt.

Vorkenntnisse

Allgemeine Elektrotechnik 1

Inhalt

Grundlagen zu den folgenden Themengebieten:

- 1. Elektronische Eigenschaften von Metallen, Halbleitern und Isolatoren
- 2. Passive Bauelemente und einfache Schaltungen
- 3. Funktionsweise von Halbleiterdioden, Gleichrichterschaltungen und spezielle Dioden
- 4. Funktion und Anwendungen von Bipolartransistoren
- 5. Funktion und Anwendungen von Feldeffekttransistoren
- 6. Operationsverstärker
- 7. Einblick in die Herstellungstechnologie integrierter Schaltungen

Medienformen

Vorlesung mit Tafelbild, Tageslichtprojektor und Beamer

Literatur

Vorlesungsskript auf der Web-Seite:

http://www.tu-

ilmenau.de/fileadmin/media/mne nano/Lehre/Vorlesung/Elektronik/Grundlagen der Elektronik WS2011 12 V22.pdf

Taschenbuch der Elektrotechnik und Elektronik
H. Lindner, H. Brauer, C. Lehmann
Carl Hanser Verlag, Leipzig 2008, ISBN 978-3-446-41458-7

Rohe, K.H.: Elektronik für Physiker. Teubner Studienbücher 1987 ISBN 3-519-13044-0

Beuth, K.; Beuth, O.: Elementare Elektronik. Vogel 2003 ISBN 380-2318-196

Vogel, H.: Gerthsen Physik. Springer Verlag 2001 ISBN 3-540-65479-8

Detailangaben zum Abschluss

Prüfungsleistung schriftlich 120 min mit 80% Wichtung

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mathematik 2013

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Modul: Elektronik

Praktikum Elektronik

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100174 Prüfungsnummer:2100384

Fachverantwortlich: Prof. Dr. Heiko Jacobs

Leistungspunkte:	1	Workload (h): 30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Elektrot	echnik u	ınd Informationstechnik				Fachgebiet:	2142

	1	1.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	- (6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester							0	0	1												

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung "Grundlagen der Elektronik" beschäftigt sich mit den Bauelementen als Bausteine der Analog- und Digitalelektronik. Wichtiges Anliegen der Lehrveranstaltung ist die Vermittlung von Kenntnissen der Funktion der Halbleiterbauelemente.

Im Rahmen des Praktikums werden die theoretischen Kenntnisse durch experimentelle Untersuchung der Bauelemente angewendet und gezielt vertieft. Dabei werden im Rahmen dieser Grundlagenausbildung einfache Messmethoden vermittelt.

Vorkenntnisse

Allgemeine Elektrotechnik 1, Grundlagen der Elektronik

Inhalt

4 Versuche

- 1. Halbleiterdiode
- 2. Bipolartransistor
- 3. Feldeffekttransistor

Schaltverhalten von Diode und Bipolartransistor

Praktikumsverantwortlich: Fr. Dr. Scheinert

Medienformen

Literatur

Vorlesungsskript auf der Web-Seite:

http://www.tu-

ilmenau.de/fileadmin/media/mne_nano/Lehre/Vorlesung/Elektronik/Grundlagen_der_Elektronik_WS2011_12_V22.pdf

Taschenbuch der Elektrotechnik und Elektronik

H. Lindner, H. Brauer, C. Lehmann

Carl Hanser Verlag, Leipzig 2008, ISBN 978-3-446-41458-7

Rohe, K.H.: Elektronik für Physiker.

Teubner Studienbücher 1987 ISBN 3-519-13044-0

Vogel, H.: Gerthsen Physik. Springer Verlag 2001 ISBN 3-540-65479-8

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Modul: Signale und Systeme

Modulnummer 100425

Modulverantwortlich: Prof. Dr. Martin Haardt

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Im vorliegenden Modul sollen den Studenten die Grundlagen der Signal- und Systemtheorie in Verbindung mit modernen Anwendungen vermittelt werden. Durch die

"Systemtheorie" werden die Studenten befähigt, physikalisch / technische Systeme zur Informationsübertragung und –verarbeitung auf einer einheitlichen, stark abstrahierenden

Basis zu beschreiben und zu analysieren. Dazu wird die "Signaltheorie" vorausgesetzt. In diesem Zusammenhang lernen die Studenten die zweckmäßige Methode der

spektralen Darstellung kennen und "frequenzmäßig zu denken". Durch die abstrakte mathematische Modellbildung werden die Studenten befähigt, technische Zusammenhänge

intuitiv zu erfassen. So können die Studenten beispielsweise prinzipielle Leistungsgrenzen oder Leistungsreserven linearer Systeme erkennen und bekannte Lösungen aus

anderen technischen Disziplinen auf das ihnen vorliegende, konkrete Problem übertragen.

Vorraussetzungen für die Teilnahme

Pflichtfächer in den Semestern 1 und 2

Detailangaben zum Abschluss

Modul: Signale und Systeme

Signale und Systeme 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1398 Prüfungsnummer:2100006

Fachverantwortlich: Prof. Dr. Martin Haardt

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	5.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2111

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3	4	I.FS	`	Ļ	5.FS	3	(6.FS	3		7.FS	<u> </u>
SWS nach	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							2	3	0												

Lernergebnisse / Kompetenzen

Den Studenten werden grundlegende Kenntnisse auf dem Gebiet der Signal- und Systemtheorie vermittelt. Durch die Systemtheorie werden die Studenten befähigt, physikalisch/technische Systeme zur Informationsübertragung und - verarbeitung effizient und auf einheitlicher Basis zu beschreiben und zu analysieren. Dazu wird die Signaltheorie vorausgesetzt. In diesem Zusammenhang lernen die Studenten die zweckmäßige Methode der spektralen Darstellung kennen und frequenzmäßig zu denken. Durch den vermittelten sicheren Umgang mit den Gesetzen der Fouriertransformation erwerben die Studenten zugleich das Wissen über die Grundgesetze der Signalübertragung in linearen Systemen. Die Hörer erlernen zudem, die Diskrete Fouriertransformation (DFT) als Werkzeug in der Signal- und Systemanalyse, aber auch als Grundelement in der modernen Signalverarbeitung einzusetzen.

Vorkenntnisse

Pflichtfächer in den Semestern 1 und 2

Inhalt

- 0 Überblick und Einleitung
- + Definition von Signalen und Systemen
- + Beispiele für Signale und Systeme in diversen Wissenschaftsgebieten
- 1 Signaltheorie (Grundlagen)
- + Eigenschaften von Signalen (periodisch aperiodisch, deterministisch stochastisch, Energiesignale Leistungssignale)
- 1.1 Fourier-Reihe
- + komplexe Fourier-Reihe periodischer Signale
- + Berechnung der komplexen Fourier-Koeffiziente
- + Fourier-Reihe der periodischen Rechteckfolge
- 1.2 Fouriertransformation
- 1.2.1 Fourierintegrale

Beispiel 1.1: Rechteckimpuls

Beispiel 1.2:

- a) linksseitig exponentiell ansteigendes Signal
- b) rechtsseitig exponentiell abklingendes Signal
- 1.2.2 Eigenschaften der Fouriertransformation
- + Linearität

Beispiel 1.3: Kombination von einseitig exponentiellen Signalen

+ Symmetrieeigenschaften (gerade, ungerade, reell, imaginär)

+ Verschiebungssatz (Zeitverschiebung, Frequenzverschiebung)

Beispiel 1.4: modulierter Rechteckimpuls

- + Zeitdehnung oder –pressung (Ähnlichkeitssatz)
- + Dualität (Vertauschungssatz)

Beispiel 1.5: Spaltimpuls

- + Zeitdifferentiationssatz
- + Frequenzdifferentiationssatz
- Beispiel 1.6: Gaußimpuls
- + Faltung im Zeitbereich

Beispiel 1.7: Dreieck-Zeitfunktion

- + Faltung im Frequenzbereich
- + Konjugiert komplexe Zeit- und Frequenzfunktion
- + Parsevalsche Gleichung

Beispiel 1.5: Spaltimpuls (Fortsetzung)

- + Inverse Beziehung zwischen Zeit- und Frequenzbeschreibung
- 1.2.3 Fouriertransformation verallgemeinerter Funktionen
- + Ziele:
- Fourier-Reihe als Spezialfall der Fouriertransformation
- Fouriertransformation für Leistungssignale
- Einheitsstoß (Diracscher Deltaimpuls)
- + Ausblendeigenschaft des Einheitsstoßes
- + Fouriertransformierte des Einheitsstoßes
- Beispiel 1.8: Einheitsstoß als Grenzwert des Gaußimpulses
- Beispiel 1.9: Harmonische Funktionen
- Beispiel 1.10: Signumfunktion
- Beispiel 1.11: Einheitssprung
- + Zeitintegrationssatz

Beispiel 1.12: Rampenfunktion

- + Frequenzintegrationsatz
- 1.2.4 Fouriertransformation periodischer Signale
- + Berechnung der Fourierkoeffizienten periodifizierter aperiodischer Funktionen aus der Fouriertransformation der aperiodischen Funktion

Beispiel 1.13: Periodischer Rechteckimpuls

Beispiel 1.14: Periodische Stoßfolge (ideale Abtastfunktion)

- 1.3 Abtastung im Zeit- und Frequenzbereich
- + Ideale Abtastung im Zeitbereich
- 1.3.1 Rekonstruktion aus Abtastwerten im Zeitbereich
- + Varianten der Rekonstruktion nach der Abtastung
- 1.3.2 Abtasttheorem
- + Abtasttheorem im Zeitbereich

Beispiele: PCM, CD

+ Abtasttheorem im Frequenzbereich

Beispiel: Messung von Mobilfunkkanälen (Channel Sounding)

+ Anwendungsbeispiele

Beispiel 1.15: Pulsamplitudenmodulation (PAM) und Sample-and-Hold-Glied

- 1.4 Diskrete Fouriertransformation
- 1.4.1 Berechnung der DFT
- 1.4.2 Spektralanalyse mit Hilfe der DFT
- a) periodische Funktionen
- b) aperiodische Funktionen
- + Abbruchfehler
- + Aliasing
- 1.4.3 Matrixdarstellung der DFT
- + Eigenschaften der DFT
- 1.4.4 Numerische Beispiele

Beispiel 1.16: DFT des abgetasteten Spaltimpulses

Beispiel 1.17: DFT eines sinusförmigen Signals

Beispiel 1.18: DFT der Dreieck-Zeitfunktion

+ Zero-Padding zur Verbesserung der optischen Darstellung der DFT

- 2 Lineare Systeme
- 2.1 Lineare zeitinvariante (LTI) Systeme

Beispiel 2.1: RC-Glied

- 2.2 Eigenschaften und Beschreibungsgrößen von LTI-Systemen
- + BIBO (Bounded-Input-Bounded-Output) Stabilität
- + Kausalität
- + Phasen- und Gruppenlaufzeit
- + Testsignale für LTI-Systeme
- 2.3 LTI-Systeme mit idealisierten und elementaren Charakteristiken
- 2.3.1 Tiefpässe
- + Idealer Tiefpaß
- + Kurzzeitintegrator (Spalttiefpaß)
- Beispiel 2.1: RC-Glied (Fortsetzung)
- +Idealer Integrator

Medienformen

Handschriftliche Entwicklung auf Präsenter und Präsentation von Begleitfolien Folienscript und Aufgabensammlung im Copy-Shop oder online erhältlich Literaturhinweise online

Literatur

- D. Kreß and D. Irmer: Angewandte Systemtheorie. Oldenbourg Verlag, München und Wien, 1990.
- S. Haykin: Communication Systems. John Wiley & Sons, 4th edition, 2001.
- A. Fettweis: Elemente nachrichtentechnischer Systeme. Teubner Verlag, 2. Auflage, Stuttgart/Leipzig, 1996.
- J. R. Ohm and H. D. Lüke: Signalübertragung. Springer Verlag, 8. Auflage, 2002.
- B. Girod and R. Rabenstein: Einführung in die Systemtheorie. Teubner Verlag, 2. Auflage, Wiesbaden, 2003.
- S. Haykin and B. V. Veen: Signals and Systems. John Wiley & Sons, second edition, 2003.
- T. Frey and M. Bossert: Signal- und Systemtheorie. Teubner Verlag Wiesbaden, 1. ed., 2004.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Informatik 2010

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Mathematik 2009

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Informatik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Modul: Grundlagen analoger Schaltungstechnik

Modulnummer:100426

Modulverantwortlich: Prof. Dr. Ralf Sommer

Modulabschluss:

Lernergebnisse

Das Modul Grundlagen der Schaltungstechnik umspannt einen Zeitraum von zwei Semestern. Aufbauend auf dem Grundwissen aus dem Modul Elektrotechnik (AET-Allgemeine Elektrotechnik und GdE – Grundlagen der Elektronik) werden die notwendigen Grundlagen auf dem Gebiet der analogen und digitalen Schaltungstechnik gelegt und in zunehmendem Maße spezifisches Fach- und Methodenwissen für die ingenieurwissenschaftliche Anwendung vermittelt. So werden Kenntnisse der verschiedenen Entwurfsebenen vom Device über die daraus entstehenden Netzwerke und Schaltungen bis hin zum dazu übergeordneten regeltechnischen und signalverarbeitendem System vermittelt.

Die Studierenden

- sind in der Lage, die makroskopischen Eigenschaften typischer Bauelemente der Elektronik, wie passive Bauelemente sowie Halbleiterdioden und Transistoren in ihrer mathematischen Beschreibung und ihrer praktischen Anwendung zu verstehen
- können durch ihr Wissen auf dem Gebiet der elektrischen Netzwerke und Schaltungen, der Signaltheorie und linearer Systeme selbstständig und sicher komplexe Strukturen unter systemtheoretischen Gesichtspunkten analysieren und daraus Entwurfsprobleme lösen, d.h. neue Schaltungen synthetisieren, indem sie bekannte Grundstrukturen kombinieren und an die jeweils neuen Erfordernisse anpassen und
- alternative Lösungen nach ihren Vor- und Nachteilen für das Gesamtsystem eigenständig bewerten und so die objektiv beste Lösung auffinden.

Mittels des in Grundlagen der analogen Schaltungstechnik akkumulierten Wissens werden die Studierenden unter Kenntnis der mathematischen Grundlagen über die Analyse hinaus in die Lage versetzt, effiziente Schaltungs- und Systemlösungen zu implementieren.

Den Studierenden werden vorwiegend Fach-, System- und Methodenkompetenz vermittelt, dazu kommen grundlegende praktische Kompetenzen durch den Einsatz rechnergestützter Methoden (Schaltungssimulation und Computeralgebra).

Vorraussetzungen für die Teilnahme

Allgemeine Elektrotechnik, Elektronik (wünschenswert, aber nicht zwingend notwendig)

Detailangaben zum Abschluss

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Grundlagen analoger Schaltungstechnik

Grundlagen analoger Schaltungstechnik

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100175 Prüfungsnummer:2100468

Fachverantwortlich: Prof. Dr. Ralf Sommer

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 94 SWS: 5.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2144

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3		1.FS	<u> </u>	į	5.FS	3	(3.FS	3	7	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	3	0						

Lernergebnisse / Kompetenzen

Die Studierenden kennen die wichtigsten elektronischen Bauelemente und ihre Grundschaltungen von der diskreten bis zur integrierten Schaltungstechnik sowie die dazugehörigen Beschreibungsmittel. Die Studierenden verstehen die schaltungstechnischen Grundprinzipien, Netzwerk- und Schaltungsanalyse mit gesteuerten Quellen, Verhalten und Modellierung der wichtigsten Grundbauelemente sowie mathematische Methoden, insbesondere der Dynamik im Sinne von linearen Differentialgleichungen, Filter- und Übertragungsverhalten sowie Stabilität. Die Studierenden kennen die wichtigsten Kompositionsprinzipien der Schaltungstechnik. Sie sind in der Lage, die Funktion zusammengesetzter Transistorschaltungen zu erkennen, zu analysieren, zu verstehen und anhand von Schaltungssimulationen zu bewerten. Die Studierenden sind in der Lage, wechsel- und gleichstromgekoppelte Schaltungen einschließlich Filtern topologisch zu synthetisieren und für relevante Anwendungsfälle zu dimensionieren.

Vorkenntnisse

Allgemeine Elektrotechnik, Elektronik (wünschenswert, aber nicht zwingend notwendig)

Inhalt

Verfahren und mathematische Grundlagen der Netzwerktheorie zur Berechnung elektrischer Schaltungen (Zeit-, Frequenzbereich, Stabilität, Netzwerkelemente einschließlich Nulloren, Superknoten- und Supermaschenanalyse, insbesondere mit gesteuerten Quellen), ideale Operationsverstärker & Schaltungen mit Operationsverstärkern, Frequenzgänge (P/N- und Bode-Diagramm), Filter, Transistorgrundschaltungen (Kennlinien, DC-Modelle, Einstellung des Arbeitspunktes, Bipolar, MOS, Kleinsignal-Ersatzschaltungen für Transistoren), mehrstufige Verstärker (Kettenschaltung von Verstärkerstufen), Grundschaltungen der integrierten Schaltungstechnik (Differenzstufen, Stromspiegel, reale Operationsverstärker), Rechnergestützte Analyse mit PSpice und symbolischer Analyse (Analog Insydes), ausgewählte industrielle Schaltungen und deren Problemstellungen (Stabilität, Kompensation)

Medienformen

Powerpoint-Präsentation, Skript, Vorlesung mit Tafelbild

Literatur

wird in Vorlesung bekanntgegeben

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Fahrzeugtechnik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Master Fahrzeugtechnik 2014

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Maschinenelemente 1-2

Modulnummer:100968

Modulverantwortlich: Prof. Dr. Ulf Kletzin

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nach Absolvieren des Moduls "Maschinenelemente 1-2" besitzen die Studenten ein Grundverständnis für die Maschinenund Gerätekonstruktion. Dies betrifft sowohl die Auslegung von Maschinenelementen als auch die Konstruktion von zunächst einfachen bis hin zu anspruchsvolleren Baugruppen.

Technische Darstellungslehre:

- Die Studierenden können die räumliche Geometrie existierender technischer Gebilde (Einzelteile, Baugruppen) erfassen und sind fähig, diese norm- und regelgerecht technisch darzustellen.
- Aus technischen Darstellungen können sie auf die räumliche Gestalt und zur Vorbereitung von Berechnungen auf die Funktion schließen.

Grundlagen der Konstruktion:

Die Studierenden können komplexe technische Gebilde auf Basis der technischen Darstellung analysieren, ihre Gesamtfunktion und Teilfunktionen erkennen, Koppelstellen analysieren und durch Variation unter Anwendung der Konstruktionsmethodik neue Teillösungen erarbeiten.

Maschinenelemente:

Die Studierenden sind fähig, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Maschinenelemente - Projekt:

- Die Studierenden sind befähigt, unter Anwendung der Konstruktionsmethodik neue konstruktive Lösungen selbständig zu erarbeiten und zu dokumentieren.
- Die Studierenden sind befähigt, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Modul: Maschinenelemente 1-2

CAD

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1423 Prüfungsnummer:2300001

Fachverantwortlich: Prof. Dr. Christian Weber

Leistungspunkte: 1 Workload (h): 30 Anteil Selbststudium (h): 19 SWS: 1.0 Fakultät für Maschinenbau Fachgebiet: 2312

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS S SP SP S Ρ S S S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Studierende kennen

• die Grundlagen der parametrischen Konstruktion

Studierende beherrschen

- die Grundlagen des parametrischen Entwickelns von 3-D-Volumenmodellen mit dem 3-D-CAD-System Autodesk Inventor
 - Grundlagen der 3-D-Zusammenbaukonstruktion mit 3-D-Abhängigkeiten und Einfügen von Normteilen
 - das Ableiten normgerechter Technischer Zeichnungen aus 3-D-CAD-Modellen,
 - · normgerechtes Bemaßen und Beschriften mit CAD

Studierende sind in der Lage

- mit dem CAD-System Modellierungsaufgaben zu lösen
- und damit 3-D-Produktmodelle und Technische Zeichnungen anzufertigen

Vorkenntnisse

PC-Grundkenntnisse,

Inhalt

Einführung in ein 3-D-CAD-System (Autodesk Inventor): Grundregeln für die Programmbedienung , Parametrik, Skizzen mit 2-D-Abhängigkeiten und Bemaßungen , Übergang Skizze –3-D-Modell, Maßänderungen – Modellvarianten, Einzelteilzeichnung mit Schnittansichten und Bemaßung, Seminarbeleg: 3-D-Bauteilmodell mit Zeichnungsansichten, Zusammenbau – 3D-Abhängigkeiten, Normteile, Animationen, 2. Seminarbeleg: 3-D-Zusammenbaumodell mit Zeichnungsansichten und Stückliste

Medienformen

PowerPoint-Präsentationen, Lehrblätter, CAD-Software

Literatur

• Labisch S., Weber C.: Technisches Zeichnen: Selbstständig lernen und effektiv üben, Vieweg+Teubner Verlag, 2007;

- Hoischen, H.: Technisches Zeichnen. Berlin: Cornelsen, 2009;
- Autodesk Inventor 2012: Grundlagen. Herdt-Verlag 2011;
- Tremblay Thom: Inventor 2012 und Inventor LT 2012. Das offizielle Trainingsbuch. SYBEX 2011;
- Häger, W.; Baumeister, D.: 3D-CAD mit Inventor 2011. Vieweg + Teubner 2011

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Maschinenelemente 1-2

Darstellungslehre und Maschinenelemente 1

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100198 Prüfungsnummer:230396

Fachverantwortlich: Prof. Dr. Ulf Kletzin

Leistungspunkte:	4	Workload (h):	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Maschine	enbau						Fachgebiet:	2311

	1	I.FS)	2	2.FS	3		3.FS	3	۷	1.FS)	Ę	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р
Fachsemester	1	1	0	1	1	0															

Lernergebnisse / Kompetenzen

Technische Darstellungslehre:

- Die Studierenden können die räumliche Geometrie existierender technischer Gebilde (Einzelteile, Baugruppen) erfassen und sind fähig, diese norm- und regelgerecht technisch darzustellen.
- Aus technischen Darstellungen können sie auf die räumliche Gestalt und zur Vorbereitung von Berechnungen auf die Funktion schließen.

Maschinenelemente 1:

Die Studierenden sind fähig, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Vorkenntnisse

Technische Darstellungslehre:

- · Abiturstoff
- · räumlich-technisches Vorstellungsvermögen

Maschinenelemente 1:

- Technische Mechanik (Statik und Festigkeitslehre)
- · Technische Darstellungslehre
- Werkstofftechnik
- · Fertigungstechnik

Inhalt

Technische Darstellungslehre:

- · Projektionsverfahren
- · Technisches Zeichnen
- Toleranzen und Passungen Grundlagen und Beispiele

Maschinenelemente 1:

- Grundlagen des Entwurfs von Maschinenelementen (Anforderungen, Grundbeanspruchungsarten und deren Berechnung)
 - Gestaltung und Berechnung von Verbindungselementen (Übersicht, Löten, Kleben, Stifte, Passfedern, Schrauben,

Klemmungen)

- Federn (Arten, Dimensionierung ausgewählter Federarten)
- · Achsen und Wellen (Dimensionierung und Gestaltung)
- Lagerungen (Übersicht, Wälzlagerauswahl)

Medienformen

Skripte und Arbeitsblätter in Papier- und elektronischer Form Aufgaben- und Lösungssammlung

Literatur

Technische Darstellungslehre:

- Fucke; Kirch; Nickel: Darstellende Geometrie für Ingenieure. Fachbuchverlag Leipzig, Köln 2004
- Hoischen, H.: Technisches Zeichnen. Verlag Cornelsen Girardet Düsseldorf, 1996
- · Böttcher; Forberg: Technisches Zeichnen. Teubner Verlag Stuttgart; Beuth-Verlag Berlin, Köln
- Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Maschinenelemente 1:

- Niemann, G.: Maschinenelemente. Springer Verlag Berlin 2005
- Decker, K.-H.: Maschinenelemente. Carl Hanser Verlag München 2004
- Roloff; Matek: Maschinenelemente. Verlagsgesellschaft Vieweg & Sohn Braunschweig 2005
- Steinhilper; Röper; Sauer u.a.: Maschinen- und Konstruktionselemente. Springer Verlag Berlin 2000
- Krause, W.: Konstruktionselemente der Feinmechanik. Carl Hanser Verlag München 2004
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Detailangaben zum Abschluss

230396 Prüfungsleistung mit mehreren Teilleistungen (= besteht aus 2 PL und 1 SL im Zeitraum vom 2 Semestern)

- 2300393 alternative SL (= mehreren Teilleistungen) im Wintersemester. Die SL ist keine Zulassungsvoraussetzung für die dazugehörigen 2 PL (aPL + sPL) im Sommersemester.
 - 2300394 schriftliche PL (= Klausur 180 min.) im Sommersemester.
 - 2300395 alternative PL (= Hausbeleg) im Sommersemester.

Die generierte PL ist bestanden, wenn alle ihr zugeordneten Leistungen (2 PL + 1 SL) bestanden sind. Die Note für die generierte PL wird aus den ihr zugeordneten PL (aPL mit 40% + sPL mit 60%) gebildet.

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2013

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Modul: Maschinenelemente 1-2

Maschinenelemente 2.2

Fachabschluss: Prüfungsleistung schriftlich 180 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 263 Prüfungsnummer:2300055

Fachverantwortlich: Prof. Dr. Ulf Kletzin

Leistungspunkte: 4	Workload (h):	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Maschinenba	u					Fachgebiet:	2311

	1	1.FS	<u> </u>	2	2.FS	3		3.FS	3		I.FS)	Į.	5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester							2	2	0												

Lernergebnisse / Kompetenzen

Grundlagen der Konstruktion:

Die Studierenden können komplexe technische Gebilde auf Basis der technischen Darstellung analysieren, ihre Gesamtfunktion und Teilfunktionen erkennen, Koppelstellen analysieren und durch Variation unter Anwendung der Konstruktionsmethodik neue Teillösungen erarbeiten.

Maschinenelemente:

Die Studierenden sind befähigt, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Vorkenntnisse

- Technische Mechanik (Statik, Festigkeitslehre)
- · Technische Darstellungslehre
- · Maschinenelemente 1
- · Werkstofftechnik
- · Fertigungstechnik

Inhalt

Grundlagen der Konstruktion:

- · Aufbau und Beschreibung technischer Gebilde
- Grundlagen des Gestaltens und der Konstruktionsmethodik

Maschinenelemente:

- Ergänzung zur Bauteilberechnung unter komplexer Beanspruchung
- erweitere Berechnung von Verbindungen und Verbindungselementen (Schraubenverbindungen, Schweißen, Nieten, Übermaßverbindungen)
 - Federn (Dimensionierung ausgewählter Federn, Federschaltungen)
 - Verschleißlager
 - Kupplungen
 - Bremsen
 - · Zahnradgetriebe (Grundlagen)

Medienformen

Skripte und Arbeitsblätter in Papier- und elektronischer Form; Aufgaben- und Lösungssammlung

Literatur

Grundlagen der Konstruktion:

- Krause, W.: Gerätekonstruktion. Carl Hanser Verlag München 2000
- Pahl, G.; Beitz, W.: Konstruktionslehre. Springer Verlag Berlin 2007

Maschinenelemente:

- Niemann, G.: Maschinenelemente. Springer Verlag Berlin 2005
- Decker, K.-H.: Maschinenelemente. Carl Hanser Verlag München 2004
- Roloff; Matek: Maschinenelemente. Verlagsgesellschaft Vieweg & Sohn Braunschweig 2005
- Steinhilper; Röper; Sauer u.a.: Maschinen- und Konstruktionselemente. Springer Verlag Berlin 2000
- Krause, W.: Konstruktionselemente der Feinmechanik. Carl Hanser Verlag München 2004
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung MR

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Modul: Maschinenelemente 1-2

Maschinenelemente 2.2 - Projekt

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6879 Prüfungsnummer:2300416

Fachverantwortlich: Prof. Dr. Ulf Kletzin

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	49	SWS:	1.0	
Fakultät für Maschin	enbau						Fachgebiet:	2311

		I.FS	<u> </u>	2	2.FS	3		3.FS	3		I.FS)	Ļ	5.FS	3	(3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р	>	S	Р	>	S	Р
Fachsemester							0	1	0												

Lernergebnisse / Kompetenzen

- Die Studierenden sind befähigt, unter Anwendung der Konstruktionsmethodik neue konstruktive Lösungen selbständig zu erarbeiten und zu dokumentieren.
- Die Studierenden sind befähigt, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Vorkenntnisse

- Technische Mechanik (Statik, Festigkeitslehre)
- · Technische Darstellungslehre
- · Maschinenelemente 1
- · Werkstofftechnik
- · Fertigungstechnik

Inhalt

- Konstruktiver Entwurf von Baugruppen unter komplexer Beanspruchung unter Nutzung von Verbindungen und Verbindungselementen, Federn (Dimensionierung ausgewählter Federn; Federschaltungen), Verschleißlager.
 - · Durchführen der notwendigen Berechnungen und Anfertigen eines Technischen Entwurfs.

Medienformen

Skripte und Arbeitsblätter in Papier- und elektronischer Form

Literatur

Grundlagen der Konstruktion:

- Krause, W.: Gerätekonstruktion. Carl Hanser Verlag München 2000
- Pahl, G.; Beitz, W.: Konstruktionslehre. Springer Verlag Berlin 2007

Maschinenelemente:

- Niemann, G.: Maschinenelemente. Springer Verlag Berlin 2005
- Decker, K.-H.: Maschinenelemente. Carl Hanser Verlag München 2004

- Roloff; Matek: Maschinenelemente. Verlagsgesellschaft Vieweg & Sohn Braunschweig 2005
- Steinhilper; Röper; Sauer u.a.: Maschinen- und Konstruktionselemente. Springer Verlag Berlin 2000
- Krause, W.: Konstruktionselemente der Feinmechanik. Carl Hanser Verlag München 2004
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Detailangaben zum Abschluss

Berechnungsschlüssel für die Abschlussnote:

- Beleg 1: bewertet mit Testat (betreut durch das Fachgebiet Konstruktionstechnik)
- Beleg 2: bewertet mit Note (betreut durch das Fachgebiet Maschinenelemente)
- · Abschlussnote: entspricht der Note von Beleg 2

Hinweis: Damit die Abschlussnote vom Thoska-System berechnet wird, müssen beide Teilleistungen bestanden sein.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung MR

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Modul: Technische Mechanik 1-2

Modulnummer:1584

Modulverantwortlich: Prof. Dr. Klaus Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realisieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Technische Mechanik 1-2

Technische Mechanik 2.1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5132 Prüfungsnummer:2300058

Fachverantwortlich: Prof. Dr. Klaus Zimmermann

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 75 SWS: 4.0 Fakultät für Maschinenbau Fachgebiet: 2343

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS SP SP S S Р SP SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realsieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorkenntnisse

- Mathematik (Vektorrechnung, Analysis, Differentialgleichungen)

Inhalt

1. Statik - Kräfte und Momente - Gleichgewicht - Lager- und Schnittreaktionen - Reibung 2. Festigkeitslehre - Spannungen und Verformungen - Zug/Druck - Torsion - Biegung

Medienformen

- überwiegend Tafel/Kreide - eLearning-Software - Folien - Animationen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Modul: Technische Mechanik 1-2

Technische Mechanik 2.2

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6702 Prüfungsnummer:2300323

Fachverantwortlich: Prof. Dr. Klaus Zimmermann

Leistungspunkte: 4 Fakultät für Maschinenbau	Workload (I	h): 120	Anteil Selbststu	ıdium (h):	75 SWS	: 4 Fachge	I.0 biet: 2343
	1.FS	2.FS	3.FS	4.FS	5.FS	6.FS	7.FS
	, ,		.	l.,	1.,	l.,	1,, , , ,

SWS nach Fachsemester

	1.FS				2.FS	<u> </u>	3.FS			4.FS			5.FS			6.FS			7.FS		
	V	V S P		V S P		V	V S P		V S P		V S P		V S P		Р	V S		Р			
,							2	2	0												

Lernergebnisse / Kompetenzen

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realsieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorkenntnisse

Grundlagen der Mathematik (Vektorrechnung, lineare Algebra, Differentialgleichung)

Inhalt

Kinematik - Koordinatensysteme - Relativkinematik - Kinematik des starren Körpers (Rotation/Translation) Dynamik - Dynamik des Massenpunktes - Impuls-/Drehimpuls-/Arbeitssatz - Eingeprägte Kräfte - Dynamik des starren Körpers - Schwerpunktsatz, Drehimpulssatz

Medienformen

Tafel (selten Overhead-Folien) Integration von E-Learning Software in die Vorlesung

Literatur

1. Zimmermann, K.: Technische Mechanik-multimedial. Hanser Fachbuchverlag 2003 2. Hahn, H.G.: Technische Mechanik. Fachbuchverlag Leipzig 1992 3. Magnus, K., Müller-Slany, H.H.: Grundlagen der Technischen Mechanik. Teubner 2005 4. Dankert, H., Dankert, J.: Technische Mechanik. Teubner Verlag 2006

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Modul: Werkstoffe Maschinenbau

Modulnummer 100188

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden kennen der Grundaufbau der Werkstoffe (Kristallsysteme, Gitteraufbau, Bindungsarten), sie können Realstruktur und Idealstruktur unterscheiden und die Beziehung Struktur-Gefüge-Eigenschaft anwenden. Die Studierenden besitzen Grundkenntnisse über den inneren Aufbau sowie die sich daraus ergebenden Zustände und Eigenschaften von Werkstoffen und verstehen, diese auf ingenieurwissenschaftliche Anwendungen zu übertragen.

Die Studierenden kennen die Mechanismen und Möglichkeiten zur Veränderung von Werkstoffen und können ihre Wirkungen zur gezielten Beeinflussung der Eigenschaften von Werkstoffen nutzen.

Sie sind in der Lage, aus dem mikroskopischen und submikroskopischen Aufbau die resultierenden mechanischen Eigenschaften abzuleiten und Eigenschaftsveränderungen gezielt vorzuschlagen. Dabei können sie kinetische Bedingungen einbeziehen und gezielt für eine Werkstoffveränderung (mechanisch, thermisch, thermochemisch, thermomechanisch,...) nutzen.

Die Studierenden können funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen.

Die Studierenden sind in der Lage, Grundkenntnisse über Werkstoffprüfverfahren zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen.

Die Studierenden kennen die werkstofftechnologischen Grundprinzipien und sind in der Lage, Werkstoffe für ingenieurmäßige Anwendungen auszuwählen und vorzuschlagen.

Mit vertieften Kenntnissen über Werkstoffe im Maschinenbau sind die Studierenden in der Lage geeignete Werkstoffe (z.B. hochfeste Stähle, Leichtbauwerkstoffe, Wärme- und Umform-behandlungen) für gezielte konstruktive Anwendungen oder auch funktionale Anwendungen vorzuschlagen und anzuwenden.

Das Modul vermittelt überwiegend Fachkompetenz und in den Seminaren und Praktika auch Methoden- und Sozialkompetenz.

Vorraussetzungen für die Teilnahme

Grundwissen in Physik, Chemie, Mathematik

Detailangaben zum Abschluss

schriftliche Prüfungsleistung, 90 min

Modul: Werkstoffe Maschinenbau

Werkstoffe

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1369 Prüfungsnummer:2100004

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ur	nd Informationsted	hnik				Fachgebiet:	2172

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Grundkenntnisse über Zustand und Eigenschaften von Werkstoffen zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen. Die Studierenden können mechanische und funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen. Das Fach vermittelt überwiegend Fachkompetenz.

Vorkenntnisse

Grundwissen Physik, Chemie, Mathematik, Maschinenbau, Elektrotechnik

Inhalt

- 1. Kristalliner Zustand 1.1 Idealkristall 1.2 Realkristall (Keimbildung, Kristallwachstum; Fehlordnungen) 2. Amorpher Zustand 2.1 Nah- und Fernordnung 2.2 Aufbau amorpher Werkstoffe 2.3 Silikatische Gläser 2.4 Hochpolymere 2.5 Amorphe Metalle 3. Zustandsänderungen 3.1 Thermische Analyse, Einstoffsysteme 3.2 Zustandsdiagramme von Zweistoffsystemen 3.3
- 3. Zustandsänderungen 3.1 Thermische Analyse, Einstoffsysteme 3.2 Zustandsdiagramme von Zweistoffsystemen 3.3 Realdiagramme von Zweistoffsystemen 3.4 Mehrstoffsysteme 4. Ungleichgewichtszustände 4.1 Diffusion 4.2 Sintern 4.3 Rekristallisation 5. Mechanische und thermische Eigenschaften 5.1 Verformungsprozess (Elastische und plastische Verformung; Bruch) 5.2 Thermische Ausdehnung 5.3 Wärmebehandlung 5.4 Konstruktionswerkstoffe 5.5 Mechanische Werkstoffprüfung (Zugfestigkeitsprüfung, Härteprüfung, Metallografie) 6. Funktionale Eigenschaften 6.1 Elektrische Eigenschaften (Leiterwerkstoffe, Widerstandswerkstoffe, Kontaktwerkstoffe, Supraleiter) 6.2 Halbleitende Eigenschaften (Eigen- und Störstellenleitung, Element- und Verbindungshalbleiter, Physikalische Hochreinigung, Kristallzüchtung) 6.3 Dielektrische Eigenschaften (Polarisationsmechanismen, Isolations- und Kondensatormaterialien, Lichtleiter) 6.4 Magnetische Eigenschaften (Erscheinungen und Kenngrößen, Magnetwerkstoffe) 7. Chemische und tribologische Eigenschaften 7.1 Korrosion 7.2 Verschleiß 8. Werkstoffkennzeichnung und Werkstoffauswahl 8.1 Kennzeichnung 8.2 Werkstoffauswahl 8.3 Werkstoffverbunde und Verbundwerkstoffe

Medienformen

Vorlesung: Powerpoint, Anschrieb, Präsentationsfolien; Skript

Literatur

- Schatt, W., Worch, H.: Werkstoffwissenschaft, 9. Aufl., Weinheim: Wiley-VCH, 2003
- Bergmann, W.: Werkstofftechnik, Teil 1: Struktureller Aufbau von Werkstoffen Metallische Werkstoffe Polymerwerkstoffe
- Nichtmetallisch-anorganische Werkstoffe, Aufl. 2002,
- Bergmann, W.: Werkstofftechnik Teil 2: Werkstoffherstellung Werkstoffverarbeitung Metallische Werkstoffe, 4. Aufl. 2002, München/Wien, Hanser Verlag
- Ilschner, B.: Werkstoffwissenschaften: Eigenschaften, Vorgänge, Technologien.- 1990, 3. erw. Aufl. 2000, Berlin, Springer

- Weißbach, W.: Werkstoffkunde und Werkstoffprüfung, 12. vollst. überarb. und erw. Aufl., Wiesbaden, Vieweg, 1998
- Hornbogen, E.: Werkstoffe Aufbau und Eigenschaften, 7. neubearb. und erg. Auflage, Berlin u. a., 2002

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Maschinenbau 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Biomedizinische Technik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Werkstoffe Maschinenbau

Werkstoffe im Maschinenbau

Fachabschluss: Studienleistung Art der Notengebung: Testat unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100179 Prüfungsnummer:2100396

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	1	Workload (h): 3	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Elektrot	echnik u	ind Informationstechr	nik				Fachgebiet:	2172

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	0	1	0																		

Lernergebnisse / Kompetenzen

Die Studierenden kennen der Grundaufbau der Werkstoffe (Kristallsysteme, Gitteraufbau, Bindungsarten) und Sie können Realstruktur und Idealstruktur unterscheiden und die Beziehung Struktur-Gefüge-Eigenschaft anwenden. Die Studierenden besitzen Grundkenntnisse über den inneren Aufbau sowie die sich daraus ergebenden Zustände und Eigenschaften von Werkstoffen und verstehen, diese auf ingenieurwissenschaftliche Anwendungen zu übertragen.

Die Studierenden kennen die Mechanismen und Möglichkeiten zur Veränderung von Werkstoffen und können ihre Wirkungen zur gezielten Beeinflussung der Eigenschaften von Werkstoffen nutzen.

Sie sind in der Lage, aus dem mikroskopischen und submikroskopischen Aufbau die resultierenden mechanischen Eigenschaften abzuleiten und Eigenschaftsveränderungen gezielt vorzuschlagen. Dabei können sie kinetische Wechselwirkung einbeziehen und gezielt für eine thermische und/oder thermomechanische Werkstoffveränderung nutzen. Die Studierenden können mechanische und funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen.

Die Studierenden sind in der Lage, Grundkenntnisse über Werkstoffprüfverfahren zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen.

Die Studierenden kennen die werkstofftechnologischen Grundprinzipien und sind in der Lage, Werkstoffe für ingenieurmäßige Anwendungen auszuwählen und vorzuschlagen.

Vorkenntnisse

Grundkenntnisse in Mathematik, Physik, Chemie Teilnahme an der Vorlesung Werkstoffe

Inhalt

Kristalliner Zustand, Idealkristall, Realkristall (Keimbildung, Kristallwachstum; Fehlordnungen), Amorpher Zustand, Nah- und Fernordnung, Aufbau amorpher Werkstoffe

Silikatische Gläser, Hochpolymere, Amorphe Metalle

Zustandsänderungen, Thermische Analyse, Einstoffsysteme, Zustandsdiagramme von Zweistoffsystemen, Realdiagramme von Zweistoffsystemen, Mehrstoffsysteme

Ungleichgewichtszustände, Diffusion, Sintern, Rekristallisation

Mechanische und thermische Eigenschaften

Verformungsprozess (Elastische und plastische Verformung; Bruch)

Thermische Ausdehnung

Wärmebehandlung

Konstruktionswerkstoffe, Stahl, Leichtbaulegierungen, Gußwerkstoffe, Werkstoffverbunde und Verbundwerkstoffe Mechanische Werkstoffprüfung (Zugfestigkeitsprüfung, Härteprüfung, Metallografie)

Funktionale Eigenschaften

Elektrische Eigenschaften (Leiterwerkstoffe, Widerstandswerkstoffe, Kontaktwerkstoffe, Supraleiter)
Halbleitende Eigenschaften (Eigen- und Störstellenleitung, Element- und Verbindungshalbleiter, Physikalische Hochreinigung, Kristallzüchtung)

Dielektrische Eigenschaften (Polarisationsmechanismen, Isolations- und Kondensatormaterialien, Lichtleiter)

Magnetische Eigenschaften (Erscheinungen und Kenngrößen, Magnetwerkstoffe)

Chemische und tribologische Eigenschaften, Korrosion, Verschleiß

Werkstoffkennzeichnung und Werkstoffauswahl

Medienformen

Powerpoint, Tafel, Animationen, Videos, Presenter, Handout, Skript

Literatur

- -E. Hornbogen: Werkstoffe; Springer, Berlin etc. 1987;
- -W. Schatt, H. Worch, hrsg.: Werkstoffwissenschaft; Wiley-VCH, Weinheim, 2003;
- -W. Bergmann: Werkstofftechnik 1+2, Hanser Verlag, 2008
- -Roos/Maile: Werkstoffkunde für Ingenieure, Springer Verlag
- -Reissner: Werkstoffkunde für Bachelors, Hanser Verlag
- -Ilschner, B.: Werkstoffwissenschaften: Eigenschaften, Vorgänge, Technologien. 3. erw. Aufl. 2000, Berlin, Springer
- -J.F. Shackelford: Werkstofftechnologie für Ingenieure; Pearson, München etc. 2005;
- D.R. Askeland: Materialwissenschaften; Spektrum, Heidelberg etc. 1996;

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Modul: Werkstoffe Maschinenbau

Werkstoffpraktikum

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 141 Prüfungsnummer:2100381

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	1	Workload (h): 30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Elektrote	echnik u	and Informationstechnik				Fachgebiet:	2172

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	5	5.FS	<u>`</u>	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р
Fachsemester	0	0	1																		

Lernergebnisse / Kompetenzen

Die Studierenden können mechanische und funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen. Das Fach vermittelt überwiegend Methodenkompetenz.

Vorkenntnisse

Fächer Chemie, Werkstoffe, Funktionswerkstoffe

Inhalt

Versuchsangebote: • Topographie / REM • Topographie / AFM • Stöchiometrieanalyse • Quantitative Bildanalyse • Orientierungs- und Texturbestimmung • Schichtdickenmessung • Härtemessung (Martenshärte) • Röntgenfeinstrukturuntersuchungen • Leitfähigkeit II (Vier-Spitzen-Messung) • Haftfestigkeit • Metallographie / Lichtmikroskopie

Medienformen

Versuchsanleitungen, Internetpräsenz

Literatur

1. Bergmann, W.: Werkstofftechnik, Teil 1: Struktureller Aufbau von Werkstoffen – Metallische Werkstoffe – Polymerwerkstoffe – Nichtmetallisch-anorganische Werkstoffe – Aufl. -2002, Teil 2: Werkstoffherstellung – Werkstoffverarbeitung – Metallische Werkstoffe. – 4. Aufl. 2002. München/ Wien: Hanser Verlag 2. Ilschner, B.: Werkstoffwissenschaften: Eigenschaften, Vorgänge, Technologien.- 1990; 3., erw. Aufl. 2000.- Berlin: Springer 3. Weißbach, W.: Werkstoffkunde und Werkstoffprüfung.- 12., vollst. überarb. und erw. Aufl.- Wiesbaden: Vieweg, 1998 4. Hornbogen, E.: Werkstoffe – Aufbau und Eigenschaften – 7., neubearb. und erg. Auflage – Berlin u. a., 2002 5. Macherauch, E.: Praktikum in Werkstoffkunde.- 10., durchges. Aufl.- Braunschweig/Wiesbaden: Vieweg, 1992 Spezielle Literatur in den Versuchsanleitungen

Detailangaben zum Abschluss

benotete Testate und Protokolle.

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Modul: Fertigungsverfahren und Wärmeübertragung

Modulnummer:100442

Modulverantwortlich: Prof. Dr. Jean Pierre Bergmann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind in der Lage, die relevanten Fertigungsverfahren der Metall- und Kunststoffbearbeitung zu verstehen und methodisch einzuordnen. Die Studierenden bewerten ingenieur-wissenschaftlich relevante Fertigungstechnologien und können den werkstoffbezogenen Zusammenhang mit dieser ableiten. Sie sind in der Lage, klare Fertigungsmöglichkeiten für metallische Konstruktionswerkstoffe und für Kunststoffe abzuleiten und zu bewerten.

Vorraussetzungen für die Teilnahme

siehe Fächer

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Fertigungsverfahren und Wärmeübertragung

Grundlagen der Fertigungstechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 1376 Prüfungsnummer:2300013

Fachverantwortlich: Prof. Dr. Jean Pierre Bergmann

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Maschinenbau Fachgebiet: 2321

	1	1.FS)	2	2.FS	<u> </u>		3.FS	3	4	I.FS	<u> </u>		5.FS	3	(6.FS	<u> </u>	7	7.FS	}
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden lernen die relevanten Fertigungsverfahren in der industriellen Produktion kennen. Sie können die Verfahren systematisieren und die Wirkmechanismen zwischen Werkstoff, Werkzeug und Fertigungsanlage theoretisch durchdringen. Damit sind sie in der Lage zur fachgerechten Analyse und Bewertung der Einsatzmöglichkeiten der Verfahren. Sie sind fähig, die Verfahren unter den Aspekten der Prozesssicherheit, Umweltverträglichkeit und Wirtschaftlichkeit auszuwählen und kompetent in den Produktentwicklungsprozess einzubringen.

Vorkenntnisse

Physik, Chemie, Mathematik, Werkstofftechnik, Technische Darstellungslehre, Messtechnik

Inhalt

Einteilung der Fertigungsverfahren, Verfahrenshauptgruppen Urformen (Gießen, Sintern), Umformen (Walzen, Fließpressen), Trennen (Drehen, Fräsen, Schleifen, Schneiden), Abtragen (EDM, ECM), Fügen (Schweißen, Löten, Kleben), Beschichten, Stoffeigenschaftsändern

Medienformen

Folien als PDF-File im Netz

Literatur

König, W.: Fertigungsverfahren; Band 1-5 VDI-Verlag Düsseldorf, 2006/07 Spur,G.; Stöfferle,Th: Handbuch der Fertigungstechnik. Carl-Hanser Verlag München, Wien Warnecke, H.J.: Einführung in die Fertigungstechnik. Teubner Studienbücher Maschinenbau. Teubner Verlag 1990 Schley, J. A.: Introduction To Manufacturing Processes. McGraw-Hill Companies, Inc.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Fertigungsverfahren und Wärmeübertragung

Fertigungsverfahren und Werkstoffe der Optik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1585 Prüfungsnummer:2300085

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte: 3	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschiner	nbau						Fachgebiet:	2351

	1	I.FS	,	2	2.FS	3		3.FS	3	4	I.FS	3	ļ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Verständnis der Zusammenhänge von Zusammensetzung, Struktur und Eigenschaften bei in der Optionik eingesetzten Werkstoffen

Kenntnis von Fertigungsverfahren von Werkstoffen und einfachen Bauteilen

Fähigkeit geeignete Werkstoffe und passende Herstellungstechnologien für eine spezielle Anwendung auszuwählen

Vorkenntnisse

Werkstoffe aus dem 3. Semester

Inhalt

Struktur von anorganischen und organischen Gläsern

Struktur von transparenten kristallinen Materialien

Photonische Wechselwirkungen in verschiedenen Wellenlängenbereichen

Eigenschaften optischer Werkstoffe

Grundlagen zu Hochtemperaturprozessen für die Herstellung optischer Werkstoffe

Formgebung und Verarbeitung optischer Halbzeuge

Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skriptt

Literatur

W. Vogel, Glaschemie, Springer Verlag, 1992

- G. Nölle, Technik der Glasherstellung, Deutscher Verlag für Grundstoffindustrie, Stuttgart, 1997
- H. Bach und N. Neuroth, hrsg., The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics, Springer, Berlin (1998)
- J. Bliedtner und G. Gräfe, Optiktechnologien, Hanser Fachbuchverlag, Leipzig 2008
- A.K. Varshneya, Fundamentals of Inorganic Glasses, The Society of Glass Technology, Sheffield 2006

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Fertigungsverfahren und Wärmeübertragung

Wärmeübertragung 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1618 Prüfungsnummer:2300087

Fachverantwortlich:apl. Prof. Dr. Christian Karcher

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschir	enbau						Fachgebiet:	2346

	1	l.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	5	5.FS	}	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Nach der Vermittlung der physikalischen Mechanismen der Wärmeübertragung sollen die Studierenden in der Lage sein, - Wärmeübertragungsprobleme ingenieursmäßig zu analysieren, - die physikalische und mathematische Modellbildung für Wärmeübertragungsprobleme zu beherrschen, - die problemspezifischen Kennzahlen zu bilden und physikalisch zu interpretieren, - die mathematische Beschreibung von Wärmeübertragungsproblemen sicher zu verwenden, - analytische und numerische Lösungsansätze gezielt auszuwählen, - die erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können. In Vorlesung und Übung wird Fachkompetenz vermittelt, um die physikalisch-technischen Methoden der Wärmeübertragung speziell auf aktuelle Forschungsprojekte des Fachgebiets Thermo- und Magnetofluiddynamik anzuwenden.

Vorkenntnisse

Physikalische und mathematische Grundlagen

Inhalt

Physikalische Interpretation der Wärmeübertragungsmechanismen Wärmeleitung, Wärmestrahlung und Konvektion. Stationäre und instationäre Wärmeleitung - Wärmedurchgangsprobleme - Auslegung von Kühlkörpern - ebene Wärmeleitungsprobleme - Diffusion von Wärmepulsen - Eindringen von Temperaturwellen in Festkörper Wärmeübertragung bei erzwungener und freier Konvektion - Grundgleichungen der Thermofluiddynamik - Kennzahlen der Thermofluiddynamik - Laminare und turbulente Rohrströmung - Grenzschichtströmung um vertikale Platte - Grenzschichtströmung an horizontaler Platte - Rayleigh-Benard-Konvektion

Medienformen

Tafel, Übungsblätter, Internet

Literatur

H. D. Baehr, K. Stephan: Wärme- und Stoffübertragung, Springer-Verlag, Berlin (1996) F. P. Incropera, D. P. DeWitt: Fundamentals of Heat and Mass Transfer, J. Wiley & Sons, New York (2002) VDI-Wärmeatlas, VDI-Verlag Düsseldorf (CD-ROM)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Maschinenbau 2014

Master Mechatronik 2014

Master Technische Kybernetik und Systemtheorie 2014

Master Maschinenbau 2009

Bachelor Optronik 2008

Master Maschinenbau 2011

Master Mechatronik 2008

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Fahrzeugtechnik 2008

Modul: Technische Optik 1 und Lichttechnik 1

Modulnummer:100443

Modulverantwortlich: Prof. Dr. Stefan Sinzinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Technische Optik 1 und Lichttechnik 1

Praktikum Optronik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Englisch

Fachnummer: 877 Prüfungsnummer:2300086

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Maschinenbau Fachgebiet: 2332

3.FS 5.FS 1.FS 2.FS 4.FS 6.FS 7.FS S S V SP V Р S Ρ S Р S Ρ S SWS nach Fachsemester 0 0 2

Lernergebnisse / Kompetenzen

Die Studierenden haben praktische Erfahrungen im Umgang mit optischen, feinwerktechnischen und optoelektronischen Bauelementen und Systemkomponenten. Sie sind in der Lage diese Systemkomponenten entsprechenden experimentell zu charakterisieren, in komplexen Versuchsaufbauten einzusetzen und die Versuchsergebnisse auszuwerten und zu bewerten. Sie sind mit dem Umgang und der Verarbeitung von elektronischen und optischen Signalen vertraut. Die Studierenden verfügen über Sozialkompetenz, die insbesondere durch intensive Förderung von Diskussion und Teamarbeit an den Praktikumsversuchen vertieft wird.

Vorkenntnisse

Gute Physik Grundkenntnisse, praktisches Geschick

Inhalt

Messung an optischen Abbildungssystemen, MTF- Messung, optische Geometrie-, Winkel- und Längenmessung, Streulichtmesstechnik; Interferenz, Holographie, Polarisation; optische Sensoren

Medienformen

Versuchsaufbauten, Experimente

Literatur

Praktikumsanleitungen und Vertiefungsliteratur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Technische Optik 1 und Lichttechnik 1

Technische Optik 1 und Lichttechnik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 876 Prüfungsnummer:2300017

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte:	5	Workload (h): 15	50	Anteil Selbststudium (h):	94	SWS:	5.0	
Fakultät für Maschine	enbau						Fachgebiet:	2332

	1	1.FS	<u> </u>	2	2.FS	3		3.FS	3	4	I.FS	3	į	5.FS	3	(3.FS	3	-	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	>	S	Р	>	S	Р
Fachsemester										2	3	0									

Lernergebnisse / Kompetenzen

Die Studierenden erlernen die Grundlagen der optischen Abbildung auf der Basis der geometrischen Optik. Die Studierenden sind in der Lage optische Abbildungssysteme in ihrer Funktionsweise zu verstehen, zu analysieren und zu bewerten. Auf der Basis des kollinearen Modells können Sie einfache Systeme modellieren und dimensionieren. Der Studierende kann lichttechnische Probleme analysieren und entsprechende Berechnungen durchführen. Der Studierende hat Fachwissen zur Lichterzeugung und kann Lichtquellen hinsichtlich ihrer Eigenschaften bewerten und für gegebene Problemstellungen auswählen. Der Studierende hat Fachwissen zur Lichtmessungen und zu optischen Sensoren. In Vorlesungen und Übungen wird Fach-, Methoden- und Systemkompetenz vermittelt.

Vorkenntnisse

Gute Mathematik und Physik Grundkenntnisse

Inhalt

Geometrische Optik, Modelle für Abbildungen, kollineare Abbildung, Grundlagen optischer Instrumente. Lichttechnische und strahlungstechnische Grundgrößen, Grundgesetze, lichttechnische Eigenschaften von Materialien, Lichtberechnungen, Einführung in die Lichterzeugung, Einführung in optische Sensoren und Lichtmesstechnik.

Medienformen

Daten-Projektion, Folien, Tafel Vorlesungsskript, Demonstrationen

Literatur

W. Richter: Technische Optik 1, Vorlesungsskript TU Ilmenau. H. Haferkorn: Optik, 4. Auflage, Wiley-VCH 2002. E. Hecht: Optik, Oldenbourg, 2001. D. Gall: Grundlagen der Lichttechnik - Kompendium, Pflaum Verlag 2004, ISBN 3-7905-0923-X

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung MR

Master Fahrzeugtechnik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung MR

Bachelor Medientechnologie 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Master Fahrzeugtechnik 2014

Master Wirtschaftsingenieurwesen 2009 Vertiefung MB

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Master Wirtschaftsingenieurwesen 2010

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2010 Vertiefung MB

Modul: Physikalische Optik

Modulnummer 100444

Modulverantwortlich: Prof. Dr. Stefan Krischok

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Physikalische Optik

Einführung in die Festkörperphysik für Ingenieure

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 435 Prüfungsnummer:2400307

Fachverantwortlich: Prof. Dr. Stefan Krischok

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2422

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS SP Р S S Р SP S Ρ S S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Vorlesung gibt eine Einführung in die grundlegenden Konzepte und die experimentellen Methoden der modernen Festkörperphysik. Ausgehend von der geordneten Struktur werden die physikalischen Eigenschaften von Festkörpern, insbesondere von Gitterschwingungen und Elektronenzuständen behandelt. Die Studierenden werden befähigt, mit Hilfe von Differential-, Integral- und Vektorrechnung die vorgestellten Konzepte in konkreten Problemstellungen anzuwenden. Fachkompetenz: - Vertrauter Umgang mit Begriffen und Erkenntnissen der Festkörperphysik und Materialphysik - Erklärung makroskopischer Eigenschaften durch mikroskopische Beschreibungen

Vorkenntnisse

Experimentalphysik I + II

Inhalt

Die Vorlesung gibt eine Einführung in die grundlegenden Konzepte und die experimentellen Methoden der modernen Festkörperphysik. Ausgehend von der geordneten Struktur werden die physikalischen Eigenschaften von Festkörpern, insbesondere von Gitterschwingungen und Elektronenzuständen behandelt. Die Studierenden werden befähigt, mit Hilfe von Differential-, Integral- und Vektorrechnung die vorgestellten Konzepte in konkreten Problemstellungen anzuwenden.

Medienformen

Tafel, Computer-Präsentation

Literatur

Bespiele von besonderer Bedeutung für die Vorlesung sind: [1] Ch. Kittel: Einführung in die Festkörperphysik; [2] Ashcroft, Neil W.; Mermin, N.D.: Festkörperphysik, Oldenbourg, 2005; bzw. Solid State Physics, Thomson Learning, 1976

Detailangaben zum Abschluss

mündliche Prüfungsleistung, 30 Minuten

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Master Werkstoffwissenschaft 2013

Master Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Master Werkstoffwissenschaft 2010		

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Modul: Physikalische Optik

Physikalische Optik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 717 Prüfungsnummer:2400093

Fachverantwortlich: Prof. Dr. Stefan Krischok

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathen	າatik ເ	und Naturwissenschaften				Fachgebiet:	2422

	1	I.FS	;	2	2.FS	3		3.FS	3	4	I.FS)	!	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	1						

Lernergebnisse / Kompetenzen

Die Studenten erlernen die physikalisch-optischen Teildisziplinen, deren Kenntnis für die Analyse, den Entwurf und die Bewertung optronischer Systeme Grundvoraussetzung ist. Auch sind sie in der Lage, die klassischen und quantenmechanischen Aspekte der Lichtausbreitung in Medien anzuwenden sowie optronische Teilsysteme zu entwerfen, zu designen und experimentell zu analysieren. Des weiteren werden die Studierenden dazu befähigt, neuartige komplexe optronische Systeme aus Teilsystemen zu bewerten und zu synthetisieren sowie Teamarbeit, Diskussion in Gruppen, Referate und praktische Laborübungen im Team zu lernen.

Vorkenntnisse

Grundkenntnisse der Mathematik, Physik, Festkörperphysik, Quantenmechanik

Inhalt

Grundelemente der klassischen Theorie des Lichtes. Harmonische Felder. Polarisiertes Licht. Reflexion und Transmission an idealen Grenzflächen. Experimentelle Bestimmung und Modelle der Dielektrischen Funktion. Planare optische Systeme. Transfermatrixmethode. Antireflexbeschichtungen. Dielektrische Spiegel. Dichroitische Filter. Optisch anisotrope Medien. Fresnelgleichung. Eigenmoden. Optische Indikatrix der uniaxialen und biaxialen Kristalle. Doppelbrechung und Dichroismus. Polarisatoren. Verzögerungsplatten. Kompensatoren. Achromatische Wellenplatten. Nichtlineare Optik. Drei-Wellen Wechselwirkungen. Elektrooptischer Effekt. Elektrooptische Modulatoren. Q-switching. Elektroabsorptionsmodulatoren. Elektroreflexion. Lichtausbreitung in optisch aktiven Medien. Zirkulare Doppelbrechung und zirkularer Dichroismus. Faraday-Rotator. Optischer Isolator. Flüssigkristalle. TN-Zelle. LCD.

Medienformen

Tafel, Folien, Beamer, kompletter Satz der Folien als PDF

Literatur

F. Pedrotti et al., Optik für Ingenieure

B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics

A. Yariv and P. Yeh, Optical Waves in Crystals

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Modul: Feinwerktechnik

Modulnummer:100209

Modulverantwortlich: Prof. Dr. Rene Theska

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Das Modul Feinwerktechnik kann nach zwei Semestern abgeschlossen werden. Im Modul Feinwerktechnik erhalten die Studierenden das notwendige Wissen zur Entwicklungsmethodik, den Grundlagen zu CAD und zur Konstruktion und Entwicklung von Feinwerktechnischen Funktionsgruppen.

Die Studierenden können

- selbstständig und systematisch unter Zuhilfenahme von CAD konstruieren und entwickeln.
- die spezifischen Präzisionsanforderungen an feinwerktechnische Geräte und Maschinen in der Entwicklung/ Konstruktion umsetzen.

Darüber hinaus verfügen die Studierenden in besonderem Maße über die Fähigkeit eines systematischen Vorgehens in der Analyse, Bewertung und Synthese von Feinwerktechnischen Konstruktionen. Während der Vorlesungen und Übungen wird daher vorwiegend Fach-, Methoden- und Systemkompetenz vermittelt. Es müssen alle Teilleistungen bestanden sein. Für die Fächer Feinwerktechnische Funktiosgruppen 1 und 2 gilt für die Berechnung der Endnote: Endnote= 50% (Gesamtnote der Belege) + 50% (Klausur). Es müssen alle Teilleistungen bestanden sein.

Vorraussetzungen für die Teilnahme

Modul: Feinwerktechnik

Feinwerktechnische Funktionsgruppen 1

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 399 Prüfungsnummer:2300408

Fachverantwortlich: Prof. Dr. Rene Theska

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 86 SWS: 3.0 Fakultät für Maschinenbau Fachgebiet: 2363

4.FS 5.FS 1.FS 2.FS 3.FS 6.FS 7.FS SP S P SP Ρ SP SP S V S SWS nach Fachsemester 2 0

Lernergebnisse / Kompetenzen

In der Vorlesung wird den Studenten das Wissen zum Aufbau der Fach- und Systemkompetenz auf dem Gebiet der Feinwerktechnischen Funktionsgruppen vermittelt. Die Vorlesung führt die in vorausgegangenen Lehrveranstaltungen zu konstruktiven Grundlagen vermittelten Inhalte zusammen und erweitert diese um die Feinwerktechnischen Funktionsgruppen. Die Seminare dienen der Festigung des in der Vorlesung vermittelten Inhalte und der eigenverantwortlichen Kontrolle des Selbststudiums. Über mehrere Seminare hinweg werden konstruktive Entwürfe zu vorgegebenen, praxisnahen Aufgabenstellungen unter Anwendung der in der Vorlesung erarbeiteten Inhalte erarbeitet. Die Studierenden analysieren und bewerten unter Anleitung eines Assistenten, in kleinen Gruppen, ihre im Selbststudium entstandenen konstruktiven Arbeiten. Dadurch werden Sie zur eigenständigen Konstruktion von komplexen Baugruppen und Geräten, mit hohen Anforderungen an Präzision und Zuverlässigkeit befähigt. Die Methoden- und die Sozialkompetenz wird gestärkt.

Vorkenntnisse

Technische Darstellung; Maschinenelemente

Inhalt

Das Lehrgebiet im 5. Fachsemester beinhaltet folgende Schwerpunkte sind: • Fassungen optischer Bauelemente • Führungen • Lager

Medienformen

Folien, Tafelbild, Anschauungsobjekte, Arbeitsblätter

Literatur

Krause, W. (Hrsg.): Konstruktionselemente der Feinmechanik; Hanser Verlag; 3. Auflage 2004 Krause, W. (Hrsg.): Gerätekonstruktion in Feinwerktechnik und Elektrotechnik, Hanser Verlag; 3. Auflage 2000

Detailangaben zum Abschluss

Die Leistung setzt sich zusammen aus zwei Konstruktionsbelegen (je 25%) und einer Klausur (50%). Zur Erteilung des Endergebnisses müssen alle Teilleistungen erbracht sein.

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Optronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Master Wirtschaftsingenieurwesen 2010

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Modul: Feinwerktechnik

Feinwerktechnische Funktionsgruppen 2

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1630 Prüfungsnummer:2300409

Fachverantwortlich: Prof. Dr. Rene Theska

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Maschin	enbau						Fachgebiet:	2363

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	I.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																1	1	0			

Lernergebnisse / Kompetenzen

In der Vorlesung wird den Studenten das Wissen zum Aufbau der Fach- und Systemkompetenz auf dem Gebiet der Feinwerktechnischen Funktionsgruppen vermittelt. Die Vorlesung führt die in vorausgegangenen Lehrveranstaltungen zu konstruktiven Grundlagen vermittelten Inhalte zusammen und erweitert diese um die Feinwerktechnischen Funktionsgruppen. Die Seminare dienen der Festigung des in der Vorlesung vermittelten Inhalte und der eigenverantwortlichen Kontrolle des Selbststudiums. Über mehrere Seminare hinweg werden konstruktive Entwürfe zu vorgegebenen, praxisnahen Aufgabenstellungen unter Anwendung der in der Vorlesung erarbeiteten Inhalte erarbeitet. Die Studierenden analysieren und bewerten unter Anleitung eines Assistenten, in kleinen Gruppen, ihre im Selbststudium entstandenen konstruktiven Arbeiten. Dadurch werden Sie zur eigenständigen Konstruktion von komplexen Baugruppen und Geräten, mit hohen Anforderungen an Präzision und Zuverlässigkeit befähigt. Die Methoden- und die Sozialkompetenz wird gestärkt.

Vorkenntnisse

abgeschl. Grundstudium MB fachspez. Vorkenntnisse: Technische Darstellung; Maschinenelemente; Entwicklungsmethodik; Feinwerktechnische Funktionsgruppen 1

Inhalt

Das Fach gibt eine Übersicht zu grundlegenden Funktionsgruppen der Feinwerktechnik. An ausgewählten, praxisrelevanten Ausführungsbeispielen werden die Besonderheiten erläutert und allgemeingültige Zusammenhänge herausgearbeitet. Schwerpunkte sind: Kupplungen und Getriebe

Medienformen

Folien, Tafelbild, Anschauungsobjekte, Arbeitsblätter

Literatur

Krause, W. (Hrsg.) Gerätekonstruktion; Hanser Verlag; 3. Aufl. 2000 Krause, W. (Hrsg.) Konstruktionselemente der Feinmechanik; Hanser Verlag; 3. Aufl. 2004

Detailangaben zum Abschluss

Die Leistung setzt sich zusammen aus einem Konstruktionsbeleg und einer Klausur (50%).

Zur Erteilung des Endergebnisses müssen beideTeilleistungen erbracht sein.

verwendet in folgenden Studiengängen

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013 Bachelor Optische Systemtechnik/Optronik 2013

Modul: Mess- und Sensortechnik

Modulnummer 100193

Modulverantwortlich: Prof. Dr. Thomas Fröhlich

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können sich in der metrologischen Begriffswelt bewegen und kennen die mit der Metrologie verbundenen wirtschaftlichen bzw. gesellschaftlichen Wechselwirkungen. Die Studierenden überblicken die Messverfahren zur Messung nichtelektrischer Größen hinsichtlich ihrer Funktion, Eigenschaften, mathematischen Beschreibung für statisches und dynamisches Verhalten, Anwendungsbereich und Kosten. Die Studierenden können in bestehenden Messanordnungen die eingesetzten Prinzipien erkennen und entsprechend be-wer-ten. Die Studierenden sind fähig, Aufgaben der elek-tri-schen Messung nichtelektrischer Größen zu analysieren, geeignete Messverfahren zur Lösung der Messaufgaben auszuwählen, Quellen von Mess-ab-wei-chun-gen zu erkennen und den Weg der Ermittlung der Mess-un-sicherheit mathematisch zu formulieren und bis zum vollständigen Messergebnis zu gehen.

Die praktischen Messbeispiele im Praktikum untermauern und erweitern die Wissenbasis der Studierenden. Die Studierenden arbeiten selbständig und systematisch an den Praktikumsaufgaben und nutzen in der Vorbereitungsphase Möglichkeiten der uniinternen Kommunikation um ergänzende Informationen über die messtechnischen Zusammenhänge in den einzelnen Versuchen zu erhalten. Die Teamarbeit im Praktikum ist eine gute Schule für die selbständige wissenschaftliche Arbeit innerhalb kleiner Forschungsteams im Verlauf des Studiums.

In den Lehrveranstaltungen des Moduls erwerben die Studierenden zu etwa 60% Fachkompetenz. Die verbleibenden 40% verteilen sich mit variierenden Anteilen auf Methoden- und Systemkompetenz. Sozialkompetenz erwächst isbesondere aus der Gruppenarbeit zur Vorbereitung und Durchführung des Praktikums.

Vorraussetzungen für die Teilnahme

Abgeschlossenes gemeinsames ingenieurwissenschaftliches Grundstudium (GIG) .

Modul: Mess- und Sensortechnik

Mess- und Sensortechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101510 Prüfungsnummer:2300510

Fachverantwortlich: Prof. Dr. Thomas Fröhlich

Leistungspunkte: 4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Maschinenb	au					Fachgebiet:	2372

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden können sich in der metrologischen Begriffswelt bewegen und kennen die mit der Metrologie verbundenen wirtschaftlichen bzw. gesellschaftlichen Wechselwirkungen. Die Studierenden überblicken die Messverfahren zur Messung nichtelektrischer Größen hinsichtlich ihrer Funktion, Eigenschaften, mathematischen Beschreibung für statisches und dynamisches Verhalten, Anwendungsbereich und Kosten. Die Studierenden können in bestehenden Messanordnungen die eingesetzten Prinzipien erkennen und entsprechend bewerten. Die Studierenden sind fähig, Aufgaben der elektrischen Messung nichtelektrischer Größen zu analysieren, geeignete Messverfahren zur Lösung der Messaufgaben auszuwählen, Quellen von Messabweichungen zu erkennen und den Weg der Ermittlung der Messunsicherheit mathematisch zu formulieren und bis zum vollständigen Messergebnis zu gehen.

Mit der Lehrveranstaltung erwerben die Studierenden zu etwa 60% Fachkompetenz. Die verbleibenden 40% verteilen sich mit variierenden Anteilen auf Methoden- und Systemkompetenz. Sozialkompetenz erwächst aus praktischen Beispielen in den Lehrveranstaltungen und der Gruppenarbeit im Praktikum.

Vorkenntnisse

Abgeschlossenes gemeinsames ingenieurwissenschaftliches Grundstudium (GIG)

Inhalt

Grundlagen der Messtechnik GMT:

Gesetzliche Grundlagen der Metrologie, Messabweichungen, Messunsicherheit, Messergebnis;

Grundfunktionen, Aufbau und Eigenschaften von Mess und Sensorsystemen auf den Gebieten:

- Längenmesstechnik LMT
- Winkelmesstechnik WMT
- Oberflächenmesstechnik OMT
- Spannungs- und Dehnungsmessung SDMT
- Kraftmesstechnik KMT
- Durchflussmesstechnik DUMT
- Temperaturmesstechnik TMT

Für die separate Lehrveranstaltung "Praktikum Mess- und Sensortechnik" sind 3 aus 10 Versuchen des Praktikums Messund Sensortechnik (MST) entsprechend den Möglichkeiten der eEinschreibung auszuwählen: Digitale Längenmessung, Digitale Winkelmessung, Induktive und inkrementelle Längenmessung, Temperaturmesstechnik, Durchflussmesstechnik, Kraftmess- und Wägetechnik, Interferometrische Längenmessung / Laserwegmesssystem, Mechanisch-optische Winkelmessung, Elektronisches Autokollimationsfernrohr, Oberflächenmessung

Medienformen

Nutzung der Möglichkeiten von Beamer/Laptop/PC mit Präsentationssoftware. Für die Studierenden werden Lehrmaterialien bereitgestellt. Sie bestehen aus Arbeitsblättern mit Erläuterungen und Definitionen sowie Skizzen der Messprinzipien und –geräte, deren Inhalt mit der Präsentation identisch ist. Tafel und Kreide.

Seminaraufgaben http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/und Praktikumsanleitungen http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/praktika/können von der Homepage des Instituts PMS http://www.tu-ilmenau.de/pms/bezogen werden.

Literatur

Die Lehrmaterialien enthalten ein aktuelles Literaturverzeichnis.

- 1. Alfred Böge (Hrsg.): Handbuch Maschinenbau. Vieweg. ISBN 3-486-25712-9
- 2. Hans-Juergen Gevatter (Hrsg.): Automatisierungstechnik 1: Mess- und Sensortechnik. Springer. ISBN3-540-66883-7
- 3. Tilo Pfeifer: Fertigungsmesstechnik. Oldenbourg. ISBN 3-528-05053-5

Detailangaben zum Abschluss

90min-Klausur ohne Unterlagen; zugelassenes und notwendiges Hilfsmittel: Taschenrechner.

Sofern das "Praktikum Mess- und Sensortechnik" zum Zeitpunkt der Klausur absolviert und im Thoska-System angemeldet ist (=Regelfall) bitte die Testatkarte mit 3 Versuchen MST an die Klausur anhängen.

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Master Regenerative Energietechnik 2013

Bachelor Maschinenbau 2013

Modul: Mess- und Sensortechnik

Praktikum Mess- und Sensortechnik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100201 Prüfungsnummer:2300402

Fachverantwortlich: Prof. Dr. Thomas Fröhlich

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Maschin	enbau						Fachgebiet:	2372

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	į	5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													0	0	1						

Lernergebnisse / Kompetenzen

Die Studierenden festigen über die Bearbeitung der Praktikumsaufgaben das in Vorlesungen und Seminaren erworbene Wissen. Die praktischen Messbeispiele untermauern und erweitern die Wissenbasis der Studierenden.

Die Studierenden arbeiten selbständig und systematisch an den Praktikumsaufgaben und nutzen in der Vorbereitungsphase Möglichkeiten zur Konsultation bei den

Praktikumsassistenten oder die horizontale (innerhalb einer Matrikel) und vertikale studentische Kommunikation (zwischen den Matrikeln) um ergänzende Informationen über die messtechnischen Zusammenhänge in den einzelnen Versuchen zu erhalten.

Die Teamarbeit im Praktikum ist eine gute Schule für die selbständige wissenschaftliche

Arbeit innerhalb kleiner Forschungsteams im Verlauf des Studiums.

Mit dem Praktikum erwerben die Studierenden zu etwa 40% Fachkompetenz. Die verbleibenden 60% verteilen sich mit variierenden Anteilen auf Methoden-, System-, und Sozialkompetenz.

Vorkenntnisse

Abgeschlossenes gemeinsames ingenieurwissenschaftliches Grundstudium (GIG). Die Praktika begleiten thematisch die Lehrveranstaltung Mess- und Sensortechnik.

Inhalt

Auswahl von 3 aus 10 Versuchen des Praktikums Mess- und Sensortechnik (MST):

- MST 1 Induktive und inkrementelle Längenmessung,
- MST 2 Interferometrische Längenmessung / Laserwegmesssystem,
- · MST 3 Digitale Längenmessung,
- MST 4 Mechanisch-optische Winkelmessung,
- · MST 5 Digitale Winkelmessung,
- · MST 6 Oberflächenmessung,
- · MST 7 Kraftmess- und Wägetechnik,
- MST 8 Temperaturmesstechnik,
- MST 9 Interferometrische Längenmessung / Interferenzkomparator,
- MST 10 Durchfluss- und Strömungsmesstechnik von Gasen

Medienformen

Messtechnische Versuchsaufbauten. Klassische Versuchsdurchführung und Protokollerstellung als auch PC-gestützte Versuchsdurchführung mit teilweise oder vollständig "elektronischem" Protokoll.

Literatur

Die Versuchsanleitungen MST1...MST10 sind über die Homepage des Instituts für Prozeßmeß- und Sensortechnik uniintern erreichbar:

http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/praktika/

Sie enthalten jeweils eine Literaturzusammenstellung. Die angegebenen Bücher sind im Semesterapparat

Prozessmesstechnik zu finden. Ein Großteil ist Bestandteil der Lehrbuchsammlung.

Zugriff auf den elektronischen Semesterapparat erfolgt über ftp-Server. Der entsprechende aktuelle Link ist auf http://www.tu-ilmenau.de/pms/studium/ unter "Praktikumsbelehrung" ersichtlich.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Master Regenerative Energietechnik 2013

Bachelor Maschinenbau 2013

Modul: Mikrorechnertechnik

Modulnummer 100447

Modulverantwortlich: Dr. Marion Braunschweig

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Im Modul Mikrorechnertechnik werden Fachkompetenzen zur Programmierung mit dem Ziel der Steuerung von Anlagen des Maschinenbaus und dem Ziel der Steuerung mechatronischer Systeme erworben. Die Studenten können vorhandene Programme analysieren und sind in der Lage, eigene Programme zu entwerfen. Damit erwerben die Studierenden auf dem Gebiet der Programmierung eine umfangreiche Methodenkompetenz.

Vorraussetzungen für die Teilnahme

Grundlagen der Informatik

Modul: Mikrorechnertechnik

Mikrorechnertechnik

Fachabschluss: mehrere Teilleistungen Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 656 Prüfungsnummer:230035

Fachverantwortlich: Dr. Marion Braunschweig

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Maschine	enbau						Fachgebiet:	2314

	1	I.FS	3		2.FS	3	,	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

In der Vorlesung Mikrorechnertechnik werden Fachkompetenzen zur Programmierung eines PC mit dem Ziel der Steuerung von Anlagen des Maschinenbaus und dem Ziel der Steuerung mechatronischer Systeme erworben. Die Studenten können vorhandene Programme analysieren und sind in der Lage, eigene Programme zu entwerfen. Damit erwerben die Studierenden auf dem Gebiet der Programmierung eine umfangreiche Methodenkompetenz.

Vorkenntnisse

Grundlagen der Informatik

Inhalt

Programmieren mit C und C++: Datentypen, Operatoren, Ablaufsteuerung, Datenfelder und Strukturen, Dateiarbeit, Hardwarenahe Programmierung, Klassen, Microsoft.NET Framework, Nutzung der Framework Class Library

Medienformen

pdf-Skript im Internet

Literatur

Literatur zu C und C++, Online-Hilfe der Entwicklungsumgebung Microsoft Visual Studio, Internettutorials zu C++

Detailangaben zum Abschluss

230035 Prüfungsleistung mit mehreren Teilleistungen (= besteht aus 1 PL und 1 SL)

- 2300289 alternative SL (= Praktikum). Die SL ist keine Zulassungsvoraussetzung für die dazugehörige PL (sPL).
- 2300032 schriftliche PL (= Klausur 90 min.).

Die generierte PL ist bestanden, wenn alle ihr zugeordneten Leistungen (1 PL + 1 SL) bestanden sind.

Die Note für die generierte PL wird aus der ihr zugeordneten PL (sPL) gebildet.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung MR

Master Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung MB

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Modul: Technische Optik und Lichttechnik 2

Modulnummer 100448

Modulverantwortlich: Prof. Dr. Stefan Sinzinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden analysieren und bewerten Probleme der optischen Abbildung sowie Licht- und Strahlungstechnische Probleme. Mit Hilfe des erworbenen Fachwissens entwerfen, modellieren und optimieren sie optische Abbildungs- und Beleuchtungssysteme. In Vorlesungen und Übungen

wird Fach-, Methoden- und Systemkompetenz vermittelt. Die Studierenden verfügen über Sozialkompetenz, die insbesondere durch intensive Förderung von Diskussion, Gruppen- und Teamarbeit vertieft wird.

Vorraussetzungen für die Teilnahme

gute Mathematik und Physikkenntnisse; Vorlesung Technische Optik und Lichttechnik 1

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Technische Optik und Lichttechnik 2

Lichttechnik 2

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 315 Prüfungsnummer:2300089

Fachverantwortlich: Prof. Dr. Christoph Schierz

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Maschinenbau Fachgebiet: 2331

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS S P S P V S P SP S Ρ SP S SWS nach Fachsemester 1 0

Lernergebnisse / Kompetenzen

Die Studierenden können licht- und strahlungstechnische Probleme analysieren und bewerten. Die Studierenden haben Fachwissen und praktische Erfahrungen zur Messung von lichttechnischen Größen. In Vorlesungen und Praktika wird Fach-, Methoden- und Systemkompetenz vermittelt.

Vorkenntnisse

Technische Optik 1 und Lichttechnik 1

Inhalt

Licht- und Strahlungsfeld, lichttechnische und strahlungstechnische Eigenschaften von Materialien, Leuchten und Lichtgeräte, Praktische Messungen

Medienformen

Arbeitsblätter

Literatur

Gall, D.: Grundlagen der Lichttechnik - Kompendium, Pflaum Verlag 2004, ISBN 3-7905-0923-X

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Master Mechatronik 2014

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Master Mechatronik 2008

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Technische Optik und Lichttechnik 2

Technische Optik 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 878 Prüfungsnummer:2300068

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte: 4	Workload (h):	120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Maschinenbau	ı					Fachgebiet:	2332

	1	1.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS	3	į	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden analysieren spezielle Probleme der optischen Abbildung und wenden vertiefte Kenntnisse der wellenoptischen Beschreibung optischer Bauelemente und Systeme an. Sie modellieren optische Abbildungssysteme auf der Basis der diskutierten Modellbeschreibungen. Sie können optische Abbildungssysteme entwerfen, analysieren und in ihrer Funktionalität optimieren. In Vorlesungen und Übungen wird Fach-, Methoden- und Systemkompetenz vermittelt. Die Studierenden verfügen über Sozialkompetenz, die insbesondere durch intensive Förderung von Diskussion, Gruppen- und Teamarbeit vertieft wird.

Vorkenntnisse

Gute Mathematik und Physik Grundkenntnisse

Inhalt

Einführung in die Wellenoptik, Spezielle Abbildungsprobleme (z.B. Physikalische Grenzauflösung, "Tiefenschärfe", Perspektive, Bauelemente, optische Systeme), Sehvorgang, Optische Instrumente und Geräte (z.B. Mikroskop, Fernrohr, Endoskop, Fotografie, Scanner)

Medienformen

Daten-Projektion, Folien, Tafel Vorlesungsskript

Literatur

W. Richter: Technische Optik 2, Vorlesungsskript TU Ilmenau. H. Haferkorn: Optik, 4. Auflage, Wiley-VCH 2002. E. Hecht: Optik, Oldenbourg, 2001.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Master Medientechnologie 2009

Master Medientechnologie 2013

Master Wirtschaftsingenieurwesen 2011

Bachelor Maschinenbau 2008

Master Wirtschaftsingenieurwesen 2010

Bachelor Maschinenbau 2013

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Optische Systeme

Modulnummer:100449

Modulverantwortlich: Prof. Dr. Stefan Sinzinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden verstehen und analysieren die Grundlagen komplexer optischer Abbildungssysteme, (mikro-)optischer Bauelemente und Systeme sowie von Sender- und Empfänger-Architekturen optischer Übertragungssysteme. Sie sind fähig auf der Basis der fundierten Kenntnisse der physikalischen Funktionsweise der erforderlichen Komponenten die systemtechnische Umsetzung zu bewerten und einfache Systeme z.B. für optische Abbildungen oder optische Telekommunikationstechnik zu synthetisieren.

Vorraussetzungen für die Teilnahme

Kenntnisse der Festkörperphysik, der Technischen und Physikalischen Optik, der Optoelektronik und der Elektrotechnik und Informationstechnik aus Lehrveranstaltungen des Gemeinsamen ingenieurwissenschaftlichen Grundstudiums und des 5. Semesters.

Modul: Optische Systeme

Bewertung und Synthese optischer Systeme

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100619 Prüfungsnummer:2300444

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Maschin	enbau						Fachgebiet:	2332

	1	I.FS	3		2.FS	3	,	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	2	0			

Lernergebnisse / Kompetenzen

Die Studierenden analysieren, verstehen und optimieren optische Abbildungssysteme zunehmender Komplexität. Sie verstehen die Ursachen für Abbildungsfehler im nicht-paraxialen Bereich, wenden vertiefte Kenntnisse der wellenoptischen Beschreibung optischer Bauelemente und Systeme an. Sie modellieren, analysieren, bewerten und optimieren optische Abbildungssysteme auf der Basis der diskutierten Modellbeschreibungen und einschlägiger Optik-Design Programme. In Vorlesungen und Übungen wird Fach-, Methoden- und Systemkompetenz vermittelt. Die Studierenden verfügen über Sozialkompetenz, die insbesondere durch intensive Förderung von Diskussion, Gruppen- und Teamarbeit vertieft wird.

Vorkenntnisse

Gute Mathematik und Physik Grundkenntnisse; Gute Optik Grundkenntnisse

Inhalt

Geometrisch-optische Abbildung und Abbildungsfehler, Analytische Bildfehlertheorie, Wellenoptische Theorie der Abbildung; Paraxialer Entwurf optischer Systeme, analytischer Synthese optischer Systeme, Optimierung und Korrektion optischer Systeme

Medienformen

Daten-Projektion, Folien, Tafel Vorlesungsskript

Literatur

- H. Gross, "Handbook of Optical Systems", Wiley VCH, Berlin.
- W. Richter: Bewertung optischer Systeme. Vorlesungsskript TU Ilmenau.
- W. Richter: Synthese optischer Systeme, Vorlesungsskript TU Ilmenau.
- H. Haferkorn: Optik. 4. Auflage, Wiley-VCH 2002. E. Hecht: Optik. Oldenbourg, 2001.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Optische Systeme

Integrierte Optik und Mikrooptik

Fachabschluss: Prüfungsleistung Art der Notengebung: Gestufte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Englisch

Fachnummer: 879 Prüfungsnummer:2300088

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 68 SWS: 2.0 Fakultät für Maschinenbau Fachgebiet: 2332

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S SP S P S P S S S SWS nach Fachsemester 2 0

Lernergebnisse / Kompetenzen

Die Studierenden verfügen über fundierte Kenntnisse der Wellenausbreitung und skalaren Beugungstheorie. Sie sind in der Lage die Wirkungsweise mikrooptischer und beugungsoptischer Bauelemente zu verstehen. Sie analysieren und bewerten mikrooptische Bauelemente und Systeme im Hinblick auf ihre Funktionalität und Anwendungsmöglichkeiten. Sie sind fähig mikro-, beugungs-, und wellenleiteroptische Bauelemente zu synthetisieren und in optischen Systemen gezielt zum Einsatz zu bringen.

Vorkenntnisse

Gute Mathematik und Physik Grundkenntnisse

Inhalt

Integrierte Wellenleiteroptik, Lichtausbreitung in homogenen und inhomogenen Medien;

Freiraum-Mikrooptik, refraktive und diffraktive Mikrooptik, Spezielle Präparationsmethoden und Herstellungstechnologien für mikrooptische Bauelemente und Systeme, Bauelemente, Anwendungen

Medienformen

Daten-Projektion, Tafel Folienzusammenstellung

Literatur

- A. Ghatak, K. Thyagarajan: Introduction to fiber optics, Cambridge University Press, 1998.
- B. Saleh, M. Teich: Fundamentals of Photonics, Wiley Interscience, 1991.
- St. Sinzinger, J. Jahns: Microoptics, Wiley-VCH, 2003

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mechatronik 2014

Master Mikro- und Nanotechnologien 2008

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Master Mechatronik 2008

Master Mikro- und Nanotechnologien 2013

Master Miniaturisierte Biotechnologie 2009

Modul: Optische Systeme

Optische Telekommunikationstechnik 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1616 Prüfungsnummer:2100131

Fachverantwortlich: Prof. Dr. Matthias Hein

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2113

	1	I.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Die Studierenden verstehen und analysieren die Grundlagen von Sender- und Empfänger-Architekturen optischer Übertragungssysteme. Sie identifizieren die Eigenschaften der erforderlichen Komponenten und erschließen die Zusammenhänge zwischen ihren physi-ka-lischen Wirkprinzipien und schaltungstechnischen Implemen-tierungen. Die Studierenden übertragen diese Kenntnisse auf die grundlegenden Aspekte des Zusammen-wirkens verschiedener Komponenten. Sie erfassen Systemaspekte der optischen Telekommuni-kations-technik und beurteilen diese im Gesamt-kontext relevanter Anwendungen und Trends in Forschung und Entwicklung.

Vorkenntnisse

Grundkenntnisse Festkörperphysik, physikalische Optik, Elektrotechnik

Inhalt

- 1. Lichtwellenleiter
- 2. Optische Transmitter
- 3. Optische Detektoren
- 4. Optische Verstärker
- 5. Weitere ausgewählte aktive und passive optische Baugruppen und Einführung in optische Übertragungssysteme

Medienformen

Tafelbild, interaktive Entwicklung der Stoffinhalte

Illustrationen zur Vorlesung (in elektronischer Form verfügbar)

Hinweise zur persönlichen Vertiefung

Identifikation vorlesungsübergreifender Zusammenhänge

Vorlesungsbegleitende Aufgabensammlung zur selbständigen Nacharbeitung (in elektronischer Form verfügbar)

Literatur

Detailangaben zum Abschluss

[&]quot;Fiber-optic communication technology", D.K. Mynbaev, L.L. Scheiner, Prentice Hall 2001.

[&]quot;Fiber-optic communication systems", G.P. Agrawal, Wiley 2002.

[&]quot;Optische Nachrichtentechnik – Grundlagen und Anwendungen", V. Brückner, Teubner 2003.

[&]quot;Optische Informationsübertragung", B. Bundschuh, J. Himmel, Oldenbourg 2003.

[&]quot;Optische Nachrichtentechnik", G. Grau, W. Freude, Springer 1991.

[&]quot;Fiber-optic communications", G. Lachs, McGraw-Hill Telecommunications, 1998.

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Modul: Optoelektronik und Technologie

Modulnummer 100450

Modulverantwortlich: Prof. Dr. Heiko Jacobs

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden kennen die Bauelemente der Optoelektronik und die in ihnen ablaufenden physikalischen Wirkprinzipien und die für ihre Fertigung notwendigen Materialien und Prozeßschritte. Die Studierenden werden in die Lage versetzt die Bauelemente der Optoielektronik zu bewerten und zu analysieren. Die erworbenen Kenntnisse versetzen die Studierenden in die Lage diese zu synthetisieren und geeignete optoelektronische Bauelemente auszuwählen, zu entwerfen, sowie Herstellungstechnologien zu entwickeln. Die Studierenden sind in der Lage Entwicklungen auf dem Gebiet der optoelektronischen Bauelemente und ihrer Fertigung zu evaluieren.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Optoelektronik und Technologie

Optoelektronik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1323 Prüfungsnummer:2100054

Fachverantwortlich: Dr. Jörg Pezoldt

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik un	nd Informationstechnik				Fachgebiet:	2142

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)	į	5.FS	3	(3.FS	3		7.FS	3
SWS nach	V	S	Р	>	S	Р	V	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	2	0						

Lernergebnisse / Kompetenzen

In dieser Vorlesung werden Bauelemente und Systeme der Optoelektronik dargestellt. Die Lehrveranstaltung hat das Ziel, den Studenten Kenntnisse der Funktionsweise moderner optoelektronischer Bauelemente zu vermitteln. Neben allgemeinen Grundlagen werden vorwiegend Probleme behandelt, die für die optische Nachrichtentechnik von Bedeutung sind: Lichtwellenleiter, Fotoempfänger und lichtemittierende Bauelemente. Dabei stehen anwendungsbezogene und technologische Aspekte im Vordergrund, es wird auf neueste Arbeiten auf diesem Gebiet eingegangen. Der Schwerpunkt liegt dabei auf: - Vermittlung der physikalisches Wirkprinzipien der opto-elektronischer Bauelementen (Leucht- and Laserdioden), - Anwendung von Lösungsmethoden im analytischen und numerischen Bereich (Übungen). Die Student(inn)en sollen in dieser Vorlesung die wichtigsten Bauelemente und Systeme der Optoelektronik kennenlernen und einen Überblick über zukünftige Entwicklungen und Trends erhalten.

Vorkenntnisse

Die Vorlesung baut auf dem Grundstudium Physik auf, der vorherige Besuch einer einführenden Veranstaltung zur Festkörperphysik und Mathematik (Lineare Algebra, Differential-rechnung) wird jedoch empfohlen.

Inhalt

Der Inhalt der Vorlesung umfasst: 1. Grundlagen der optischen Nachrichtentechnik; 2. physikalische Grundlagen der Optoelektronik; 3. Halbleitermaterialien für Optoelektronik; 4. Photodetektoren; 5. Lumineszenz-Dioden; 6. Organische Lumineszenz-Dioden; 7. Mechanismen der Inversionserzeugung in Festkörper-Laserdioden; 8. die technischen Realisierungsformen der Festkörper-Laserdioden; 9. Wellenleitern (kurze Einleitung). Daran anschließend werden spezielle Laser und ihre ausgewählte Anwendungen in der Meßtechnik, Physik, und Medizin behandelt.

Medienformen

Vorlesungen: MS Powerpoint, Overhead-Folien, Tafel Übungen: Matlab und Origin software

Literatur

Ein Skriptum zur Lehrveranstaltung ist erhältlich. Weitere Literatur: 1. Bludau, Wolfgang: Halbleiter-Optoelektronik, Hanser, München 1995 2. Ebeling, Karl Joachim: Integrierte Optoelektronik, Springer-Verlag, Berlin 1992 3. Paul, Reinhold: Optoelektronische Halbleiterbau-elemente, Teuber, Stuttgart 1992 4. Glaser, W.: Photonik für Ingenieure, Verlag Technik, Berlin 1997

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Bachelor Optronik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Elektrotechnik und Informationstechnik 2014 Vertiefung MNE

Master Wirtschaftsingenieurwesen 2015 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Optoelektronik und Technologie

Technologie optoelektronischer Bauelemente

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 1615 Prüfungsnummer:2100469

Fachverantwortlich: Dr. Jörg Pezoldt

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Elektrot	echnik ι	and Informationstechnik				Fachgebiet:	2142

	1	I.FS	6	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester																1	1	0			

Lernergebnisse / Kompetenzen

Im diesem Fach werden grundlegende Verfahren und Verfahrensschritte der Technologie optoelektronischer Bauelementen und deren Integrationstechniken auf der Basis der Technologie von Verbindungshalbleiter und der Siliziumtechnologie vermittelt. Die Studierenden beherrschen die Grundlagen der Herstellung optoelektronischer Bauelemente und sind fähig technische und wirtschaftliche Aspekte zu beurteilen. Sie sind in der Lage, die Integrationstechniken optoelektronischer Bauelemente auf der Basis der Siliziumtechnologie zu analysieren. Die Studierenden sind fähig prinzipielle Lösungen für die technologischen Prozesse zur Herstellung von emittierenden Bauelementen zu entwerfen. Ebenso sind Sie in der Lage die technologischen Prozesse zur Herstellung von Fotodetektoren zu bewerten. Sie sind fähig zur Systemintegration optoelektronischer Bauelemente unter Einbeziehung von Spiegeln und Wellenleitern.

Vorkenntnisse

Die Vorlesung baut auf dem Modul Physik des gemeinsamen ingenieurwissenschaftlichen Grundlagenstudiums und auf Grundkenntnissen der physikalischen Optik und der Werkstoffwissenschaften auf.

Inhalt

 Kristalle und ihre Eigenschaften 2. Mischkristalle 3. Heterostrukturen 4. Einkristallzucht von elementaren und Verbindungshalbleitern 5. Epitaxie und Heteroepitaxie 6. Dotierung 7. Metallisierung 8. Fotolithografie 9. Ätzen 10. Herstellung von Leuchtdioden und Lasern 11. Herstellung von Fotodetektoren 12. Herstellung von Spiegeln und Wellenleitern 13. Systemintegration

Medienformen

Overhead-Folien und Tafel

Literatur

1. J. Singh: Semiconductor optoelectronics: physics and technology, McGraw-Hill,1995. 2. H. Zimmermann: Silicon optoelectronic integrated circuits, Springer, 2004, 352 S. 3. K.-J. Ebeling: Integrierte Optoelektronik: Wellenleiteroptik, Photonik, Halbleiter, Springer, 1992.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Modul: Qualitätssicherung und Bildverarbeitung

Modulnummer:100451

Modulverantwortlich: Prof. Dr. Gunther Notni

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind fähig Aufgaben der digitalen Bildverarbeitung zu analysieren und deren Machbarkeit abzuschätzen. Sie sind in der Lage Lösungen für mess- und erkennungstechnische Aufgaben auf der Grundlage von Systemkomponenten selbständig zu entwerfen und umzusetzen.

Die Studierenden verfügen über Wissen zum Aufbau von Qualitätsmanagementsystemen und wichtigen QM-Normen und QM-Anforderungen. Weiterhin werden die Studierenden mit modernen Methoden und Werkzeugen des Qualitätsmanagements Vertraut gemacht.

Vorraussetzungen für die Teilnahme

Naturwissenschaftliche und ingenieurwissenschaftliche Fächer des Gemeinsamen Ingenieurwissenschaftlichen Grundstudiums. Kenntnisse zur Wahrscheinlichkeitsrechnung und mathematischen Statistik

Detailangaben zum Abschluss

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Qualitätssicherung und Bildverarbeitung

Digitale Bildverarbeitung 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1617 Prüfungsnummer:2300090

Fachverantwortlich: Prof. Dr. Gunther Notni

Leistungspunkte: 4		Workload (h):	120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Maschinen	bau						Fachgebiet:	2362

	1	I.FS	<u> </u>		2.FS	3		3.FS	3	4	l.FS	<u> </u>		5.FS	<u> </u>	- (3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р
Fachsemester																2	0	1			

Lernergebnisse / Kompetenzen

Im diesem Fach werden die Grundlagen der digitalen Bildverarbeitung vermittelt. Die Studierenden beherrschen die Grundbegriffe der Bildverarbeitung und sind fähig die technische und wirtschaftliche Machbarkeit von Lösungen der industriellen Bildverarbeitung zu beurteilen. Sie sind in der Lage die Eigenschaften elektronischer Bildsensoren, die optische Abbildung und Beleuchtung, die Einzelbild- und Bildsequenzerfassung und die Speicherung von Bilddaten zu analysieren. Die Studierenden sind fähig Lösungen für messtechnischen Aufgaben und erkennungstechnische Anwendungen der digitalen Bildverarbeitung zu entwerfen.

Vorkenntnisse

Naturwissenschaftliche und ingenieurwissenschaftliche Fächer des Gemeinsamen Ingenieurwissenschaftlichen Grundstudiums

Inhalt

1. Grundbegriffe der digitalen Bildverarbeitung 2. Bildsensoren, Optik und Beleuchtung 3. Digitale Bildvorverarbeitung 4. Systemtechnik der Bildverarbeitung 5. Verfahren zur Bilderkennung 6. Dimensionelle Messtechnik

Medienformen

Tafel, Beamer (Bilder, Grafiken, Animationen und Live-Vorführung von Algorithmen), Vorlesungsscript Digitale Bildverabeitung 1

Literatur

[1] Brückner, P.: Vorlesungsscript Digitale Bildverarbeitung 1, TU Ilmenau 2002 [2] Ernst, H.; Einführung in die digitale Bildverarbeitung; Franzis Verlag, München 1991 [3] Jähne, B.; Digitale Bildverarbeitung 2.Aufl.; Springer Verlag Berlin, Heidelberg 1991 [4] Ahlers, R.- J., Warnecke H. J.; Industrielle Bildverarbeitung; Addison- Wesley, Bonn München 1991

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Bachelor Optische Systemtechnik/Optronik 2013 Modul: Qualitätssicherung und Bildverarbeitung

Qualitätssicherung

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1595 Prüfungsnummer:2300385

Fachverantwortlich: Prof. Dr. Gunther Notni

Leistungspunkte: 2	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschine	nbau						Fachgebiet:	2362

	1	I.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Die Studierenden sollen Fähigkeiten, Fertigkeiten und Können auf dem Gebiet des Qualitätsmanagements und zu den Werkzeugen des Qualitätsmanagements erwerben. Insbesondere zu QM-Systemen soll Systemkompetenz erworben werden. Fachkompetenzen zu einzelnen Tools des QM sollen durch praktische Beispiele vermittelt werden. Bei der Vermittlung von Methoden des QM werden auch Sozialkompetenzen erarbeitet. Die Studierenden - verfügen über die Grundlagen des Qualitätsmanagements wie bspw. Normen und Anforderungen an QM-Systeme, Branchenspezifische Anforderungen, kennen den Aufbau von QM-Systemen und beherrschen den Ablauf einer Zertifizierung und eines Audits - haben eine systematische Übersicht zu den Methoden und Werkzeugen des Qualitätsmanagements - Iernen ausgewählte Werkzeuge des QM kennen, bspw. statistische Prozessregelung (SPC) und Annahmestichprobenprüfung

Vorkenntnisse

wünschenswert: Kenntnisse zur Wahrscheinlichkeitsrechnung und mathematischen Statistik

Inhalt

- Grundlagen des Qualitätsmanagements - ISO 9000 Normenfamilie, Branchennormen - Übersicht Werkzeuge des Qualitätsmanagements - Zertifizierung und Auditierung - Stichprobenprüfung - Qualitätsregelkartentechnik

Medienformen

Tafel, Overhead-Projektor (Transparentfolien), Beamer-Präsentation, Videofilme, Lehrbücher

Literatur

Linß, G.: Qualitätsmanagement für Ingenieure (Fachbuchverlag Leipzig 2005) Linß, G.: Training Qualitätsmanagement (Fachbuchverlag Leipzig 2004) Linß, G.: Statistiktraining Qualitätsmanagement (Fachbuchverlag Leipzig 2005)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung MR

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung MR

Master Regenerative Energietechnik 2011

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Regenerative Energietechnik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Werkstoffwissenschaft 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Modul: Nichttechnische Fächer

Modulnummer 100452

Modulverantwortlich: Jana Buchheim

Modulabschluss:

Lernergebnisse

Die Studierenden werden dazu befähigt, "Methoden- und Sozialkompetenzen" auf den Gebieten:

Betriebswirtschaft

Fremdsprache

Kommunikation und Teamwork

Einordnung technischer Entwicklungen in historische, kulturelle und politische Zusammenhänge

aufzubauen und anzuwenden.

Vorraussetzungen für die Teilnahme

Keine

Detailangaben zum Abschluss

Eine unbenotete und zwei benotete Studienleistungen

Modul: Fremdsprache

Modulnummer 100206

Modulverantwortlich: Dr. Kerstin Steinberg-Rahal

Modulabschluss:

Lernergebnisse

Der Studierende erwirbt fachsprachliche Kenntnisse begleitend zu seinem Studium Die konkrete Modulbeschreibung befindet sich im Fächerkatalog unter der jeweiligen Sprache.

Vorraussetzungen für die Teilnahme

siehe Fächerkatalog

Detailangaben zum Abschluss

siehe Fächerkatalog

Modul: Studium generale

Modulnummer:100813

Modulverantwortlich: Dr. Andreas Vogel

Modulabschluss:

Lernergebnisse

Die Studierenden sind in der Lage soziale, philosophische, politische, wirtschaftliche und kulturelle Fragen zu erörtern, die sich unmittelbar aus der Entwicklung der Technik und Naturwissenschaften ergeben.

Das Modul beinhaltet wahlobligatorische geistes- und sozialwissenschaftliche Studieninhalte.

Das Themenspektrum umfasst die Kompetenz- und Wissensbereiche:

Basiskompetenz: Vermittlung notwendiger Kompetenzen für ein erfolgreiches Studium und die spätere Berufstätigkeit.

Orientierungswissen: Vermittlung fachübergreifender Studieninhalte, die Bezüge zwischen verschiedenen Wissenschaftsdisziplinen herstellen und vertiefen sowie weitergehende geistige Orientierung geben.

Vorraussetzungen für die Teilnahme

Keine

Detailangaben zum Ab<u>schluss</u>

Die Abschlüsse zu den einzelnen Fächern werden in der jeweiligen Fachbeschreibung ausgewiesen.

Modul: Nichttechnische Fächer

Grundlagen der BWL 1

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 488 Prüfungsnummer:2500001

Fachverantwortlich: Prof. Dr. Katrin Haußmann

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Wirtsch	aftswi	ssenschaften und Medien				Fachgebiet:	2529

	1	I.FS)	2	2.FS	3		3.FS	3	4	I.FS)	Į	5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Die Studierenden lernen im Rahmen der Veranstaltung die grundsätzlichen betriebswirtschaftlichen Zusammenhänge kennen und sind in der Lage, daraus Konsequenzen für das unternehmerische Handeln abzuleiten.

Neben dem Wissen über gängige Marktformen sind den Studierenden auch Problembereiche im Zusammenhang mit

Unternehmensgründungen (Rechtsform- und Standortwahl) bekannt. Aufbauend auf der Aufbaustruktur eines Unternehmens sowie dessen Wertschöpfungskette verstehen sie die grundsätzlichen Problembereiche der einzelnen betrieblichen Grundfunktionen und kennen grundlegende methodische Ansätze zu deren Bewältigung. Der Praxisbezug wird über aktuelle Beispiele aus der Praxis und Fallstudien hergestellt.

Vorkenntnisse

keine

Inhalt

Unternehmen und Märkte

Unternehmensgründungen

Betriebliche Wertschöpfungskette

Beschaffungsmanagement

Produktionsmanagement

Marketingmanagement

Personalmanagement

Investition und Finanzierung

Internes und externes Rechnungswesen

Medienformen

Skript, ergänzendes Material (zum Download eingestellt), Beamer, Presenter

Literatur

- Hutzschenreuter, Allgemeine Betriebswirtschaftslehre, 4. Auflage, 2011
- Wöhe, Einführung in die Allgemeine Betriebswirtschaftslehre, 24. Auflage, 2010
- Wöhe/Kaiser/Döring, Übungsbuch zur Allgemeinen Betriebswirtschaftslehre, 13. Auflage, 2010
- Diverse Artikel aus Fachzeitschriften (zum Download eingestellt)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Technische Physik 2011

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Mathematik 2009

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biotechnische Chemie 2013

Modul: Wahlpflichtmodul

Modulnummer 100453

Modulverantwortlich: Prof. Dr. Gunther Notni

Modulabschluss:

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Wahlpflichtmodul

Angewandte Wellenoptik

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Englisch

Fachnummer: 884 Prüfungsnummer:2300256

Fachverantwortlich: Prof. Dr. Stefan Sinzinger

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschine	nhau						Fachgehiet:	2332

		1.FS	3	2	2.FS	3		3.FS	3		I.FS	<u> </u>	!	5.FS	3	(3.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden analysieren die elektromagnetischen Grundlagen der Ausbreitung optischer Lichtwellen und deren Wechselwirkung in optischen Bauelementen und Systemen. Sie sind fähig die wellenoptischen Besonderheiten bei der Bewertung, dem Entwurf und der Optimierung optischer Systeme mit zu berücksichtigen. In Vorlesungen und Übungen wird Fach-, Methoden- und Systemkompetenz vermittelt. Die Studierenden verfügen über Sozialkompetenz, die insbesondere durch intensive Förderung von Diskussion, Projekt- und Teamarbeit vertieft wird.

Vorkenntnisse

Gute Mathematik und Physik Grundkenntnisse

Inhalt

Licht als elektromagnetische Strahlung, Lichtausbreitung, Beugung und Interferenz, Polarisation und Kohärenz

Medienformen

Daten-Projektion, Folien, Tafel Folienzusammenstellung, Demonstrationen

Literatur

J. Jahns: Photonik, Oldenbourg, 200 B. Saleh, M. Teich: Fundamentals of Photonics, Wiley Interscience, 1991. M. Born, E. Wolf: Principles of Optics, Pergamon Press, 1980.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Optronik 2008

Modul: Wahlpflichtmodul

Diagnostik- und Therapietechnik der Augenheilkunde

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101586 Prüfungsnummer:2200528

Fachverantwortlich:Stefan Schramm

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2221

	1	I.FS)	2	2.FS	3	,	3.FS	3	2	I.FS)	ţ	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

- Die Studierenden kennen alle wesentlichen ophthalmologische Diagnose- und Therapieverfahren, die auf optoelektronischen Prinzipien aufbauen und besitzen Kenntnisse über deren relevante medizinische Anwendung.
- Die Studierenden besitzen Kenntnisse über die zugrunde liegenden physikalisch-technischen und biophysikalischen Prinzipien dieser Systeme.
- Die Studierenden haben ein Grundverständnis für die sehr enge Wechselwirkung zwischen medizinischer Problemstellung und gerätetechnischer Lösung.
- Die Studierenden sind in der Lage, mit Anwendern und Entwicklern ophthalmologischer Geräte fachlich korrekt zu kommunizieren und Lösungskonzepte zu bewerten.

Vorkenntnisse

BMT-BSc: Anatomie, Physiologie, Neurobiologie und klinisches Grundlagenwissen, Grundlagen BMT und BSV, GIG,

Therapietechnik in der Ophthalmologie

BMT-MSc: Bildverarbeitung in der Medizin 1, Sehen und Refraktion

Inhalt

- Verfahren und Geräte zur Diagnostik des vorderen Augenabschnittes
- Tonometrieverfahren, Perimetrie
- Selektive Farbkanalstimulationen
- Streulichtanalyse im Auge
- Verfahren und Geräte für die Diagnostik und Vermessung des Auges
- Kohärenzoptische Verfahren (OCT/PCI)
- Verfahren und Geräte zur Diagnostik des Augenhintergrundes
- Fluoreszenz-Lifetime-Imaging
- optische Kohärenztomographie am Fundus
- · Koordinatensystem und Koregistrierung
- · Gefäßdurchmesser/ retinale Gefäßanalyse
- Lasertechnologien zur Behandlung von Augenerkrankungen
- Sehprothesen (Artificial Vision)
- Der Lehrstoff wird in den Komplexen zeitlich und inhaltlich koordiniert mit den Lehrinhalten des Fachs Ophthalmopathologie vermittelt. Damit wird für die Studierenden des Wahlmoduls Ophthalmologietechnik der interdisziplinäre Zusammenhang vertieft.

Repetitorium Optik (verpflichtend für Wahlmodulstudenten):

• Wiederholung / Vermittlung wesentlicher optischer Gesetze sowie lichttechnischer Größen und ihrer Zusammenhänge

Medienformen

Tafel, Computerpräsentation, Videoclips, Gerätedemonstrationen und Übungen an Gesunden, Seminar, PDF-Vorlesungsskripte als ergänzende Lehrmaterialien

Literatur

- "Augenärztliche Untersuchungsmethoden" Wolfgang Straub. 3., vollst. überarb. und erw. Aufl. Stuttgart [u.a.] : Thieme, 2008
- "Optics of the Human Eye" David A. Atchison. Rep. Oxford [u.a.]: Butterworth-Heinemann, 2002
- "Optical devices in ophthalmology and optometry: technology, design principles, and clinical applications" Michael Kaschke.
- Weinheim: Wiley-VCH, 2014
- "Kurzlehrbuch Augenheilkunde: mit 19 Tabellen" Thomas Damms. 1. Aufl. München: Elsevier, Urban & Fischer, c 2014
- •"BASICS Augenheilkunde" Cordula Dahlmann. 3. Aufl. München : Elsevier, Urban & Fischer, c 2014
- "Technische Diagnostik in der Augenheilkunde" Claus Flittiger. 1. Aufl. Bern : Huber, 2012
- "Augenheilkunde" Gerhard K. Lang. 5., überarb. Aufl. Stuttgart [u.a.] : Thieme, c 2014

Detailangaben zum Abschluss

Wird als Teilfach in der mündlichen Komplexprüfung Ophthalmologische Technik geprüft.

Als Technisches Nebenfach: Prüfungsform: mündlich

Dauer: 20 min

Abschluss: benotete Studienleistung

Repetitorium Optik (nur für Wahlmodulstudenten):

Prüfungsform: schriftlich Dauer: 30 min

Abschluss: Testat (Voraussetzung für Zulassung zur Komplexprüfung)

verwendet in folgenden Studiengängen

Master Biomedizinische Technik 2009

Bachelor Optische Systemtechnik/Optronik 2013

Master Biomedizinische Technik 2014

Modul: Wahlpflichtmodul

Einführung in das Recht

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 551 Prüfungsnummer:2500009

Fachverantwortlich: Prof. Dr. Frank Fechner

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Wirtsch	aftswi	ssenschaften und Me	dien				Fachgebiet:	2562

	1	1.FS	<u> </u>	2	2.FS	3		3.FS	3		I.FS	3	Į.	5.FS	3	(3.FS	3		7.FS	<u>`</u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden werden befähigt, die Grundlagen des Rechts, dessen Aufgaben, Wirkungsweise und Grenzen (begriffliches Wissen) zu verstehen. Sie sollen nach dem Besuch der Veranstaltung in der Lage sein, die verschiedenen Rechtsgebiete voneinander abzugrenzen sowie das Recht der obersten Staatsorgane und die Staatsprinzipien (begriffliches Wissen) sowie die Methodik des deutschen Rechts (verfahrensorientiertes Wissen) anzuwenden. Letztlich lernen sie Teilbereiche des Zivilrechts, Verwaltungsrechts und Europarechts kennen (Faktenwissen). Hierdurch werden sie in die Lage versetzt, Erfolgsaussichten von Rechtsstreitigkeiten grob einzuschätzen und sich mit Juristen auf fachlicher Ebene austauschen zu können.

Vorkenntnisse

keine

Inhalt

- A. Hinweise zu Unterlagen und Rechtstexten
- B. Einführung
- I. Zur Bedeutung rechtlicher Grundlagenkenntnisse
- II. Hilfsmittel
- III. Grundlagen und Methoden wissenschaftlichen Arbeitens
- IV. Aufgaben, Wirkungsweise und Grenzen des Rechts
- V. Methoden des Rechts
- C. Staatsprinzipien
- I. Überblick
- II. Die Staatsprinzipien im Einzelnen
- D. Gesetzgebungskompetenzen
- E. Oberste Staatsorgane
- I. Bundestag
- II. Budesrat
- III. Bundesregierung
- IV. Bundespräsident
- F. Grundrechte
- I. Bedeutung und Arten von Grundrechten
- II. Anwendungsbereich der Grundrechte
- III. Grundrechtsadressaten
- IV. Drittwirkung von Grundrechten

- G. Überblick: Verwaltungsrecht
- H. Überblick: Recht der Europäischen Union
- I. Grundlagen
- II. Primär- und Sekundärrecht
- III. Die EU-Organe im Überblick
- J. Grundlagen des BGB
- I. Überblick über die "Bücher" des BGB
- II. Grundlagen des Vertragsschlusses/ Allgemeiner Teil des BGB
- III. Hinweise zum Schuldrecht Allgemeiner Teil
- IV. Hinweise zum Schuldrecht Besonderer Teil
- V. Hinweise zum Sachrecht/ Familienrecht/ Erbrecht

Medienformen

vorlesungsbegleitende Skripte

Literatur

Degenhart, Christoph: Staatsrecht 1. Staatsorganisationsrecht, 31. Aufl. 2015

Detterbeck, Steffen: Öffentliches Recht: Staatsrecht, Verwaltungsrecht, Europarecht mit Übungsfällen, 10. Aufl. 2015

Haug, Volker: Staats- und Verwaltungsrecht: Fallbearbeitung, Übersichten, Schemata, 8. Aufl. 2013

Jung, Jost: BGB Allgemeiner Teil. Der Allgemeine Teil des BGB, 4. Aufl. 2015

Katz, Alfred: Grundkurs im Öffentlichen Recht, 18. Aufl. 2010

Maurer, Hartmut: Staatsrecht I: Grundlagen, Verfassungsorgane, Staatsfunktionen, 6. Aufl. 2010 Sodan, Helge/ Ziekow, Jan: Grundkurs Öffentliches Recht: Staats- und Verwaltungsrecht, 6. Aufl. 2014

Zippelius, Reinhold: Einführung in das Recht, 6. Aufl. 2011

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Medientechnologie 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Medienwirtschaft 2009

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Medienwirtschaft 2015

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Angewandte Medienwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Technische Physik 2013

Bachelor Angewandte Medienwissenschaft 2008

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsinformatik 2013

Modul: Wahlpflichtmodul

Glas als Werkstoff für Optik und Optoelektronik

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Fachnummer: 385 Prüfungsnummer:2300257

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschine	enbau						Fachgebiet:	2351

	1	l.FS)	2	2.FS	3		3.FS	3	4	1.FS)	ţ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Naturwissenschaftliches Verständnis der strukturellen Grundlagen für die Eigenschaften von Gläsern.

Fähigkeit der Auswahl und Anpassung geeigneter Gläser und Werkstoffkombinationen für Anwendungen in der Optik und Optoelektronik

Einblick in aktuelle Entwicklungstrends

Vorkenntnisse

Fertigungstechnik und Werkstoffe aus dem Grundstudium, Fertigungsverfahren und Werkstoffe der Optik aus dem 4. Semester

Inhalt

Grundlagen optischer und elektrischer Eigenschaften von Gläsern. Struktur und Eigenschaften von Kieselgläsern. Herstellung und Eigenschaften von Lichtwellenleitern, Glas für Beleuchtungstechnik und Elektronik, ophthalmischen Gläsern, optischen Gläsern, Filtern, Detektoren, Lasergläsern, porösen Gläsern und Glaskeramik. glastechnische Fabrikationsfehler

Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript

Literatur

Varshneya, A.K., Fundamentals of Inorganic Glasses, The Society of Glass Technology, Sheffield, 2006.

Litfin, G., Technische Optik in der Praxis, 3 ed, Springer, Berlin, 2005.

Bliedtner, J. and Gräfe, G., Optiktechnologien, Hanser Fachbuchverlag, Leipzig, 2008.

Bach, H. and Neuroth, N., (hrsg.), The Properties of Optical Glass, Schott Series on Glass and Glass Ceramics, Springer, Berlin, 1998.

Gan, F. and Xu, L., (hrsg.), Photonic Glasses, World Scientific, New Jersey, 2006.

Yamane, M. and Asahara, Y., Glasses for Photonics, Cambridge University Press, Cambridge, 2000.

Russell, P.S.J.: Photonic-crystal fibers, Journal of Lightwave Technology 24 (2006) p. 4729-4794.

Schaeffer, H.A. and Benz-Zauner, M., (hrsg.), Spezialglas Ausstellungsführer Glastechnik Band 4. Deutsches Museum, München, 2009.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Optronik 2008

Modul: Wahlpflichtmodul

Produktionswirtschaft 1

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5296 Prüfungsnummer:2500039

Fachverantwortlich: Prof. Dr. Rainer Souren

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	2.0	
Fakultät für Wirtsch	aftswiss	enschaften und Med	dien				Fachgebiet:	2522

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	ţ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen das elementare produktionswirtschaftliche Fachvokabular und können wesentliche Zusammenhänge der Produktions- und Kostentheorie darstellen und erklären. Dabei sind sie in der Lage, Produktionssysteme anhand aktivitätsanalytischer Instrumente zu modellieren und zu bewerten. Die Studierenden beherrschen überdies die wesentlichen Grundlagen der Produktionsplanung und -steuerung und sind in der Lage, grundlegende Verfahren der Erzeugnisprogrammplanung, Losgrößenbestimmung und des Kapazitätsabgleichs anzuwenden.

Vorkenntnisse

Mathematik 1 und 2 für Wirtschaftswissenschaftler

Inhalt

Einführung: Fallbeispiel "Lederverarbeitendes Unternehmen Gerd Gerber"

A) Abbildung realer Produktionszusammenhänge (Technologie)

- 1. Modellierung einzelner Produktionen
- 2. Modellierung aller technisch möglichen sowie realisierbaren Produktionen
- B) Beurteilung realer Produktionszusammenhänge (Produktionstheorie i.e.S.)
- 3. Beurteilung von Objekten und Objektveränderungen
- 4. Effiziente Produktionen und Produktionsfunktionen
- C) Bewertung und Optimierung realer Produktionszusammenhänge (Erfolgstheorie)
- 5. Bewertung von Objekten und Produktionen
- 6. Erfolgsmaximierung

D) Ausgewählte Aspekte der Produktionsplanung und -steuerung

- 7. Statische Materialbedarfsplanung und Kostenkalkulation
- 8. Anpassung an Beschäftigungsschwankungen
- 9. Statische Materialbereitstellungsplanung und Losgrößenbestimmung

Medienformen

Vorlesung: überwiegend Powerpoint-Präsentation per Beamer, ergänzender Einsatz des Presenters

Übung: Presenter

Lehrmaterial: PDF-Dateien der Vorlesungs-Präsentationen sowie Übungsaufgaben und Aufgaben zum Selbststudium auf Homepage und im Copy-Shop verfügbar. Zusätzlich zwei alte Klausuren auf der Homepage verfügbar.

Literatur

- Dyckhoff, H.: Produktionstheorie, 5. Auflage, Berlin et al. 2006.
- Dyckhoff, H./Ahn, H./Souren, R.: Übungsbuch Produktionswirtschaft, 4. Auflage, Berlin et al. 2004.

Detailangaben zum Abschluss

Bonuspunkteklausur mit bis zu 10 % der Maximalpunkte während des Semesters. Gültig für die separate Klausur "Produktionswirtschaft 1" und für die Modulprüfung "Produktionswirtschaft 1 und 2".

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2015

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Medienwirtschaft 2009

Bachelor Medienwirtschaft 2015

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Master Regenerative Energietechnik 2011

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Master Regenerative Energietechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Modul: Wahlpflichtmodul

Quantenmechanik 1

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 1515 Prüfungsnummer:2400212

Fachverantwortlich: Prof. Dr. Erich Runge

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Mathen	natik u	nd Naturwissenschaften				Fachgebiet:	2421

	1.FS		2.FS			3.FS			4	1.FS	3	į	5.FS	3	6.FS			7.FS			
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester													2	2	0						

Lernergebnisse / Kompetenzen

Die Studierenden werden befähigt, grundlegende mathematische Methoden der Physik auf konkrete Problemstellungen anzuwenden. Die Studierenden verstehen die Quantenmechanik als Basis des modernen physikalischen Weltbildes.

Vorkenntnisse

Mathematische Vorlesungen und physikalische Kenntnisse aus dem gemeinsamen ingenieurswissenschaftlichen Grundstudium, Elektrodynamik

Inhalt

Quantelung, Wellenaspekte der Materie, Mathematische Grundlagen, Schrödinger-Gleichung, Potentialtöpfe und -barriere, harmonischer Oszillator, Korrespondenzprinzip, Wasserstoffatom, Drehimpuls, Kugelflächenfunktionen, Hilbert-Raum, Philosophische Aspekte

Medienformen

vorwiegend Tafel, auch Beamer-Präsentationen und Handouts

Literatur

Lehrbücher der Quantenmechanik (große Auswahl geeigneter Bücher existiert, dt. und englisch: z.B. M. Schwabl, W. Greiner)

Detailangaben zum Abschluss

Fach wird geprüft im Rahmen der Modulprüfung Theoretische Physik II.

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Master Regenerative Energietechnik 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Mathematik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Physik 2011

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Technische Physik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Mathematik 2009

Bachelor Optronik 2008

Modul: Wahlpflichtmodul

Analoge und digitale Filter

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 1317 Prüfungsnummer:2100035

Fachverantwortlich: Prof. Dr. Martin Haardt

Leistungspunkte:	3	Workload (h): 90)	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ι	und Informationstechnil	ik				Fachgebiet:	2111

	1.FS			2.FS			3.FS			4	I.FS)	5.FS			6.FS			7.FS		
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

In der Vorlesung 'Analoge und digitale Filter' lernen die Studenten Methoden kennen, um sowohl analoge als auch digitale Filter entwerfen und analysieren zu können. Im ersten Teil -- analoge Filter -- werden zunächst Filter 1. und 2. Ordnung eingehend behandelt, durch deren Kaskadierung Filter beliebiger Ordnung synthetisiert werden können. Im Anschluss kennen die Studenten die wesentlichen Eigenschaften und Realisierungsvarianten solcher Filter, die sich anhand Ihrer Pol-Nullstellenkonfigurationen kategorisieren lassen. Den Schwerpunkt bildet danach der Standard-Tiefpass-Entwurf von Analogfiltern. Die Studenten lernen die spezifischen Eigenschaften von Butterworth-, Tschebyscheff-, Bessel- und Cauerfiltern kennen und können jedes Filter anhand seiner Polynombeschreibung und Pol-Nullstellenkonfiguration identifizieren und mit Hilfe von Matlab entwerfen. Das vermittelte Wissen bildet die Grundlage für die anschließenden Transformationen, durch die die Studenten in die Lage versetzt werden, auch Hochpässe, Bandpässe und Bandsperren zu entwerfen. Im zweiten Teil der Vorlesung erlernen die Studenten den Entwurf von Digitalfiltern. Im Kapitel 'Rekursive digitale Filter' lernen die Studenten zwei Transformationen kennen, um aus Analogfiltern mit bekannter Übertragungsfunktion ein entsprechendes Digitalfilter zu gewinnen. Zudem wird den Studenten der Einfluss der Quantisierung vermittelt. Mit Hilfe von Matlab-Beispielen untersuchen die Studenten selbstständig, wie sich Koeffizientenquantisierung und Rundungsfehler (Rauschen, Grenzzyklen) bei unterschiedlichen Filterstrukturen auswirken. Im Kapitel 'FIR-Filter' lernen die Studenten schließlich Methoden kennen, um linearphasige FIR-Filter mit bestimmten Zieleigenschaften zu entwickeln.

Vorkenntnisse

Signale und Systeme 1, Signale und Systeme 2

Inhalt

Analoge Filter

- Grundlagen
- Phasen- und Gruppenlaufzeit, Dämpfung
- Paley-Wiener-theorem
- Laplace-Transformation
- Minimalphasen- und Allpasskonfiguration
- Randbedingungen für den Dämpfungsverlauf
 - Filter 1. Ordnung

Tiefpass, Hochpass, Shelving-Tiefpass, Shelving-Hochpass, Allpass

· Filter 2. Ordnung

Tiefpass, Hochpass, Bandpass, Notch-Filter, Notch-Tiefpass, Allpass

- Standard Tiefpass Approximationen Potenz-, Tschebyscheff-, Cauer-, Bessel-tiefpass
- Transformationen Tiefpass-Hochpass-Transformation Digitale Filter
 - · Rekursive zeitdiskrete Filter
- Bilinear-Transformation
- Impulsinvariant-Methode
- Einfluss der Quantisierung
 - Entwurf von FIR-Filtern mit der Fenstermethode
- Typen linearphasiger Filter
- Standard-Fenster
- Kaiser-Fenster
- Verhalten an Sprungstellen

Medienformen

Tafelentwicklung, Präsentation von Begleitfolien, Folienscript (online), Matlab-Beispiele

Literatur

- L. D. Paarmann, Design And Analysis of Analog Filters: A Signal Processing Perspective. Kluwer Academic Publishers, 2001.
 - D. Kreß and D. Irmer, Angewandte Systemtheorie. Oldenbourg Verlag, M"unchen und Wien, 1990.
 - O. Mildenberger, Entwurf analoger und digitaler Filter. Vieweg, 1992.
 - R. Schaumann and Mac E. Van Valkenburg, Design of Analog Filters. Oxford University Press, 2001.
 - A.V. Oppenheim and R.W. Schafer, Zeitdiskrete Signalverarbeitung. R. Oldenbourg Verlag, 1999.
 - K.D. Kammeyer and Kristian Kroschel, Digitale Signalverarbeitung. Vieweg + Teubner, 2009.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Modul: Wahlpflichtmodul

Elektrodynamik

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6015 Prüfungsnummer:2400211

Fachverantwortlich: Prof. Dr. Erich Runge

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 75 SWS: 3.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2421

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden können elektrodynamische Phänomene von der Elektrostatik bis zur Lichtausbreitung analytisch beschreiben und numerische Simulationstools verstehen. Sie verstehen die methodische Nähe vor allem zur Quantenmechanik und analytischen Mechanik.

Vorkenntnisse

Erwünscht sind Grundkenntnisse der Elektrodynamik wie sie in der Vorlesung "Elektrizitätslehre und Optik" gelehrt werden sowie vertiete mathematische Kompetenzen, wie sie in der Vorlesung Quantenmechanik 1 vermittelt und im Fach DGL und Fouriertransformation werden.

Inhalt

Elektrostatik: Coulomb-Potential, Dipolfelder und Multipolentwicklung, Green´sche Funktionen, Stetigkeitsbedingungen, Flächenladungen, Maxwell-Gleichung in Gesamtsicht;

Magnetstatik: Biot-Savart-Gesetz

Elektrodynamik: Welle Gleichung, Strahlen- und Wellenoptik, Nahfeldoptik, Plasmonen; Ausblick: Eichfreiheit, relativistisch kovariate Formulierung, Ankopplung an Quantensysteme

Medienformen

vorwiegend Tafel, auch Beamer-Präsentationen und Hand-outs

Literatur

Jackson; Dreizler; Nolting

Detailangaben zum Abschluss

Die eigenständige Bearbeitung von Übungsaufgaben und die Präsentation der Lösungen ist Teil des Kompetenzerwerbs und wird bewertet. Fehlende Punkte können in einer Semesterabschlussklausur erworben werden.

Das Fach wird im Rahmen der Modulprüfungen Theoretische Physik 3 (Physiker) sowie TAF Physik (Mathematiker) geprüft.

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Technische Physik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Mathematik 2009

Bachelor Optronik 2008

Bachelor Mathematik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Physik 2011

Modul: Wahlpflichtmodul

Fertigungs- und Lasermesstechnik 1

Fachabschluss: Studienleistung mündlich Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Wahlpflichtfach Turnus:Sommersemester

Fachnummer: 408 Prüfungsnummer:2300263

Fachverantwortlich: Prof. Dr. Eberhard Manske

Leistungspunkte: 4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Maschinenbau						Fachgebiet:	2373

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden überblicken die Messprinzipien, Messverfahren und Messgeräte der Längen- und Winkelmesstechnik, Fluchtungs- und Richtungsmessung hinsichtlich Aufbau, Funktion, Eigenschaften,

mathematischer Beschreibung, Anwendungsbereich und Kosten. Die Studierenden festigen über die Bearbeitung der Praktikumsaufgaben das in Vorlesungen und Seminaren erworbene Wissen. Die praktischen Messbeispiele untermauern und erweitern die Wissenbasis der Studierenden. Die Studierenden können in bestehenden Messanordnungen die eingesetzten Prinzipien erkennen und entsprechend bewerten. Die Studierenden sind fähig, entsprechende Messaufgaben in der Fertigungstechnik zu analysieren, geeignete, insbesondere moderne laserbasierte Messverfahren zur Lösung der Messaufgaben auszuwählen und anhand des Unsicherheitsbudgets die messtechnischen Eigenschaften zu bewerten, um schließlich einen geeigneten Geräteentwurf vorzulegen.

Mit der Lehrveranstaltung erwerben die Studierenden zu etwa 60% Fachkompetenz. Die verbleibenden 40% verteilen sich mit variierenden Anteilen auf Methoden-, System- und Sozialkompetenz. Sozialkompetenz erwächst aus praktischen Beispielen in den Lehrveranstaltungen und der gemeinsamen Problemlösung im Seminar.

Vorkenntnisse

Abgeschlossenes ingenieurwissenschaftliches Grundstudium, Modul Mess- und Sensortechnik

Inhalt

Optische Baugruppen und Geräte der Messtechnik:

Grundlagen, Aufbau und Anwendung von Messmikroskopen und Messmaschinen; Telezentrischer Strahlengang; Köhlersche Beleuchtung; Messokulare, Messfernrohre; Fluchtungsmessung; Richtungsmessung; Autokollimationsfernrohr; Anwendung von PSD zur Fluchtungs- und

Richtungsmessung; Auge und optisches Instrument

Längenmesstechnik:

Grundbegriffe; Abbe-Komparatorprinzip; Eppenstein-Prinzip; Temperatureinfluss; Messkrafteinfluss; Schwerkrafteinfluss;

Maßverkörperungen; Parallelendmaße

Verfahren und Geräte der Winkelmesstechnik:

Winkeleinheiten; Schenkeldeckungsfehler; Scheiteldeckungsfehler; 180°-Ablesung zur Eliminierung der Scheiteldeckungsfehler; Gerätebeispiele; Winkelmessgeräte; Theodolit; Teilköpfe; elektronische Neigungsmessgeräte; digitale Winkelmessung

Medienformen

Tafel und Kreide; Nutzung der Möglichkeiten von Laptop mit Präsentationssoftware und Beamer (... oder Overheadprojektor mit Folien je nach Raumausstattung). Für die Studierenden werden Lehrmaterialien bereitgestellt. Sie

bestehen u.a. aus kapitelweise nummerierten Arbeitsblättern mit Erläuterungen und Definitionen sowie Skizzen der Messprinzipien und –geräte, deren Inhalt mit der Präsentation (... den Folien) identisch ist.

Literatur

Das Lehrmaterial enthält ein aktuelles Literaturverzeichnis.

Tilo Pfeifer, Robert Schmitt. Fertigungsmesstechnik. Oldenburg. ISBN 978-3-486-59202-3

Wolfgang Dutschke. Fertigungsmesstechnik. Teubner. ISBN 3-519-46322-9

Die Praktikumsanleitungen sind über die Homepage des Instituts für Prozeßmeß- und Sensortechnik uniintern (IP-Bereich) erreichbar: http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/praktika/

Sie enthalten jeweils eine Literaturzusammenstellung. Die angegebenen Bücher sind im Semesterapparat

Prozessmesstechnik zu finden. Ein Großteil ist Bestandteil der Lehrbuchsammlung.

Elektronischer Semesterapparat "Prozessmesstechnik" uniintern innerhalb der Digitalen Bibliothek Thüringen: http://www.db-thueringen.de/servlets/DerivateServlet/Derivate-12710/index.msa

Operativer Link zum ftp-Server der Uni zwecks Download umfangreicherer digitalisierter Unterlagen.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Optronik 2008

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Modul: Wahlpflichtmodul

Grundlagen der Kunststoffverarbeitung

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 101600 Prüfungsnummer:2300520

Fachverantwortlich: Prof. Dr. Michael Koch

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschine	enbau						Fachgebiet:	2353

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Die Studierenden lernen Kunststoffe, ihre wesentlichen Eigenschaften und einen Überblick über gängige Verarbeitungsverfahren der Kunststofftechnik kennen.

Vorkenntnisse

Grundlegende Werkstoffkenntnisse, Grundlagenfächer des GIG

Inhalt

- 1. Einführung: Bedeutung und Anwendungen der Kunststoffe
- 2. Überblick über Kunststofftypen und ihre Herstellungsverfahren
- 3. Grundlagen der technologischen Werkstoffeigenschaften von Kunststoffen
- 4. Verarbeitungsverfahren
- 4.1. Aufbereitung und Mischen
- 4.2. Extrusion
- 4.3. Spritzgießen
- 4.4. Blasformen, Umformen und Schäumen
- 4.5. Fügen und Veredeln
- 4.6. Duroplastverarbeitung: Pressen und FVK Verarbeitung
- Praktikum 1: Erkennen von Kunststoffen und deren Eigenschaften (Brandverhalten, Dichte, DSC)
- Praktikum 2: Extruderkennlinie an einem Einschneckenextruder
- Praktikum 3: Spritzgießteilherstellung und Veränderung der Parameter zur Bauteilbeeinflussung
- Praktikum 4: Mechanische Eigenschaften von Kunststoffen (Zugversuch, Schlagzähigkeit, Kerbschlagversuch, Härte)

Medienformen

Literatur

Oberbach, K.(Hrsg.): Saechtling Kunststoff Taschenbuch, Carl Hanser Verlag 2001 Michaeli, W.: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag, 2006 Michaeli, W., Greif, H., Wolters, L., Vossebürger, F.-J.: Technologie der Kunststoffe, Carl Hanser Verlag, 2008

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Wahlpflichtmodul

Partielle Differentialgleichungen

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 1018 Prüfungsnummer:2400009

Fachverantwortlich: Dr. Jürgen Knobloch

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Mathen	natik ı	und Naturwissenschaften				Fachgebiet:	2416

	1	I.FS	6	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

In der Vorlesung werden Grundlagen der partiellen Diffentialgleichungen vermittelt. Die Studierenden sollen unter Verwendung der in den ersten drei Semestern Mathematikausbildung (Mathematik 1 – 3) erworbenen Kenntnisse und Fertigkeiten - den neuen mathematischen Kalkül erfassen und sicher damit umgehen können (Rechenfertigkeiten, Begriffliches) - Umformtechniken bei der Handhabung der Differentialoperatoren kennenlernen und diese in Physik und Elektrotechnik anwenden können - klassische Methoden (Separationsmethode) bei der Lösung der gängigen partiellen Diffentialgleichungen (Wellengleichung, Wärmeleitungsgleichung, Potentialgleichung) zur Kenntnis nehmen und anwenden können. In Vorlesungen und Übungen wird Fach- und Methodenkompetenz vermittelt.

Vorkenntnisse

Mathematik 1, 2 und 3

Inhalt

Quasilineare Partielle Differentialgleichungen 1. Ordnung;

Lineare hyperbolische p.DGL 2. Ordnung und Anwendung auf die Wellengleichung (d'Alembert- und Fouriermethode);

Lineare parabolische p.DGL 2. Ordnung mit Anwendung auf die Wärmeleitungsgleichung;

Lineare elliptische p.DGL 2. Ordnung mit Anwendung in der Potentialtheorie.

Medienformen

Tafel

Literatur

Evans, L.C., Partial Differential Equations, Amer. Math. Society, Grad. Studies, 1998;

Pap E., Takaci A., Takaci D., Part. Differential Equations through Examples and Exercises, Kluwer Acad. Publ., 1997; Meinhold, P. und Wagner, E., Partielle Differentialgleichungen, Teubner 1990.

Detailangaben zum Abschluss

Schriftlich, 90 Minuten

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Biomedizinische Technik 2014

Bachelor Biomedizinische Technik 2013

Master Biomedizinische Technik 2009

Modul: Wahlpflichtmodul

Praktikum Fertigungs- und Lasermesstechnik 1

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100223 Prüfungsnummer:2300410

Fachverantwortlich: Prof. Dr. Eberhard Manske

Leistungspunkte: 1	Workload (h): 30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Maschinenba	au					Fachgebiet:	2373

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3	4	I.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р
Fachsemester																0	0	1			

Lernergebnisse / Kompetenzen

Die Studierenden festigen über die Bearbeitung der Praktikumsaufgaben das in

Vorlesungen und Seminaren erworbene Wissen. Die praktischen Messbeispiele

untermauern und erweitern die Wissenbasis der Studierenden.

Die Studierenden arbeiten selbständig und systematisch an den Praktikumsaufgaben und

nutzen in der Vorbereitungsphase Möglichkeiten zur Konsultation bei den

Praktikumsassistenten oder die horizontale (innerhalb einer Matrikel) und vertikale

studentische Kommunikation (zwischen den Matrikeln) um ergänzende Informationen

über die messtechnischen Zusammenhänge in den einzelnen Versuchen zu erhalten.

Die Teamarbeit im Praktikum ist eine gute Schule für Organisation und Durchführung selbständiger wissenschaftlicher Arbeiten innerhalb kleiner Forschungsteams im Verlauf des Studiums.

Mit dem Praktikum erwerben die Studierenden zu etwa 40% Fachkompetenz. Die

verbleibenden 60% verteilen sich mit variierenden Anteilen auf Methoden-, System-,

und Sozialkompetenz.

Vorkenntnisse

Abgeschlossenes ingenieurwissenschaftliches Grundstudium.

Die vorgelagerte messtechnische Basisveranstaltung ist Mess- und Sensortechnik. Die Praktika begleiten thematisch die Lehrveranstaltung Fertigungs- und Lasermesstechnik 1.

Inhalt

Auswahl von drei Versuchen aus

- SP1 Interferometrische Längenmessung/Laserwegmeßsystem
- SP2 Interferometrische Längenmessung/Interferenzkomparator
- SP3 Mechanisch-optische Winkelmessung
- SP4 Elektronisches Autokollimationsfernrohr
- SP5 Oberflächenmessung
- SP6 Lichtwellenleiter

Medienformen

Messtechnische Versuchsaufbauten. Klassische Versuchsdurchführung und Protokollerstellung als auch PC-gestützte Versuchsdurchführung mit teilweise oder vollständig "elektronischem" Protokoll.

Literatur

Die Versuchsanleitungen SP1...SP6 sind über die Homepage des Instituts für Prozessmeß- und Sensortechnik uniintern erreichbar:

http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/praktika/

Sie enthalten jeweils eine Literaturzusammenstellung. Die angegebenen Bücher sind im Semesterapparat

Prozessmesstechnik zu finden. Ein Großteil ist Bestandteil der Lehrbuchsammlung.

Zugriff auf den elektronischen Semesterapparat erfolgt über ftp-Server. Der entsprechende aktuelle Link ist auf http://www.tu-ilmenau.de/pms/studium/ unter "Praktikumsbelehrung" ersichtlich.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Maschinenbau 2013

Bachelor Optische Systemtechnik/Optronik 2013

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Wirtschaftsingenieurwesen 2015 Vertiefung MB

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2013

Modul: Wahlpflichtmodul

Praktikum Grundlagen der Kunststoffverarbeitung

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100200 Prüfungsnummer:2300399

Fachverantwortlich: Prof. Dr. Michael Koch

Leistungspunkte: 1 Workload (h): 30 Anteil Selbststudium (h): 19 SWS: 1.0 Fakultät für Maschinenbau Fachgebiet: 2353

2.FS 3.FS 5.FS 1.FS 4.FS 6.FS 7.FS V S P S P V S P S P SP V S P S SWS nach Fachsemester 0 0

Lernergebnisse / Kompetenzen

Die Studierenden erlernen den Umgang mit einigen grundlegenden Werkstoffprüfverfahren für Kunststoffe.

Vorkenntnisse

Grundlagen der Kunststoffverarbeitung, Polymercheme, Werkstoffkunde der Kunststoffe

Inhalt

Praktikum 1: Erkennen von Kunststoffen und deren Eigenschaften

Praktikum 2: Extruderkennlinie

Praktikum 3: Spritzgießteilherstellung

Praktikum 4: Extrusionsblasformen

Medienformen

Literatur

Menges, Haberstroh, Michaeli, Schmachtenberg: Werkstoffkunde der Kunststoffe, Carl Hanser Verlag, München Menges, Haberstroh, Michaeli, Schmachtenberg: Werkstoffkunde der Kunststoffe, Carl Hanser Verlag, München

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Modul: Wahlpflichtmodul

Stochastik

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 762 Prüfungsnummer:2400008

Fachverantwortlich: Prof. Dr. Silvia Vogel

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Mathem	natik u	ınd Naturwissenschaften				Fachgebiet:	2412

	1	I.FS	3	2	2.FS	3	;	3.FS	3		1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	>	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, die grundlegenden Begriffe, Regeln und Herangehensweisen der Wahrscheinlichkeitsrechnung und Statistik richtig einzusetzen sowie Statistik-Software sachgerecht zu nutzen und die Ergebnisse kritisch zu bewerten.

Vorkenntnisse

Höhere Analysis, einschließlich Mehrfachintegrale

Inhalt

Wahrscheinlichkeitstheorie: Axiomensystem, Zufallsgrößen (ZFG) und ihre Verteilungen, bedingte W., Unabhängigkeit, Kenngrößen von Verteilungen, Transformationen von ZFG, multivariate ZFG, Gesetze der großen Zahlen, zentr. Grenzwertsatz, Mathemat. Statistik: deskriptive Statistik, Punktschätzungen, Maximum-Likelihood-Methode, Konfidenzschätzungen, Signifikanztests, Anpassungstests

Medienformen

S. Vogel: Vorlesungsskript "Stochastik", Folien und Tabellen

Literatur

Lehn, J.; Wegmann, H.: Einführung in die Statistik. 5. Auflage, Teubner 2006. Dehling, H.; Haupt, B.: Einführung in die Wahrscheinlichkeitstheorie und Statistik. 2. Auflage, Springer 2004.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Modul: Berufspraktische Ausbildung

Modulnummer7583

Modulverantwortlich: Jana Buchheim

Modulabschluss:

Lernergebnisse

Die berufspraktische Ausbildung gliedert sich in zwei Abschnitte.

Das Grundpraktikum befähigt die Studierenden Fertigungsverfahren durch eigene Tätigkeit zu verstehen, grundsätzliche organisatorische und soziale Zusammenhänge in Technikunternehmen exemplarisch kennenzulernen, zu erfassen und Bezüge zu Ihrem Bachelorstudium und der späteren Berufstätigkeit aufzubauen.

Im Fachpraktikum werden die Studierenden befähigt, die im Studium erworbenen Kenntnisse im Rahmen ingenieurtechnischer Aufgaben anzuwenden und sich so auf die praktische Berufswelt vorzubereiten. Fachliches und fachübergreifendes Wissen können erprobt und angewandt werden. Die Einbindung in die organisatorischen und sozialenStrukturen der Unternehmen unterstützt die Herausbildung sozialer und kommunikativer Kompetenzen.

Vorraussetzungen für die Teilnahme

Keine

Detailangaben zum Abschluss

Zwei unbenotete Studienleistungen

Modul: Berufspraktische Ausbildung

Fachpraktikum (12 Wochen)

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat unbenotet

Sprache: Amtssprache des Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Praktikumslandes

Fachnummer: 6102 Prüfungsnummer:90020

Fachverantwortlich: Jana Buchheim

Leistungspunkte:	12	Workload (h): 360	0	Anteil Selbststudium (h):	360	SWS:	0.0		
Fakultät für Maschine	enbau						Fachgebiet:	23	

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	>	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester																			12 W) .

Lernergebnisse / Kompetenzen

Im Fachpraktikum werden die Studierenden befähigt, die im Studium erworbenen Kenntnisse im Rahmen ingenieurtechnischer Aufgaben anzuwenden und sich so auf die praktische Berufswelt vorzubereiten. Fachliches und fachübergreifendes Wissen können erprobt und angewandt werden. Die Einbindung in die organisatorischen und sozialen Strukturen der Unternehmen unterstützt die Herausbildung sozialer und kommunikativer Kompetenzen.

Vorkenntnisse

Auf Grund der angestrebten qualifizierten Tätigkeiten sollte das Fachpraktikum nach Abschluss der Studien- und Prüfungsleistungen aus den Fachsemestern 1-6 durchgeführt werden.

Inhalt

Ingenieurnahe Tätigkeiten gemäß der inhaltlichen Ausrichtung des Studiengangs, z.B. aus den Bereichen Forschung, Entwicklung, Planung, Projektierung, Konstruktion, Fertigung, Montage, Qualitätssicherung, Logistik, Betrieb, Wartung, Service sowie das Kennenlernen von Sicherheits-, Wirtschaftlichkeits- und Umweltschutzaspekten des Unternehmens. Anzustreben ist eine Tätigkeit im Team, in dem Fachleute aus verschiedenen Organisationseinheiten und Aufgabengebieten interdisziplinär an einer konkreten aktuellen Aufgabe zusammenarbeiten.

Medienformen

Schriftliche Dokumentation oder Vortrag mit digitaler Präsentation

Literatur

Themenspezifischen Literatur wird zu Beginn des Fachpraktikums vom Betreuer im Praktikumsbetrieb benannt bzw. ist selbstständig zu recherchieren.

Detailangaben zum Abschluss

Unbenotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Modul: Berufspraktische Ausbildung

Grundpraktikum (8 Wochen)

Fachabschluss: Studienleistung alternativ Art der Notengebung: Testat unbenotet

Sprache: Amtssprache des Pflichtkennz.: Pflichtfach Turnus: unbekannt

Praktikumslandes

Fachnummer: 6092 Prüfungsnummer:90010

Fachverantwortlich: Jana Buchheim

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	60	SWS:	0.0	
Fakultät für Maschin	enbau						Fachgebiet:	23

	1.FS			2.FS			3.FS			4.FS				5.FS	3	6.FS			7.FS		
SWS nach	V	S	Р	>	S	Р	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	V	S	Р
Fachsemester				8	3 Wo																

Lernergebnisse / Kompetenzen

Die Studierenden werden im Grundpraktikum mit Fertigungsverfahren, Produktionsprozessen und organisatorischen sowie sozialen Verhältnissen in Technikunternehmen bekannt gemacht und können so erste praktische Bezüge zu ihrem Bachelorstudium und ihrer späteren beruflichen Tätigkeit herstellen.

Vorkenntnisse

Das Grundpraktikum soll vor Studienbeginn abgeleistet werden.

Inhalt

Grundlegende Arbeitsverfahren (z. B. theoretische und praktische Einführung in die mechanischen Bearbeitungsverfahren, numerisch gesteuerte Herstellungs- und Bearbeitungsverfahren) Herstellung von Verbindungen (z. B. Löten, Nieten, Kleben, Versiegeln) Oberflächenbehandlung (z. B. Galvanisieren, Lackieren) Einführung in die Fertigung (z. B. Fertigung von Bauelementen, Bauteilen, Baugruppen und Geräten sowie deren Prüfung) sowie grundlegende Tätigkeiten in CA-Techniken.

Medienformen

Schriftliche Dokumentation (Praktikumsbericht)

Literatur

Keine

Detailangaben zum Abschluss

Unbenotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Modul: Bachelorarbeit mit Kolloquium

Modulnummer7584

Modulverantwortlich: Jana Buchheim

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden werden dazu befähigt eine vorgegebene ingenieurwissenschaftliche Aufgabenstellung in einem gesetzten Zeitrahmen, selbständig, nach wissenschaftlichen Methoden zu bearbeiten, die Ergebnisse klar und verständlich darzustellen sowie im Rahmen eines Abschlusskolloquiums zu präsentieren.

Vorraussetzungen für die Teilnahme

Für die schriftliche wissenschaftliche Arbeit gilt: gemäß der PO-Version 2008: keine Zulassungsvoraussetzung gemäß der PO-Version 2013: die Zulassungsvoraussetzung ist der erfolgreiche Abschluss aller Studien- und Prüfungsleistungen aus den Fachsemestern 1-4 mit Ausnahme des Moduls "Nichttechnische Fächer". Das Abschlusskolloquium ist in beiden PO-Versionen zulassungspflichtig.

Detailangaben zum Abschluss

Zwei Prüfungsleistungen: schriftliche wissenschaftliche Arbeit (sPL) und Abschlusskolloquium (mPL)

Modul: Bachelorarbeit mit Kolloquium

Bachelorarbeit - Abschlusskolloguium

Fachabschluss: Prüfungsleistung mündlich Art der Notengebung: Gestufte Noten

Sprache: Deutsch oder Englisch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 6031 Prüfungsnummer:99002

Fachverantwortlich: Jana Buchheim

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	60	SWS:	0.0	
Fakultät für Maschine	enbau						Fachgebiet:	23

	1.FS			2.FS			3.FS			4.FS			!	5.FS	3	(6.FS	3	7.FS		
SWS nach	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester																			60 h		

Lernergebnisse / Kompetenzen

Die Studierenden werden befähigt das bearbeitete wissenschaftliche Thema in einem Vortrag vor einem allgemeinen und/oder fachlich involvierten Publikum vorzustellen, die Ergebnisse in komprimierter Form zu präsentieren und die gewonnenen Erkenntnisse sowohl darzustellen als auch in der Diskussion zu verteidigen.

Vorkenntnisse

Bachelorarbeit (Teil: schriftliche wissenschaftliche Arbeit)

Inhalt

Wissenschaftlich fundierter Vortrag mit anschließender Diskussion

Medienformen

Vortrag mit digitaler Präsentation

Literatur

Ebeling, P.: Rhetorik, Wiesbaden, 1990. Hartmann, M., Funk, R. & Niemann, H.: Präsentieren. Präsentationen: zielgerichtet und adressatenorientiert, 4. Auflage, Beltz, Weinheim, 1998. Knill, M.: Natürlich, zuhörerorientiert, aussagenzentriert reden, 1991 Motamedi, Susanne: Präsentationen. Ziele, Konzeption, Durchführung, 2. Auflage, Sauer-Verlag, Heidelberg, 1998. Schilling, Gert: Angewandte Rhetorik und Präsentationstechnik, Gert Schilling Verlag, Berlin, 1998.

Detailangaben zum Abschluss

Gemäß der PO-Version 2008: mündliche Prüfungsleistung 30 Minuten Gemäß der PO-Version 2013: mündliche Prüfungsleistung 20 Minuten

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Modul: Bachelorarbeit mit Kolloquium

Bachelorarbeit - schriftliche wissenschaftliche Arbeit

Fachabschluss: Bachelorarbeit schriftlich 6 Monate Art der Notengebung: Generierte Noten

Sprache: Deutsch oder Englisch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 6079 Prüfungsnummer:99001

Fachverantwortlich: Jana Buchheim

Leistungspunkte:	12	Workload (h): 360	Anteil Selbststudium (h):	360	SWS:	0.0	
Fakultät für Maschin	enbau					Fachgebiet:	23

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester																			(3)	360 h	1

Lernergebnisse / Kompetenzen

Die Studierenden vertiefen in einem speziellen fachlichen Thema ihre bisher erworbenen Kompetenzen.

Sie werden befähigt eine komplexe und konkrete Problemstellung zu beurteilen, unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen selbstständig zu bearbeiten, gemäß wissenschaftlichen Standards zu dokumentieren und wissenschaftlich fundierte Texte zu verfassen.

Die Studierenden erwerben Problemlösungskompetenz und lernen, die eigene Arbeit zu bewerten und einzuordnen.

Vorkenntnisse

Erfolgreicher Abschluss aller Studien- und Prüfungsleistungen aus den Fachsemestern 1-6

Inhalt

Selbstständige Bearbeitung eines fachspezifischen Themas unter Anleitung, Dokumentation der Arbeit:

Konzeption eines Arbeitsplanes

Literaturrecherche, Stand der Technik

wissenschaftliche Tätigkeiten (z. B. Modellierung, Simulationen, Entwurf und Aufbau, Vermessung)

Auswertung und Diskussion der Ergebnisse

Erstellung der Bachelorarbeit

Medienformen

Schriftliche Dokumentation

Literatur

Themenspezifischen Literatur wird zu Beginn der Arbeit vom Betreuer benannt bzw. ist selbstständig zu recherchieren.

Detailangaben zum Abschluss

Schriftliche Prüfungsleistung in Form einer schriftlichen wissenschaftlichen Arbeit

gemäß der PO-Version 2008: Umfang 360 Stunden, Bearbeitungsdauer 6 Monate gemäß der PO-Version 2013: Umfang 360 Stunden, Bearbeitungsdauer 3 Monate

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It.
Inhaltsverzeichnis

K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)