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3.5. Mean (n=6 ± standard error) δ13C values (‰) of root sugars (sucrose and raffinose-

family) and root material in top soils (0-5 cm) with low and high plant diversity. Stars 
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0.05).  

 

39 

4.1. Microbial biomass in (a) soils with a gradient in plant diversity (plant species richness) 

and (b) soils with a gradient of plant functional groups.  

 

47 



FIGURES 

IV 
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CHAPTER I 

 
INTRODUCTION 

 

1.1 The role of soil microbial communities in the carbon cycle in soils 

Carbon (C) is the structural component of all forms of life on our planet; it is present 

from the smallest organism to the widest ecosystem. The amount of C on Earth is ca. 50000 

Pg (Lal, 2004), however, the importance of this element does not fall solely on its abundance; 

C is at a pint point position because it stands centrally in processes that are triggering rapid 

changes globally (i.e. global climate change). Rising atmospheric CO2 concentrations, among 

other greenhouse gases are inducing temperature increases that might have devastating 

consequences for life as we know it (Mitchell et al., 1995; Lal, 2003; IPCC, 2007). Soils are 

important CO2 sinks (Batjes, 1998; Schmidt et al., 2011; Batjes, 2014) that help mitigating 

this “greenhouse effect”; however several human activities (e.g. land-use change for 

agricultural practices and plant diversity loss) are contributing to change the role of soils in 

nature from C sinks to C sources (Trumbore et al., 1995; Chapin Iii et al., 2000; Nave et al., 

2010; Handa et al., 2014). Currently, the soil C (2500 Pg C) is the third largest C pool on 

Earth (Batjes, 1996; Falkowski et al., 2000; Pacala and Socolow, 2004), it surpasses more 

than four times the amount of the biotic C pool (560 Pg (Batjes, 1996; Falkowski et al., 2000; 

Pacala and Socolow, 2004)), and by over three times that of the atmospheric C pool (760 Pg 

(Batjes, 1996; Falkowski et al., 2000; Pacala and Socolow, 2004)). Soil C is comprised of soil 

inorganic C (SIC, 38 %) and soil organic C (SOC, 62 %) (Batjes, 1996). Generally, SOC has 

a higher reactivity and slower turnover time (Schnitzer, 1991) than SIC; therefore numerous 

efforts have been directed to understanding SOC dynamics and how anthropogenically-

induced changes, such as biodiversity loss might alter the balance of the C cycling in soils and 

globally (Tilman et al., 2001; Fornara and Tilman, 2008; Steinbeiss et al., 2008a; Marquard et 

al., 2009; Handa et al., 2014).  

Soil microorganisms are pivotal in the cycling of C in the belowground ecosystem 

(Gleixner, 2013). Most of the C that enters the soil is processed by soil microorganisms, CO2 

is an important byproduct of the microbial C decomposition and is released back to the 

atmosphere through microbial respiration; another fraction of C is stored by the microbial 

community as biomass and energy. Following the death of the soil microbes, their remains 

can be either reprocessed by other members of the soil microbial community or stabilized and 

stored as soil organic matter (SOM) (Gleixner et al., 2002).  The interactions between plants 
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and soil microorganisms play a very relevant role in controlling the exchange of C between 

above and belowground, as well as the microbial processing of C belowground.     

 

1.2 Plant-microbe interactions and their influence on soil carbon dynamics   

Most soil microorganisms are heterotrophic and therefore depend completely on 

autotrophic organisms for the supply of resources belowground. Plants are the main providers 

of C resources to the soil microbial community (Wardle, 2002); they assimilate CO2 directly 

from the atmosphere through photosynthesis (Trumbore, 1997) and deliver it to soil 

microorganisms through rapid rhizodeposition of exudates or through plant litter deposition 

(Gleixner, 2013). In turn, soil microorganisms mineralize SOM and release limiting nutrients 

(Porazinska et al., 2003) otherwise non-available for plants. These processes provide soil 

microorganisms and plants with the needed resources and at the same time fueled the 

(re)cycling of C and other important elements between and within environmental 

compartments. There is a general good understanding of the overall interaction between plans 

and soil microorganisms; however until now it remains uncertain how changes in plant 

characteristics, such as increase/decrease of plant diversity and changes in vegetation 

abundance and vegetation type might impact microbial functions that mediate key ecosystem 

processes in soils.  

  

1.3 Functions and classification of soil microorganisms 

Soil microorganisms are commonly classified by the functions they perform, these 

functions are primarily related to the type of C substrate they are better adapted to assimilate; 

thus, there are soil microorganisms that have a high affinity for readily available C resources, 

such as recently photosynthesized rhizodeposits (i.e. root-associated microorganisms (Denef 

et al., 2009)); another part of the microbial community is more suited to decompose more 

complex substances, such as those present in stabilized SOM (Kramer and Gleixner, 2008; 

Bahn et al., 2013), and others feed indistinctively on recently delivered plant C (Treonis et al., 

2004) or in already stabilized sources of C (Garcia-Pausas and Paterson, 2011). Additional to 

the microbial classification by functions, soil microorganisms are often differentiated by their 

morphology into bacterial and fungal groups. Bacterial groups are sub-classified based on the 

Gram staining method, depending on the chemical properties of their cell walls different 

bacterial groups react by retaining one of two different dyes (Gram, 1884). Gram positive 

(G+) bacteria, which have a single cell membrane reacts to crystal violet dye and Gram 

negative (G-) bacteria (double cell membrane) reacts to safranin or fuchsine dyes (red-pinkish 
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coloring (Holt et al., 1994; Madigan et al., 2004). Moreover, soil fungal groups might be 

classified depending on their route of colonization (Bonfante and Anca, 2009) into 

ectomycorrhizal and endomycorrhizal (i.e. arbuscular mycorrhizal fungi (AMF)), the latter are 

very relevant in terms of rapid nutrient cycling between plants and soils, because they 

colonize most terrestrial plants and actively trade C for nutrients (Drigo et al., 2010). Another 

way of classifying fungi is by their preferred C substrate into saprotrophic and biotrophic 

fungi (Crowther et al., 2012). Undoubtedly, soil microbial communities are mediators of very 

important processes in the belowground system; however soil microorganisms are very 

sensitive to changes in their habitat. Therefore, in order to understand how changes in the 

ecosystem might trigger changes in the processes that are controlled by soil microbes it is of 

key importance to identify factors that potentially influence the performance of microbial 

communities in soils.  

 

1.3.1 Factors affecting the functions of microbial communities in soils   

1.3.1.1 Biotic factors - Implications of plant diversity on the microbial C cycling  

Clearly, biotic factors dominate the functions of the microbial communities in soils 

mainly because they are intrinsically related to the availability, quality and diversity of C 

resources (Thoms et al., 2010; Thoms and Gleixner, 2013; Lange et al., 2014; Lange et al., 

2015; Scheibe et al., 2015). Some of the most relevant biotic factors that have been 

recognized to induce changes in the microbial community composition and consequently in 

the processes that microorganisms mediate in soils include plant biomass production (above 

and belowground), litter quality, seasonal variability of plant abundance (and litter 

production), root exudation, plant identity and plant diversity (Angers and Caron, 1998; Bais 

et al., 2006; Bezemer et al., 2006).    

Loss of biodiversity is one of the most relevant triggers of changes to the soil C cycle 

(Tilman et al., 2001; Hooper et al., 2005; Fornara and Tilman, 2008; Steinbeiss et al., 2008a; 

Marquard et al., 2009); therefore especial emphasis has been put into understanding how plant 

diversity affects the cycling of C in the belowground system, and the consequences of 

accelerated plant diversity loss. In terms of soil microbial C cycling, high plant diversity 

influences directly and indirectly soil microorganisms. High plant diversity increases primary 

production above and belowground (Cardinale et al., 2006; Ravenek et al., 2014), it has been 

assumed that greater photosynthetic assimilation of CO2 in highly diverse ecosystems would 

induce an increased supply of recently photosynthesized C to the soil system through higher 

root exudation (Chung et al., 2007; Chung et al., 2009), however until now the evidence to 
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support this assumption is still scarce, and alternative mechanisms have not yet been 

described. Moreover, plant diversity influences soil microbial functions through the input of 

more diverse C resources (Hooper et al., 2000). Interestingly, the increased resource 

availability and resource heterogeneity in highly diverse plant mixtures results in higher soil 

microbial biomass, higher soil microbial diversity (Bell et al., 2005) and greater soil microbial 

activity, which ultimately contribute significantly to the formation and storage of SOC (Lange 

et al., 2015). A great progress has been made in view to understanding the mechanisms that 

control the plant diversity effect on soil microbial dynamics; however it is still not completely 

resolved how different factors potentially affect these processes and how changes to plant 

diversity might trigger positive or negative responses that could impact the whole functioning 

of the ecosystem.  

 

1.3.1.2 Abiotic factors    

Several abiotic factors (i.e. soil properties) might influence the microbial cycling of 

elements in soils. Soil moisture, pH, soil texture and seasonal variations of temperature and 

vegetation cover are among the abiotic factors that affect more strongly the microbial 

community composition in soils (Grayston et al., 2001; Johnson et al., 2003; Medeiros et al., 

2006; Habekost et al., 2008b; Berg and Steinberger, 2010; Thoms et al., 2010; Cao et al., 

2011; Epron et al., 2011; de Vries et al., 2012; Lange et al., 2014). Greater soil moisture 

influences positively the microbial biomass and microbial activity in soils (Lange et al., 2014) 

mainly through dissolution and motility of C resources (Davidson et al., 2000) belowground. 

Changes in soil pH have been shown to change the proportions of G+ bacteria, G- bacteria 

and fungi in several ecosystems (Bååth and Anderson, 2003; Kaur et al., 2005; Thoms et al., 

2010; Thoms and Gleixner, 2013), thereby influencing soil microbial functioning. 

Furthermore, the effects of some abiotic factors are closely related to plant characteristics. 

The effect of soil texture has been related to root distribution, the finer mineralogy of smaller 

soil sizes (i.e. clayey soils) might sustain a better root net (Merckx et al., 1985), thus 

providing better habitat conditions for soil microbes, especially root-associated 

microorganisms. Seasonal responses have been linked to either temperature variability or to 

changes in plant abundance among seasons. Intuitively, when environmental conditions are 

better for plant development (e.g. in summer in temperate regions), the availability of C 

resources delivered to the soil microbial communities is greater (Grayston et al., 2001; 

Habekost et al., 2008b; Thoms and Gleixner, 2013) and this in turn activates all microbial 

functions belowground. The effects of individual factors on soil microbial communities have 
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been extensively documented. However, little is known about the interactions between 

different factors and the relative importance of their effects on the microbial community 

composition, microbial biomass and the processes microorganisms mediate in soils. 

 

1.4 Analysis of soil microorganisms - Lipid biomarkers 

Biochemical analyses of soils provide are a useful tool to describe soil microbial 

community composition and microbial functions in soils. Lipid biomarkers, namely 

phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) are widely analyzed to 

discern microbial community composition and to quantify microbial biomass in soils, which 

provide valuable insights to the soils microbial dynamics (Frostegard et al., 1991; Bossio and 

Scow, 1998; Bossio et al., 1998; Zelles, 1999a; Potthoff et al., 2006; Thoms et al., 2010; 

Chowdhury and Dick, 2013; Kramer et al., 2013; Thoms and Gleixner, 2013; Lange et al., 

2014; Ng et al., 2014; Scheibe et al., 2015; Watzinger, 2015). PLFA are structural 

components in all living organisms, they are ideal indicators of living microbial biomass 

because they rapidly decompose after cell death (White et al., 1979; Zelles et al., 1992). 

Furthermore, differences in the chemical structure (saturation, chain length, branching) of 

individual PLFA markers and their relative abundances relate differently to distinct microbial 

groups (Steer and Harris, 2000; Leckie, 2005); in general saturated compounds are present in 

all microorganisms; branched saturated PLFA (iso and anteiso saturation) are specific for G+ 

bacteria (Frostegård and Bååth, 1996); actinobacteria, which are a subgroup of G+ bacteria, 

have distinctively higher proportions of methylated PLFAs (Kroppenstedt, 1985); 

monounsaturated compounds are distinctive for G- bacteria (Frostegård and Bååth, 1996; 

Zelles, 1997) and polyunsaturated PLFA markers represent fungi and higher organisms 

(Zelles, 1997). Thus, PLFA analysis serves as a fingerprint analysis for determination of soil 

microbial community composition. However, the specificity of PLFA depends greatly on the 

type of habitat and environmental conditions (Appendix A1.1), therefore the assignment of 

PLFA markers to different microbial groups must be done with caution. NLFA are energy 

storage compounds in fungi (Olsson et al., 1995; Olsson and Johnson, 2005), since most 

bacteria do not store energy in the form of lipids, NLFA are good representatives of fungal 

groups in the soil microbial community. Special emphasis has been given to the study of 

AMF through NLFA analysis due to the key role of AMF in the C cycling belowground 

(Drigo et al., 2010).   
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1.4.1 Tracing C sources through isotopic compound specific analyses  

In order to discern the sources of C uptake by soil microorganisms and to determine 

the functions of different microbial groups in soils, labelling experiments involving isotopic 

analyses of stable C (δ13C) are performed. For instance, labelling of all photosynthetic 

products through the continuous application of enriched 13CO2 allows tracing the C into 

microbial biomarkers (e.g. PLFA and NLFA) and identifying soil microorganisms that 

directly metabolize recently photosynthesized C (Butler et al., 2003; Treonis et al., 2004; 

Denef et al., 2007; Lu et al., 2007; Staddon et al., 2014). Additionally, the correlation of 

isotopic C values from other compartments, such as SOC with those obtained from PLFA 

and/or NLFA compound specific analyses might be related to additional C resource 

preferences of specific parts of the soil microbial community (Elfstrand et al., 2008; Kramer 

and Gleixner, 2008; Bird et al., 2011). 
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1.5 Objectives 

 The general aim of this work was to identify biotic and abiotic factors that potentially 

alter the dynamics of the microbial communities in soils and consequently the cycling of 

elements between ecosystem compartments, to that end we focused in accomplishing the 

following specific objectives:  

1. Determine the mechanisms behind the plant diversity effect on the C transfer from 

plants to soil microorganisms 

2. Identify how plant diversity influences the shaping of soil microbial communities and 

the bacterial diversity in soils 

3. Study the effect of vegetation type, seasonal changes and soil type on the soil 

microbial community composition and the microbial uptake of plant-derived C  

 

1.6 Thesis organization  

In order to identify the mechanisms behind the plant diversity effect on the increased 

C transfer belowground, we investigated changes in plant-derived C uptake in soil 

microorganisms (Chapter 3). We applied a continuous 13CO2 labelling to ecosystem monoliths 

with two distinct plant diversity levels (4 and 16 plant species mixtures). The C flow form 

plants to soil microorganisms was determined by analyzing the δ13C enrichment of individual 

phospholipid fatty acids (PLFA) and neutral lipid fatty acid (NLFA) that were designated to 

different bacterial and fungal groups. Additionally, meaningful plant and soil related 

covariates were used to identify possible mechanisms explaining the plant diversity effect on 

the C transfer between above and belowground. 

Chapter 4 studied the influence of plant diversity on different microbial groups, 

bacterial diversity and phospholipid fatty acids (PLFA) evenness. We collected 82 soil 

samples in the log-term plant diversity experiment “The Jena Experiment”. Total microbial 

biomass and different microbial groups was tested using PLFA analyses. Bacterial diversity 

was measured using terminal-restriction fragment length polymorphism (T-RFLP). Root 

biomass, leaf area index (LAI), soil moisture and soil organic carbon (SOC) were used as 

possible explanatory covariates of the plant diversity effect on soil microbial communities.  

In Chapter 5 we investigated the relative importance of the combined effects of soil 

type, vegetation type and seasonal changes on the soil microbial community composition and 

the soil microbial C uptake. We analyzed soil samples from a vegetation change experiment 

(C3 vegetation was replaced by C4 plants) that comprised sandy and clayey soils. Samples 

were collected in the non-growing and growing seasons in 2012. Phospholipid fatty acids 
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(PLFA) and compound specific δ13C-PLFA analyses were used to determine microbial 

community composition and the flow of C from plants to the soil microbial community, 

respectively. Analysis of variance and redundancy analysis were used to identify the effects of 

the soil type, vegetation type and seasonal changes in the microbial community composition 

and the microbial C uptake. 

Finally, in Chapter 6 we synthesized the main results and provide suggestions for 

future research that could further strengthen our knowledge on soil microbial communities 

and their functions in soils. 
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CHAPTER II 

 
MATERIALS AND METHODS 

 
 This study is comprised by three subprojects that were conducted in distinct sites: The 

Jena-Ecotron Experiment (Chapter 3), The Jena Experiment (Chapter 4) and the C3-C4 

vegetation change experiment (Chapter 5). Detailed site and procedural descriptions are found 

in the following sections (2.1 – 2.3).  

 

2.1 The Jena-Ecotron Experiment  

2.1.1 Site description and experimental design 

2.1.1.1 Plant communities originating from the Jena experiment 

The Jena Experiment, is a long-term grassland biodiversity experiment located in Jena 

Germany (50°55' N, 11°35' E, 130 m a.s.l.) established in 2002 on a former agricultural land. 

The field site comprises 82 plots (20 × 20 m) with a diversity gradient that ranged from one to 

60 plant species and from one to four functional groups (grasses, small herbs, tall herbs and 

legumes). The mean sand content in the field varied from 5.3 to 45%; clay content from 14.4 

to 26.3 % and silt content between 40.6 and 73.1 %, pH values were in the range of 7.1 to 8.4 

(Roscher et al., 2004). The initial values of SOC and soil N were between 1.5 % and 2.8 % 

and from 0.2 % to 0.3 %, respectively. For this experiment, 12 plots were selected according 

to the following criteria: (1) grasses, legumes and herbs were present and (2) realized species 

numbers were close to sown species. The selected plots (Appendix A2.1) included two sown 

diversity levels (four and 16 species) with six replicates per diversity level. In December 

2011, soil monoliths (2 m depth; 1.6 m dia.) were excavated from the selected plots using 

steel lysimeters (UMS GMBH, Munich, Germany). The soil monoliths were representative in 

terms of percentage vegetation cover and standing biomass of the plots from which they 

originated. All monoliths were stored over winter in the soil at the field site. In spring 2012, 

they were transported to the Montpellier European Ecotron in France. 

 

2.1.1.2 Setting up the Jena-Ecotron experiment 

The soil monoliths were randomly allocated to the 12 controlled environment units of 

the macrocosm platform in the Ecotron facility in Montpellier, France (Milcu et al., 2014). In 
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each unit the aboveground compartment of the ecosystems was confined in a transparent 

dome with a volume of ca. 30 m3, while the belowground compartment was maintained in a 

lysimeter. The imposed environmental conditions in the Ecotron simulated the average 

climatic conditions in the Jena Experiment since 2002. A continuous atmospheric 13CO2 

labelling was applied inside all units for a period of three weeks (from July 4 to July 24, 2012, 

during daytime) using an automated system. A cylinder of compressed 99% 13CO2 (Eurisotop, 

France) was connected to a manometer and a high accuracy mass flow controller (F200CV, 

Bronkhorst, NL). 13CO2 was injected in each unit through 30 seconds pulses every 6 minutes. 

During a pulse, the flow rate of 13CO2 was regulated at 4.8 ml min-1 and injected along with 

roughly 0.5 l min-1 of CO2-free air, using a Valco valve (EUTA-SD16MWE dead-end path, 

VICI, USA). The labelling system was operated with a PXI Chassis (National Instrument, 

USA) data logger, using Labview programming (National Instrument, USA). The δ13C value 

of CO2 at the outlet of each unit was checked on-line twice every two hours using a Picarro 

G2101-i isotope analyzer (Picarro, USA), and a homemade automated manifold. This system 

allowed us to increase the δ13C signature of the atmospheric CO2 to +21.2‰ (average on the 

12 units, SE=0.67).    

Additionally, the surface of all lysimeters was covered by an impermeable cloche at 

the same time (23:00 h on July 16, 2012). Roughly, the same volume of air was trapped 

inside. The air was sampled four times at 23:00 h (T0), 00:30 h (T1), 03:30 h (T2) and 5:30 h 

(T3) in exetainers; two exetainers were sampled per unit. This allowed having measurements 

of night-time ecosystem respiration as well as 13CO2 (Appendix A2.2a and b).  

 

2.1.2 Soil sampling and preparation 

Using a split tube (inner Ø= 4.8 cm, Eijkelkamp Agrisearch Equipment, Giesbeek, 

The Netherlands), three soil cores were collected (from July 16 to 18) from each of the 12 

units to a depth of 10 cm. The soil cores were segmented to 0-5 cm depth and 5-10 cm depth 

and sections from the same depth were pooled together within unit. Soil samples were sieved 

(2 mm mesh size) and all remaining roots and plant material were carefully removed. 

Subsequently, samples were stored frozen at -20 ºC until PLFA and NLFA extraction. 

 

2.1.3 PLFA and NLFA extraction and analyses 

PLFA and NLFA were extracted according to the method of Bligh & Dyer (1959) as 

modified by Kramer & Gleixner (2006). Total lipids were extracted from bulk soil (~70 g wet 

weight) using a mixture of CH4O, CHCl3 and 0.05 M K2HPO4 buffer (2:1:0.8 v/v/v). PLFA 



CHAPTER II 

11 
 

and NLFA were purified by column chromatography (solid phase extraction column, Bond 

Elut ® SPE, Varian USA) and then hydrolyzed and methylated with methanolic KOH. In 

order to prevent peak overlapping during quantification and identification of fatty acid methyl 

esters of PLFA (PLFA-ME), they were separated into saturated (SATFA), monounsaturated 

(MUFA) and polyunsaturated fatty acids (PUFA) using an aminopropyl modified SPE 

column (Bond Elut ® SPE, Düren, Germany) impregnated with AgNO3. Fatty acid methyl 

esters of NLFA (NLFA-ME) were not separated into SATFA, MUFA and PUFA because we 

were only interested in the fatty acid 16:1ω5 which did not overlap with other peaks. 

The fatty acid 19:0 was added to all fractions (SATFA, MUFA, PUFA and NLFA) as 

an internal standard, prior to quantification with gas chromatography in a GC-FID system 

(Agilent Technologies. Palo Alto, USA) using a HP Ultra column (50 m x 0.32 mm internal 

diameter, 0.52 mm film thickness) and helium as a carrier gas. Following the initial 

conditions, 140ºC held for 1 min, the temperature increased at a rate of 2ºC min-1 until 

reaching 270ºC (6 min isotherm). Afterwards, the heating rate increased to 30ºC min-1 to 

reach a final temperature of 320ºC that was held during 3 min. Peak identification was done 

using a GC/MS (Thermo Electron, Dreieich, Germany) and comparing their mass spectra and 

retention times with known standards and mass spectral data from an in house database 

(Thoms et al., 2010; Thoms and Gleixner, 2013). 

In total 50 PLFA were identified, but only those with a concentration higher than 0.5 

µg g-1 (soil dry weight) were taken into account for further analysis. The 20 PLFA considered 

were assigned to G+ bacteria (14:0i, 15:0i, 15:0a, 16:0i, 17:0i and 17:0a (Zelles, 1997)); 

actinobacteria (16:0(10Me) and 18:0(10Me) (Kroppenstedt, 1985); saprotrophic fungi 

(18:2ω6,9 (Zelles, 1997)); G- bacteria (cyclo) (17:0cy and 19:0cy (Zelles, 1997)); G- bacteria 

(16:1ω7, 16:1ω5, 16:1, 17:1, 18:1ω9 and 18:1ω7 (Zelles, 1997)); and non-specific markers 

(16:0, 18:1ω5, 18:0 (Zelles, 1997)). From NLFA, only the marker for arbuscular mycorrhizal 

fungi (AMF, 16:1ω5N (Olsson, 1999)) was quantified.  

 

2.1.3.1 PLFA and NLFA compound specific δ13C measurements 

δ13C values of PLFA and NLFA were measured in triplicate on a GC-IRMS system 

(HP5890 GC, Agilent Technologies, Palo Alto USA; IRMS: Deltaplus XL, Finnigan MAT, 

Bremen, Germany) using a HP Ultra column (50 m x 0.32 mm internal diameter, 0.52 mm 

film thickness) and helium as a carrier gas. The δ13C values of SATFA and NLFA were 

analysed under the same conditions as for quantification of FAMEs (see above) with splitless 

and split (1:10) mode, respectively. For the analysis of δ13C values of MUFA and PUFA the 
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splitless mode was used. The oven reached 140ºC and held that temperature for 1 min, the 

temperature increased at a rate of 2ºC min-1 until reaching 252ºC. Followed by a heating rate 

of 30ºC min-1 until a final temperature of 320ºC that was held during 3 min. An external 

standard (fatty acid 19:0) was injected before and after each triplicate sample measurement to 

calibrate the isotopic values of every sample.  

Isotopic values are expressed as δ13C value in per mil [‰] relative to the international 

reference standard V-PDB (Equation 1) using NBS 19 (Werner and Brand, 2001). For data 

evaluation, the software ISODAT NT 2.0 (SP 2.67, Thermo Fisher, USA) was used. 

𝛿13C value[‰]V−PDB = �(13𝐶/12𝐶)𝑠𝑠−(13𝐶/12𝐶)𝑠𝑠𝑠�
(13𝐶/12𝐶)𝑠𝑠𝑠

 × 1000   (Equation 1) 

where (13C/12C)sa is the 13C/12C ratio of the sample and (13C/12C)std the 13C/12C ratio of the 

reference standard (0.011202). δ13C values were also corrected for the methyl C added during 

methylation (Equation 2) (Kramer and Gleixner, 2006). 

𝛿13C𝑃𝑃𝑃𝑃&𝑁𝑁𝑁𝑁 = �𝑁 × 𝛿13C𝑃𝑃𝑃𝑃−𝑀𝑀&𝑁𝑁𝑁𝑁−𝑀𝑀 − 𝛿13C𝑀𝑀𝑀𝑀 �
(𝑁−1)

  (Equation 2) 

where δ13CPLFA&NLFA is the isotope ratio of the phospholipid fatty acid or neutral lipid fatty 

acid, δ13CPLFA-ME&NLFA-ME the isotope ratio of the phospholipid fatty acid methyl ester or 

neutral lipid fatty acid methyl ester, δ13CMeOH that of methanol used for derivatization and N 

is the number of C atoms of the PLFA-ME or NLFA-ME. 

 

2.1.4 Explanatory variables 

2.1.4.1 Leaf related covariates: canopy leaf nitrogen, shoot biomass and specific leaf area 

Canopy leaf nitrogen (g Nleaf msoil surface
-2) as a proxy for photosynthetic assimilation 

was estimated as the sum of species-specific values for leaf area (m-2) × specific leaf mass 

(gleaf mleaf
-2) × leaf nitrogen concentration (g N gleaf

-2). Samples of 5-10 fully developed leaves 

collected from three different individuals (if possible) for each available species per unit were 

put in moistened filter paper and stored at 4°C for 12 hours. Then, leaf samples were blotted 

dry with tissue paper to remove any surface water, the leaf area was determined with a leaf 

area meter (LI3100, LICOR, USA). Samples were dried at 65°C (48 h) and weighed to obtain 

specific leaf area (as the ratio of leaf area per leaf dry mass). Leaf nitrogen concentrations 

were measured from ground leaf samples with an elemental analyser (Flash EA 1112; Thermo 

Italy, Rhodano, Italy). Shoot biomass was harvested on an area of 90 x 65 cm and sorted by 

species. Subsamples of each species were separated by plant compartments (leaves, stems, 

inflorescences) and dried at 65°C (48 h). Specific leaf area (reverse of specific leaf mass) and 

leaf mass were used to get leaf area per m2 for each species. 
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2.1.4.2 Root related covariates: root biomass, root length and δ13C values from roots and 

root sugars 

Different root traits were measured as potential drivers of the plant diversity effect on 

soil microbial community. Therefore, three cores (Ø= 3.5 cm) were collected in every unit, 

segmented into 5 cm layers (0-5 cm and 5-10 cm depth) and pooled by layer within unit. 

Roots were separated immediately from soil with tap water and a sieve of 200 µm mesh size. 

Root length per volume soil (cm cm-3) was measured in a subsample of fresh roots by image 

analysis with WinRHIZO (Reagent Instruments, Inc.). Roots were subsequently dried for 48 h 

at 65°C. Root biomass (mg root cm-3 soil) was calculated in a determined volume of soil. 

Specific root length (m g-1) was calculated dividing root length per volume by root biomass. 

All three above mentioned measures might impact the plant-microbe-interaction via 

morphological plant community traits, assuming that differences in root morphology reflect 

spatial changes in the rhizosphere.   

The δ13C values from roots and root sugars were determined in root samples that were 

separated from the soil samples collected for PLFA and NLFA analysis. Immediately after 

sampling, root samples were placed in paper bags, shock-frozen in liquid nitrogen and 

subsequently freeze-dried. The δ13C values from roots were measured on 20 mg of freeze-

dried and ball-milled root material using an elemental analyzer (NA 1110, CE Instruments, 

Milan, Italy) coupled to an isotope ratio mass spectrometer IRMS (Delta+XL, Finnigan MAT, 

Bremen, Germany) (Steinbeiss et al., 2008b). 

Total water soluble sugars were extracted using a method adapted from Wild et al. 

(2010). Briefly,  freeze-dried root material (ca. 30 mg) was resuspended by adding boiling bi-

distilled water and then samples were incubated at 85°C for 10 min on a heating shaker 

(Thermomixer comfort, Eppendorf AG, Hamburg). Samples were centrifuged (12000 rpm, 5 

min) and supernatant was collected. The extraction was repeated twice and supernatants were 

pooled together. Extracts were filtered through cellulose membrane filters (MULTOCLEAR 

0.45 µm RC 13 mm, CS-Chromatographie Service GmbH, Langerwehe) and transferred to 

anion and cation exchange cartridges (Dionex OnGuard II A and H 1.0 cc cartridges, Thermo 

Scientific, Sunnyvale, CA, USA) to remove ionic components. The resulting neutral fraction 

was analyzed by high-performance liquid chromatography-isotope ratio mass spectrometry 

(HPLC-IRMS, ThermoFinnigan LC-IsoLink system, Thermo Electron, Bremen). Sugars were 

first separated by HPLC on a NUCLEOGEL SUGAR 810 Ca2+ column (Macherey & Nagel, 

Düren) at 80°C with 0.5 ml min-1, using bi-distilled water as eluent and afterwards δ13C 

values were measured in an IRMS (Deltaplus XP, Thermo Electron, Bremen). Data was 
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evaluated using the software ISODAT NT 2.0 (SP 2.67, Thermo Fisher, USA). The peaks of 

raffinose, stachyose and verbascose that are all symplastic phloem transport sugars of the 

raffinose-type oligosaccharides (Turgeon and Medville, 2004) were integrated manually with 

ISODAT NT 2.0 yielding one peak. Quality control and isotopic offset corrections were 

evaluated by repeated measurements of sucrose (δ13C= -25.95‰, Merck KGaA, Darmstadt, 

Germany) with a recovery rate of 95±3%.  Identification of sugars was primarily based on 

comparing retention times of samples and known standards. Additionally, extracts of total 

water soluble sugars were derivatised with BSTFA + 1% TMCS and analyzed by GC-MS 

(7890A GC, 220 Ion Trap MS, Agilent Technologies, Palo Alto USA) on a medium polar VF-

17ms column (Agilent Technologies), confirming the presence of sucrose, raffinose and 

stachyose, whereas verbascose derivates were apparently too large for vaporization. 

 

2.1.4.3 Soil related covariates: soil moisture, SOC and δ13C-SOC 

Soil moisture was determined gravimetrically (Black, 1965) from 5 g of soil (wet 

weight) that were collected as subsamples from the soil cores taken for PLFA and NLFA 

analysis. For SOC measurements, 20 mg of soil were dried at 40ºC to constant weight and 

homogenized by grinding in a ball mill. SOC was calculated by difference of Ctotal - Ccarbonates 

using an elemental analyzer (Vario Max; Elementar Analysensysteme GmbH, Hanau, 

Germany)  (Steinbeiss et al., 2008b). The δ13C values of SOC (δ13C-SOC) were determined 

on 3 mg of air-dried and ball-milled soil. Soil carbonates were removed with 120 µl H2SO3 

(5–6% SO2, Merck, Darmstadt, Germany) (Steinbeiss et al., 2008b). Subsequently, the 

samples were dried at 60ºC and δ13C-SOC values were measured repeatedly (standard 

deviation < 0.3‰) using EA-IRMS (See above). The system was calibrated versus V-PDB 

using CO2 as the reference gas (Werner and Brand, 2001). 

 

2.1.5 Statistical analyses  

We performed analyses of variance (two-way-ANOVA) to test for differences in total 

concentration and δ13C values (weighted by marker specific concentration) of total PLFA (see 

Table 3.1a, c in section 3.2.1), individual microbial groups from PLFA (Appendix A2.3b) and 

NLFA (see Table 3.1b, d in section 3.2.1). To analyze the effect of plant diversity on δ13C 

values of all individual PLFA and NLFA we used linear models (LM) for each soil layer 

(Appendix A2.3a). The plant diversity effect on individual markers was similar among 

different soil layers (0-5 cm and 5-10 cm: Appendix A2.3a), but the effect was more 

pronounced in the top soil (0-5 cm depth), as it is biologically the more active soil layer. 
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Therefore, we focused in the results and discussion section mainly on the top soil layer. 

Subsequently, and supported by the results of this linear model (Appendix A2.3a); we 

grouped the individual δ13C values for the commonly used microbial groups. For further 

analyses we used the weighted mean (δ13C values by concentration) of each microbial group 

(see Table 2.1c, d in section 3.2.1 and Appendix A2.3b). Although different microbial groups 

responded differently to plant diversity we used the same approach for each group to identify 

the most important predictor for explaining variances in the δ13C values. Out of a global 

model including all plant and soil related covariates additional to plant diversity (see sections 

2.1.4 and Appendix A2.4a and b), we identified for all microbial groups three best models 

(see Tables 3.2 and 3.3 in section 3.2.4, Appendix 2.5) to explain their response to plant 

diversity (‘dredge’ function in MUMln package in R (Barton K., 2014)). In the results section 

we only referred to the 1st best model, but alternative models are shown in the supporting 

information. Missing values were replaced by means. All statistical tests were performed with 

R for windows (R Development Core Team, 2014). 
 

2.2 The Jena Experiment 

2.2.1 Site description and experimental design 

This work was conducted as part of the Jena Experiment, one of the biggest long-term 

biodiversity experiments worldwide, which investigates the role of biodiversity on the 

mechanisms controlling element cycling and ecosystem functioning (Roscher et al., 2004). 

The experiment was established in 2002 in the northern part of Jena (Germany, 50°55`N, 

11°35`E, 130 m a. s. l.) on a former arable land on the floodplain of the Saale River. The main 

experimental area consists of 82 plots (3 × 3 m each) that were arranged in 4 blocks parallel to 

the river to account for the textural soil gradient (sand percentage decreased with distance to 

the river from 39% to 6%; clay and silt content increased, from 16% to 22% and from 44% to 

72%, respectively).  

Sixty plant species (typical for Central European Molino-Arrhenatheretea grasslands) 

were selected and grouped into 4 functional groups (according with their physiological and 

morphological traits, Roscher et al. (2004)): 16 grasses, 12 small herbs, 20 tall herbs and 12 

legumes. The plant species diversity gradient consisted of 1, 2, 4, 8, 16 and 60 and the plant 

functional diversity went from 1 (2, 3) to 4 functional groups.   
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2.2.2 Soil sampling and preparation 

 In late April 2012, six soil samples were collected in each plot using a core cutter (5 

cm inner diameter; 5 cm depth), samples from the same plot were pooled together in a 

polyethylene bag and stored at 4º C on site in cooling boxes. All soil samples were sieved (<2 

mm) within the following 48 h after sampling and all plant material, stones and animals were 

removed. Samples were stored at -20ºC until further chemical analysis. 

 

2.2.3 PLFA extraction and analysis 

 Total lipids were extracted from ca. 70 g of wet soil with a mixture of CH4O, CHCl3 

and 0.05 M K2HPO4 buffer (2:1:0.8 v/v/v) (Bligh and Dyer (1959); modified by Kramer and 

Gleixner (2006)). PLFAs were purified from the total lipid extract by sequential elution of a 

silica-filled solid phase extraction column (Bond Elut ® SPE, Varian US.). The methanol 

fraction that contained the PLFA, was hydrolyzed and methylated with a 0.2 M KOH 

methanolic solution. The fatty acid 19:0 was added to the methylated PLFAs  (PLFA-ME) as 

internal standard, PLFA-ME were then quantified with a GC-FID system (GC: HP 6890 

Series, AED: G 2350 A, Agilent Technologies, United States) using a HP Ultra column (50 m 

x 0.32 mm internal diameter, 0.52 mm film thickness) and Helium as a carrier gas.  

Total PLFA concentration was calculated from the sum of the 39 individual PLFAs 

identified. Microbial groups were differentiated by specific PLFA markers. G+ bacteria: 

14:0i, 15:0i, 15:0a, 16:0i, 17:0i and 17:0a (White et al., 1996; Zelles, 1997); actinobacteria, 

which are a subgroup of G+ bacteria: 16:0(10Me), 17:0(10Me) and 18:0(10Me) 

(Kroppenstedt, 1985; Bååth and Anderson, 2003); G- bacteria  (cyclo): 17:0cy and  19:0cy 

(Zelles, 1997, 1999a); G- bacteria: 15:1, 16:1ω11, 16:1ω7, 16:1, 17:1, 18:1ω9 and 18:1ω7 

(Zelles, 1997, 1999a); saprotrophic fungi: 18:2ω6,9 (Vestal and White, 1989; Zelles, 1997); 

arbuscular mycorrhizal fungi: 16:1ω5 (Olsson et al., 1995; Sakamoto et al., 2004). Non-

specific markers (14:0, 15:0, 16:0, 17:0, 18:0, 16:0br, 16:1ω12, 17:0br, 18:2, 18:0br, 19:0br, 

22:0br, 23:0br, 17:1ω8, 18:1ω5, 19:1, 20:0, 20:1ω9 and 20:5ω3 (Zelles, 1997)) were also 

accounted for the total microbial biomass. A selected subset of G+ bacterial, actinobacterial 

and saprotrophic fungal markers were further grouped into soil related microorganisms 

(Mellado-Vázquez et al., 2016) and a subset of G- bacterial and AMF markers were group 

into root-associated microorganisms (Mellado-Vázquez et al., 2016).  

 

 

 



CHAPTER II 

17 
 

2.2.4 Genetic diversity of soil bacteria 

The genetic diversity of soil bacteria was measured using terminal-restriction fragment 

length polymorphism (T-RFLP). Briefly, total nucleic acids were extracted from 0.25 g fresh 

weight of soil using the MoBio Powersoil 96 kit. Bacterial 16S rRNA genes were amplified 

using forward primer 63F (50-CAGGCCTAACACATGCAAGTC-30 (Marchesi et al., 

1998)), fluorescently labelled with 6-FAM at the 50 end, and reverse primer 519r (50-GTAT 

TACCGCGGCTGCTG-30 (Lane, 1991)). Amplicons were purified by gel filtration using 

Sephadex G50 (Sigma-Aldrich, Gillingham, UK) before digestion with restriction 

endonucleases Msp1 (CCGG; Promega, Southampton, UK). A 3730 DNA analyzer (Applied 

Biosystems, CA, USA) was used for fragment analysis, before binning of individual terminal-

restriction fragments using Genemarker software (SoftGenetics, PA, USA). The relative 

abundance of individual terminal-restriction fragments was calculated by dividing the 

intensity of each fragment by the total intensity of all fragments before calculation of 

Simpson’s diversity index. 

 

2.2.5 Simpson’s diversity index and Simpson’s evenness  

 The Simpson’s diversity index from the terminal-restriction fragments (henceforth 

bacterial diversity) and from the bacterial PLFA markers was calculated as follows (Equations 

3 and 4) (Simpson, 1949): 

Simpson’s diversity index= 1-D                         (Equation 3) 

D= Σ (n/N)2                                                             (Equation 4) 

Where n is the total number of fragments or PLFA markers of a particular species and N is the 

total number of fragments or PLFA markers of all species. Subsequently, the Simpson’s 

evenness was calculated for the bacterial PLFA markers (hereafter PLFA evenness) as 

follows (Equation 5) (Hill, 1973):  

Evenness = (1/D)/N                                       (Equation 5) 

 

2.2.6 Explanatory variables  

2.2.6.1 Root biomass and leaf area index (LAI)  

Mean standing root biomass [g m-2] was calculated in 2011 from three soil cores (3.5 

cm in diameter, 40 cm depth) in each plot. Soil cores were segmented into 5 or 10 cm depth 

layers (0-5 cm, 5-10 cm, 10-20 cm, 20-30 cm and 30-40 cm) and same depth sections 

corresponding to each plot were pooled together. Soil segments were washed with tap water 

over a 0.5 mm mesh size sieve. Roots were dried at 65±5 °C and subsequently weighed. Soil 
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segments of 0-5 cm depth were included in the present study (Appendix A2.6). Leaf area 

index (LAI) was measured in May 2012 using a LAI-2000 plant canopy analyzer (LI-COR) 

approximately 5 cm above ground level in each plot (Appendix A2.6).  

 

2.2.6.2 Soil moisture, SOC   

Soil moisture [%] (Appendix A2.6) was calculated gravimetrically from the 

differences between wet and dry soil weight (ca. 5 g wet weight) from each plot in 2012. Soil 

samples were dried, according to standard procedures, for 24 h at 100ºC (Black, 1965). Total 

soil C [%] and inorganic soil C [%] (Appendix A2.6) concentrations were quantified in 2011 

by elemental analysis at 1150ºC (Vario Max; Elementar Analysensysteme GmbH, Hanau, 

Germany)(Steinbeiss et al., 2008b; Tefs and Gleixner, 2012). Inorganic C was measured after 

removal of organic C for 16 h at 450ºC in a muffle furnace. SOC [%] (Appendix A2.6) was 

then calculated as the difference between total soil C and inorganic soil C.  

 

2.2.7 Statistical analyses 

 Analyses of variance (ANOVAs) were conducted to test for the influence of plant 

species richness, plant functional group richness and abundance of specific plant functional 

groups on total microbial biomass, root-associated and soil-related microbial biomass, 

bacterial diversity, PLFA evenness (see Table 4.1 in section 4.2.3). Subsequently, analyses of 

covariance (ANCOVAs) were performed to identify the drivers of significant plant diversity 

effects on total microbial biomass, root-associated and soil-related microbial biomass, 

bacterial diversity, PLFA evenness (see Table 4.1 in section 4.2.3). In the ANCOVAs, root 

biomass, LAI, soil moisture and SOC were set as considered explanatory variables to explain 

the variance of the soil microbial factors related to plant diversity. Furthermore, the linear 

relation among all possible explanatory variables was tested with Pearson’s correlation 

analyses (Appendix A2.7). All statistical tests were conducted with R for windows (R 

Development Core Team, 2014).  

 

2.3 C3-C4 vegetation change experiment 

2.3.1 Site description and experimental design  

The C3-C4 vegetation change experiment was established at the Max Planck Institute 

for Biogeochemistry in Jena, Germany in 2002. Two large lysimeters (2 m deep, approx. 100 

m3 each) were filled with homogenized soil. The soils between the lysimeters differed in their 

texture (Table 2.1), in one lysimeter the soil had higher sand content and higher SOC 
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concentration, henceforth termed as “sandy soil”. In the other lysimeter the soil had a higher 

proportion of silt and clay but lower SOC concentration, henceforth termed as “clayey soil”. 

The origin of both soil types was from C3 vegetation. Until 2006 the entire experiment was 

continuously cropped with C3 vegetation. In November 2006 each lysimeter was split into 

two plots with different vegetation types (C3 vs. C4 plants), resulting in four plots, each 24 

m2. Scorpion weed (Phacelia tanacetifolia), sunflower (Helianthus annuus) and wheat 

(Triticum spec.) were rotationally grown on C3 plots; lovegrass (Eragrostis curvula), maize 

(Zea mays), amaranth (Amaranthus spec.) and sorghum (Sorghum spec.) were rotationally 

grown on C4 plots. All plots were equally managed, namely annually in autumn the total 

shoot biomass was harvested and equal amounts were re-distributed on each plot considering 

the vegetation type. From October to April, i.e. over the non-growing season, plots were 

covered with a water permeable sheet that allowed plant litter decomposition but prevented 

weed germination. In the following spring the plots were sown again with their respective 

vegetation type.  
 

Table 2.1. Mean (n= 3 ± standard deviation) values of soil characteristics and root biomass in sandy and clayey 

soils from the C3-C4 vegetation change experiment.  

Characteristic Sandy soil Clayey soil 

 C3 plots C4 plots  C3 plots C4 plots  
Sand content  [%] 50.4 9.2 
Silt content  [%] 43.8 75.1 
Clay content  [%] 5.9 15.7 
Soil moisture [%]      
        Non-growing season 23.0 ± 1.8 23.5 ± 0.8 19.5 ± 0.9 19.9 ± 0.5 
        Growing season 16.8 ± 2.3 19.6 ±1.5 21.0 ± 2.1 19.7 ± 0.7 

        Mean annual 19.9 ± 1.5 21.6 ± 0.9 20.3 ± 0.1 19.8 ± 0.4 

DOC [mg L-1]      
        Non-growing season 12.4 ± 0.1 25.5 ± 0.2 10.8 ± 0.1 6.6 ± 0.01 

        Growing season 10.6 ± 0.2 28.1 ± 0.3 21.9 ± 0.01 15.1 ± 0.01 

        Mean annual 11.5 ± 0.1 26.8 ± 0.2 16.4 ± 0.1 10.9 ± 0.01 
SOC [%] 5.0 ± 0.6 4.6 ± 0.3 2.2 ± 0.2 2.0 ± 0.2 

Root biomass [g m-2] 53.7 ± 1.0 63.1 ± 2.7 

 

2.3.2 Soil sampling and preparation 

For the present study, soil samples were collected in 2012 in the non-growing season 

and the growing season. Using a stainless steel core cutter (inner Ø= 4.8 cm, 60 cm long 

Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) we collected 3 independent 

samples to a depth of 10 cm in each plot. Soil samples were sieved (<2 mm) and cleaned by 
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removing remaining plant material and stones, and subsequently stored at -20ºC until PLFA 

analysis. 

 

2.3.3 PLFA extraction, analysis and compound specific measurement 

A mixture of CH4O, CHCl3 and 0.05 M K2HPO4 buffer (2:1:0.8 v/v/v) was used to 

extract the total lipid fraction from 50 g of wet soil (Bligh & Dyer (1959); modified by 

Kramer and Gleixner (2006)). PLFAs were purified from the total lipid extraction by eluting a 

silica-filled solid phase extraction column (Bond Elut ® SPE, Varian US.) with methanol; the 

elution was hydrolyzed and methylated with a 0.2 M KOH methanolic solution. Subsequently, 

methylated fatty acids (PLFA-ME) were split up into saturated (SATFA), monounsaturated 

(MUFA) and polyunsaturated fatty acids (PUFA) in an aminoproply modified SPE column 

(Bond Elut ® SPE, Düren, Germany) impregnated with AgNO3. After adding the fatty acid 

19:0 (as an internal standard) to all fractions, PLFAs were quantified with a GC-FID system 

(GC: HP 6890 Series, AED: G 2350 A, Agilent Technologies, United States) using a HP Ultra 

column (50 m x 0.32 mm internal diameter, 0.52 mm film thickness) and Helium as a carrier 

gas. Following the initial conditions, 140ºC held for 1 min, the temperature increased at a rate 

of 2º min-1 until reaching 270ºC (6 min isotherm). Afterwards, the heating rate increased to 

30ºC min-1 to reach a final temperature of 320ºC that was held during 3 min. PLFA 

identification was performed by comparison of the retention times with known standards and 

mass spectral data from an in house database (Thoms et al., 2010). 

 Total PLFA concentration was calculated from the sum of the all identified PLFA 

markers. Based on their predominant microbial origin, individual PLFA markers were 

assigned to different microbial groups: G+ bacteria: 15:0i, 15:0a, 16:0i, 17:0i and 17:0a 

(Zelles, 1997); actinobacteria: 16:0(10Me), 19:0(10Me) (Kroppenstedt, 1985); G- bacteria: 

15:1, 16:1ω7, 16:1ω5, 16:1, 17:0cy, 17:1, 18:1ω9, 18:1ω7 and 19:0cy (Zelles, 1997);  and 

saprotrophic fungi: 18:2ω6,9. Non-specific markers (14:0, 16:0 and 18:0 (Zelles, 1997)) were 

also accounted for the total PLFA concentration.    

Isotope C ratios of individual PLFA markers were measured in a GC-IRMS system 

(HP5890 GC, Agilent Technologies, Palo Alto USA; IRMS: Deltaplus XL, Finnigan MAT, 

Bremen, Germany). Isotope ratios are expressed as δ13C value in per mil [‰] relative to the 

international reference standard Vienna-PeeDee Belemnite (V-PDB) (Equation 6) using NBS 

19 (Werner and Brand, 2001). The software ISODAT NT 2.0 (SP 2.67, Thermo Fisher, USA) 

was used for data evaluation. 

δ13C value[‰]V−PDB = �(13C/12C)sa−(13C/12C)std�
(13C/12C)std

 × 1000               (Equation 6) 



CHAPTER II 

21 
 

where (13C/12C)sa is the 13C/12C ratio of the sample and (13C/12C)std the 13C/12C ratio of the 

reference standard (0.011202). δ13C values were also corrected for the methyl carbon added 

during methylation (Equation 7) (Kramer and Gleixner, 2006). 

δ13CPLFA = �N × δ13CPLFA−ME − δ13CMeOH �
(N−1)

                         (Equation 7) 

where δ13CPLFA is the isotope ratio of the phospholipid fatty acid, δ13CPLFA-ME the isotope ratio 

of the phospholipid fatty acid methyl ester, δ13CMeOH that of methanol used for derivatization 

and N is the number of carbon atoms of the PLFA-ME.  

 

2.3.3.1 Assessing the C origin in PLFA  

 The fraction of plant C derived to individual PLFAs (FpPLFA; Equation 8) was 

calculated according to Kramer and Gleixner (2006):  

𝐹𝐹PLFA = �δ13𝐶PLFA−C4−δ13𝐶PLFA−C3�
[δ13𝐶Plant−C4−δ13𝐶Plant−C3]                                          (Equation 8) 

Where δ13CPLFA-C4 and δ13CPLFA-C3 represent the isotopic values of individual PLFA measured 

in soils with C4 and C3 vegetation, respectively, and δ13CPlant-C4 and δ13CPlant-C3 indicate the 

isotopic values of different vegetation types analyzed in this study.  

 

2.3.4 Explanatory variables  

In addition to the experimental design variables (vegetation type, soil type and season) 

ecologically important covariates were assessed. Soil moisture [%] was determined 

gravimetrically (Black, 1965) from 5 g of soil (wet weight) that were collected as subsamples 

from the soil cores taken for PLFA analysis. Root biomass [g m2] was quantified as the 

average of roots collected from three quadrants (0.5 × 0.5 m) in each plot. For SOC [%] 

measurements, soils were dried at 40ºC until constant weight and homogenized by grinding in 

a ball mill. Concentration of SOC was calculated from the difference between total C and 

inorganic C. Total C and inorganic C were measured by elemental analysis at 1150ºC (Vario 

Max; Elementar Analysensysteme GmbH, Hanau, Germany), inorganic C was obtained after 

burning organic C for 16 h at 450ºC in a muffle furnace (Steinbeiss et al., 2008b). DOC [mg 

L-1] was measured from soil water samples that were collected in the non-growing and 

growing seasons, in one day close to the soil sampling for each vegetation season. Soil water 

samples were collected at 10 cm depth by extraction with borosilicate glass suction plates 

(thickness 9 mm, diameter 120 mm, pore size 1 μm; UMS, Germany). For DOC analysis, 1.5 

ml of soil water was transferred to brown glass vials (silanized) and dissolved inorganic 

carbon (DIC) was removed acidifying the water samples with 20 μl of 8.5% phosphoric acid 
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(Merck, Germany). Samples were then gently purged with nitrogen (N2) for 10 minutes in a 

12-port chamber (VisiprepTM, Visidry™, Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany) (Malik et al., 2012; Scheibe et al., 2012).   

 

2.3.5 Statistical analyses 

Analyses of variance (ANOVA) were performed to test for the effects of experimental 

factors, i.e. soil type, vegetation type and season on the total microbial biomass and on the 

δ13C values of individual PLFA markers. ANOVA was also used to test the effect of soil type 

and season on the uptake of plant-derived C among microbial groups. In this ANOVA 

individual PLFAs were tested based on the assignment to specific soil microbial groups (see 

section 2.3.3) followed by Tukey’s Honestly Significant Difference (HSD) test. 

The effect and the relative importance of the experimental factors on the microbial 

community composition in terms of PLFA concentrations and δ13C values of PLFAs were 

tested by Permutational Multivariate Analyses of Variance (PERMANOVAs: ‘adonis’ 

function in vegan package in R (Oksanen et al., 2011). For PERMANOVA the “Euclidian” 

distance measured was applied. Redundancy analyses (RDAs) were carried out to identify the 

underlying drivers of the experimental factors by assessing the impact of root biomass, SOC, 

DOC, clay and sand content and soil moisture on the soil microbial community composition 

(PLFA concentration) and its plant-derived C uptake.  

PERMANOVAs, ANOVAs and Tukey’s HSD tests were performed with R for 

windows (R Development Core Team, 2014). RDAs were carried out using CANOCO 5.0 for 

windows (ter Braak and Šmilauer, 2012).   
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CHAPTER III 

 

PLANT DIVERSITY GENERATES ENHANCED SOIL MICROBIAL 

ACCESS TO RECENTLY PHOTOSYNTHESIZED CARBON IN THE 

RHIZOSPHERE1 

 
Abstract  

Plant diversity positively impacts ecosystem services such as biomass production and 

soil organic matter (SOM) storage. Both processes counteract increasing atmospheric CO2 

concentration and global warming and consequently need better understanding. In general it is 

assumed that complementary resource use is driving the positive biomass effect and that the 

rhizospheric microbial community provides the necessary nutrients mineralizing SOM. So far 

however, it remains unclear how this link between the above and the belowground system is 

functioning; in detail it remains unclear if a more efficient CO2 uptake at higher diversity 

levels leads to higher root exudation that stimulate the microbial mineralization. Contrastingly 

we show here for the first time that more diverse grassland communities provide a better 

access to root exudates for the rhizospheric community. We applied a continuous 13CO2 label 

in a controlled environment (The Montpellier European Ecotron) to ecosystem monoliths 

from the long-term The Jena Experiment and showed analyzing the δ13C content of 

phospholipid fatty acids and neutral lipid fatty acid that plant diversity increased the plant-

derived C uptake of Gram negative bacteria and arbuscular mycorrhizal fungi (AMF). Root 

biomass but not the amount and δ13C content of root sugars positively influenced the plant 

diversity effect observed on Gram negative bacteria whereas the specific interaction between 

plant and AMF was independent from any plant trait. Our results demonstrate that plant 

diversity facilitated the accessibility of plant derived C but not the above-belowground 

transfer rates. This facilitating effect enabled more diverse plant communities to use 

complementary C and most likely nutrient resources both from soil organic matter 

mineralization for better growth. We anticipate from our results that plant diversity effects are 

less driven by the performance of individuals in mixtures (trait plasticity) but by the 

combination of individuals that interact independently (trait complementarity). 

 
1 This chapter is partially published in Soil Biology and Biochemistry 94 (2016) 122-132 
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3.1 Introduction 

Biodiversity is an important regulator of ecosystem functioning (Hooper et al., 2005; 

Cardinale et al., 2012; Bardgett and van der Putten, 2014). During the last two decades 

numerous studies have demonstrated negative effects of biodiversity loss on key ecosystem 

processes (reviewed in Hooper et al., 2012) such as primary productivity and soil organic 

carbon (SOC) storage (Tilman et al., 2001; Fornara and Tilman, 2008; Steinbeiss et al., 

2008a; Marquard et al., 2009). Yet, primary productivity and SOC storage are not 

independent from each other, as enhanced belowground inputs of plant-derived carbon (C) 

associated with increased biomass production at higher diversity levels might lead to 

increased SOC accumulation (Steinbeiss et al., 2008a; Lange et al., 2015). This plant-soil 

relationship is likely to be mediated by soil microorganisms, since they are the main agents 

transferring C from plants to SOC (Gleixner, 2013). Soil microorganisms can be classified in 

several ways, for instance the soil microbial community has been divided into ecological 

categories related to their preferentially decomposed C sources: copiotrophs are able to 

decompose labile C sources (e.g. root exudates (Wardle, 2002)) and oligotrophs have higher 

nutrient affinity and are capable of decomposing SOC and plant-derived litter (Fierer et al., 

2007). Another commonly way of classifying soil microorganisms is by their abundance in 

different compartments of the soil, such as rhizosphere and bulk soil (Denef et al., 2007; 

Elfstrand et al., 2008; Denef et al., 2009; Esperschutz et al., 2009; Bird et al., 2011; De Deyn 

et al., 2011; Bahn et al., 2013; Fanin et al., 2015). In general, Gram negative (G-) bacteria are 

recognized as rhizosphere microorganisms (Denef et al., 2009), which preferentially 

decompose simple substrates; such as recently fixed plant-derived C (i.e. root exudates). 

Gram positive (G+) bacteria are slow growing and stress tolerant microorganisms (Waldrop et 

al., 2000) that dominate the bacterial community in the bulk soil. They are known to 

decompose complex substrates and are able to use older and more stabilized SOC for growth 

(Kramer and Gleixner, 2008; Bahn et al., 2013). Saprotrophic fungi can actively access their 

C substrates through hyphal growth (Strickland and Rousk, 2010). They have extensive 

enzymatic capabilities (Denef et al., 2007) and are able to decompose a wider variety of C 

substrates like root exudates, plant litter (Treonis et al., 2004) and SOC (Garcia-Pausas and 

Paterson, 2011). Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that actively 

form associations with most of the known terrestrial plants (Engels et al., 2000). AMF 

colonize the intracellular space of plant roots and actively trade C for nutrients with the host 

plant (Bonfante and Genre, 2008; Drigo et al., 2010).  
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The final mechanisms how plant diversity interacts through the soil microbial 

community on soil C storage remain unclear so far. Several possible mechanisms have been 

put forward to explain how more diverse plant communities could increase the C transfer into 

the soil microbial community. For instance, more diverse plant communities could be more 

effective in photosynthetic assimilation (Milcu et al., 2014) resulting in higher root exudation 

rates (Amos and Walters, 2006; Lange et al., 2015; Shahzad et al., 2015), which might 

promote growth of the soil microbial community (Chung et al., 2009). Alternatively, more 

diverse plant communities do not only produce higher aboveground biomass, but also higher 

root biomass (Ravenek et al., 2014). The increased root biomass might, in turn, foster soil 

microorganisms, in particularly root-associated microbes in several ways, for instance via a 

higher input of root litter (Phillipson et al., 1975; Latz et al., 2015) which would act on the 

longer term; through increased rhizodeposition (Van Der Krift et al., 2001) and by facilitating 

a better access to recently fixed plant derived C (Guo et al., 2005). 

 Labelling experiments have been extensively used to determine the C transfer from 

plants to soil microorganisms. Different experimental approaches have been developed, for 

example, labelling experiments can be based on the application of either enriched 13C 

substrates that mimic root exudates (Lemanski and Scheu, 2014) or enriched 13CO2 that label 

all photosynthetic products (Denef et al., 2007; Staddon et al., 2014). However, different 

outcomes might be obtained by the use of distinct labelling techniques, e.g. pulse labelling or 

continuous labelling. Metabolic fluxes that are dependent on turnover of different pools are 

best investigated using pulse labelling (Wolfe and Chinkes, 2005). However, the results 

depend on the duration of the labelling as slow pools are not completely labelled and this is 

known to bias for example the release of plant C to the soil system (Paterson et al., 1997; 

Malik et al., 2015). In contrast, continuous labelling experiments allow even slow pools to 

reach steady-state and are therefore more suitable to determine C resource availability and C 

sources for different compartments of the ecosystem (e.g. soil, soil microorganisms, plants) 

(Schimel, 1993). 

 In order to identify the influence of plant diversity and the mechanisms behind the C 

transfer from plants to soil microbial communities, we took advantage of a long-term 

biodiversity experiment (The Jena Experiment (Roscher et al., 2004)) and an advanced 

controlled environment facility for ecosystem research (The Montpellier European Ecotron 

(Milcu et al., 2014)). Atmospheric 13CO2 labelling of large monoliths originating from The 

Jena Experiment with four and 16 species allowed us to investigate how the flow of C 

between the different ecosystem compartments was affected by plant diversity. We extracted 
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phospholipid fatty acids (PLFA) and neutral lipid fatty acid (NLFA) from all soil samples to 

account for differences in δ13C values of distinct soil microbial groups and to identify changes 

in both the microbial biomass and the isotopic ratios of the microbial groups related to 

increased plant diversity. Following the argumentation by Lange et al. (2015) that emphasized 

the importance of increased microbial activity in the rhizosphere under high plant diversity for 

triggering the C cycling and ultimately promoting SOC accumulation, we explored more 

deeply the mechanisms of C transfer from aboveground to belowground through the soil 

microbial community and hypothesize that 1) higher photosynthetic activity at higher plant 

diversity results in increased microbial C uptake, as a result of a better access to recently 

photosynthesized plant derived C (i.e. root exudates) and 2) this plant diversity effect is more 

pronounced in root-associated soil microorganisms.  

 

3.2 Results 

3.2.1 Total concentration of PLFA and NLFA 

The total PLFA concentration was significantly higher (mean = 134.22, SD = 36.93 

nmol g-1) in the topsoil (0-5 cm) than in the deeper soil layer (5-10 cm) (73.64 ± 19.27 nmol 

g-1; F1, 10= 20.66, P < 0.001; Fig. 3.1, Table 3.1a). The mean PLFA concentration increased 

by 13% in the topsoil layer and by 3% in the deeper soil layer with increasing plant diversity, 

however, this increase was not significant (F1, 10= 0.565, P = 0.470; Fig. 3.1, Table 3.1a). 

Concentrations of PLFAs grouped into different microbial groups were significantly higher in 

the topsoil layer (Appendix A3.1: G+ bacteria=26.73 ± 8.46 nmol g-1; Actinobacteria= 8.87 ± 

3.35 nmol g-1; G- bacteria (cyclo) = 10.54 ± 3.68 nmol g-1; G- bacteria= 69.49 ± 19.05 nmol 

g-1 and saprotrophic fungi= 3.13 ± 1.18 nmol g-1) than in the deeper soil layer (Appendix 

A3.1: G+ bacteria=17.09 ± 4.75 nmol g-1; Actinobacteria= 6.57 ± 1.84 nmol g-1; G- bacteria 

(cyclo) = 2.50 ± 1.52 nmol g-1; G- bacteria= 35.59 ± 12.88 nmol g-1 and saprotrophic fungi= 

1.56 ± 0.54 nmol g-1). No significant changes between plant diversity levels were found in 

any of the microbial groups (Appendix A3.1).  

The NLFA concentration showed similar patterns to the total PLFA concentration 

(Fig. 3.1, Table 3.1b), i.e. significantly higher in the top soil layer (107.75 ± 34.69 nmol g-1) 

than in the deeper soil layer (80.95 ± 28.50 nmol g-1; F1, 10= 10.01, P = 0.010) and increasing 

concentrations with increasing plant diversity (low plant diversity: topsoil layer = 82.94 ± 

30.03; deeper soil layer 61.90 ± 17.34 nmol g-1. High plant diversity: topsoil layer = 132.56 ± 

16.39 nmol g-1; deeper soil layer 100.01 ± 24.80 nmol g-1 (Fig. 3.1). The difference of NLFA 

concentrations between plant diversity levels was significant (F1, 10= 18.84, P < 0.001).     
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Table 3.1. ANOVA (analyses of variance) results from the differences in a) total PLFA concentration; b) NLFA 

concentration; c) weighted means (δ13C values weighted by concentration) of total PLFA and d) weighted means 

of NLFA related to plant diversity. Stars indicate significant differences of δ13C values between plant diversity 

levels and soil layers (**:p≤ 0.01; *: p≤ 0.05; +: p≤ 0.1).  

 

a) Total PLFA concentration 

Error:plot 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 
Plant diversity 1 533.4 533.4 0.565 0.470 

Residuals 10 9437 943.7 

  Error: Within 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 
Layer 1 16857 16857 20.66 0.001** 

Plant div:Layer 1 399 399 0.49 0.500 

Residuals 10 8159 815.9 

   
b) NLFA concentration 

Error:plot 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Plant diversity 1 11543 11543 18.84 0.001** 
Residuals 10 6126 612.6   
Error: Within 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Layer 1 4308 4308 10.007 0.010* 
Plant div:Layer 1 199 199 0.462 0.512 
Residuals 10 4305 430.5 
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 Table 3.1. (Continuation) 
 

c) δ13C-PLFA 

Error: plot 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Plant diversity 1 1.462 1.462 0.52 0.487 

Residuals 10 28.105 2.811 

  Error: Within 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Layer 1 5.991 5.991 4.109 0.070+ 

Plant div:Layer 1 0.476 0.476 0.326 0.580 

Residuals 10 14.579 1.458 

   

d) δ13C-NLFA 

Error:plot 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Plant diversity 1 43.88 43.88 3.567 0.088+ 

Residuals 10 123.01 12.3 

  Error: Within 

     
 

Df Sum Sq Mean Sq F value Pr(>F) 

Layer 1 1.236 1.236 0.752 0.406 

Plant div:Layer 1 9.261 9.261 5.637 0.039* 

Residuals 10 16.429 1.643 
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Figure 3.1. Mean (n=6 ± standard error) total phospholipid fatty acids (PLFA) concentration and neutral lipid 

fatty acid (NLFA) concentration in soils at two different soil depths (0-5 cm and 5-10 cm) as affected by low and 

high plant diversity. Stars in the first row (closer to bars) indicate significant differences between plant diversity 

levels; stars in the second row indicate significant differences between soil depths (*: p≤ 0.05; **: p≤ 0.01; ***: 

p≤ 0.001). 

 

3.2.2 Compound specific δ13C of PLFA and NLFA  

In the top soil layer (Fig. 3.2), the most enriched δ13C values were found for the fatty 

acids 15:0a, 17:0a (G+ bacteria), 16:1ω7, 16:1ω5 (G- bacteria), 18:2ω6,9 (saprotrophic 

fungi); and 16:1ω5N (AMF). Plant diversity affected significantly only a minority of the 

compound specific δ13C values. The δ13C values of 16:1ω7 and 18:1ω9 (G- bacteria) and 

16:1ω5N (AMF) significantly increased (P < 0.05) with increasing plant diversity (Fig. 3.2; 

Appendix A2.3a). Moreover, with increasing plant diversity PLFA 17:1 and 16:1ω5 (G- 

bacteria) increased marginally significantly (P < 0.1. Fig. 3.2, Appendix A2.3a). The PLFA 

16:1 and 18:1ω7 (G- bacteria) were higher in plots of high plant diversity, but this difference 

was not significant (Fig. 3.2; Appendix A2.3a). Contrarily, δ13C values of G+ bacteria (14:0i, 

15:0i, 15:0a, 16:0i, 17:0i. 17:0a), actinobacteria (16:0(10Me), 18:0(10Me)) and saprotrophic 

fungi (18:2ω6,9) were not affected by plant diversity and had often slightly lower values in 

plots with higher diversity (Fig. 3.2; Appendix A2.3a).  
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Figure 3.2. Mean (n=6 ± standard error) δ13C values (‰) of individual phospholipid fatty acids (PLFA) and neutral lipid fatty 

acid (NLFA) in top soils (0-5 cm depth) with low and high plant diversity. Fatty acids are grouped into Gram positive (G+) 

bacteria, actinobacteria, saprotrophic fungi, Gram negative (G-) bacteria (cyclo), Gram negative (G-) bacteria and arbuscular 

mycorrhizal fungi (AMF). Arrows pointing up represent an increase of δ13C values with plant diversity; whereas arrows 

pointing down indicate an opposite trend. Stars and plus signs indicate significant and marginally significant differences of 

δ13C values between plant diversity levels (*: p≤ 0.05; +: p≤ 0.1), respectively. 

 

Furthermore, the average δ13C values of total PLFA was not significantly different 

between plant diversity levels and soil layers (Fig. 3.3; Table 3.1c). The δ13C values of G+ 

bacteria, actinobacteria, cyclic G- bacteria and saprophytic fungi (Appendix A2.3b) did not 

differ between plant diversity levels. In contrast δ13C values of G- bacteria were significantly 

higher in plots with high plant diversity (Appendix A2.3b). The δ13C values of NLFA was 

significantly higher in high plant diversity (Fig. 3.3; Table 3.1d), but no differences were 

observed between soil layers (Fig. 3.3; Table 3.1d). 
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Figure 3.3. Average δ13C values (n=6 ± standard error) of total phospholipid fatty acids (PLFA) and neutral 

lipid fatty acid (NLFA) in top (0-5 cm) and deeper soils (5-10 cm) from communities with low and high plant 

diversity. 

 

3.2.3 Response of plant and soil related covariates to plant diversity 

The majority of the considered covariates were positively correlated with plant 

diversity. However, only SOC concentration was significantly (p≤ 0.05, Appendix A2.4a and 

b) and root biomass and soil moisture were marginally significant (p≤ 0.1, Appendix A2.4a 

and b). The δ13C values of roots and mean δ13C of root sugars (calculated from δ13C values of 

sucrose and raffinose-family) were negatively correlated to plant diversity (significantly and 

marginally significantly, respectively: Appendix A2.4a and b). All other covariates studied, 

namely canopy leaf nitrogen, shoot biomass, root length, specific root length, root sugar 

concentration and δ13C-SOC) did not varied significantly between plant diversity levels 

(Appendix A2.4a and b).   

 

3.2.4 Plant and soil related impacts on microbial group specific δ13C values 

The positive relation of δ13C values of G- bacteria to plant diversity was mainly 

mediated by plant related variables. The δ13C values of G- bacteria were significantly 

correlated with root biomass (Fig. 3.4a; Tables 3.2 and 3.3 and Appendix A2.5), which was 

higher in more diverse plant communities. In contrast the δ13C values of the other bacterial 
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groups, i.e. G+ bacteria, actinobacteria and G- bacteria (cyclo), were not affected by plant 

diversity. Their δ13C values were best explained by soil related covariates, such as δ13C values 

of SOC (Table 3.3 and Appendix A2.5; G+ bacteria: Fig. 3.4b). The isotopic signature of 

saprotrophic fungi (Table 3.3 and Appendix A2.5) was significantly explained by δ13C values 

of soil and by δ13C values of root material (P < 0.1). The higher δ13C values of AMF was only 

positively related to plant diversity itself (Table 3.3 and Appendix A2.5), indicating that plant 

diversity effect on AMF was not mediated by the studied covariates (Table 3.3 and Appendix 

A2.5).   

 

 
Figure 3.4. Linear correlations between: a) δ13C values of Gram negative (G-) bacterial markers and root 

biomass; b) δ13C values Gram positive (G+) bacterial markers and δ13C values of soil organic carbon (δ13C -

SOC). Filled and empty circles represent high and low plant diversity, respectively. Significant differences are 

indicated by p values lower than 0.05.  
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Table 3.2. Results of automated selection of three best models (‘dredge’ function in ‘MuMIn’ package). Possible explanatory variables included were: soil moisture, soil organic 

carbon (SOC), canopy leaf nitrogen (N.area), root biomass, root length per volume (root length), specific root length, plant diversity (Div), δ13C values of soil organic carbon 

(δ13C-SOC), root material (δ13C-Root) and root sugars (δ13C-Sugars). 

 

Microbial Intercept Soil  SOC N.area Root Root Specific  Div δ13C- δ13C- δ13C- R2 df logLik AICc delta Weight 
group   moisture     biomass length root length 

 
SOC Root Sugars             

a) Gram positive bacteria 
Best model 122.20        5.45   0.35 3 -24.64 58.3 0 0.17 

2nd best model 145.90   -0.85     6.22   0.48 4 -23.35 60.4 2.13 0.06 
3rd best model 137.30   3.19   -0.47       6.19     0.67 5 -20.68 61.4 3.07 0.04 

b) Actinobacteria 
Best model 134.30               5.93     0.30 3 -27.07 63.1 0 0.14 

2nd best model -46.88  5.83    0.02 -0.30 
 

  0.68 5 -22.40 64.8 1.67 0.06 
3rd best model -43.11   3.45       0.02         0.42 4 -25.97 65.6 2.51 0.04 

c) Gram negative bacteria (cyclo) 
Best model 169.80        7.25   0.31 3 -29.32 67.6 0 0.09 

2nd best model -27.72 
 

5.07    0.03   0.89  0.72 5 -23.99 68.0 0.33 0.08 
3rd best model -43.32 0.51                   0.24 3 -29.90 68.8 1.16 0.05 

d) Gram negative bacteria 
Best model -34.07    0.42       0.68 3 -17.69 44.4 0 0.28 

2nd best model -97.34    0.46    -2.26   0.77 4 -15.70 45.1 0.73 0.19 
3rd best model -36.80       0.42           -0.14 0.71 4 -17.11 47.9 3.57 0.05 
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Table 3.2. (Continuation) 

 

Microbial Intercept Soil  SOC N.area Root Root Specific  Div δ13C- δ13C- δ13C- R2 df logLik AICc delta Weight 
group   moisture     biomass length root length 

 
SOC Root Sugars             

e) Saprotrophic fungi 
Best model 164.70        6.93   0.49 3 -24.15 57.3 0 0.29 

2nd best model 173.80 
     

<0.01 
 

7.22 
  

0.56 4 -23.26 60.2 2.94 0.07 
3rd best model 170.80     <0.01  

 
7.12   0.54 4 -23.48 60.7 3.37 0.05 

f) Arbuscular mycorrhizal fungi 
Best model -29.63             0.33       0.38 3 -28.04 65.1 0 0.19 

2nd best model -35.65  3.37         0.28 3 -28.99 67.0 1.91 0.07 
3rd best model -29.13       0.4             0.21 3 -29.51 68.0 2.94 0.04 

g) Non-specific marker 
Best model 164.60        6.96   0.41 3 -26.22 61.4 0 0.19 

2nd best model 152.80   -0.71   0.01  6.56   0.51 4 -25.13 64.0 2.53 0.05 
3rd best model -45.22   5.84       0.02 -0.32       0.7 5 -22.06 64.1 2.67 0.05 
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Table 3.3. Results of the best ANOVA model (see Table 3.2) for each microbial group. Stars indicate significant 

differences of δ13C values between plant diversity levels (***: p≤ 0.001; **: p≤ 0.01; *: p≤ 0.05; +: p≤ 0.1) 

 

Microbial group   Df Sum Sq Mean Sq F value Pr(>F) 
Gram positive bacteria 

      
 δ13C-SOC 1 23.4 23.41 5.482 0.041* 

 Residuals 10 42.7 4.27 
  Actinobacteria 

      
 δ13C-SOC 1 27.7 27.702 4.33 0.064+ 

 Residuals 10 64 6.397 
  

Gram negative bacteria (cyclo) 

      
 δ13C-SOC 1 41.4 41.41 4.445 0.061+ 

 Residuals 10 93.2 9.317 
  

Gram negative bacteria 

      
 Root biomass 1 29 28.974 21.6 0.001*** 

 Residuals 10 13.4 1.339 
  Saprotrophic fungi 

      
 δ13C-SOC 1 37.8 37.83 9.619 0.011* 

 Residuals 10 39.3 3.933 
  

Arbuscular mycorrhizal fungi 

      
 Plant diversity 1 46.7 46.73 6.218 0.032* 

 Residuals 10 75.2 7.515 
  Non-specific marker 

      
 δ13C-SOC 1 38.2 38.17 6.877 0.026* 
  Residuals 10 55.5 5.551     

 

3.3 Discussion  

Undoubtedly, soil microorganisms exert an important control on C cycling in soils. It 

has been hypothesized that increasing C inputs to soils would potentially cause a positive 

priming of SOC (Fontaine et al., 2007). However,  Lange et al. (2015) have shown that 

although increased C input to soil with high plant diversity does promote the soil microbial 

activity, the positive impact on SOC priming is neglectable when compared to SOC 

accumulation. In the study by Lange et al. (2015), increased root exudation was suspected as a 

possible mechanism of higher SOC accumulation accompanied with higher plant diversity. 

Here we were able to investigate the underlying mechanism of increased microbial carbon 

uptake. In contrast to the findings of earlier studies (Chung et al., 2007; Chung et al., 2009; 

Lange et al., 2015) we did not find evidence that plant diversity increases higher microbial C 

uptake at higher plant diversity by higher root exudation. Instead, root biomass was the best 

predictor for the observed patterns. This indicates that higher plant diversity increases the 
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access to plant-derived C for root-associated microorganisms, which are more capable of 

utilize easily decomposable C inputs (i.e. root exudates) in the rhizosphere, through more root 

biomass.  

 

3.3.1 Effects of plant diversity and soil depth on the PLFA and NLFA concentrations 

Previous studies from The Jena Experiment have reported a significant plant diversity 

effect on microbial biomass (Habekost et al., 2008b; Lange et al., 2014). In the present study, 

however, working with a subset of the plant diversity levels and a smaller number of 

replicates this positive effect of plant diversity on the total microbial biomass (measured as 

total PLFA concentration) was present but not significant. Nonetheless, the concentration of 

16:1ω5N, which is a biomarker for the presence of AMF, was significantly higher in plots 

with higher plant diversity. AMF are intrinsically related to plants and trade plant C for 

nutrients. It has been suggested that in grassland ecosystems more than 10% of the 

photosynthetically fixed C is allocated to AMF. Therefore, AMF are likely to possess a high 

sensitivity for changes in photosynthetic assimilation, such as an increased C fixation 

observed in more diverse plant communities (Milcu et al., 2014). This in turn might result in 

increased AMF concentrations in ecosystems that support higher plant diversity, as our study 

shows. We also confirmed that concentrations of both total PLFA and NLFA decreased with 

increasing soil depth (Fig. 3.1) (Kramer and Gleixner, 2008; Huang et al., 2011).  

 

3.3.2 Response of plant and soil related covariates to plant diversity 

Plant diversity positively and significantly (or marginally significantly) influenced 

SOC concentrations, root biomass and soil moisture in our experiment. Increased 

belowground inputs of plant-derived C have been shown to enhance the SOC accumulation in 

soils with high plant diversity (Fornara and Tilman, 2008; Steinbeiss et al., 2008a; Lange et 

al., 2015). Furthermore, plant diversity increased root standing biomass (Ravenek et al., 2014) 

through increased primary productivity (Milcu et al., 2014). And finally, higher soil moisture 

in high plant diversity plots are likely the result of higher leaf area index, which provides 

shading to the upper layers of the soil, thus preventing evaporation (Lange et al., 2014). 

Moreover, previous investigations have shown that plant diversity influences positively and 

significantly other plant and soil related factors (e.g. aboveground biomass (Cardinale et al., 

2006; Ravenek et al., 2014)). In our experiment, plant diversity was positively correlated to 

canopy leaf nitrogen, aboveground biomass and root length. However, the plant diversity 
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effect on those covariates was small and not significant, which was probably due to the small 

number of replicated in the Ecotron facility. 

 

3.3.3 Plant and soil related impacts on 13C uptake into soil microbial groups 

We observed that the δ13C values of G- bacteria and AMF increased with plant 

diversity. G- bacteria and AMF are commonly known as root-associated soil microorganisms 

(Treonis et al., 2004; Olsson and Johnson, 2005; Drigo et al., 2010) that are more abundant in 

the rhizosphere, especially G- bacteria (Denef et al., 2009). G- bacteria rely more on fresh 

rhizodeposits (Kramer and Gleixner, 2008; Esperschutz et al., 2009; De Deyn et al., 2011; 

Balasooriya et al., 2012; Staddon et al., 2014) as energy source and are therefore very likely 

to monitoring the C transfer from the aboveground to the belowground system. Remarkably, 

our results provide evidence that only root biomass as a plant related variable is a significant 

driver for the observed increased δ13C values of G- bacteria with increasing plant diversity 

(Fig. 3.4a; Appendix A2.5). We suggest that higher root biomass facilitates the access of root-

associated microorganisms to recently fixed plant-derived C. Our results are in line with 

previous investigations (De Graaff et al., 2013; De Graaff et al., 2014) that have emphasized 

the importance of roots for inputs of plant-derived C into soil. However, in contrast to our 

results the previous studies identified specific root length as a driver of carbon transfer into 

soils. These different findings might reflect differences in the study design and study object. 

While previous studies investigated the impact of root architecture of individual plants on 

carbon transfer, we worked with plant species mixtures. Furthermore, in our experiment root 

biomass was the only root trait, which significantly increased with plant diversity (Appendix 

A2.4b). This might be another reason why in our study root biomass was tested as best 

predictor underlying the plant diversity effect on soil microbial C uptake. However, 

irrespective of the specific morphological root covariate, explaining the plant diversity effect, 

higher exudation rates seemed not to be the mechanism responsible for the G- bacteria 

enrichment at higher plant diversity. Root exudates comprise several low and high molecular 

weight compounds (such as organic acids, sugars, amino acids and proteins (Nguyen, 2003)), 

it has been observed that the chemical composition of the root exudates might change to fulfil 

specific plants’ needs (e.g. under low P availability (Zhang et al., 1997)). However, to our 

knowledge there are not yet investigations that report changes in the chemistry of root 

exudates with changing plant diversity. Sugars are among the most abundant (Jones and 

Darrah, 1996) and easily decomposable C sources exuded by the roots (Paterson et al., 2007), 

therefore we expected that changes in root exudation would be evidenced by a linkage in the 
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changes of the C assimilated by root-associated microorganisms (that commonly decompose 

the most labile C resources) and the changes in the 13C incorporated to root sugars; although 

our results demonstrated that this process was not occurring in our system. We found neither 

the total amount of root sugars nor their δ13C values, which would indicate higher flux rates, 

affected G- bacteria. This is also in line with our observation that higher δ13C values of AMF 

at higher diversity were not related to any of the plant-related covariates (Table 3.3 and 

Appendix A2.5). AMF actively approach their host plant using chemotactic growth and 

actively trade C for nutrients (Engels et al., 2000; Drigo et al., 2010). Therefore AMF are less 

dependent on root development and accessibility than bacteria that are less mobile in soil. We 

hypothesize that the increased δ13C content of AMF yields from an increased C-nutrient 

trading following a higher mineralization rate at higher diversity (see discussion below).  

We observed that the δ13C values of roots and root sugars (raffinose-family) were 

significantly higher in low plant diversity (Fig. 3.5; Appendix A2.4a and b). Additionally, 

δ13C values of CO2 ecosystem respiration (plant and soil combined respiration) were 

marginally significantly higher in low plant diversity (Appendix A2.2); therefore we suggest 

that the lower enrichment of δ13C in roots and root sugars (raffinose-family) at higher plant 

diversity is an effect of complementary use of soil respired CO2. In high plant diversity plots, 

soil respiration is greater due to a higher microbial biomass (Lee and Jose, 2003; Eisenhauer 

et al., 2010), therefore the resulting δ13C-depleted CO2 from SOC mineralization might cause 

a “dilution effect” of the δ13C values of CO2 when re-assimilated by plants (Busch et al., 

2013). This suggests that at higher plant diversity additional resources are used for growth.  
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Figure 3.5. Mean (n=6 ± standard error) δ13C values (‰) of root sugars (sucrose and raffinose-family) and root 

material in top soils (0-5 cm) with low and high plant diversity. Stars indicate significant differences of δ13C 

values between plant diversity levels (*: p≤ 0.05).  

 

The G- bacteria (cyclo) markers did not respond as other G- bacteria PLFA, as their 

δ13C values and trends were more similar to those of G+ bacteria PLFA (Table 3.3 and 

Appendix A2.5). Similar results have been previously observed (Bird et al., 2011), and are 

likely attributed to the dormancy state of G- bacteria (cyclo) (Butler et al., 2003; Elfstrand et 

al., 2008). The δ13C values of G+ bacteria, actinobacteria and saprotrophic fungi were not 

affected by plant diversity. Instead their δ13C values were positively correlated to δ13C values 

of soil (Table 3.3 and Appendix A2.5) indicating that SOC is their major C source (Elfstrand 

et al., 2008; Kramer and Gleixner, 2008; Bird et al., 2011; Bahn et al., 2013). The 

interpretation of saprotrophic fungi is more complex, as this microbial group might be related 

to a number of functions in soil. For instance, saprotrophic fungi could use different C 

substrates, like dead biomass (Klamer and Hedlund, 2004), SOC (Garcia-Pausas and Paterson, 

2011) and root exudates (Lemanski and Scheu, 2014). The positive correlation of δ13C values 

of saprotrophic fungi and δ13C of soil indicates a preferred consumption of SOC as C source 

in this experimental set up. Moreover, similarly to G+ bacteria, the high δ13C values observed 

in saprotrophic fungi points to C recycling through the microbial food web. We suggest that 

δ13C values of saprotrophic fungi and their lack of response to plant diversity in the system we 
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investigated are the result of a combined utilization of different sources of C, namely plant-

derived C, recycled microbial C and SOC. 

 

3.4 Conclusion 

This study presents evidence that high plant diversity promotes an increased C 

utilization to and cycling in the belowground system. Possible mechanisms are 1) better 

access to recently photosynthesized plant-derived C resources for root-associated 

microorganisms but not higher exudation rates and 2) increased C allocation to AMF. 

Additionally, by increasing the access to plant-derived C deposited in soils, high plant 

diversity has positive impacts on root-associated microorganisms (G- bacteria and AMF), 

which are capable of utilizing newly photosynthesized C and are, therefore triggering the 

cycling of new C entering the soil system.  
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CHAPTER IV 

 

THE POSITIVE PLANT DIVERSITY EFFECT ON SOIL MICROBIAL 

COMMUNITY AND SOIL BACTERIAL DIVERSITY IS DRIVEN BY 

PLANT- AND SOIL-RELATED FACTORS 
 

Abstract  

In this study, we investigated the plant diversity effect on the soil microbial biomass, 

soil microbial community and bacterial diversity. We investigated soils from 82 plots 

spanning over a wide gradient of plant diversity, from 1 to 60 plant species. Phospholipid 

fatty acid (PLFA) analyses and terminal-restriction fragment length polymorphism (T-RFLP) 

measures described how the microbial community and the bacterial diversity, respectively, 

were influenced by plant diversity. Our results showed that soil microbial biomass, soil 

microbial community and bacterial diversity were positively and significantly affected by 

plant diversity, namely plant species richness and abundance of specific plant functional 

groups. These positive plant diversity effects were attributed mainly to higher availability and 

diversity of resources provided by improved vegetation conditions, such as higher root 

biomass, and enhanced soil properties, such as increased soil moisture and soil organic carbon 

(SOC) concentrations. Moreover, plant diversity influenced similarly the amounts of root-

associated and soil-related soil microorganisms thereby triggering the cycling of new and old 

carbon (C) in the belowground system. However the evenness of the microbial community 

markers decreased with increasing plant diversity. Soil microbial markers indicative of root-

associated microorganisms dominated in high plant diversity which could indicate that plant 

diversity favors specific functions in the soil system.    
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4.1 Introduction  

 Plant diversity, including plant species richness, functional group richness and 

presence and abundance of specific plant functional groups, play a key role in controlling 

ecosystem functions relevant for the cycling of C in terrestrial ecosystems (Hooper et al., 

2005; Cardinale et al., 2012; Hooper et al., 2012). The effect of plant diversity on the C cycle 

in soils has been vastly investigated because soil C sequestration might counteract increasing 

atmospheric CO2 concentrations that are triggering the global climate change (Batjes, 1998; 

Schmidt et al., 2011; Batjes, 2014). The transfer of C between plants and soils is mainly 

mediated by the soil microbial activity. The  input of plant-derived C to soils triggers the 

microbial C cycling firstly by providing fresh substrates for soil microorganisms growth 

(Gleixner, 2013) and secondly by stimulating the mineralization of already present soil 

organic matter (SOM) (Fontaine et al., 2003). The latter process releases additional nutrients 

that are essential for plant growth. Plant diversity influences plant- and soil-related properties 

which are relevant for the microbial C cycling in the belowground system. For instance, 

higher root biomass (Ravenek et al., 2014) and greater leaf area index (LAI), as well as 

greater soil moisture (Lange et al., 2014) and higher soil organic carbon (SOC) (Fornara and 

Tilman, 2008; Steinbeiss et al., 2008b) have been linked to more abundant soil microbial 

communities, consequently impacting the processes that are mediated by soil microorganisms, 

such as microbial C uptake, microbial C cycling and ultimately soil C accumulation 

(Gleixner, 2013; Lange et al., 2015; Mellado-Vázquez et al., 2016).  

It is known that the effect of plant diversity on soil microbial dynamics impacts the 

cycling of majorly important elements, such as C, however the processes that are controlled 

by these interactions are still not fully understand. Phospholipid fatty acids (PLFA) analyses 

are greatly used in soil ecology to quantify the total microbial biomass and to classify the 

microbial community (Chowdhury and Dick, 2013; Kramer et al., 2013; Wu et al., 2013; Ng 

et al., 2014; Watzinger, 2015). Most commonly, PLFA markers are classified into different 

microbial groups based in their chemical structure, in general branched saturated PLFAs 

represent Gram positive (G+) bacteria (Zelles, 1997), monounsaturated PLFAs are indicative 

of Gram negative (G-) bacteria (Zelles, 1997) and polyunsaturated PLFAs represent fungi and 

higher organisms (Zelles, 1997). Following the classification given by PLFA analyses, 

bacterial and fungal organisms are often designated to different functions related to their 

preferred C substrates as root-associated and soil-related microorganisms: G- bacteria and 

AMF are commonly designated as root-associated microorganisms because they are more 

likely to feed on readily decomposable sources of C, such as rhizodeposits (Denef et al., 2009) 
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and via direct plant C uptake (Drigo et al., 2010), respectively. G+ bacteria and saprotrophic 

fungi are usually denominated as  soil-related microorganisms, they have a high affinity for 

complex compounds, such as stabilized soil organic carbon (SOC) and plant litter (Kramer 

and Gleixner, 2008; Garcia-Pausas and Paterson, 2011; Bahn et al., 2013). Although every 

part of the soil microbial community is particularly adapted to perform distinct specific 

functions (related to C cycling), their functions complement each other allowing the most 

efficient cycling of elements belowground. In that sense, high microbial diversity is crucial for 

assuring an effective soil functioning, because different microbial species perform slightly 

distinct functions mainly through complementary use of resources (Bell et al., 2005) 

belowground. Highly diverse plant communities might impact positively the diversity of 

microorganisms in soils through increased resource heterogeneity (Loreau and Hector, 2001), 

thereby imposing an indirect control on soil microbial functions. Phylogenetic techniques, 

such as  terminal-restriction fragment length polymorphism (T-RFLP) analysis are very useful 

to measure microbial diversity in soils (Schütte et al., 2008). In contrast, analysis that provide 

less resolved results, such as PLFA analysis are less suited to provide information on the 

microbial diversity in the environment (Frostegård et al., 2011). However, the evenness of 

PLFA markers allows identifying the dominant microbial markers in soils, which can be 

further assign to specific functions in soils.    

We hypothesized firstly, that high plant diversity modifies plant- and soil-related 

conditions that promote increased resource availability that benefits the soil microbial 

functions by impacting soil microbial biomass, community composition and diversity; and 

secondly that this greater resource input activates all parts of the soil microbial community 

(root-associated and soil-related microorganisms). However higher amounts of new C 

resources favors slightly more the functions performed by root-associated microorganisms. In 

order to test our hypotheses, we explored how plant diversity shapes the microbial community 

in soils from The Jena Experiment (Roscher et al., 2004), a biodiversity experiment which 

comprises a wide gradient of plant diversity levels. We analysed PLFA profiles from all soil 

samples to identify changes in microbial biomass and microbial community composition 

related to plant diversity. The impact of plant diversity on bacterial diversity was measured 

with T-RFLP.  
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4.2 Results 

4.2.1 Influence of plant diversity on plant and soil-related covariates  

 Plant species richness influenced significantly and positively the plant and soil related 

covariates (Appendices A2.6 and A4.1). Plant functional group richness and abundance of 

legumes (Appendix A4.1) had a positive and significant impact on LAI and soil moisture, 

respectively. With increasing plant diversity, mean values of root biomass increased from 

1.86 ± 1.88 to 10.29 ± 4.10 g m-2; soil moisture increased from 12.44 ± 2.61 to 17.80 ±1.08 

%; SOC increased from 2.24 ± 0.34 to 2.70 ± 0.13 % and lastly the LAI increased from 0.57 ± 

0.52 to 3.50 ± 0.22 (Appendix A2.6).   

 

4.2.2 Soil microbial biomass 

 Total PLFA concentration (henceforth termed as microbial biomass) was significantly 

influenced by block and plant species richness (Table 4.1). Microbial biomass increased 

significantly with increasing plant species richness, (Fig. 4.1a; Table 4.1). Number of 

functional groups (Fig. 4.1b; Table 4.1) and abundance of grasses (Fig. 4.2a; Table 4.1) small 

(Fig. 4.2b; Table 4.1) and tall herbs (Fig. 4.2c; Table 4.1) and legumes (Fig. 4.2d; Table 4.1) 

did not affect significantly the microbial biomass. Root biomass, soil moisture and SOC drove 

significantly the plant species richness effect on the microbial biomass (Table 4.1).  

 

4.2.3 Plant diversity effect on different soil microbial groups  

 Plant diversity, namely plant species richness, number functional groups and 

abundance of specific functional groups affected similarly all parts of the soil microbial 

community. Root-associated and soil-related microorganisms were positively and 

significantly affected by plant species richness (Table 4.1) and presence of small herbs (Table 

4.1). Number of functional groups and abundance of grasses, tall herbs and legumes were not 

significantly related to any microbial group (Table 4.1). Interestingly, the positive plant 

species richness effect was significantly explained by root biomass, soil moisture and SOC 

(Table 4.1). Moreover, the small herbs effect could be only partially attributed to root 

biomass, soil moisture and SOC because the mere effect of small herbs continued to be 

significant after testing the driving force of all covariates.  
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Table 4.1. ANOVA (Analysis of variance) and ANCOVA (analysis of covariance) results from the changes in 

microbial biomass, root-associated and soil-related microorganisms, bacterial diversity and PLFA evenness 

related to plant diversity measures: plant species richness (PSR); functional group (FG); grasses, small and tall 

herbs and legumes. Root biomass, leaf area index (LAI), soil moisture and soil organic carbon (SOC) were set as 

covariates to test for their influence on the changes in microbial biomass, root-associated and soil-related 

microorganisms, bacterial diversity and PLFA evenness.  Bold numbers represent significant differences (P 

values ≤ 0.05). 

 

  

ANOVA ANCOVA 

 

Df F value P F value P 

Microbial biomass 
     Block 1 24.96 < 0.001 29.37 < 0.001 

Root biomass 1 
  

6.74 0.011 
LAI 1 

  
0.00 0.978 

Soil moisture 1 
  

13.22 < 0.001 
SOC 1 

  
5.53 0.021 

PSR 1 8.14 0.006 1.18 0.280 
FG 1 0.76 0.386 

  Grasses 1 0.22 0.637 
  Small herbs 1 3.33 0.072 
  Tall herbs 1 0.10 0.759 
  Legumes 1 0.17 0.679 
  Root-associated  

     Block 1 16.52 < 0.001 19.63 < 0.001 
Root biomass 1 

  
7.23 0.009 

LAI 1 
  

0.04 0.840 
Soil moisture 1 

  
15.60 < 0.001 

SOC 1 
  

5.98 0.017 
PSR 1 9.57 0.003 1.43 0.236 
FG 1 0.63 0.428 

  Grasses 1 0.10 0.753 
  Small herbs 1 6.98 0.010 5.19 0.026 

Tall herbs 1 0.00 0.980 
  Legumes 1 0.24 0.623 
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Table 4.1. Continuation 

  

ANOVA ANCOVA 

 

Df F value P F value P 

Soil-related 1     
Block 1 24.48 < 0.001 29.35 < 0.001 
Root biomass 1   6.27 0.015 
LAI 1   0.04 0.843 
Soil moisture 1   13.07 < 0.001 
SOC 1   6.68 0.012 
PSR 1 6.96 0.010 0.94 0.336 
FG 1 1.25 0.268   
Grasses 1 0.06 0.811   
Small herbs 1 7.83 0.007 5.97 0.017 
Tall herbs 1 0.09 0.768   
Legumes 1 0.46 0.501   

Bacterial diversity 
     Block 1 1.27 0.264 

  Root biomass 1 
  

10.96 0.001 
LAI 1 

  
12.89 < 0.001 

Soil moisture 1 
  

15.88 < 0.001 
SOC 1 

  
1.13 0.290 

PSR 1 21.80 < 0.001 0.13 0.720 
FG 1 4.89 0.030 1.56 0.216 
Grasses 1 0.35 0.555 

  Small herbs 1 1.11 0.295 
  Tall herbs 1 2.71 0.104 
  Legumes 1 3.30 0.073 
  PLFA evenness 

     Block 1 19.80 < 0.001 22.72 < 0.001 
Root biomass 1 

  
10.57 0.002 

LAI 1 
  

0.27 0.607 
Soil moisture 1 

  
10.77 0.002 

SOC 1 
  

4.74 0.033 
PSR 1 10.39 0.002 0.49 0.485 
FG 1 0.06 0.815 

  Grasses 1 0.11 0.740 
  Small herbs 1 3.53 0.064 
  Tall herbs 1 0.03 0.860 
  Legumes 1 0.00 0.951 
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Figure 4.1. Microbial biomass in (a) soils with a gradient in plant diversity (plant species richness) and (b) soils 

with a gradient of plant functional groups.  

 

 

 

 

 

Figure 4.2. Microbial biomass in soils with gradient different plant functional groups: (a) number of grasses; (b) 

number of small herbs; (c) number of tall herbs and (d) number of legumes.  
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4.2.4 Bacterial diversity and PLFA evenness 

 Bacterial diversity increased significantly with increasing plant species richness 

(Fig.4.3a; Table 4.1) and functional group richness (Table 4.1). These positive plant diversity 

effects were significantly driven by increasing root biomass, LAI and soil moisture (Table 

4.1). Contrastingly, PLFA evenness decreased significantly with increasing plant species 

richness affected by plant species richness (Fig. 4.3b; Table 4.1), which was attributed to the 

increased root biomass, soil moisture and SOC (Table 4.1) in higher plant diversity.  

 

 
Figure 4.3.  a) Bacterial diversity measured from Simpson index of T-RFLP and b) PLFA evenness measured 

from Simpson’s index of diversity. Both a) and b) correspond to soils with a gradient in plant diversity.  

 

4.3 Discussion  

4.3.1 Plant diversity effect on plant and soil-related covariates  

 The plant diversity effect on plant and soil-related factors is inherently correlated. 

Root biomass, LAI, soil moisture and SOC increased significantly with increasing plant 

diversity (Appendices A3.1 and A3.2). Plant diversity is known to increase plant biomass 

above and belowground through the increase of C allocation due to higher photosynthetic 

assimilation (Milcu et al., 2014). Presumably, LAI is also augmented in higher plant species 

richness as a result of increasing aboveground biomass. Soil moisture increase in higher plant 

diversity has been attributed to greater LAI, which increases shading to the upper soil layers 

avoiding soil evaporation (Rosenkranz et al., 2012; Lange et al., 2014). Lastly, in highly 

diverse plant communities, there is an increased transfer (due to higher root biomass 
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(Mellado-Vázquez et al., 2016)) of resources, especially C to the soil system, thereby causing 

increasing SOC concentrations. 

 

4.3.2 Soil microbial biomass  

Microbial biomass was significantly greater in soils with higher plant species richness 

(Fig. 4.1a; Table 4.1); previous studies of the microbial biomass in soils have demonstrated 

the relevance of plant diversity for the development of an abundant soil microbial community 

(e.g.: Zak et al. (2003) and Reich et al. (2012)). Particularly in the Jena Experiment field site, 

Habekost et al. (2008) were the first to explore this relation and followed by Lange et al. 

(2014) showed that plant diversity influenced significantly the microbial biomass in these 

soils, here we additionally observed that the positive impact of plant diversity on the 

microbial biomass becomes more pronounced over time.  

In our study site, greater root biomass and higher SOC concentrations (Table 4.1) 

drove significantly the plant diversity effect on the microbial biomass; some of the 

mechanisms behind this positive plant diversity effect are linked to higher availability (SOC 

(Steinbeiss et al., 2008b)) and accessibility (higher root biomass (Mellado-Vázquez et al., 

2016)) of resources belowground, which is consisting with our observations. Additionally, the 

positive plant diversity effect on the microbial biomass could be the result of improved 

microhabitat conditions (e.g. increased soil moisture, Lange et al., 2014) in more diverse 

plant-soil ecosystems. Furthermore, Habekost et al. (2008) reported a significant effect of the 

abundance of legumes on the microbial biomass, whereas Lange et al. (2014) found no 

significant effect of any plant functional group. Similarly to Lange et al., (2014), we found 

that abundance of specific plant functional groups did not influence significantly the microbial 

biomass in our system.  

 

4.3.3 Plant diversity effect on soil microbial groups  

Our results demonstrated that increasing plant diversity promotes the development of 

different microbial groups in a similar fashion (Tables 4.1). Both, root-associated and soil-

related microorganisms were positively and significantly influenced by plant species richness 

and abundance of small herbs. Root biomass, soil moisture and SOC explained significantly 

these plant diversity effects. Higher soil moisture facilitates the dissolution and motility of 

resources belowground (Davidson et al., 2000), thereby enhancing resource availability for 

microbial C uptake. SOC is comprised by two main fractions: a labile C fraction (e.g. recently 

photosynthesized and easily decomposable C) and a more stabilized C fraction (Breulmann et 
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al., 2012). Unfortunately, in the framework of our study, SOC concentrations reflect both 

fractions together. Thus, possibly the positive driving force of SOC over the plant diversity 

effects on the two major soil microbial groups (i.e. root-associated and soil-related 

microorganisms) reflects the influence of recent plant-derived C resources for root-associated 

microbes (Denef et al., 2009) and older C substrates for soil-related microorganisms (Kramer 

and Gleixner, 2008; Bahn et al., 2013). Furthermore, since greater root biomass in high plant 

diversity provides with a more appropriate habitat where root-associated microbes can thrive 

due to a better access to plant-derived C resources (De Graaff et al., 2013; De Graaff et al., 

2014; Mellado-Vázquez et al., 2016) we expected root biomass to explain only the significant 

effect of plant diversity on root-associated microorganism, however root biomass also 

explained significantly the plant diversity effect on soil-related microorganisms, we suggest 

that this might be an indirect response. Apart from feeding microorganisms that are capable to 

decompose easily decomposable C resources, such as root-associated ones, root-derived C 

inputs promote the decomposition of SOM (Fontaine et al., 2003), thereby promoting the 

growth of microorganisms that are better suited to decompose more complex C substrates, 

such as soil-related microorganisms (Kramer and Gleixner, 2008; Garcia-Pausas and Paterson, 

2011; Bahn et al., 2013). 

 

4.3.4 Plant diversity effect on bacterial diversity and PLFA evenness 

 Plant diversity (plant species and functional group richness) influenced positively and 

significantly the bacterial diversity in our system (Fig. 4.3a; Table 4.1). In soils with higher 

plant diversity not only the quantity of resources is higher but more relevant the quality and 

diversity of those resources is also greater (Loreau and Hector, 2001; Bell et al., 2005), thus 

complementing the needs of a wider range of microbial species. We further observed that this 

response was controlled by increased resource availability factors, such as root biomass, LAI 

and soil moisture (Table 4.1). In contrast, the evenness of PLFA was lower in high plant 

diversity (Fig. 4.3b; Table 4.1), this indicated that in higher plant diversity levels fewer PLFA 

markers, mainly root-associated microbial markers, e.g. 16:1ω7, 16:1ω5, 18:1ω7 and 18:1ω9, 

responded to plant diversity. This suggests that root-associated microorganisms represent a 

larger part of the bacterial species in our system, and consequently the functions performed by 

root-associated microorganism are favored in higher plant diversity.    
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4.4 Conclusion 

 Plant species richness and the abundance of individual plant functional groups 

influenced significantly the microbial development in soils by favoring C input related 

factors, such as root biomass, LAI, soil moisture and SOC. Although the two major groups of 

soil microorganisms: root-associated and soil-related microbes were similarly affected by the 

plant and soil related drivers, decreasing evenness of bacterial markers as a response of 

increasing plant diversity suggested that root-associated microorganisms were more strongly 

influenced by plant diversity. This could indicate that even though plant diversity plays 

important role for the cycling of both new and old C resources belowground, the impact of 

plant diversity on the formation of new C in the soils is stronger.   
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CHAPTER V 

 

THE SOIL MICROBIAL COMMUNITY AND ITS CARBON UPTAKE 

ARE MORE AFFECTED BY SOIL TYPE AND SEASON THAN BY 

VEGETATION TYPE IN A VEGETATION CHANGE EXPERIMENT 

(C3 AND C4 PLANTS) 
 

Abstract  

This study investigates the influence of different vegetation types (C3 and C4 plants), 

soil type and seasonal changes on the soil microbial biomass, soil microbial community 

composition and soil microbial carbon (C) uptake. In 2012 we collected soil samples in the 

growing and non-growing season from an experimental site cropping C3 and C4 plants for 6 

years on two different soil types (sandy and clayey). Phospholipid fatty acids (PLFAs) and 

their compound-specific δ13C values were used to determine microbial biomass and the flow 

of C from plants to soil microorganisms, respectively. The most important factor controlling 

the total microbial biomass was season with higher abundances in the growing season. The 

microbial community composition was mainly explained by soil type. The underlying drivers 

of soil type were differences in soil organic carbon (SOC) and root biomass. Higher amounts 

of SOC were driving the predominance of G+ bacteria, actinobacteria and cyclic G- bacteria 

in sandy soils; whereas root biomass was strongly related to the increased proportions of G- 

bacterial PLFA markers in clayey soils. The uptake of plant-derived C in G- bacteria 

increased significantly in clayey soils in the growing season. This increase was positively and 

significantly driven by root biomass. Moreover, changes in plant-derived C among microbial 

groups pointed to specific capabilities of different microbial groups to decompose distinct 

sources of C. We concluded that soil texture and favorable growth conditions driven by 

rhizosphere interactions are the most important factors controlling the soil microbial 

community. Our results demonstrated that a change of C3 plants vs. C4 plants has no effect 

on the soil microbial community and its functioning. Thus, such experiments are well suited 

to investigate soil organic matter dynamics as they allow tracing the C flow from plants into 

the soil microbial community without interacting with other experimental factors. 
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5.1 Introduction  

 Soils hold a very relevant position in the carbon (C) cycling at a global scale since 

they store the majority of terrestrial organic carbon (Lal, 2004). Therefore, it is crucial to 

understand how processes, such as accumulation and decomposition of soil organic carbon 

(SOC) might be affected by different ecosystem properties and environmental conditions. Soil 

microorganisms play a key role in controlling formation, decomposition and accumulation of 

SOC (Gleixner et al., 2002; Balser and Firestone, 2005; Bardgett et al., 2005; Lange et al., 

2015). The microbial biomass in soils is primarily controlled by plant-derived C resources 

(Wardle, 2002). Simultaneously, the microbial community in soils remobilize nutrients that 

enhance plant growth (Porazinska et al., 2003). Soil microbial communities are highly 

affected by several abiotic and biotic factors such as soil texture (Merckx et al., 1985; Johnson 

et al., 2003; de Vries et al., 2012), pH (Thoms et al., 2010), soil moisture (Berg and 

Steinberger, 2010; Lange et al., 2014), temperature (Medeiros et al., 2006), vegetation type 

(Grayston et al., 2001; Berg and Steinberger, 2010; Epron et al., 2011), plant diversity (Lange 

et al., 2014) and seasonality (Habekost et al., 2008; Cao et al., 2011; Thoms and Gleixner, 

2013). Though, the impact of these factors on the soil microbial community have been 

investigated individually; so far little is known about their relative importance for shaping the 

microbial community composition as well as its functioning. In addition, different soil 

microbial groups utilize C from different sources, Gram positive (G+) bacteria are most 

commonly decomposers of SOC (Bahn et al., 2013; Mellado-Vázquez et al., 2016); Gram 

negative (G-) bacteria have high affinity for plant-derived C, such as root exudates (Denef et 

al., 2009; Mellado-Vázquez et al., 2016)), while saprotrophic fungi are able to decompose 

root exudates and plant litter (Treonis et al., 2004) as well as SOC (Garcia-Pausas and 

Paterson, 2011; Mellado-Vázquez et al., 2016). Analyses of phospholipid fatty acids (PLFAs) 

are a helpful mean to measure the living soil microbial biomass and to describe the soil 

microbial community composition through the assignment of individual PLFA markers to 

different soil microbial groups (e.g. (Frostegard et al., 1991; Bossio and Scow, 1998; Bossio 

et al., 1998; Zelles, 1999b; Potthoff et al., 2006; Habekost et al., 2008; Thoms et al., 2010)). 

Generally, distinct PLFA markers are specific for different bacterial and fungal groups, 

however the microbial origin of some markers might change depending on ecosystem type 

(soil, sediment, etc.), quality and availability of substrates, therefore the designation of 

specific microbial origin to PLFA markers must be done with due care. Nonetheless, 

compound specific isotope ratios of PLFAs, in combination with isotopic labeling, are useful 

to determine the C dynamics in the soil microbial community (Miltner et al., 2004; Evershed 
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et al., 2006; Kindler et al., 2009; Garcia-Pausas and Paterson, 2011). Focal advances in the 

understanding of C flow between plants, microorganisms and soil organic matter derive from 

vegetation change experiments (Balesdent and Balabane, 1996; Kramer and Gleixner, 2006; 

Blagodatskaya et al., 2011; Gleixner, 2013). In such experiments, the native plant community 

of either C3 or C4 plants is exchanged by the respective other plant type. Differences in the 

photosynthetic pathways of C3 and C4 plants result on naturally distinct δ13C values of both 

plant types (C3: -25 ‰; C4: -14 ‰ (Degens, 1969; O'Leary, 1981)) that are also reflected in 

the δ13C of SOC. However, there are uncertainties if such a vegetation change from C3 to C4 

plants only changes the isotopic signal of the C source or if it is also changing the soil 

microbial community composition and their functions in soils.   

 In this study we investigated the effect and the relative importance of C3-C4 

vegetation change, soil types and season on the soil microbial community composition and its 

functioning in terms of C uptake. We studied total soil microbial biomass, soil microbial 

community composition as well as their isotopic C composition on a replicated and input 

controlled C3-C3 experiment, with two distinct soil types (sandy and clayey) in the non-

growing and growing seasons. Furthermore, we were able to assess the microbial uptake of 

plant-derived C for distinct microbial groups depending on plant type and season. Specifically 

we tested if i) the soil microbial community composition and abundance are affected by 

vegetation type, soil type and seasonal changes and ii) if the C dynamics of the soil microbial 

community are affected by these parameters and iii) if microbial uptake of plant-derived C 

differs among microbial groups. 

  

5.2 Results 

5.2.1 Microbial biomass and microbial community composition 

 Microbial biomass (measured as total PLFA concentration) changed significantly with 

season and soil type (Table 5.1a). Significantly higher microbial biomass was found in the 

growing season and in clayey soils (Fig. 5.1). Vegetation type had no significant impact on 

soil microbial biomass (Table 5.1a). 

 



CHAPTER V 

55 
 

 
Figure 5.1. Mean (n=3 ± standard error) microbial biomass in sandy and clayey soils sown with C3 and C4 

plants in different seasons. Stars indicate significant differences in mean total microbial biomass between 

seasons and soil type (*: p≤ 0.05; ***: p≤ 0.001). 

 

 Soil type was, with 50% explained variation, the main driver for the microbial 

community composition of the PLFA concentration. The other experimental factors, 

vegetation type and season, did not affect significantly the soil microbial community (Table 

5.1b). The RDA revealed that the significant effect of soil type was driven by differences in 

SOC content (explains 8.0 %, Appendix A5.2), while soil moisture, clay content and DOC 

had no significant impact on the microbial community composition (Appendix A5.2). By far, 

the most important factor for structuring the soil microbial community was root biomass, 

explaining 45.2 % of the PLFA composition (Appendix A5.2). Root biomass mainly separates 

G+ bacteria from G- bacteria (Fig. 5.2). 
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Figure 5.2. Redundancy analysis (RDA) of the mean relative proportions (mol%) of individual phospholipid 

fatty acids (PLFAs) in sandy and clayey soils sown with C3 and C4 plants. Root biomass (RB) and soil organic 

carbon (SOC) were set as explanatory variables to explain the variance of individual PLFAs. Stars indicate 

significant differences between soil types (*: p≤ 0.05; **: p≤ 0.01).  

 

5.2.2 Isotopic signature of microbial markers and uptake of plant-derived C  

 All individual PLFAs had significantly higher δ13C values in C4 vegetated plots 

(Appendices A5.1 and A5.3). Furthermore, the δ13C values of PLFA markers indicative for 

G+ bacteria, actinobacteria and G- bacteria cyclo (15:0i, 16:0i, 17:0i, 17:0a, 16:0(10Me), 

19:0(10Me), 17:0cy and 19:0cy) were higher in the growing season; whereas δ13C values of 

15:1, 16:1ω5 and 18:1ω9 (G- bacterial markers) were higher in the non-growing season 

(Appendices A5.1 and A5.3). These findings are supported by the results of the 

PERMANOVA – the composition of δ13C values of PLFA markers among plots were 

significantly influenced by vegetation type and season, while there was no effect of soil type 

(Tables 5.1c, Appendices A5.1 and A5.3). The prominent role of vegetation type for the 

microbial isotopic composition was demonstrated as 75 % of the variance in δ13C values of 

PLFA composition was explained by this factor (Table 5.1c). 
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Table 5.1. Results of the ANOVA (analysis of variance) from the (a) total microbial biomass and 

PERMANOVA (Permutational Multivariate Analysis of Variance Using Distance Matrices) from (b) microbial 

community composition and (c) the δ13C values of individual PLFA obtained from both the sandy and clayey 

soils of the C3-C4 vegetation change experiment. Stars indicate significant differences between season, 

vegetation type or soil type (*: p≤ 0.05; **: p≤ 0.01; ***: p≤ 0.001).  

(a) Total microbial biomass [nmol g-1] 

  Df F value R2 Pr(>F) 

Season 1 40.59 0.59 <0.001 *** 
Vegetation type 1 0.64 0.01 0.434 
Soil type 1 6.49 0.10 0.021 * 
Season: Vegetation type 1 0.05 0.60 0.834 
Season: Soil type 1 1.18 0.71 0.294 
Vegetation type: Soil type 1 2.49 0.14 0.134 
Season: Vegetation type: Soil type 1 0.57 0.76 0.461 
Residuals 16  

  Total 23    
(b) Microbial community composition (mol%) 

  Df F.model R2 Pr(>F) 

Season 1 0.64 0.01 0.492 
Vegetation type 1 0.57 0.01 0.546 
Soil type 1 22.26 0.50 0.001 ** 
Season: Vegetation type 1 0.62 0.01 0.516 
Season: Soil type 1 3.38 0.08 0.076 
Vegetation type: Soil type 1 0.32 0.01 0.767 
Season: Vegetation type: Soil type 1 0.92 0.02 0.359 
Residuals 16 0.36 

  Total 23       
(c) δ13C-PLFA (‰)         

  Df F.model R2 Pr(>F) 

Season 1 6.63 0.06 0.014 * 
Vegetation type 1 87.71 0.75 0.001 ** 
Soil type 1 2.45 0.02 0.106 
Season: Vegetation type 1 0.95 0.01 0.311 
Season: Soil type 1 1.46 0.01 0.213 
Vegetation type: Soil type 1 1.03 0.01 0.319 
Season: Vegetation type: Soil type 1 0.46 0 0.587 
Residuals 16 0.14 

  Total 23       
 

 Similarly to the microbial community composition, the composition of plant-derived C 

in individual PLFA markers was affected by soil type and season (Fig. 5.3). However, plant-

derived C in most microbial groups was not significantly different between seasons and soil 

type, except for plant-derived C in G- bacteria, which significantly increased in clayey soils in 
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the growing season (Fig. 5.4b; Appendix A5.5). The increased plant-derived C in G- bacterial 

markers in clayey soils was positively and significantly related to root biomass (Fig. 5.3; 

Appendix A5.4). Moreover, plant-derived C changed significantly among microbial groups. 

In the non-growing season, the amount of plant-derived C in G+ bacteria, actinobacteria, 

cyclic G- bacteria and G-bacteria were not different among them but were significantly lower 

than plant-derived C in saprotrophic fungi (Fig. 5.4a; Appendices A5.6 and A5.7). In the 

growing season, only plant-derived C in actinobacteria was significantly lower from plant-

derived C in saprotrophic fungi and G- bacteria. No significant differences were observed 

among plant-derived C in all other microbial groups (Fig. 5.4b; Appendices A5.6 and A5.7). 

 

 
Figure 5.3. Redundancy analysis (RDA) of mean (n= 3 ± standard error) plant-derived C in individual 

phospholipid fatty acids (PLFAs) in sandy and clayey soils. Root biomass (RB) was set as explanatory variables 

to explain the variance of plant-derived C in individual PLFAs. Stars indicate significant differences between 

soil types (*: p≤ 0.05).  
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Figure 5.4. Mean (n= 3 ± standard error) plant-derived C in different microbial groups (Gram positive bacteria 

(G+), actinobacteria (Actino), cyclic Gram negative bacteria (G- (cy)), Gram negative bacteria (G-) and 

saprotrophic fungi (SF)) in a) non-growing and b) growing season, in sandy (white bars) and clayey (gray bars) 

soils. Stars indicate significant differences between soil types (*: p≤ 0.05). Letters indicate significant 

differences (p≤ 0.05) between plant-derived C in different microbial groups. 

       

5.3 Discussion  

In this study we investigated the impact of an experimental vegetation change – from 

C3 to C4 plants – on the soil microbial community and its functioning. Furthermore, in our 

input controlled experiment we were able to quantify the relative influence of this vegetation 

change compared to differences in soil and season. 

 

5.3.1 The effect of the vegetation change 

We found no differences in the microbial biomass and in the microbial community 

composition between plots of different vegetation types. This indicates no or at most a minor 

impact of C3 and C4 vegetation on soil microbial communities and their functioning. In 

contrast, vegetation type was the most important factor for variation in the δ13C values of the 

PLFAs. The significantly higher δ13C values of all individual PLFAs in C4 growing plots 

reflected the naturally higher δ13C values of C4 plants (Degens, 1969) and evidenced that all 

soil microbial groups depend directly or indirectly on plant-derived C resources (Wardle, 

2002). The C uptake and thus the microbial functioning was independent of the vegetation 

type itself; indicating that the effects of soil type and season are not affected by the vegetation 

change and are independent from different plant types.  
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5.3.2 Effects of soil type on the soil microbial community 

 The total soil microbial biomass depended on soil type and was significantly higher in 

clayey soils. The impact of soil type on the microbial community composition was even more 

pronounced as in our study the PLFA markers of G+ bacteria, actinobacteria, cyclic G- 

bacteria and saprotrophic fungi were more abundant in sandy soils. However, we do not 

suspect the coarser texture accounting for this finding but the higher SOC concentrations in 

the sandy soil of our experiment. The RDA revealed that G+ bacteria, actinobacteria, cyclic 

G- bacteria and saprotrophic fungi are mainly fostered by the higher SOC content in the sandy 

soil of our study. These microbial groups mainly depend on SOC as they are better adapted 

than other microbial groups to degrade high molecular organic molecules present in SOC 

(Fierer et al., 2003; Kramer and Gleixner, 2008). In contrast, PLFA markers assigned to G- 

bacteria are more abundant in clayey soils. The RDA showed that G- bacteria are mainly 

driven by the root biomass. In our experiment more root biomass was found in clayey soils, 

which form a finer mineralogy and might therefore sustain a better root net resulting in more 

root biomass than sandy soils (Merckx et al., 1985). G- bacteria depend strongly on plant-

derived C resources, e.g. root exudates (Dequiedt et al., 2011). Higher amounts root biomass 

has been shown to facilitate the uptake of exudates by G- bacteria due to an increase 

microbial access to the plant derived C (Mellado-Vázquez et al., 2016). However, there was 

no influence on soil type on the δ13C values of PLFA markers and their composition. 

 

5.3.3 Seasonal differences of the soil microbial community  

 Differences in δ13C values between growing seasons in some bacterial markers are not 

in line with the current theory. The enrichment in the δ13C values of G+ bacterial (15:0i, 

16:0i, 17:0i, 17:0a), actinobacterial (16:0(10Me), 19:0(10Me)) and cyclic G- bacterial 

markers (17:0cy and 19:0cy, which are produced under environmental stress conditions by G- 

bacteria (Kaur et al., 2005) and behave more similarly to G+ bacteria (Treonis et al., 2004; 

Mellado-Vázquez et al., 2016) might reflect an increased microbial respiration and higher C 

turnover with increasing soil temperature in the growing season (Creamer et al., 2015). 

Contrarily, for G- bacterial markers (16:1ω5 and 18:1ω9), the enrichment in their δ13C values 

in the non-growing season might have resulted from an increased saprotrophic uptake of 

plant-derived C. Although we assigned these PLFA markers to their most common origin in 

soils (i.e. G- bacteria (Zelles, 1997)), the fungal origin of both markers is often discussed in 

the literature (Olsson et al., 1995; Madan et al., 2002; Bååth and Anderson, 2003; Sakamoto 

et al., 2004; Kaiser et al., 2010) and fungal uptake of plant C is higher in the non-growing 
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season (Fig. 5.4a). This might suggest, as previously observed (Borga et al., 1994; White et 

al., 1996; Madan et al., 2002; Wilkinson et al., 2002; Bååth and Anderson, 2003; Ruess et al., 

2007), that the microbial origin of some PLFA markers depends strongly on substrate quality 

and availability, presumably in the non-growing season when there was a limited input of 

newly photosynthesized plant-derived C (i.e. root exudates), the signal of PLFAs 16:1ω5 and 

18:1ω9 represented saprotrophic fungi better than G-bacteria. 

 

5.3.4 Plant-derived C in different soil microbial groups 

 The incorporation of plant-derived C into most of the microbial groups we studied (G+ 

bacteria, actinobacteria, cyclic G- bacteria and saprotrophic fungi) was not significantly 

affected by different soil types and seasons (Fig. 5.4a and b; Appendix A5.5). G- bacteria are 

more sensitive to differences in soil type in the growing season, higher percentages of plant-

derived C in G- bacteria were found in clayey soils (Fig. 5.4a and b). G- bacteria depend 

stronger, than the rest of the microbial groups, on the plant C substrate that recently 

incorporates into the soil (Treonis et al., 2004; Mellado-Vázquez et al., 2016). Therefore, G- 

bacteria were able to thrive in clayey soils under growing conditions firstly because of a more 

efficient delivery of plant C resources to clayey soils due to a more favorable root 

environment provided by the mineralogy of this soil type (Merckx et al., 1985); and secondly 

because of an increased plant C resource availability found in growing seasons (Habekost et 

al., 2008). We additionally observed that the plant-derived C differed among microbial groups 

in both seasons (Fig. 5.4a and b; Appendices A5.6 and A5.7). In the non-growing season, 

when the most important plant C resource was derived from decaying root biomass, the 

amount of plant C incorporated into saprotrophic fungi was significantly higher than that 

incorporated to all other microbial groups analyzed. This is likely the result of a better 

capability of fungi to decompose litter-plant derived C (Klamer and Hedlund, 2004; Singh et 

al., 2006). In the growing season, when there is a constant supply of newly photosynthesized 

C and the conditions might be favorable for all microbial groups, the differences were not 

only driven by their specific ability to decompose distinct C substrates but also by other 

factors such as plant-derived C availability and soil type, as was previously discussed for G- 

bacteria.   

 

5.4 Conclusions 

 Our results demonstrate that the soil microbial community composition and function is 

independent from C3 and C4 vegetation type. Presence and absence of vegetation in different 
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seasons controlled the microbial biomass, the microbial community composition and the 

microbial C uptake. However, soil type was the most important factor influencing the soil 

microbial communities. In conclusion, contrary to the common idea that vegetation change 

experiments are biased by the preference of soil microorganisms to specific vegetation types, 

we show here that vegetation change experiments are useful to understand microbial C 

dynamics in soil. We also highlighted the importance of soil texture in the functioning of soil 

microbial communities, however future experiments should include a wider range of soil 

types and the interactions between different soil types and various abiotic and biotic factors in 

order to identify and better understand the drivers of the soil microbial C dynamics.  
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CHAPTER VI 

 

SYNTHESIS 

 
 This thesis provides new insights of the influence of several plant- and soil-related 

factors on soil microbial communities and on soil microbial C dynamics. We identified 1) the 

mechanisms behind the plant diversity effect on the transfer of C between above and 

belowground (Chapter 3); 2) the influence of plant diversity on different soil microbial 

groups, soil bacterial diversity and PLFA evenness (Chapter 4); and 3) the relative importance 

of the combined effects of soil type, vegetation type and seasonal changes on the soil 

microbial community composition and soil microbial C uptake (Chapter 5). These new 

findings provide further knowledge of the effects of changes in ecosystem properties on soil 

microbial C dynamics. Consequently, our results contribute to the understanding of factors 

that control the ability of soils to act as C sinks, thereby mitigating increasing atmospheric 

CO2 and global climate change.    

 

6.1 Plant diversity effects on soil microorganisms   

 High plant diversity induces an increased C transfer from above to belowground 

(Lange et al., 2015). This increased C flow fosters soil microbial communities and the 

functions they perform in soils. We identified and described possible mechanisms behind the 

plant diversity effect on the increased C transport from plants to soils (Chapter 3). Our results 

contrasted with previous investigations that proposed increased root exudation associated to 

increased photosynthetic assimilation, as the main mechanism explaining the increased C 

flow in high plant diversity (Chung et al., 2007; Chung et al., 2009). We traced the flow of 

labelled 13CO2 from plants to soil microbial communities. Surprisingly, we observed that the 

increased CO2 assimilation does not translate to higher root exudation. Instead, increasing root 

biomass in higher plant diversity facilitated the access of recently photosynthesized C for 

root-associated microorganisms favoring soil microbial C uptake and fueling the cycling of 

new C belowground. These results provide a new understanding of the mechanisms 

responsible for plant diversity effect on the increased C accumulation in SOC. In addition, our 

results indicated an indirect plant diversity effect on the 13C enrichment of some PLFA 

markers indicative of G+ bacteria (i.e. soil-related microorganisms) which pointed to C 

recycling within the microbial food web. Although the plant diversity effect was stronger on 
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root-associated microorganisms, this finding suggested that plant diversity impacted indirectly 

the C assimilation of soil-related microorganisms.    

The influence of plant diversity on resource quality and availability (Habekost et al., 

2008) and on microclimatic conditions has been related to the structure of the soil microbial 

community (Lange et al., 2014). Therefore, we expected to find a differentiated plant diversity 

effect on different soil microbial groups (root-associated and soil-related microorganisms). 

Unexpectedly, our results (Chapter 4) demonstrated that plant diversity promoted similarly 

root-associated and soil-related microorganisms. Unexpectedly, we showed that root biomass 

explained the plant diversity effect on both microbial groups. Different mechanisms were 

attributed to this effect. We suggested that root biomass drove the plant diversity effect on 

root-associated and soil-related microorganisms via two different mechanisms. Firstly, root 

biomass impacted root-associated microorganisms by increasing the access of recently 

photosynthesized C (as demonstrated in Chapter 3); and secondly, these new plant-derived C 

inputs triggered SOC mineralization (Fontaine et al., 2003), thereby favoring soil-related 

microorganisms.  

Increased resource heterogeneity in high plant diversity has been linked to more 

diverse bacterial communities in soils (Loreau and Hector, 2001; Bell et al., 2005). 

Consistently, our results (Chapter 4) showed that plant diversity impacted positively bacterial 

diversity in soils. Unexpectedly, we found that PLFA evenness decreased with increasing 

plant diversity. PLFA bacterial markers indicative of root-associated microorganisms 

dominated over soil-related PLFA bacterial markers. This might suggest that the plant 

diversity effect on the processing of recently photosynthesized C dominates over the 

processes mediated by soil-related microorganisms, such as mineralization of SOC.  

 

6.2 The effects of soil characteristics and vegetation properties on soil microbial 

communities 

 Soil microbial communities and the function they perform in soils are influenced by 

several ecosystem properties. The individual effects of soil type, vegetation type and seasonal 

changes in vegetation abundance have been widely investigated (e.g. (Merckx et al., 1985; 

Grayston et al., 2001; Johnson et al., 2003; Berg and Steinberger, 2010; Thoms and Gleixner, 

2013)). However, the relative impact of the combined effects of various factors is scarcely 

investigated. Our results provided new understanding of how the interaction of several factors 

affects soil microorganisms (Chapter 5). We showed for the first time that the effect of soil 

type dominated over the effects of vegetation type and seasonal on the soil microbial 
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community. Higher SOC concentrations in sandy soils and greater root biomass in clayey 

soils induced shifts in the microbial community composition. G+ bacteria dominated in sandy 

soils; G- bacteria predominated in clayey soils. Moreover, we demonstrated that higher root 

biomass in clayey soils favored the rhizospheric C transfer, thereby promoting G- bacteria.   

Differences in plant-derived C inputs from different vegetation types can be determine 

through isotopic analysis of source (plants) and sink (soil microbes) because the C isotope 

fingerprint of different vegetation types (C3 and/or C4) is recorded in the microbial biomass 

(Gleixner et al., 1999; Steinbeiss et al., 2008b). Such changes are commonly tracked in 

vegetation change experiments, where C3 vegetation is replaced by C4 vegetation (or vice 

versa). However, until now it remained unclear if such a vegetation change impacts the 

microbial community and the functions soil microorganisms perform in soils. Our results 

demonstrated for the first time that the microbial C incorporation is not influenced by 

vegetation type (C3 and C4 plants) and that soil microbial community composition is not 

subject to changes related to isotopic differences in plant-derived C.  

Seasonal changes in vegetation abundance have been linked to changes in the quantity 

and quality of plant-derived C inputs to soils (Habekost et al., 2008; Thoms and Gleixner, 

2013). We demonstrated that seasonal changes were overall not significant for the microbial 

community composition. However, a shift in the type of C substrate (from plant litter-derived 

C to recently photosynthesized plant-derived C) between the non-growing and the growing 

seasons, favored distinctively the C uptake of different microbial groups. In the non-growing 

season, plant litter-derived C exceeded the amount of recently photosynthesized 

rhizodeposits, thereby favoring saprotrophic fungi. In contrast, in the growing season the 

increased root biomass and increased input of root exudates promoted the microbial C uptake 

of G- bacteria in our soils.   

 

6.3 General conclusions 

 Overall, the results outlined in this work demonstrated that the effects of plant 

diversity, soil type, vegetation type and seasonal changes in vegetation abundance influenced 

differently soil microbial communities. Increased resource availability in higher plant 

diversity favored soil microbial biomass, but was less relevant for the structure of soil 

microbial communities. In contrast, soil type and changes in the type (not the amount) of C 

substrate were more important for shaping soil microbial community composition. However, 

irrespective of the effect of the different factors studied, we demonstrated that the impact of 

plant diversity, soil type and vegetation characteristics influences the transfer of C from 
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aboveground to belowground and the formation and accumulation of new soil SOC, 

consequently impacting the ability of soils to mitigate increasing atmospheric CO2 

concentrations and global climate change. 

 

6.4 Perspectives for future research 

We offered new valuable insights to the mechanisms responsible for the transfer of C 

between plants and soil microorganisms (Chapter 3), however new investigations are still 

needed in order to further understand the soil microbial C cycling. We identified root 

biomass, as a significant driver of the positive plant diversity effect on the incorporation of 

newly photosynthesized C into the soil microorganisms; additionally higher root exudation in 

higher plant diversity was excluded as a mechanism explaining this interaction. Undoubtedly, 

however, root exudation is a very relevant mean for C transfer from plants to soil 

microorganisms, around 17 % of the C photosynthetically assimilated is actively released by 

living roots to soils (Nguyen, 2003), in the form of a wide variety of chemical compounds, 

including sugars, amino acids, organic acids, proteins and enzymes (Nguyen, 2003; Badri et 

al., 2009). It is known that the chemical composition of root exudates changes in response to 

changes in environmental conditions, such as nutrient stress (Jones, 1998; Neumann and 

Martinoia, 2002), increased pathogenic attack (Morrissey and Osbourn, 1999) and based on 

specific plant species (Grayston et al., 1997; Fan et al., 2001). However to date it is not 

known if plant species richness influences the nature of root exudation and the effect that this 

would have on microbial-mediated processes, such as C incorporation and cycling 

belowground. Therefore in order to provide further mechanistic understanding on the 

increased soil microbial C uptake and soil microbial C cycling in high plant diversity, future 

research should be directed to investigate 1) potential changes in the chemical composition of 

root exudates in response to changes in plant diversity and 2) how/if the chemical 

composition of root exudates impacts microbial community composition and thereby 

microbial functioning in soils with increasing plant diversity.  

In Chapter 4 we described the positive influence of plant diversity on bacterial 

diversity and the predominance of microbial markers indicative of root-associated 

microorganisms; we argued that this effect presumably favors the cycling of freshly 

photosynthesized C in soils. However, in order to strengthen these conclusions, it is necessary 

to perform a complete phylogenetic analysis of the bacterial community in soils to assign 

specific soil functions to specific bacterial species. Commonly, PLFA markers can be related 

to more than one microbial group (see Appendix A1.1 and references therein). This low 
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microbial specificity of PLFA markers makes PLFA analysis less suited to differentiate soil 

microbial functions. Therefore, in order to identify specific functions that are potentially 

favored by high plant diversity, a comparative analysis of the dominant (i.e. most abundant) 

PLFA bacterial markers and the bacterial species, and their functions, would allow drawing 

conclusions on the processes that are being favored by high plant diversity.  

Lastly, we showed that soil type (i.e. soil texture) exerted an important control on soil 

microbial dynamics, and compared to seasonal changes and vegetation types, was the most 

important mediator of soil microbial communities and soil microbial functions (Chapter 5).  

Therefore, new investigations should be directed to study a wider range of soil types and to 

identify possible meaningful interactions between soil types and additional factors that might 

result in positive or negative effects on the functions that microbial communities perform in 

soils. For instance, pH has been recognized to have a strong effect on the shaping on the 

microbial community in soils (Bååth and Anderson, 2003; Thoms et al., 2010; Scheibe et al., 

2015), therefore it would be interesting to study how the interaction of soil type and pH would 

influence the microbial community composition and their functions in soils.  

These new considerations would provide further understanding on how changes in 

ecosystem properties might alter soil microbial C dynamics. Additionally, they would further 

strengthen our knowledge on the factors that control the ability of soils to act as C sinks, 

thereby mitigating increasing atmospheric CO2 and global climate change.   
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SUMMARY 
 

Soil microbial communities are crucial for the cycling of C in the belowground 

system. Most of the C that enters the soil system through plant deposition (e.g. plant litter 

and/or root exudation) is processed by soil microorganisms and contributes to the formation 

and accumulation of SOC (Gleixner et al., 2002; Balser and Firestone, 2005; Bardgett et al., 

2005; Lange et al., 2015). These soil microbial-mediated processes are very sensitive to 

changes in ecosystem properties, such as plant diversity, soil type and seasonal changes in 

vegetation abundance; however the drivers of these plant- and soil-related factors on the soil 

microbial community and soil microbial functions are not fully understood so far. In that 

context, the main aim of this work was to deepen our knowledge on the influence of plant- 

and soil-related factors on soil microbial communities and soil microbial C dynamics. We 

specifically focused in understanding 1) the mechanisms responsible for the influence of plant 

diversity on the transfer of C from above to belowground (Chapter 3); 2) the influence of 

plant diversity effect on different soil microbial groups, bacterial diversity and bacterial 

evenness (i.e. PLFA evenness) (Chapter 4); and 3) the influence of the combined effects of 

soil type, vegetation type and seasonal changes in vegetation abundance on the microbial 

community composition and microbial C uptake in soils (Chapter 5).  

 In Chapter 3, we identified the mechanisms behind the increased microbial C uptake in 

high plant diversity. A continuous 13CO2 labeling was applied in a controlled environment 

(The Montpellier European Ecotron) to 12 ecosystem samples from the Jena Experiment. Six 

ecosystem samples held a mixture of 4 plant species, and the other six ecosystem samples had 

16 plant species. The transfer of C from plants to soil microorganisms was determined with 

compound-specific δ13C from phospholipid fatty acid (PLFA) and neutral lipid fatty acid 

(NLFA) analyses. Our results showed that high plant diversity increased the C uptake of root-

associated microorganisms, i.e. Gram negative (G-) bacteria and arbuscular mycorrhizal fungi 

(AMF). In contrast to previous investigations, our results demonstrated that this effect was not 

driven by increased root exudation rates; instead greater root biomass explained the increased 

G- bacterial C uptake in high plant diversity. This suggested that greater root biomass in high 

plant diversity facilitated the access of recently photosynthesized plant-derived C for G- 

bacteria. Moreover, our results highlighted the ability of AMF to uptake C resources directly 

from their host plant. In conclusion, high plant diversity promotes an increased soil microbial 
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assimilation of newly photosynthesized plant-derived C, consequently promoting C cycling 

and accumulation in soils.   

In Chapter 4, we analyzed the influence of plant diversity on different soil microbial 

groups, soil bacterial diversity and soil PLFA evenness. We collected 82 soil samples from a 

long-term plant diversity experiment (The Jena experiment). We measured total microbial 

biomass, root-associated microbial biomass and soil-related microbial biomass using 

phospholipid fatty acid (PLFA) analysis. Bacterial diversity was determined with terminal-

restriction fragment length polymorphism (T-RFLP) analysis. Plant diversity impacted 

similarly root-associated and soil-related microorganisms. Unexpectedly, increased root 

biomass, higher SOC and greater soil moisture drove the plant diversity effects on both 

microbial groups. We suggest that the similar response of different microbial groups to plant 

diversity displays a “chain response” to the studied plant- and soil-related factors. For 

instance, increased root biomass in high plant diversity influenced first root-associated 

microorganisms by increasing the access of recently photosynthesized C that is rapidly uptake 

in the rhizosphere. As a result, these new plant-derived C inputs possibly fueled soil-related 

microorganisms via provision of microbial remains and by triggering SOC mineralization. 

Moreover, plant diversity impacted positively the bacterial diversity in our soils, possibly 

through the input of more diverse resources. In contrast, PLFA evenness decreased with 

increasing plant diversity. Bacterial PLFA markers indicative of root-associated 

microorganisms dominated over soil-related bacterial PLFA markers. This might suggest that 

plant diversity promotes root-associated microbial-mediated processes, however further 

analysis of specific bacterial species and their functions are still needed in order to generalize 

these conclusions.   

Lastly, in Chapter 5 we described the analysis of the combined effects of soil type, 

seasonal changes in vegetation abundance and vegetation type (C3 and C4 plants) on soil 

microbial biomass, soil microbial community composition and soil microbial C turnover. We 

collected soil samples, in the non-growing season and the growing season in 2012, from a 

long-term vegetation change experiment which was replicated in clayey and sandy soils. We 

studied soil microbial community composition and the C flow from above to belowground 

using phospholipid fatty acids (PLFA) and compound-specific δ13C-PLFA analyses, 

respectively. We further analyzed the effects of the factors of interest on the microbial 

dynamics in soils. Higher microbial biomass was found in the growing season. The microbial 

community composition was mainly explained by soil type. Higher amounts of SOC drove 

the predominance of PLFA markers indicative of Gram positive bacteria, actinobacteria and 
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cyclic Gram negative (G-) bacteria in sandy soils; whereas root biomass was strongly related 

to the increased proportions of G- bacterial PLFA markers in clayey soils. Plant-derived C in 

G- bacteria increased significantly in clayey soils in the growing season. This increase was 

driven by root biomass. Moreover, changes in plant-derived C between microbial groups 

pointed to specific microbial functions in soils. Soil texture and seasonal changes in 

vegetation abundance driven by rhizospheric interactions were the most important factors 

controlling soil microbial dynamics in our study site. In addition, our results demonstrated 

that a change of C3 plants vs. C4 plants has only a minor effect on soil microbial dynamics. 

Overall, the effect of plant-related factors, i.e. plant diversity and vegetation 

abundance, was mostly mediated by increased resource availability that fostered all parts of 

the soil microbial communities; although high plant diversity favored preferentially the 

cycling of new C in soils. Furthermore, soil-related characteristics, such as soil type had a 

stronger influence in shaping of the soil microbial community composition and soil microbial 

functioning. In conclusion, plant- and soil-related characteristics influenced soil microbial 

communities and soil microbial C uptake, indirectly controlling soil C cycling and SOC 

accumulation. 

This thesis provides with new understanding of factors that control soil microbial 

communities and soil microbial C dynamics. However, future research should include more in 

depth analysis of the identified mechanisms presented in this work. For instance, new research 

should investigate potential changes in the chemical composition of root exudates with 

changing plant diversity; and the combined effect of different soil types and additional 

edaphic factors (such as pH) on soil microorganisms and soil microbial-mediated processes. 

These new investigations have great potential to strengthen our knowledge on the factors 

controlling soil microbial communities, soil microbial C dynamics and ultimately C cycling in 

soils and globally. 

 

 

 

 

 

 

 



ZUSAMMENFASSUNG 

71 
 

 

ZUSAMMENFASSUNG 
 

Mikrobielle Gemeinschaften sind ein wesentlicher Bestandteil des Kohlenstoff(C)-

Kreislaufs im Boden. Der überwiegende Teil an C, welcher in das Bodensystem durch 

pflanzliche Ablagerungen (z.B. Bodenstreu und/oder Wurzelexsudate) gelangt, wird durch 

Bodenmikroorganismen verarbeitet und trägt zur Bildung und Akkumulation von 

organischem C im Boden (engl.: Soil Organic Carbon, kurz: SOC) bei (Gleixner et al., 2002; 

Balser and Firestone, 2005; Bardgett et al., 2005; Lange et al., 2015). Diese Bodenmikroben-

vermittelten Prozesse reagieren sehr empfindlich auf Veränderungen der Ökosystem-

Eigenschaften, wie z.B. pflanzliche Diversität, Bodentyp und saisonale Änderungen der 

Vegetationsfülle. Jedoch sind die zugrundeliegenden Mechanismen dieser Pflanzen- und 

Boden-bedingten Faktoren und ihrer Wirkung auf mikrobielle Bodengemeinschaften sowie  

deren Funktionen noch nicht vollständig verstanden. In diesem Zusammenhang war das 

Hauptziel dieser Arbeit das Wissen über den Einfluss Pflanzen- und Boden-bedingter 

Faktoren auf mikrobielle Bodengemeinschaften und deren C-Dynamik zu vertiefen. 

Insbesondere lag unsere Aufmerksamkeit im Verständnis 1) der Mechanismen die für den 

Einfluss der Pflanzendiversität auf den Transfer von C vom Oberirdischen ins Unterirdische 

verantwortlich sind (3. Kapitel); 2) des Einflusses von Pflanzendiversitäts-Effekten auf 

verschiedene Gruppen von Bodenmikroben, die bakterielle Diversität und bakterielle 

Gleichmäßigkeit (d.h. Gleichmäßigkeit von Phospholipid-Fettsäuren) (4. Kapitel); und 3) des 

Einflusses der kombinierten Effekte aus Bodentyp, Vegetationstyp und saisonalen 

Änderungen der Vegetationsfülle auf die Zusammensetzung der mikrobiellen Gemeinschaft 

sowie auf die mikrobielle C-Aufnahme im Boden (5. Kapitel). 

 Im 3. Kapitel haben wir die Mechanismen identifiziert die der erhöhten mikrobiellen 

C-Aufnahme bei hoher pflanzlicher Diversität zugrunde liegen. Eine fortlaufende Markierung 

mit 13CO2 wurde in einer kontrollierten Umgebung (The Montpellier European Ecotron) an 12 

Ökosystem-Proben aus dem Jena-Experiment durchgeführt. Sechs dieser Ökosystem-Proben 

enthielten eine Mischung aus 4 Pflanzenarten und die anderen sechs Ökosystem-Proben 

hatten 16 Pflanzenarten. Der C-Transfer von Pflanzen zu Bodenmikroorganismen wurde 

durch die Verbindungs-spezifische δ13C-Analyse von Phospholipid-Fettsäuren (PLFA) und 

Neutrallipid-Fettsäuren (NLFA) bestimmt. Unsere Ergebnisse haben gezeigt dass hohe 

pflanzliche Diversität die C-Aufnahme von Wurzel-assoziierten Mikroorganismen, d.h. 

Gram-negativen (G-) Bakterien und arbuskulären Mykorrhiza-Pilzen (AMF), erhöht. Im 
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Gegensatz zu vorausgegangenen Untersuchungen haben unsere Ergebnisse gezeigt dass dieser 

Effekt nicht durch gesteigerte Wurzel-Exsudationsraten angetrieben wurde, sondern dass eine 

größere Wurzelbiomasse die erhöhte C-Aufnahme durch G- Bakterien bei hoher pflanzlicher 

Diversität erklärt. Dies weist darauf hin dass die größere Wurzelbiomasse bei hoher 

pflanzlicher Diversität den Zugriff von G- Bakterien auf kürzlich photosynthetisierten, 

Pflanzen-basiertem C begünstigt hat. Des Weiteren unterlegen unsere Ergebnisse die 

Fähigkeit von AMF C-Ressourcen direkt von ihren Wirtspflanzen aufzunehmen. 

Schlussfolgernd fördert eine hohe pflanzliche Diversität die gesteigerte Assimilation von neu 

photosynthetisierten Pflanzen-basiertem C durch Bodenmikroben und folglich auch den C-

Kreislauf sowie die C-Akkumulation im Boden.  

 Im 4. Kapitel haben wir den Einfluss der pflanzlichen Diversität auf verschiedene 

mikrobielle Gruppen, Bodenbakterien-Diversität und Gleichmäßigkeit der Phospholipid-

Fettsäuren (PLFAs) im Boden analysiert. Dafür haben wir 82 Bodenproben aus einem 

Langzeit-Pflanzendiversitäts-Experiment (Jena-Experiment) gesammelt. Die absolute 

mikrobielle Biomasse, Wurzel-assoziierte mikrobielle Biomasse und Boden-bezogene 

mikrobielle Biomasse wurde unter Verwendung der PLFA-Analyse gemessen. Die bakterielle 

Diversität haben wir durch die Analyse des terminalen Restriktionsfragment-

Längenpolymorphismus (T-RFLP) bestimmt. Als Ergebnis haben wir gefunden dass sich die 

pflanzliche Diversität ähnlich auf Wurzel-assoziierte und Boden-bezogene Mikroorganismen 

ausgewirkt. Unerwarteterweise trugen die erhöhte Wurzelbiomasse, der größere SOC-Gehalt 

und die höhere Bodenfeuchte zu Pflanzendiversitäts-Effekten auf beide mikrobiellen Gruppen 

bei. Wir vermuten dass die ähnliche Reaktion verschiedener mikrobieller Gruppen auf die 

pflanzliche Diversität eine Art „Kettenreaktion“ auf die untersuchten Pflanzen- und Boden-

bedingten Faktoren wiederspiegelt. Beispielsweise könnte die größere Wurzelbiomasse bei 

hoher pflanzlicher Diversität zuerst die Wurzel-assoziierten Mikroorganismen durch einen 

gesteigerten Zugang zu kürzlich photosynthetisiertem C, welcher schnell in der Rhizosphäre 

aufgenommen wird, beeinflussen. Daraus resultierend würden die frischen Pflanzen-basierten 

C-Einträge die Boden-bezogenen Mikroorganismen durch die Bereitstellung von mikrobiellen 

Überresten und durch das Anstoßen der SOC-Mineralisierung nähren. Außerdem hat sich die 

pflanzliche Diversität generell positiv auf die bakterielle Diversität in den untersuchten Böden 

ausgewirkt, möglicherweise durch den Eintrag einer größeren Vielfalt an Ressourcen. 

Dahingegen hat sich die PLFA-Gleichmäßigkeit bei höherer pflanzlicher Diversität 

vermindert. Bakterielle PLFA-Marker die bezeichnend für Wurzel-assoziierte 

Mikroorganismen sind haben über die PLFA-Marker für Boden-bezogene Bakterien 
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dominiert. Dies deutet darauf hin dass eine hohe pflanzliche Diversität Wurzel-assoziierte 

mikrobiell-vermittelte Prozesse fördert, jedoch werden noch weitere Analysen von 

bestimmten Bakterienarten und ihren Funktionen benötigt um diese Schlussfolgerung zu 

verallgemeinern. 

 Zuletzt beschreiben wir im 5. Kapitel die Effekte von Bodentyp, saisonalen 

Änderungen der Vegetationsfülle und des Vegetationstyps (C3- und C4-Pflanzen) auf die 

mikrobielle Biomasse, die Zusammensetzung der mikrobiellen Bodengemeinschaft und den 

Umsatz von mikrobiellem C im Boden. Dafür haben wir Bodenproben außerhalb und 

während der Vegetationsperiode in 2012 aus einem Langzeit-Vegetationswechsel-

Experiment,  das in tonigen und sandigen Böden repliziert wurde, gesammelt. Daran haben 

wir die Zusammensetzung der mikrobiellen Bodengemeinschaft und den C-Fluss vom 

Oberirdischen ins Unterirdische unter Nutzung der quantitativen Analyse sowie der 

Verbindungs-spezifischen δ13C-Analyse von Phospholipid-Fettsäuren (PLFAs) untersucht. 

Darüber hinaus haben wir die Effekte der o.g. Faktoren auf die mikrobielle Dynamik im 

Boden weiter analysiert. In unseren Ergebnissen haben wir, eine höhere mikrobielle Biomasse 

während der Vegetationsperiode gefunden. Die Zusammensetzung der mikrobiellen 

Gemeinschaft war hauptsächlich vom Bodentyp bestimmt. Größere Mengen an SOC im 

sandigen Boden führten zur Prädominanz von PLFAs die für Gram-positive Bakterien, 

Actinobakterien und Gram-negative (G-) Bakterien mit zyklischen PLFAs bezeichnend sind; 

wohingegen die höhere Wurzelbiomasse im tonigen Boden stark mit gesteigerten Anteilen 

von PLFA-Markern für G- Bakterien verbunden war. In den G- Bakterien aus tonigem Boden 

war der Pflanzen-basierte Kohlenstoff während der Vegetationsperiode signifikant erhöht, 

wobei dieser Anstieg durch die Wurzelbiomasse angetrieben wurde. Zudem wiesen 

Unterschiede im Pflanzen-basierten C zwischen verschiedenen mikrobiellen Gruppen auf 

spezifische mikrobielle Funktionen im Boden hin. Die Bodentextur sowie die saisonale 

Änderung der Vegetationsfülle, welche die Interaktionen in der Rhizosphäre bestimmen,  

waren die wichtigsten Einflussfaktoren auf die Dynamik der Bodenmikroben in unserer 

Testfläche. Zusätzlich demonstrieren unsere Ergebnisse dass der Wechsel zwischen C3- und 

C4-Pflanzen nur geringfügige Effekte auf die mikrobielle Dynamik im Boden hat. 

 Insgesamt wurde der Effekt Pflanzen-bedingter Faktoren, d.h. pflanzliche Diversität 

und Vegetationsfülle, hauptsächlich durch die erhöhte Verfügbarkeit von Ressourcen 

vermittelt, die alle Teile der mikrobiellen Gemeinschaften gefördert hat; obwohl eine hohe 

pflanzliche Diversität vorzugsweise den Kreislauf von neuem C im Boden begünstigt hat. 

Hinzu kommt, dass Boden-zugehörige Charakteristika, wie der Bodentyp, einen stärkeren 
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Einfluss auf die Ausprägung der mikrobiellen Bodengemeinschaft und der Funktionsweise 

von Bodenmikroben hatten. Abschließend lässt sich sagen, dass Pflanzen- und Boden-

bedingte Charakteristika mikrobielle Bodengemeinschaften und deren C-Aufnahme 

beeinflusst haben, wodurch indirekt der C-Kreislauf im Boden und die SOC-Akkumulation 

gesteuert wurde.  

 Diese Dissertation liefert ein neues Verständnis von Faktoren welche die mikrobielle 

Bodengemeinschaften und die C-Dynamik von Bodenmikroben kontrollieren. Jedoch sollte 

die zukünftige Forschung noch eingehendere Analysen der hier identifizierten Mechanismen 

enthalten. Beispielsweise wird weitere Forschung benötigt, um potenzielle Veränderungen in 

der chemischen Zusammensetzung von Wurzelexsudaten bei verschiedener pflanzlicher 

Diversität; und den gemeinsamen Effekt von verschiedenen Bodentypen und zusätzlichen 

edaphischen Faktoren (wie pH) auf Bodenmikroorganismen und Bodenmikroben-vermittelte 

Prozesse zu untersuchen. Solche neuen Untersuchungen besitzen ein großes Potenzial unser 

Wissen über die Faktoren, welche mikrobielle Bodengemeinschaften, die C-Dynamik von 

Bodenmikroben und letztendlich den C-Kreislauf in Böden und auf globaler Ebene 

kontrollieren, zu stärken. 
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A1.1. Phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) assigned to specific microbial groups 

 

Marker Origin Marker Origin 
12:0 
13:0 
14:0i 
 
14:0 
15:1 
15:0i 
 
15:0a 
15:0 
16:0br 
16:0i 
 
16:2 
16:1ω11 
 
16:1ω7 
 
 
 
16:1ω5 (PLFA) 
16:1ω5 (PLFA and NLFA) 
16:1 
16:0(10Me) 
16:0 
 
 
17:1 
17:1ω7i 
 
17:1ω6 
17:0(10Me) 
 
17:0br 

Bacteria1 

Bacteria1  
Gram + bacteria1,2,3,4,5 
Gram – bacteria and anaerobic bacteria3 

Bacteria1 
Gram – bacteria5 

Gram + bacteria1,2,3,4,5 
Gram – bacteria and anaerobic bacteria3 

Gram + bacteria2,4,7 

Bacteria1 

Gram + bacteria2 

Gram + bacteria1,2,3,4 
Gram – bacteria and anaerobic bacteria3 

Plants2 

Gram – bacteria2 
Type I Methanotrophs8,9 

Bacteria10,2 

Gram – bacteria11,2,6 

Unknown7 
Type I Methanotrophs8,9 
Gram – bacteria12,11,13,2 
AMF14,13,15,16 ,36 
Type I Methanotrophs8,9 

Sulfate-reducing bacteria17,18 

Bacteria1 
Saprotrophic fungi1 
Roots1 

Gram – bacteria and anaerobic bacteria3 

Desulfovibrio19  

Desulfovibrio desulfuricans20 

Desulfobulbus21 

Actinobacteria and sulfate- reducing bacteria2,6 
Actinobacteria6 
Mostly Gram + bacteria2 

17:0i 
 
17:0a 
 
17:0cy 
 
 
 
 
17:0 
18:0(10Me) 
 
 
18:0br 
18:3 
18:2 
18:2ω6,9  
 
 
18:1ω9 
 
 
 
 
18:1ω8 
18:1ω7 
 
18:1ω5 
18:0 
18:1 
19:0(10Me) 
 
19:0br 
 

Gram + bacteria2,3,4 
Gram – bacteria and anaerobic bacteria3 

Gram + bacteria2,3,4 
Gram – bacteria and anaerobic bacteria3 

Gram – bacteria made in stationary phase2,4 

Aerobic bacteria in sediments21 
Anaerobic bacteria in soils22 
Starvation23 
Gram + bacteria24  

Bacteria1 

Actinobacteria and sulfate- reducing bacteria3 
Actinobacteria25,6 

Sulfate-reducing bacteria17,18 

Mostly Gram + bacteria2 

AMF14 

Plants and fungi2 

Saprotrophic fungi26,1,2,3,27 
Saprotrophic and EMF28,4 
Plant residues (Pinus sylvestris)29 

Gram – bacteria in grassland/agricultural soil11,2,27 

Fungi (forest soil)26,30,31,6,27 
AMF when combined with 16:1ω5 and 20:1ω932 
Gram + bacteria14 
Plants33 

Type II Methanotrophs34,35 

Gram – bacteria11,2,6,7 
AMF36 

Unspecific 
Bacteria1 

Unspecific 
Actinobacteria and sulfate- reducing bacteria2,6 
Actinobacteria6 
Mostly Gram + bacteria2 
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A1.1. Continuation 

 

Marker Origin Marker Origin 
19:0cy 
 
 
 
 
20:5ω3,6,9,12,15 
 
20:4 

Gram – bacteria made in stationary phase2,4 

Aerobic bacteria in sediments21 
Anaerobic bacteria in soils22 
Starvation23 
Gram + bacteria24 

Algae37 
Collembola38 

AMF14 

20:3 
 
20:1ω9 
 
21:0-24:0 
 
22:0br 
 

AMF14 
Soil protozoa1 

AMF when combined with 16:1ω5 and 18:1ω932 
AMF (Gigaspora)16 

Microeukaryotes1 

Plants4,33 

Microeukaryotes1 

 
 
1 (White et al., 1996); 2(Zelles, 1997); 3 (Wilkinson et al., 2002); 4(Zelles, 1999a); 5 (Steenwerth et al., 2002); 6 (Bååth and Anderson, 2003); 7 (Carney and Matson, 2005); 8 

(Makula, 1978); 9 (Bowman et al., 1993); 10 (Guckert et al., 1991); 11 (Borga et al., 1994); 12 (Nichols et al., 1986); 13 (Olsson et al., 1995), 14 (Nordby et al., 1981); 15 

(Olsson et al., 2003); 16 (Sakamoto et al., 2004); 17 (Dowling et al., 1986); 18 (Kerger et al., 1986); 19 (Edlund et al., 1985); 20 (Scheurbrandt and Bloch, 1962); 21 (Parkes and 

Taylor, 1983); 22 (Guckert et al., 1985); 23 (Guckert et al., 1986); 24 (Schoug et al., 2008); 25 (Kroppenstedt, 1985); 26 (Vestal and White, 1989); 27 (Kaiser et al., 2010); 28 

(Frostegård and Bååth, 1996); 29 (Saranpää and Nyberg, 1987); 30 (Schutter and Dick, 2001); 31 (Bååth, 2003); 32 (Madan et al., 2002); 33 (Ruess et al., 2007); 34 (Bossio and 

Scow, 1998); 35 (Ringelberg et al., 1989); 36 (Olsson, 1999); 37 (Dunstan et al., 1993); 38 (Chamberlain and Black, 2005) 
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A2.1. Plant diversity (Div) and functional group (G = grasses, H = herbs and L = legumes) composition of the 

twelve selected plots from the Jena Experiment. The species present in the lysimeters at the final harvest are 

marked in bold in the table. 

 

Plot ID Div G H L Species composition Dome 

B2A22 16 5 5 6 Am, Cc, Fp, Tf, Pp, Pt, Cj, Ra, So, CAp , Th, Lc, VIc, Tr, Lp, Ov 1 

B4A04 4 1 2 1 Ae, Pl, As, Tc 2 

B1A01 16 4 8 4 AVp, Pp, Ao, Bh, Pl, To, Ar, Rr, As, Gp, TRp, CAc, Tc, VIc, Lp, Lc 3 

B1A04 4 1 2 1 Fp, Pl, CAp, Ov 4 

B3A23 4 1 2 1 Bh, Rr, Lv, TRf 5 

B2A18 16 4 8 4 Ap, Bh, Pp, Cc, Rr, Pm, Ar, Pv, CAp, Gp, As, Cp, Ml, Tr, Td, Tc 6 

B4A18 16 4 8 4 Cc, LUc, Ap, Bh, La, Pm, Vc, To, Cb, CAc, PIm, Hs, Th, Tc, Lp, Ov 7 

B2A01 4 1 2 1 Ao, Pv, Ka, Tp 8 

B3A22 16 4 8 4 PHp, Fr, Ao, Be, Rr, Ar, Bp, Vc, Gp, Cb, Ra, Gm, VIc, Ov, TRf, Td 9 

B2A16 4 0 3 1 Pm, La, Ka, VIc 10 

B3A24 16 6 5 5 Fp, Bh, Ap, Ao, Pt, Ae, To, Rr, Ar, Pv, Gh, Lc, Tp, Tr, VIc, Ms 11 

B4A11 4 1 2 1 Tf, TRp, Hs, Ms 12 

 
Grasses (G): Ae = Arrhenatherum elatius L. (J. et C. PRESL), Ao= Anthoxantum odoratum L., Ap= Alopecurus 

pratensis L., AVp = Avenula pubescens HUDS. (DUM.), Be= Bromus erectus HUDS., Bh= Bromus hordeaceus 

L., Cc= Cynosurus cristatus L., Dg= Dactylis glomerata L., Fp= Festuca pratensis HUDS., Fr= Festuca rubra L., 

Hl= Holcus lanatus L., LUc = Luzula campestris L (DC.), PHp= Phleum pratense L., Pp= Poa pratensis L., Pt= 

Poa trivialis L., Tf= Trisetum flavescens L. (P. BEAUV.); 

Herbs (H): Am= Achillea millefolium L., Bp= Bellis perennis L., Cb= Crepis benis L., CAc= Carum carvi L., 

CAp = Campanula patula L., Cj= Centaurea jacea L., Co= Cirsium oleraceum L., Cp= Cardamine pratensis L., 

Dc= Daucus carota L., Gm= Galium mollugo L., Gh= Glechoma hederacea L., Hs = Heracleum sphondylium L., 

Ka= Knautia arvensis L., La= Leontodon autumnalis L., Lh= Leontodon hispidus L., Lv= Leucanthemum 

vulgare Lam., PIm = Pimpinella major L. (HUDS.), Pl= Plantago lancelolata L., Pm= Plantago media L., PRv = 

Primula veris L., Pv= Prunella vulgaris L., Ra= Rumex acetosa L., To= Taraxacum officinale WEBER, TRp= 

Tragopogon pratensis L., Vc= Veronica chamaedrys L;  

Legumes (L): Lp= Lathyrus pratensis L., Lc= Lotus corniculatus L., Ml= Medicago lupulina L., Ms=Medicago 

x varia MARTYN, Ov= Onobrychis viciifolia SCOP., Td= Trifolium dubium SIBTH., TRf = Trifolium 

fragiferum L., Th= Trifolium hybridum L., Tr= Trifolium repens L., Tp= Trifolium pratense L., VIc= Vicia 

cracca L. 
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A2.2. a) δ13CO2 values (δ13CO2-respiration,  [‰] in night-time ecosystem respiration (plant plus soil respiration) 

and b) ANOVA (analysis of variance) from the differences of δ13CO2-respiration between plant diversity levels. 

Plus symbol indicates marginally significant differences (+: p≤ 0.1). 

 

a)  

Dome Plant diversity δ13CO2-respiration 

  

T0 T1 T2 T3 

D1 16 -13.6 -11.7 -12.4 -12.6 
 16 -12.3 -11.6 -12.5 -12.7 
D2 4 -12.4 -12.9 -14.5 -15.3 

 
4 -11.5 -13.0 -14.6 -14.9 

D3 16 -11.9 -14.0 -15.4 -15.7 
 16 -11.2 -14.2 -15.3 -15.7 
D4 4 -10.1 -9.7 -10.8 -11.8 
 4 -10.2 -9.5 -12.1 -11.6 
D5 4 -10.6 -11.1 -12.3 -12.4 
 4 -11.8 -11.9 -12.3 -12.3 
D6 16 -10.2 -10.3 -11.3 -14.0 
 16 -9.9 -10.3 -12.2 -12.6 
D7 16 -11.1 -9.7 -11.0 -11.5 
 16 -11.1 -9.6 -11.1 -12.2 
D8 4 -10.3 -13.0 -13.9 -14.5 
 4 -10.4 -13.0 -14.0 -15.0 
D9 16 -10.2 -12.8 -14.8 -14.2 
 16 -9.7 -12.9 -14.6 -14.4 
D10 4 -10.0 -8.2 -9.9 -11.1 
 4 -9.8 -8.2 -9.9 -10.2 
D11 16 -9.8 -13.0 -13.4 -13.7 
 16 -10.0 -12.2 -13.0 -13.0 
D12 4 -10.5 -10.5 -11.3 -12.1 
 4 -10.6 -10.6 -12.0 -12.9 

b) 

 Df Sum Sq Mean Sq F value Pr (>F) 

Plant diversity 1 10.02 10.02 3.27 0.074 + 
Residuals 94 287.60 3.06   
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A2.3. Results of linear models to test the effect of plant diversity on a) the δ13C values of each individual 

compound and b) weighted means (average δ13C value multiplied by the average concentration of each microbial 

group) in both soil depths (0-5 cm and 5-10 cm depth). Stars indicate significant differences of δ13C values 

between plant diversity levels (*: p≤ 0.05; +: p≤ 0.1).  

 

a) δ13C values of individual compounds 

Marker Microbial group LM (0-5 cm) LM (5-10 cm) 

  

t-value p-value t-value p-value 

14:0i Gram +  bacteria -0.804 0.440 -0.287 0.780 

15:0i Gram + bacteria -0.831 0.425 -0.411 0.690 

15:0a Gram + bacteria -0.809 0.438 0.529 0.608 

16:0i Gram + bacteria -0.397 0.700 -0.210 0.838 

17:0i Gram + bacteria -0.813 0.435 -0.220 0.830 

17:0a Gram + bacteria -0.575 0.578 -0.385 0.708 

16:0(10Me) Actinobacteria -0.622 0.548 -0.016 0.987 

18:0(10Me) Actinobacteria -0.201 0.845 0.177 0.863 

17:0cy Gram - bacteria cyclo -0.390 0.705 0.204 0.843 

19:0cy Gram - bacteria cyclo 0.053 0.959 0.157 0.878 

16:1ω7 Gram - bacteria 2.458 0.034* 0.330 0.748 

16:1ω5 Gram - bacteria 1.844 0.095+ -0.708 0.495 

16:1 Gram - bacteria -0.397 0.700 -0.210 0.838 

17:1 Gram - bacteria 2.109 0.061+ 1.589 0.143 

18:1ω9 Gram - bacteria 2.467 0.033* 2.174 0.055+ 

18:1ω7 Gram - bacteria 1.777 0.106 0.813 0.435 

16:0 Non-specific marker -0.862 0.409 0.045 0.965 

18:0 Non-specific marker -0.181 0.860 0.240 0.815 

18:2ω6,9 Saprotrophic fungi -1.058 0.315 -1.196 0.259 

16:1ω5N AM fungi-NLFA 2.494 0.032* 0.999 0.341 

b) Weighted means 

 Microbial group LM (0-5 cm) LM (5-10 cm) 

  t-value p-value t-value p-value 

 Gram +  bacteria -0.760 0.465 -0.153 0.882 

 Actinobacteria -0.540 0.601 -0.669 0.519 

 Gram - bacteria cyclo -0.106 0.918 0.132 0.897 

 Gram - bacteria 2.254 0.048* 1.056 0.316 

 Non-specific marker -0.718 0.489 0.109 0.915 
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A2.4. a) Mean values (n=6, standard error is given in parenthesis) of all possible explanatory variables measured in soils from 0-5 cm depth: soil moisture, soil organic carbon 

(SOC), canopy leaf nitrogen (N.area), root biomass, root length per volume of soil (root length), specific root length (specific RL), δ13C values of soil organic carbon (δ13C-SOC), 

root material (δ13C-Root) and root sugars (δ13C-Sugars) as well as concentration of sugars in root tissues and aboveground (AG) biomass. b) Pearson’s correlation coefficients of 

all possible explanatory variables, concentration of sugars in root tissues measured in soils from 0-5 cm depth and aboveground (AG) biomass. Stars and plus symbols indicate 

significant (and marginally significant) correlation between a given covariate and plant diversity (*: p≤ 0.05; +: p≤ 0.1). 

 

a)             

Plant diversity 
Soil moisture 

[%] 
SOC 
[%] 

N.area  
[g m-2 ] 

Root biomass 
[mg cm-3] 

Root length 
[cm cm-3] 

Specific RL 
[m g-1] 

δ13C-SOC 
[‰] 

δ13C-Sugars 
[‰] 

δ13C-Root 
[‰] 

Root sugars 
[µg mg-1] 

AG biomass 
[g m-2] 

Low 
 

20.03 
(1.08) 

2.45 
(0.15) 

2.19 
 (0.45) 

4.28 
(1.43) 

57.36  
(16.89) 

163.59 
(47.63) 

-27.81  
(0.09) 

-16.20  
(0.48) 

-24.07  
(0.73) 

141.17 
(16.93) 

148.72 
(24.93) 

High 
 

23.38  
(1.35) 

3.07 
 (0.20) 

2.88  
(0.39) 

9.04  
(1.25) 

110.81 
 (30.14) 

118.59 
 (27.71) 

-27.97  
(0.13) 

-18.84 
(1.20) 

-26.43 
(0.59) 

139.93 
(17.50) 

193.93 
(17.68) 

b)             

 
Plant 
diversity 

Soil 
moisture 

SOC 
 

N.area    
 

Root 
biomass 

Root 
length 

Specific 
RL 

δ13C- 
SOC 

δ13C- 
Root 

δ13C-
Sugars 

Root 
sugars 

AG 
biomass 

Plant diversity 1.000            
Soil moisture 0.523+ 1.000           
SOC 0.618* 0.681 1.000          
N.area 0.343 0.505 0.190 1.000         
Root biomass 0.572+ 0.768 0.680 0.541 1.000        
Root length 0.439 0.520 0.068 0.513 0.421 1.000       
Specific RL -0.234 -0.090 -0.481 -0.046 -0.397 0.524 1.000      
δ13C-SOC -0.295 0.221 0.144 0.234 0.246 0.082 0.110 1.000     
δ13C-Root -0.621* 0.163 -0.042 0.267 0.197 -0.198 -0.166 0.645 1.000    
δ13C-Sugars -0.543+ 0.181 -0.064 0.023 0.079 0.077 0.254 0.821 0.704 1.000   
Root sugars -0.016 -0.036 0.255 -0.536 -0.078 -0.253 0.181 -0.138 -0.222 -0.044 1.000  
AG biomass 0.417 0.614 0.541 0.759 0.490 0.105 -0.413 0.141 0.211 -0.038 -0.358 1.000 
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A2.5. Results of second and third best ANOVA models (see Table 2 in main text) for each microbial group.  

Stars indicate significant differences of δ13C values between plant diversity levels (***: p≤ 0.001; **: p≤ 0.01; *: 

p≤ 0.05; +: p≤ 0.1). 

 

Microbial group 

 

Df Sum Sq Mean Sq F value Pr(>F) 

Gram negative bacteria 

      2nd best model Root biomass 1 28.97 28.974 27.126 0.001*** 
 δ13C-SOC 1 3.78 3.78 3.539 0.093+ 
 Residuals 9 9.613 1.068 

  3rd best model δ13C-Sugars 1 1.589 1.589 1.175 0.307 
 Root biomass 1 28.608 28.608 21.155 0.001** 
 Residuals 9 12.171 1.352 

  Gram negative bacteria (cyclo) 

      2nd best model Soil moisture 1 31.95 31.95 3.113 0.108 
 Residuals 10 102.63 10.263 

  3rd best model Soil moisture 1 31.95 31.95 3.864 0.081+ 
 δ13C-SOC 1 28.22 28.22 3.413 0.098+ 
 Residuals 9 74.41 8.268 

  Gram positive bacteria 

      2nd best model N.area 1 2.802 2.802 0.732 0.414 
 δ13C-SOC 1 28.87 28.87 7.546 0.023* 
 Residuals 9 34.44 3.827 

  3rd best model SOC 1 5.108 5.108 1.853 0.211 
 Root biomass 1 10.639 10.639 3.861 0.085+ 
 δ13C-SOC 1 28.32 28.32 10.276 0.013* 
 Residuals 8 22.047 2.756 

  Actinobacteria 

      2nd best model SOC 1 8.689 8.689 1.047 0.330 
 Residuals 10 82.99 8.299 

  3rd best model δ13C-Sugars 1 8.021 8.021 0.959 0.351 
 Residuals 10 83.65 8.365 

  Saprotrophic fungi 

      2nd best model Root Length 1 2.33 2.33 0.597 0.459 
 δ13C-SOC 1 39.66 39.66 10.148 0.011* 
 Residuals 9 35.17 3.908 

  3rd best model δ13C-Root 1 23.97 23.97 4.505 0.059+ 
 Residuals 10 53.2 5.32 
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A2.5 (continuation) 

 

Arbuscular mycorrhizal fungi 

      2nd best model SOC 1 33.75 33.75 3.829 0.079+ 
 Residuals 10 88.14 8.814 

  3rd best model Root biomass 1 25.86 25.86 2.693 0.132 
 Residuals 10 96.02 9.602 

  Non-specific marker 

      2nd best model N.area   1 0.78 0.78 0.141 0.716 
 δ13C-SOC 1 43.07 43.07 7.78 0.021* 
 Residuals 9 49.83 5.537 

  3rd best model Root biomass 1 0.47 0.47 0.085 0.778 
 δ13C-SOC 1 42.91 42.91 7.676 0.022* 
 Residuals 9 50.31 5.59 

   

 

A2.6. Mean values (± standard deviation) plant and soil related covariates (root biomass, leaf area index (LAI), 

soil moisture and soil organic carbon (SOC)) in each plant species richness (PSR) level 

 

PSR Root biomass LAI Soil moisture SOC 

 
[g m-2]  [%] [%] 

1 1.86 ± 1.88 0.57 ± 0.52 12.44 ± 2.61 2.24 ± 0.34 
2 2.96 ± 2.46 0.88 ± 0.65 13.25 ± 2.40 2.25 ± 0.31 
4 3.55 ± 2.30 1.87 ± 1.25 15.66 ± 2.78 2.48 ± 0.38 
8 5.06 ± 3.26 1.64 ± 0.81 15.14 ± 1.79 2.44 ± 0.22 

16 6.72 ± 4.17 2.37 ± 0.71 16.59 ± 2.13 2.64 ± 0.33 
60 10.29 ± 4.10 3.50 ± 0.22 17.80 ± 1.08 2.70 ± 0.13 

 

 

A2.7. Pearson’s correlations coefficients of the relations between plant and soil related covariates: root biomass, 

leaf area index (LAI), soil moisture and soil organic carbon (SOC). Stars represent significant correlations 

between variables (**: p≤ 0.01; *** p≤ 0.001) 

 

 

Root biomass LAI Soil moisture SOC 

Root biomass 1.000    
LAI 0.370 *** 1.000   
Soil moisture 0.288 ** 0.401 *** 1.000  
SOC 0.298 ** 0.316 ** 0.601 *** 1.000 
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A3.1. ANOVA (analyses of variance) results from the differences in concentration of different microbial groups 

related to plant diversity. Stars indicate significant differences between plant diversity levels (***:p≤ 0.001; 

**:p≤ 0.01; *: p≤ 0.05). 

 

Gram positive bacteria 

 Df Sum Sq Mean Sq F value Pr (>F) 
Plant diversity 1 24.00 24.00 0.51 0.483 
Layer 1 556.90 556.90 11.89 0.002 ** 
Plant div:Layer 1 74.10 74.10 1.58 0.222 
Residuals 20 936.70 46.84     
Actinobacteria         

 Df Sum Sq Mean Sq F value Pr (>F) 
Plant diversity 1 2.18 2.18 0.31 0.584 
Layer 1 31.79 31.79 4.52 0.046 * 
Plant div:Layer 1 17.72 17.72 2.52 0.128 
Residuals 20 140.68 7.03     
Gram negative bacteria (cyclo)       

 Df Sum Sq Mean Sq F value Pr (>F) 
Plant diversity 1 14.05 14.05 1.02 0.325 
Layer 1 176.26 176.26 12.79 0.002 ** 
Plant div:Layer 1 0.01 0.01 0.01 0.944 
Residuals 20 275.62 13.78     
Gram negative bacteria       

 Df Sum Sq Mean Sq F value Pr (>F) 
Plant diversity 1 28.00 28.00 0.13 0.722 
Layer 1 10192.00 10192.00 46.89 <0.001 *** 
Plant div:Layer 1 713.00 713.00 3.28 0.085 
Residuals 20 4347.00 217.35     
Saprotrophic fungi         

 Df Sum Sq Mean Sq F value Pr (>F) 
Plant diversity 1 0.27 0.27 0.30 0.593 
Layer 1 14.81 14.81 16.14 <0.001 *** 
Plant div:Layer 1 0.01 0.01 0.01 0.941 
Residuals 20 18.35 0.92     
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A4.1. ANOVA (analysis of variance) results from changes in the plant and soil-related covariates (root biomass, 

soil moisture, soil organic carbon (SOC) and leaf area index (LAI)) and plant diversity measures: plant species 

richness (PSR); functional group (FG); grasses, small and tall herbs and legumes. Significant differences 

between variables are represented by P values ≤ 0.05. 

 

  

Root biomass LAI Soil moisture SOC 

 
Df F value P F value P F value P F value P 

Block 1 4.16 0.045 3.29 0.073 0.00 0.981 0.01 0.928 
PSR 1 45.42 <0.001 71.78 <0.001 32.91 <0.001 18.07 <0.001 
FG 1 0.38 0.540 8.74 0.004 2.12 0.150 1.81 0.183 
Grasses 1 3.12 0.082 0.02 0.882 0.08 0.774 0.32 0.572 
Small herbs 1 0.16 0.693 2.23 0.139 0.10 0.757 1.35 0.248 
Tall herbs 1 0.06 0.815 0.39 0.535 0.53 0.470 2.00 0.162 
Legumes 1 0.123 0.727 1.40 0.240 4.76 0.032 3.65 0.060 
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A5.1. Mean relative proportions (mol%, n= 3 ± standard deviation) and mean isotope C values (δ13C [‰], n= 3 ± standard deviation) of individual phospholipid 

fatty acids (PLFAs) in sandy and clayey soils sown with C3 and C4 plants.   

 

Marker Microbial group Season Sandy Clayey 

   C3 C4 C3 C4 

   mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] 

15:0i Gram + bacteria 
 

        
  Non-growing season 8.5 ± 0.7 -29.1 ± 1.2 7.3 ± 0.9 -21.6 ± 0.8 6.1 ± 0.4 -28.6 ± 0.6 6.5 ± 0.7 -22.5 ± 1.1 

  Growing season 8.3 ± 0.4 -28.5 ± 1.4 8.4 ± 0.1 -20.3 ± 2.4 6.2 ± 1.5 -26.3 ± 1.4 5.8 ± 1.3 -19.8 ± 0.9 
15:0a Gram + bacteria          
  Non-growing season 7.0 ± 0.6 -28.3 ± 1.6 5.9 ± 0.6 -20.4 ± 1.6 6.0 ± 0.3 -27.0 ± 0.2 6.0 ± 0.8 -21.1 ± 0.7 

  Growing season 6.6 ± 0.2 -27.7 ± 2.4 6.3 ± 0.2 -19.2 ± 1.9 5.9 ± 1.5 -26.2± 0.5 5.4 ± 1.2 -19.3 ± 0.9 
16:0i Gram + bacteria          
  Non-growing season 3.0 ± 0.4 -29.4 ± 1.1 2.7 ± 0.5 -22.4 ± 0.9 2.7 ± 0.2 -28.5 ± 0.3 2.5 ± 0.3 -23.2 ± 1.3 

  Growing season 2.7 ± 0.1 -28.2 ± 1.4 2.9 ± 0.1 -20.9 ± 1.7 2.4 ± 0.5 -26.7 ± 1.7 2.2 ± 0.5 -21.6 ± 1.2 
17:0i Gram + bacteria          
  Non-growing season 2.2 ± 0.3 -31.8 ± 1.9 2.2 ± 0.5 -24.1 ± 1.3 2.0 ± 0.1 -29.3 ± 0.5 1.9 ± 0.3 -23.9 ± 0.4 

  Growing season 2.4 ± 0.2 -29.5 ± 2.1 2.5 ± 0.2 -21.7 ± 2.1 2.0 ± 0.4 -25.9 ± 0.5 1.9 ± 0.3 -20.3 ± 1.3 
17:0a Gram + bacteria          
  Non-growing season 2.2 ± 0.3 -29.4 ± 1.2 2.1 ± 0.5 -21.7 ± 2.5 2.4 ± 0.1 -27.8 ± 0.6 2.3 ± 0.3 -22.0 ± 1.0 

  Growing season 2.1 ± 0.1 -27.9 ± 3.5 2.2 ± 0.1 -19.4 ± 3.2 2.1 ± 0.5 -25.0 ± 0.6 2.0 ± 0.4 -18.9 ± 1.4 
16:0(10Me) Actinobacteria          
  Non-growing season 5.0 ± 0.4 -31.7 ± 1.3 4.6 ± 0.5 -25.5 ± 1.7 5.3 ± 0.3 -30.3 ± 1.3 5.2 ± 0.6 -25.9 ± 1.8 

  Growing season 4.7 ± 0.9 -30.1 ± 1.6 4.9 ± 0.5 -24.4 ± 1.7 5.6 ± 1.1 -28.7 ± 0.9 4.8 ± 0.7 -23.9 ± 0.8 
19:0(10Me) Actinobacteria          
  Non-growing season 2.2 ± 0.4 -30.3 ± 1.3 1.9 ± 0.5 -21.1 ± 1.1  1.7 ± 0.2 -34.0 ± 1.2 1.5 ± 0.2 -25.8 ± 2.1 

  
Growing season 1.9 ± 0.1 -29.2 ± 0.8 1.9 ± 0.1 -22.6 ± 1.4 1.3 ± 0.2 -28.4 ± 0.2 1.3 ± 0.1 -22.9 ± 1.5 
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A5.1. Continuation  

 

Marker Microbial group Season Sandy Clayey 

 
  C3 C4 C3 C4 

   
mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] 

17:0cy G- bacteria (cyclo) 
         

  Non-growing season 3.0 ± 0.2 -32.7 ± 1.7 2.8 ± 0.6 -24.4 ± 2.6 2.6 ± 0.1 -32.2 ± 1.0 2.7 ± 0.4 -24.4 ± 0.7 

  Growing season 3.6 ± 0.1 -30.7 ± 3.8 3.5 ± 0.1 -22.1 ± 2.1 2.5 ± 0.7 -27.7 ± 0.1 2.4 ± 0.5 -21.6 ± 0.2 
19:0cy G- bacteria (cyclo)          
  Non-growing season 7.1 ± 0.8 -37.9 ± 1.0 5.9 ± 0.8 -27.4 ± 1.7 4.8 ± 0.4 -33.1 ± 0.8 4.8 ± 0.6 -29.8 ± 0.9 

  Growing season 6.2 ± 0.9 -32.1 ± 2.4 6.2 ± 0.5 -25.8 ± 1.8 4.8 ± 1.2 -30.2 ± 0.1 4.3 ± 0.7 -25.4 ± 0.2 
15:1 G- bacteria           
  Non-growing season 2.5± 0.9 -27.6 ± 1.5 2.0 ± 0.4 -17.4 ± 1.9 3.4 ± 0.8 -29.1 ± 0.5 3.2 ± 0.8 -19.1 ± 2.1 

  Growing season 3.8 ± 0.2 -29.2 ± 1.4 4.0 ± 0.2 -22.8± 1.5 1.4 ± 0.1 -30.4 ± 0.4 2.8 ± 0.6 -18.9 ± 2.6 
16:1ω7 G- bacteria           
  Non-growing season 2.1 ± 0.2 -27.3 ± 1.3 2.5 ± 0.2 -19.9 ± 2.1 1.5 ± 0.4 -25.0 ± 0.9 1.5 ± 0.2 -16.7 ± 2.6 

  Growing season 1.6 ± 0.5 -26.4 ± 1.7 1.7 ± 0.5 -20.7 ± 2.2 2.0 ± 0.3 -27.8 ± 0.2 2.0 ± 0.3 -17.4 ± 1.1 
16:1ω5 G- bacteria           
  Non-growing season 8.6 ± 1.8 -28.5 ± 1.6 9.3 ± 1.9 -20.6 ± 1.1 11.7 ± 0.3 -30.6 ± 1.2 11.7 ± 0.9 -21.0 ± 1.5 

  Growing season 8.9 ± 0.5 -30.5 ± 1.5 8.6 ± 0.1 -23.6 ± 1.0 11.1 ± 2.2 -32.4 ± 0.3 10.9 ± 1.4 -21.4 ± 0.2 
16:1 G- bacteria           
  Non-growing season 4.6 ± 0.3 -26.9 ± 1.1 5.2 ± 0.4 -18.8 ± 1.4 5.9 ± 0.8 -27.4 ± 1.2 6.2 ± 0.6 -16.8 ± 2.0 

  Growing season 4.6 ± 0.9 -28.1 ± 1.6 3.9 ± 0.3 -20.3 ± 1.0 7.1 ± 1.7 -29.1 ± 0.2 7.7 ± 0.5 -16.6 ± 0.5 
17:1 G- bacteria           
  Non-growing season 5.4 ± 1.4 -27.4 ± 0.8 5.5 ± 0.5 -18.5 ± 4.0 7.7 ± 0.2 -30.0 ± 2.5 7.5 ± 0.4 -21.0 ± 1.8 

  Growing season 6.1 ± 0.5 -29.4 ± 1.1 6.3 ± 0.5 -22.8 ± 2.8 6.3 ± 0.8 -30.4 ± 0.1 6.4 ± 0.7 -20.7 ± 0.1 
18:1ω9 G- bacteria           
  Non-growing season 8.1 ± 1.1 -26.5 ± 1.3 9.5 ± 1.2 -18.3 ± 0.6 9.3 ± 0.4 -27.8 ± 1.0 9.5 ± 1.3 -18.8 ± 1.0 

  
Growing season 8.4 ± 1.0 -28.3 ± 1.7 8.2 ± 0.4 -21.4 ± 1.1 10.3 ± 1.7 -30.4 ± 0.8 9.3 ± 1.4 -19.5 ± 0.3 
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A5.1. Continuation  

 

Marker Microbial group Season Sandy Clayey 

 
  C3 C4 C3 C4 

   
mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] mol% δ13C [‰] 

18:1ω7 G- bacteria  
         

  Non-growing season 12.0 ± 1.5 -29.7 ± 1.2 13.6 ± 2.2 -22.0 ± 1.1 15.6 ± 1.0 -30.2 ± 1.0 15.9 ± 2.5 -20.3 ± 1.2 

  Growing season 12.2 ± 1.1 -30.5 ± 1.4 11.5 ± 0.6 -23.4 ± 0.6 17.7 ± 3.5 -31.0 ± 0.3 18.1 ± 2.7 -20.2 ± 0.0 
18:2ω6,9 Saprotrophic fungi         
  Non-growing season 2.7 ± 0.3 -28.1 ± 1.9 4.1 ± 1.5 -16.4 ± 0.4 2.7 ± 0.4 -28.1 ± 0.3 2.4 ± 1.0 -15.1 ± 0.4 

  Growing season 2.6 ± 0.8 -28.5 ± 0.9 2.6 ± 1.2 -18.1 ± 0.4 2.0 ± 0.5 -26.7 ± 1.5 3.5 ± 0.9 -18.3 ± 1.3 
14:0 Non-specific          
  Non-growing season 2.2 ± 0.4 -30.8 ± 0.9 2.2 ± 0.3 -24.4 ± 1.4 1.2 ± 0.2 -29.5 ± 1.1 1.0 ± 0.1 -23.4 ± 2.1 

  Growing season 2.1 ± 0.2 -32.2 ± 2.2 2.2 ± 0.1 -28.1 ± 2.1 1.1 ± 0.2 -28.0 ± 1.3 1.1 ± 0.1 -21.2 ± 0.8 
16:0 Non-specific          
  Non-growing season 8.6 ± 0.9 -29.8 ± 1.2 7.7 ± 0.5 -24.9 ± 1.2 5.8 ± 0.4 -30.0 ± 1.0 5.9 ± 0.6 -24.9 ± 2.0 

  Growing season 8.5 ± 0.2 -28.9 ± 1.9 8.9 ± 0.2 -22.3 ± 2.0 6.4 ± 1.4 -27.1 ± 0.8 6.3 ± 1.4 -20.8 ± 1.0 
18:0 Non-specific          

  Non-growing season 3.1 ± 0.4 -22.5 ± 0.6 3.1 ± 0.5 -20.4 ± 1.4 1.9 ± 0.2 -24.1 ± 2.0 1.8 ± 0.3 -13.9 ± 1.2 

  
Growing season 2.9 ± 0.2 -28.4 ± 1.8 3.2 ± 0.1 -22.8 ± 2.1 1.9 ± 0.4 -27.2 ± 1.6 1.8 ± 0.3 -21.5 ± 0.9 



APPENDIX 
 

110 
 

A5.2. Results of forward selection of the redundancy analysis (RDA) to calculate the effect of root biomass, 

SOC, DOC, clay and sand content and soil moisture on the drivers of the soil microbial community composition 

(The order of the variables in the first column represents the sequence of fitting in the analysis). P values p≤ 0.05 

indicate significant influence of an explanatory variable on the microbial community composition. 

 

Variable Explains [%] Contribution [%] pseudo-F P 

Root biomass 45.2 73.4 24.7 0.001 

SOC 8.0 12.9 4.9 0.021 

DOC 2.1 3.5 1.3 0.377 

Soil moisture 2.3 3.8 1.5 0.251 

Clay content 3.9 6.4 2.7 0.101 
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A5.3. Analyses of variance (ANOVA) of the changes of δ13C values of individual phospholipid fatty acids 

(PLFA) related to different seasons (non-growing and growing) and vegetation types (C3 and C4 plants). Stars 

indicate significant differences between season and vegetation type (*: p≤ 0.05; **: p≤ 0.01; ***: p≤ 0.001). 

 

δ13C values of individual compounds 

Marker Microbial group 
 

Df F value Pr(>F)  

15:0i Gram + bacteria Vegetation type 1 160.99 <0.001 *** 

  
Season 1 9.25 0.006 ** 

  
Vegetation type: Season 1 0.27 0.607 

  
Residuals 20   

15:0a Gram + bacteria Vegetation type 1 163.87 <0.001 *** 

  
Season 1 3.72 0.067 . 

  
Vegetation type: Season 1 0.51 0.482 

  
Residuals 20 

  16:0i Gram + bacteria Vegetation type 1 148.44 <0.001 *** 

  
Season 1 8.97 0.007 ** 

  
Vegetation type: Season 1 0.00 0.995 

  
Residuals 20 

  17:0i Gram + bacteria Vegetation type 1 81.35 <0.001 *** 

  
Season 1 15.98 <0.001 *** 

  
Vegetation type: Season 1 0.0 0.974 

  
Residuals 20 

  17:0a Gram + bacteria Vegetation type 1 70.75 <0.001 *** 

  Season 1 8.39 0.009 ** 

  Vegetation type: Season 1 0.14 0.713 

  Residuals 20 
  16:0(10Me) Actinobacteria Vegetation type 1 84.39 <0.001 *** 

  Season 1 7.53 0.013 * 

  Vegetation type: Season 1 0.0 0.960 

  Residuals 20 
  19:0(10Me) Actinobacteria Vegetation type 1 70.25 <0.001 *** 

  
Season 1 4.62 0.045 * 

  
Vegetation type: Season 1 1.81 0.195 

  
Residuals 19 
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A5.3. Continuation 

 

Marker Microbial group 
 

Df F value Pr(>F)  

17:0cy Gram - bacteria cyclo Vegetation type 1 103.41 <0.001 *** 

  Season 1 12.96 0.002 ** 

  Vegetation type: Season 1 0.00 0.979 

  Residuals 20 
  19:0cy Gram - bacteria cyclo Vegetation type 1 55.18 <0.001 *** 

  Season 1 17.03 <0.001 *** 

  Vegetation type: Season 1 0.02 0.887 

  Residuals 18 
  15:1 Gram - bacteria Vegetation type 1 159.89 <0.001 *** 

  Season 1 7.23 0.0141 * 

  Vegetation type: Season 1 0.68 0.420 

  Residuals 20 
  16:1ω7 Gram - bacteria Vegetation type 1 88.21 <0.001 *** 

  Season 1 1.11 0.305 

  Vegetation type: Season 1 0.01 0.920 

  Residuals 20 
  16:1ω5 Gram - bacteria Vegetation type 1 230.68 <0.001 *** 

  Season 1 9.54 0.006 ** 

  Vegetation type: Season 1 0.05 0.832 

  Residuals 20 
  16:1 Gram - bacteria Vegetation type 1 215.15 <0.001 *** 

  Season 1 2.24 0.150 

  Vegetation type: Season 1 0.36 0.553 

  Residuals 20 
  17:1 Gram - bacteria Vegetation type 1 88.93 <0.001 *** 

  Season 1 3.00 0.099 . 

  Vegetation type: Season 1 0.17 0.683 

  Residuals 20 
  18:1ω9 Gram - bacteria Vegetation type 1 281.66 <0.001 *** 

  Season 1 15.77 <0.001 *** 

  Vegetation type: Season 1 0.10 0.751 

  
Residuals 20 
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A5.3. Continuation 

 

Marker Microbial group  Df F value Pr(>F)  

18:1ω7 Gram - bacteria Vegetation type 1 267.49 <0.001 *** 

  Season 1 1.78 0.198 

  Vegetation type: Season 1 0.03 0.859 

  Residuals 20 
  18:2ω6,9 Saprotrophic fungi Vegetation type 1 546.41 <0.001 *** 

  
Season 1 4.31 0.051 . 

  
Vegetation type: Season 1 9.54 0.006 ** 

  
Residuals 20 

   

 

A5.4. Results of forward selection of the redundancy analysis (RDA) analyzing how root biomass, DOC and soil 

moisture influenced the distribution of plant-derived C in different PLFA markers (The order of the variables in 

the first column represents the sequence of fitting in the analysis). P values p≤ 0.05 indicate significant influence 

of an explanatory variable on the plant-derived C.  

 

Variable Explains [%] pseudo-F P 

Root biomass 30.9 6.2 0.006 

DOC 8.2 1.8 0.399 

Soil moisture 6.5 1.4 0.458 
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A5.5. Results of ANOVA (analysis of variance) of the changes in plant-derived C in distinct microbial groups 

related to differences between soil types (sandy and clayey) and seasons (non-growing and growing season). 

Stars indicate significant differences between soil types or seasons (*: p≤ 0.05). 

 

Plant-derived C in Gram positive bacteria 

 
Df F value Pr (>F) 

Season   1 0.22 0.656 
Soil type 1 4.61 0.064 
Season:Soil type 1 0.00 0.963 
Residuals 8     
Plant-derived C in Actinobacteria 

 
Df F value Pr (>F) 

Season   1 0.97 0.355 
Soil type 1 2.07 0.189 
Season:Soil type 1 0.23 0.644 

Residuals 8     

Plant-derived C in Cyclic Gram negative bacteria 

 

Df F value Pr (>F) 

Season   1 0.00 0.972 
Soil type 1 2.26 0.171 
Season:Soil type 1 0.52 0.491 

Residuals 8     

Plant-derived C in Gram negative bacteria 

 

Df F value Pr (>F) 

Season   1 0.00 0.969 
Soil type 1 11.10 0.010 * 
Season:Soil type 1 3.58 0.095 

Residuals 8     

Plant-derived C in Saprotrophic fungi 

 

Df F value Pr (>F) 

Season   1 8.10 0.022 * 
Soil type 1 0.172 0.689 
Season:Soil type 1 2.85 0.130 

Residuals 8     
 

 

 

 

 

 



APPENDIX 
 

115 
 

A5.6. Mean (%, n= 3 ± standard deviation) plant-derived C to different microbial groups in sandy and clayey 

soils.   

 

Microbial group Season Sandy Clayey 

  [%] [%] 

Gram + bacteria Non-growing  50.9 ± 18.3 38.2 ± 3.6 

 
Growing 53.9 ± 8.1 40.7 ± 4.6 

Actinobacteria Non-growing  51.6 ± 16.6 38.1 ± 14.4 

 
Growing 41.3 ± 5.6 34.5 ± 9.1 

G- bacteria (cyclo) Non-growing  55.6 ± 25.5 36.9 ± 1.8 

 
Growing 49.9 ± 8.3 43.3 ± 11.4 

G- bacteria  Non-growing  55.9 ± 10.6 63.7 ± 9.4 

 
Growing 45.5 ± 12.2 73.6 ± 0.6 

Saprotrophic fungi Non-growing  78.1 ± 15.5 86.7 ± 3.7 

 
Growing 70.3 ± 3.5 56.1 ± 16.8 
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A5.7. Results of ANOVA (analysis of variance) and Tukey’s HSD (Honestly Significant Difference) test of the 

changes in plant-derived C between different microbial groups in the non-growing and in the growing season. 

Stars indicate significant differences between microbial groups (*: p≤ 0.05; **: p≤ 0.01; ***: p≤ 0.001). 

 

ANOVA 

   

 

Df Sum Sq Mean Sq F value Pr (>F) 

Season 1 325 325 1.82 0.183 
Microbial group 4 7984 1996.1 11.20 <0.001 *** 
Residuals 54 9634 178.4   

Tukey HSD: Non-growing season 

     Microbial groups diff lwr upr p adj 

Gram negative bacteria  Actinobacteria 14.93 -13.02 42.88 0.445 
Gram neg. bacteria (cyclo) Actinobacteria 1.43 -26.52 29.38 0.999 
Gram positive bacteria Actinobacteria -0.33 -28.28 27.62 0.999 
Saprotrophic fungi Actinobacteria 37.57 9.62 65.52 0.009 ** 
Gram neg. bacteria (cyclo) Gram negative bacteria -13.50 -41.45 14.45 0.535 
Gram positive bacteria Gram negative bacteria -15.27 -43.22 12.68 0.425 
Saprotrophic fungi Gram negative bacteria 22.63 -5.32 50.58 0.130 
Gram positive bacteria Gram neg. bacteria (cyclo) -1.77 -29.72 26.18 0.999 
Saprotrophic fungi Gram neg. bacteria (cyclo) 36.13 8.18 61.08 0.011 * 
Saprotrophic fungi Gram positive bacteria 37.90 9.95 65.85 0.008 ** 

Tukey HSD: Growing season 

     Microbial groups diff lwr upr p adj 

Gram negative bacteria Actinobacteria 21.63 4.28 38.99 0.014 ** 
Gram neg. bacteria (cyclo) Actinobacteria 8.67 -8.69 26.02 0.505 
Gram positive bacteria Actinobacteria 9.43 -7.92 26.79 0.429 
Saprotrophic fungi Actinobacteria 25.33 7.98 42.69 0.005 ** 
Gram neg. bacteria (cyclo) Gram negative bacteria -12.97 -30.32 4.39 0.177 
Gram positive bacteria Gram negative bacteria -12.20 -29.56 5.16 0.217 
Saprotrophic fungi Gram negative bacteria 3.70 -13.66 21.06 0.951 
Gram positive bacteria Gram neg. bacteria (cyclo) 0.77 -16.59 18.12 0.999 
Saprotrophic fungi Gram neg. bacteria (cyclo) 16.67 -0.69 34.02 0.061 
Saprotrophic fungi Gram positive bacteria 15.90 -1.46 33.26 0.077 
  

 

 

 

 

 

 


