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Abstract. We present high-resolution direct numerical simulation studies of
turbulent Rayleigh—Bénard convection in a closed cylindrical cell with an
aspect ratio of one. The focus of our analysis is on the finest scales of
convective turbulence, in particular the statistics of the kinetic energy and
thermal dissipation rates in the bulk and the whole cell. The fluctuations of
the energy dissipation field can directly be translated into a fluctuating local
dissipation scale which is found to develop ever finer fluctuations with increasing
Rayleigh number. The range of these scales as well as the probability of
high-amplitude dissipation events decreases with increasing Prandtl number.
In addition, we examine the joint statistics of the two dissipation fields and
the consequences of high-amplitude events. We have also investigated the
convergence properties of our spectral element method and have found that both
dissipation fields are very sensitive to insufficient resolution. We demonstrate
that global transport properties, such as the Nusselt number, and the energy
balances are partly insensitive to insufficient resolution and yield correct results
even when the dissipation fields are under-resolved. Our present numerical
framework is also compared with high-resolution simulations which use a finite
difference method. For most of the compared quantities the agreement is found
to be satisfactory.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
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1. Introduction

Turbulent fluid motion in nature and technology is frequently driven by sustained temperature
differences [5]. Applications range from cooling devices of chips to convection in the Earth and
the Sun. Turbulent Rayleigh-Bénard convection (RBC) is the paradigm for all these convective
phenomena because it can be studied in a controlled manner, but it still has enough complexity
to contain the key features of convective turbulence in the examples just mentioned. RBC
in cylindrical cells has been studied intensely over the last few years in several laboratory
experiments, mostly in slender cells of aspect ratio smaller than or equal to unity in order to
reach the largest possible Rayleigh numbers or to resolve the detailed mechanisms of turbulent
heat transport close to the walls [1, 5]. Direct numerical simulations have also grown such
that the detailed dynamical and statistical aspects of the involved turbulent fields and their
characteristic structures can now be unraveled in detail.

The key question in RBC is the mechanism of turbulent transport of heat and momentum.
Since the fluid motion is driven by a constant temperature difference between the top and bottom
plates, thin boundary layers of temperature and velocity will form on these walls as well as
on the side walls of the cell. A deeper understanding of the global transport mechanisms is
possible only if we understand the dynamical coupling between the boundary layers and the
rest of the flow in the bulk of the cell. While the boundary layers are strongly dominated
by the presence of mean gradients of the temperature and velocity fields, the bulk of the
convection layer is well mixed by the turbulence such that mean gradients of the involved
turbulent fields remain subdominant compared to the local fluctuations. The flow at hand is
thus strongly inhomogeneous, at least in the vertical direction, so it can be expected that the
smallest dynamically relevant scales will differ when moving from the isothermal walls to the
bulk.

Central to our understanding of the statistics of the turbulent transport is the role of
the gradient fields of velocity and temperature which fluctuate extremely strongly at the
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small scales of the flow. This is a unique property of all turbulent flows. Dissipation rate
fields—which measure the magnitude of these gradient fluctuations and are still inaccessible
in experiments with respect to their three-dimensional structure [36]—are thus at the core of a
deeper understanding of turbulence as a whole.

In the present work we want to make a further step forward with direct numerical
simulations (DNS) of RBC by resolving fine scales never accessed before, both in the bulk and
boundary layers, in order to study the statistics of the gradient fields, their joint extreme events,
the statistical effect of rare high-amplitude events as well as Rayleigh and Prandtl number
variation. A spectral element method (SEM) is used to conduct the numerical studies [9, 10].
It combines the flexibility in terms of mesh geometry that is inherent to every finite element
method with the exponentially fast convergence of a spectral method. We will show that several
tests which have been applied in DNS in the past are insensitive with respect to insufficient
resolution. These tests, which are based on global averages of mean dissipation rates and the
global mean heat fluxes, give correct results although the fine-scale structure of the turbulence
is still under-resolved particularly in the bulk of the convection cell. In order to address these
questions in detail we will present a comprehensive statistical analysis of the temperature and
velocity gradient fields, in particular the related dissipation rates and dissipation scales.

It is crucial to resolve all the dynamically important scales to represent the flow faithfully
when carrying out DNS which involve no subgrid-scale parametrization. Several attempts
have been made in order to derive resolution criteria starting with the pioneering work by
Grotzbach [16], subsequent refinements of this criterion [2, 27, 31] and works with a focus
to the fine resolution of the boundary layer dynamics [21, 26, 35]. Only recently the focus of
DNS studies was shifted toward the bulk in a cubic convection cell [17] with a discussion of the
scaling properties and statistics of the dissipation fields.

It is well-known that the gradients of the turbulent fields are most sensitive to insufficient
resolution. Superfine resolution simulations in isothermal box turbulence [23-25] and in
turbulent shear flows [14] have led to some enlightening results on the distribution of the finest
scales in such flows and their relation to the small-scale intermittency. This intermittency is
known to be coupled tightly to two highly fluctuating dissipation rates, one of the kinetic energy
and the other of the thermal variance. The thermal dissipation rate is defined as

er(x,1) =k (VT)?, (1)

where T (x,t) is the temperature field and « the thermal diffusivity. The kinetic energy
dissipation rate is defined as

€x.1) =3 (Vu+Vu')’, )

with the turbulent velocity field u(x, ¢) and the kinematic viscosity v. The mean kinetic energy
dissipation rate (€) is related to the mean Kolmogorov scale (nx) which is the smallest mean
scale when v < k. The symbol (-) denotes an ensemble average which is calculated in numerical
simulations as a volume—time average. In case of v > «, the smallest mean scale is determined
by the (active) scalar field known as the Batchelor scale [3], (ng). Both scales are defined as

v/ (1K)
= — d = . 3
(k) oA an (nB) NI 3)
Here, Pr is the Prandtl number and given by
pr. @
K
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Both dissipation fields can be expected to fluctuate strongly exceeding their means by orders
of magnitude [23, 29]. Therefore it was suggested to generalize the classical dissipation and
diffusion scales to local dissipation and diffusion scales [22, 30] which are given by (see also a
discussion in Hamlington et al [14])

s (% 0)
nk(x, 1) = W and np(x,1) = JPr . (5)

Both scales will pick up the highly intermittent fluctuations of the dissipation rates and can
thus not only become smaller but also larger than the mean scales which were defined in (3).
Local dissipation scales have been studied in convection experiments by Zhou and Xia [41].
One main finding was that the distribution of the scales can be described by the same tools as
in isothermal box turbulence. In the present work we will also access these scales and compare
their distribution in different parts of the convection cell.

The paper is organized as follows. In section 2, we will discuss in brief the equations
of motion and some central relations which will become necessary for our data analysis.
Furthermore we briefly review the existing resolution criteria. First it is shown that global
balance equation checks are insensitive to insufficient resolution. We also compare the results
with a second-order finite difference method (FDM) [33, 34] which has been one workhorse
in RBC over the past decade. In section 3 we report our results. We study the statistics of the
dissipation rate fields and calculate the local dissipation scales. Then we present a comparison
of dissipation rate fields and scales as a function of Rayleigh number and Prandtl number using
our very highest resolution. We summarize our findings and give a brief outlook at the end.

2. Equations of motion and numerical method

2.1. Boussinesq equations and further non-dimensional relations

We solve the three-dimensional Boussinesq equations numerically. The height of the cell H,
the free-fall velocity Ur = /ga AT H and the imposed temperature difference AT are used to
rescale the equations of motion. The three control parameters of RBC are the Rayleigh number
Ra, the Prandtl number Pr and the aspect ratio I' = D/H with the diameter D. This results in
the following dimensionless form of the equations of motion:

V.-u=0, (6)
W @=L T )
—+@-Va=— —V u+Te,,
97 PV Ra :
L aFe— L o7 ®
—+(u- = ,
~ Ra Pr
where
AT H3
a=% . 9)
VK

The variable g stands for the acceleration due to gravity and « is the thermal expansion
coefficient. Throughout the study we set I' = 1. Times are measured in free-fall time units,
T; = H/(gaAT). At all walls of the simulation volume V no-slip boundary conditions for
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the fluid are applied, # = 0. The side walls are adiabatic, i.e. the normal derivative of the
temperature field vanishes, 7 /on = 0. The top and bottom plates are held at fixed temperatures
T=0and 1, respectively. In response to the input parameters Ra, Pr and I', a turbulent heat
flux from the bottom to the top plate is established. It is determined by the Nusselt number
which is defined as

(T)as
0z
Based on the volume average, we find Nuy = 1++/Ra Pr(ﬁZT)V,, which has to equal Nu(z)

for all z € [0, 1]. The non-dimensional expressions for the two dissipation rate fields, e(x, t)
and er(x, ) are given by the following expressions:

Nu(Z) =~'Ra Pr(it.T)4, —

(10)

(AT -~ , (AT)*Us 1 ~ o~
1) = VT)" = vT 11
and thus
N er(x,t)H 1 =~
D) = = V7). 12
TED= Ty T VrRa (12
The kinetic energy dissipation rate is defined as
U2 /- -2 U |[Pr,- = _1\2
e(x, 1) =~ 2L (Vﬁ +VaT) St By il (Vﬁ +Vf4T) (13)
2 H? 2HY Ra
and thus
~ JOH 1 [Pro/~_ ~ _1\2
é(fc,t)z%:i R—r(Vu+VuT) . (14)
; a
Using equation (5) gives
- ~~_77K(i9;)_ v/ ~~~_1/4_Pr3/8~~~_1/4
k(. 1) =—p—= [(UfH)3/4 €. 1) =g €(X. 1) (15)

for the cases of Pr < 1. To simplify (15) we used the definition of the Grashof number
Gr = (U;H)?/v? = Ra/ Pr. The Batchelor scale follows as

X, 1 1 -
nB( ) — e(x,t)_l/4
H Prl/8Rqa3/8

g (X, 1) = (16)

for Pr > 1. For completeness, we also list two exact relations that can be derived from the
balances of the turbulent kinetic energy and the scalar variance. They are given by [28]

(&r) N d (&, =] (17)
€ =——— and (€)y, = ——.
Y VRa Pr "7 JRa Pr
If we make use of (17), equations (15) and (16) translate to
Pr? 3 1 i
)= — d (g)=(——-—7-—1 . 18
VK] ((Nu— I)Ra> and - {7s) ((Nu—l)Ra) (18)
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Similar to the studies by Stevens et al [31], we will use equations (17) to test different grid
resolutions at a given set of parameters and define relative errors that measure the difference
between the left and right hand sides of equations (17) 3

v Ra Pr{ér)y,— Nu v Ra Pr{€)y;— (Nu—1)

A = d A, = . 19
r Nu an Nu-—1 (19

In the following, we will continue with the dimensionless quantities and omit the tildes for
convenience.

2.2. Numerical methods

For the DNS studies in the present work two different numerical methods are used and
compared, a second-order finite difference scheme and a SEM.

2.2.1. Finite difference method. The Boussinesq equations (6)—(8) are discretized on a
staggered grid with a second-order FDM which was developed by Verzicco and Orlandi [33, 34].
The pressure field p is determined by a two-dimensional Poisson solver after applying a one-
dimensional fast Fourier transform in the azimuthal direction. The time advancement is done
by a third-order Runge—Kutta scheme. The grid spacings are non-equidistant in the radial and
vertical directions. In the vertical direction, the grid spacing is close to Tschebycheff collocation
points. The simulation code is parallelized with MPI in combination with OpenMP.

2.2.2. Spectral element method. The equations are numerically solved by a SEM [9] which
has been adapted to our problem. The code employs second order time-stepping, using the
backward difference formula BDF2 which results at time step n and for a step width ¢ in the
following set of discrete equations (see also equations (6)—(8)):

Du" =0, (20)
,/PrA e S By V= fr Q1)
- ——Bu — ,
ra"" T st P =Ju
1 A~ 3 A
AT"+ —BT" = f7 (22)

with the corresponding boundary conditions. Here, D is the divergence operator and A the
stiffness matrix which contains the Laplace terms. The quantity B is the mass matrix which
will contain the Gauss—Lobatto—Legendre (GLL) weights and the determinants of the Jacobian
caused by the mapping to the deformed elements as diagonal entries. In order to arrive
at (20)—(22) the Boussinesq equations are transformed into a weak formulation similar to
other Galerkin methods. They are then discretized with the particular choice of spectral basis
functions [6] which will be given further below. These basis functions allow for an exact
evaluation of the integrals in the scalar products on the basis of the Gauss integration theorem.
All flow fields are given in the Sobolev space H'(V) in which the functions and their derivatives
are square integrable. For this space it holds that C'(V) c H'(V) c C°(V) [6]. The right hand

3 Note that the relative errors are fairly sensitive to the averaging time because of the large fluctuations in Nusselt
number that can occur for these turbulent systems.
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sides, f, and f}' of equations (22), incorporate remaining terms from the BDF2 time derivative,
the nonlinear convection which is obtained by second-order extrapolation from steps n — 1 and
n — 2, and the buoyancy.

The resulting linear, symmetric Stokes problem is solved implicitly. This system is
split, decoupling the viscous and pressure steps into independent symmetric positive definite
subproblems which are solved either by Jacobi (viscous) or multilevel Schwartz (pressure)
preconditioned conjugate gradient iteration. Fast parallel solvers based on direct projection [32]
or more scalable algebraic multigrid [12] are used for the coarse-grid solve that is part of the
pressure preconditioner. For stabilization of the SEM, we perform de-aliasing by the use of
over-integration of the convective term by a factor of either N +5 or 3(N + 1)/2, where N is the
polynomial order. We also filter out 5% of the energy in the Nth mode for additional stabilization
(see [11] for further information).

The basis functions ¥ (x) are Lagrangian interpolation polynomials of order N and
composed of Legendre polynomials L, for the present study. They are given by

1 (1=x)L(x)
N(N+1) (x =&)Ly

with the GLL points &. In contrast to a classical spectral or pseudospectral method the
evaluation of spatial derivatives translates into matrix multiplications which have to be highly
optimized (see the appendix for further details). The expansion in the three-dimensional case
with a reference element Q = [—1, 1]° is based on the tensor product formulation of the basis
functions

Yr(x) = — (23)

N N N

u(x, Y, 2) =YY > uE, &, &) vi()®Y; ()@Y (2). (24)

i=0 j=0 k=0

In the simulation the elements that sum up to the volume V' are deformed. Hence an additional
mapping (Jacobian) from the reference element to all elements needs to be incorporated.
Clearly, the mapping of the coordinates and the matching of the velocity and temperature fields
between elements enhances the numerical effort in comparison to the second order FDM. We
estimated that production runs on the same number of cores for the same system size would be
approximately ten times slower. In turn, gradient fields are calculated on each element separately
with an exponentially fast convergence.

2.3. Existing resolution criteria for direct numerical simulations

The first estimation of spatial resolution requirements for direct numerical simulations of
RBC were made by Grotzbach [16]. His criteria for confined convection cells consisted of (i)
resolving the steep gradients in the velocity and temperature near the walls with a sufficient
vertical grid width distribution and (i1) resolving the smallest relevant turbulence elements
with a sufficiently small mean grid width. Based on tests of Nusselt number with a spectral
code, Grotzbach’s first criterion requires at least three nodes within the thermal boundary layer
thickness for Prandtl numbers on the order of one or larger. For much smaller Prandtl numbers,
more nodes may be necessary as the viscous boundary layer becomes much thinner than the
thermal boundary layer. The second criterion translates to a relation between the mean grid
width A and the mean dissipation or diffusion scale. For Pr < 1 this relation is A < 7 (ng) and
for Pr > 1itis A < 7 (ng). Grotzbach then assumes that (ng) and (ng) can be approximated by
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the mean kinetic energy dissipation rate (¢) as in equation (3). By using an argument similar to
equations (17) this leads to the following global criteria on the grid widths® :

1

B Pr2 3
AL |—— for Pr <1, (25)
Ra(Nu—1)
1
— 1 4
AL |——— for Pr > 1. (26)
Ra(Nu—1)

The criteria of Grotzbach were revised by Stevens ef al [31] based on DNS results using
the second order FDM also used for comparison in this paper [33, 34]. They systematically
found the Nusselt number to be overestimated in poorly resolved simulations, especially when
the plume dynamics were not properly resolved. They suggested changing the mean grid width
criteria to one that instead holds for the largest grid width in any spatial dimension, since the
Kolmogorov length needs to always be resolved in order to properly characterize the flow. A
similar perspective was developed in Bailon-Cuba et al [2]. Although Stevens ef al [31] did not
determine any exact resolution criteria, they did compute the volume averaged dissipation rates
(€) and (e7) and compared these values to the globally computed Nusselt number as we have
done in equation (17). They found that for high enough Rayleigh number (> 10°), even though
the Grotzbach criteria was technically followed, and equation (17) was well-satisfied for the
viscous dissipation rate, equation (17) was not as well-satisfied for the thermal dissipation rate.

A further revision was conducted by Shishkina er al [27], who used the Prandtl-Blasius
theory to derive a lower bound on the number of nodes required to be placed in both the
thermal and the viscous boundary layers such that the estimated Kolmogorov lengths in the
boundary layers are adequately resolved. For higher Rayleigh number, this minimum bound is
much larger than that suggested by Grotzbach. For example, for our parameter range (Pr = 0.7),
Shishkina et al suggest a minimum of five nodes for Ra =2 x 107 but increasing to nine nodes
for Ra =2 x 10°.

We will also discuss our own results in light of these criteria, including Grétzbach and
the revisions by Stevens and Shishkina. However, we will take this analysis one step further
by investigating the implications of resolving not only the global but also the local dissipation
scales.

2.4. Statistical properties for resolutions with different polynomial orders

In correspondence with the so-called h-type and p-type SEM, two routes of modification of
the resolution exist. In the h-type SEM the number of primary elements, N., is varied, in the
p-type SEM one changes the polynomial degree N of the basis functions on each element and
keeps the number of elements fixed. In the following, we summarize efforts in both directions in
order to study resolution effects for the gradient fields. Since the grid is non-uniform in all three
directions the side lengths of an element are functions of the three coordinates, i.e. Ax.(x, y, z),

4 The factor of 7 can be rationalized to our view by the resolution criteria as formulated for pseudospectral box
turbulence simulations (see e.g. [22]). There, kmax (nk) = 1 should be satisfied with the maximum resolved wave
number (after de-aliasing) kp.x = \/ENX /3 and Ny = N, = N, equals the number of grid points in each direction.
The standard box length is then the periodicity length of the Fourier modes L, = 2 and thus N, = 27/A.
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Figure 1. Left: display of the horizontal primary node structure as used for
runs SEM1 to SEM4 displayed in table 1. Right: display of the vertical primary
node mesh for runs SEMS to SEM10 (see table 2). The stretching factors r are
r =091 for N, =32, r =0.95 for N, ;, = 64 and r = 0.97 for N, , = 96.

Aye(x, y,z) and Az.(x, y, z). Figure 1 (left) shows a view of the horizontal primary element
mesh. The coarsest elements are always found at the cell center line.

Particular emphasis was given here to the vertical resolution since this is the important
direction for the correct resolution of the boundary layers. The formula that has been chosen to
determine the element boundaries in the vertical direction is given by the following geometric
scaling for the upper half of the cell with the scaling factor r:

Ne,z

N, 2 1
Aze [ =2 )+ -+ Az (1) = = Az (1) = —. 27
z<2>+ + Az (1) ;r ()= > (27)

In correspondence with the up—down-symmetry this relation has to be applied for the lower half
as well. Equidistant vertical meshing corresponds to » = 1. Figure 1 (right) demonstrates the
resulting vertical meshing for different numbers of primary element nodes, N, .. In the appendix,
we describe one way to obtain an optimal non-equidistant grid with respect to z, in other words,
an optimal scaling factor r in (27).

Figure 2 shows important statistical quantities for a variation in correspondence with a
p-type refinement. Results are obtained for different polynomial orders but the same primary
element mesh. The results are summarized in table 1. In all cases shown, derivative-based
quantities are evaluated spectrally on each element and no derivatives are taken across
boundaries. All runs are conducted at a Rayleigh number Ra = 10% with a primary element
mesh as displayed in figure 1. On average, we ran our simulations for at least 30 free-fall times
T; to ensure that the system had settled into its relaxed state, and then we continued the evolution
for at least 75 free-fall times (in case of the biggest DNS), outputting on average at least 80
statistically independent snapshots.

Both the table and the figure indicate that insufficient spectral resolution is manifested
in multiple ways, but is not necessarily obvious when looking at standard quantities, e.g. the
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Figure 2. Resolution tests for Ra=10% and N =3,7 and 11 using the
same primary mesh (runs SEM1, SEM3 and SEM4 in table 1). We compare
the mean temperature profile (7(z))s:, the mean convective flux profile
v Ra Pr{u,T),,, vertical profiles of mean thermal dissipation (€7(z))a,
and mean kinetic energy dissipation (€(z))s,;, a z-dependent Kolmogorov
scale (nk(z))a, and how well the Grotzbach criterion is satisfied plane by
plane Az.(z)/(nk(z))a,. The dashed line in the lower right panel marks
Aze(2)/(nk(2))a.r = . The dashed line in the upper mid panel is the Nusselt
number from run FDM3 (see table 2 or [2]). The inset in the top right panel
magnifies the vertical profile of the mean thermal dissipation rate.

ingredients for the turbulent heat flux. The graphs for the mean temperature profile (7(z))a ;,
the convective heat flux «/Ra Pr(u,T) 4, and even the Nusselt numbers which are obtained in
different ways do not indicate a resolution effect at first glance. However the large magnitude
of the relative errors of run SEM1 which has been used to test the dimensionless energy
balances (19) is definitely caused by the insufficient resolution. The run SEM1 was one of our
longest, taking about 1200 7t. The statistical analysis is based on 192 turbulence statistically
independent three-dimensional snapshots separated by six free-fall times each.

An increase to N =5 in run SEM2 improves the convergence of the energy balances
drastically. Nevertheless, the plane-averaged mean profiles of the thermal and the kinetic energy
dissipation rates still display an insufficient resolution which is present for the next higher
polynomial order, N =7, as well. This becomes visible by the discontinuities at the element
boundaries, especially near the center of the cell. The lower right panel of figure 2 relates a
refined Kolmogorov-type scale

3/8

@has = ()T 28)
nk(2))a,: = Ra3/8 < A
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Table 1. Parameters of the different spectral element simulations SEM1 to
SEM4. The runs have an identical primary node mesh, but different polynomial
order on each element. We display the order N of the Legendre polynomials,
the total number of spectral elements, ., the number of spectral elements with
respect to z direction, N, ., the number of grid cells resulting from primary
and secondary nodes with respect to z direction, N, = N, ,N, and the Nusselt
numbers Nu(z =0), Nu(z = 1) and Nuy. Furthermore we list the relative errors
A7 and A, (see equations (19)). All four runs are at Ra =108, ' =1 and
Pr=0.7.

Rin N (NeNe.) N. Nu(+o Nu(Dto Nuy+o Ar A,

SEM1 3 (30720,32) 96 332£09 332+£09 315£21 56% 13.6%
SEM2 5 (30720,32) 160 31.5=£0.7 31.7£0.7 31.8£2.1 03% 0.6%
SEM3 7 (30720,32) 224 31.8£09 31.9+£09 32.0£3.1 03% 0.1%
SEM4 11 (30720,32) 352 31.6x£06 31.9+£06 31.8£2.0 0.1% 0.5%

We can refine the classical Grétzbach criterion (25) to

Az(2)

X7, 29
(Mx(2))a: g (2)

where Az is the vertical grid spacing, recognizing now element mesh and collocation grid
on each element. This is exactly what produces the characteristic shape of all the curves in
the lower right panel. Such a criterion has been suggested already by Bailon-Cuba et al [2].
It shows clearly that all orders N < 7 result in grid spacings that are too coarse in the bulk
region of the convection cell. In the appendix, we demonstrate how insufficient resolution can
cause the spike structures in the vertical profiles of the dissipation rates and related quantities
by means of a convergence test for a simple analytical profile. The artifacts at the element
boundaries which we see for the SEM are due to insufficient resolution and hence the failure of
the derivatives to match at the boundaries, since this SEM method enforces only the continuity
of the functions at the boundaries. This gives rise to a clear criterion for resolution: when the
system is sufficiently resolved, all spikes in both dissipation profiles completely disappear.
In classical FDMs numerical diffusion and dispersion will suppress such spikes. In addition
it is shown in the appendix that similar observations as in figure 2 follow when the h-type
route of grid refinement is followed, i.e. refining the primary mesh at fixed system parameters
(Ra, Pr,T) and a given polynomial order. To conclude this part, while some standard indicators
for sufficient resolution which have been discussed in previous works [27, 31] are all well-
satisfied, a closer look at the dissipation fields indicates clearly that the spatial resolution is
not sufficient, in particular in the bulk of the cell. The artifacts in the mean vertical profiles of
the gradient fields do not completely disappear even when the order is increased to N =11 as
demonstrated in the inset in the top right panel of figure 2.

Compared to previous resolution studies of fluid turbulence in periodic boxes [23] and
shear flow turbulence channels [14], the situation in the present RB case is more complex.
On the one hand, the turbulent flow is inhomogeneous in all space dimensions. This causes
space-dependent statistical properties of the turbulent fields and their derivatives. On the other
hand, the computational grid is non-uniform in all three directions as described already above.
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Figure 3. Left: global maximum and minimum grid spacing as well as minimum
grid spacing in the bulk region (volume V;) for the data in table 1. Data are
normalized with respect to mean Kolmogorov length. The definitions are given
in (30) and (31). Right: mean dissipation rates of thermal variance, (¢r)y ,, and
kinetic energy, (€)v ,, as functions of the polynomial order.

Although we refine the grid toward all walls, the regions where one expects the largest amplitude
of the derivatives, it is not necessarily assured that both, steepest gradient and finest grid cells,
coincide. In this situation one can however define the coarsest and finest grid spacing in the
whole cell or a subvolume to get a global indication of the quality of resolution. This is done by
the following geometric means:

Aoy = i/max Ax.(x,y, z) max Ay.(x, y, z) max Az.(x, y, 2), (30)
xeZ yel z€T,

Apin = i/min Ax.(x,y, z) min Ay.(x, y, z) min Aze(x, y, 2) (31)
xel yel z€Z;

with Z = [—0.5, 0.5] or a subinterval and Z, = [0, 1] or a subinterval, such as the bulk volume
Vv which is given further below in the text. In figure 3 (left) we display the minimum and
maximum grid spacing for the whole cell obtained by (30) and (31). Furthermore, we show the
minimum resolution in the bulk region where we defined a subvolume V, = {x = (r, ¢, 2)| 0 <
r <0.3; 0.2 <z <0.8}. The right panel confirms what we have discussed already above, that
the mean dissipation rates level off for N > 5 although vertical profiles are still not sufficiently
well resolved.

In figure 4 we display the probability density functions (PDFs) of the fields €7 and €. The
upper row shows data which have been obtained in the whole cell, the lower row those for the
subvolume V}, in the bulk. It can be seen for all four panels that with increasing polynomial order
more very-high-amplitude events are resolved and that the tail is further stretched out. The better
resolution manifests in significantly less scatter at the largest amplitudes. Even more pronounced
are the resolution effects in the bulk (lower row). We observe now for both dissipation rates the
same systematic trend. The tail of the stretched exponential distribution is fatter for higher
polynomial order. This latter finding is also in agreement with previously reported spectral
resolution studies for homogeneous isotropic box turbulence as reported in [23]. Note that the
tails of the exponents in our figure do not always increase in an even manner with resolution.
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Figure 4. PDFs of the thermal dissipation rate (left column) and kinetic energy
dissipation rate (right column) are shown for runs SEM1 to SEM4. The upper
row displays the data obtained for the whole cell. The lower row shows the data
for the bulk.

One sees for example, a jump in the lower left panel of figure 4 in going from N =3 to 5
and then again from N =7 to 11. This is understandable in light of figure 12, where we see
that high-amplitude events can increase the tails significantly. Since the system is chaotic as
well as turbulent, simulations done for the same Rayleigh number but different resolution are
statistically different, so some of them could have more high amplitude events than others.
Longer simulation times would help smooth this out.

2.5. Comparison with the finite difference method

The comparison of DNS runs at Ra = 10° and Pr = 0.7, i.e. runs SEM9, SEM10 and FDM1
from table 2, is displayed in figure 5. The resolution of FDM1 has been chosen twice as fine as
in the run from Bailon-Cuba et al [2] in order to get a comparable number of grid points with
respect to SEMO. The thermal boundary layer for FDM1 is resolved with 21 grid planes. We see
that the agreement of the mean vertical profiles is very good. The value of the Nusselt numbers
for the higher resolution runs match now to within three significant figures, also with the data
from [35]. In table 2, we list also the corresponding relative errors Ay and A, which are larger
for FDMI1 than those for SEM9 and SEM10, particularly for the kinetic energy dissipation rate
in our study. The latter has been evaluated in correspondence with (13) which has to be applied
for inhomogeneous flows. The difference is supported by the deviation in the vertical profiles
of (e(z2))a., in the lower left panel of figure 5. We also note that Stevens et al (see their table 1
in [31]) reported similar errors which were in their case however mostly detected for the thermal
energy dissipation rate and not only for the lowest resolutions.
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Table 2. Parameters of the different spectral element simulations. Runs SEM7,
SEMS8 and SEM10 have an order of the Legendre polynomials N =11, runs
SEMS, SEM6 and SEM9 use N =7. We show the Rayleigh number Ra, the
Prandtl number Pr, the total number of spectral elements, N, the number of
spectral elements with respect to z direction, N, ., the number of grid planes
(primary and secondary nodes) with respect to z direction, N, the total number
of grid cells N.N? and the Nusselt number Nuy . Furthermore we list the relative
errors A7 and A, (see equation (19)). All simulations are conducted for I' = 1
and Pr = 0.7. The finite difference run FDM1 is conducted for Ny x N, x N, =
721 x 361 x 621, respectively.

Run Ra Pr N. Ne. N, N.N3 Nuy Ar (%) Ay (%)
SEMS 100 0.7 30720 32 224 1.05x 107 8.6 0.1 0.1
SEM6 5x10° 0.7 30720 32 224 1.05x 107 139 0.3 0.5
SEM7 107 0.7 30720 32 352 4.08x 107 16.6 0.3 0.6
SEM7a 107 6.0 30720 32 352 4.08x 107 16.6 0.7 0.2
SEMS 108 0.7 256000 64 704 3.41x10% 314 0.4 0.2
SEM9 10° 0.7 875520 96 672 3.00x10%® 62.8 0.1 0.1
SEM10 10° 0.7 875520 96 1056 1.17x10° 63.1 1.2 0.5
FDM1 10° 0.7 - - 621 1.62x10% 63.1 1.7 9.2

The distribution of the local amplitudes of both dissipation fields is compared in figure 6.
Both panels show that the deviations arise mostly for the outer tails where the extreme
fluctuations are captured. In case of the thermal dissipation rate both PDFs remain closely
together for nearly the whole range. The kinetic energy dissipation rate data start to differ for
roughly 15-20% of the maximum amplitude which might be one reason for the larger values of
A,. The agreement in the low-amplitude part of the PDFs is good as shown in both insets.

Furthermore, we find excellent agreement between the two codes when comparing global
transport properties. For example, the Nusselt number and the globally averaged thermal
dissipation rates for both the whole cell and the bulk volume V}, as shown in figure 7 agree quite
well. We varied our Rayleigh number between 10 and 10° and compared with fits of the FDM
data from [2, 7, 8], respectively. We did need to use a different prefactor for the bulk-averaged
thermal dissipation rate since our subvolume V,, was chosen differently.

To estimate the effect of the size of our subvolume on the thermal dissipation rates, we
show two additional data sets in the right panel of figure 7: one for a smaller subvolume 8V}, /27
and the other for an even smaller subvolume of V,/27 (all centered about the middle of the
cell). The general trend is for the thermal dissipation rates to slightly decrease as the subvolume
decreases. Also, our uncertainty becomes larger as the subvolume decreases. We estimated the
uncertainty in the mean (er)y , values by computing the difference between the mean taken over
the entire time series and the mean taken over only the latter half of the time series.

The fits to the data sets corresponding to the smallest subvolumes are (er)gy, 27, = (0.21 &
0.07) Ra™"4*002 and (er)v, /7., = (0.25 £0.12) Ra~*4**003_ Kaczorowski and Xia [17] also
studied the scaling of subvolume-averaged thermal dissipation rates in a similar range of
Rayleigh numbers using a small subvolume (V /64) but for a Prandtl number of 4.38. Our
exponent disagrees with theirs of (er)y, = 43.9Ra"78. We do see a trend toward a larger
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Figure 5. Comparison of spectral element runs SEM9 and SEM10 with finite
difference run FDM1 (see table 2 for specifications). The same quantities
are plotted as in figure 2. The dashed line in the lower right panel marks
Az(z)/{(nk(z2))a., = m. The dashed line in the upper mid panel is the Nusselt
number of the FDM run from [2]) with Nu = 64.3. The inset in the top right
panel magnifies the thermal dissipation rate profiles for FDM1 and SEM10.
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Figure 6. Comparison of the PDFs of €7 (left) and e (right) obtained in the
subvolume V;,. The insets magnify the smaller amplitudes. We compare the data
for FDM1 with those from SEM9 and SEM10. Line colors are the same for both
figures and indicated in the legend and agree with those from figure 5.
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Figure 7. Comparison of global transport properties between SEM and FDM.
Left: Nusselt versus Rayleigh number for 10° < Ra < 10°. The data are
compensated by the power law Nu = 0.145 x Ra®** which was a fit to the
data as reported in Bailon-Cuba et al [2]. Right: mean thermal dissipation as a
function of the Rayleigh number for different subvolumes. The first two data sets
are compared with fits to the FDM data (shown as dashed lines). For the whole
cell V we take former results from [8], for the bulk volume V}, we compare with
data from [7]. In this case the prefactor is different since the subvolume V, was
chosen differently. The last two series are obtained in smaller subvolumes and
are fitted by power laws as given in the legend and shown as solid lines.

exponent as our subvolume decreases, but our largest exponent still disagrees with [17] even
when including our estimates of numerical uncertainty.

3. Results

3.1. Very-high-resolution runs at different Rayleigh numbers

In the following section, we want to discuss a series of very-high-resolution runs in more detail.
All the runs with their resolution are displayed in table 2. We first compare runs at Pr =0.7
spanning a Rayleigh number range from 107 to 10°.

Snapshots of high-amplitude regions of both dissipation fields are shown in figure 8. The
data are given in logarithmic units. Both dissipation rates form smooth sheet-like structures in
the bulk, in particular the thermal dissipation rate. The very fine resolution is clearly obvious
from the absence of ripples at the isosurfaces of both dissipation fields. In figure 9 we show
horizontal slices of both dissipation fields at fixed height z. Again the data is given in logarithmic
units to highlight the variation. The top row is for €7 (x, y) and the bottom corresponds to
€(x, y). The left column is for the bottom plate, z = 0, and the right column is for the midplane,

New Journal of Physics 15 (2013) 113063 (http://www.njp.org/)


http://www.njp.org/

17 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 8. Isovolume plots for the thermal dissipation rate (left) and the kinetic
energy dissipation rate (right). Data are obtained for Ra = 107, Pr = (0.7 and are
shown in logarithmic units. Left: the range of the data is log(er) € [—21.1, 0.5]
and isosurfaces between —5 and O are shown. Right: the range of the data is
log(e) € [—37,0.0] and isosurfaces between —4.5 and O are shown. Data are
from SEM?7 in table 2.

z=0.5. We see a smaller range of scales at midplane than near the bottom plate, consistent
with figure 4. The fine filamentary structure present in this case is similar to passive scalar
turbulence [37] or convectively driven mixing layers [18]. Interestingly the thermal dissipation
rate appears to be correlated with the kinetic dissipation rate at the bottom plate, but less so
at the midplane. At the bottom plate the structures reflect the ongoing plume formation and
detachment.

The distribution of the locally fluctuating dissipation scales nk(x) as defined in (5) is shown
figure 10 for runs SEM7, SEM8 and SEM10. The scales have been analyzed in the whole
cell with volume V as well as in a bulk region which is defined by V;. The definition (5) has
been chosen for this analysis which can be straightforwardly applied to the non-uniform grids
that have been used for all DNS. An alternative definition of local dissipation scales which
is based on velocity increments was suggested in [38, 39]. In [14], it was shown how both
distributions can be related to each other. It can be observed first that the scales in the whole
cell cover a wider range, both, to the large- and small-scale end (see top left panel) which
is centered around the most probable value which is always close to mean dissipation scale
(nk)v.. which is calculated following (18). This finding is also in agreement with previous
DNS results [7, 8] which show that dissipation rates have significantly higher amplitudes in
the boundary layers. We also see that the right tail ends of the distributions in the whole cell
decrease with Rayleigh number. It demonstrates that the scales in turbulent RBC become finer as
the Rayleigh number increases. This argument is also supported by the fact that the differences
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Figure 9. Snapshots of the local thermal dissipation rate €7 (x, y) for (a) z =0
and (b) z = 0.5 and the local kinetic energy dissipation rate €(x, y) also for (c)
z=0 and (d) z =0.5. Data are obtained for Ra = 10°, ' = 1.0 and Pr =0.7
and are shown in logarithmic units. Data are from SEMI10 in table 2. The
range of the data is log(er) € (a) [—2.8, 0.3], (b) [—11.0, —2.0] and log(e) €
(¢c) [—10.0,0.0], (d) [—6.0, —1.2].

between the distributions in V and V;, become smaller. In the top right figure, we zoom into the
left tail end for all six data sets. The smallest local dissipation scales are associated with the
largest dissipation events which arise for very steep local gradients. With increasing Rayleigh
number these contributions become larger, i.e. the left tail becomes fatter. A similar behavior,
however much less pronounced, can be observed if one restricts the analysis to the bulk volume
Vi. In figure 11, we display the PDFs of both dissipation rates in the whole cell and in the bulk.
For both rates, it can be clearly seen that the major contribution to the high-amplitude events
comes from the boundary layer regions. This has been studied already in [7].
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Figure 10. PDF of the local dissipation scale n(x, ¢) for runs SEM7, SEMS8 and
SEMI0 as given in the legend and table 2. We compare the PDFs obtained in
the whole convection cell with volume V and those obtained in the bulk which
is defined as the subvolume V. The dotted lines indicate n = (ng). Top left:
comparison of the PDFs in V and V;, for Ra = 10°. Top right: magnification of
the left tails for all six data sets. Bottom left: Rayleigh number dependence in the
whole cell. Bottom right: Rayleigh number dependence in the bulk. Line colors
are uniquely chosen for all plots and indicated in the legends.

Figure 12 illustrates the sensitivity of the statistics with respect to a single extreme event
that was monitored in the course of the simulation run and can be identified as a large scale
plume sweeping through the bulk volume. It causes a large instantaneous thermal dissipation
which is not easily detectable in the mean dissipation (€7 (¢))y,. Only in the fourth moment of
the thermal dissipation (6%) which is taken in the bulk volume does this strong event become
clearly visible as seen in the right panel of figure 12. Note also that the fourth moment in the
whole cell is also fairly insensitive to this particular high-amplitude bulk event. The impact of
this single event on the statistics is shown in the left panel of figure 12. As expected the tail is
stretched significantly.

In figure 13 we display a time sequence of the dynamics which is associated with this single
extreme event. The upper panel of the figure replots the moments of the thermal dissipation rate
obtained in V,, with respect to time but on a finer time scale. It can be observed that the entire
event lasts less than two free-fall times. We find that the fourth-order moment increases by
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Figure 11. PDF of the dissipation rates for runs SEM7, SEM8 and SEMI10 as
given in the legend and table 2. We compare the PDFs obtained in the whole
convection cell (upper panels) and those obtained in the bulk which is defined as
the subvolume V;, (lower panels). Thermal dissipation rates are displayed in the
left column, energy dissipation rates in the right one.
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Figure 12. Impact of high-amplitude dissipation events on the tail of the PDF
of the thermal dissipation rate for SEMS8. Left: PDFs with and without the high-
amplitude event (snapshot no. 28). Right: fourth-order dissipation rate moments
in the whole cell and the bulk. The dashed line indicates snapshot no. 28.

about three orders of magnitude within this short period. Figures 12 and 13 clearly show that
the statistical fingerprint of this strong event is best detected in the higher-order moments. The
bottom panels of figure 13 show vertical slice images of the thermal dissipation rate and the
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Figure 13. The dynamical sequence of the high-amplitude dissipation event
from figure 12. The top panel displays the temporal evolution of the thermal
dissipation rate moments of order n = 1-4 calculated in V;,. The times which
correspond to the images have been plotted as symbols filled with yellow. The
first row below the top panel displays vertical slice images of the logarithm
of the thermal dissipation rate field taken in the plane (x =0, y, z). The range
of the data is log(er) € [—20, 0.1]. The bottom row shows the corresponding
temperature and the range of the datais 7' € [0.3, 0.7]. We also highlight the size
of the subvolume V;, in comparison to the full volume V. Data are obtained for
run SEMS.

temperature corresponding to four different times in the evolution of this event. Clearly visible
is the pronounced hot plume rising and then detaching from the bottom plate which generates
steep temperature gradients and thus a large amplitude of the thermal dissipation rate.
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Figure 14. PDFs of the local dissipation scales obtained in the whole cell and the
bulk subvolume for SEM7 and SEM7a.

3.2. Very-high-resolution run at higher Prandtl number

Lastly, we compare the gradient statistics at a given Rayleigh number for two different
Prandtl numbers. Runs SEM7 and SEM7a are conducted at Ra = 10" and Pr =0.7 (air)
and 6 (water). The data in table 2 indicates already that the resolution requirements remain
the same for the enhancement of the Prandtl number by a factor of nearly 10. For Pr > 1,
the mean diffusion scale of the temperature field, (ng) is smaller than mean Kolmogorov
scale, (ng), since a viscous-convective range on scales smaller than the Kolmogorov scale
builds up. Figure 14 displays the distributions of 7, (X, t). We observe again that the range of
varying scales is larger when the data are taken in the whole cell in comparison to the bulk
volume.

We have not rescaled the distributions by the corresponding mean dissipation scale since
we want to point to the shift of both PDFs for Pr = 6. This means that the local dissipation
scales are larger as a whole than for the case of Pr = 0.7. This behavior looks counter-intuitive
at first glance, particularly from the perspective of passive scalar mixing at increasing Prandtl
(or Schmidt) number [22]. There one detects increasingly finer diffusion scales for the passive
scalar leaving however the local dissipation scales unchanged. For turbulent convection, we
estimated already in the introductory part that the relatively slow falloff of (ng) ~ Pr~'/% as we
progress from Pr ~ 1 to Pr > 1. It is the active nature of the temperature field which causes
this different behavior in the convection case as compared to passive mixing. A temperature field
at a higher Prandtl number exists on finer scales than a velocity field, obeying narrower plume
structures which causes a weaker driving of the fluid motion resulting in less steep velocity
gradients and consequently larger local dissipation scales. This argumentation is also supported
by a comparison of the PDFs of both dissipation fields as shown in figure 15. High-amplitude
events and tails are shifted to smaller magnitudes in all cases.
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Figure 15. PDFs of the thermal dissipation (top) and kinetic energy dissipation
rates (bottom), respectively. We compare runs SEM7 and SEM7a for the analysis
in the bulk V;, and the whole cell V.
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Figure 16. Joint statistics of both dissipation rates [1(er, €) as given by (32) for
SEM7 and SEM7a. Left: Pr = 0.7. Right: Pr = 6. The vertical and horizontal
lines indicate the corresponding mean dissipation rates. Data are obtained in V;,.
The color scale is given in decadic logarithm.
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3.3. Joint statistics

The joint statistics of both dissipation rates is displayed in figure 16. We show the joint and
normalized PDF which is given by
P(er, €)

P(er)P(e)
The contour levels are plotted in logarithmic values as indicated by the color bar. Similar to [17]
for RBC or to [15] for a channel flow, the support of IT has an ellipsoidal form with a tip at the
joint high-amplitude events. The joint PDF P(er, €) is here normalized by the corresponding
single quantity PDFs, P(€) and P(er). In this way we highlight the correlations between both
fields. If IT(er, €) is larger than unity then the correlation is larger than if the two dissipation
rate fields were statistically independent. It can be observed that the support of the joint PDF
for Pr = 6 is shifted to smaller amplitudes in comparison to Pr = 0.7, which is in agreement
with figure 15. In both cases, the high-amplitude events are correlated strongest, exceeding the
corresponding mean amplitudes by at least two orders of magnitude.

[(er, €) = (32)

4. Summary and discussion

We have computed both global and local measures of dissipation and heat transport from high
resolution direct numerical simulations of turbulent RBC using a SEM. We find that the global
measures of heat transport, such as Nusselt number, time-averaged temperature profiles and
volume-averaged dissipation rates, are fairly insensitive to insufficient resolution, as long as
the mean Kolmogorov length is resolved. However, if one computes instead plane-averaged
or even more local dissipation rates, one finds that the Grotzbach criteria (or something even
more stringent as in (33)) needs to be satisfied for every grid point in order to have the system
properly resolved. The main effects of a poorly resolved simulation are that some of the largest
dissipation (both thermal and viscous) scales in the system are not resolved, especially in the
bulk where the computational grid is coarsest. Our investigations suggest that the refined SEM
analysis which we conducted to study the statistics of dissipation fields require at least

—AZ(Z) < T for Pr 2> 1. (33)
x(@))a. 2

This follows e.g. from the data displayed in figure 4 for the largest Rayleigh number. It is clear
that such a criterion can be applied a posteriori only. Recall also that the horizontal spacing was
always finer in the present cases such that a geometric mean remains smaller than Az(z).

We have also compared our SEM results with a FDM code and find excellent agreement
for global quantities such as Nusselt number and temperature profiles, and even fair agreement
with globally averaged dissipation rates. The only discrepancy is with the vertical profiles of the
mean dissipation rates, which disagree by about 9%.

Once we determined our resolution criteria, we then compared local dissipation rates
(€, €7) and the local dissipation scale 1, as a function of Rayleigh number for our sufficiently
resolved simulations. Local dissipation scales can be considered as a generalization of the
mean Kolmogorov dissipation scale which incorporate the spatially intermittent nature of the
energy dissipation field. Local scales below the Kolmogorov scales are related to strong local
gradients or high-amplitude dissipation events. We find that the local dissipation scales in the
entire cell have a wider range of values than the dissipation scales in the bulk of the cell.
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But in all cases, there is a fairly wide range of dissipation scales both above and below the
mean Kolmorgov dissipation scale. The range of these local scales is a manifestation of the
intermediate dissipation range (IDR) which exists in the crossover region between the inertial
and viscous range. The IDR was developed in the multifractal formalism [4, 13, 19, 20]. Similar
to previous studies in box turbulence and channel flow turbulence, this range increases as the
Rayleigh number grows. We have shown here that the dissipation scales on the left end of the
PDFs become smaller as Rayleigh number increases, and correspondingly the probability of
largest dissipation scales decreases. We also found, by looking at the fourth moment of the
thermal dissipation rate, that high-amplitude but rare dissipation events can dominate the tails
of the PDFs of the thermal dissipation rates. This highlights the sensitivity of turbulent RBC
to such rare, but extreme events and calls for caution when generalizing statistical quantities
in turbulent RBC. We also computed the joint statistics of the kinetic energy and thermal
dissipation rates and find that the high amplitude events are the most strongly correlated.

Finally we compared results at two different Prandtl numbers. The range of local
dissipation scales becomes smaller when Pr > 1 which is in line with smaller amplitudes of
both dissipation rates. Our estimates (18) indicate that the resolution demands grow significantly
when the Prandtl number is decreased starting from Pr = 1. Equation (18) suggests a stronger
Prandtl number dependence on the dissipation scales, namely (ng) ~ Pr3/8, for cases decreasing
from Pr ~ 1 to Pr < 1 than for those which increase from Pr =~ 1 to Pr > 1 (where (ng) ~
Pr~'/3). On the numerical side, a second challenge appears that is related to the high diffusivity
of temperature field and which has been discussed recently for the case of passive scalar
mixing at very low Schmidt number [40]. An explicit time advancement becomes increasingly
demanding since the scalar relaxes increasingly faster. Preliminary studies suggest e.g. that for
the Prandtl number of mercury (Pr = 0.021) a mesh is necessary that equals the one which we
used for Pr = 0.7 for a Rayleigh number larger by a factor of one hundred.

Acknowledgments

First, we would like to thank Paul F Fischer for his continuous help in getting the nek5000
spectral element software package optimized and adapted to our RBC problem. JS thanks the
Deutsche Forschungsgemeinschaft for financial support within the Research Unit FOR 1182
and the German-Israeli—-Foundation with grant 1072-6.14/2009. Supercomputing resources on
Blue Gene/Q Juqueen at the Jiilich Supercomputing Centre have been obtained within Grant
HILO7 which has been selected as a large-scale project in the German Gauss Centre for
Supercomputing. We thank them for this steady support of our work. JDS acknowledges also
an INCITE director’s discretionary allocation for Blue Gene /P Intrepid and Blue Gene/Q Mira
at Argonne National Laboratory. The work benefited from discussions with Bruno Eckhardt,
Roberto Verzicco and Katepalli R Sreenivasan.

Appendix. Additional resolution studies

A.l. Sensitivity with respect to vertical element spacing

In this section, we describe in brief one way to obtain an optimal scaling factor r given by (27).
As r becomes smaller, the elements become more clustered toward the boundary plates as shown
in figure A.1. Table A.1 summarizes ten different test runs at fixed Ra, Pr and I'. In all cases

New Journal of Physics 15 (2013) 113063 (http://www.njp.org/)


http://www.njp.org/

26 I0P Institute of Physics () DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

=

0.1 P
T
’,.v’“‘ o {,x/*
08 € 005 A7 Yy
N ,,/ /fXX

- - -Chebyshev

—+—r=0.85
r=0.91

——r=0.96
Equidistant

25 30

Figure A.1. Display of the vertical primary node structure with N, , =32,
wherei =1... N, .+ 1 and z.(i) € [0, 1]. The geometric scaling factor r causes
different narrow node spacings in the vicinity of the top and bottom plate. For
visual comparison we add an equidistant spacing and the Chebyshev collocation
points. The inset displays a zoom into the vicinity of the bottom plate.

the horizontal mesh (see again figure 1) and the total number of elements /N, remain unchanged.
We varied the polynomial order N and r only.

Figure A.2 shows time series of the Nusselt numbers for the different values of » obtained
atz =0, 1.e. Nu(t) = —9(T)a/0z|,—0. The values Nu(t) fluctuate about their temporal means.
These fluctuations do not decrease when N is increased, i.e. when the resolution is improved
(not shown). A systematic effect for an increase of r is clearly visible in the insets of both figures,
where we report the time averages of Nu(t¢) at both plates with the error bars corresponding to
the standard deviation o . Neither an equidistant nor a strongly non-uniform grid are preferable
since they give the largest discrepancy in Nusselt number. There is a trade-off between resolving
the boundary layers (non-uniform grid) and the bulk (equidistant grid). Based on our analysis
here, scaling factors of about r &~ 0.9 seem to be the optimum and were kept for the rest of the
studies. For the present studies, we have chosen r = 0.91 and have also matched finer primary
element meshes correspondingly.

A.2. Complementary series of resolution tests

A complementary series of resolution tests in comparison to those reported in section 3.1 is
presented in table A.2 and figure A.3. In the test runs T11 to T13 we varied the primary element
meshes and left the polynomial order of each element unchanged. The outcome from this series
is similar to what was already demonstrated in the main text. While the vertical profiles for the
mean temperature or the mean convective heat flux are practically equal, differences manifest
for the gradient fields (see figure A.3 for details).

A.3. Spatial derivatives in the spectral element method

In order to illustrate how we take very accurate derivatives in the SEM, we use as an example
a one-dimensional case with the reference element 2 = [—1, 1]. A spectral approximation of a
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Table A.1. Parameters of the different spectral element test runs T1-T10 with
different vertical spacing. We display the order N of the Legendre polynomials,
the geometric stretching factor r in the vertical direction, the total number of
spectral elements, N., the number of spectral elements with respect to z direction,
N, . and the number of grid cells resulting from primary and secondary nodes
with respect to z direction, N, = N N. In all cases, Ra = 10°, =1 and

Pr=0.7.

Run N r Ne N.. N;
TT 3 085 30720 32 96
™ 5 085 30720 32 160
T3 3 088 30720 32 96
T4 5 088 30720 32 160
TS 3 091 30720 32 96
T6 5 091 30720 32 160
T7 3 093 30720 32 96
T 5 093 30720 32 160
T 3 096 30720 32 96
TI0O 5 096 30720 32 160

function u. € sz(Q) (with w(x) being a positive weight function) can be written as follows
N
ue(0) = ) u(E) (), (A1)
k=0
where v (x) is the kth order basis function and the (N+1) points are the nodes of the
Gauss—Lobatto quadrature. They are determined by the Gauss—Lobatto integration theorem [6].
For the approximation, one has to take a set of polynomials which form an orthogonal system
of the underlying Hilbert space of square-integrable functions L2 (2).
The first derivative of the function u.(x) at the GLL points is

de (x)
dx =g

N
Deu(&) =Y u(€)) (A2)
j=0
Starting from equation (23) together with the relation (1 —xZ)L/N(x) =0 for x =§&;
and substituting the Legendre differential equation ((1 — x2)L;V (x)) =—=N(N+1)Ly(x) the
derivative becomes

Ly () )
f .
G )Ly KT
N(N +1) . _
. _— fk=j=N,
W) e Y (A3)
dx x=&
NWED
4
0, otherwise.
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Figure A.2. Nusselt number at z = 0 versus time. Results at differently stretched
vertical grids are shown. The dashed lines show the reference values of Nu from
other DNS: cyan dashed line for a run at same Ra from [2] and the magenta
dashed line from [35]. The number of elements is the same in both series. Top:
polynomial order N = 3 with runs T1, T3, T5, T7 and T9. Bottom: N =5 with
runs T2, T4, T6, T8 and T10. The insets in both figures display Nu as obtained by
a time average at z = 0 (blue circles) and 1(red stars) as well as the corresponding
error bars. For comparison we add again Nu 4 o from [2, 35] in the same color
style as in the main figures. All data are for Ra = 10° and I = 1 (see table A.1).

We also recall that Ly(—1) = (—1)" and Ly(1) =1 for all N. Thus, the derivative at the
boundary x = & is given by

N(N+1) o _uE) D"
Du(§) = ———— |
u(&) y u(§0)+; (6o—&)Ln())
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Table A.2. Parameters of the different spectral element simulations T11-T13.
The three runs have different primary node meshes, but the same polynomial
order N =7. We display the order N of the Legendre polynomials, the total
number of spectral elements, N., the number of spectral elements with respect to
z direction, N, ., the number of grid cells resulting from primary and secondary
nodes with respect to z direction, N, = N, ,N and the Nusselt numbers Nu(z =
0), Nu(z = 1) and Nuy. Furthermore we list the relative errors Ar and A, (see
equations (19)). All runs are at Ra = 10°, ' =1 and Pr =0.7. Note that T13
equals SEMO.
Rin N (NeoNe.) N. Nu@=+o Nu():t0 Nuy+o Ar A,
Ti1 7 (30720, 32) 9% 61.8+10 61.8+£1.1 63.1+24 1.7% 4.0%
T12 7 (256000,64) 448 62.8+1.0 62.6+1.1 629+47 04% 02%
T13 7 (875520,96) 672 62.8+2.0 629+23 628+50 0.1% 0.1%
1 80
L
N F::,‘—,f::;"?-:—————=-—e_ —
. = 60 \
A 3 N_=30720 | =
N5 ——————=<{a’ 40 — a
v = __N_=256000 o
| & 20 N_=785520
o e
0 0
0 R 0.5 1 0 R 0.5 1
6x 10 2x 10
5 ﬂr:\v ’
‘ A 1.5(
ol 5
5 x |
Va3 ¥y
2 iy A ]
1 0.5
0 0.2 0.4 0 0.2 0.4
z/H z/H

Figure A.3. Resolution tests for Ra =10°, ' =1 and N =7 using different
primary meshes (runs T11-T13 in table A.1). We compare the same quantities as
in figure A.2. The dashed line in the lower right panel marks Az.(z)/nk(z) = 7.
The dashed line in the upper mid panel is the Nusselt number from run FDM1 as

displayed in table 2.

atx =&, for0O <k < N by

N

u(&;)Ly&r)
D, = , A5
uE) =2 & — &)Ly () (&-3)

j=0
J#k
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Figure A.4. First-order derivative as a function of polynomial order and element
size. Left: the results for (du/dx)* where u(x) = cos(mwx/2) with x e [—1, 1]
are displayed. Mid: same results but for an primary element mesh (£2/2) twice
as fine as in the left figure (£2). Right: exponential convergence of the error as
defined in (A.7).

and at x = &y by

i u(€;) N(N +1)
D. = ! . A.6
u (&) j}zoj et g e (A.6)

In figure A.4 we summarize the results for a simple function u(x) = cos(wx/2). With a view
to dissipation rates we are interested in the accuracy for quantities that contain (du/dx)?. In
the left panel of figure A.4, we compare the derivative as obtained from (A.4)—(A.6). We see
that the errors at the boundary result in strong overshoots at the element boundary which are
amplified by the second power of the derivatives as in the dissipation rates. The mid panel of
figure A.4 repeats the analysis for a primary element node mesh of half the size obtained here by
X — (x — 1)/2. An increase in resolution of the primary element node mesh reduces the errors
significantly. The error can be quantified by

N
| u' = Deu [|=") | (€;) — Deu(€))|, (A7)
j=0

which is shown in the right panel of figure A.4. The exponential convergence with respect to the
polynomial order N is clearly demonstrated in the right panel of the figure. Thus a combination
of both increasing the polynomial order and the node mesh leads to an accurate calculation of
spatial moments.
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