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Abstract. The insufficient parameterization of low clouds which are caused
by shallow convection remains one of the biggest sources of uncertainty in
large-scale models of global atmospheric motion. One way to overcome this
lack of understanding is to develop Boussinesq models of moist convection
with simplified thermodynamics which allow for systematic studies of the cloud
formation in different dynamical regimes and depend on a small set of system
parameters only. This route makes the problem accessible to direct numerical
simulations of turbulence without subgrid-scale modeling and provides an ideal
testing bed for systematic and stepwise reductions of degrees of freedom.
Such systematic reductions are studied here for a recently developed moist
Rayleigh–Bénard convection model in the conditionally unstable regime. Our
analysis is based on the proper orthogonal decomposition (POD) and determines
the corresponding modes by a direct solution of the eigenvalue problem in
form of an integral equation. The resulting reduced-order dynamical systems
are obtained by a projection of the original equations of motion onto a finite set
of POD modes. These modes are selected with respect to their energy as well as
their ability to transport energy from large to small scales and to dissipate the
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energy at smaller scales efficiently such that an additional modal viscosity can
be omitted for most cases. The reduced models reproduce important statistical
quantities such as cloud cover, liquid water flux and global buoyancy transport
to a very good degree. Furthermore we investigate different pathways to reduce
the number of degrees of freedom in the low-dimensional models. The number
of degrees of freedom can be compressed by more than two orders of magnitude
until the models break down and cause significant deviations of essential mean
transport quantities from the original fully resolved simulation data.
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1. Introduction

Moist turbulent convection and the resulting formation of clouds are not only omnipresent
processes on Earth [1, 2] but also on our planetary neighbor Venus [3] and the giant gas planets,
Jupiter [4] and Saturn [5]. Although many detailed aspects of cloud turbulence have been studied
and reproduced in numerical simulations, a unifying theoretical framework of cloud formation
and cloud dynamics parameterization is still missing. The latter is of central importance for more
reliable predictions of the climate change in large-scale circulation models [6]. For example
feedbacks of low marine clouds on the radiation balance or aerosol composition are still not
well understood [7, 8]. Given the rapidly growing computational resources, one could therefore
combine an increasing number of physical processes with a growing number of adjustable
parameters and solve the resulting mathematical model equations on ever finer meshes. As
reported from several such efforts (see e.g. Satoh et al [9]) cloud dynamics parameterizations
developed for coarse grids can break down when moving to finer resolutions. The reason for
this ‘resolution gap’ is that the coupling between resolved and unresolved turbulent dynamics
is still not understood [10].

One can also follow an alternative route of abstracting the cloud formation dynamics from
a number of particular processes and formulating a simplified mathematical model of moist
Rayleigh–Bénard convection (MRBC) that contains the most important physical ingredients
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and allows for systematic parameter studies which are accessible to direct numerical simulations
(DNS) [11–14]. On the one hand, DNS studies of MRBC turn out to be still very demanding,
in particular when larger Rayleigh numbers and extended layers with large aspect ratios are
considered [14–16]. On the other hand, such models allow to formulate a generalized framework
of moist convection in which fundamentally different stability regimes result, which can show
similarities with simple wall-bounded shear flows [17, 18] and lead either to space-filling
cloud layers or localized cloud aggregates [14]. The DNS model enables us also to reduce
the complexity systematically and stepwise and to test how fluxes of heat and liquid water
across the layer as well as the cloud formation and the cloud cover are affected by the decrease
of the number of degrees of freedom or, in other words, the number of the modes. The latter
aspect sets the central motivation for this work. To some degree, we are taking a pathway in an
opposite direction compared to the discussion of the resolution gap. We will study the impact of
insufficient resolution on global transport properties across the layer starting from well-resolved
DNS.

In this work, we want to reduce the number of degrees of freedom in an MRBC model with
a proper orthogonal decomposition (POD) technique, a method which has been used widely
in free-shear and wall-bounded flows [19, 20] as well as thermal convection [21–23]. POD
selects degrees of freedom with respect to their total energy and constructs a new orthonormal
basis by solving an eigenvalue problem, which is formulated as an integral equation with a
covariance matrix as the kernel. It is based on a record of high-resolution data obtained from
simulations or experiments. This assures that we keep the most energetic convection patterns.
Here, we want to solve this eigenvalue problem directly, extract the most energetic degrees of
freedom and construct differently strongly reduced cloud formation models. Quantities such
as the cloud cover or the buoyancy and liquid water fluxes are compared with the long-time
evolution of the fully resolved DNS. These studies are conducted at different Rayleigh numbers
such that we can provide the maximum data compression as a function of the Rayleigh number
in an accessible range. Furthermore, we focus this analysis to convection at large aspect ratios
(up to 32). This allows us also to study the impact of vertical mode reductions on the cloud
and flow pattern formation. It should be mentioned here, that beside POD alternative methods
are possible to detect dominating degrees of freedom from data sets and to construct reduced
models on their basis, such as Laplacian eigenmaps with time-lagged embeddings [24] and
stochastic clustering [25] or multi-scale models [26], to mention a few. It depends whether
one is interested in a temporal or spatial evolution or both. The sensitivity with respect to
spatial grid resolution has been also investigated in cloud resolving models, e.g. the resolution
dependence of the parameterizations in [27] or of radiative–convective equilibrium states
in [28].

The paper is organized as follows. In section 2 we discuss the moist convection model.
The model equations in the Boussinesq approximation are formulated and the construction of
the low-dimensional model (LDM) is outlined. In section 3, we discuss our results. In a first
step, the vertical resolution is decreased followed by a sole horizontal reduction. In a third step,
horizontal and vertical modes are jointly truncated. In all three cases, we investigate the impact
of these reductions on global transport quantities. Afterwards, we explore dependencies of the
mode reduction on Rayleigh number and aspect ratio. Finally, we will give an outlook and
summarize our findings.
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2. Cloud formation model

2.1. Moist Boussinesq equations

The moist convection model is a direct extension of classical Rayleigh–Bénard convection
(see [29] for a recent review) incorporating the effect of phase changes between liquid water
and vapor. This means that the present model also uses the Boussinesq approximation in which
the height of the convection layer H is much smaller than the scale height of the atmosphere.
The moist air can then be approximated as an incompressible fluid. Furthermore, we exclude the
formation of rain which means that the total water content qT, the sum of vapor and liquid water
contents, qv and ql, is conserved. The complex thermodynamics of phase changes manifests
in a nonlinear equation of state that describes the buoyancy B as a function of (potential)
temperature (or entropy), total water content and height, B(T, qT, z). It is simplified to a
piecewise linear equation of state on both sides of the phase boundary. This simplification
preserves the discontinuity of partial derivatives of the buoyancy of air parcels with respect
to state variables and thus the latent heat release [12]. One can now reformulate the linearized
equation of state B(T, qT, z) in terms of two buoyancies and height, B(D, M, z) which are
denoted as the dry and moist buoyancy, D and M , respectively. Unsaturated or saturated air will
contribute differently to the fluid motion in the layer of height H . Both fields determine the
buoyancy B in an explicit saturation condition which has to be evaluated for each time step at
each grid point. It is given by

B(x, t) = max[M(x, t), D(x, t) − N 2
s z], (1)

where Ns is a Brunt–Vaisala frequency composed of the dry and moist adiabatic lapse rates.
In a nutshell, the two buoyancy fields characterize the two components of the atmosphere,
liquid water and unsaturated vapor. Their prescribed values at the top and bottom control if
saturated or subsaturated conditions are sustained. It was shown that the model can be operated
in different stability regimes [14]. In the linearly unstable regime, D and M are on average
unstably stratified. This regime is similar to the dry convection case and results in space-filling
turbulence. If dry air parcels are stably stratified while moist air parcels are unstably stratified,
conditionally unstable convection is established which is relevant for the formation of cumulus
clouds in the atmosphere [30]. The equations of motion are given by

∂u
∂t

+ (u · ∇)u = −∇ p +

√
Pr

RaM
∇

2u + Bez, (2)

∇ · u = 0, (3)

∂ D′

∂t
+ (u · ∇)D′

=
1

√
Pr RaM

∇
2 D′ +

RaD

RaM
uz, (4)

∂ M ′

∂t
+ (u · ∇)M ′

=
1

√
Pr RaM

∇
2 M ′ + uz . (5)

The two scalar transport equations are given in terms of the deviations from the diffusive
equilibrium, D′ and M ′ respectively. Three dimensionless parameters arise in equations (2)–(5).
The Prandtl number is defined as

Pr =
ν

κ
, (6)
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and fixed to a value of 0.7. The dry and moist Rayleigh numbers are defined as

RaM =
(M0 − MH )H 3

νκ
, RaD =

(D0 − DH )H 3

νκ
, (7)

where D0, DH , M0 and MH are the prescribed buoyancy values at z = 0 and H . Quantities
ν and κ denote the kinematic viscosity and the thermal diffusivity, respectively. The two
advection–diffusion equations for M ′ and D′ are not independent. This was shown first by
Bretherton [11] and holds when physical processes such as rainfall and radiative cooling are
not incorporated. Then the two buoyancy fields can be recombined to one advection–diffusion
equation for a conserved scalar. In the following, we can therefore take

D′(x, t) =
RaD

RaM
M ′(x, t). (8)

The dry buoyancy field is thus determined by the moist buoyancy field4. In other words, the
fluctuations of both fields are synchronized. Two more dimensionless parameters are hidden in
the saturation condition (1), the amount of cloud water at z = 0 and H denoted CW0 and CWH ,
respectively,

CW0 =
M0 − D0

N 2
s H

, CWH = 1 +
MH − DH

N 2
s H

. (9)

Water deficit at the boundaries corresponds with negative values of CW0 and CWH while
a sustained water content with positive ones. Throughout this work we will choose a static
equilibrium such that the whole equilibrium layer is neither saturated nor subsaturated, i.e.
M(z) = D(z) − N 2

s z (see figure 1(a)). As a further consequence of (1), liquid water content
is present in the turbulent layer when

ql(x, t) = M(x, t) − (D(x, t) − N 2
s z) > 0. (10)

The moist Boussinesq equations are solved in the volume � = L x × L y × H = 0H × 0H × H
by a standard pseudo-spectral scheme with Fourier–Chebyshev expansions [16]. Similar to
[11, 31] we apply free-slip boundary conditions for the velocity at the top and bottom planes.
Laterally, periodic boundary conditions are applied for all fields. 0 denotes the aspect ratio of the
layer and is set to values of 8, 16 and 32. The conditionally unstable equilibrium is perturbed by
a finite-amplitude field and relaxes after a longer transient into a statistically stationary turbulent
state. It is this flow state which will be used for the LDM derivation.

Our configuration can be thought as a very simplified setting for an atmospheric layer with
an isothermal ocean surface as the lower lid and an upper lid which can be considered as a strong
temperature inversion (see sketch in figure 1(b)). In particular, the upper rigid lid is a significant
simplification. Note that even for a strong inversion layer vertical motion above the inversion
would be possible. Standard mesoscale large-eddy simulation codes apply here a free-outflow
boundary condition on a grid that is increasingly stretched toward the boundary and enhances
numerical diffusion (see e.g. [32]). The advantage of our model is that the boundary conditions

4 The dry buoyancy D corresponds with the liquid water potential temperature θl which equals the potential
temperature θ when the air parcels are unsaturated. The moist buoyancy M corresponds with the equivalent
potential temperature θe. The frequently used Paluch diagram representation (qT, θe) translates consequently into
an (D, M) diagram via θl = θe − LvqT with the latent heat Lv .
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Figure 1. Moist convection layer. (a) Sketch of the conditionally unstable
equilibrium state without fluid motion that serves as the initial condition.
It is characterized by the linear profiles D(z) = D0 + (DH − D0)z/H and
M(z) = M0 + (MH − M0)z/H , respectively. The amplitudes of the dry and moist
buoyancies are chosen such that CW0 = CWH = 0. The whole slab is thus
neither saturated nor subsaturated (similar to [11]). (b) Sketch of the simulation
domain. The bottom plane can be thought as an ocean surface while the top plane
could correspond to a first approximation to a strong temperature inversion. The
volume is � = 0H × 0H × H . (c) Snapshot of the DNS at 0 = 32 (run DNS3
from table 1). A view from the top onto the whole layer is displayed. The cloud
boundaries are shown as transparent isosurfaces together with the product uzql in
the plane (x, y, z = H/2). The latter is a measure for the local liquid water flux.
(d) Same data as (c). The corresponding local convective buoyancy flux uz B is
now displayed (again view from top and same data as in (c)).

are well-defined and allow thus for an application of the mode reduction techniques which will
be presented in the following.

Typical heights under atmospheric conditions for such a shallow moist convection layer
are H ≈ 2 km. Since we conduct DNS without subgrid small-scale parameterizations of the
turbulent fields, the accessible Rayleigh numbers are by more than ten orders of magnitude
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lower than those in the real atmosphere. In [34], we have calculated how our system translates
into a real shallow moist convection layer and estimated which turbulent diffusivity and
viscosity would follow when such a layer is resolved by present grids.

2.2. Low-dimensional model construction

The turbulent fields of the moist convection problem are summarized into a four-component
vector field v = (ux , u y, uz, M ′)T

∈ L2(�). The idea of the POD method is to identify the
smallest orthonormal subspace (or submanifold) of the underlying function space L2(�) that
represents all essential flow structures. This subspace has significantly less degrees of freedom
compared to the full phase space that captures the flow fields in the DNS. The reduction of
degrees of freedom in a LDM is done in three steps [20]:

• Construction of the set of orthonormal POD modes from a sequence of fully resolved DNS
snapshots.

• Projection of the Boussinesq equations of moist convection onto the eigenspaces spanned
by the individual POD modes.

• Truncation to a LDM spanned by the most energetic POD modes.

2.2.1. POD mode construction. The space L2(�) is associated with the following inner
product, denoted as (·, ·)L2 , and norm (the asterisk indicates complex conjugate):

E =
1

2
(v, v)L2 =

1

2

∫
v v∗d3x =

1

2
‖v‖

2, (11)

which is associated with a total energy. The energy E combines kinetic energy and scalar
variance of the four fields which are dynamically coupled in our moist convection model. It
follows as the canonical norm for the four-vector fields v in the Hilbert space L2(�). Since the
fields ux , u y , uz and M ′ are dynamically coupled they also have to be analyzed jointly in the
POD framework (see [22] or further references in [23] for dry convection). Other choices are
possible, e.g. with inner products that give different weights to velocity and scalars. The task is
now to extract a set of orthogonal functions {φi

}i=1,... from the data which maximizes on average
the following functional:

〈|(v, φi)L2|
2
〉t

‖φi ‖2
→ max. (12)

The brackets 〈·〉 denote an average, subscripts t , V and A stand for time average, volume
average and horizontal plane average, respectively. The problem can be reformulated into an
eigenvalue problem in form of an Euler–Lagrange integral equation [19] which is given in a
general notation as follows:∫

�

〈v(x, t) ⊗ v(x′, t)〉t φ(x′) d3x′
= λφ(x). (13)

This Fredholm equation of second kind is discretized in space and time and then solved directly
in our case. The eigenvalues are total energies of the corresponding eigenvectors; in our case a
combination of kinetic energy and moist buoyancy variance. For the calculation of the kernel
〈v(x, t) ⊗ v(x′, t)〉t up to 600 statistically independent DNS snapshots were used in our specific
application. Discrete symmetries, the rotation about x = y = 0 and reflection at the plane x = 0,
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are used to increase the number of snapshots by a factor of 8 without performing additional
DNS runs. The translational symmetry in the horizontal directions due to the periodic boundary
conditions results in a mode structure for which the classical Fourier modes are the canonical
choice in the horizontal directions. This POD mode ansatz is used in many other applications,
such as in plane shear flows [33] or dry convection [23]. In our system, the general notation
for the POD mode, φ, specifies then to the following. The modes are characterized by the wave
vectors k = (kx , ky) and by a quantum number k̂ with respect to the vertical direction. Each
mode is uniquely determined by this triple and the ordering of the mode set is done with respect
to their energy. In detail, they are given by

8
(k̂)

k (x) =
φ

(k̂)

k (z)√
L x L y

exp

(
2π ikx x

L x
+

2π iky y

L y

)
. (14)

Once the eigenfunctions are calculated, the original turbulence vector field v can be expressed
in terms of these orthonormal functions

v(x, t) =

∑
k,k̂

a(k̂)

k (t)8(k̂)

k (x) . (15)

Note, that the expansion coefficients a(k̂)

k (t) are the same for the velocity vector field u and
the moist buoyancy field M ′. The POD modes inherit linear properties of the original data,
such as boundary conditions and incompressibility. In figure 2, we show how the incremental
dilution of the number of POD modes, which are taken to reconstruct the original data, affects
the liquid water content (upper row) and the vertical velocity fluctuations (lower row) starting
from the DNS snapshot in panels (a) and (e). Even when the number of degrees of freedom (or
modes), which is denoted as NDoF, is decreased by more than two orders of magnitude, the liquid
water content patterns are reproduced quite well. This is not the case for the vertical velocity
component. Since the contour plot color coding in all figures is the same, one can see that up-
and downdrafts decrease in amplitude.

2.2.2. Projection onto Boussinesq equations and Galerkin truncation. The derivation of the
LDM from POD modes is straightforward. The original Boussinesq equations (2) to (5) are
projected subsequently onto the orthogonal eigenspaces which are spanned by the individual
POD modes using the scalar product (11). The original system of partial differential equations is
transformed into a nonlinear coupled system of ordinary differential equations for the expansion
coefficients which can be formally written as

da(k̂)

k

dt
=

∑
p = k − q
p̂ = k̂ − q̂

N (k, q, k̂, q̂)a(q̂)
q a( p̂)

p + L(k, k̂)a(k̂)

k + B(k, k̂). (16)

The first term on the right hand side summarizes the quadratic nonlinearties arising from the
advective terms in the original Boussinesq equations. The second term contains the linear
contribution which results from the dissipation and the final term is due to the buoyancy.
Note that the buoyancy in equation (1) can only be evaluated in physical space. Therefore,
coefficients B(k, k̂) depend also on all expansion coefficients. This requires transformations
between expansion space and physical space for the buoyancy contribution B(k, k̂) in (16)
which contribute significantly to the required integration time. For time integration a fifth-order
Adams–Bashforth scheme in used.
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Figure 2. Successive reduction of the degrees of freedom for a snapshot of
DNS3. The liquid water content ql(x, t0) at z = 0.77 is shown in the upper
row. The corresponding vertical velocity uz(x, t0) at z = 0.5 in the lower row.
Panels (a) and (e) are the original DNS data. Panels (b) and (f) are LDM3a
with NDoF = 18 489 and 99.6% of the total energy. Panels (c) and (g) correspond
to NDoF = 3021 containing 95% of the total energy. Finally, panels (d) and (h)
correspond to NDoF = 159 which still contain 73.4% of the total energy. For both
quantities, the color coding is the same in the four panels: contour levels are
between −0.8 and 1 (red) for ql and between −0.5 and 0.5 (red) for uz, both in
dimensionless units.

3. Successive mode reduction

The DNS runs and the corresponding LDMs with different number of degrees of freedom, NDoF,
or modes are listed in table 1. We increase the moist Rayleigh number RaM by approximately an
order of magnitude at fixed aspect ratio 0 = 16 in runs DNS2, DNS4 and DNS5. Furthermore,
we enlarge the convection layer horizontally by factors of two and four in both horizontal
directions at fixed Rayleigh number RaM = 1.5 × 104 in runs DNS1, DNS2 and DNS3. The
grid resolutions (Nx , Ny, Nz) have been chosen as follows: for DNS1 we took (64, 64, 17), for
DNS2 (128, 128, 17). The grid size for DNS3 was set to (256, 256, 17) while DNS4 and DNS5
were run on a grid with (256, 256, 33) points. As already said, the Rayleigh numbers remain
rather small in the present study since a main emphasis is to obtain large aspect ratios 0 > 8 as
necessary for the cloud formation in the conditionally unstable regime (see e.g. [18]).

A typical set of POD modes in the LDM is shown in figure 3. Since the number of degrees
of freedom is eventually finite, the set of horizontal Fourier wave vectors in combination with
the quantum numbers for the POD modes form a discrete finite set. Each element of this set can
be identified with a vertex on a three-dimensional grid. In the panels of figure 3 each entry to
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Table 1. List of performed DNS runs and the corresponding LDMs. In all cases
RaD = −RaM/3, Pr = 0.7 and CW0 = CWH = 0. We list the aspect ratio 0, the
moist Rayleigh number RaM, the ratios 3(E) and 3(NuM) (see equation (18)
for both) and the measure Q1 (see equation (19)) all of which are defined in the
text. Averages 〈E〉t and 〈NuM〉t (see equation (17)) compare mean energy and
buoyancy flux of the original DNS and the corresponding LDMs, respectively.
NDoF display the number of degrees of freedom. The additional number for runs
LDM3a, LDM4a and LDM5a indicates the number of modes that have been used
to evaluate the buoyancy in the physical space in order to accelerate the time
advancement. The asterisk in the first column indicates if an additional modal
viscosity was used. Note that LDMv1a, LDMh1a and LDM1a are identical and
have been tripled for better readability.

0 RaM 3(E) 3(NuM) Q1 〈E〉t 〈NuM〉t NDoF

DNS1 8 1.5 × 104 1 1 0 4.19 1.687 30 547
LDMv1a 8 1.5 × 104 0.994 0.997 0.0042 4.14 1.702 895
LDMv1b 8 1.5 × 104 0.991 0.998 0.0053 4.17 1.699 736
LDMv1c 8 1.5 × 104 0.987 1.000 0.0091 4.10 1.722 577
LDMv1d 8 1.5 × 104 0.975 1.003 0.0189 3.41 1.824 418
LDMv1e 8 1.5 × 104 0.958 1.002 0.0284 5.89 2.236 259

LDMh1a 8 1.5 × 104 0.994 0.997 0.0042 4.14 1.702 895
LDMh1b 8 1.5 × 104 0.993 0.996 0.0057 4.15 1.684 735
LDMh1c∗ 8 1.5 × 104 0.991 0.995 0.0063 4.16 1.680 595
LDMh1d 8 1.5 × 104 0.988 0.992 0.0082 4.22 1.685 475
LDMh1e 8 1.5 × 104 0.983 0.989 0.0109 4.25 1.692 367
LDMh1f 8 1.5 × 104 0.974 0.983 0.0157 4.60 1.710 271
LDMh1g 8 1.5 × 104 0.953 0.970 0.0267 4.97 1.755 175

LDM1a 8 1.5 × 104 0.994 0.997 0.0042 4.14 1.702 895
LDM1b 8 1.5 × 104 0.977 0.994 0.0154 3.13 1.714 220
LDM1c 8 1.5 × 104 0.977 0.994 0.0154 4.28 1.737 220
LDM1d 8 1.5 × 104 0.869 0.946 0.0700 4.92 1.817 23

DNS2 16 1.5 × 104 1 1 0 12.87 1.543 120 637
LDM2a 16 1.5 × 104 0.996 0.999 0.0029 14.93 1.642 4831
LDM2b 16 1.5 × 104 0.977 0.999 0.0186 12.22 1.476 1238

DNS3 32 1.5 × 104 1 1 0 51.45 1.540 485 320
LDM3a 32 1.5 × 104 0.996 0.997 0.0057 53.12 1.564 18 489 (12 463)
LDM3b 32 1.5 × 104 0.974 0.985 0.0158 53.86 1.761 4937
LDM3c∗ 32 1.5 × 104 0.974 0.985 0.0158 58.88 1.577 4937

DNS4 16 6.6 × 104 1 1 0 10.68 1.663 970 640
LDM4a 16 6.6 × 104 0.995 0.996 0.0071 10.90 1.669 15 233 (11 997)
LDM4b 16 6.6 × 104 0.978 0.998 0.0186 6.32 1.561 5627

DNS5 16 1.17 × 105 1 1 0 9.485 1.671 970 640
LDM5a 16 1.17 × 105 0.995 0.996 0.0148 10.17 1.711 23 161 (12 749)
LDM5b 16 1.17 × 105 0.979 0.997 0.0186 6.15 1.499 8271
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Figure 3. Illustration of the finite set of horizontal Fourier wave numbers and
vertical quantum numbers as following for model LDM1a. Each entry (kx , ky, k̂)

is marked by a colored box. (a) Horizontal modes of LDM1a in the kx − ky plane
are displayed at k̂ = 1. (b) Modes in the k̂ − kx plane at ky = 0, again for model
LDM1a. The different colors highlight different subsets, e.g. entries in yellow
show all horizontal wave numbers which are combined with quantum numbers
k̂ 6 7. In panels (c)–(e), we sketch the possible mode reduction strategies which
we applied. (c) Sketch of the vertical mode reduction at sustained horizontal
resolution. (d) Sketch of the horizontal mode reduction strategy at sustained
vertical POD mode resolution. (e) Sketch of the combined vertical and horizontal
mode reduction strategy.

this wave vector grid is marked by a little colored box. Panel (a) shows all horizontal Fourier
wave vectors which have been used in run LDM1a (see table 1). The three subsets in the figure
contain different maximum quantum numbers k̂ and have been colored differently therefore.
The complementary view to the wave vector set is provided by panel (b) which combines
Fourier wave and quantum numbers of the POD modes. The total number of grid entries is

1783 for the present example. Due to the reality condition a(k̂)

k = a(k̂) ∗

−k this results eventually
in 895 (=(1783−7)/2+7) degrees of freedom for our example. In all models the entries form
concentric cylindrical blocks.

The successive reduction can proceed in three different ways which we want to investigate
in the next sections, a vertical reduction that keeps the set of horizontal wave numbers (sketched
in panel (c) of figure 3), a horizontal reduction that keeps the set of vertical quantum numbers
(sketched in panel (d) of figure 3) and a joint vertical and horizontal reduction as seen in panel (e)
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of figure 3. The particular choice of the mode set was motivated by two points. On the one hand,
one is interested in the most energetic large-scale modes which represent the major part of the
energy. On the other hand, one has to assure an optimal coupling between the modes in the
truncated set. The second point requires to include less energetic degrees of freedom which
transmit energy between larger-scale modes. Finally one needs a couple of small-scale modes
which dissipate the cascading energy. This strategy avoided the use of an additional modal
dissipation which was necessary in a few cases only (see section 3.3).

Before we continue with the particular mode set reductions we want to stress once more
that the strict ordering of the POD mode set is done with respect to their specific energy. As
we outlined already in section 2.2, the three-dimensional POD modes consist of a combination
of horizontal Fourier modes and vertical modes. Nevertheless, it holds for all spatial directions
that an increase of wave or quantum numbers will pick up structures in the turbulent fields
with a smaller energy. Therefore a truncation of modes with a higher wave or quantum number
will be generally in line with an increasingly insufficient resolution of smaller-scale turbulent
structures.

3.1. Reduction with respect to vertical direction

The LDMs in the next three sections start from DNS1. For the first series of LDMs which
is entitled by LDMv, we reduce the modes or degrees of freedom with respect to the vertical
direction only. This is done as follows: for horizontal wave numbers k = |k| = (k2

x + k2
y)

1/2 with
a circular shell of radius k 6 kh we take successively less vertical POD modes, e.g. for k 6 4 we
take k̂ = 7 in LDMv1a and reduce it to k̂ = 3 for LDMv1e in steps of one. In a similar way, we
proceed for the other shells as sketched in figure 3(c). The starting point of this series, model
LDMv1a, has been obtained such that the number of mode couplings is sufficient for resolving
advection and dissipation processes. Collecting the most energetic modes only will lead to a
model with insufficient energy transfer properties. The couplings are however required to drain
the energy down to the smaller scales where dissipation takes over. Therefore, we collect shells
in the discrete wave number space which involve enough mode couplings. In the Fourier case,
couplings follow from triades k = p + q that can be formed among the wave vectors of the
model. A maximization of the number of possible triads causes efficient transfer properties in
the model. In this way we might not perform the strongest reduction, but avoid an additional
modal dissipation for most of our cases. For the LDMv1a case, global quantities as the total
energy E (see equation (11)) or the global mean buoyancy flux, as quantified by the Nusselt
number NuM, come closest to the values obtained from the DNS snapshots. The Nusselt number
which adds buoyancy flux by diffusion and convection is defined as

NuM = 1 +
√

Pr RaM〈uz M ′
〉V,t . (17)

The quantities 3(E) and 3(NuM) yield the fraction that the LDM modes contribute to the
corresponding quantity in comparison to the full DNS mode set. Both quantities are evaluated
by a successive projection of the POD modes onto a sequence of DNS snapshots and are given
by

3(E) =

〈
E

EDNS

〉
t

, 3(NuM) =

〈
NuM

NuDNS
M

〉
t

. (18)

An optimal coupling between the POD modes assures that the energy can be drained from large-
scale modes down to small-scale modes efficiently. If this point is not considered, the reduced
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Figure 4. Time evolution of the total energy for the first 300 freefall time
units. (a) runs LDMv1a to LDMv1e. (b) runs LDMh1a to LDMh1g which are
discussed in section 3.2.

model can be forced into different dynamical regimes or even fixed points as demonstrated
by Aubry et al [35] for wall-bounded shear flows or by Crommelin and Majda [36] for the
Charney–De Vore atmospheric circulation model.

The dynamic evolutions of the different LDM runs result in new time averages for global
quantities which we denote by 〈E〉t and 〈NuM〉t , respectively. They will not perfectly agree with
the values which are found for the DNS, but should not deviate too much. These quantities are
also listed in table 1. In addition, it is determined how well the buoyancy is resolved. Therefore,
the measure Q1 is defined which quantifies the deviation of the buoyancy as obtained from the
set of POD modes (and as used later in the corresponding LDM) to the original DNS data. This
measure is given by

Q1 =

〈
‖BDNS

− BLDM
‖

2

‖BDNS‖2

〉
t

. (19)

All LDM and DNS runs are performed for at least 3000 freefall time units in the statistically
stationary regime of the convective turbulence. The freefall time Tf =

√
(M0 − MH )H is the

convective time unit in the present problem.
The time evolution of the total energy of the LDM runs is compared in figure 4 for the

first 300 freefall times. The runs LDMv1a to LDMv1c oscillate about nearly the same mean
values 〈E〉t which are listed in table 1. Note that run LDMv1a, which yields already a mode
reduction by a factor of 40, reproduces the energy evolution well. One can see that the deviations
of E(t) grow as the reduction is increased. In run LDMv1e the vertical mode reduction has
been advanced so far that the energy remains accumulated at the large-scale modes and cannot
be drained down to the smaller scales since vertical couplings are missing. This causes larger
fluctuations accompanied by a larger mean energy.

Figure 5 compares the height dependence of several quantities. The function 1ql>0 is an
indicator function, which is one for all points x inside the clouds, i.e. where ql > 0, and zero
otherwise. Horizontal and time averages are combined in order to obtain the graphs in this
figure. Inside the cloud the moist warm air rises up. Consequently the mean vertical velocity is
larger than zero (panel (a)). This process is accompanied with an upward flux of liquid water,
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Figure 5. Vertical profiles for mean quantities that characterize the global
buoyancy transport across the layer and the clouds which are formed. These are
from left to right: (a) vertical velocity inside the clouds, (b) vertical velocity
fluctuations across the convection layer, (c) liquid water flux outside the clouds,
and (d) convective buoyancy flux across the whole layer. Mean profiles are
obtained as combined horizontal and time averages for a time interval of 3000
freefall time units. Vertical mode reduction is applied only.

i.e. it holds mostly uz > 0 and ql > 0. In panel (c), we plot the correlations between vertical
velocity and liquid water content outside the clouds, the region of the downdrafts. Since uz < 0
and ql < 0 is obtained there, one ends again with positive amplitudes of the joint correlation
〈uzql1ql<0〉. Physically this correlation means that unsaturated air is pushed downward. Slightly
enhanced vertical velocity fluctuations are found in the upper half of the convection layer where
the clouds are preferentially formed. Furthermore, we show the vertical velocity fluctuations
across the whole layer (panel (b)) and the resulting buoyancy flux (panel (d)).

As discussed at the beginning, the moist convection layer is conditionally unstable. This
means that the air is stably stratified outside the clouds which corresponds to a dry buoyancy flux
〈uz D′

〉 < 0. Unstable stratification of the moist air inside the clouds causes a positive buoyancy
flux 〈uz M ′

〉 > 0. The resulting buoyancy flux 〈uz B〉 > 0 is shown in figure 6 for DNS3. In
panels (b) to (d) of the same figure we display horizontal cuts of the moist convection layer of
the same snapshot in order to underline this picture. Local minima of uz D′ and maxima of uz M ′

are directly correlated due to the synchronicity relation (8).
The comparison of the five LDM runs confirms the finding of figure 4. While the first three

runs LDMv1a to LDMv1c approximate the global transport reasonably well, runs LDMv1d and
LDMv1e deviate increasingly. This is also quantified by Q1 and the Nusselt number 〈NuM〉t ,
both of which are given in table 1. All mean profiles display amplitudes which are enhanced
with progressing mode reduction. This is a manifestation of an increasing number of missing
vertical couplings which are essential for the transport across the layer. Recall that the quantum
number for the vertical direction is correlated with the energy of the particular modes. Once
they are removed the cascading energy cannot be dissipated efficiently. Energy is accumulated
at the large scales.
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Figure 6. Mean vertical profiles of the dry, moist and total buoyancy fluxes in (a).
Data are for DNS3. Contourplot of a snapshot of uz D′ (b), uz B (c) and uz M ′ (d).
Data are taken at the same time at z = 1/2. The color scale is the same in all three
panels. The minimum in deep blue corresponds with −0.078 and the maximum
in yellow/green with 0.21. One can clearly see that uz D′ is negative, particularly
in the cloud aggregates, exactly where uz M ′ is maximized. This results in an
upward convective buoyancy flux in the clouds.

3.2. Reduction with respect to horizontal direction

In a next step, we leave the vertical resolution unchanged and reduce degrees of freedom with
respect to the horizontal wave numbers. This strategy is sketched in figure 3(d). The total
energy for this series of LDM runs which are denoted as LDMh1x is displayed in panel (b)
of figure 4. It can be seen that the energy in the different runs remains much closer together,
even when the number of degrees of freedom is significantly smaller compared to the series
with the vertical mode reduction. This way of reduction seems to be more robust which is also
confirmed when the vertical mean profiles of the four quantities are replotted here, similar to
those of figure 5. Well resolved vertical couplings among modes seem to be more important for
the energy transport than the horizontal mode couplings. The deviations from the original fully
resolved data which can be observed in figure 7 remain much smaller. It is, however, clear that
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Figure 7. Vertical profiles for mean quantities that characterize the global
buoyancy transport across the layer and the clouds which are formed. These are
from left to right: (a) vertical velocity inside the clouds, (b) vertical velocity
fluctuations across the convection layer, (c) liquid water flux outside the clouds
and (d) convective buoyancy flux across the whole layer. Mean profiles are
obtained as combined horizontal and time averages for a time interval of 3000
freefall time units. Horizontal mode reduction is applied only.

this way of reduction can also not be continued much further, since the horizontal patterns will
be increasingly smeared out such that at some level the volume fraction of clouds and plumes
is artificially enhanced which will alter the global transport eventually. The question which we
address therefore in the next section is if a further joint reduction of vertical and horizontal
degrees of freedom can result in a better LDM.

3.3. Joint vertical and horizontal mode reduction

We start with the same DNS data as in the last sections, but reduce vertical and horizontal
modes jointly. The total energy versus time was again compared among the different levels of
mode reduction. The findings are similar to the previous two reduction steps. The same holds
for the vertical profiles which we show again in figure 8. A further reduction to a number of
degrees of freedom below NDoF ≈ 250 causes larger deviations from the original DNS evolution
as seen in the figure for run LDM1b. The same results for the evolution of the total energy E(t)
with time. In figure 9 we compare isosurfaces of the snapshots of the cloud boundaries (which
are defined by ql = 0) and the vertical velocity component obtained in the DNS with those
obtained from the LDMs of the present series. The straightforward reduction from LDM1a
to LDM1b introduces spurious finer-scale structures that reduce the turbulent fluctuations and
cause a significant deviation of 〈E〉t . We also observe that the cloud field for LDM1b differs
significantly. This behavior is also underlined by the enhanced vertical velocity fluctuations
which we detected in figure 8. As a consequence, it is found that the cover with clouds is
enhanced as well.

Such a larger deviation can be compensated by an additional mode-dependent viscosity,
which is introduced to the LDM1c leaving all other parameters and the set of modes unchanged
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Figure 8. Vertical profiles for mean quantities that characterize the global
buoyancy transport across the layer and the clouds which are formed. These are
from left to right: (a) vertical velocity inside the clouds, (b) vertical velocity
fluctuations across the convection layer, (c) liquid water flux outside the clouds
and (d) convective buoyancy flux across the whole layer. Mean profiles are again
obtained as combined horizontal and time averages for a time interval of 3000
freefall time units. Horizontal and vertical mode reduction is applied jointly.

in comparison to model LDM1b. Therefore, the equations of motion (16) are modified to

da(k̂)

k

dt
=

∑
p = k − q
p̂ = k̂ − q̂

N (k, q, k̂, q̂)a(q̂)
q a( p̂)

p + L(k, k̂)a(k̂)

k − ν(k)k2a(k̂)

k + B(k, k̂). (20)

Additional modal viscosities have been applied successfully in classical Rayleigh–Bénard
convection [23] and in cavity flows [37]. The magnitude of the viscosity, which compensates
the missing mode couplings and the resulting missing dissipation on small-scales, is chosen
such that the LDM simulation is in a statistically stationary regime that corresponds with the
one of the original DNS in terms of the mean energy. For each POD expansion coefficient in
the LDM, the additional (modal) dissipation is quantified such that 〈∂tak,k̂ a∗

k,k̂
〉t = 0 holds again

as in the original DNS. For the moist convection system in large-aspect ratio cells it turned out
to be more advantageous to use a simpler modal viscosity that depends on the horizontal wave
numbers k only and is given by

ν(k) = 1|k|−kc>0 [|k| − kc] α, (21)

where kc is a cutoff wave number and α is a control factor. The smaller the scales the more
artificial dissipation is present. Run LDM1b was repeated with this additional energy sink
(α = 0.2 and kc = 2) as run LDM1c. The additional viscosity improves the agreement of the
resulting flow structures with those of the DNS, as shown in figure 9. A further reduction to
model LDM1d applies a further coarse graining, in particular of the lateral resolution. The
draining of the energy proceeds more efficiently since less mode couplings in the smaller set are
left unclosed. This allowed us to omit the additional viscosity again. Cloud cover and mean total
energy as well as the mean vertical flux profiles are still rather well reproduced in comparison to

New Journal of Physics 15 (2013) 125025 (http://www.njp.org/)

http://www.njp.org/


18

Figure 9. Upper row: isosurfaces of the cloud boundary (ql = 0). Lower row:
isosurfaces of the upward (red isosurface, uz = 0.05) and downward vertical
velocity component (blue isosurface, uz = −0.05). All plots display a snapshot
taken at t = 50Tf. The view is from below into the box.

the original DNS run. In figure 10, we summarize the findings up to this point and compare two
important global quantities, the mean buoyancy flux B in panel (a) and the mean cloud cover
C in panel (b) for all three series. Both quantities are defined as

B =
1

H

∫ H

0
〈uz B〉A,t dz, (22)

C =

〈
1

A

∫
A

1q l(x,y,t) dx dy

〉
t

, (23)

where 1q l(x,y,t) indicates if liquid water is present in the column at (x, y, t). The blue solid line
in both panels is the reference value from DNS1. This additional comparison underlines clearly
our obtained results. A sole successive vertical mode reduction drives the model rather soon
away from the DNS results. The horizontal reduction yields more robust regimes that remain
closer to the original evolution of the fully resolved DNS. Only a joint reduction, which is
partly extended by a modal viscosity can drive the reduction of the degrees of freedom to a
limit. The result underlines the importance and necessity of (at least) a coarse approximation of
the boundary layers close to the top and bottom. If the remaining vertical degrees of freedom
cannot approximate the boundary layer dynamics dynamically, the global transport and thus
the cloud cover will increasingly deviate. Although there is no such systematic correspondence
between wave number and sampled wavelength as in the Fourier case, a vertical reduction of
the mode set has to be advanced more cautiously. This is also caused by the dominant vertical
transport inside the clouds for the present convection regime.
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Figure 10. Mean buoyancy flux (a) and mean cloud cover (b) as a function
of the mode reduction. All three series are summarized and indicated in the
legend. The solid blue line indicates the corresponding DNS value. Recall that
LDM1a = LDMh1a = LDMv1a.

3.4. Larger aspect ratios and Rayleigh numbers

In the past sections, we discussed in detail the different strategies of mode reduction and their
impact on the global transport properties across the layer for the particular run DNS1 and the
resulting LDMs. As visible in table 1 further DNS have been conducted. First, we increased the
aspect ratio from 0 = 8 via 16 up to 32 at fixed Rayleigh number. In this way, we want to see
if the approach is capable for extended convection layers which are of interest in view to an
application for atmospheric convection. As already stated, our Rayleigh numbers remain rather
small. Thus in a second series of DNS, we increased the Rayleigh number at 0 = 16 up to an
order of magnitude. For both ways, mode reduction is done now jointly.

Figures 11(a) and (b) display the mean vertical velocity profiles and the mean convective
buoyancy flux as a function of height for DNS at the same Rayleigh number and aspect ratios 8,
16 and 32. The profiles coincide quite well which confirms that an aspect ratio of 8 is sufficiently
large to avoid the moist convection being constrained by the finite horizontal extension of
the cell. Panels (c) and (d) of the same figure display the Rayleigh number dependence of
the same quantities at an aspect ratio of 16. With increasing Rayleigh number the maximum
amplitude of both profiles decreases. The same behavior was observed in [14]. With increasing
Rayleigh number the mean upward transport inside the clouds decreases. The reason is that the
downward diffusion in the stably stratified dry air outside the clouds slows down. Recall that the
characteristic time scale, at which the downward transport of the unsaturated air parcels takes
place, grows as td = H 2/κ ≈ H 2/ν. A re-amplification of convective motion in- and outside
the clouds can be obtained by the addition of a radiative bulk cooling [34] which breaks the
synchronicity between dry and moist buoyancies and was found to destabilize the dry boundary
layer outside the cloud aggregates.

The mode reduction and LDM construction in those systems proceeds similarly to what we
have discussed in detail for DNS1. Table 1 shows that in all cases the level of mode reduction
remains the same, namely about two orders of magnitude at maximum. For some cases, we
could accelerate the computations by using a further reduced set of modes to reconstruct the
buoyancy field. These mode numbers are bracketed in the table. The trends for the cloud cover
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Figure 11. Profiles of the mean vertical velocity inside the clouds (a,c) and of
the mean buoyancy flux (b,d) for different DNS runs. The series which consists
of DNS1, DNS2 and DNS3 is at a fixed Rayleigh number RaM = 1.5 × 104 and
different aspect ratios. In the second series with DNS2, DNS4 and DNS5 the
Rayleigh number is increased at an aspect ratio 0 = 16 (see also the legend in
all panels).

with progressing mode reduction are similar to those that have been shown in figure 10. For
example, we observed a slight enhancement for the data at RaM = 6.6 × 104 and 0 = 16. While
DNS4 yields a value of 26.5%, LDM4a gives 29.7% and LDM4b 33.8% for the cloud cover.

Finally, we display the modal energy spectra of the LDM model in comparison to the fully
resolved DNS in figure 12. The spectra are given by

λ
(k̂)

k =

〈(
a(k̂)

k , a(k̂)

k

)
L2

〉
t

. (24)

The blue line marks the POD mode spectrum of the fully resolved simulation and the red dots
display the spectrum of the corresponding LDM. We show the LDMs for which the reduction
has been mostly advanced. All runs are at the same aspect ratio and for increasing Rayleigh
number. The POD modes are ordered with respect to their total energy. It can be seen that the
LDM spectra fit reasonably well to the DNS data for the first fraction of the spectrum. All LDM
spectra decrease less steep for the smaller-scale modes, a manifestation of the accumulation of
energy due to missing couplings. Note also that the DNS spectra will continue to decay beyond
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Figure 12. Comparison of the total energy spectra with respect to the POD
modes for the full DNS model and the corresponding LDM with the most
advanced mode reduction. Data sets are indicated in the legends of the panels.
(a) RaM = 1.5 × 104. (b) RaM = 6.6 × 104. (c) RaM = 1.2 × 105. In all cases
0 = 16.

the range, which is displayed in the panels. The blue lines are plotted here up to the number of
degrees of freedom of the LDM only. The three panels indicate also that the decay of the spectra
is somewhat slower for larger the Rayleigh number.

4. Summary and outlook

In the present work we studied the impact of the reduction of degrees of freedom (or modes)
on the global transport properties for a simple MRBC model in horizontally extended shallow
layers. The main ingredient of the model is a linearized thermodynamics at the phase boundary
which allows to formulate an explicit saturation condition, given by equation (1). This approach
reduces the number of system parameters significantly and defines a cloud formation model
with well controlled boundary conditions. The model turns out to be well suited for parametric
studies within direct numerical simulations. It is also a well-defined testing bed for the
evaluation of different strategies of the reduction of degrees of freedom which have been
discussed here. These reduction techniques are applied systematically in the combined wave
and quantum number space.
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We studied moist convection in the conditionally unstable regime for which the dry and
unsaturated air is stably stratified while the moist and saturated air is unstably stratified.
Turbulent convection arises when such an equilibrium state is perturbed by a finite amplitude
signal. It leads to the formation of localized aggregates of turbulent moist convection which are
surrounded by ambient regions in which the turbulence level is significantly reduced. Similar
behavior is observed when cumulus clouds are formed by moist convection.

The reduction of degrees of freedom (or of modes) is based on a POD using a sequence
of statistically independent snapshots from the original DNSs. The subsequent construction
of a LDM which describes the larger-scale dynamics in the convection layer is done by a
projection onto the most energetic POD modes and a truncation. Three different strategies of
successive truncation have been performed and compared with respect to each other. In detail
we performed a vertical mode reduction while keeping the horizontal resolution unchanged and
a horizontal mode reduction while keeping the vertical resolution unchanged. Finally, horizontal
and vertical degrees of freedom have been reduced jointly. We could show that particularly the
vertical reduction has a strong impact on the transport across the layer and the resulting cloud
cover. Although the vertical dependencies between quantum number and sampled scales are less
straightforward in comparison to the horizontal Fourier modes, POD modes at higher quantum
numbers will probe less energetic smaller-scale structures in convective turbulence. Our studies
indicate clearly that a sufficient vertical resolution by POD modes is essential. With increasing
vertical resolution vertical velocities and thus vertical transport are enhanced (see lower row
of figure 2). This agrees with sensitivity investigations in cloud resolving models [28]. The
largest possible reduction of the degrees of freedom (by about two orders of magnitude for the
parameter sets that were discussed here) is always obtained for a joint horizontal and vertical
reduction. For some cases an additional mode-dependent viscosity was applied in the LDM in
order to drain the energy which starts to accumulate at the larger scales due to missing mode
couplings to the smaller scales.

It is clear that the present geometry and boundary conditions eased the resulting POD
mode construction. In particular the translational invariance and the resulting use of Fourier
modes simplified the POD framework significantly. This separation caused effectively a
vertical POD mode determination only. More realistic simulations of shallow moist convection
with heterogenous boundary conditions at the bottom or complex in- and outflows would
require a full three-dimensional calculation of the modes and would thus be more demanding.
Nevertheless, we believe that the techniques we presented here are applicable to large-eddy
simulations since the basic set of equations is qualitatively the same for non-precipitating
convection [2].

Our findings complement approaches, such as the so-called super-parameterization in
global circulation models [38], which aimed at approximating some aspects of the vertical
transport inside a coarse grid cell. We have demonstrated that the LDMs are capable to
reproduce significant statistical properties such as the mean buoyancy flux across the layer,
the liquid water flux inside the clouds or the cloud cover. Interestingly, we could also detect
drastic changes in the cloud structure for intermediate levels of mode reduction. Next possible
steps would be to include stochastic terms which mimic truncated fluctuations in these reduced
dynamical models or to make a direct comparison with very strongly reduced stochastic
transport models [39].
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