

Modulhandbuch Bachelor

Informatik

Prüfungsordnungsversion: 2013

gültig für das Studiensemester: Sommersemester 2015

Erstellt am: Montag 04. Mai 2015

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhba-1001

- Archivversion -

Modulhandbuch

Bachelor Informatik

Prüfungsordnungsversion:2013

Erstellt am:
Montag 04 Mai 2015
aus der POS Datenbank der TU Ilmenau

Inhaltsverzeichnis

	1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.F	S	
Name des Moduls/Fachs	VSPVSPVSPVSPVSPVSPVS	P Abschluss	LP Fachnr.
Grundlagen und Diskrete Strukturen		FP	6
GL u. Diskrete Strukturen	4 2 0	PL	6 100542
Stochastik für Informatiker		FP —	5
Stochastik für Informatiker	220	PL	5 100543
Mathematik für Informatiker 1		FP	7
Mathematik für Informatiker 1	4 2 0	PL	7 100544
Mathematik für Informatiker 2		FP	8
Mathematik für Informatiker 2	4 3 0	PL	8 100545
Rechnerorganisation		FP	5
Rechnerorganisation	22001	PL 90min	5 100549
Rechnerarchitekturen für IN		FP	8
Rechnerarchitekturen 1	220	PL 90min	4 5382
Rechnerarchitekturen 2	2 1 0	PL 90min	3 5383
Praktikum Rechnerarchitekturen 1 und 2	0 0 1	SL	1 100561
Neuroinformatik und Schaltsysteme		PL	6
Neuroinformatik	2 1 0	VL	3 1389
Schaltsysteme	2 1 0	VL	3 100457
Praktikum Neuroinformatik und Schaltsysteme	0 0 2	SL	2 100536
Algorithmen und Programmierung für IN und II		FP	6
Algorithmen und Programmierung für IN und II	3 2 0	PL	6 100531
Programmierparadigmen und Kommunikationsmodelle		PL 120min	7
Kommunikationsmodelle	2 1 0	VL	3 255
Programmierparadigmen	220	VL	4 5378
Softwaretechnik		FP	6
Softwaretechnik 1	2 1 0	PL 90min	3 100533
Softwaretechnik 2	210	PL 90min	3 100564
Datenbank- und Betriebssysteme		PL 120min	8
Betriebssysteme	2 1 0	VL	4 252
Datenbanksysteme	2 1 0	VL	4 244
Telematik 1		МО	5
Telematik 1	3 1 0	PL 90min	5 100575

Computergrafik			FP	5	
Computergrafik	3 1 0		PL 60min	5	5367
Softwareprojekt			FP	8	
Softwareprojekt	0 3	0	PL	8	5381
Algorithmen und Datenstrukturen			FP	8	
Algorithmen und Datenstrukturen	4 2 1		PL 150min	8	100576
Automaten, Sprachen und Komplexität			FP	8	
Automaten, Sprachen und Komplexität	4 2 0		PL 150min	8	100437
Logik und Logikprogrammierung			FP	5	
Logik und Logikprogrammierung	3 2	0	PL 150min	5	100574
Nichttechnische Fächer für IN Bsc			МО	5	
Soft Skills	200		SL	1	5363
Wahlpflichtbereich für IN Bsc			FP	25	
Kryptographie			FP	5	101305
Kryptographie		3 1 0	PL	5	101138
Randomisierte Algorithmen			FP	5	101288
Randomisierte Algorithmen		3 1 0	PL 30min	5	229
Automatentheorie			FP	5	101289
Automatentheorie	3 1	0	PL 20min	5	9175
Computational Intelligence			FP —	8	101290
Computational Intelligence			PL 120min	8	8351
Angewandte Neuroinformatik		210	VL	0	1718
Softcomputing / FuzzyLogik		210	VL	0	101132
Datenbank-Implementierungstechniken			FP	5	101291
Datenbank-Implementierungstechniken	22	0	PL	5	248
Datenbanksysteme 2			FP —	7	101292
Datenbanksysteme 2			PL	7	101141
Anwendungsentwicklung mit DBMS			VL	0	251
Erweiterte Datenbankmodelle und -systeme		210	VL	0	249
Computervision			FP	8	101293
Computervision			PL 120min	8	101129
Grundlagen der Bildverarbeitung und Mustererkennung			VL	0	5446
Grundlagen der Farbbildverarbeitung		210	VL	0	237
Systemsicherheit			FP	5	101294

Systemsicherheit		3 1 0			PL 20min	5	257
Network Security					FP	5	101295
Network Security			300		PL 20min	5	5645
Linux und SELinux - Konzepte, Architektur, Algorithmen					FP	5	101296
Linux und SELinux - Konzepte, Architektur, Algorithmen		3 1 0			PL 20min	5	8790
Advanced Operating Systems					FP	5	101297
Advanced Operating Systems			3 1 0		PL 20min	5	101142
Mobilkommunikation					FP	5	101298
Mobilkommunikationsnetze			220		PL	5	101143
Projektseminar Mobilkommunikation				004	PL	5	5742
Besonderheiten eingebetteter Systeme					FP	5	101299
Besonderheiten eingebetteter Systeme					PL	5	101144
Rechnerentwurf		110)		VL	0	169
Rechnernetze der Prozessdatenverarbeitung		110	ס		VL	0	170
Entwicklung integrierter HW/SW Systeme					FP	5	101300
Entwicklung integrierter HW/SW Systeme			220		PL	5	101127
Systementwurf					FP	5	101301
Systementwurf			211		PL 20min	5	101161
Telematik 2 / Leistungsbewertung					FP	6	101302
Telematik 2 / Leistungsbewertung			3 1 0		PL 20min	6	101145
Projektseminar Simulation von Internet- Protokollfunktionen					FP	5	101303
Projektseminar Simulation von Internet- Protokollfunktionen		040			PL	5	5648
Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen					FP	5	101304
Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen				220	PL	5	101135
Nebenfach für IN Bsc					FP	18	
Automatisierung					FP	18	
Grundlagen der Elektrotechnik	220				PL 120min	4	100255
Regelungs- und Systemtechnik 1		220			PL 120min	5	1471
Prozessanalyse 1			210		PL 45min	3	1589
Prozessmess- und Sensortechnik 1			211		PL 20min	5	1467
Regelungs- und Systemtechnik 2			210		PL 45min	3	1472
Automatisierungstechnik 1				210	PL 30min	3	1319
Labor Automatisierungstechnik und Systemtechnik				0 0 1	SL	2	6418

Prozessoptimierung 1					210	PL 30min	3	1469
Simulation	i				210	PL 30min	3	1400
Biomedizinische Technik						FP	18	
Bildgebende Systeme in der Medizin 1			200			PL 60min	3	1693
Strahlungsmesstechnik			200			PL 60min	2	1402
Technische Sicherheit und Qualitätssicherung in der Medizin			200		İ	PL 60min	2	1404
Biomedizinische Technik in der Therapie				200		SL	2	1691
Grundlagen der Biomedizinischen Technik				210		PL 90min	3	1372
Labor BMT 1				0 0 1		SL	1	8413
Anatomie und Physiologie						FP	7	101146
Einführung in die Neurowissenschaften	2	200				SL 60min	3	100522
Anatomie und Physiologie						PL 120min	4	100527
Elektrotechnik						FP	18	
Einführung in die Elektronik	2	210				PL 90min	3	100274
Praktikum Elektrotechnik und Elektronik	(0 0 1				SL	1	100275
Elektrische Energietechnik			211			PL	5	733
Grundlagen der Elektrotechnik	220					PL 120min	4	100255
Leistungselektronik 1 - Grundlagen				220		PL 30min	5	100264
Leistungselektronik und Steuerungen				210		PL 30min	3	997
Fahrzeugtechnik						FP	18	
Fahrdynamik 1				210		PL 90min	3	1621
Fahrzeugantriebe 1				200		PL 90min	3	7616
Praktikum Fahrzeugtechnik				0 0 1		SL	1	100202
Fahrdynamik 2					200	PL 90min	2	7613
Fahrzeugantriebe 2					200	PL 90min	3	7617
Grundlagen Hydraulik/Pneumatik					200	PL 90min	1	867
Praktikum Fahrzeugantriebe					001	SL	1	100203
Informations- und Kommunikationstechnik						FP	18	
Signale und Systeme 1	2	230				PL 120min	5	1398
Elektrotechnik 1	2	220	220			PL	8	100205
Hochfrequenztechnik 2: Subsysteme	i		210			PL 30min	4	1336
Digitale Signalverarbeitung	i			210	i	PL 90min	3	1356
Kommunikationsnetze	i			210		PL 30min	3	614

Elektronische Messtechnik	220	PL 30min	4 559
Grundlagen der Signalerkennung	210	PL 30min	3 1375
Nichtlineare Elektrotechnik	220	PL 90min	5 1342
Maschinenbau		FP	18
Darstellungslehre und Maschinenelemente 1	110110	PL	4 100198
Technische Mechanik 1.1	220	PL 120min	5 1480
Grundlagen der Fertigungstechnik	2 1 0	PL 90min	3 1376
Mechanismentechnik	220	PL 150min	5 100967
Grundlagen der Kunststoffverarbeitung	200	PL 90min	4 6537
Mathematik		FP	18
Optimierung	220	PL 30min	5 8077
Numerik	220	PL 30min	5 7158
Informations- und Kodierungstheorie	220	PL 30min	5 5776
Diskrete Mathematik	220	PL 30min	5 7159
Medientechnologie		FP	18
Grundlagen der Elektrotechnik	220	PL 120min	4 100255
Grundlagen der Medientechnik - Klausur	2 1 0	PL 120min	3 5443
Grundlagen der Videotechnik	2 1 0	SL 120min	3 5441
Grundlagen der Elektroakustik	2 1 0	PL 120min	3 5440
Media Systems Engineering	210	PL 90min	4 8259
Videotechnik 1	221	PL 120min	5 5392
Audio- und Tonstudiotechnik	202	SL 120min	5 157
Usability Engineering 1	2 1 0	SL 90min	4 100537
Medizinische Informatik		FP	18
Informationsverarbeitung in der Medizin	2 1 0	PL 60min	3 1379
Einführung in die medizinische Informatik	200	PL 60min	2 622
Grundlagen der Biosignalverarbeitung	2 1 0	PL 120min	4 1707
Labor BMT 1	0 0 1	SL	1 8413
Bildverarbeitung in der Medizin 1	2 1 0	PL 90min	4 5592
Anatomie und Physiologie		FP	7 100303
Anatomie und Physiologie 1	200	VL	0 618
Einführung in die Neurowissenschaften	200	SL 60min	3 100522
Anatomie und Physiologie	200200	PL 120min	4 100527

Anatomie und Physiologie 2	2	200	VL	0	1713
Wirtschaftswissenschaften			FP	18	
Einführung in die Wirtschaftsinformatik	200		PL 60min	4	5278
Grundlagen der BWL 1	200		PL 60min	2	488
Marketing 1	210		PL 60min	4	727
Mikroökonomie	3 1 0		PL 90min	5	5342
Einführung in das Recht	2	10	PL 90min	4	551
Einführung in ERP-Systeme	2	10	PL 60min	4	5279
Steuerlehre 1	2	10	PL 60min	4	5301
Überbetriebliche Geschäftsprozesse und IT-Integration	2	10	PL 60min	4	5287
Grundlagen des Informationsmanagements		210	PL 60min	5	5284
Methoden und Werkzeuge der digitalen Fabrik		2 1 0	PL 60min	5	6301
Modellierung betrieblicher AWS & Geschäftsprozessmanagement	2	10210	PL 90min	6	5286
Produktionswirtschaft 1		200	PL 60min	4	5296
Zivilrecht		2 1 0	PL 90min	4	1512
Systementwicklung & IT-Projektmanagement		210210	PL 90min	6	5277
Proseminar für IN Bsc			MO	2	
Proseminar für IN Bsc		020	SL	2	100956
Bachelorarbeit mit Kolloquium für IN Bsc			FP	15	
Abschlusskolloquium			PL 30min	3	6067
Bachelorarbeit			BA 6	12	6074

Modul: Grundlagen und Diskrete Strukturen

Modulnummer:100541

Modulverantwortlich: Prof. Dr. Matthias Kriesell

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Siehe Fächer

Vorraussetzungen für die Teilnahme

Siehe Fächer

Modul: Grundlagen und Diskrete Strukturen

GL u. Diskrete Strukturen

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch/Englisch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100542 Prüfungsnummer:240251

Fachverantwortlich: Prof. Dr. Matthias Kriesell

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	112	SWS:	6.0	
Fakultät für Mathem	natik	und Naturwissenschaften				Fachgebiet:	2411

	1	I.FS	<u>; </u>		2.FS	3		3.FS	3		1.FS	3		5.FS	3	6.FS			7.FS		
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester	4	2	0																		

Lernergebnisse / Kompetenzen

Kenntnisse in Grundlagen der Mathematik, grundlegende mathematische Arbeitsweisen (Beweise)

Vorkenntnisse

Abiturwissen Mathematik

Inhalt

Logik und Mengenlehre; Funktionen und Relationen; Gruppen, Ringe, Körper; Boolesche Algebren; diskrete Wahrscheinlichkeitsräume; elementare Graphentheorie

Medienformen

Tafel

Literatur

Wird in der Vorlesung bekanntgegeben

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MA Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MA Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Stochastik für Informatiker

Modulnummer:100330

Modulverantwortlich: Prof. Dr. Silvia Vogel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Stochastik für Informatiker

Stochastik für Informatiker

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100543 Prüfungsnummer:240252

Fachverantwortlich:Prof. Dr. Silvia Vogel

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2412

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P S P S P S P S P S P S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Mathematik für Informatiker 1

Modulnummer:100546

Modulverantwortlich: Prof. Dr. Michael Stiebitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Mathematik für Informatiker 1

Vorraussetzungen für die Teilnahme

Abitur

Detailangaben zum Abschluss

werden bei Bedarf festgelet

Modul: Mathematik für Informatiker 1

Mathematik für Informatiker 1

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100544 Prüfungsnummer:240253

Fachverantwortlich: Prof. Dr. Michael Stiebitz

Leistungspunkte:	7	Workload (h): 210	Anteil Selbststudium (h):	142	SWS:	6.0	
Fakultät für Mathen	natik ı	und Naturwissenschaften				Fachgebiet:	241

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	4	2	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden kennen die grundlegenden Begriffe und Sachverhalte aus der Differential - und Integralrechnung für Funktionen einer reellen Veränderlichen sowie aus der Linearen Algebra.

Methodenkompetenz: Die Studierenden können mit Hilfe der Differential- und Integralrechnung das Wachstum von Funktionen, Folgen und Reihen qualitativ klassifizieren. Die Studierenden können Lineare Gleichungssysteme lösen und qualitativ untersuchen.

Vorkenntnisse

Arbitur

Inhalt

I Differentialrechnung für Funktionen einer reelen veränderlichen II Integralrechnung für Funktionen einer reelen Veränderlichen III Lineare Algebra (Teil I: Matrizenrechnung, Lineare Matrizengleichungen, Inverse Matrix, Determinanten)

Medienformen

Vorlesung: Tafelvorlesung, Folien, Maple-vorführungen mit Laptop Übung: Übungsblätter (Online) Allgemein: Webseite

Literatur

Primär: Eigenes Materiel Sekundär - Stry, Schwenkert: Mathematik kompakt - Hachenberger: Mathematik für Informatiker

Detailangaben zum Abschluss

werden zu Beginn der Vorlesung festgelegt (Hausaufgaben, Klausuren, Konsultationen)

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Mathematik für Informatiker 2

Modulnummer:100547

Modulverantwortlich: Prof. Dr. Michael Stiebitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Mathematik für Informatiker 2

Vorraussetzungen für die Teilnahme

siehe Modultafeln und Prüfungsordnung

Detailangaben zum Abschluss

werden bei Bedarf festgelet

Modul: Mathematik für Informatiker 2

Mathematik für Informatiker 2

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100545 Prüfungsnummer:240254

Fachverantwortlich: Prof. Dr. Michael Stiebitz

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	161	SWS:	7.0	
Fakultät für Mathem	natik	und Naturwissenschaften				Fachgebiet:	241

	1	I.FS	;		2.FS	<u>} </u>		3.FS	3		1.FS)	·	5.FS	<u>} </u>	6	3.FS	<u>} </u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester				4	3	0															

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden kennen die grundlegenden Begriffe und Sachverhalte der Linearen Algebra, der Differentialrechnung für Funktionen mehrerer reeller Veränderlichen sowie elementare Sachverhalte über Differentialgleichungen.

Methodenkompetenz: Die Studierenden können mit Hilfe der Vektorraumtheorie linere Gleichungen anylysieren und lösen sowie auf geometrische Fragestellungen anwenden. Die Studierenden können mit Hilfe der Differentialrechnung Funktionen mit mehreren reeller Veränderlichen gualitativ untersuchen. Die Studierenden können einfache Differentialgleichungen lösen.

Vorkenntnisse

Mathematik f. Inf. 1

Inhalt

III Lineare Algebra (Teil II, Vektorräume uns analytishe Geometrie, Eigenwertgleichung) -IV Differentialrechnung für Funktionen mehrerer reeller Veränderlicher IV Lineare Differentialgleichungen

Medienformen

Vorlesung: Tafelvorlesung, Folien, Maple-vorführungen mit Laptop Übung: Übungsblätter (Online) Allgemein: Webseite

Literatur

Primär: Eigenes Materiel Sekundär - Stry, Schwenkert: Mathematik kompakt - Hachenberger: Mathematik für Informatiker

Detailangaben zum Abschluss

werden zu Beginn der Vorlesung festgelegt (Hausaufgaben, Klausuren, Konsultationen)

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Rechnerorganisation

Modulnummer:100548

Modulverantwortlich: Dr. Heinz-Dietrich Wuttke

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz:

Die Studierenden verstehen detailliert Aufbau und Funktionsweise von digitalen Schaltungen, Prozessoren und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der Rechnerarchitektur. Die Studierenden sind mit algorithmischen Modellen, Basisalgorithmen und grundlegenden Datenstrukturen der Informatik vertraut.

Methodenkompetenz:

Die Studierenden sind in der Lage, adäquate Beschreibungsmittel für die Modellierung von Strukturen und Abläufen mit formalen Mitteln anzuwenden.

Die Studierenden entwerfen und analysieren einfache digitale Schaltungen und maschinennahe Programme. Sie sind in der Lage, Basisalgorithmen und grundlegenden Datenstrukturen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu bewerten und in eigenen kleineren Programmierprojekten in der Programmiersprache Java anzuwenden.

Sozialkompetenz:

Die Studierenden sind in der Lage, praktische Problemstellungen der Informatik in der Gruppe zu lösen.

Vorraussetzungen für die Teilnahme

keine

Rechnerorganisation

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100549 Prüfungsnummer:220366

Fachverantwortlich: Dr. Heinz-Dietrich Wuttke

Leistungspunkte:	5	Workload (h): 150)	Anteil Selbststudium (h):	128	SWS:	5.0	
Fakultät für Informa	ıtik ur	nd Automatisierung					Fachgebiet:	2235

	1	I.FS	3		2.FS	3		3.FS	3		1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	2	0	0	0	1															

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verfügen über Kenntnisse und Überblickwissen zu den wesentlichen Strukturen und Funktionen von digitaler Hardware sowie Möglichkeiten zu deren formaler Beschreibung und Verifikation und haben ein Grundverständnis für den Aufbau und die Wirkungsweise von Digitalrechnern.

Methodenkompetenz:

Die Studierenden sind in der Lage, einfache digitale Schaltungen zu analysieren, zu optimieren und zu synthetisieren. Sie können einfache Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie kennen die Grundbefehle von Digitalrechnern und können die zur rechnerinternen Informationsverarbeitung gehörigen mathematischen Operationen ausführen.

Systemkompetenz:

Die Studierenden verstehen das grundsätzliche Zusammenspiel der Baugruppen eines Digitalrechners als System. Mit Hilfe formaler Methoden können sie einfache digitale Systeme analysieren. Sie erkennen den Zusammenhang zwischen Maschinen- und Hochsprachprogrammierung anhand praktischer Übungen.

Sozialkompetenz:

Die Studierenden erarbeiten Problemlösungen einfacher digitaler Schaltungen in der Gruppe. Sie können die von ihnen synthetisierten Schaltungen gemeinsam in einem Praktikum auf Fehler analysieren und korrigieren.

Vorkenntnisse

Abitur

Inhalt

1. Mathematische Grundlagen

Aussagen und Prädikate, Abbildungen, Mengen, Relationen, Anwendung der BOOLEschen Algebra und der Automatentheorie auf digitale Schaltungen

2. Struktur und Funktion digitaler Schaltungen

BOOLEsche Ausdrucksalgebra, Schaltalgebraische Ausdrücke, Normalformen, Minimierung, Funktions- und Strukturbeschreibung kombinatorischer und sequenzieller Schaltungen, programmierbare Strukturen, Mikroprogrammsteuerung, Analyse und Synthese einfacher digitaler Schaltungen, Formale Verifikation

3. Informationskodierung / ausführbare Operationen

Zahlensysteme (dual, hexadezimal), Alphanumerische Kodierung (ASCII), Zahlenkodierung (Varianten der BCD-Kodierung, Zweier-Komplement-Zahlen, Vorzeichen-Betragszahlen, Gleitkomma-Zahlen)

4. Rechneraufbau und Funktion

Architekturkonzepte, Befehlssatz und Befehlsabarbeitung, Assemblerprogrammierung Abstraktionsebenen von Hardware-/Software-Systemen

Praktikumsversuche finden innerhalb des Moduls Praktikum Technische Informatik statt.

Medienformen

Vorlesung mit Tafel und PowerPoint, Video zur Vorlesung, Applets und PowerPoint-Präsentationen im Internet, Arbeitsblätter, Lehrbuch

Literatur

- Wuttke, Henke: Schaltsysteme, Pearson-Verlag, München 2003
- Flick, T.; Liebig, H.: Mikroprozessortechnik Springer-Verlag, Berlin 1990
- Schiffmann, W.; Schmitz, R.: Technische Informatik Band I und II, Springer-Verlag, Berlin 1992
- Literaturempfehlungen zu den Vorlesungen

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Rechnerarchitekturen für IN

Modulnummer 100331

Modulverantwortlich: Prof. Dr. Wolfgang Fengler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden verstehen detailliert Aufbau und Funktionsweise von Prozessoren, typischen Rechnerbaugruppen und deren Zusammenwirken. Sie verstehen detailliert Aufbau und Funktionsweise von fortgeschrittenen Prozessoren und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der modernen Rechner- und Systemarchitektur.

Methodenkompetenz: Die Studierenden sind in der Lage, ein Beschreibungsmittel für die Modellierung von Strukturen und Abläufen mit formalen Mitteln anzuwenden. Die Studierenden entwerfen und analysieren einfache maschinennahe Programme. Die Studierenden konzipieren und entwerfen einfache Speicher- und E/A-Baugruppen. Die Studierenden sind in der Lage, Anwendungsbeispiele und Architekturvarianten zu entwickeln. Die Studierenden analysieren Leistungskennwerte von Rechnern und Rechnersystemen.

Systemkompetenz: Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von Rechnern als System und in Rechnersystemen. Sie erkennen den Zusammenhang zwischen Architektur und Anwendung auf dem Maschinenniveau anhand praktischer Übungen. Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von fortgeschrittenen Rechnern als System und in Rechnersystemen.

Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Rechnerarchitektur in der Gruppe zu lösen.

Vorraussetzungen für die Teilnahme

Rechnerorganisation oder vergleichbare Veranstaltung.

Modul: Rechnerarchitekturen für IN

Rechnerarchitekturen 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5382 Prüfungsnummer:2200265

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	4	Workload (h): 1	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2231

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen detailliert Aufbau und Funktionsweise von Prozessoren, typischen Rechnerbaugruppen und deren Zusammenwirken. Methodenkompetenz: Die Studierenden sind in der Lage, ein Beschreibungsmittel für die Modellierung von Strukturen und Abläufen mit formalen Mitteln anzuwenden. Die Studierenden entwerfen und analysieren einfache maschinennahe Programme. Die Studierenden konzipieren und entwerfen einfache Speicher- und E/A-Baugruppen. Systemkompetenz: Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von Rechnern als System und in Rechnersystemen. Sie erkennen den Zusammenhang zwischen Architektur und Anwendung auf dem Maschinenniveau anhand praktischer Übungen. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Rechnerarchitektur in der Gruppe zu lösen.

Vorkenntnisse

Vorlesung und Übung "Rechnerorganisation"

Inhalt

Begriff der Rechnerarchitektur, Architekturmodellierung mit Petrinetzen, Innenarchitektur von Prozessoren, Befehlssatzarchitektur und Assemblerprogramme, Außenarchitektur von Prozessoren, Aufbau und Funktion von Speicherbaugruppen Aufbau und Funktion von Ein- und Ausgabebaugruppen, Zusammenwirken von Rechnerbaugruppen im Gesamtsystem

Medienformen

Vorlesung: Folien (Beamer erforderlich), Arbeitsblätter (Online und Copyshop) Übung: Arbeitsblätter und Aufgabensammlung (Online und Copyshop) Selbststudium: Teleteaching-Kurs Allgemein: Webauftritt (Materialsammlung, Teleteaching-Kurs, Literaturhinweise, Links und weiterführende Infos) http://tu-ilmenau.de/ra

Literatur

Primär: Eigenes Material - Materialsammlung zum Download - Materialsammlung im Copyshop - Teleteaching-Kurs Sekundär: - W. Fengler, I. Philippow: Entwurf Industrieller Mikrocomputer-Systeme. ISBN 3-446-16150-3, Hanser 1991 (nur Kapitel 2). - C. Märtin: Einführung in die Rechnerarchitektur - Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003. - T. Flik: Mikroprozessortechnik und Rechnerstrukturen. ISBN 3-540-22270-7, Springer 2005. Allgemein: Der primäre Anlaufpunkt ist der Webauftritt! http://tu-ilmenau.de/ra Dort gibt es die aktuellen Fassungen des Lehrmaterials sowie gelegentlich aktualisierte Literaturhinweise und Zusatzinfos.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Mathematik 2009

Bachelor Informatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Bachelor Informatik 2013

Bachelor Mathematik 2013

Modul: Rechnerarchitekturen für IN

Rechnerarchitekturen 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Fachnummer: 5383 Prüfungsnummer:2200055

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2231

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen detailliert Aufbau und Funktionsweise von fortgeschrittenen Prozessoren und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der modernen Rechner- und Systemarchitektur.

Methodenkompetenz: Die Studierenden sind in der Lage, Anwendungsbeispiele und Architekturvarianten zu entwickeln. Die Studierenden analysieren Leistungskennwerte von Rechnern und Rechnersystemen.

Systemkompetenz: Die Studierenden verstehen das Zusammenwirken der Funktionsgruppen von fortgeschrittenen Rechnern als System und in Rechnersystemen. Sie erkennen den Zusammenhang zwischen Architektur, Leistung und Anwendung anhand praktischer Übungen.

Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Rechnerarchitektur in der Gruppe zu lösen.

Vorkenntnisse

Vorlesung und Übung "Rechnerarchitekturen 1" oder vergleichbare Veranstaltung

Inhalt

Entwicklung der Prozessorarchitektur: Complex-Instruction-Set-Computing (CISC), Reduced-Instruction-Set-Computing (RISC); Befehls-Pipelining; Skalare Prozessorarchitektur, Very-Long-Instruction-Word-Architektur, Out of Order-Execution; Simultaneous Multithreading. Entwicklung der Speicherarchitektur: Adresspipelining, Burst Mode und Speicher-Banking; Speicherhierarchie, Cache-Prinzip, Cache-Varianten; Beispielarchitekturen; Spezialrechner: Aufbau eines Einchip-Controllers; Einchipmikrorechner des mittleren Leistungssegments, Erweiterungen im E/A-Bereich; Prinzip der digitalen Signalverarbeitung, Digitale Signalprozessoren (DSP), Spezielles Programmiermodell; Leistungsbewertung: MIPS, MFLOPS; Speicherbandbreite; Programmabhängiges Leistungsmodell (Benchmarkprogramme); Parallele Rechnerarchitekturen: Single Instruction Multiple Data, Multiple Instruction Single Data, Multiple Instruction Multiple Data; Enge und Lose Kopplung, Verbindungstopologien Entwicklung von Anwendungsbeispielen, Architekturvarianten und Berechnung von Leistungskennwerten

Medienformen

Vorlesung: Folien (Beamer erforderlich), Arbeitsblätter (Online und Copyshop) Übung: Übungsmaterial (Online und Copyshop) Allgemein: Webseite (Materialsammlung und weiterführende Infos) http://tu-ilmenau.de/ra

Literatur

Primär: Eigenes Material (Online und Copyshop) Sekundär: C. Märtin: Einführung in die Rechnerarchitektur - Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003. J. L. Hennessy, D. A. Patterson: Rechnerorganisation und -entwurf. ISBN 3-8274-1595-0, Elsevier 2005. W. Stallings: Computer Organization & Architecture. ISBN 0-13-035119-9, Prentice Hall 2003.

A. S. Tanenbaum, J. Goodman: Computerarchitektur. ISBN 3-8273-7016-7, Pearson Studium 2003. Allgemein: Der primäre Anlaufpunkt ist der Webauftritt! http://tu-ilmenau.de/ra Dort gibt es die aktuellen Fassungen des Lehrmaterials sowie gelegentlich aktualisierte Literaturhinweise, Online-Quellen und Zusatzinfos.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Bachelor Mathematik 2009

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013

Bachelor Mathematik 2013

Bachelor Informatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Rechnerarchitekturen für IN

Praktikum Rechnerarchitekturen 1 und 2

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100561 Prüfungsnummer:2200374

Fachverantwortlich: Dr. Bernd Däne

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2231

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	>	S	Р
Fachsemester										0	0	1									

Lernergebnisse / Kompetenzen

Fachkompetenz:

Die Studierenden verfügen über Kenntnisse und Überblickswissen zur Funktionsweise von Prozessoren und Rechnerstrukturen. Sie beherrschen den Umgang mit Beschreibungsmitteln und Modellen und erkennen das Zusammenwirken von Hardware und Software auf hardwarenahen Architekturebenen.

Methodenkompetenz:

Die Studierenden sind in der Lage, maschinennahe Programme zu verstehen, zu erstellen und in Betrieb zu nehmen. Sie sind in der Lage zur werkzeuggestützten Modellierung und zur Simulation und Analyse von Modellen.

Systemkompetenz:

Sie beherrschen den Umgang mit Werkzeugen zu Programmerstellung, Programmtest, Modellerstellung und Modellanalyse.

Sozialkompetenz:

Die Studierenden erarbeiten Problemlösungen gemeinsam in kleinen Gruppen.

Vorkenntnisse

notwendig: Vorlesung und Übung Rechnerarchitekturen 1 (oder vergleichbare Veranstaltung) empfohlen: Vorlesung und Übung Rechnerarchitekturen 2 (oder vergleichbare Veranstaltung)

Inhalt

Einfache Assemblerprogramme

Ein- und Ausgabebaugruppen

Petri-Netze

Microcontroller

Fortgeschrittene Pipeline-Architekturen

Medienformen

Laborpraktikum. Gedruckte Anleitungen, Hilfefunktionen der benutzten Software.

Literatur

Aktuelle Literaturhinweise und weitere Quellen befinden sich stets auf den Internetseiten zur Lehrveranstaltung:

http://tu-ilmenau.de/?r-p-ra1

http://tu-ilmenau.de/?r-p-ra2

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Neuroinformatik und Schaltsysteme

Modulnummer:100332

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

<u>Fachkompetenz</u>: Die Studierenden lernen in diesem Modul die wesentlichen Grundlagen der sequentiellen und der parallelen (konnektionistischen) Informationsverarbeitung als die zwei wesentlichen Paradigmen der Informatik kennen.

Im Teil Neuroinformatik werden die Grundlagen der parallelen neurobiologischen Informationsverarbeitung und der darauf aufbauenden Neuroinformatik als wesentliche Säule der "Computational Intelligence" vermittelt. Die Studierenden verstehen die grundsätzliche Herangehensweise des konnektionistischen Ansatzes und kennen die wesentlichen biologischen Grundlagen, mathematischen Modellierungs- und algorithmischen Implementierungstechniken beim Einsatz von neuronalen und probabilistischen Methoden im Unterschied zu klassischen Methoden der Informations- und Wissensverarbeitung. Im Teil Schaltsysteme verfügen die Studierenden über Kenntnisse und vertieftes Wissen zu speziellen Strukturen und Funktionen von digitaler und programmierbarer Hardware und haben ein vertieftes Verständnis für die praktisch relevanten Problemstellungen und deren Komplexität.

<u>Methodenkompetenz</u>: Die Studierenden sind in der Lage, Fragestellungen aus den o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums neue Lösungskonzepte zu entwerfen und umzusetzen, sowie bestehende Lösungen zu bewerten. Die Studierenden können ausgehend von einer Problemanalyse eigene Lösungen mit neuronalen Techniken erstellen. Sie sind in der Lage, komplexe digitale Schaltungen zu analysieren und zu synthetisieren und können auch umfangreichere Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie können beim Entwurf systematisch vorgehen und ihre Entwürfe verifizieren.

<u>Systemkompetenz</u>: Auf Basis der vermittelten Methodik sind die Studierenden in der Lage, Methoden der Computational Intelligence auf neue Probleme anzuwenden und erfolgreich einzusetzen. Sie können dabei auf ein breites Methodenwissen aus den Bereichen der Neuroinformatik zurückgreifen.

Im Teil Schaltsysteme sind die Studierenden in der Lage, Programmsysteme zum Entwurf digitaler Steuerungen und Schaltungen anzuwenden.

Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen mit Methoden der parallelen und sequentiellen Informationsverarbeitung in der Gruppe zu analysieren, zu lösen und die Lösungen zu präsentieren. Sie erarbeiten Problemlösungen komplexer digitaler Schaltungen in der Gruppe, wobei einzelne Teilfunktionen von unterschiedlichen Personen entworfen werden. Sie können die von ihnen synthetisierten Schaltungen und Modellsteuerungen gemeinsam in einem Praktikum erproben, auf Fehler analysieren und korrigieren

Vorraussetzungen für die Teilnahme

keine

Modul: Neuroinformatik und Schaltsysteme

Neuroinformatik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1389 Prüfungsnummer:2200343

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2233

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	<u>} </u>	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

In der Vorlesung "Neuroinformatik" lernen die Studierenden die Grundlagen der Neuroinformatik und der Künstlichen Neuronalen Netze als wesentliche Säule der "Computational Intelligence" kennen. Sie verstehen die grundsätzliche Herangehensweise dieser Form der konnektionistischen Informations- und Wissensverarbeitung und kennen die wesentlichen Lösungsansätze, Modellierungs- und Implementierungstechniken beim Einsatz von neuronalen und probabilistischen Methoden im Unterschied zu klassischen Methoden der Informations- und Wissensverarbeitung. Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums auf Fragestellungen aus den behandelten Bereichen (Mustererkennung, Signal- und Bildverarbeitung, Optimierung für Robotik, Control und Biomedizin) neue Lösungskonzepte zu entwerfen und umzusetzen sowie bestehende Lösungen zu bewerten.

Vorkenntnisse

Keine

Inhalt

Die Lehrveranstaltung vermittelt das erforderliche Methodenspektrum aus theoretischen Grundkenntnissen und praktischen Fähigkeiten zum Verständnis, zur Implementierung und zur Anwendung neuronaler und probabilistischer Techniken der Informations- und Wissensverarbeitung in massiv parallelen Systemen mit den Schwerpunkten Datenanalyse, Signalverarbeitung, Mustererkennung und Optimierung für verschiedene Ingenieursdisziplinen. Sie vermittelt sowohl Faktenwissen als auch begriffliches Wissen aus folgenden Themenbereichen:

- Informationsverarbeitung und Lernen in biologischen neuronalen Systemen
- Wichtige Neuronenmodelle (Biologisches Neuron, I&F Neuron, Formale Neuronen)
- Netzwerkmodelle grundlegende Verschaltungsprinzipien & Architekturen
- Lernen in Neuronalen Netzen: wesentliche Arten des Lernens, wesentliche Lernparadigmen (Supervised / Unsupervised / Reinforcement Learning)
- Grundprinzip des überwachten Lernens: Multi-Layer-Perzeptron & Error-Backpropagation (EBP)-Lernregel
- Grundprinzip des unüberwachten Lernens: Self-Organizing Feature Maps (SOFM), Neural Gas, Growing Neural Gas ? als adaptive Vektorguantisierer
- Weitere wichtige Entwicklungen: Erweiterungen zum EBP-Algorithmus; Netzwerke mit Radialen Basisfunktionen, Support Vector Machines (SVM), Neuro-Fuzzy-Systeme, aktuelle Entwicklungen
- Anwendungsbeispiele aus den Bereichen Mustererkennung, Signal-/Bildverarbeitung, Biomedizin, Robotik, Neuro-Control
- exemplarische Software-Implementationen neuronaler Netze für nichtlineare Klassifikationsprobleme

Die Studierenden erwerben auch verfahrensorientiertes Wissen, indem für reale Klassifikations- und

Approximationsprobleme verschiedene neuronale und probabilistische Lösungsansätze theoretisch behandelt und praktisch

umgesetzt werden. Dies ist auch Bestandteil des NI-Contests, der die softwaretechnische Implementierung eines Funktionsapproximators mittels eines überwacht trainierten Neuronalen Netzes zum Gegenstand hat. SG BA-BMT: Im Rahmen des NI-Praktikums (0.5 SWS) werden die behandelten methodischen und technischen Grundlagen der neuronalen und probabilistischen Informationsverarbeitungs- und Lernprozesse durch die Studierenden mittels interaktiver Demo-Applets vertieft und in Gesprächsgruppen aufgearbeitet.

Medienformen

Powerpoint-Folien, Demo-Applets, Videos

Literatur

Zell, A.: Simulation Neuronaler Netzwerke. Addison-Wesley 1997

Bishop, Ch.: Neural Networks for Pattern Recognition. Oxford Press, 1996

Ritter, Martinetz, Schulten: Neuronale Netze. Addison-Wesley, Oldenbourg, 1994

Görz, G., Rollinger, C.R., Schneeberger, J.: Handbuch der Künstlichen Intelligenz, Oldenbourg Verlag 2003

Lämmel, Cleve: Künstliche Intelligenz – Lehr- und Übungsbuch. Fachbuchverlag, Leipzig, 2004

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Master Wirtschaftsinformatik 2014

Bachelor Biomedizinische Technik 2008

Bachelor Informatik 2013

Bachelor Mathematik 2013

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Bachelor Mathematik 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2013

Modul: Neuroinformatik und Schaltsysteme

Schaltsysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100457 Prüfungsnummer:2200344

Fachverantwortlich: Dr. Heinz-Dietrich Wuttke

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2235

	1	I.FS	6	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Lernziele:

- vertiefende Vermittlung von fundierten Kenntnissen und Fertigkeiten zum Entwurf digitaler Systeme,
- Einbeziehung verallgemeinerter Wertverlaufsgleichheiten,
- Herausbildung von Fähigkeiten zur kritischen Beurteilung von entworfenen Schalsystemen bzgl. Aufwand und Korrektheit sowie zur praktischen Fehlersuche in Hard- und Softwarerealisierungen

Fachkompetenz:

Die Studierenden verfügen über Kenntnisse und vertieftes Wissen zu speziellen Strukturen und Funktionen von digitaler und programmierbarer Hardware und haben ein vertieftes Verständnis für die praktisch relevanten Problemstellungen und deren Komplexität.

Methodenkompetenz:

Die Studierenden sind in der Lage, komplexe digitale Schaltungen zu analysieren und zu synthetisieren. Sie können auch umfangreichere Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie können beim Entwurf systematisch vorgehen und ihre Entwürfe verifizieren.

Systemkompetenz:

Die Studierenden sind in der Lage, Programmsysteme zum Entwurf digitaler Steuerungen und Schaltungen anzuwenden.

Sozialkompetenz:

Die Studierenden erarbeiten Problemlösungen komplexer digitaler Schaltungen in der Gruppe, wobei einzelne Teilfunktionen von unterschiedlichen Personen entworfen werden. Sie können die von ihnen synthetisierten Schaltungen und Modellsteuerungen gemeinsam in einem Praktikum erproben, auf Fehler analysieren und korrigieren

Vorkenntnisse

- erfolgreicher Abschluß des Fachs "Rechnerorganisation"
- · Grundkenntnisse im Entwurf kombinatorischer und sequentieller Schaltungen

Inhalt

Einführung

Entwurf kombinatorischer Schaltungen

- · Verallgemeinerte Wertverlaufsgleichheit
- · Implizite Gleichungssysteme
- · Struktursynthese, Minimierung
- · Dynamische Probleme

Entwurf sequentieller Automaten

- · Partielle. nichtdeterminierte Automaten
- Struktursynthese mit unterschiedlichen Flip-Flop-Typen
- · Operations- und Steuerwerke

Entwurf paralleler Automaten

- · Komposition/ Dekomposition
- · Automatennetze

Entwurfswerkzeuge

Medienformen

Vorlesung mit Tafel und PowerPoint, Video zur Vorlesung, Applets und PowerPoint-Präsentationen im Internet, Arbeitsblätter, Lehrbuch

Literatur

- Wuttke, Henke: Schaltsysteme, Pearson-Verlag, München 2003
- · -Informatik-Duden: Duden-Verlag 1988/89Schiffmann,
- S. Hentschke: Grundzüge der Digitaltechnik, Teubner-Verlag, Stuttgart 1988
- T. Flick, H. Liebig: Mikroprozessortechnik, 4. Auflage, Springer- Verlag, Berlin 1994
- · Literaturempfehlungen zu den Vorlesungen

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Bachelor Informatik 2013

Bachelor Mathematik 2013

Modul: Neuroinformatik und Schaltsysteme

Praktikum Neuroinformatik und Schaltsysteme

Fachabschluss: Studienleistung Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 100536 Prüfungsnummer:2200372

Fachverantwortlich: Dr. Klaus Debes

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	49	SWS:	2.0	
Fakultät für Informa		Fachgebiet:	2233					

	1.FS		2.FS			3.FS				1.FS	3	5.FS			6.FS			7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													0	0	2						

Lernergebnisse / Kompetenzen

Fachkompetenz:

SS: Durch die vertiefende Vermittlung von fundierten Kenntnissen und Fertigkeiten zum Entwurf digitaler, sequentieller Steuerungssysteme sowie Möglichkeiten zu deren formaler Beschreibung und Verifikation.

NI: Durch die Vermittlung von fundierten Grundlagen zur Funktionsweise von überwachten und unüberwachten neuronalen Lernverfahren.

Methodenkompetenz:

SS: Die Studierenden sind in der Lage, digitale Steuerungen zu analysieren, zu optimieren und zu synthetisieren. Sie können digitale Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Fähigkeiten zur kritischen Beurteilung von entworfenen Schalsystemen bzgl. Aufwand und Korrektheit befähigen zur praktischen Fehlersuche in Hard- und Softwarerealisierungen.

NI: Die Studierenden sind in der Lage, die Funktionsweise neuronalen Lernverfahren zu verstehen, zu analysieren und eigenständig für unterschiedliche Problemstellungen zu entwerfen.

Systemkompetenz:

SS: Mit Hilfe formaler Methoden können sie digitale Steuerungssysteme analysieren und validieren.

NI: Erlernen formaler Methoden zur Anwendung neuronaler überwachter und unüberwachter Lernverfahren;

Sozialkompetenz:

SS: Die Studierenden erarbeiten Problemlösungen einfacher digitaler Schaltungen in der Gruppe. Sie können die von ihnen synthetisierten Schaltungen gemeinsam in einem Praktikum auf Fehler analysieren und korrigieren.

NI: Die Studierenden analysieren auf der Basis vorgegebener Applets in kleinen Gruppen und stellen ihre Ergebnisse vor.

Vorkenntnisse

Vorlesung Neuroinformatik, Vorlesung Schaltsysteme

Inhalt

NI: Die behandelten methodischen und technischen Grundlagen der neuronalen und probabilistischen Informationsverarbeitungs- und Lernprozesse werden mittels interaktiver Demo-Applets vertieft und in Gesprächsgruppen aufgearbeitet; dazu Erarbeitung eines Protokolls im Selbststudium mit Überprüfung der Ergebnisse in einer Präsenzveranstaltung (Arbeitsaufwand 15 Zeitstunden)

SS: Durchführung von zwei Versuchen

- Hardware-Realisierung sequentieller Schaltungen
- PLD-Realisierung sequentieller Schaltungen

Medienformen

Versuchsanleitungen, Internetpräsenz, Applets

Literatur

NI: Praktikumsanleitung und Vorlesungsunterlagen

SS:

- H.D. Wuttke, K. Henke: Schaltsysteme Eine Automatenorientierte Einführung Pearson Education, 2006
- H.D. Wuttke, K. Henke: Schaltsysteme, Arbeitsblätter, Übungsaufgaben, Praktikumsanleitung, TU Ilmenau, www.tu-ilmenau.de/iks
- W. Schiffmann, H. Schmitz: Technische Informatik, Band I und II, Springer-Verlag, 2004
- V. Claus, A. Schwill: Informatik-Duden, Bibliographisches Institut, 2006
- Spezielle Literatur in den Versuchsanleitungen und unter www.tu-ilmenau.de/iks

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Mathematik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Algorithmen und Programmierung für IN und II

Modulnummer:100320

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse zu algorithmischen Modellen, Basisalgorithmen und sind mit grundlegenden Datenstrukturen der Informatik vertraut. Sie können grundlegende Algorithmen nach einer Problembeschreibung systematisch durch Aufstellen eines Induktionsbeweises für die Lösbarkeit einer gegebenen Aufgabenstellung herleiten und diese durch Angabe und Abschätzen von Rekurrenzgleichungen in Ihrer Laufzeitkomplexität bewerten.
- Methodenkompetenz: Sie sind in der Lage, Algorithmen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu identifizieren und bewerten sowie in eigenen kleineren Programmierprojekten in der Programmiersprache Java umzusetzen.
- Systemkompetenz: Die Studierenden verstehen die Wirkungsweise von Standardalgorithmen und -datenstrukturen, können diese in neuen Zusammenhängen einsetzen und Algorithmen für einfache Problemstellungen selbstständig entwerfen.
- Sozialkompetenz: Die Studierenden erarbeiten Lösungen zu einfachen Programmieraufgaben und können diese in der Gruppe analysieren und bewerten.

Vorraussetzungen für die Teilnahme

Hochschulzulassung

Modul: Algorithmen und Programmierung für IN und II

Algorithmen und Programmierung für IN und II

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100531 Prüfungsnummer:220367

Fachverantwortlich: Prof. Dr. Günter Schäfer

	Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	124	SWS:	5.0	
١	Fakultät für Informat	tik ur	nd Automatisierung			Fachgebiet:	2253	

	1.FS		2.FS			3.FS				1.FS	3	5	5.FS	3	6.FS			7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester	3	2	0																		

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse zu algorithmischen Modellen, Basisalgorithmen und sind mit grundlegenden Datenstrukturen der Informatik vertraut. Sie können grundlegende Algorithmen nach einer Problembeschreibung systematisch durch Aufstellen eines Induktionsbeweises für die Lösbarkeit einer gegebenen Aufgabenstellung herleiten und diese durch Angabe und Abschätzen von Rekurrenzgleichungen in Ihrer Laufzeitkomplexität bewerten.
- Methodenkompetenz: Sie sind in der Lage, Algorithmen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu identifizieren und bewerten sowie in eigenen kleineren Programmierprojekten in der Programmiersprache Java umzusetzen.
- Systemkompetenz: Die Studierenden verstehen die Wirkungsweise von Standardalgorithmen und -datenstrukturen, können diese in neuen Zusammenhängen einsetzen und Algorithmen für einfache Problemstellungen selbstständig entwerfen.
- Sozialkompetenz: Die Studierenden erarbeiten Lösungen zu einfachen Programmieraufgaben und können diese in der Gruppe analysieren und bewerten.

Vorkenntnisse

Hochschulzulassung

Inhalt

Historie, Grundbegriffe, Grundkonzepte von Java; Algorithmische Grundkonzepte: Algorithmenbegriff, Sprachen und Grammatiken, Datentypen, Terme; Algorithmenparadigmen; Ausgewählte Algorithmen: Suchen und Sortieren; Entwurf von Algorithmen (Problemreduktion, Teile und Herrsche, Greedy-Algorithmen, Dynamische Programmierung, Algorithmenentwurf durch Führen von Induktionsbeweisen, Analyse der Laufzeitkomplexität); Abstrakte Datentypen, Objektorientierte Programmierung und Grundlegende Datenstrukturen: Listen und Bäume

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Lehrbuch

Literatur

- · G. Saake, K. Sattler: Algorithmen und Datenstrukturen, 3. Auflage, dpunkt-Verlag, 2006
- U. Manber: Introduction to Algorithms A Creative Approach. Addison Wesley, 1989

Detailangaben zum Abschluss

Zulassungsvoraussetzung für die Modulprüfung ist der Erwerb des Übungsschein. Für den Übungsschein müssen in beiden Semesterhälften jeweils 50% der möglichen Punkte erreicht werden.

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Modul: Programmierparadigmen und Kommunikationsmodelle

Modulnummer 100333

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden lernen in diesem Modul grundlegende Paradigmen und Modelle zur Programmierung von Softwaresystemen und ihrer Kommunikation kennen. Sie verstehen die methodischen Grundlagen moderner Programmiersprachen und Middleware-Plattformen und sind in der Lage, sie bezüglich ihrer Leistung in unterschiedlichen Anwendungsdomänen der Informatik zu analysieren und bewerten.

Vorraussetzungen für die Teilnahme

Siehe individuelle Fächerbeschreibungen

Detailangaben zum Abschluss

schriftliche Modulprüfung aus zwei Teilen (120 min)

Modul: Programmierparadigmen und Kommunikationsmodelle

Kommunikationsmodelle

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 255 Prüfungsnummer:2200378

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

	Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
١	Fakultät für Informa	tik un	nd Automatisierung					Fachgebiet:	2255

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3		3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Ziel des Kurses ist die Vermittlung von Wissen über die grundlegenden Aufgaben, Funktionsweisen und Eigenschaften von Kommunikationsmodellen. Die Kursteilnehmer lernen dabei verteilte Systeme als strukturierte Systeme aus Komponenten mit individuellen Aufgaben und komplexen Kommunikationsbeziehungen kennen, verstehen das Zusammenwirken dieser Komponenten und die grundsätzlichen Paradigmen, Modelle und Algorithmen, die dieses Zusammenwirken realisieren. Sie erwerben damit die Fähigkeit, problemspezifische Interaktionsmuster verteilter Systeme entwickeln und bezüglich ihrer Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren und bewerten.

Vorkenntnisse

Pflichtveranstaltung des Bachelor-Studiengangs Informatik der Semester 1-3

Inhalt

Die Fähigkeit der Kommunikation ist eine der grundlegenden Eigenschaften verteilter IT-Systeme. Dieser Kurs vermittelt Grundlagenwissen über die zum Einsatz kommenden Kommunikationsmodelle in einem breiten Spektrum an Einsatzszenarien, beginnend bei eingebetteten verteilten Systemen bis hin zu globalen Informationssystemen. Ziel ist es, Wissen über die grundlegenden Aufgaben, Funktionsweisen und Eigenschaften von Kommunikationsmodellen zu vermitteln.

Medienformen

Vorlesung mit Präsentaiton udn Tafel, über Web-Plattform, Skript/Folien-Handouts, Bücher, Fachartikel; Übungsblätter, Diskussionsblätter

Literatur

Siehe Webseiten der Veranstaltung

Detailangaben zum Abschluss

Teil der Modulprüfung (60 min)

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Programmierparadigmen und Kommunikationsmodelle

Programmierparadigmen

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5378 Prüfungsnummer:2200377

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	4	Workload (h): 1	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2256

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden erwerben Basiswissen über Programmiersprachparadigmen, einschließlich der zugrunde liegenden Denkund Verarbeitungsmodelle. Sie können Programmiersprachen und deren Konzepte nach wesentlichen Paradigmen klassifizieren (Fachkompetenz). Die Studierenden sind in der Lage, zu gegebenen Problemen geeignete Paradigmen kritisch auszuwählen. Sie können einfache Programme sowohl im funktionalen als auch im objektrorientierten Programmierstil systematisch entwerfen und implementieren (Methodenkompetenz). Die Studierenden verstehen verschiedene Programmiersprachkonzepte im Kontext einer Programmiersprache (Systemkompetenz). Die Studierenden können erarbeitete Lösungen einfacher Programmieraufgaben in der Gruppe analysieren und bewerten (Sozialkompetenz).

Vorkenntnisse

Algorithmen und Programmierung (1. Semester)

Inhalt

Übersicht über behandelte Programmierparadigmen:

- · Objektorientiertes Paradigma (Schwerpunkt)
- Funktionales Paradigma (Schwerpunkt)
- Nebenläufiges Paradigma (Schwerpunkt)
- · Paralleles Paradigma
- · Generisches Paradigma
- · Aspektorientiertes Paradigma
- · Generatives Paradigma

Demonstriert werden alle Schwerpunkt-Konzepte an der auf Java basierenden multi-paradigmatischen Sprache Scala.

Medienformen

Präsentationen. Handouts

Literatur

wird aktuell im Web veröffentlicht

Detailangaben zum Abschluss

schriftliche Prüfung (60 min)

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Informatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Informatik 2013

Modul: Softwaretechnik

Modulnummer 100334

Modulverantwortlich: Prof. Dr. Detlef Streitferdt

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden erwerben grundlegendes Wissen über Vorgehens- und Prozessmodelle der Softwareentwicklung, sowie über deren Methodik und Basiskonzepte. Sie können größere Entwicklungsaufgaben strukturieren, Lösungsmuster erkennen und anwenden, und verstehen den Entwurf von der Anforderungsermittlung bis hin zur Implementierung.

Methodenkompetenz: Den Studierenden wird Entscheidungskompetenz hinsichtlich möglicher Prinzipien, Methoden und Werkzeuge des ingenieurmäßigen Softwareentwurfs vermittelt.

Systemkompetenz: Die Studierenden verstehen das grundlegende Zusammenwirken unterschiedlicher Softwareentwicklungsphasen; anwendungsorientierte Kompetenzen bezüglich Modellierungsfähigkeit und Systemdenken werden geschult.

Sozialkompetenz: Die Studierenden verfügen über Fähigkeiten zur entwicklungsbezogenen, effektiven Teamarbeit.

Vorraussetzungen für die Teilnahme

Algorithmen und Programmierung

Bachelor Informatik 2013 Modul: Softwaretechnik

Softwaretechnik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100533 Prüfungsnummer:2200369

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	l Automatisierung					Fachgebiet:	2236

	1	I.FS)		2.FS	3	;	3.FS	3		1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden erwerben grundlegendes Wissen über Vorgehens- und Prozessmodelle der Softwareentwicklung, sowie über deren Methodik und Basiskonzepte. Sie können größere Entwicklungsaufgaben strukturieren, Lösungsmuster erkennen und anwenden, und verstehen den Entwurf von der Anforderungsermittlung bis hin zur Implementierung.

Methodenkompetenz: Den Studierenden wird Entscheidungskompetenz hinsichtlich möglicher Prinzipien, Methoden und Werkzeuge des ingenieurmäßigen Softwareentwurfs vermittelt.

Systemkompetenz: Die Studierenden verstehen das grundlegende Zusammenwirken unterschiedlicher Softwareentwicklungsphasen; anwendungsorientierte Kompetenzen bezüglich Modellierungsfähigkeit und Systemdenken werden geschult.

Sozialkompetenz: Die Studierenden verfügen über Fähigkeiten zur entwicklungsbezogenen, effektiven Teamarbeit.

Vorkenntnisse

Algorithmen und Programmierung

Inhalt

In der Lehrveranstaltung werden grundlegende Methoden, Modelle und Vorgehensweisen der Softwaretechnik bzw. des Software Engineering erlernt. Vorrangig wird die objektorientierte Sichtweise betrachtet, und in den Übungen anhand praktischer Beispiele vertieft. Für Implementierungsbeispiele wird vor allem JAVA verwendet.

- Einführung
- Modellierungskonzepte
- . Überblick Modellierung
- . klassische Konzepte (funktional, datenorientiert, algorithmisch, zustandsorientiert)
- . Grundlagen Objektorientierung
- . Unified Modeling Language (UML)
- Analyse
- . Anforderungsermittlung
- . Glossar, Geschäftsprozesse, Use Cases, Akteure
- . Objektorientierte Analyse und Systemmodellierung
- . Dokumentation von Anforderungen, Pflichtenheft
- Entwurf
- . Software-Architekturen
- . Objektorientiertes Design

- . Wiederverwendung (Design Patterns, Komponenten, Frameworks, Bibliotheken)
- Implementierung
- . Konventionen und Werkzeuge
- . Codegenerierung
- . Testen
- Vorgehensmodelle
- . Überblick, Wasserfall, Spiralmodell, V-Modell XT, RUP, XP
- Projektmanagement
- . Projektplanung
- . Projektdurchführung

Medienformen

Vorlesungsfolien, auf den Webseiten verfügbar Übungsaufgaben, auf den Webseiten verfügbar

Literatur

- Brügge, Dutoit: Objektorientierte Softwaretechnik. Pearson 2004
- Balzert: Lehrbuch der Software-Technik Basiskonzepte und Requirements Engineering.
- · sowie ergänzende Literatur, siehe Webseiten und Vorlesung

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Bachelor Informatik 2013 Modul: Softwaretechnik

Softwaretechnik 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100564 Prüfungsnummer:2200379

Fachverantwortlich: Prof. Dr. Detlef Streitferdt

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	223A

	1	l.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über anwendungsorientiertes Wissen zu Werkzeugen der

Anforderungserhebung und -modellierung, der Prozessmodellierung und - anpassung, der

Aufwandsschätzung, des Softwaretests, der Produktlinienentwicklung und der Wartung von Software.

Methodenkompetenz: Die Studierenden kennen den methodischen Hintergrund zu den vorgestellten Werkzeugen / Verfahren und sind daher in der Lage auch neue Problemstellungen zu lösen. Sie können aus den vorgestellten Methoden jeweils die passenden auswählen.

Systemkompetenz: Die Studierenden können die vorgestellten Methoden und Werkzeuge in

Projekten unterschiedlicher Domänen anwenden.

Sozialkompetenz: Die Studierenden kennen die Bedeutung und den Einfluss der erlernten

Methoden und Werkzeuge innerhalb einen Firma. Sie können daher Ihr jeweiliges Vorgehen und die

Ergebnisse auf die Erfordernisse eines Projektes in einer Organisation abstimmen.

Vorkenntnisse

Softwaretechnik 1

Inhalt

Diese Vorlesung vertieft die Inhalte der Softwaretechnik. Durch den Anwendungsbezug und die vorgestellten Entwicklungswerkzeuge werden theoretische Kenntnisse umgesetzt. Die bekannten Phasen des Softwareentwicklungszyklus werden durch Themen vertieft, deren Bedeutung im industriellen Praxiseinsatz hoch ist.

- Requirements Engineering (RE) Als eine der wichtigen Grundvoraussetzungen für hochwertige Systeme gilt die Requirements Engineering Phase. Die wichtigsten Technologien werden vorgestellt und eingesetzt.
- Elicitation, Modeling, Validation/Verification
- Goal-Oriented RE
- Traceability
- RE Tool Support
- Softwareprozessmodellierung Nutzung und Anpassung von Entwicklungsprozessen mit zugehörigen Artefakten (z. B. Checklisten, Dokumentvorlagen, Werkzeugen, Rollenkonzept, ...). Je nach Anforderung, sollen einzelne oder ganze Prozesse erzeugt und effizient eingesetzt werden, um eine Entwicklergruppe bestmöglich zu unterstützen.

- Modellierung von Softwareentwicklungsprozessen (Wiederverwendung von Methoden- / Prozessschritten)
- Tailoring von SW-Entwicklungsprozessen
- Langlebige Systeme Das Wissen um den Lebenszyklus von Softwaresystemen ist entscheidend für deren Entwicklung und zukünftigen Erfolg. Die geforderte Stabilität langlebiger Systeme (z. B. mehr als 30 Jahre) muss sich im Entwurf der Systeme wiederfinden.
- Design for Stability
- Reengineering
- Refactoring
- SW Wartung, Wartbarkeit
- Automatisiertes Testen Veränderungen in den Anforderungen oder auch Fehlerbereinigungen führen zu der Notwendigkeit das System erneut testen zu müssen. Hierbei sind automatisierte Testansätzehilfreich. Zum einen lassen sie Änderungen an Testmodellen zu, aus denen Testfälle generiert werden. Zum anderen können Testfälle mit unterschiedlichen Zielen generiert werden, z. B. der Verbesserung der Codeabdeckung.
- Einordnung in den SW-Entwicklungsprozess
- Testmodellierung
- Testfallableitung
- Analyse von Testergebnissen
- Software Produktlinien Der immer häufiger angewandte Produktlinienansatz erfordert ein Umdenken während des gesamten Entwicklungszyklus. Sollen später Produkte generiert und nicht jeweils als Eigenentwicklung entstehen, sind folgende Themen relevant:
- Merkmalmodelle (variable / gemeinsame Systemanteile)
- Produktlinien Architekturen
- Domänenspezifische Sprachen
- Testen von Produktlinien
- Generieren von Applikationen aus einer Produktlinie

Medienformen

Bücher, Webseiten, Wissenschaftliche Paper, Open Source/Kommerzielle - Werkzeuge

Literatur

[Boec 2004] Günter Böckle, Peter Knauber, Klaus Pohl, Klaus Schmid, "Software-Produktlinien: Methoden, Einführung und Praxis", dpunkt. Verlag GmbH, 2004.

[Broo 1995] Frederick P. Brooks, Jr., "The Mythical Man Month", Addison-Wesley, 1995.

[Fowl 1999] Martin Fowler, "Refactorings – Improving the Design of Existing Code", Addison Wesley, 1999. [Gamm 1995] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, "Design Pattern – Elements of Reusable Object-Oriented Software", Addison Wesley, 1995.

[Lams 2009] Axel van Lamsweerde, "Requirements Engineering: From System Goals to UML Models to Software Specifications", John Wiley & Sons, 2009.

[McCo 2006] Steve McConnell, "Software Estimation", Microsoft Press, 2006.

[Pohl 2005] Klaus Pohl, Günter Böckle, Frank van der Linden, "Software Product Line Engineering – Foundations, Principles, and Techniques", Springer, Heidelberg 2005.

[Pohl 2008] Klaus Pohl, "Requirements Engineering: Grundlagen, Prinzipien, Techniken", dpunkt. Verlag GmbH, 2008.

[Robe 1999] Suzanne Robertson, James Robertson, "Mastering the Requirements Process", Addison-Wesley, 1999. [Rooc 2004] Stefan Roock, Martin Lippert, "Refactorings in großen Softwareprojekten", dpunkt. Verlag GmbH, 2004.

[Somm 2007] Ian Sommerville, "Software Engineering", Pearson Studium, 2007.

[Wieg 1999] Karl E. Wiegers, "Software Requirements", Microsoft Press, 1999. [Your 1997] Edward Yourdon, "Death March", Prentice-Hall, 1997.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Modul: Datenbank- und Betriebssysteme

Modulnummer 100335

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss:

Lernergebnisse

Thema in diesem Modul sind die grundlegenden Aufgaben, Paradigmen, funktionalen und nichtfunktionalen Eigenschaften zweier elementarer Themenkomplexe in der Informatik: den Datenbank- und Betriebssystemen.

Die Teilnehmer lernen Datenbank- und Betriebssysteme als strukturierte parallele Systeme aus Komponenten mit individuellen Aufgaben und hochgradig komplexen Beziehungen verstehen. Sie lernen die elementaren Abstraktionen und Paradigmen kennen und erwerben Kenntnisse über Prinzipien, Methoden, Algorithmen und Datenstrukturen, mit denen funktionale und nichtfunktionale Eigenschaften von Betriebs- und Datenbanksystemen realisiert werden.

Auf dieser Grundlage besitzen Studierende nach Abschluss dieses Moduls die Fähigkeit, Systeme bezüglich ihrer Eignung und Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen und kennen grundlegende Methoden und Verfahren zu ihrem Entwurf und ihrer Implementierung.

Vorraussetzungen für die Teilnahme

siehe individuelle Fächervoraussetzungen

Detailangaben zum Abschluss

keine

Modul: Datenbank- und Betriebssysteme

Betriebssysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 252 Prüfungsnummer:2200322

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik und	Automatisierung				Fachgebiet:	2255

	1	1.FS	;	2	2.FS	<u>} </u>		3.FS	3		1.FS	<u> </u>		5.FS	3	(6.FS	<u>; </u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Kursteilnehmer sollen Betriebssysteme als strukturierte Systeme aus Komponenten mit individuellen Aufgaben und hochgradig komplexen Beziehungen verstehen; sie erwerben die Fähigkeit, Betriebssysteme bezüglich ihrer Eignung und Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen.

Vorkenntnisse

Rechnerorganisation, Rechnerarchitekturen 1, Programmierparadigmen, Kommunikationsmodelle, Algorithmen und Programmierung, Algorithmen und Datenstrukturen

Inhalt

Betriebssysteme bilden das Software-Fundament aller informationstechnischen Systeme. Ihre funktionalen und vor allem ihre nichtfunktionalen Eigenschaften wie Robustheit, Sicherheit oder Wirtschaftlichkeit üben einen massiven Einfluss auf sämtliche Softwaresysteme aus, die unter ihrer Kontrolle ablaufen.

Dieser Kurs vermittelt Wissen über die grundlegenden Aufgaben, Funktionen und Eigenschaften von Betriebssystemen. Er stellt ihre elementaren Abstraktionen und Paradigmen vor und erklärt Prinzipien, Algorithmen und Datenstrukturen, mit denen funktionale und nichtfunktionale Eigenschaften realisiert werden.

Medienformen

Vorlesung mit Projektor und Tafel, über Web-Plattform, Skript/Folien-Handouts, Bücher, Fachaufsätze, Übungsblätter, Diskussionsblätter

Literatur

Siehe Webseiten der Veranstaltung

Detailangaben zum Abschluss

schriftliche Modulprüfung

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung IN

Bachelor Mathematik 2013

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Wirtschaftsinformatik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Mathematik 2009

Bachelor Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung IN Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Datenbank- und Betriebssysteme

Datenbanksysteme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 244 Prüfungsnummer:2200323

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2254

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Nach dem Besuch dieser Veranstaltung können die Studierenden Datenbanksysteme anwenden. Sie kennen die Schritte des Entwurfs von Datenbanken und können die relationale Entwurfstheorie beschreiben. Weiterhin können sie deklarative Anfragen in SQL und XPath/XQuery formulieren sowie Integritätsbedingungen definieren.

Die Studierenden sind in der Lage, gegebene praktische Problemstellungen zu analysieren, im ER-Modell zu modellieren und in einer relationalen Datenbank abzubilden sowie SQL zur Anfrageformulierung zu nutzen.

Vorkenntnisse

Vorlesung Algorithmen und Programmierung

Inhalt

Grundbegriffe von Datenbanksystemen; Phasen des Datenbankentwurfs, Datenbankentwurf im Entity-Relationship-Modell, Relationaler Datenbankentwurf, Entwurfstheorie, Funktionale Abhängigkeiten und Normalformen; Grundlagen von Anfragen: Algebra und Kalküle; SQL: relationaler Kern und Erweiterungen, rekursive Anfragen mit SQL; Transaktionen und Integritätssicherung; Sichten und Zugriffsknotrolle; XPath & XQuery als Anfragesprachen für XML

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Saake, Sattler, Heuer: Datenbanken - Konzepte und Sprachen, 4. Auflage, mitp-Verlag, 2010.

Detailangaben zum Abschluss

schriftliche Modulprüfung

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Bachelor Mathematik 2013

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN

Bachelor Medientechnologie 2013

Bachelor Wirtschaftsinformatik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2013

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Telematik 1

Modulnummer:100322

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss:

Lernergebnisse

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu Aufbau und Funktionsweise von Netzen, insbesondere des Internet. Die Studierenden verfügen über Kenntnisse und Überblickswissen zu den anwendungsorientierten Schichten von Netzen und deren Protokolle, insbesondere des Internet.
- Methodenkompetenz: Die Studierenden sind in der Lage, einfache Protokollfunktionen zu spezifizieren und in Programmfragmente umzusetzen. Sie können die Auswirkungen bestimmter Entwurfsentscheidungen bei der Realisierung einzelner Protokollfunktionen auf grundlegende Leistungskenngrößen einschätzen. Sie kennen Darstellung von Protokollabläufen in Form von Message Sequence Charts und können gültige Protokollabläufe auf der Grundlage von Zustandsautomaten nachvollziehen.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten eines Netzes als System.
- Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen einfacher Protokollfunktionen (z.B. Routing, Fehlerkontrolle, Flusskontrolle etc.) in der Gruppe und vertiefen bei Behandlung des Themas Geteilter Medienzugriff die technische Motivation für die Vorteile einer koordinierten Zusammenarbeit.

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Telematik 1

Telematik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 100575 Prüfungsnummer:2200383

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2253

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester				3	1	0															

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu Aufbau und Funktionsweise von Netzen, insbesondere des Internet.
- Methodenkompetenz: Die Studierenden sind in der Lage, einfache Protokollfunktionen zu spezifizieren und in Programmfragmente umzusetzen. Sie können die Auswirkungen bestimmter Entwurfsentscheidungen bei der Realisierung einzelner Protokollfunktionen auf grundlegende Leistungskenngrößen einschätzen. Sie kennen Darstellung von Protokollabläufen in Form von Message Sequence Charts und können gültige Protokollabläufe auf der Grundlage von Zustandsautomaten nachvollziehen.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten eines Netzes als System.
- Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen einfacher Protokollfunktionen (z.B. Routing, Fehlerkontrolle, Flusskontrolle etc.) durch Bearbeiten von Übungsaufgaben in Gruppen und vertiefen bei Behandlung des Themas Geteilter Medienzugriff die technische Motivation für die Vorteile einer koordinierten Zusammenarbeit.
- Die Studierenden verfügen über Kenntnisse und Überblickswissen zu den anwendungsorientierten Schichten von Netzen und deren Protokolle, insbesondere des Internet. Die Studierenden kennen die grundlegenden Sicherheitsanforderungen an Kommunikationsdienste und Mechanismen zu ihrer Erfüllung.

Vorkenntnisse

Hochschulzulassung:

Grundlagenvorlesung in Informatik oder Programmierung (z.B. "Algorithmen und Programmierung" oder eine vergleichbare Grundlagenvorlesung)

Inhalt

- 1. Einführung und Überblick: Grundsätzlicher Netzaufbau; Protokollfunktionen; Spezifikation; Architektur; Standardisierung; OSI- und Internet-Architekturmodell
- 2. Physikalische Schicht: Begriffe: Information, Daten und Signale; Physikalische Eigenschaften von Übertragungskanälen (Dämpfung, Verzerrung, Rauschen); Grenzen erreichbarer Datenübertragungsraten (Nyquist, Shannon); Taktsynchronisation; Modulationsverfahren (Amplituden-, Frequenz- und Phasenmodulation, kombinierte Verfahren)
- 3. Sicherungsschicht: Rahmensynchronisation; Fehlererkennung (Parität, Checksummen, Cyclic Redundancy Code; Fehlerbehebung (Forward Error Correction, Automatic Repeat Request); ARQ-Protokolle: Stop and Wait, Go-Back-N, Selective Reject; Medienzugriffsverfahren (ALOHA, Slotted ALOHA, Token-Ring, CSMA/CD); Ethernet; Internetworking: Repeater, Brücken und Router
- 4. Netzwerkschicht: Virtuelle Verbindungen vs. Datagramnetze; Aufgaben, Funktion und Aufbau eines Routers; Internet Procol (IP): Paketaufbau und Protokollfunktionen, Hilfsprotokolle und Protokollversionen; Routingalgorithmen: Distanzvektor-

und Link-State-Verfahren; Routingprotokolle des Internet (RIP, OSPF, BGP)

- 5. Transportschicht: Adressierung und Multiplexing; Verbindungsloser vs. verbindungsorientierter Transportdienst; Fehlerkontrolle; Flusskontrolle; Staukontrolle; Transportprotokolle des Internet (TCP, UDP)
- 6. Anwendungsorientierte Schichten: Sitzungsschicht, Darstellungsschicht und Anwendungsschicht, Grundarchitekturen verteilter Anwendungen: Client-Server, Peer-to-Peer, hybride Ansätze, Konkrete Protokolle der Anwendungsschicht: HTTP, SMTP, DNS;
- 7. Netzsicherheit

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter, Lehrbuch

Literatur

A. S. Tanenbaum. Computernetzwerke. Pearson Education. · J. F. Kurose, K. W. Ross. Computernetze. Pearson Education.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Ingenieurinformatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Computergrafik

Modulnummer:100680

Modulverantwortlich: Prof. Dr. Beat Brüderlin

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vermitteln der Grundlagen der Computergrafik wie sie in der Industrie sowie in der Unterhaltungbranche Verwendung finden (z. B. Filmindustrie, Computer-Aided Design, Computerspiele, Styling). Vermittlung von Grundlagen weiterführender Vorlesungen: Geometrisches Modellieren, Interaktive grafische Systeme, Technisch-wissenschaftliche Visualisierung, Fortgeschrittene Bildsynthese, sowie Bildverarbeitung

Vorraussetzungen für die Teilnahme

Programmierkenntnisse Grundlagen Algorithmen & Datenstrukturen

Bachelor Informatik 2013 Modul: Computergrafik

Computergrafik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5367 Prüfungsnummer:2200060

Fachverantwortlich: Prof. Dr. Beat Brüderlin

Leistungspunkte:	5	Workload (h): 15	0	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	ıtik un	d Automatisierung					Fachgebiet:	2252

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	<u> </u>		5.FS	3	(3.FS	3		7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							3	1	0												

Lernergebnisse / Kompetenzen

Vermitteln der Grundlagen der Computergrafik bestehend aus Lineare Algebra/homogene Vektorräumen, Physik des Lichts, Rasteroperationen, Bildsynthese, Bildverarbeitung und effiziente geometrische Algorithmen und Datenstrukturen. Die Vorlesung bildet die Grundlagen für "photorealistische" Bildsynthese, wie sie in der Industrie sowie bei den Medien Verwendung finden (z. B. Filmindustrie, Computer-Aided Design, Computerspiele, Styling). Vermittlung von Grundlagen für weiterführende Vorlesungen: Geometrisches Modellieren, Interaktive Grafische Systeme / Virtuelle Realität, Technischwissenschaftliche Visualisierung, Fortgeschrittene Bildsynthese, Bildverarbeitung I & II.

Vorkenntnisse

Programmierkenntnisse Grundlagen Algorithmen & Datenstrukturen

Inhalt

Einführung: Überblick über das Fach Grafische Datenverarbeitung. Einführung: Vektoren und Matrizen, Transformationen, Homogene Vektorräume, 2D, 3D-Primitiven und Operationen, View-Transformationen Farbwahrnehmung, Tristimulus Ansatz, Farbmodelle: RGB, CMY, HSV, CIE. Spektrale Ansätze. Additive und Subtraktive Mischung. Lichtquellen und Filter. Rastergrafik-Hardware: Farbdiskretisierung, Farbbildröhre, LCD, Laserprinter, Ink-jet, etc. Rastergrafik: Rasterkonvertierung von Linien und Polygonen (Bresenham-Algorithmus, Polygonfüll-Algorithmus). Bildbearbeitung und Erkennung: Operationen auf dem Bildraster, Bildtransformationen (Skalierung, Drehung), Resampling und Filterung (Bilinear, Gauß) Dithering, Antialiasing, Flood Filling, Kantenverstärkung (Kantenerkennung) Licht und Beleuchtung: (physikalische Größen: Wellenlänge, Leuchtdichte, Leuchtstärke), Wechselwirkung von Licht und Material, Lichtausbreitung und Reflexion, Refraktion, Beleuchtungsmodelle, Materialeigenschaften (geometrische Verteilung) Farbige Lichtquellen (spektrale Verteilung) (Phong: diffuse, spekulare Reflexion). Cook-Torrance, Mehrfachreflexion, Lichteffekte: Schatten, Halbschatten, Kaustik. Bildsynthese: Rendering basierend auf Rasterkonvertierung: Z-Buffer, Flat-Shading, Gouraud shading, Phong Shading Global Illumination, Raytracing, Photontracing, Radiosity Texturemapping / Image-based Rendering: Affines und perspektivisches Texturemapping, projektives Texturemapping, Environment Mapping, Bumpmaps Effiziente Datenstrukturen zum räumlichen Sortieren und Suchen. Kd-Tree, Hüllkörper-Hierarchie, Anwendungen in der Grafik Ray-tracing, Kollisionserkennung. OpenGL, GPU-Renderpipeline, Szenegraphen, Effizientes Rendering grosser Szenen. Ausblick: Überblick geometrischer und physikalischer Modelldatenstrukturen: CSG, B-Rep, Voxel, Octree, parametrische Flächen Computergrafische Animation: (Key frame, motion curve, physikalisch basiertes Modellieren, Kollisionserkennung, Molekülmodelle)

Medienformen

Tafel, Folien, Buch Brüderlin, Meier: Computergrafik und geometrisches Modellieren (s. unten)

Literatur

Brüderlin, B., Meier, A., Computergrafik und geometrisches Modellieren, Teubner-Verlag, 2001 Weiterführende Literatur: José Encarnação, Wolfgang Straßer, Reinhard Klein: Graphische Datenverarbeitung 1: Gerätetechnik, Programmierung und Anwendung graphischer Systeme. 4th, revised and extended edition, Oldenbourg, Munich, Germany, 1996. José Encarnação, Wolfgang Straßer, Reinhard Klein: Graphische Datenverarbeitung 2: Modellierung komplexer Objekte und photorealistische Bilderzeugung. 4th, revised and extended edition, Oldenbourg, Munich, Germany, 1997. James D. Foley, Andries van Dam, Steven K. Feiner, John F. Hughes: Computer Graphics: Principles and Practice, Second Edition in C. - 2nd edition, Addison-Wesley, Reading, MA, USA, 1990. Alan Watt: 3D-Computergrafik. 3rd edition, Addison-Wesley, Reading, MA, USA, 2001.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung IN Bachelor Informatik 2013

Bachelor Mathematik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Mathematik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung IN Bachelor Ingenieurinformatik 2013

Modul: Softwareprojekt

Modulnummer 100679

Modulverantwortlich: Prof. Dr. Armin Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Systemkompetenz: Die Studierenden verstehen den grundlegenden Ablauf der Erstellung größerer Softwaresysteme und sind in der Lage, Organisations-, Entwurfs- und Implementierungstechniken anzuwenden. Methodenkompetenz: Die Studierenden verfügen über das Wissen, allgemeine Techniken der Softwareentwicklung bzw. fachspezifische Kenntnisse anzuwenden und erlernen die Praxis des Projektmananagements. Fachkompetenz: Die Studierenden erwerben Kenntnisse in der Durchführung größerer Softwareprojekte, die alle Phasen von Analyse/Entwurf über Implementierung bis hin zur Evaluierung und Auslieferung umfassen. Sozialkompetenz: Die Studierenden lösen eine komplexe Entwickulungsaufgabe in einem größeren Team und vertiefen dabei Fertigkeiten in Projektmanagement, Teamführung und Gruppenkommunikation.

Vorraussetzungen für die Teilnahme

Softwaretechnik 1, Algorithmen und Programmierung

Bachelor Informatik 2013 Modul: Softwareprojekt

Softwareprojekt

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 5381 Prüfungsnummer:2200269

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspunkte:	8	Workload (h): 240	0	Anteil Selbststudium (h):	206	SWS:	3.0	
Fakultät für Informat	tik und	d Automatisierung					Fachgebiet:	2236

	1	I.FS	5	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester										0	3	0									

Lernergebnisse / Kompetenzen

Systemkompetenz: Die Studierenden verstehen den grundlegenden Ablauf der Erstellung größerer Softwaresysteme und sind in der Lage, Organisations-, Entwurfs- und Implementierungstechniken anzuwenden. Methodenkompetenz: Die Studierenden verfügen über das Wissen, allgemeine Techniken der Softwareentwicklung bzw. fachspezifische Kenntnisse anzuwenden und erlernen die Praxis des Projektmananagements. Fachkompetenz: Die Studierenden erwerben Kenntnisse in der Durchführung größerer Softwareprojekte, die alle Phasen von Analyse/Entwurf über Implementierung bis hin zur Evaluierung und Auslieferung umfassen. Sozialkompetenz: Die Studierenden lösen eine komplexe Entwickulungsaufgabe in einem größeren Team und vertiefen dabei Fertigkeiten in Projektmanagement, Teamführung und Gruppenkommunikation.

Vorkenntnisse

Modul Programmierung, Module Prakt. Informatik, Theoretische Informatik, Technische Informatik

Inhalt

Das Softwareprojekt ist eine praktische Veranstaltung, in der die Studierenden ihr im Studium erworbenes Wissen in einem realitätsnahen Softwareprojekt anwenden und vertiefen können. Ausgangspunkt sind dafür die vermittelten Techniken und Methoden der Vorlesung Softwaretechnik.

Jedes Projektteam (min. 5 und max. 8 Personen) bearbeitet ein eigenes Softwareprojekt und wird von einem wissenschaftlichen Mitarbeiter oder Studenten (Tutor) betreut. Die Themen der Projekte werden von den Fachgebieten der Fakultät Informatik und Automatisierung bereitgestellt und können von Ihnen ausgewählt werden. Jedes Projektteam ist für seine Organisation, Zeitpläne und Arbeitsschritte eigenverantwortlich und bestimmt folglich die Durchführung und den Erfolg des Projekts. Die Arbeit am Projekt erfordert von jedem Teilnehmer hohen Einsatz und Zeitaufwand.

Es findet wöchentlich ein Teamtreffen mit dem Tutor statt, bei dem Probleme, Fragen und der aktuelle Projektstand besprochen werden. Weitere zur Bearbeitung und Abstimmung nötige Gruppentreffen werden von jedem Projektteam selbst organisiert.

Das Softwareprojektgliedert sich in 4 Phasen (Planung, Analyse/Entwurf, Implementierung und Validierung/Verifikation). Zum Abschluss jeder Phase wird von jeder Gruppe ein Review-Dokument erstellt und ein Vortrag (Powerpoint o.ä.) über den aktuellen Stand der Arbeit gehalten. Dieses Review besitzt Prüfungscharakter und hat Einfluss auf die Bewertung des Projekts. Zum Abschluss des Softwareprojektes wird zusätzlich eine vollständige Dokumetation, die Übergabe der Quelltexte und die Installation des Ergebnisses erwartet.

Medienformen

<u>Li</u>teratur

wird in Abhängigkeit vom jeweiligen Thema bekannt gegeben

Detailangaben zum Abschluss

Teilnehmer müssen sich bis einen Monat nach Semesterbeginn anmelden.

In die individuelle Bewertung gehen die erfolgreiche Bearbeitung der Projektphasen durch die Gruppe, die Mitarbeit der Projektteilnehmer, die Qualität der Dokumente und Software sowie die Vorträge in den Reviews ein.

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Modul: Algorithmen und Datenstrukturen

Modulnummer:100336

Modulverantwortlich: Prof. Dr. Martin Dietzfelbinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Algorithmen und Programmierung, Grundlagen und diskrete Strukturen, Mathematik für Informatiker 1

Modul: Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen

Fachabschluss: Prüfungsleistung schriftlich 150 min Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 100576 Prüfungsnummer:220369

Fachverantwortlich: Prof. Dr. Martin Dietzfelbinger

Leistungspunkte: 8 Workload (h): 240 Anteil Selbststudium (h): 184 SWS: 7.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2242

	1	1.FS	}	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р
Fachsemester				4	2	1															

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden kennen die Grundprinzipien des Algorithmenentwurfs und der Korrektheits- und Zeitanalyse von Algorithmen und Datenstrukturen. Die Studierenden kennen ein Verfahren für die Spezifikation von Datentypen und können dieses auf Beispiele anwenden. Sie kennen die O-Notation und ihre Regeln und können sie bei der Laufzeitanalyse benutzen. Die Studierenden kennen grundlegende Datenstrukturen über Spezifikation und Implementierungs-möglichkeiten und können die zentralen Perfomanzparameter benennen und begründen. Sie kennen fortgeschrittenere Datentypen wie "binärer Suchbaum" und Details der Implementierung als balancierter Suchbaum. Die Studierenden kennen das Prinzip und das Verhalten von einfachen Hashverfahren und können das zu erwartende Verhalten für die verschiedenen Verfahren beschreiben. Sie kennen Konstruktionen einfacher randomisierter Hashklassen und zugehörige Beweise. Die Studierenden kennen die grundlegenden Sortieralgorithmen (Quicksort, Heapsort, Mergesort sowie Radixsort), können die Korrektheit der Verfahren begründen und ihre Laufzeit berechnen. Sie kennen die untere Schranke für vergleichsbasierte Sortierverfahren sowie den grundlegenden Datentyp "Priority Queue" und seine Implementierung auf der Basis von binären Heaps. Die Studierenden kennen die Grundbegriffe der Graphentheorie, soweit sie algorithmisch relevant sind, und können mit ihnen umgehen. Sie kennen die wesentlichen Datenstrukturen für die Darstellung von Graphen und Digraphen mit den zugehörigen Methoden und Performanzparametern.

Sie kennen Entwurfsprinzipien für Algorithmen (Divide-and-Conquer, Greedy, Dynamische Programmierung) und die zugehörigen Analyseverfahren und können sie in einfachen Fällen zum Algorithmenentwurf einsetzen. Sie kennen spezielle Divide-and -Conquer-Algorithmen und können das "Master-Theorem" zur Analyse einsetzen. Sie kennen die Verfahren "Breitensuche" und "Tiefensuche", und können die Situationen identifizieren, in denen diese Verfahren benutzt werden müssen. Sie kennen weitere Anwendungen der Tiefensuche (Kantenklassifizierung, Kreisfreiheit, topologische Sortierung, starke Zusammenhangskomponenten) mit Korrektheits-beweisen. Die Studierenden kennen Algorithmen für die Berechnung kürzester Wege (Dijkstra, Bellman/Ford) mit ihren Anwendbarkeitsbereichen und den Korrektheitsbeweisen. Sie kennen die Datenstruktur "adressierbare Priority Queue" mit Implementierungs- und Anwendungsmöglichkeiten). Sie kennen weiter Algorithmen für die Berechnung eines minimalen Spannbaums (mit Korrektheitsbeweisen) und der dafür nötigen Union-Find-Datenstruktur. Sie kennen Algorithmen für das "All-pairs-Shortest-Paths"-Problem auf der Basis des Prinzips "Dynamische Programmierung", sowie weitere Beispiele für die Anwendung dieses Prinzips.

Methodenkompetenz: Die Studierenden beherrschen Techniken zur Beschreibung von einfachen Systemen (Datentypen) und Verfahren (Algorithmen) sowie zur Beschreibung des Laufzeitverhaltens (O-Notation). Sie verstehen den Sinn von Korrektheitsbeweisen und beherrschen die grundlegenden Techniken für solche Beweise und für Laufzeitanalysen. Sie verstehen die Bedeutung der Effizienz bei der Implementierung von Algorithmen und Datenstrukturen.

Vorkenntnisse

Algorithmen und Programmierung, Grundlagen und Diskrete Strukturen, Mathematik für Informatiker 1

Inhalt

Spezifikation von Berechnungsproblemen und von abstrakten Datentypen.

Analyse von Algorithmen: Korrektheitsbeweise für iterative und rekursive Verfahren, Laufzeitbegriff, O-Notation, Laufzeitanalyse.

Methoden für die Analyse von Laufzeit und Korrektheit.

Grundlegende Datenstrukturen (Listen, Stacks, Queues, Bäume).

Binäre Suchbäume, Mehrwegsuchbäume, balancierte Suchbäume (AVL- und/oder Rot-Schwarz-Bäume, B-Bäume).

Einfache Hashverfahren, universelles Hashing.

Sortierverfahren: Quicksort, Heapsort, Mergesort, Radixsort. Untere Schranke für Sortieren.

Priority Queues mit der Implementierung als Binärheaps.

Divide-and-Conquer: Multiplikation ganzer Zahlen Matrixmultiplikation, Master-Theorem,

Quickselect, Schnelle Fourier-Transformation

Grundbegriffe der Graphentheorie,

Datenstrukturen für Graphen (Adjazenzmatrix, Kantenliste, Adjazenzlisten, Adjazenzarrays). Durchmustern von Graphen:

Breitensuche, Tiefensuche, Zusammenhangskomponenten, Entdecken von Kreisen,

topologische Sortierung, starke Zusammenhangskomponenten.

Greedy-Strategie: Teilbares Rucksackproblem, Schedulingprobleme, Huffman-Kodierung, Kürzeste Wege 1: Algorithmus von Dijkstra, Minimale Spannbäume (Algorithmus von Kruskal, Union-Find), Algorithmus von Prim, randomisierter Algorithmus für minimale Schnitte.

Dynamische Programmierung: Editierdistanz,

Ganzzahliges Rucksackproblem (mit/ohne Wiederholungen), Kürzeste Wege 2: Algorithmus von Floyd-Warshall, Kürzeste Wege 3: Algorithmus von Bellman-Ford, das Problem des Handlungsreisenden.

Medienformen

Folienprojektion, Folien auf der Webseite. Details im Tafelvortrag.

Literatur

- T. Ottmann, P. Widmayer, Algorithmen und Datenstrukturen, Spektrum Akademischer Verlag, 2002
- R. Sedgewick, Algorithms, Addison-Wesley, 2002 (auch C-, C++, Java-Versionen, auch auf deutsch bei Pearson) R. Sedgewick, Algorithms, Part 5: Graph Algorithms, Addison-Wesley, 2003
- K. Mehlhorn, P. Sanders, Algorithms and Data Structures The Basic Toolbox, Springer, 2008
- S. Dasgupta, C. Papadimitriou, U. Vazirani, Algorithms, McGraw-Hill, 2007
- R. H. Güting, S. Dieker: Datenstrukturen und Algorithmen, B.G. Teubner Verlag, 2004
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd ed., MIT Press, 2001 (auch auf deutsch bei Oldenbourg)
- V. Heun, Grundlegende Algorithmen, 2. Auflage, Vieweg, 2003
- J. Kleinberg, E. Tardos, Algorithm Design, Pearson Education, 2005
- U. Schöning, Algorithmik, Spektrum Akademischer Verlag, 2001

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Informatik 2013

Master Wirtschaftsinformatik 2014

Modul: Automaten, Sprachen und Komplexität

Modulnummer:100337

Modulverantwortlich: Prof. Dr. Dietrich Kuske

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden

- kennen die Stufen der Chomsky-Hierarchie, ihre automatentheoretischen Charakterisierungen, können die Umwandlungen ausführen und die für die gegebene Problemstellung adäquate Darstellung wählen,
 - sind in der Lage, Nicht-Regularitäts- und Nicht-Kontextfreiheitsbeweise zu führen,
- sind mit Abschlusseigenschaften und Entscheidbarkeits- und Komplexitätsaspekten insbesondere der regulären und kontextfreien Sprachen vertraut.

Die Studierenden

- kennen die Klassen der semi-entscheidbaren und der entscheidbaren Probleme,
- sind in der Lage, die Church-Turing These zu formulieren, ihre Bedeutung darzustellen und sie zu begründen,
- können durch Reduktionen die Unentscheidbarkeit neuer Probleme beweisen.

Die Studierenden

- kennen Zeit- und Platzkomplexiätsklassen (insbes. P und NP) und einige vollständige Probleme in diesen Klassen,
- können die Komplexität neuer Probleme beurteilen und ihre effiziente (Un)Lösbarkeit begründen.

Vorraussetzungen für die Teilnahme

Grundlagen und diskrete Strukturen

Modul: Automaten, Sprachen und Komplexität

Automaten, Sprachen und Komplexität

Fachabschluss: Prüfungsleistung schriftlich 150 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100437 Prüfungsnummer:2200342

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	172	SWS:	6.0	
Fakultät für Informat	tik ur	nd Automatisierung				Fachgebiet:	2241

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							4	2	0												

Lernergebnisse / Kompetenzen

Die Studierenden

- kennen die Stufen der Chomsky-Hierarchie, ihre automatentheoretischen Charakterisierungen, können die Umwandlungen ausführen und die für die gegebene Problemstellung adäquate Darstellung wählen,
 - sind in der Lage, Nicht-Regularitäts- und Nicht-Kontextfreiheitsbeweise zu führen,
- sind mit Abschlusseigenschaften und Entscheidbarkeits- und Komplexitätsaspekten insbesondere der regulären und kontextfreien Sprachen vertraut.

Die Studierenden

- kennen die Klassen der semi-entscheidbaren und der entscheidbaren Probleme,
- sind in der Lage, die Church-Turing These zu formulieren, ihre Bedeutung darzustellen und sie zu begründen,
- können durch Reduktionen die Unentscheidbarkeit neuer Probleme beweisen.

Die Studierenden

- kennen Zeit- und Platzkomplexiätsklassen (insbes. P und NP) und einige vollständige Probleme in diesen Klassen,
- können die Komplexität neuer Probleme beurteilen und ihre effiziente (Un)Lösbarkeit begründen.

Vorkenntnisse

sicherer Umgang mit mengentheoretischen Begriffen und Notationen (z.B. erworben in "Grundlagen und Diskrete Strukturen")

Inhalt

- (A) Chomsky-Hierarchie:
- (1) reguläre Sprachen und ihre Beschreibung mittels deterministischer und nichtdeterministischer endlicher Automaten, regulärer Ausdrücke und rechtslinearer Grammatiken, algorithmische Umformung dieser Beschreibungsmethoden, Entscheidungsverfahren für Leerheit, Inklusion und Äquivalenz, Nicht-Regularitätsbeweise mittels Myhill-Nerode und mittels Pumping-Lemma, Minimalautomat.
- (2) kontextfreie Sprachen und ihre Beschreibung durch nichtdeterministische Kellerautomaten und kontextfreie Grammatiken in Normalform, algorithmische Umformung (Parsing), deterministische Kellerautomaten, Nicht-Kontextfreiheitsbeweise mittels Pumping-Lemma, Nicht-Abschluss unter Schnitt und Komplement, Entscheidungsverfahren für Leerheit.
- (3) kontextsensitive Sprachen: linear beschränkte Automaten
- (4) rekursiv aufzählbare Sprachen: nichtdeterministische Turingmaschinen
- (B) Berechenbarkeitstheorie

Turing-, LOOP-, WHILE- und GOTO-Berechenbarkeit, (primitiv) rekursive Funktionen, Ackermann-Funktion, Church-Turing These, Unentscheidbarkeit des Halteproblems, der Universalität von kontextfreien Sprachen und des Post'schen Korrespondenzproblems

(C) Komplexitätstheorie

Komplexitätsklassen P, NP, PSPACE und EXPTIME, NP-Vollständigkeit von 3CNF-SAT und von ausgewählten graphentheoretischen Problemen (durch polynomielle Reduktionen), PSPACE-Vollständigkeit von QBF.

Medienformen

Folien, Mitschnitte der Vorlesungen, Übungsblätter (online)

Literatur

- Schöning "Theoretische Informatik kurzgefaßt"
- Hopcroft, Motwani, Ullman "Einführung in die Automatentheorie, Formale Sprachen und Komplexität"
- · Asteroth, Baier "Theoretische Informatik"
- · Wegener "Theoretische Informatik"

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Logik und Logikprogrammierung

Modulnummer 100339

Modulverantwortlich: Prof. Dr. Dietrich Kuske

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden können zentrale Begriffe der Aussagen- und der Prädikatenlogik darstellen und auf konkrete Problemstellungen anwenden. Sie verstehen das Zusammenspiel von Syntax und Semantik formaler Systeme und argumentieren dabei präzise und folgerichtig. Sie kennen klassische Entscheidungsverfahren für die genannten Kalküle und können sie hinsichtlich ihrer Anwendbarkeit beurteilen. Sie haben ein grundlegendes Verständnis für die Logik-Programmierung und sind in der Lage, typische Probleme durch Prolog-Programme zu lösen.

An der Klausur kann teilnehmen, wer 80% der Seminartermine zur Logik-Programmierung wahrgenommen hat.

Vorraussetzungen für die Teilnahme

Grundlagen und diskrete Strukturen

Modul: Logik und Logikprogrammierung

Logik und Logikprogrammierung

Fachabschluss: Prüfungsleistung schriftlich 150 min Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100574 Prüfungsnummer:220368

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	94	SWS:	5.0	
Fakultät für Informa	tik und	d Automatisierung				Fachgebiet:	2241

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	\	S	Р	٧	S	Р
Fachsemester										3	2	0									

Lernergebnisse / Kompetenzen

Die Studierenden können zentrale Begriffe der Aussagen- und der Prädikatenlogik darstellen und auf konkrete Problemstellungen anwenden. Sie verstehen das Zusammenspiel von Syntax und Semantik formaler Systeme und argumentieren dabei präzise und folgerichtig. Sie kennen klassische Entscheidungsverfahren für die genannten Kalküle und können sie hinsichtlich ihrer Anwendbarkeit beurteilen. Sie haben ein grundlegendes Verständnis für die Logik-Programmierung und sind in der Lage, typische Probleme durch Prolog-Programme zu lösen. An der Klausur kann teilnehmen, wer 80% der Seminartermine wahrgenommen hat.

Vorkenntnisse

sicherer Umgang mit mengentheoretischen Begriffen und Notationen (z.B. erworben in "Grundlagen und Diskrete Strukturen")

<u>Inhalt</u>

Aussagenlogik: Syntax und Semantik, Erfüllbarkeit, Allgemeingültigkeit, Folgerung, Normalformen, Wahrheitswerttabellen, Resolution, natürliches Schließen, Tableau-Methode

Prädikatenlogik: Syntax und Semantik, Erfüllbarkeit, Allgemeingültigkeit, Folgerung, Normalformen, Resolution, Kompaktheitssatz, natürliches Schließen, Unentscheidbarkeit der Allgemeingültigkeit von Formeln der Prädikatenlogik und der Theorie der natürlichen Zahlen

PROLOG-Programmierung an typischen Problemklassen

Medienformen

Folien, Übungsblätter, Vorlesungsmitschnitte (online)

Literatur

Schöning "Logik für Informatiker"

Ivan Bratko: Prolog Programming for Artificial Intelligence. 4th edition, ISBN-10: 0321417461, ISBN-13: 9780321417466, Addison-Wesley, 2012.

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Ingenieurinformatik 2013

Modul: Nichttechnische Fächer für IN Bsc

Modulnummer 100340

Modulverantwortlich: Dr. Andreas Vogel

Modulabschluss:

Lernergebnisse

Die Studierenden können über fachspezifische technische Problemstellungen in der englischen Sprache kommunizieren. Die Studierenden sind zudem in der Lage soziale, philosophische, politische, wirtschaftliche und kulturelle Fragen zu erörtern, die sich unmittelbar aus der Entwicklung der Technik und Naturwissenschaften ergeben.

Das Modul beinhaltet wahlobligatorische geistes- und sozialwissenschaftliche Studieninhalte und die Sprachenausbildung.

Das Themenspektrum umfasst die Kompetenz- und Wissensbereiche:

Sprachkompetenz: Vermittlung fremdsprachlicher (i.d.R. englischer) Kenntnisse in einer dem Studiengang entsprechenden Fachsprache

Basiskompetenz: Vermittlung notwendiger Kompetenzen für ein erfolgreiches Studium und die spätere Berufstätigkeit auf den

Orientierungswissen: Vermittlung fachübergreifender Studieninhalte, die Bezüge zwischen verschiedenen Wissenschaftsdisziplinen herstellen und vertiefen sowie weitergehende geistige Orientierung geben.

Vorraussetzungen für die Teilnahme

Keine

Detailangaben zum Abschluss

Die Abschlüsse zu den einzelnen Fächern werden in der jeweiligen Fachbeschreibung ausgewiesen.

Modul: Nichttechnische Fächer für IN Bsc

Soft Skills

Fachabschluss: Studienleistung alternativ Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5363 Prüfungsnummer:2200279

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	1	Workload (h): 30	0	Anteil Selbststudium (h):	8	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2255

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS		7.FS			
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Vorkenntnisse

Keine.

Inhalt

Ziel des Kurses ist die Vermittlung des Bewusstseins, welchen entscheidenden Einfluss nichtfachliche Qualifikationen - die "Soft Skills" - auf den Erfolg insbesondere auch in technisch/naturwissenschaftlichen Studiengängen und Berufsfeldern besitzen. Zentrale Problemfelder wie interdisziplinäre Teamarbeit, Führungskompetenz Konfliktmanagement, Stressbewältigung und Zeitmanagement werden in ihren Ursachen und Wirkungen besprochen, wobei die Gewinnung erster Erkenntnisse über die eigenen Fähigkeiten und das praktische Training zu ihrer Verbesserung im Vordergrund stehen. Der Kurs umfasst Vorlesungskomponenten, videobasierte Demonstrationen und Workshops, in denen die praktische Anwendung des Gelernten trainiert wird.

Medienformen

Referentenspezifisch

Literatur

Referentenspezifisch, jährlich aktualisiert und per Web veröffentlicht

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

Modul: Wahlpflichtbereich für IN Bsc(Wahl von Modulen imUmfang von 25 LP)

Modulnummer:100343

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden lernen in diesem Modul die Grundlagen der Informations- "Kommunikations- und Messtechnik kennen und werden befähigt die erworbenen Kenntnisse auch auf spezielle Probleme der Regelungstechnik und der biomedizinischen Technik anzuwenden. Die Studenten werden befähigt, messtechnische Prinzipien (LV "Prozessmess- und Sensortechnik für II und IN" und "Elektronische Messtechnik") zur Parameterbestimmung für Systeme verschiedener Charakteristik anzuwenden und das für den jeweiligen Anwendungsfall geeignete Prinzip auszuwählen. Durch das in den LV "Digitale Signalverarbeitung", "Integrierte Digitale Systeme" und "Digitale Regelungen" vermittelte Wissen können die Studierenden grundlegende digitale Signalverarbeitungsalgorithmen für Anwendungen in der Regelungstechnik sowie für den Entwurf integrierter Systeme nutzen. Die Studierenden lernen Verfahren zur experimentellen Prozessanalyse (LV "Modellbildung") kennen und können auf der Basis dieses Wissens bemessene Steuerungen und Regelungen vor der praktischen Implementierung durch Simulation am Rechner untersuchen (LV "Simulation"). Die Studierenden können aufbauend auf dem erworbenen Wissen über komplexe Signale und Systeme sowie Nachrichtenübertragung (LV "Nachrichtentechnik" und "Hochfrequenztechnik 1") Möglichkeiten der Signalübertragung über moderne Kommunikationsnetze analysieren und beurteilen (LV "Kommunikationsnetze") Mit dem in der LV "Grundlagen der biomedizinischen Technik" erworbenen Wissen kennen die Studierenden die wichtigsten Biosignale und können diese analysieren. Außerdem werden die spezifischen Anforderungen an medizinische Messgeräte und den medizinischen Gerätebau vermittelt.

Vorraussetzungen für die Teilnahme

siehe individuelle Fächerbeschreibungen

Detailangaben zum Abschluss

keine

Modul: Kryptographie

Modulnummer 101305

Modulverantwortlich: Prof. Dr. Martin Dietzfelbinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Kryptographie

Kryptographie

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 101138 Prüfungsnummer:220406

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspunkte:	5	Workload (h): 150	0	Anteil Selbststudium (h):	60	SWS:	4.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2241

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester													3	1	0						

Lernergebnisse / Kompetenzen

siehe Fachbeschreibung "Grundlagen der Kryptographie" (101139) und "Methoden der Kryptographie" (101140)

Vorkenntnisse

Inhalt

siehe Fachbeschreibung "Grundlagen der Kryptographie" (101139) und "Methoden der Kryptographie" (101140)

Medienformen

Literatur

Detailangaben zum Abschluss

Ist bestanden, wenn die Studienleistung im Fach Grundlagen der Kryptographie und die Prüfungsleistung im Fach Methoden der Kryptographie bestanden wurden.

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Randomisierte Algorithmen

Modulnummer:101288

Modulverantwortlich: Prof. Dr. Martin Dietzfelbinger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Randomisierte Algorithmen

Randomisierte Algorithmen

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 229 Prüfungsnummer:2200077

Fachverantwortlich: Prof. Dr. Martin Dietzfelbinger

Leistungspunkte:	5	Workload (h): 1	50	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2242

	1	I.FS)	2	2.FS	3		3.FS	3	4	I.FS)	ţ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													3	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden verstehen das Konzept eines randomisierten Algorithmus, seine präzise technische Interpretation und seine praktische Relevanz. Sie können Algorithmen nach ihren Grundeigenschaften klassifizieren und können die jeweiligen Wahrscheinlichkeitsverbesserungstechniken anwenden. Die Studierenden kennen wesentliche wahrscheinlichkeitstheoretische Techniken und können sie bei der Analyse randomisierter Algorithmen einsetzen. Die Studierenden kennen das Konzept "sparsame Verwendung von Zufallsbits" und kennen Techniken zur Erzeugung von analysierbaren Pseudozufallszahlen-Folgen. Die Studierenden verstehen die zahlentheoretischen Hintergründe des randomisierten Primzahltests nach Miller/Rabin, seine Funktionsweise und den Zeitbedarf. Sie wissen, wie Primzahltests bei der Erzeugung zufälliger Primzahlen einzusetzen sind. Schließlich kennen sie die Technik des Satzes von Schwartz und Zippel bei Identitätstests von algebraisch definierten Objekten und können diese Technik in verschiedenen Situationen anwenden.

Vorkenntnisse

Algorithmen und Datenstrukturen, Effiziente Algorithmen, Wahrscheinlichkeitsrechnung (Stochastik) für Informatiker

<u>In</u>halt

- 1. Algorithmen, die Zufallsexperimente durchführen
- 2. Wahrscheinlichkeitstheoretische Grundlagen
- 3. Modellierung randomisierter Algorithmen, Typen, Wahrscheinlichkeitsverbesserung
- 4. Randomisierte Suchverfahren
- 5. Randomisierte Algorithmen für zahlentheoretische Probleme
- 6. Randomisierte Algorithmen für algebraische Probleme mit Anwendungen

<u>Medienformen</u>

Folien, Tafel, schriftliche Ausarbeitung (Download auf Webseite), Übungsblätter

Literatur

Hromkovic, Randomisierte Algorithmen, Teubner

Motwani, Raghavan, Randomized Algorithms, Cambridge University Press

Mitzenmacher, Upfal, Probability and Computing, Cambridge University Press

Cormen, Leiserson, Rivest, Stein, Introduction to Algorithms, MIT Press (auch auf deutsch)

U.Schöning, "Algorithmik", Spektrum Akademischer Verlag, 2001 (Kapitel 12).

M.Dietzfelbinger, "Primality Testing in Polynomial Time", LNCS 3000, Springer-Verlag, 2004 (freier Zugang zur E-Version von Rechnern der Universität/Bibliothek)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2009

Bachelor Informatik 2013

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Modul: Automatentheorie

Modulnummer 101289

Modulverantwortlich: Prof. Dr. Dietrich Kuske

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Automatentheorie

Automatentheorie

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 9175 Prüfungsnummer:2200308

Fachverantwortlich: Prof. Dr. Dietrich Kuske

Leistungspunkte:	5	Workload (h): 1	50	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2241

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester										3	1	0									

Lernergebnisse / Kompetenzen

Fachkompetenz

- · Kenntnisse verallgemeinerter endlicher Automaten
- Anwendung dieser Modelle außerhalb der formalen Sprachen

Methodenkompetenz

· Analyse- & Anwendungsverfahren für Modelle mit endlich vielen Zuständen

Vorkenntnisse

- "Automaten & Formale Sprachen" bzw. "Automaten, Sprachen und Komplexität"
- Mathe für Informatiker 1 & 2
- "Logische Strukturen" bzw. "Logik und Logikprogrammierung"

Inhalt

Baumautomaten
omega-Automaten
Anwendungen u.a. in de

Anwendungen u.a. in der Logik

Medienformen

Tafel, Folien, Übungsblätter

Literatur

- F. Gécseg, M. Steinby: Tree languages. in: Handbook of Formal Languages vol. 3 (G. Rozenberg, A. Salomaa, Hrg.) Springer 1997, 1–68.
- W. Thomas: Automata on infinite objects. in: Handbook of Theoretical Computer Science vol. B (J. van Leeuwen, Hrg.) Elsevier 1990, 133–191.
 - · Autorenkollektiv: Tree automata techniques and applications. tata.gforge.inria.fr

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Modul: Computational Intelligence

Modulnummer:101290

Modulverantwortlich: Prof. Dr. Horst-Michael Groß

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es, Kompetenzen auf den Gebiet der Fuzzy-Logik und der angewandten Neuroinformatik zu vermitteln. Die Studierenden kennen und verstehen die Strategien biologisch inspirierter Informationsverarbeitung und können diese für biomedizinisch-technische Problemstellungen anwenden. Die Studierenden sind mit den aus den Strategien abgeleiteten methodischen Grundlagen vertraut und können die wichtigsten Softcomputing- Techniken erkennen und bewerten, sowie typische biomedizin-technische Aufgaben mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer biomedizinischer und informatischer Projekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Produkten, bei deren Entwicklung Fuzzy-logische und neuroinformatische Verfahren Anwendung fanden, können diese analysieren, bewerten und bei weiterführenden Syntheseprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für Fuzzy-Logik und Neuroinformatik in interdisziplinären Teams zu vertreten. Die Studierenden sind in der Lage, grundlegende Sachverhalte der Fuzzy-Logikund Neuroinformatik klar und korrekt zu kommunizieren.

Vorraussetzungen für die Teilnahme

Vorlesung Neuroinformatik

Modul: Computational Intelligence

Computational Intelligence

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 8351 Prüfungsnummer:2200433

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	8	Workload (h): 24	10	Anteil Selbststudium (h):	172	SWS:	6.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS)	2	2.FS	3		3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Ziel des Moduls ist es, Kompetenzen auf den Gebiet der Fuzzy-Logik und der angewandten Neuroinformatik zu vermitteln. Die Studierenden kennen und verstehen die Strategien biologisch inspirierter Informationsverarbeitung und können diese für biomedizinisch-technische Problemstellungen anwenden. Die Studierenden sind mit den aus den Strategien abgeleiteten methodischen Grundlagen vertraut und können die wichtigsten Softcomputing- Techniken erkennen und bewerten, sowie typische biomedizin-technische Aufgaben mit ihrer Hilfe analysieren und lösen. Sie sind in der Lage, diese Kompetenzen in den Syntheseprozess komplexer biomedizinischer und informatischer Projekte einfließen zu lassen. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien von Produkten, bei deren Entwicklung Fuzzy-logische und neuroinformatische Verfahren Anwendung fanden, können diese analysieren, bewerten und bei weiterführenden Syntheseprozessen mitwirken. Die Studierenden sind in der Lage, Fach- Methoden- und Systemkompetenz für Fuzzy-Logik und Neuroinformatik in interdisziplinären Teams zu vertreten. Die Studierenden sind in der Lage, grundlegende Sachverhalte der Fuzzy-Logikund Neuroinformatik klar und korrekt zu kommunizieren.

Vorkenntnisse

Vorlesung Neuroinformatik

Inhalf

siehe Vorlesungen der einzelnen Fächer

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2010 Bachelor Informatik 2013

Modul: Computational Intelligence

Angewandte Neuroinformatik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1718 Prüfungsnummer:2200420

Fachverantwortlich: Prof. Dr. Horst-Michael Groß

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	ıtik un	d Automatisierung					Fachgebiet:	2233

	1	I.FS	3		2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Im weiterführenden Ausbau der Lehrveranstaltung "Neuroinformatik" erwerben die Studenten System- und Fachkompetenz für die Anwendung von Methoden der Neuroinformatik in anspruchsvollen biomedizinischen Anwendungsfeldern der Signalverarbeitung und Mustererkennung. Sie verfügen über Kenntnisse zur Strukturierung von Problemlösungen unter Einsatz von neuronalen und probabilistischen Techniken in anwendungsnahen, konkreten Projekten. Die Studierenden sind in der Lage, praktische Fragestellungen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte zu entwerfen und diese umzusetzen sowie bestehende Lösungen zu bewerten und ggf. zu erweitern. Sie erwerben Kenntnisse zu verfahrens¬orientiertem Wissen, indem für praktische Klassifikations- und Approximations¬probleme verschiedene neuronale Lösungsansätze vergleichend behandelt und anhand von konkreten biomedizinischen Anwendungen demonstriert werden.

Vorkenntnisse

Neuroinformatik

Inhalt

Vertiefung der Vorlesung "Neuroinformatik" (und ggf. Neuroinformatik 2) zur Ergänzung der Grundlagen um applikationsspezifisches Wissen. Die Lehrveranstaltung vermittelt sowohl Faktenwissen als auch begriffliches Wissen aus den folgenden Kernbereichen: Entwicklung von Systemlösungen mit Neuronalen Netzen; Wesentliche Module eines Mustererkennungssystems; typische Netzwerkein- und Ausgabekodierung; Merkmalsauswahl mittels Signifikanzanalyse; Dimensionsreduktion und Datendekorrelation mittels Hauptkomponentenanalyse (PCA); Quellenseparierung mittels Independent Component Analysis (ICA); Bootstrapping-Algorithmen zur Effektivierung des Lernens; Boosting-Techniken zur Organisation leistungsfähiger Klassifikatoren; exemplarische Anwendungsbeispiele und Implementierungen aus den Bereichen biomedizinischen Datenanalyse, Mustererkennung, Bildverarbeitung, Robotik und Mensch-Maschine-Schnittstellen.

Medienformen

Powerpoint-Folien, Java-Applets

Literatur

Zell, A.: Simulation Neuronaler Netze, Addison-Wesley, 1994 Bishop, C.M.: Neural Networks for Pattern Recognition, Oxford University Press, 1997 Jähne, B.: Digitale Bildverarbeitung, Springer Verlag 2002 Hyvärinen, A., Karhunen, J. Oja, E.: Independent Component Analysis. Wiley & Sons, 2001 Stone, J. V.: Independent Component Analysis. MIT Press, 2004

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2009

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2014

Bachelor Biomedizinische Technik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Informatik 2010

Master Wirtschaftsinformatik 2011

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Modul: Computational Intelligence

Softcomputing / FuzzyLogik

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101132 Prüfungsnummer:2200421

Fachverantwortlich: Dr. Klaus Debes

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik und	l Automatisierung					Fachgebiet:	2233

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

In der Vorlesung Softcomputing I lernen die Studenten die Begriffswelt der Fuzzy-Logik, der Gen. Algorithmen (GA) und der evolut. Strategien (ES) verstehen. Sie verstehen übergreifende Ansätze zur Lösung von Klassifikations- und Regelungs- und Optimierungsproblemen mit Fuzzy- und GA/ES-Methoden. Die Studierenden sind in der Lage, Fragestellungen aus dem o. g. Problemkreisen zu analysieren, durch Anwendung des behandelten Methodenspektrums Lösungskonzepte zu entwerfen und diese auf biomedizinische Fragestellungen zu applizieren, sowie bestehende Lösungskonzepte zu bewerten.

Vorkenntnisse

keine

Inhalt

Die Vorlesung Softcomputing soll ergänzend zu den Neuroinformatik-Vorlesungen die Grundlagen für alternative Verfahren der Informations- und Wissensverarbeitung in der Biomedizin legen. Damit würde der Absolvent über breite methodische und anwendungsorientierte Grundlagen der "Computational Intelligence" verfügen, die im Masterstudiengang vervollkommnet werden können. Die Lehrveranstaltung vermittelt sowohl Faktenwissen als auch begriffliches Wissen aus den folgenden Kernbereichen: Fuzzy-Set-Theorie: Überblick, Einordnung und Historie; Grundlagen der Fuzzy-Logik (Basisvariablen, Linguistische Variablen, Terme, Zugehörigkeitsfunktionen, Fuzzyfizierung, Fuzzy-Operatoren); Fuzzy-Regeln, unscharfes und plausibles Schließen, Fuzzy-Inferenz; Defuzzifizierungsmethoden; einige ausgewählte Anwendungsbeispiele

Medienformen

Powe Point Folien, Matlab Beispiele, Java Applicationen, Videoseguenzen

Literatur

Zimmermann, H.-J.: Fuzzy Set Theorie - and its Applications. Kluver in Boston, 1991 Kosko, B.: Neural Networks and Fuzzy-Systems. Prentice Hall, New Jersey, 1992 Böhme, G.: Fuzzy-Logik. Springer-Vlg., Berlin..., 1993 Bothe, H.-H.: Fuzzy-Logik - Einführung in Theorie und Anwendungen. Springer-Vlg., Berlin, Heidelberg, 1995 Bothe, H.-H.: Neuro-Fuzzy-Methoden. Springer-Vlg., Berlin, Heidelberg, 1998 Fuller, R.: Introduction to Neuro-Fuzzy Systems. Physica-Verlag, Heidelberg, 2000 Tizhoosh, H. R.: Fuzzy-Bildverarbeitung. Springer-Vlg., Berlin, Heidelberg, 1998 Höppner, F., Klawonn, F., Kruse, R.: Fuzzy-Clusteranalyse. Viehweg-Vlg., Braunschweig, 1997

Detailangaben zum Abschluss

Bestandteil der Modulprüfung Computaional Intelligence (Applikation neuronaler Standardnetze + Softcomputing 2 x 60 min = 120 min sPL)

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2010

Modul: Datenbank-Implementierungstechniken

Modulnummer:101291

Modulverantwortlich: Prof. Dr. Kai-Uwe Sattler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Datenbank-Implementierungstechniken

Datenbank-Implementierungstechniken

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 248 Prüfungsnummer:2200188

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	5	Workload (h): 1	50	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2254

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Nach dem Besuch dieser Veranstaltung kennen die Studierenden Architektur und Aufbau von Datenbankmanagementsystemen. Sie verstehen die Aufgaben und Prinzipien der einzelnen DBMS-Komponenten sowie deren Zusammenwirken.

Die Studierenden können verschiedene Techniken zur Speicherung und Verwaltung großer Datenbestände sowie zur Verarbeitung von Anfragen erklären und hinsichtlich ihrer Vor- und Nachteile für verschiedene Einsatzzwecke bewerten. Sie sind in der Lage, diese Techniken in eigenen Entwicklungen zum Datenmanagement anzuwenden.

Vorkenntnisse

Vorlesung Datenbanksysteme

Inhalt

Architektur von DBMS; Verwaltung des Hintergrundspeichers; Pufferverwaltung; Dateiorganisation und Zugriffsstrukturen: indexsequentielle Speicherung, B-Baum, Hashing; Spezielle Indexstrukturen: Dynamisches Hashing, mehrdimensionale Speichertechniken, geometrische Zugriffsstrukturen, Indexierung von Texten; Basisalgorithmen für DB-Operationen: unäre Operatoren, binäre Operatoren, Verbund-implementierungen; Optimierung von Anfragen: Phasen der Anfrageoptimierung, Kostenmodell, Suchstrategien, Transaktionsverwaltung: Serialisierbarkeit, Sperrverfahren; Recovery: Aufgaben, Logging

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Saake, Sattler, Heuer: Datenbanken: Implementierungstechniken, 3. Auflage, mitp-Verlag, 2011.

Detailangaben zum Abschluss

Schriftliche Prüfung (90 Minuten)

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2009

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2013

Modul: Datenbanksysteme 2

Modulnummer:101292

Modulverantwortlich: Prof. Dr. Kai-Uwe Sattler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden kennen die erweiterten Möglichkeiten objektrelationaler Modellierung. Sie können die neuen Datentypen und die damit verbundenen objektorientierten Konzepte zur Datenbankmodellierung anwenden und für Anfragen nutzen. Diese Kompetenzen werden am Beispiel geometrischer und XML-Datentypen und dazugehöriger Anfrageoperationen vertieft

Studierende, die diese Veranstaltung besucht haben, verfügen über fortgeschrittene Kenntnisse zu Methoden und Techniken der Entwicklung von Datenbankanwendungen. Sie verstehen die Entwicklungsprozesse, Schnittstellen und Basistechnologien einschließlich von Techniken zur Realisierung mobiler Anwendungen.

Die Studierenden sind in der Lage, im Team gegebene praktische Problemstellungen zu analysieren, zu modellieren, in einer relationalen Datenbank umzusetzen sowie darauf aufbauend (mobile) Anwendungsprogramme zu entwickeln.

Vorraussetzungen für die Teilnahme

Grundlagen von Datenbanksystemen

Detailangaben zum Abschluss

Prüfungsform EDMS: schriftlich

Prüfungsform AnwDBMS: praktische Aufgabe + schriftliche Ausarbeitung + Abschlusspräsentation gewichtet mit je 1/3 Gesamtnote aus beiden Ergebnissen gewichtet mit je 50%

Bachelor Informatik 2013 Modul: Datenbanksysteme 2

Datenbanksysteme 2

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101141 Prüfungsnummer:2200434

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	7	Workload (h): 210) Ante	il Selbststudium (h):	142	SWS:	6.0	
Fakultät für Informatik	k und A	Automatisierung					Fachgebiet:	2254

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Die Studierenden kennen die erweiterten Möglichkeiten objektrelationaler Modellierung. Sie können die neuen Datentypen und die damit verbundenen objektorientierten Konzepte zur Datenbankmodellierung anwenden und für Anfragen nutzen. Diese Kompetenzen werden am Beispiel geometrischer und XML-Datentypen und dazugehöriger Anfrageoperationen vertieft.

Studierende, die diese Veranstaltung besucht haben, verfügen über fortgeschrittene Kenntnisse zu Methoden und Techniken der Entwicklung von Datenbankanwendungen. Sie verstehen die Entwicklungsprozesse, Schnittstellen und Basistechnologien einschließlich von Techniken zur Realisierung mobiler Anwendungen.

Die Studierenden sind in der Lage, im Team gegebene praktische Problemstellungen zu analysieren, zu modellieren, in einer relationalen Datenbank umzusetzen sowie darauf aufbauend (mobile) Anwendungsprogramme zu entwickeln.

Vorkenntnisse

Grundlagen von Datenbanksystemen, Vorlesung Datenbanksysteme

Inhalt

Historie, Grenzen relationaler Modellierung; Erweiterte relationale Modelle, parametrisierbare Datentypen; Objektrelationale Datenmodellierung; Objektdatenbanksysteme; Objektrelationale Anfragen; Modellierung und Anfragen für räumliche und semi-strukturierte Daten; Verhaltensimplementierung

Datenbankentwurf im ER-Modell, Transformation in relationale Datenbankschema, Softwareentwurfsprozess für Datenbankanwendungen, Techniken für den Datenbankzugriff, Einführung in Mobile Computing, Strategien zur Umsetzung mobiler Lösungen, Abstraktionen der Software-Infrastrukturen heutiger mobiler Plattformen

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle, praktische Projektarbeit

Literatur

Türker, Saake: Objektrelationale Datenbanken, 1. Auflage, dpunkt-Verlag, 2006.

Klettke, Meyer: XML & Datenbanken, dpunkt-Verlag, 2002.

Brinkhoff: Geodatenbanksysteme in Theorie und Praxis, Wichmann Verlag, 2. Auflage, 2008. Saake, Sattler, Heuer: Datenbanken - Konzepte und Sprachen, 4. Auflage, mitp-Verlag, 2010

Detailangaben zum Abschluss

Prüfungsform EDMS: schriftlich

Prüfungsform AnwDBMS: praktische Aufgabe + schriftliche Ausarbeitung + Abschlusspräsentation gewichtet mit je 1/3 Gesamtnote aus beiden Ergebnissen gewichtet mit je 50%

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Informatik 2013

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2013 Modul: Datenbanksysteme 2

Anwendungsentwicklung mit DBMS

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 251 Prüfungsnummer:2200435

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2254

	1	I.FS	3		2.FS	3	;	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													1	2	0						

Lernergebnisse / Kompetenzen

Studierende, die diese Veranstaltung besucht haben, verfügen über fortgeschrittene Kenntnisse zu Methoden und Techniken der Entwicklung von Datenbankanwendungen. Sie verstehen die Entwicklungsprozesse, Schnittstellen und Basistechnologien einschließlich von Techniken zur Realisierung mobiler Anwendungen.

Die Studierenden sind in der Lage, im Team gegebene praktische Problemstellungen zu analysieren, zu modellieren, in einer relationalen Datenbank umzusetzen sowie darauf aufbauend (mobile) Anwendungsprogramme zu entwickeln.

Vorkenntnisse

Vorlesung Datenbanksysteme

Inhalt

Datenbankentwurf im ER-Modell, Transformation in relationale Datenbankschema, Softwareentwurfsprozess für Datenbankanwendungen, Techniken für den Datenbankzugriff, Einführung in Mobile Computing, Strategien zur Umsetzung mobiler Lösungen, Abstraktionen der Software-Infrastrukturen heutiger mobiler Plattformen

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle, praktische Projektarbeit

Literatur

Saake, Sattler, Heuer: Datenbanken - Konzepte und Sprachen, 4. Auflage, mitp-Verlag, 2010

Detailangaben zum Abschluss

Der Abschluss in diesem Fach umfasst zwei Teile. Zum einen die bewerteten Ergebnisse aus der Seminararbeit und zum anderen die Ergebnisse aus einem Abschlussgespräch

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2009

Bachelor Informatik 2013

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2013 Modul: Datenbanksysteme 2

Erweiterte Datenbankmodelle und -systeme

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 249 Prüfungsnummer:2200436

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2254

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden kennen die erweiterten Möglichkeiten objektrelationaler Modellierung. Sie können die neuen Datentypen und die damit verbundenen objektorientierten Konzepte zur Datenbankmodellierung anwenden und für Anfragen nutzen. Diese Kompetenzen werden am Beispiel geometrischer und XML-Datentypen und dazugehöriger Anfrageoperationen vertieft.

Vorkenntnisse

Grundlagen von Datenbanksystemen

Inhalt

Historie, Grenzen relationaler Modellierung; Erweiterte relationale Modelle, parametrisierbare Datentypen; Objektrelationale Datenmodellierung; Objektdatenbanksysteme; Objektrelationale Anfragen; Modellierung und Anfragen für räumliche und semi-strukturierte Daten; Verhaltensimplementierung

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Türker, Saake: Objektrelationale Datenbanken, 1. Auflage, dpunkt-Verlag, 2006.

Klettke, Meyer: XML & Datenbanken, dpunkt-Verlag, 2002.

Brinkhoff: Geodatenbanksysteme in Theorie und Praxis, Wichmann Verlag, 2. Auflage, 2008.

Detailangaben zum Abschluss

schriftliche Prüfung (90 min)

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2011

Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2009

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2010

Modul: Computervision

Modulnummer:101293

Modulverantwortlich: Dr. Rico Nestler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Der Student erhält einen umfassenden Überblick über wesentliche Basismethoden zur Verarbeitung digitaler Bilder, die im Rahmen der Lösung von Erkennungsaufgaben häufig verwendet werden. Erkennungsaufgaben mit kamerabasierten (sehenden) technischen Systemen sind heutzutage in der Automatisierungstechnik, der Robotik, der Medizintechnik, der Überwachungstechnik und im Automotive-Bereich sehr weit verbreitet. Neben dem rein informatischen Aspekt der digitalen Bildverarbeitung werden dem Studenten wichtige Zusammenhänge zum Entstehen und zur Beschreibung digitaler skalarer und farbiger Bilder vermittelt. Im Ergebnis ist der Student in der Lage einfache Erkennungsaufgaben zu lösen und die dafür benötigte Fachliteratur zu verstehen, richtig einzuordnen und zu werten. Aufbauend auf den vermittelten Inhalten ist der Student befähigt, sein Wissen in weiterführenden Veranstaltungen, z.B. zur Erfassung und Verarbeitung von 3D-Daten, auszubauen.

Vorraussetzungen für die Teilnahme

gute Kenntnisse in Physik, Mathematik aber auch Informations- bzw. Nachrichtentechnik (Systemtheorie, Signale & Systeme)

Detailangaben zum Abschluss

Modulprüfung schriftlich 120 min

Bachelor Informatik 2013 Modul: Computervision

Computervision

Fachabschluss: Prüfungsleistung alternativ 120 min

Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 101129 Prüfungsnummer:2200422

Fachverantwortlich: Dr. Rico Nestler

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	172	SWS:	6.0	
Fakultät für Informa	tik und	d Automatisierung				Fachgebiet:	2252

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	I.FS	S	Ę	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Der Student erhält einen umfassenden Überblick über wesentliche Basismethoden zur Verarbeitung digitaler Bilder, die im Rahmen der Lösung von Erkennungsaufgaben häufig verwendet werden. Erkennungsaufgaben mit kamerabasierten (sehenden) technischen Systemen sind heutzutage in der Automatisierungstechnik, der Robotik, der Medizintechnik, der Überwachungstechnik und im Automotive-Bereich sehr weit verbreitet. Neben dem rein informatischen Aspekt der Verarbeitung von bildhaften Inhalten in der technisch zugänglichen Form werden dem Studenten wichtige Zusammenhänge zum Entstehen und zur Beschreibung digitaler skalarer und farbiger Bilder vermittelt. Im Ergebnis ist der Student in der Lage einfache Erkennungsaufgaben zu lösen und die dafür benötigte Fachliteratur zu verstehen, richtig einzuordnen und zu werten. Aufbauend auf den vermittelten Inhalten ist der Student befähigt, sein Wissen in weiterführenden Veranstaltungen, z.B. zur Erfassung und Verarbeitung von 3D-Daten, auszubauen.

Vorkenntnisse

gute Kenntnisse in Physik, Mathematik aber auch Informations- bzw. Nachrichtentechnik (Vorlesungen zur Systemtheorie, Signale & Systeme),

Inhalt

Das Modul Computervision beinhaltet die Veranstaltungen

• Grundlagen der digitalen Bildverarbeitung und Mustererkennung (àlnhalt siehe dort), gelesen im Wintersemester Grundlagen der Farbbildverarbeitung (àlnhalt siehe dort) , gelesen im Sommersemester

Medienformen

Powerpoint-Präsentation (PDF) zur Modulvorstellung https://www.tu-ilmenau.de/fileadmin/media/gdv/Mitarbeiter/GDVComputerVision Bachelor.pdf

Literatur

<div class="fce_inner_content"><div class="fce_inner_content">J.Beyerer, F.P. Puente Leon, C.
Frese: Automatische Sichtprüfung - Grundlagen, Methoden und Praxis der Bildgewinnung und
Bildauswertung. Springer Verlag 2012, ISBN 978-3-642-23965-6</div><div class="fce_inner_content">W. Abmayr: Einführung in die digitale Bildverarbeitung.
B.G. Teubner Stuttgart 1994, ISBN 3-519-06138-4</div><div class="fce_inner_content">B.</div></div>

Jähne: Digitale Bildverarbeitung und Bildgewinnung. Springer; Auflage: 7., 2012, ISBN 978-3642049514</div>div</l

Detailangaben zum Abschluss

Modulprüfung schriftlich 120 min

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008 Bachelor Informatik 2013 Bachelor Ingenieurinformatik 2013 Bachelor Informatik 2010 Bachelor Informatik 2013 Modul: Computervision

Grundlagen der Bildverarbeitung und Mustererkennung

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5446 Prüfungsnummer:2200426

Fachverantwortlich: Dr. Rico Nestler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2252

	1	I.FS	;	2	2.FS	3	,	3.FS	3		1.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Der Student erhält einen umfassenden Überblick über wesentliche Basismethoden zur Verarbeitung digitaler Bilder, die im Rahmen der Lösung von Erkennungsaufgaben häufig verwendet werden. Neben dem rein informatischen Aspekt der digitalen Bildverarbeitung werden dem Studenten wichtige Zusammenhänge zum Entstehen und zur Beschreibung digitaler Bilder vermittelt. Im Ergebnis soll der Student in der Lage sein, einfache Erkennungsaufgaben zu lösen und die dafür benötigte Fachliteratur zu verstehen, richtig einzuordnen und zu werten. Aufbauend auf den vermittelten Inhalten kann der Student sein erworbenes Wissen in weiterführenden Veranstaltungen, z.B. zur Farbbildverarbeitung oder zur Erfassung und Verarbeitung von 3D-Daten, weiter auszubauen.

Vorkenntnisse

gute Kenntnisse in Physik, Mathematik aber auch Informations- bzw. Nachrichtentechnik (Vorlesungen zur Systemtheorie, Signale & Systeme)

Inhalt

Gegenstand der Vorlesung "Grundlagen der Bildverarbeitung und Mustererkennung" (auch "Grundlagen der digitalen Bildverarbeitung") sind Methoden zur Lösung von Erkennungsproblemen mit kamerabasierten technischen Systemen. Erkennungsaufgaben mit kamerabasierten (sehenden) technischen Systemen sind heutzutage in der Automatisierungstechnik, der Robotik, der Medizintechnik, der Überwachungstechnik und im Automotive-Bereich sehr weit verbreitet.

Die Veranstaltung legt dabei den Fokus auf grauwertige digitale Bilder, die im Sinne einer konkreten Aufgabenstellung ausgewertet werden müssen. Das Ziel dieser Auswertung ist die Interpretation des Bildinhaltes auf verschiedenen Abstraktionsstufen. Dazu müssen die Bilder in der technisch zugänglichen Form aufbereitet, transformiert, gewandelt, analysiert und relevante Inhalte klassifiziert werden. Die Veranstaltung stellt dafür wesentliche Methoden, Verfahren und Algorithmen bereit. Neben der informatischen Seite des Bildverarbeitungsprozesses spielen in der Vorlesung auch Aspekte der Entstehung der primären Daten (für gut auswertbare Bilder) eine wichtige Rolle.

Gliederung der Vorlesung:

Einführung / Grundlagen

- Wesen technischer Erkennungsprozesse Entstehen und Beschreibungen digitaler Bilder
 - Primäre Wahrnehmung / Entstehen digitaler Bilder
 - Bildrepräsentationen und -transforma-tionen
 - 2D-Systemtheorie

Basismethoden zur Verarbeitung digitaler Bilder

- Vorverarbeitung: Geometrische Bildtransformationen, Bildstatistik und Punktoperationen, Lineare und nichtlineare lokale Operationen, Morphologische Operationen
- Ausgewählte Aspekte der Bildinhaltsanalyse: ikonische & modellbasierte Segmentierung, Merkmalextraktion und Klassifikation

Die Veranstaltung ist begleitet von einem Seminar, in dem die Vorlesungsinhalte nachbereitet und einfache Aufgaben mit einer Prototyping Software für Bildverarbeitungslösungen (VIP-Toolkit) bearbeitet werden.

Medienformen

Liland

Literatur

<div class="fce_inner_content">J.Beyerer, F.P. Puente Leon, C. Frese: Automatische Sichtprüfung - Grundlagen, Methoden und Praxis der Bildgewinnung und Bildauswertung. Springer Verlag 2012, ISBN 978-3-642-23965-6W. Abmayr: Einführung in die digitale Bildverarbeitung. B.G. Teubner Stuttgart 1994, ISBN 3-519-06138-4B. Jähne: Digitale Bildverarbeitung und Bildgewinnung. Springer; Auflage: 7., 2012, ISBN 978-3642049514B. Jähne: Digitale Bildverarbeitung. Springer; 1994, ISBN 3-540-61379-XP. Haberäcker: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Hanser Fachbuch, 1995, ISBN 978-3446155176P. Haberäcker: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Hanser Fachbuch, 1991, ISBN 978-3446163393P. Haberäcker: Praxis der Digitalen Bildverarbeitung und Mustererkennung. Hanser Fachbuch, 1995, ISBN 978-3446155176

Detailangaben zum Abschluss

schriftliche Prüfung 90 min, mündliches Prüfungsgespräch nach Vereinbarung

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2009

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Medientechnologie 2008

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2013

Bachelor Informatik 2013 Modul: Computervision

Grundlagen der Farbbildverarbeitung

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 237 Prüfungsnummer:2200427

Fachverantwortlich: Dr. Rico Nestler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	3.0	
Fakultät für Informa	tik und	l Automatisierung					Fachgebiet:	2252

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Der Student erhält einen umfassenden Überblick zu den Besonderheiten der Verarbeitung digitaler Farbbilder im Rahmen von technischen Erkennungsaufgaben. Neben dem rein informatischen Aspekt der digitalen Bildverarbeitung werden dem Studenten wichtige Zusammenhänge zum Entstehen und zur Beschreibung digitaler Bilder vermittelt. Im Ergebnis soll der Student in der Lage sein, einfache Erkennungsaufgaben zu lösen und die dafür benötigte Fachliteratur zu verstehen, richtig einzuordnen und zu werten. Aufbauend auf den vermittelten Inhalten kann der Student sein erworbenes Wissen in weiterführenden Veranstaltungen, z.B. zur Erfassung und Verarbeitung von 3D-Daten, weiter auszubauen.

Vorkenntnisse

gute Kenntnisse in Physik, Mathematik aber auch Informations- bzw. Nachrichtentechnik (Vorlesungen zur Systemtheorie, Signale & Systeme),

Grundlagen der Bildverarbeitung und und Mustererkennung

Inhalt

Gegenstand der Vorlesung "Grundlagen der Farbbildverarbeitung" sind Methoden zur Lösung von Erkennungsproblemen in technischen Systemen mit Farbkameras oder mehrkanaligen bildgebenden Systemen. Erkennungsaufgaben mit kamerabasierten (sehenden) technischen Systemen sind heutzutage in der Automatisierungstechnik, der Robotik, der Medizintechnik, der Überwachungstechnik und im Automotive-Bereich sehr weit verbreitet.

Die Veranstaltung legt dabei den Fokus auf farbige oder ganz allgemein mehrkanalige digitale Bilder, die im Sinne konkreter Aufgaben ausgewertet werden müssen. Die in der Vorlesung behandelten Methoden und Verfahren leiten sich unmittelbar aus bekannten Methoden der Grauwertbildverarbeitung ab (Grundlagen der Bildverarbeitung und Mustererkennung) oder werden unter Berücksichtigung der Zusammenhänge und der Bedeutung der Farbkanäle eines Bildes entwickelt. Dazu werden in der Veranstaltung wichtige Grundlagen zur "Farbe" als subjektive Sinnesempfindung, zu Farbräumen und –systemen, zur Farbmetrik sowie zu farbmessenden und farbwiedergebenden Systemen vermittelt. Das Ziel der Auswertung ist die Interpretation des Bildinhaltes auf verschiedenen Abtraktionsstufen. Dazu müssen die Bilder in der technisch zugänglichen Form, hier als Farbbild oder mehrkanaliges Bild, aufbereitet, transformiert, gewandelt, analysiert und relevante Inhalte klassifiziert werden. Die Veranstaltung stellt dafür wesentliche Methoden, Verfahren und Algorithmen bereit. Gliederung der Vorlesung:

Einführung / Grundlagen

- · Farbbegriff und Farbwahrnehmung
- Grundlagen der Farbmetrik
- · Farbsysteme, Farbräume und Farbtafeln
- · Farbmessung und Farbkalibrierung

Basismethoden zur Verarbeitung von farbigen / vektoriellen Bildern

- Vorverarbeitung: Bildstatistik und Punktoperationen, Lineare und nichtlineare lokale Operationen, Morphologische Operationen
- Ausgewählte Aspekte der Bildinhaltsanalyse: Segmentierung, Merkmalextraktion, Klassifikation Die Veranstaltung ist begleitet von einem Seminar, in dem die Vorlesungsinhalte nachbereitet und einfache Aufgaben mit einer Prototyping Software für Bildverarbeitungslösungen (VIP-Toolkit) bearbeitet werden.

Medienformen

/

Literatur

<div class="fce_inner_content">M. Richter: Einführung in die Farbmetrik.
Walter de Gruyter 1981, ISBN 3-11-008209-8L. W. MacDonald.: Colour imaging:
vision and technology. Wiley, 1999, ISBN 0-471-98531-7 Sangwine, Stephen
J.: The colour image processing handbook. Chapman & Hall, 1998, ISBN 0-412-806207<R.C. Gonzalez, R.E. Woods: Digital Image Processing. Addison-Wesley Publishing
Company 2007, ISBN 978-0131687288<si>>sowie auch die Literaturempfehlungen zum FachGrundlagen der Bildverarbeitung und

Detailangaben zum Abschluss

schriftliche Prüfung 90 min, mündliches Prüfungsgespräch nach Vereinbarung

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Optronik 2008

Master Medientechnologie 2009

Bachelor Ingenieurinformatik 2013

Master Medientechnologie 2013

Bachelor Informatik 2013

Master Elektrotechnik und Informationstechnik 2014 Vertiefung ATE

Modul: Systemsicherheit

Modulnummer:101294

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Systemsicherheit

Systemsicherheit

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 257 Prüfungsnummer:2200194

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informat		Fachgebiet:	2255					

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										3	1	0									

Lernergebnisse / Kompetenzen

Die Studierenden erhalten Kenntnisse zu Risiken und Bedrohungen sowie Maßnahmen zum Schutz von IT-Systemen. Sie erlernen Methoden des systematischen Security Engineerings, mit denen sich sichere IT-Systeme entwerfen, realisieren und betreiben lassen.

Vorkenntnisse

Algorithmen und Datenstrukturen, Automatentheorie und formale Sprachen, Lineare Algebra, Diskrete Strukturen, Effiziente Algorithmen, Betriebssysteme

Inhalt

Die Sicherheit von Computersystemen hat sich in den letzten Jahren von einem elitären Merkmal hochspezialisierter Systeme zu einer Eigenschaft entwickelt, die in nahezu allen Anwendungsbereichen höchste Priorität besitzt. Es erscheint heute als Binsenweisheit, dass fast sämtliche Bereiche öffentlichen Lebens massiv gestört werden, wenn IT-Systeme nicht verlässlich ihre Arbeit verrichten. Lebenswichtige Bereiche unserer Gesellschaft - Energie- und Wasserversorgung, Verkehrsmanagement, Gesundheitssystem, Finanzmanagement, Produktion, Verwaltung, Forschung und Entwicklung - sind hochgradig abhängig von der Sicherheit und Verlässlichkeit unserer Computersysteme.

Sicherheit von Computersystemen ist somit eines der zentralen Zukunftsthemen in der Informatik und hat in den letzten drei Jahrzehnten bereits zahlreiche Forschungsaktivitäten begründet. Eines der Ergebnisse ist die Erkenntnis, dass die überwältigende Mehrheit der in den letzten Jahren entdeckten Sicherheitsprobleme ihre Ursache nicht etwa darin hat, dass bei der Entwicklung der Systeme nachlässig gearbeitet wurde. Vielmehr ist die Komplexität unserer IT-Systeme inzwischen so hoch, dass sie durch heute verwendete Konstruktionsmethoden offenkundig nicht mehr beherrschbar ist und Fehler hierdurch unvermeidbar werden.

Dieser Kurs vermittelt Methoden des Security Engineerings, mittels derer Sicherheitseigenschaften von IT-Systemen auf der Grundlage formaler Modelle beschrieben werden und mittels präzise definierter Sicherheitsarchitekturen in IT-Systeme integriert werden. Kursschwerpunkte sind - formale Sicherheitsmodelle - Spezifikation von Sicherheitsmodellen - Sicherheitsmechanismen - Sicherheitsarchitekturen

Medienformen

Skript/Folien-Handouts, Übungsblätter, Diskussionsblätter

Literatur

siehe Webseiten des Kurses

Detailangaben zum Abschluss

mündliche Prüfung (20 min)

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2011

Master Wirtschaftsinformatik 2013

Master Wirtschaftsinformatik 2009

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2010

Modul: Network Security

Modulnummer 101295

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Network Security

Network Security

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5645 Prüfungsnummer:2200115

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2253

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester													3	0	0						

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zur Netzwerksicherung mittels kryptografischer Verfahren. Ihnen sind gebräuchliche Sicherheitsprotokolle, ihre Einordnung in das Schichtenmodell und ihre Eigenschaften bekannt. Sie sind darüberhinaus in der Lage Sicherheitseigenschaften weiterer Protokolle eigenständig zu analysieren.
- Methodenkompetenz: Die Studenten besitzen das erforderliche Überblickswissen zur Bewertung und Anwendung sicherer Netzwerklösungen in der Informationstechnologie.
- Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten von Sicherheitsarchitekturen der Netzwerkkommunikation.
- •Sozialkompetenz: Die Studierenden besitzen die grundlegende Fähigkeit sich in die Perspektive eines Angreifers zu versetzen und aus diesem Blickwinkel heraus Schwachstellen in Protokollen und Systemen zu erkennen.

Vorkenntnisse

Vorlesung "Telematik 1"

Der (ggf. gleichzeitige) Besuch der Vorlesung "Telematik 2" wird empfohlen, ist jedoch keine notwendige Voraussetzung.

Inhalt

- 1. Einleitung: Bedrohungen und Sicherheitsziele, Sicherheitsanalyse für Netze, Maßnahmen der Informationssicherheit, zentrale Begriffe der Kommunikationssicherheit
- 2. Grundbegriffe der Kryptologie: Überblick über kryptografische Verfahren; Angriffe auf kryptografische Verfahren; Eigenschaften und Klassifizierung von Chiffrieralgorithmen
- 3. Symmetrische kryptografische Verfahren: Betriebsarten von Blockchiffren; der Data Encryption Standard (DES); der Advanced Encryption Standard (AES); der RC4-Algorithmus, KASUMI
- 4. Asymmetrische kryptografische Verfahren: Grundidee asymmetrischer kryptografischer Verfahren; mathematische Grundlagen; der RSA-Algorithmus; das Diffie-Hellman-Schlüsselaustauschverfahren; Grundlagen der Kryptografie auf elliptischen Kurven
- 5. Kryptografische Prüfwerte: kryptografische Hashfunktionen, Message Authentication Codes; Message Digest 5 (MD5); Secure Hash Algorithm SHA-1; SHA-2; SHA-3, Authentisierte Verschlüsselung
- 6. Die Erzeugung sicherer Zufallszahlen: Zufallszahlen und Pseudozufallszahlen; die Erzeugung von Zufallszahlen; statistische Tests für Zufallszahlen; die Erzeugung kryptografisch sicherer Pseudozufallszahlen
- 7. Kryptografische Protokolle: Nachrichten- und Instanzenauthentisierung; Needham-Schroeder Protokoll; Otway-Rees Protokoll; Kerberos v4 & v5; X.509-Schlüsselzertifikate; X.509-Authentisierungsprotokolle; Formale Bewertung kryptografischer Protokolle
- 8. Sichere Gruppenkommunikation
- 9. Zugriffskontrolle: Begriffsdefinitionen und Konzepte; Security Labels; Kategorien von Zugriffskontrollmechanismen

- 10. Integration von Sicherheitsdiensten in Kommunikationsarchitekturen:
- 11. Sicherheitsprotokolle der Datensicherungsschicht: IEEE 802.1Q, 802.1X, 802.1AE; PPP; PPTP
- 12. Die IPsec-Sicherheitsarchitektur
- 13. Sicherheitsprotokolle der Transportschicht: Secure Socket Layer (SSL); Transport Layer Security (TLS); Secure Shell (SSH)
- 14. Sicherheitsaspekte der Mobilkommunikation
- 15. Sicherheit in drahtlosen lokalen Netzen: IEE 802.11; IEEE 802.11 Task Group i;
- 16. Sicherheit in GSM- und UMTS-Netzen
- 17. Sicherheit mobiler Internetkommunikation: Mobile IP

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Arbeitsblätter. Lehrbuch

Literatur

- G. Schäfer. Netzsicherheit Algorithmische Grundlagen und Protokolle. dpunkt.verlag
- A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone. Handbook of Applied Cryptography. CRC Press Series on Discrete Mathematics and Its Applications, CRC Press

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Ingenieurinformatik 2014

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2009

Master Ingenieurinformatik 2009

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2013

Bachelor Informatik 2010

Master Wirtschaftsinformatik 2011

Master Communications and Signal Processing 2008

Bachelor Ingenieurinformatik 2013

Modul: Linux und SELinux - Konzepte, Architektur, Algorithmen

Modulnummer 101296

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Linux und SELinux - Konzepte, Architektur, Algorithmen

Linux und SELinux - Konzepte, Architektur, Algorithmen

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 8790 Prüfungsnummer:2200300

Fachverantwortlich: Dr. Hans-Albrecht Schindler

Leistungspunkte:	5	Workload (h): 15	0	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Informa	tik und	I Automatisierung					Fachgebiet:	2255

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										3	1	0									

Lernergebnisse / Kompetenzen

Die Studierenden lernen die konkrete Umsetzung des in der Vorlesung "Betriebssysteme" erworbenen Wissens am Beispiel "Linux" kennen. Sie werden damit befähigt, praktische Realisierungen von Betriebssystemen nachzuvollziehen, zu analysieren und Ansatzpunkte für Modifikationen zu erkennen. Am Beispiel "SELinux" werden sie in die Lage versetzt, Modifikationen zur Durchsetzung von IT-Sicherheit zu verstehen, zu analysieren und anzuwenden. Desweiteren sind sie durch intensive Kenntnis des Linux-Systems in der Lage, dieses unter voller Ausnutzung seiner Möglichkeiten in systemnaher Programmierung zu nutzen.

Vorkenntnisse

Algorithmen und Programmierung, Algorithmen und Datenstrukturen, Betriebssysteme

Inhalt

Die in der Veranstaltung "Betriebssysteme" des 3. Semesters prinzipiell besprochenen Teilgebiete moderner Betriebssysteme werden in diesem Kurs in Form ihrer konkreten Realisierungen im Betriebssystem "Linux" betrachtet. Da Linux sich in vielen wesentlichen Punkten am Konzept der Familie der UNIX-artigen Betriebssysteme orientiert, wird auch das Sicherheitskonzept dieser Systeme verwendet. Obwohl sich UNIX-Systeme in der Praxis bisher als weniger angreifbar als andere Systeme erwiesen haben, genügt das originale Konzept modernen Erkenntnissen und Erfordernissen nicht mehr. Das als SELinux ("Security-enhanced Linux") bekannte System realisiert dabei über einen mit "Linux Security Modules" (LSM) erweiterten Linux-Kern das von der "National Security Agency" (NSA) der USA entwickelte FLASK-Konzept. Dieses realisiert eine zeitgemäße Sicherheitsarchitektur auf der Basis obligatorischer Zugriffskontrolle ("mandatory access control") und wurde bereits an anderen Betriebssystemen getestet. Im zweiten Teil der Lehrveranstaltung wird auf die Konzepte des SELinux eingegangen.

Medienformen

Skript/Folien-Handouts, Bücher, Fachartikel, Übungsblätter, Diskussionsblätter

Literatur

- Wolfgang Mauerer: "Linux-Kernelarchitektur" Robert Love: "Linux Kernel Development" Daniel P. Bovet & Marco Cesati: "Understanding the Linux Kernel" David Mosberger & Stéphane Eranian: "IA-64 Linux Kernel Design and Implementation"
- Peter Loscocco & Stephen Smalley: "Integrating Flexible Support for Security Policies into the Linux Operating System"

Detailangaben zum Abschluss

mündliche Prüfung (20 min) im Prüfungszeitraum

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Modul: Advanced Operating Systems

Modulnummer:101297

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Thema des Kurses sind die Betriebssystem-Grundlagen für IT-Systeme, die in kritischen Anwendungsszenarien eingesetzt werden. Die Studierenden lernen grundlegende Eigenschaften wie Sicherheit, Robustheit, Effizienz oder Performanz verstehen und erwerben Kenntnisse über Methoden, Paradigmen, Prinzipien und Algorithmen, mittels derer diese in Betriebssystemen erreicht werden. Sie erwerben die Fähigkeit, Betriebssysteme bezüglich ihrer Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen sowie Erweiterungen ihrer Funktionalität zu spezifizieren und zu integrieren.

Thematische Schwerpunkte sind

- Architekturkonzepte (Mikrokernarchitekturen, Exokernarchitekturen, Virtualisierungsarchitekturen)
- methodische, architekturelle und algorithmische Grundlagen der Herstellung nichtfunktionaler Eigenschaften:
- Performanz
- Echtzeitfähigkeit
- Systemsicherheit
- Sparsamkeit
- Skalierbarkeit

Vorraussetzungen für die Teilnahme

Bachelor IN, II bis Semester 4

Detailangaben zum Abschluss

keine

Modul: Advanced Operating Systems

Advanced Operating Systems

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101142 Prüfungsnummer:2200437

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	5	Workload (h): 1	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	I Automatisierung					Fachgebiet:	2255

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester													3	1	0						

Lernergebnisse / Kompetenzen

Thema des Kurses sind die Betriebssystem-Grundlagen für IT-Systeme, die in kritischen Anwendungsszenarien eingesetzt werden. Die Studierenden lernen grundlegende Eigenschaften wie Sicherheit, Robustheit, Effizienz oder Performanz verstehen und erwerben Kenntnisse über Methoden, Paradigmen, Prinzipien und Algorithmen, mittels derer diese in Betriebssystemen erreicht werden. Sie erwerben die Fähigkeit, Betriebssysteme bezüglich ihrer Leistungen in unterschiedlichen Anwendungsdomänen zu analysieren, zu bewerten und einzusetzen sowie Erweiterungen ihrer Funktionalität zu spezifizieren und zu integrieren.

Vorkenntnisse

Bachelor IN, II bis Semester 4

Inhalt

Thematische Schwerpunkte sind

- Architekturkonzepte (Mikrokernarchitekturen, Exokernarchitekturen, Virtualisierungsarchitekturen)
- methodische, architekturelle und algorithmische Grundlagen der Herstellung nichtfunktionaler Eigenschaften:
- Performanz
- Echtzeitfähigkeit
- Systemsicherheit
- Sparsamkeit
- Skalierbarkeit

Medienformen

Präsentationen mit Projektor und Tafel, Bücher und Fachaufsätze, Übungsaufgaben und Diskussionsblätter

Literatur

Wird aktuell im Web veröffentlicht

Detailangaben zum Abschluss

mündliche Prüfung (20 min) im Prüfungszeitraum

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Mobilkommunikation

Modulnummer 101298

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Mobilkommunikation

Mobilkommunikationsnetze

Fachabschluss: Prüfungsleistung mündlich Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101143 Prüfungsnummer:2200438

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 94 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2235

2.FS 3.FS 4.FS 5.FS 6.FS 1.FS 7.FS V S P S P S P S P S P S Ρ S SWS nach Fachsemester 2 2 0

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Informatik 2013

Master Wirtschaftsinformatik 2014

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013 Modul: Mobilkommunikation

Projektseminar Mobilkommunikation

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: keine Angabe Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 5742 Prüfungsnummer:2200278

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2235

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS V S P S P S P S P S P V S S P SWS nach Fachsemester 0 0

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Besonderheiten eingebetteter Systeme

Modulnummer 101299

Modulverantwortlich: Prof. Dr. Wolfgang Fengler

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Detailliertes Verständnis für das Entwerfen eingebetteter Rechnersysteme in Hard- und SoftwareFunktionsweise, Anwendung, Realisierung und Implementierung von prozessnahen Kommunikationssysteme

Vorraussetzungen für die Teilnahme

notwendig:

Rechnerarchitekturen 1 oder vergleichbare Veranstaltung

Pflichfächer zu Telematik und Rechnernetzen

Prozessinformatik oder vergleichbare Veranstaltung

empfohlen:

Rechnerarchitekturen 2 oder vergleichbare Veranstaltung

Detailangaben zum Abschluss

Zusammensetzug der Modulprüfung:

- Zu den enthaltenen Fächern sind die im folgenden näher beschriebenen Vorleistungen zu erbringen und danach ist für jedes Fach ein Prüfungsgespräch von 20 Minuten Dauer zu absolvieren.
 - Die Prüfungsnote des Moduls ergibt sich zu gleichen Teilen aus den Ergebnissen der beiden Prüfungsgespräche.
 - Beide Prüfungsgespräche müssen im selben Semester absolviert werden!
 - Auf Wunsch ist ein kombiniertes Prüfungsgespräch von 40 Minuten Dauer möglich.

Vorleistungen im Fach Rechnerentwurf (Voraussetzungen für die Teilnahme am Prüfungsgespräch):

- · Testat vom Versuch 1 des Projektteils,
- Testat vom Versuch 2 des Projektteils,
- · Testat vom schriftlichen Projektbericht.

Vorleistungen im Fach Rechnernetze der PDV (Voraussetzungen für die Teilnahme am Prüfungsgespräch):

- Testat vom Projektteil,
- · Testat vom schriftlichen Projektbericht.

Modul: Besonderheiten eingebetteter Systeme

Besonderheiten eingebetteter Systeme

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101144 Prüfungsnummer:2200439

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2231

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Detailliertes Verständnis für das Entwerfen eingebetteter Rechnersysteme in Hard- und SoftwareFunktionsweise, Anwendung, Realisierung und Implementierung von prozessnahen Kommunikationssysteme

Vorkenntnisse

notwendig:

Rechnerarchitekturen 1 oder vergleichbare Veranstaltung

Pflichfächer zu Telematik und Rechnernetzen

Prozessinformatik oder vergleichbare Veranstaltung

empfohlen:

Rechnerarchitekturen 2 oder vergleichbare Veranstaltung

Inhalt

Entwurf eingebetteter Systeme; dabei: Grundbegriffe, Entwurfsebenen, Beschreibungsmittel, Zielplattformen, Entwurfsentscheidungen, Entwurfswerkzeuge und Beispielentwürfe, Test- und Inbetriebnahmetechnik; Konkretes Entwurfsprojekt unter Verwendung eines grafischen Entwurfswerkzeuges von der Systemspzifikation über modellbasierten Entwurf und simulationsgestützte Validierung und Codegenerierung bis zur Inbetriebnahme in realer Umgebung Spezifik von Kommunikationssystemen in der Online-Prozesskopplung in den Ebenen Feldbus, Realtime-Bus und Fabrikbus; Bestandteil der Ausbildung sind reale Feldbuskonfigurationen. An diesen werden Analysen durchgeführt und eine eigene Anwendung wird implementiert.

Medienformen

Anschriebe, Foliensätze, Demonstrationsobjekte

Literatur

Webseite http://tu-ilmenau.de/?r-rnp

Webseite http://www.tu-ilmenau.de/?r-re

(dort auch gelegentlich aktualisierte Literaturhinweise und Online-Quellen)

Detailangaben zum Abschluss

Zusammensetzug der Modulprüfung:

• Zu den enthaltenen Fächern sind die im folgenden näher beschriebenen Vorleistungen zu erbringen und danach ist für jedes Fach ein Prüfungsgespräch von 20 Minuten Dauer zu absolvieren.

- Die Prüfungsnote des Moduls ergibt sich zu gleichen Teilen aus den Ergebnissen der beiden Prüfungsgespräche.
- Beide Prüfungsgespräche müssen im selben Semester absolviert werden!
- Auf Wunsch ist ein kombiniertes Prüfungsgespräch von 40 Minuten Dauer möglich.

Vorleistungen im Fach Rechnerentwurf (Voraussetzungen für die Teilnahme am Prüfungsgespräch):

- · Testat vom Versuch 1 des Projektteils,
- · Testat vom Versuch 2 des Projektteils,
- Testat vom schriftlichen Projektbericht.

Vorleistungen im Fach Rechnernetze der PDV (Voraussetzungen für die Teilnahme am Prüfungsgespräch):

- · Testat vom Projektteil,
- Testat vom schriftlichen Projektbericht.

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Master Fahrzeugtechnik 2009

Master Fahrzeugtechnik 2014

Bachelor Ingenieurinformatik 2013

Modul: Besonderheiten eingebetteter Systeme

Rechnerentwurf

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 169 Prüfungsnummer:2200441

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	ıtik und	d Automatisierung					Fachgebiet: 2	2231

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										1	1	0									

Lernergebnisse / Kompetenzen

Detailliertes Verständnis für das Entwerfen eingebetteter Rechnersysteme in Hard- und Software

Vorkenntnisse

notwendig: Rechnerarchitekturen 1 oder vergleichbare Veranstaltung empfohlen: Rechnerarchitekturen 2 oder vergleichbare Veranstaltung

Inhalt

Entwurf eingebetteter Systeme; dabei: Grundbegriffe, Entwurfsebenen, Beschreibungsmittel, Zielplattformen, Entwurfsentscheidungen, Entwurfswerkzeuge und Beispielentwürfe, Test- und Inbetriebnahmetechnik; Konkretes Entwurfsprojekt unter Verwendung eines grafischen Entwurfswerkzeuges von der Systemspzifikation über modellbasierten Entwurf und simulationsgestützte Validierung und Codegenerierung bis zur Inbetriebnahme in realer Umgebung

Medienformen

Anschriebe, Foliensätze, Demonstrationsobjekte

Literatur

Webseite http://www.tu-ilmenau.de/?r-re (dort auch gelegentlich aktualisierte Literaturhinweise und Online-Quellen)

Detailangaben zum Abschluss

Zum Abschluss ist ein Projektteil zu erbringen sowie ein Prüfungsgespräch zu absolvieren. Die Details zum Projektteil werden jeweils zu Semesterbeginn bekannt gegeben. Die Bewertung basiert auf dem Prüfungsgespräch. Das Prüfungsgespräch kann entweder einzeln für dieses Fach oder je nach Modulkonstellation auch als Komplexprüfung gestaltet werden.

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsinformatik 2009

Master Fahrzeugtechnik 2009

Master Fahrzeugtechnik 2014

Bachelor Ingenieurinformatik 2013

Master Mathematik und Wirtschaftsmathematik 2008 Bachelor Informatik 2010

Modul: Besonderheiten eingebetteter Systeme

Rechnernetze der Prozessdatenverarbeitung

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 170 Prüfungsnummer:2200440

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	0	Workload (h):	0	Anteil Selbststudium (h):	0	SWS:	2.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2231

	1	I.FS)	2	2.FS	3		3.FS	3	4	1.FS)	Ę	5.FS	3	(6.FS	3	-	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										1	1	0									

Lernergebnisse / Kompetenzen

Detailliertes Verständnis von Funktionsweise, Anwendung, Realisierung und Implementierung von prozessnahen Kommunikationssystemen

Vorkenntnisse

Pflichfächer zu Telematik und Rechnernetzen Prozessinformatik oder vergleichbare Veranstaltung

Inhalt

Spezifik von Kommunikationssystemen in der Online-Prozesskopplung in den Ebenen Feldbus, Realtime-Bus und Fabrikbus; Bestandteil der Ausbildung sind reale Feldbuskonfigurationen. An diesen werden Analysen durchgeführt und eine eigene Anwendung wird implementiert.

Medienformen

Foliensätze, Anschriebe

Literatur

Webseite http://tu-ilmenau.de/?r-rnp

Detailangaben zum Abschluss

Zum Abschluss ist ein Projektteil zu erbringen sowie ein Prüfungsgespräch zu absolvieren. Die Details zum Projektteil werden jeweils zu Semesterbeginn bekannt gegeben. Die Bewertung basiert auf dem Prüfungsgespräch. Das Prüfungsgespräch kann entweder einzeln für dieses Fach oder je nach Modulkonstellation auch als Komplexprüfung gestaltet werden.

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Fahrzeugtechnik 2009

Master Fahrzeugtechnik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013

Master Mathematik und Wirtschaftsmathematik 2008

Modul: Entwicklung integrierter HW/SW Systeme

Modulnummer:101300

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Modul: Entwicklung integrierter HW/SW Systeme

Entwicklung integrierter HW/SW Systeme

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101127 Prüfungsnummer:2200418

Fachverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 105 SWS: 4.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2235

2.FS 3.FS 4.FS 5.FS 1.FS 6.FS 7.FS V S P S P S P S P S Ρ S P S SWS nach Fachsemester 2 2 0

Lernergebnisse / Kompetenzen

Vorkenntnisse

Inhalt

Medienformen

Literatur

Detailangaben zum Abschluss

Note wird zu 60% aus mündl. Prüfungsgespräch (20 min) und 40% Projektarbeit gebildet.

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2010

Modul: Systementwurf

Modulnummer:101301

Modulverantwortlich: Prof. Dr. Armin Zimmermann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Bachelor Informatik 2013 Modul: Systementwurf

Systementwurf

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 101161 Prüfungsnummer:2200466

Fachverantwortlich: Prof. Dr. Armin Zimmermann

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2236

	1	I.FS)		2.FS	3		3.FS	3		1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester													2	1	1						

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung behandelt Verfahren zum modellbasierten Entwurf, der Synthese und Optimierung vor allem von diskreten eingebetteten Systemen.

Es werden Modelle und Entwurfsmethoden sowie Anwendungen vorgestellt.

Vorkenntnisse

Inhalt

- Einführung
- Systemenwurf Vorgehen, Phasen, Modelle
- · Stochastische Grundlagen Zufallsvariablen, Verteilungen
- · Stochastische diskrete Ereignissysteme Modelle, Automaten, Prozesse
- Warteschlangen
- Modellierungs- und Simulationswerkzeug MLDesigner
 - Discrete Event Domain (DE), Continuous Time Domain (CT)
- Simulation Algorithmus, Zufallszahlen, Parameterschätzung
- · Leistungsbewertung Vorgehen, Leistungsmaße, Optimierung

Medienformen

http://www.tu-ilmenau.de/sse/lehre/winter-201314/systementwurf/

Literatur

Systems Engineering and Analysis, Blanchard, Fabrycky; Prentice Hall 2006

The Art of Computer System Performance Analysis, Raj Jain; Wiley 1991

Simulation Modeling and Analysis, Law, Kelton; McGraw-Hill 2000, (3rd edition) Introduction to Discrete Event Systems, Cassandras, Lafortune; Kluwer 1999.

Queueing Networks and Markov Chains, Bolch, Greiner, de Meer, Trivedi; Wiley 2006 (2nd Edition).

- Teilnehmer bearbeiten in Gruppen zu 2 Studierenden theoretische und praktische Aufgaben. Dazu werden Softwarewerkzeuge für die Modellierung und Auswertung diskreter Modelle eingesetzt.
 - Übungsaufgaben
 - Mündliche Prüfung von etwa 20 Minuten

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Modul: Telematik 2 / Leistungsbewertung

Modulnummer 101302

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden verstehen grundlegende Anforderungen an und Verfahren für die Realisierung der Datenübertragung für Multimedia- und weitere Anwendungen mit fortgeschrittenen Anforderungen an die Dienstgüte sowie für Anwendungen, die eine Punkt-zu-Mehrpunkt-Kommunikation (Multicast) erfordern. Die Studierenden verfügen über Kenntnisse und Überblickswissen zur Leistungsbewertung von Kommunikationssystemen mittels diskreter Ereignissimulation und mathematischer Modellierung mittels Markov-Ketten und Warteschlangennetze. Die Studenten können Eigenschaften von Netzwerken erfassen und selbstständig evaluieren.

Methodenkompetenz: Die Studierenden sind in der Lage, die grundlegende Verfahren und Methoden der Leistungsbewertung zur Bestimmung von Leistungskenngrößen anzuwenden und die ermittelten Werte systematisch auszuwerten.

Systemkompetenz: Die Studierenden verstehen die grundlegenden Konzepte und Grenzen der diskreten Simulation sowie der Modellierung mit Warteschlangensystemen.

Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen verteilter Anwendungen in der Gruppe.

Vorraussetzungen für die Teilnahme

Vorlesung: Telematik 1

Modul: Telematik 2 / Leistungsbewertung

Telematik 2 / Leistungsbewertung

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 101145 Prüfungsnummer:2200442

Fachverantwortlich: Prof. Dr. Günter Schäfer

Fakultät für Informatik und Automatisierung Fachgebiet: 2253	Leistungspun	rte:	6	Workload (h):	180	Anteil Selbststudium (h):	135	SWS:	4.0	
	Fakultät für In	orma	tik und	d Automatisierung					Fachgebiet:	2253

	1	I.FS	}	2	2.FS	3	,	3.FS	3	4	I.FS	3	į	5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester													3	1	0						

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verstehen die spezifischen Dienstgüteanforderungen von Multimediaanwendungen und können alternative Systemkonzepte für die Einführung einer Dienstgüteunterstützung in das Internet bewerten.

Sie verfügen über Kenntnisse und Überblickswissen zur Leistungsbewertung von Kommunikationssystemen mittels diskreter Ereignissimulation und mathematischer Modellierung mittels Markov-Ketten und Warteschlangennetze. Die Studenten können Eigenschaften von Netzwerken erfassen und selbstständig evaluieren.

Methodenkompetenz: Die Studierenden sind in der Lage, anhand der Anforderungen von Applikationen Architekturen und Protokolle zu identifizieren, die zur Realisierung notwendig sind.

Sie können grundlegende Verfahren und Methoden der Leistungsbewertung zur Bestimmung von Leistungskenngrößen anwenden und die ermittelten Werte systematisch auswerten.

Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenwirken der Komponenten eines Netzes als System.

Weiterhin verstehen sie die grundlegenden Konzepte und Grenzen der diskreten Simulation sowie der Modellierung mit Warteschlangensystemen und können einfache Systeme modellieren und in Bezug auf wesentliche Systemkenngrößen bewerten.

Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen für spezifische Fragestellungen in der Gruppe.

Vorkenntnisse

Vorlesungen "Algorithmen und Programmierung" sowie Vorlesung "Telematik 1" sollten möglichst bestanden sein (Empfehlung).

Inhalt

- 1. Multimediaanwendungen: Anforderungen und Realisierung im Internet
- 2. Dienstgüteunterstützung im Internet
- 3. Multiprotocol-Label-Switching als Beispiel eines verbindungsorientierten Paketdienstes
- 4. System- & Modellbegriff, Leistungskenngrößen, Grundtechniken der Leistungsbewertung (Experiment, Simulation, theoretische Analyse)
- 5. Auffrischung grundlegender mathematischer Zusammenhänge: Zufallsexperiment, Stichprobe,

Wahrscheinlichkeitsdichtefunktion, Wahrscheinlichkeitsverteilungsfunktion, Mittelwert und Varianz, zentraler Grenzwertsatz, Konfidenzintervall, Transientenerkennung

- 6. Simulative Leistungsbewertung: Discrete Event Simulation, prozessbasierte und ereignisgesteuerte Programmierung von Simulationsmodellen, Ergebnisaufzeichnung und Auswertung 7. Analytische Leistungsbewertung: Grundbegriffe der Warteschlangentheorie, Kendall's Notation, Ankunftsprozesse, Bedienprozesse, Little's Theorem, Markovprozesse, statistisches Gleichgewicht
- 8. Elementare Wartesysteme, Ermittlung der Leistungskenngrößen

- 9. Offene und geschlossene Wartesysteme, Methoden zur Bestimmung der Leistungskenngrößen (Das Jackson-Theorem für offene Netze, Gordon/Newell -Theorem für geschlossene Netze.
- 10. Systematische Evaluierung großer Systeme

Medienformen

Vorlesung mit Tafel und Folien-Präsentationen, Begleitende Übungen.

Literatur

- [1] A. S. Tanenbaum. Computernetzwerke. Pearson Education.
- [2] J. F. Kurose, K. W. Ross. Computernetze. Pearson Education.
- [3] A. M. Law, W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill.
- [4] R. Jain. The Art of Performance Analysis. John Wiley & Sons

Detailangaben zum Abschluss

Ohne

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Modul: Projektseminar Simulation von Internet-Protokollfunktionen

Modulnummer 101303

Modulverantwortlich: Prof. Dr. Günter Schäfer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Projektseminar Simulation von Internet-Protokollfunktionen

Projektseminar Simulation von Internet-Protokollfunktionen

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 5648 Prüfungsnummer:2200205

Fachverantwortlich: Prof. Dr. Günter Schäfer

Leistungspunkte:	5	Workload (h): 150	0 <i>A</i>	Anteil Selbststudium (h):	60	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2253

	1	l.FS)	2	2.FS	3		3.FS	3	4	1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р
Fachsemester										0	4	0									

Lernergebnisse / Kompetenzen

- Fachkompetenz: Die Studierenden verfügen über fundierte Kenntnisse zu den im Internet eingesetzten Protokollen und zur Methodik der Diskreten Simulation.
- Methodenkompetenz: Die Studierenden können Netzwerke und Protokolle modellieren und simulativ untersuchen. Sie sind in der Lage, aus den Simulationsdaten die Leistungsparameter zu ermitteln.
- Systemkompetenz: Die Studierenden verstehen das Zusammenwirken der Protokolle in einem Netzwerk und den Zusammenhang zwischen realem Netzwerk und dem Simulationsmodell.
- Sozialkompetenz: Die Studierenden können Simulationsprogramme im Team implementieren und im integrierten Gesamtsystem Fehler gemeinsam identifizieren und beheben.

Vorkenntnisse

Vorlesung Leistungsbewertung empfohlen Kenntnisse C++ Programmierung empfohlen

Inhalt

Simulation ist ein wichtiges Instrument bei dem Entwurf und der Bewertung von Kommunikationsprotokollen, da das Protokollverhalten und kritische Leistungskenngrößen oft nicht mit anderen Techniken vor einer großflächigen Einführung eines Protokolls adäquat bewertet werden können. In diesem Projektseminar sollen grundlegende Protokollmechanismen wie Paketweiterleitung, Routing, Fehlerkontrolle sowie Fluss- und Staukontrolle simulativ erprobt werden, so dass die wesentlichen im Internet zum Einsatz kommenden Konzepte anschaulich erfahren und experimentell untersucht werden können. Die Programmierung erfolgt hierbei mit dem Open-Source-Werkzeug OMNet++ in der Programmiersprache C++ (grundlegende Vorkenntnisse in Java sollten bei entsprechender Bereitschaft zum Erlernen von C++ ausreichend sein).

Medienformen

Computer, Software, Arbeitsblätter, Lehrbuch

Literatur

- A.M. Law, W. D. Kelton. Simulation Modeling and Analysis. McGraw-Hill.2000.
- B. Stroustrup. The C++ Programming Language. 3rd edition, Addison-Wesley, 2000.
- A. Varga. OMNeT++: Object-Oriented Discrete Event Simulator. www.omnetpp.org

Detailangaben zum Abschluss

Bearbeiten der Aufgabenzettel + Teilnahme an wöchentlichen Versuchen + 20 minütiges Prüfungsgespräch

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008 Master Wirtschaftsinformatik 2009 Bachelor Informatik 2010 Bachelor Ingenieurinformatik 2013 Bachelor Informatik 2013

Modul: Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Modulnummer 101304

Modulverantwortlich: Dr. Jürgen Nützel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

siehe Fachbeschreibung

Vorraussetzungen für die Teilnahme

Modul: Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Content-Verwertungsmodelle und ihre Umsetzung in mobilen Systemen

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 101135 Prüfungsnummer:2200429

Fachverantwortlich: Dr. Jürgen Nützel

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informat	tik un	nd Automatisierung					Fachgebiet:	22

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	2	0			

Lernergebnisse / Kompetenzen

Die Vorlesung behandelt Fragen zum Urheberrecht behandeln (erste Kernkompetenz). Ebenso werden unterschiedliche Verwertungsmodelle für mobile Inhalte vorgestellt. Dem Studierenden sollte dabei verdeutlicht werden, welche Inhalte sich für welches Verwertungsmodell eignen. So soll der Studierende in die Lage versetzt werden, mit eigenen Apps erfolgreich geschäftstätig zu werden (zweite Kernkompetenz).

Neben den technischen Aspekten von DRM werden den Studenten auch die ökonomische Problemstellungen und die urheberrechtliche Fragestellungen rund um DRM nahegebracht (dritte Kernkompetenz).

Vorkenntnisse

Grundkenntnisse in einer OO Programmiersprache, vorzugsweise Java

Inhalt

Inhaltliche Schwerpunkte sind

- Vorstellung der unterschiedlichen mobilen Endgerätetypen und deren spezifischen technischen Merkmale
- Vorstellung der Besonderheiten von Plattformen/Betriebs-systeme für mobile Endgeräte. Dies erfolgt primär am Beispiel von Android und Apple iOS
- Der Lebenszyklus einer App für Android, Apple iOS und Windows RT, von der Programmierung durch den Entwickler über die Einreichung/Veröffentlichung im AppStore bzw. oder bei Google-Play
- Unterschiedliche Abrechnungsmodelle für mobile Inhalte, die über spezielle Apps dem Nutzer zugänglich gemacht werden; dazu zählen auch die unterschiedlichen Möglichkeiten von In-App-Payment bzw. den vergleichbaren Ansatz bei Android (Google-Play)

Neben einfachen Beispiel-Applikation werden auch kommerzielle Apps vorgestellt wie z.B. Player-Apps für das UltraViolet-System, welches die BlueRay ablösen wird

Medienformen

Präsentationen mit Projektor und Tafel, Bücher und Fachaufsätze, Programmierprojekt

Literatur

Detailangaben zum Abschluss

schriftliche Fachprüfung mit Testat über in den Kurs integriertes Programmierprojekt als Voraussetzung

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsinformatik 2014

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2010

Modul: Nebenfach für IN Bsc(Wahl eines Moduls)

Modulnummer5360

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Im Nebenfach/ Anwendungsfach im Bachelor Informatik erwerben die Studierenden Kenntnisse und Kompetenzen in einem Anwendungsgebiet der Informatik.

Vorraussetzungen für die Teilnahme

siehe individuelle Fächerbeschreibungen

Detailangaben zum Abschluss

keine

Modul: Automatisierung

Modulnummer8361

Modulverantwortlich: Prof. Dr. Pu Li

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik, Physik, Elektrotechnik

Detailangaben zum Abschluss

Einzelabschlüsse der Fächer

Bachelor Informatik 2013 Modul: Automatisierung

Grundlagen der Elektrotechnik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100255 Prüfungsnummer:2100404

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2116

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und auf einfache Problemstellungen anwenden können.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu analysieren. Weiterhin soll die Fähigkeit zur Analyse einfacher nichtlinearer Schaltungen bei Gleichstromerregung vermittelt werden.

Die Studierenden sollen die Beschreibung der wesentlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch einwellige Wechselspannungen im stationären Fall zu analysieren, die notwendigen Zusammenhänge und Methoden kennen und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen und ihr Wissen auf praxisrelevante Aufgabenstellungen anwenden können.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

- Grundbegriffe und Grundbeziehungen der Elektrizitätslehre
- (elektrische Ladung, Kräfte auf Ladungen, Feldstärke, Spannung, Potenzial)
 - Vorgänge in elektrischen Netzwerken bei Gleichstrom

(Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Netzwerkberechnung)

- · Das stationäre elektrische Strömungsfeld
- (Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien)
 - Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

(Grundgleichungen, Berechnung symmetrischer Felder, Kapazität und Kondensatoren, Verschiebungsstrom, Auf- und Entladung eines Kondensators)

· Der stationäre Magnetismus

(Grundgleichungen, magnetische Materialeigenschaften, Berechnung einfacher Magnetfelder)

· Elektromagnetische Induktion

(Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion, Selbstinduktion und Induktivität, Gegeninduktion und Gegeninduktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer

Induktivität bei Gleichspannung)

• Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich)

(Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C)

· Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung

(Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, Frequenzkennlinien und Übertragungsverhalten)

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik; Band 1: Gleichstrom - Felder - Wechselstrom; 2009; Unicopy Campus Edition

Detailangaben zum Abschluss

schriftliche Prüfungsleistung 90 min

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2013

Bachelor Informatik 2013 Modul: Automatisierung

Regelungs- und Systemtechnik 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1471 Prüfungsnummer:2200064

Fachverantwortlich: Prof. Dr. Christoph Ament

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2211

	1	I.FS	`	2	2.FS	3	,	3.FS	3		I.FS	S	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Die Studierenden können lineare, zeitinvariante dynamische Systeme im Blockschaltbild sowie im Zeit- und Bildbereich beschreiben und die Darstellungen ineinander überführen. Sie können deren Systemeigenschaften wie z.B. die Stabilität analysieren. Sie kennen mehrere Verfahren zur Reglersynthese für Eingrößensysteme mit ihren jeweiligen Voraussetzungen und können für diese Systeme einen geeigneten Regler entwerfen. Zur Verbesserung des Führungs- und Störverhaltens können sie weiterhin Kaskadenregler, Vorsteuerung und Störkompensation realisieren.

Vorkenntnisse

Vorausgesetzt wird der erfolgreiche Abschluss folgender Fächer:

- Mathematik 1 und 2
- Physik 1 und 2
- Elektrotechnik 1

Inhalt

Ganz gleich, ob es sich um die Dynamik eines Fahrzeugs oder eines Mikrosystems, um thermische oder elektrische Prozesse handelt: Dies alles sind dynamische (d.h. zeitveränderliche) Systeme, die in einheitlicher Weise beschrieben werden können. Im ersten Teil der Vorlesung (Kapitel 1-4) wird diese Beschreibung dynamischer Systeme modular im Blockschaltbild, durch Differenzialgleichungen im Zeitbereich und durch die Übertragungsfunktion im Bildbereich eingeführt. Der Frequenzgang kann sowohl auf theoretischem als auch auf experimentellem Weg zur Systembeschreibung gewonnen werden und wird mit seinen grafischen Darstellungen (Ortskurve und Bode-Diagramm) eingeführt.

Im zweiten Teil können nun Systemeigenschaften analysiert werden (Kapitel 5): Mit welcher Dynamik reagiert ein System? Schwingt es dabei, und ist es überhaupt stabil?

Schließlich werden im letzten Teil der Vorlesung Methoden entwickelt, welche die Dynamik eines Systems gezielt verbessern. Dieser Eingriff wird als Regelung bezeichnet. In Kapitel 6 wird der Standardregelkreis eingeführt und zugehörige Reglerentwurfsverfahren entwickelt. Diese Struktur wird in Kapitel 7 erweitert. Kapitel 8 zeigt kurz auf, wie ein so entworfener Regler realisiert oder implementiert werden kann.

Gliederung:

- 1. Beschreibung kontinuierlicher Systeme durch das Blockschaltbild
- 2. Beschreibung in Zeitbereich
- 3. Beschreibung im Bildbereich
- 4. Beschreibung durch den Frequenzgang
- 5. Systemeigenschaften
- 6. Regelung

- 7. Erweiterung der Reglerstruktur
- 8. Realisierung von Regelungen

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Über Beamer steht ergänzend das Skript mit Beispielen und Zusammenfassungen zur Verfügung. Zur Veranschaulichung werden numerische Simulationen gezeigt. Das Skript kann im Copyshop erworben oder im PDF-Format frei herunter geladen werden. Auf der Vorlesungs-Webseite finden sich weiterhin aktuelle Informationen, Übungsaufgaben und Unterlagen zur Prüfungsvorbereitung.

Literatur

- Föllinger, O.: Regelungstechnik, 11. Auflage, Hüthig, 2012.
- Lunze, J.: Regelungstechnik 1 Systemtheorietische Grundlagen, Analyse und Entwurf einschleifiger Regelungen, Springer, 8. Auflage, 2010
- Lunze, J.: Automatisierungstechnik Methoden für die Überwachung und Steuerung kontinuierlicher und ereignisdiskreter Systeme, Springer, 2. Auflage, 2008.
 - · Nise, N. S.: Control Systems Engineering, Wiley Text Books; 6th edition, 2011

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung MR

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Informatik 2013 Modul: Automatisierung

Prozessanalyse 1

Fachabschluss: Prüfungsleistung mündlich 45 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1589 Prüfungsnummer:2200021

Fachverantwortlich: Prof. Dr. Christoph Ament

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2211

	1	I.FS)	2	2.FS	3		3.FS	3	4	1.FS)	ţ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden können für wesentliche technische Systeme ein mathematisches Modell aufbauen, das für Analyse, Simulation und Reglerentwurf geeignet ist. Sie kennen wesentliche Modellbildungsprinzipien der theoretischen Modellbildung und können im Rahmen einer experimentellen Modellbildung eine Versuchsplanung und Parameteridentifikation durchführen.

Vorkenntnisse

Vorausgesetzt wird der erfolgreiche Abschluss folgender Fächer:

- · Mathematik 1 und 2
- Physik 1 und 2
- Elektrotechnik 1

Inhalt

Möchte man das Verhalten eines technischen Systems vor seiner Realisierung simulativ untersuchen oder eine Regelung für das System entwerfen, benötigt man ein Modell (also eine mathematische Beschreibung) des Systems. Die Entwicklung eines geeigneten Modells kann sich in der Praxis als aufwändig erweisen. In der Vorlesung werden systematische Vorgehensweisen und Methoden für eine effiziente Modellbildung entwickelt. Dabei wird in die Wege der theoretischen und experimentellen Modellbildung unterschieden.

Nach einer Einführung (Kapitel 1) werden zunächst Methoden der theoretischen Modellbildung (Kapitel 2-3) vorgestellt. Ausgangspunkt sind Modellansätze und Modellbildungsprinzipien in verschiedenen physikalischen Domänen wie z.B. der Mechanik. Diese werden durch Analogierbetrachtungen und die Darstellung im Blockschaltbild miteinander verknüpft. Für eine anschließende Modellvereinfachung werden Methoden der Linearisierung, Ordnungsreduktion, Orts- und Zeitdiskretisierung vermittelt.

Für die experimentelle Modellbildung (Kapitel 4-6) werden allgemeine Modellansätze eingeführt und anschließend Methoden Identifikation von Modellparametern aus Messdaten entwickelt. Zur effizienten experimentellen Analyse von Systemen mit mehreren Einflussfaktoren wird eine geeignete Versuchsplanung und -analyse entwickelt. Den Abschluss bildet eine Klassifikation der ermittelten Modelle (Kapitel 7).

Die Kapitel der Vorlesung gliedern sich wie folgt:

- 1. Einführung
- 2. Physikalische ("Whitebox") Modelle
- 3. Modellvereinfachung
- 4. Allgemeine ("Blackbox") Modelle
- 5. Parameteridentifikation
- 6. Experimentelle Versuchsplanung und -analyse

7. Modelle

Medienformen

Die Konzepte werden während der Vorlesung an der Tafel entwickelt. Über Beamer steht ergänzend das Skript mit Beispielen und Zusammenfassungen zur Verfügung. Zur Veranschaulichung werden numerische Simulationen gezeigt. Das Skript kann im Copyshop erworben oder im PDF-Format frei herunter geladen werden. Auf der Vorlesungs-Webseite finden sich weiterhin aktuelle Informationen, Übungsaufgaben und Unterlagen zur Prüfungsvorbereitung.

Literatur

- R. Isermann, M. Münchhof: Identification of Dynamic Systems An Introduction with Applications, Springer Verlag, 2011
- J. Wernstedt: Experimentelle Prozessanalyse, VEB Verlag Technik, 1989
- K. Janschek: Systementwurf mechatronischer Systeme, Methoden Modelle Konzepte, Springer, 2010
- W. Kleppmann: Taschenbuch Versuchsplanung, Produkte und Prozesse optimieren, 7. Auflage, Hanser, 2011

Detailangaben zum Abschluss

Bachelor Informatik 2010

verwendet in folgenden Studiengängen

Bachelor Informatik 2013
Bachelor Maschinenbau 2008
Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2013 Modul: Automatisierung

Prozessmess- und Sensortechnik 1

Fachabschluss: Prüfungsleistung mündlich 20 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1467 Prüfungsnummer:2300076

Fachverantwortlich: Prof. Dr. Thomas Fröhlich

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Maschir	nenbau						Fachgebiet:	2372

	1	I.FS	;	2	2.FS	3		3.FS	3		I.FS	5	į	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	1						

Lernergebnisse / Kompetenzen

Die Studierenden können sich in der metrologischen Begriffswelt bewegen und kennen die mit der Metrologie verbundenen Wechselwirkungen in Wirtschaft und Gesellschaft. Im Gebiet der Mess- und Automatisierungstechnik überblicken die Studierenden die Messverfahren der Längenmesstechnik, Spannungs- und Dehnungsmesstechnik und Kraftmess- und Wägetechnik hinsichtlich ihrer Funktion, Eigenschaften, mathematischen Beschreibung für statisches und dynamisches Verhalten, Anwendungsbereich und Kosten. Die Studierenden können in bestehenden Messanordnungen die eingesetzten Prinzipien erkennen und bewerten. Die Studierenden sind fähig, Aufgaben der elektrischen Messung nichtelektrischer Größen zu analysieren, geeignete Messverfahren zur Lösung der Messaufgaben auszuwählen, Quellen von Messabweichungen zu erkennen und den Weg der Ermittlung der Messunsicherheit mathematisch zu formulieren und bis zum vollständigen Messergebnis zu gehen. Mit der Lehrveranstaltung erwerben die Studierenden zu etwa 60% Fachkompetenz. Die verbleibenden 40% verteilen sich mit variierenden Anteilen auf Methoden- und Systemkompetenz. Sozialkompetenz erwächst aus praktischen Beispielen in den Lehrveranstaltungen und der gemeinsamen Problemlösung im Seminar.

Vorkenntnisse

Abgeschlossenes ingenieurwissenschaftliches Grundstudium

Inhalt

Grundlagen der Messtechnik:

Prozessmesstechnik, Sensortechnik, Wandlungs- und Strukturschema, Messwandlung; Metrologie und metrologische Begriffe, PTB, DKD/DAkkS, Normale, Kalibrieren, Eichen; Einheiten, SI-System; Messen, Messabweichungen (Fehler), ISO-Guide, Messunsicherheit, Messergebnis; Ausgleichsrechnung.

Temperaturmesstechnik:

Kelvindefinition, Thermodynamische Temperaturskale, Gasthermometer, ITS 90, Tripelpunkte, Erstarrungspunkte, Interpolationsinstrumente; Berührungsthermometer, Flüssigkeitsthermometer; Thermoelemente, Widerstandsthermometer, Messschaltungen; Strahlungsthermometer, Strahlungsgesetze; Spektralpyrometer, Gesamtstrahlungspyrometer. Spannungs- und Dehnungsmesstechnik:

Bedeutung der Spannungs- und Dehnungsmesstechnik, Überblick der Messverfahren; Dehnungsmessstreifen, K-Faktor, messtechnische Eigenschaften; Brückenschaltungen für DMS, Vorzeichenregel, Temperatur- und Kriechkompensation; Anwendung von DMS, geometrische Integration, Kraft-Momenten-Sensoren.

Kraftmesstechnik:

Prinzip der Kraftmessung; Verformungskörper, DMS-Kraftsensoren; Elektromagnetische Kraftkompensation, Parallellenkerkrafteinleitungssystem; Magnetoelastische Kraftsensoren, Piezoelektrische Kraftsensoren, Gyroskopische Kraftmesszelle, Schwingsaitenkraftsensor, Interferenzoptische Kraftsensoren, Faseroptische Kraftsensoren; Dynamisches

Verhalten von Kraftsensoren, Ersatzmodell, Bewegungsdifferentialgleichung, Frequenzgänge, dynamische Wägelinie. Wägetechnik:

Einheit der Masse; Bauelemente einer Waage, Empfindlichkeit, Auftriebskorrektur; Balkenwaage, Laufgewichtswaage, Neigungswaage, Tafelwaage, Brückenwaage, Einfluss von Hebelübersetzungen auf das dynamische Verhalten. Praktikum Prozessmesstechnik mit einer Auswahl von 3 aus 6 Versuchen PMS.

Medienformen

Nutzung der Möglichkeiten von Beamer/Laptop mit Präsentationssoftware. Für die Studierenden werden Lehrmaterialien bereitgestellt. Sie bestehen u.a. aus kapitelweise nummerierten Arbeitsblättern mit Erläuterungen und Definitionen sowie Skizzen der Messprinzipien und -geräte, deren Inhalt mit der Präsentation identisch ist. Eventuelle Ergänzungen enthält ein operativer universitätsinterner Downloadbereich mit variablem Inhalt.

Literatur

Die Praktikumsanleitungen sind über die Homepage des Instituts für Prozessmess- und Sensortechnik uniintern (IP-Bereich) erreichbar:

http://www.tu-ilmenau.de/pms/studium/lehrveranstaltungen/praktika/

 $\label{eq:continuous} \textbf{Sie enthalten jeweils eine Literaturzusammenstellung. Die angegebenen B\"{u}cher sind im Semesterapparat}$

Prozessmesstechnik zu finden. Ein Großteil ist Bestandteil der Lehrbuchsammlung.

Zugriff auf den elektronischen Semesterapparat erfolgt über ftp-Server. Der entsprechende aktuelle Link ist auf http://www.tu-ilmenau.de/pms/studium/ unter "Praktikumsbelehrung" ersichtlich.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Informatik 2013 Modul: Automatisierung

Regelungs- und Systemtechnik 2

Fachabschluss: Prüfungsleistung mündlich 45 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1472 Prüfungsnummer:2200020

Fachverantwortlich: Prof. Dr. Johann Reger

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2213

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	I.FS	3	į	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Basierend auf der im Fach Regelungs- und Systemtechnik eingeführten Zustandsraummethodik können die Studenten die Zustandsgleichung eines Systems im Zeit- und Laplacebereich lösen. Die Studierenden lernen die wichtigsten Eigenschaften linearer Systeme im Zustandsraum, wie Stabilität, Steuerbarkeit und Beobachtbarkeit, kennen und beurteilen. Die Studierenden können Systeme in den gebräuchlichen Normalformen (Steuerungs- und Beobachtungsnormalformen) beschreiben, was Voraussetzung für den Entwurf von Zustandsreglern und Beobachtern ist. Die Studierenden sind in der Lage Zustandsregler auf verschiedenen Wegen sowohl für Eingrößen- als auch für Mehrgrößensysteme zu entwerfen. Weiterhin können die Studenten erweiterte Strukturen, wie z.B. die Zustandsregelung mit Vorfilter zur Sicherung der Stationarität, bemessen.

Vorkenntnisse

Abgeschlossene Fächer Mathematik 1-3, Physik 1-2, Regelungs- und Systemtechnik und des Moduls Informatik

Inhalt

- 1 Allgemeine Lösung der Zustandsgleichung
- 1.1. Lösung der skalaren Gleichung
- 1.2. Lösung der Vektor-Differentialgleichung
- 1.3. Berechnung der Transitionsmatrix 1.3.1. Direkte Auswertung
- 1.3.2. Berechnung der Transitionsmatrix über den Satz von Cayley-Hamilton
- 1.3.3. Berechnung der Transitionsmatrix durch Ähnlichkeitstransformation
- 1.4. Auswertung der Lösung der Zustandsgleichung
- 1.4.1. Impulsantwort und Sprungantwort (siehe auch RT1)
- 1.4.2. Lösung der Zustandsgleichung im Laplacebereich
- 1.5. Linearisierung um die Ruhelage
- 2 Strukturelle Eigenschaften linearer Systeme im Zustandsraum
- 2.1. Stabilitätsverhalten eines linearen zeitinvarianten Systems
- 2.2. Anmerkungen zu Eigenwert-Lage und Zeitverhalten
- 2.3. Steuerbarkeit
- 2.3.1. Steuerbarkeitskriterium Kalman
- 2.3.2. Steuerbarkeitskriterium nach Gilbert und Hantus
- 2.4. Beobachtbarkeit
- 2.4.1. Beobachtbarkeitskriterium nach Kalman
- 2.4.2. Beobachtbarkeitskriterium nach Gilbert/Hantus
- 2.5. Normalformen

- 2.5.1. Jordansche Normalform
- 2.5.2. Beobachtungsnormalform 1.Art (BNF)
- 2.5.3. Beobachtungsnormalform 2.Art
- 2.5.4. Steuerungsnormalform 1. Art (SNF)
- 2.5.5. Steuerungsnormalform 2. Art (SNF 2. Art)
- 3 Struktur von Zustandsgleichungen
- 3.1. Vorfilterberechnung auf Stationarität
- 3.2. Vorsteuerung mit Führungsgrößenaufschaltung
- 4 Zustandsreglersynthese 4.1. Polvorgabe (Eigenwert-Vorgabe)
- 4.2. Polvorgabe bei Transformation auf SNF 2.Art
- 4.3. Modale Regelung
- 4.4. Reglerentwurf durch Minimieren eines quadratischen Gütemaßes (Riccati Regler)
- 4.4.1. Die Ljapunov-Gleichung
- 4.4.2. Berechnung des Riccati-Reglers
- 4.4.3. Iterativ numerische Lösung der Riccati-Gleichung
- 4.4.4. Direkte Methode zur Lösung der Riccati-Gleichung
- 4.4.5. Vergleich zwischen Polvorgabe und Riccati-Entwurf
- 4.5. Entwurf von Regelungen für MIMO durch Entkopplung
- 4.5.1. Motivation
- 4.5.2. Differenzordnung
- 4.5.3. Direkte Systembeschreibung
- 4.5.4. Entkopplung
- 4.6 Vollständige modale Synthese nach Roppenecker
- 4.6.1 Allgemeine Zustandsreglerformel

Medienformen

Skript in Verbindung mit Folien, Tafelschrieb

Literatur

- Föllinger, O.: Regelungstechnik. Hüthig; Auflage: 5. Auflage 1985
- · Lunze, J.: Regelungstechnik 2. Springer, Berlin 2004
- Unbehauen, H.: Regelungstechnik II, Vieweg Verlag 2000

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Informatik 2013 Modul: Automatisierung

Automatisierungstechnik 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1319 Prüfungsnummer:2200026

Fachverantwortlich: Prof. Dr. Matthias Althoff

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2215

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden erwerben die Grundlagen zur Modellierung, Steuerung und Verifikation diskreter Systeme. Die Veranstaltung ist somit eine ideale Ergänzung zur Regelungs- und Systemtechnik, in der die Regelung kontinuierlicher Systeme gelehrt wird. Neben den theoretischen Grundlagen werden auch in der Praxis verbreitete Programmiersprachen nach der Norm IEC 61131-3 zur Implementierung von Steuerungen vermittelt.

Vorkenntnisse

Keine Vorkenntnisse erforderlich (wünschenswert sind Vorkenntnisse in Regelungs- und Systemtechnik)

Inhalt

Spezifikation von Automatisierungsaufgaben

Wiederholung der Boolschen Algebra

Endliche Automaten

Petri Netze

Statecharts

Systematischer Entwurf von Steuerungen

Verifikation von Steuerungen

SPS-Programmierung nach IEC 61131-3

Automatische Codegenerierung

Leittechnik

Medienformen

Folien zur Vorlesung, Tafelanschrieb

Literatur

- L. Litz: Grundlagen der Automatisierungstechnik, Oldenbourg Wissenschaftsverlag, 2005.
- J. Lunze: Automatisierungstechnik, Oldenbourg Wissenschaftsverlag, 2008.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Ingenieurinformatik 2008
Bachelor Technische Kybernetik und Systemtheorie 2010
Bachelor Elektrotechnik und Informationstechnik 2008
Bachelor Informatik 2010

Bachelor Informatik 2013 Modul: Automatisierung

Labor Automatisierungstechnik und Systemtechnik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 6418 Prüfungsnummer:2200239

Fachverantwortlich: Prof. Dr. Johann Reger

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	1.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2213

	1	1.FS	3	2	2.FS	3		3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																0	0	1			

Lernergebnisse / Kompetenzen

Anwendung der erworbenen Kenntnisse in Vorlesungen und Seminaren an industriell eingesetzten Reglern und speicherprogrammierbaren Steuerungen; Anwendung von Modellbildungs- und Prozessanalysemethoden an praxisrelevanten Aufgabenstellungen; Auslegung von Mehrgrößenregelungen und Test am Laboraufbau Dreitanksystem; Formulierung und Lösung von Simulations- und Optimierungsaufgaben unter Anwendung unterschiedlicher Methoden mit Praxishintergrund

Vorkenntnisse

Grundlagen der Automatisierungs-, Regelungs-, Systemtechnik, Prozessoptimierung 1, Simulation, Modellbildung, Prozessanalyse

Inhalt

Versuche: Industrielle Kompaktregler, SPS-Programmierung, Ausgewählte Methoden der Korrelationsanalyse, Methoden der statischen Modellbildung, Nichtlineare Optimierung, Mehrgrößenregelungen - Dreitanksystem, Numerische Integrationsverfahren zur Lösung von Simulationsaufgaben

Medienformen

Versuchsanleitungen (im Internet verfügbar), Vorlesungsskripte, Lehrbücher

Literatur

Lehrbücher zu Automatisierungs-, Regelungs-, Systemtechnik, Modellbildung, Systemanalyse, Parameteroptimierung, Simulation

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010 Bachelor Informatik 2010 Bachelor Informatik 2013 Modul: Automatisierung

Prozessoptimierung 1

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1469 Prüfungsnummer:2200024

Fachverantwortlich: Prof. Dr. Pu Li

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2212

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden können

- die Grundlagen, Problemstellungen und Methoden der statischen Prozessoptimierung klassifizieren,
- · Methoden und Werkzeuge anwenden,
- unterschiedliche Problemstellungen und mathematische Herleitungen analysieren und generieren sowie

Anwendungsfälle für industrielle Prozesse analysieren, entwickeln und bewerten.

Vorkenntnisse

Grundlagen der Mathematik, Physik, Elektrotechnik, Regelungs- und Systemtechnik

Inhalt

Optimierung des Designs und des Betriebs industrieller Prozesse

- · Lineare und Nichtlineare Programmierung
- Mixed-Integer Optimierung
- · Anwendung von Optimierwerkzeugen (GAMS) am Rechner
- Praktische Anwendungsbeispiele

Lineare Programmierung:

Theorie der linearen Programmierung, Freiheitsgrad, zulässiger Bereich, graphische Darstellung/Lösung, Simplexmethode, Dualität, Mischungsproblem, optimale Produktionsplanung.

Nichtlineare Optimierung:

Konvexitätsanalyse, Probleme ohne und mit Nebenbedingungen, Optimalitätsbedingungen, Methode des goldenen Schnitts, das Gradienten-, Newton-, Quasi-Newton-Verfahren, Probleme mit Nebenbedingungen, Kuhn-Tucker-Bedingungen, SQP-Verfahren (Sequentiell Quadratische Programmierung), "Active-Set"-Methode, Approximation der Hesse-Matrix, Anwendung in der optimalen Auslegung industrieller Prozesse.

Mixed-Integer Nichtlineare Programmierung (MINLP):

Mixed-Integer Lineare und Nichtlineare Programmierung (MILP, MINLP), Branch-and-Bound-Methode, Master-Problem, Optimierungssoftware GAMS, Anwendung im Design industrieller Prozesse.

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb

Literatur

- U. Hoffmann, H. Hofmann: Einführung in die Optimierung. Verlag Chemie. Weinheim. 1982
- T. F. Edgar, D. M. Himmelblau. Optimization of Chemical Processes. McGraw-Hill. New York 1989
- K. L. Teo, C. J. Goh, K. H. Wong. A Unified Computational Approach to Optimal Control Problems. John Wiley & Sons. New York. 1991
- C. A. Floudas: Nonlinear and Mixed-Integer Optimization. Oxford University Press. 1995
- L. T. Biegler, I. E. Grossmann, A. W. Westerberg. Systematic Methods of Chemical Process Design. Prentice Hall. New Jersey. 1997
- M. Papageorgiou. Optimierung. Oldenbourg Verlag. München. 2006
- J. Nocedal, S. J. Wright. Numerical Optimization. Springer-Verlag. 1999

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Informatik 2013 Modul: Automatisierung

Simulation

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1400 Prüfungsnummer:2200028

Fachverantwortlich: Prof. Dr. Pu Li

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2212

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	3		5.FS	3	(3.FS	3	7	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden können Grundbegriffe der Modellierung und Simulation und die historische Einordnung der analogen Simulation im Vergleich zum Schwerpunkt der Veranstaltung, der digitalen Simulation zeitkontinuierlicher und zeitdiskreter Systeme, darlegen. Sie sind in der Lage, Simulationsaufgabenstellungen zu bewerten und eine systematische Herangehensweise an die Problemlösung anzuwenden. Die Studierenden testen und beurteilen sowohl die blockorientierte, die zustandsorientierte als auch die objektorientierte Simulation einschließlich der Spezifika, wie z.B. numerische Integrationsverfahren, physikalische Modellierung. Durch vorgestellte Simulationssprachen, -systeme und –software (MATLAB/Simulink, Scilab, OpenModelica, PHASER) können die Studierenden typische Simulationsaufgaben im regelungstechnischen Umfeld und darüber hinaus bewerten und entwickeln. In einem Hausbeleg weist jeder Studierende seine Fähigkeit nach, eine Simulationsaufgabe zu lösen und auszuwerten.

Vorkenntnisse

Grundlagen der Mathematik, der Physik, der Modellbildung sowie der Regelungs- und Systemtechnik

Inhalt

Einführung: Einsatzgebiete, Abgrenzung, Rechenmittel, Arbeitsdefinition, Systematik bei der Bearbeitung von Simulationsund Entwurfsaufgaben; Systembegriff (zeitkontiniuerlich, zeitdiskret, qualitativ, ereignis-diskret, chaotisch) mit
Aufgabenstellungen; Analoge Simulation: Wesentliche Baugruppen und Programmierung von Analogrechnern, Vorzüge und
Nachteile analoger Berechnung, heutige Bedeutung; Digitale Simulation: blockorientierte Simulation, Integrationsverfahren,
Einsatzempfehlungen, algebraische Schleifen, Schrittweitensteuerung, steife Differenzialgleichungen, Abbruchkriterien;
zustandsorientierte Simulation linearer Steuerungssysteme; physikalische objektorientierte Modellierung und Simulation;
Simulationssprachen und -systeme: MATLAB (Grundaufbau, Sprache, Matrizen und lineare Algebra, Polynome,
Interpolation, gewöhnliche Differenzialgleichungen, schwach besetzte Matrizen, M-File-Programmierung, Visualisierung,
Simulink, Toolboxen, Beispiele); Scilab (Grundaufbau, Befehle, Unterschiede zu MATLAB/Simulink, Beispiele); Einführung in
die objektorientierte Modellierungssprache Modelica und das Simulationssystem OpenModelica (Merkmale,
Modellierungsumgebung, Bibliotheken, Beispiele, Optimierung); PHASER (Grundaufbau, vorgefertigte und eigene
Problemstellungen, Zeitverhalten, Phasendiagramm, Beispiele)

Medienformen

Präsentation, Vorlesungsskript, Tafelanschrieb, Übungen im PC-Pool, Hausbeleg am PC

Literatur

Biran, A., Breiner, M.: MATLAB 5 für Ingenieure, Addison-Wesley, 1999. Bossel, H.: Simulation dynamischer Systeme, Vieweg, 1987.

Bossel, H.: Modellbildung und Simulation, Vieweg, 1992.

Bub, W., Lugner, P.: Systematik der Modellbildung, Teil 1: Konzeptionelle Modellbildung, Teil 2: Verifikation und Validation, VDI-Berichte 925, Modellbildung für Regelung und Simulation, VDI-Verlag, S. 1-18, S. 19-43, 1992.

Cellier, F. E.: Coninuous System Modeling, Springer, 1991.

Cellier, F. E.: Integrated Continuous-System Modeling and Simulation Environments, In: Linkens, D.A. (Ed.): CAD for Control Systems, Marcel Dekker, New York, 1993, pp. 1-29.

Fritzson, P.: Principles of object-oriented modeling and simulation with Modelica 2.1, IEEE Press, 2004.

Fritzson, P.: Introduction to Medeling and Simulation of Technical and Physical Systems with Modelica. Wiley-IEEE Press. 2011

Gomez, C.: Engineering and scientific computing with Scilab, Birkhäuser, 1999.

Hoffmann, J.: MATLAB und SIMULINK, Addison-Wesley, 1998.

Hoffmann, J., Brunner, U.: MATLAB und Tools: Für die Simulation dynamischer Systeme, Addison-Wesley, 2002.

Kocak, H.: Differential and difference equations through computer experiments, (... PHASER ...), Springer, 1989.

Otter, M.: Objektorientierte Modellierung Physikalischer Systeme, Teil 1, at - Automatisierungstechnik, (47(1999)1, S. A1-A4 (und weitere 15 Teile von OTTER, M. als Haupt-- bzw. Co-Autor und anderer Autoren in Nachfolgeheften).

Scherf, H.E.: Modellbildung und Simulation dynamischer Systeme, Oldenbourg, 2003.

Detailangaben zum Abschluss

Mündliche Prüfung, 30 min. (für Bachelor-Studiengänge bis Prüfungsordnungsversion 2012) bzw.

Max. 40 Punkte für schriftlichen Beleg im Fach Simulation als Bestandteil des Moduls "Modellbildung und Simulation"

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Master Electrical Power and Control Engineering 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2013 Vertiefung AT

Master Wirtschaftsingenieurwesen 2014 Vertiefung AT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2013

Master Electrical Power and Control Engineering 2008

Master Wirtschaftsingenieurwesen 2010

Modul: Biomedizinische Technik

Modulnummer8362

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Ziel des Moduls ist es die grundlegenden Kompetenzen auf dem Gebiet der biomedizinischen Technik in Diagnose und Therapie für Studierende des Studiengangs Informatik zu vermittelt. Die Studierenden haben ein Grundverständnis für die innere logische Gliederung der Medizin (Wissenschaft und Praxis). Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme. Die Studierenden kennen und verstehen die Modellierungsstrategien in biologischen Systemen, können diese analysieren, bewerten und anwenden, sowie für gegebene Teilsysteme Modelle entwerfen. Sie verstehen die Modellierungsstrategien als Grundlage für die Entwicklung von Diagnose- und Therapieverfahren. Die Studierenden besitzen Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, können diese analysieren, bewerten und beim Syntheseprozess mitwirken. Die Studierenden sind in der Lage grundlegende Wechselwirkungen zwischen Biomedizinischer Technik und Gesellschaft, sowie ethische Aspekte in der Medizintechnik zu verstehen und zu bewerten, sowie bei der Entwicklung von Medizintechnikprodukten zu berücksichtigen. Die Studierenden sind in der Lage grundlegende Sachverhalte der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorraussetzungen für die Teilnahme

AET 1+2. Mathematik 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Modul: Biomedizinische Technik

Bildgebende Systeme in der Medizin 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 1693 Prüfungsnummer:2200014

Fachverantwortlich: Dr. Dunja Jannek

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Inform	atik un	d Automatisierung					Fachgebiet:	2221

	1	I.FS	;	2	2.FS	3	,	3.FS	3		1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Die Kerninhalte orientieren sich überwiegend an methodenorientierten Kenntnissen der Bildsignalgenerierung im Ergebnis des genutzten physikalischen Wechselwirkungsprozesses sowie der Übertragung, Visualisierung und Speicherung des Bildsignales. Gerätetechnische Kenntnisse werden als aktuelle Anwendungsbeispiele gestaltet. Die Studierenden begreifen Bilderzeugungssysteme in der Medizin als spezialisierten Gegenstands- und Methodenbereich der Biomedizinischen Technik, der sich mit Analyse, Synthese und Optimierung sowie mit der Qualitätssicherung der Anwendung von radiologischen Bilderzeugungssystemen in der Medizin beschäftigt. Die Studierenden sind in der Lage, auf der Ebene des Signalübertragungsprozesses Aufbau und Funktion der Bilderzeugungssysteme zu erkennen und zu analysieren einschließlich der Aufwärtseffekte der genutzten physikalischen Wechselwirkungsprozesse. Sie verstehen die komplexen Zusammenhänge Bildgebender Systeme als technische Hilfsmittel zum Erkennen von Krankheiten. Sie sind in der Lage, deren Aufwand, Nutzen und Risiko im medizinischen Versorgungs- und ärztlichen Betreuungsprozess zu bewerten.

Vorkenntnisse

Strahlenbiologie/Medizinische Strahlenphysik, Strahlungsmesstechnik, Signale und Systeme 1, Klinische Verfahren 1 -2

Inhalt

Röntgenstrahlung:

Röntgendiagnostische Technik - Begriffe, Zuordnung; Röntgendiagnostischer Prozess.

Röntgenstrahlenquellen - Diagnostikröntgenröhren, Anforderungen; Festanodenröntgenröhren; Drehanodenröntgenröhren, Leistungsparameter, Elektrische Eigenschaften, Betriebsarten, Alterung, Herstellungstechnologie; Drehkolbenröhren;

Röntgendiagnostikgeneratoren, Arten, Überblick, Einpuls-Transformator-Generator, Konvertergenerator.

Streustrahlung – Entstehung; Wirkung auf den Kontrast; Minimierung der Streustrahlung, Am Ort der Entstehung, Abstandstechnik, Streustrahlenraster.

Röntgenbildwandler - Fotografische Registrierung, Röntgenfilm,

Verstärkerfolien, Film-Folien-Systeme; Digitale Röntgenbildwandler, Möglichkeiten, Speicherphosphorfolien,

Flachbilddetektoren; Elektronenoptischer Röntgenbildverstärker, Aufbau, Bildwandlungen, Übertragungsverhalten,

Arbeitsmöglichkeiten; Röntgenfernsehen, Bildzerlegung, Digitales Röntgenfernsehen; Digitale Subtraktionsangiografie;

Dosisbedarf u. Auflösungsvermögen v. Röntgenbildwandlern. Computertomografie - Historische Entwicklung; Gerätetechnik, Bilddarstellung und –auswertung; Aktuelle technische Entwicklungen; Abbildungsgüte.

Gammastrahlung:

Nuklearmedizinische Technik - Begriffe; Nuklearmedizinische Methoden.

Radionuklide, Radiopharmaka - Möglichkeiten der Radionukliderzeugung; Radiopharmaka, Anforderungen.

Szintillationskamera – Kollimatoren; Aufbau; Detektion von Ort und Energie; Übertragungsverhalten.

Emmissions-Computertomographie - Prinzip; SPECT-Kamerasysteme...

PET – Prinzip; Positronenstrahler; Ortsdetektion; PET-Scanner.

Medienformen

Tafel, Arbeitsblätter, Powerpoint-Präsentation

Literatur

- 1. Angerstein, W., Aichinger, H.: Grundlagen der Strahlenphysik und radiologischen Technik in der Medizin. 5. Aufl. Berlin: Hoffmann 2005.
- 2. Buzug, T.M.: Computed tomography. From photon statistics to modern cone-beam CT: with 10 tables. Berlin: Springer 2008.
- 3. Dössel, O.: Bildgebende Verfahren in der Medizin. Von der Technik zur medizinischen Anwendung. Berlin: Springer 2000.
- 4. Kalender, W.A.: Computed tomography. Fundamentals, system technology, image quality, applications. 3rd rev. ed., Germany: Publicis Pub 2011.
 - 5. Krieger, H.: Strahlungsquellen für Technik und Medizin. 1. Aufl. Wiesbaden: Teubner 2005.
- 6. Morneburg, H.: Bildgebende Systeme für die medizinische Diagnostik. Röntgendiagnostik und Angiographie, Computertomographie, Nuklearmedizin, Magnetresonanztomographie, Sonographie, Integrierte Informationssysteme. 3. Aufl. Erlangen: Publicis MCD Verl 1995.

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Biomedizinische Technik

Strahlungsmesstechnik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1402 Prüfungsnummer:2200044

Fachverantwortlich: Dr. Dunja Jannek

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik un	nd Automatisierung					Fachgebiet:	2221

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Kerninhalte orientieren sich auf begriffliches Wissen zu Messgrößen und -einheiten sowie auf messtechnisches und messmethodisches Wissen zur Bestimmung von Quellen und Dosisgrößen. Die Studierenden sind in der Lage, die Strahlungsmesstechnik als spezialisierten Zweig der Messtechnik zu verstehen, der sich mit der Quantifizierung von Entstehung, Ausbreitung und Wechselwirkung ionisierender Strahlen beschäftigt. Sie sind fähig, die methodischen Zusammenhänge zwischen genutzten physikalischen Wechselwirkungen im Detektormedium, Signalwandlung und übertragung sowie Anzeige einer definierten Messgröße auf der Ebene des Signalübertragungsprozesses zu verstehen und zu analysieren. Die Studierenden besitzen Fähigkeiten und Fertigkeiten zur Analyse, Planung und optimalen Lösung von typischen Messaufgaben der Strahlungsmesstechnik, die aus der medizinischen Anwendung ionisierender Strahlen resultieren.

Vorkenntnisse

Physik 1-2, Medizinische Strahlenphysik, Elektrische Messtechnik, Prozessmess- und Sensortechnik

Inhalt

Messgrößen:

Quellengrößen – Aktivität; Quellstärke; Strahlungsleistung.

Feldgrößen - Begriffe, Bezugsgrößen; Teilchenzahl; Energie.

 $Dosisgr\"{o}\&en-Begriffe, Arten; Energiedosis; Expositions dosis; Kerma; Bremsstrahlungs verlust.$

Ionisation:

Allgemeines Detektorausgangssignal - Ladungsträgerbildung und -sammlung; Entstehung des Ausganssignales.

Gasionisationsdetektoren – Prinzip; Arbeitsbereiche; Einflussgrößen.

Ionisationskammer - Aufbau, Arten; Wirkungsweise, Messaufgaben; Dosisflächenprodukt-Messkammern; Verstärkung des Ausgangssignales.

Proportionalitätszählrohr - Wirkungsweise, Aufbau; Impulsberechnung; Messaufgaben; Beispiel; Arbeitscharakteristik.

Auslösezählrohr - Wirkungsweise; Aufbau; Nicht selbstlöschende Auslösezählrohre; Selbst löschende Auslösezählrohre; Messaufgaben; Impuls, Totzeit; Zählrohrcharakteristik.

Festkörperionisationsdetektoren – Wirkprinzip; Ladungsträgerbildung und –sammlung; Arten, Überblick.

Oberflächen-Sperrschicht-Detektoren – Aufbau; Parameter.

Anregung:

Anregungsdetektoren - Vorgänge, Arten; Nachweis der Lichtquanten.

Szintillationszähler – Genutzte Wechselwirkungseffekte; Szintillatoren; Sonde; Eigenschaften von Szintillationszählern.

Thermolumineszenzdetektoren – Wechselwirkungseffekt; Detektorsubstanzen; Messplatz; Messaufgaben.

Elektronik:

Impulsverarbeitung - Ladungsempfindlicher Vorverstärker; Impulsverstärker; Einkanalanalysator; Vielkanalanalysator. Messaufgaben:

Teilchen- und Quantenzählung – Statistik; Zählverluste. Aktivität - Absolute Aktivitätsmessung; Messung geringer Aktivitäten; Relative Aktivitätsmessung.

Energie und Energieverteilung - Methoden und Aufgaben; Photonenspektrometrie.

Dosismessung – Sondenmethode; Absolut- und Relativdosimetrie; Messaufgaben.

Medienformen

Tafel, Mitschriften, Powerpoint-Präsentation, Arbeitsblätter

Literatur

- 1. Krieger, H.: Strahlungsmessung und Dosimetrie. Springer Spektrum; 2.Aufl. 2013.
- 2. Kleinknecht, K.: Detektoren für Teilchenstrahlung. Teubner; 4.Aufl. 2005.
- 3. Stolz, W.: Radioaktivität. Grundlagen Messung Anwendungen. Vieweg+Teubner Verlag; 5.Aufl. 2005.

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2008

Bachelor Informatik 2010 Bachelor Informatik 2013 Modul: Biomedizinische Technik

Technische Sicherheit und Qualitätssicherung in der Medizin

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1404 Prüfungsnummer:2200011

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik un	nd Automatisierung					Fachgebiet:	2221

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	;	5	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Technische Sicherheit und Qualitätssicherung in der Biomedizinischen Technik zu vermitteln. Die Studierenden kennen und verstehen Gefahrenquellen und Risiken im Krankenhaus und bei medizintechnischen Produkten. Die Studierenden können Gefahrenquellen und Risiken im Krankenhaus und bei medizintechnischen Produkten analysieren und bewerten, sowie angemessene Maßnahmen zur Korrektur einleiten. Die Studierenden kennen und verstehen die wesentlichen physiologischen Grundlagen der Stromeinwirkung auf den menschlichen Organismus. Die Studierenden können grundlegende Effekte der Stromeinwirkung auf den Organismus analysieren und bewerten. Die Studierenden kennen und verstehen die relevanten Normen und rechtlichen Reglungen für technische Sicherheit bei medizintechnischen Produkten und können diese in der Praxis anwenden. Die Studierenden können medizintechnische Geräte bezüglich wesentlicher sicherheitsrelevanter Aspekte analysieren und bewerten. Die Studierenden sind in der Lage, basierend auf den geltenden Vorschriften, Prüfverfahren für medizintechnische Geräte zu entwerfen. Die Studierenden sind in der Lage sicherheitsrelevante Prüfungsergebnisse medizintechnischer Geräte zu analysieren und zu bewerten. Die Studierenden sind in der Lage sicherheitsrelevante Sachverhalte in der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Grundlagen der Biomedizinischen Technik

Inhalt

Einführung: Gefahrenquellen und Risiken im Krankenhaus, Patientensicherheit und technische Sicherheit Physiologie und Pathologie der Stromeinwirkung: Begriffe, Definitionen, Körperimpedanz und Stromverteilung, Reaktionen des Organismus auf äußere elektrische Energieeinwirkung, Stromschwellenwerte, Gefährdungsfaktoren und Grenzwerte, Elektrische Stromeinwirkung am Herzen Schutzmaßnahmen gegen gefährliche Körperströme: Begriffe, Definitionen, Schutzklassen elektrischer Geräte, Typen und Eigenschaften von Wechselstromnetzen, Maßnahmen zum Schutz gegen direktes und indirektes Berühren Starkstromanlagen in medizinischen Einrichtungen: Begriffe, Definitionen, Schutz gegen gefährliche Körperströme Elektrische Sicherheit von elektromedizinischen Geräten: Begriffe, Definitionen, Klassifikation der Geräte, Ableitströme, Ersatzableitströme, Geräteprüfungen unter Einsatzbedingungen, Elektromagnetische Verträglichkeit Rechtliche Regelungen für den Verkehr mit Medizinprodukten: Normen und Zuständigkeiten, Medizinproduktegesetz (MPG), Medizinprodukte-Betreiberverordnung Qualitätssicherung: Begriffe, Grundlagen Qualitätssicherung in Gesundheitseinrichtungen, Standard operating procedures, Zertifizierungs- und Akkreditierungsverfahren

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

• Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 • Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 • Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 • Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 • Webster, J.G. and A.M. Cook: Clinical Engineering - Principles and Practices, Prentice Hall/Englewood Cliffs, Bos-ton 1979 • Reilly, J.P. Electrical Stimulation and Electropathology, Cambridge University Press, 1992 • Schmidt, R. F., Thews, G., Lang, F. (Hrsg.): Physiologie des Menschen, 28. Aufl., Springer-Verlag Berlin/ Heidel-berg/ New York, 2000

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Bachelor Informatik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Wirtschaftsingenieurwesen 2010

Bachelor Informatik 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Modul: Biomedizinische Technik

Biomedizinische Technik in der Therapie

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 1691 Prüfungsnummer:2200042

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2221

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen und Anwendungen der Biomedizinische Technik in der Therapie zu vermitteln. Die Studierenden kennen und verstehen die grundlegenden Wirkprinzipien ausgewählter Biomedizinischer Therapietechnik, die damit verbundenen spezifischen Problemfelder und die Anforderungen an medizinische Therapiegeräte. Die Studierenden sind in der Lage ausgewählte medizinische Therapiegeräte zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen zu Art und Einsatz von Biomaterialien und sind in der Lage künstliche Organe zu analysieren und zu bewerten. Die Studierenden kennen und verstehen Grundlagen der Organtransplantation und von Sterilisationsverfahren. Die Studierenden kennen und verstehen Beatmungs- und Narkosetechniken. Die Studierenden sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Designprozess mitzuwirken. Die Studierenden kennen und verstehen Dialysetechniken, Herzschrittmacher, Tiefenhirnstimulation, Minimal-invasive Chirurgietechniken und Laser in der Medizin. Sie sind in der Lage die entsprechende Gerätetechnik zu analysieren, zu bewerten und beim Syntheseprozess mitzuwirken. Die Studierenden besitzen methodische Kompetenz bei der Entwicklung von Biomedizinischer Therapietechnik. Die Studierenden sind in der Lage therapiegrätetechnische Sachverhalte in der Medizin klar und korrekt zu kommunizieren. Die Studierenden sind in der Lage Systemkompetenz für Biomedizinische Technik in der Therapie in interdisziplinären Teams zu vertreten.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik, Grundlagen der Biomedizinischen Technik

Inhalt

Einführung: Klassifizierung und Strukturierung Biomedizinischer Technik in der Therapie, Anforderungen an medizinische Therapiegräte, spezifische Problemfelder bei Therapiegeräten Biomaterialien und Biokompatibilität: Arten und Einsatz der Biomaterialien, Biokompatibilität, künstliche Organe und Organtransplantation, Sterilisation, Beatmungs- und Narkosetechnik: medizinische und physiologische Grundlagen, methodische und technische Lösungen, Dialyse/ künstliche Niere: medizinische und physiologische Grundlagen, Hämodialyse, extrakorporaler Kreislauf, Technik der Hämodialyse, Ultrafiltration, Dialyse-Monitoring, Herzschrittmacher: medizinische und physiologische Grundlagen, Stimulation, Elektroden, Gerätespezifikation, Einsatz Tiefenhirnstimulation: medizinische und physiologische Grundlagen, Stimulationstechniken, Therapiegeräte Minimal-invasive Chirurgie: Entwicklung der Endoskopie, Anforderungen an minimal-invasive Gerätestystem, Techniken und Instrumente Laser in der Medizin: Anwendungsspektrum der Laser in der Medizin, Prinzipien medizinischer Laser, Ophthalmologische Laser, Ophthalmologische Technik: Technik der Cataract-Operation und Intraokularlinsenimplantation, Glaskörperchirurgie, ophthalmologische Implantate

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1992 Bronzino, J. D. (Ed.): The Biomedical Engineering Hand-book, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008 Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Biomedizinische Technik

Grundlagen der Biomedizinischen Technik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1372 Prüfungsnummer:2200009

Fachverantwortlich: Prof. Dr. Jens Haueisen

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2221

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Ziel der Veranstaltung ist es Grundlagen der Biomedizinischen Technik zu vermitteln. Die Studierenden kennen und verstehen die Modellierungsstrategien in biologischen Systemen, können diese analysieren, bewerten und anwenden. Die Studierenden sind in der Lage für gegebene Teilsysteme Modelle zu entwerfen. Die Studierenden besitzen Fach- und Methodenkompetenz bei Kompartmentmodellen, Herz- und Kreislaufmodellierung, Modellierung und Steuerung der Atmung und der Steuerung von Bewegungssystemen. Die Studierenden sind in der Lage ethische Aspekte in der Medizintechnik zu verstehen und zu bewerten, sowie bei der Entwicklung von Medizintechnikprodukten zu berücksichtigen. Die Studierenden sind in der Lage grundlegende Sachverhalte der Biomedizinischen Technik klar und korrekt zu kommunizieren.

Vorkenntnisse

Mathematik 1-3, Physik 1-2, Anatomie und Physiologie 1-2, Elektro- und Neurophysiologie, Allgemeine Elektrotechnik 1-3, Theoretische Elektrotechnik

Inhalt

Einführung (Begriffsdefinition, Spezifik der Modellierung biologischer Systeme, Modell und Experiment, Modellierungsstrategien in Physiologie und Medizin); Kompartmentmodelle (Grundlagen, Parameterschätzung, Validierung, medizinische Anwendungen); Herz- und Kreislaufmodellierung (Vorteile und Grenzen des Patientenmodells, Gefäßmodelle, Herzmodelle, kombinierte Herz-Kreislauf-Modelle, neurale und humorale Steuerung); Modellierung und Steuerung der Atmung (Regelungshierarchie der Atmung, Modelle der Atmungssteuerung, Optimierung der Beatmung, Schlussfolgerungen); Methoden und Werkzeuge zur Identifikation physiologischer Systeme; Steuerung von Bewegungssystemen Ethische Aspekte der biomedizinischen Technik: Berufsethik in der Biomedizinischen Technik, Ethische Grundlagen für Experimente am Menschen und am Tier bei der Entwicklung von Medizintechnik, Organisationen und Richtlinien

Medienformen

Tafel, Mitschriften, Folien, computerbasierte Präsentationen, Demonstration, Übungsaufgaben

Literatur

Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1993 Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985 Webster, J.G. (Ed.): Medical Instrumentation - Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992 Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000 Hendee, W.R., Ritenour, E.R.: Medical imaging physics, Wiley-Liss, Inc., New York, 2002 Malmivuo, J.: Bioelectromagnetism, Oxford University Press, 1995 Haueisen, J.: Numerische Berechnung und Analyse biomagnetischer Felder. Wissenschaftsverlag Ilmenau, 2004

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 90 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Mathematik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Master Technische Physik 2011

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Bachelor Technische Kybernetik und Systemtheorie 2013

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013

Bachelor Biomedizinische Technik 2014

Master Technische Physik 2008

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2013

Modul: Biomedizinische Technik

Labor BMT 1

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 8413 Prüfungsnummer:2200276

Fachverantwortlich: Dr. Dunja Jannek

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2221

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(6.FS	3	7	7.FS	}
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester													0	0	1						

Lernergebnisse / Kompetenzen

Die Praktikumsinhalte orientieren sich an den Kerninhalten der Fächer. Die Studierenden vertiefen die methodischen Kenntnisse durch experimentelle Verfahren und Ergebnisse. Sie erwerben praktische Fähigkeiten und Fertigkeiten auf spezifisch technischer Wechselwirkungsebene und gleichzeitig Erfahrungen über Aufwand, Nutzen und Risiko Biomedizinischer Technik als technisches Hilfsmittel im medizinischen Versorgungs- und Betreuungsprozess.

Vorkenntnisse

Kernfächer BMT

Inhalt

Röntgendiagnostikeinrichtung Elektrische Sicherheit

Medienformen

Arbeitsunterlagen für jedes einzelne Praktikum mit Grundlagen, Versuchsplatz, Versuchsaufgaben und Versuchsauswertung

Literatur

Versuchsbezogen aus der Anleitung zu entnehmen

Detailangaben zum Abschluss

Prüfungsform: Praktikum

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Informatik 2010 Bachelor Informatik 2013

Modul: Anatomie und Physiologie

Modulnummer:101146

Modulverantwortlich: Prof. Dr. Hartmut Witte

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Anatomie und Physiologie

Einführung in die Neurowissenschaften

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100522 Prüfungsnummer:2200358

Fachverantwortlich: Dr. Thomas Reiner Knösche

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS)	2	2.FS	3		3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Die Studierenden sind mit den Grundlagen der Anatomie und Physiologie des menschlichen Nervensystems vertraut und verfügen über ein gutes Verständnis der informationsverarbeitenden und regulatorischen Prozesse. Sie sind in der Lage, wichtige anatomische Bestandteile des peripheren und des zentralen Nervensystems zu lokalisieren und kennen deren Funktion. Sie kennen und verstehen die wichtigsten funktionellen Mechanismen, insbesondere der synaptischen Übertragung, der neuroendokrinologischen Kopplung, sowie der sensorischen und effektorischen Systeme. Darüber hinaus sind in der Lage, Messbarkeit wichtiger Aspekte von Struktur und Funktion des Nervensystems zu bewerten. Die Studierenden kennen wichtige Störungen und Krankheiten des Nervensystems, deren Symptome und (soweit bekannt)

Die Studierenden kennen wichtige Störungen und Krankheiten des Nervensystems, deren Symptome und (soweit bekannt) deren zugrundeliegende Mechanismen, sowie grundsätzliche Diagnose- und Therapieansätze.

Neben der direkten Wissensvermittlung erwerben die Studierenden Kompetenz zum Erwerb von Spezialwissen aus Literatur und Internet. Dies ist in Anbetracht der Komplexität der Materie und der Informationsfülle von überragender Bedeutung.

Vorkenntnisse

Abiturwissen Biologie

Inhalt

Schwerpunkte:

- Grundsätzlicher Aufbau des Nervensystems und seine Komponenten.
- Mirkroanatomische Grundlagen: Morphologie und Funktionsweise von Zellen, synaptische Übertragung, Neuronen und Gliazellen, Neurotransmittersysteme, neurovaskuläre Kopplung.
 - Klinische Aspekte des Nervengewebes: Tumore, Läsionen, Multiple Sklerose, degenerative Erkrankungen.
- Anatomische und funktionelle Gliederung des Nervensystems: zentrales (ZNS), peripheres senso-motorisches und autonomes NS, sowie deren Binnengliederungen, einschließlich Blutversorgung, Hirnhäute und Ventrikel.
 - · Vernetzung des ZNS.
- Sensomotorische Systeme: Eigen- und Fremdreflexapparat, Pyramidales und Parapyramidales System, Kleinhirnmotorik.
 - Sensorische Systeme: visuelles, auditorisches, gustatorisches und olfaktorisches System.
 - Limbisches System: Hippocampus, Mandelkern, Stammganglien, cingulärer Kortex und deren Funktionen.
- Klinische Aspekte zu sensomotorischen, sensorischen und limbischen Systemen insbesondere Auswirkungen lokalisierter Läsionen.
- Autonomens Nervensystem: Sympaticus, Parasympaticus, Intermurale Plexus, Störungen der regulatorischen Mechanismen und pharmakologische Intervention
 - · Neuroendokrinologisches System.

- Kognitive Funktionen des ZNS: Aufmerksamkeit, Gedächtnis, Wahrnehmung, Motorsteuerung und –planung, Sprache, Emotionen.
 - Neurobiologische Grundlagen kognitiver Störungen und psychiatrischer Erkrankungen.
 - · Epilepsie.

Messbarkeit wichtiger Aspekte von Struktur und Funktion des Nervensystems.

Medienformen

Tafel, Folien, Beamer

Literatur

- 1. Rohen: Funktionelle Anatomie der Nervensystems. Schattauer 1995
- 2. Gertz: Basiswissen Neuroanatomie, Thieme 2003
- 3. Pinel: Biopsychologie: Spektrum-Akademischer Verlag 2001
- 4. Birbaumer, Schmidt: Biologische Psychologie, Springer 2005

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Modul: Anatomie und Physiologie

Anatomie und Physiologie

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100527 Prüfungsnummer:2300433

Fachverantwortlich: Prof. Dr. Hartmut Witte

Leistungspunkte: Fakultät für Maschine	4 enbau	Workload (h):	120	Anteil Selbststudium	(h):	75	SWS:	4.0 Fachgebiet:	2348
		4 =0						. = .	

	1	<u> </u>	3	2	2.FS	3		3.FS	3		1.FS)		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р
Fachsemester																					

Lernergebnisse / Kompetenzen

Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren (Frage- und Antwortfähigkeit). 2. Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme. 3. Die Studierenden kennen die Grenzen ihrer medizinischen Kenntnisse und Fähigkeiten (weitere Kapitel zum Thememenkomplex werden in den Veranstaltungen "Elektro- und Neurophysiologie" / "Neurobiologie" und "Biokompatible Werkstoffe" erarbeitet).

Vorkenntnisse

Curriculares Abiturwissen Biologie, Chemie und Physik. In zweiten Teil der Veranstaltung anatomisch-physiologische Kenntnisse in Umfang und Tiefe wie im ersten Teil der Veranstaltung vermittelt (Propädeutik und Allgemeine Anatomie werden vorausgesetzt).

Inhalt

- · Einführung:
- · Der Systembegriff
- · Der medizinische Normalitätsbegriff in Abgrenzung zum Pathologischen
- · Saluto- vs. Pathogenese
- · Innere Logik der medizinischen Fächergliederung
- · Medizinische Terminologie
- · Allgemeine Anatomie:
- · System-, Organ- und Gewebegliederung
- Grundbegriffe der Zytologie und Histologie als eklektizistische Wiederholung curriculären Abiturwissens
- Spezielle Anatomie, Physiologie und relevante Biochemie folgender Systeme in speziell für Ingenieurstudenten aufbereiteter Form:
 - · Bewegungsapparat
 - · Herz-Kreislauf-System incl. Blut
 - Atmung
 - Verdauung
 - Exkretion
 - · Reproduktion
 - Immumabwehr
 - Endokrinum

• Neuranatomie und Neurophysiologie sind nicht Gegenstand der Veranstaltungen dieses Moduls (-> Veranstaltungen Elektro- und Neurophysiologie, Neurobiologie)

Medienformen

Präsentation, Tafel, Anatomie am Lebenden, e-Learning (moodle)

Literatur

Allgemeine Primärempfehlung (Prüfungswissen): • Aumüller et al.: Anatomie, MLP Duale Reihe, Thieme, Stuttgart. • Silbernagel et al.: Taschenatlas der Physiologie. Thieme, Stuttgart Für "Nebenfächler" individuelle Empfehlungen.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Biotechnische Chemie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Mathematik 2013

Bachelor Mechatronik 2013

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Modul: Elektrotechnik

Modulnummer8363

Modulverantwortlich: Dr. Sylvia Bräunig

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Einführung in die Elektronik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100274 Prüfungsnummer:2100423

Fachverantwortlich: Prof. Dr. Heiko Jacobs

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektro	techni	ik und Informationstechnik				Fachgebiet:	2142

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3		1.FS	<u> </u>		5.FS	3	(3.FS	3	7	7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die elektronischen Eigenschaften von Metallen, Halbleitern und Isolatoren zu verstehen und diese Kenntnisse beim Design von Halbleiterbauelementen einzusetzen. Die Studenten besitzen die Fachkompetenz, um die Funktion passiver und aktiver Bauelemente sowie von Schaltungen zu verstehen und mathematisch zu beschreiben. Die Studierenden sind fähig, die wichtigsten in der Nachrichten- und Informationstechnik angewendeten Messverfahren und Messgerätekonzepte in ihren Grundzügen zu verstehen, ihre Leistungsparameter zu beurteilen und können Messaufgaben lösen. Ihre Kompetenz beinhaltet die Methoden zur Analyse von informationstechnischen Signalen und Systemen im Zeitund Frequenzbereich sowie die Untersuchung des Einflusses von linearen und nichtlinearen Störungen.

Vorkenntnisse

Allgemeine Elektrotechnik 1

Inhalt

Die Einführungsvorlesung in die Elektronik beschäftigt sich mit der Analog-Elektronik, die in der Regel am Beginn der Meßdatenerfassung oder der Realisierung von ersten elektronischen Schaltungen steht. Es werden die wichtigsten Grundgesetze der Elektronik wiederholt, sowie die bedeutendsten elektronischen Bauelemente und ihre Grundschaltungen behandelt. Dabei wird die Erklärung von Schaltungen und Funktionsweisen möglichst physikalisch gehalten. Ziel der Vorlesung ist es, in die Begriffswelt der Elektronik einzuführen, um das Verständnis für Funktionen und Anwendungsmöglichkeiten zu fördern und dem Studenten die Möglichkeit zu geben, Schaltungen (z.B. Verstärker) aus einer Kombination von einfachen elektronischen Bauelementen (Widerständen, Kapazitäten, Spulen) sowie Dioden und Transistoren, selbst zu entwerfen.

Lehrverantwortlicher: Dr. G. Ecke

Medienformen

Vorlesung mit Tafelbild, Tageslichtprojektor und Beamer

Literatur

K.H. Rohe: Elektronik für Physiker, Teubner Studienbücher, ISBN 3-519-13044-0, 1987 K. Beuth, O. Beuth: Elementare Elektronik, ISBN 380-2318-196, 2003 H. Vogel: Gerthsen Physik, Springer Verlag, ISBN 3-540-65479-8, 2001

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Informatik 2013

Bachelor Informatik 2013 Modul: Elektrotechnik

Praktikum Elektrotechnik und Elektronik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100275 Prüfungsnummer:2100424

Fachverantwortlich: Prof. Dr. Heiko Jacobs

Leistungspunkte: 1	Workload (h): 30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Elektrotechnik	und Informationstechnik				Fachgebiet:	2142

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS	3	Ę	5.FS	3	(6.FS	3	7	7.FS	}
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester							0	0	1												

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen der Elektrotechnik, sowie grundlegende Funktionsweise elektrischer und elektronischer Bauelemente an Hand von selbstaufgebauten Schaltungen verstehen.

Vorkenntnisse

Grundlagen der Elektrotechnik

Inhalt

Versuch 1: Vielfachmesser, Kennlinien und Netzwerke

Versuch 2: Messungen mit dem Digitalspeicheroszilloskop

Versuch 3: Bipolare Bauelemente

Versuch 4: MOSFET

Medienformen

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik - Gleichstrom - Felder – Wechselstrom; 2009 Unicopy Campus Edition K.H. Rohe: Elektronik für Physiker, Teubner Studienbücher, ISBN 3-519-13044-0, 1987 K. Beuth, O. Beuth: Elementare Elektronik, ISBN 380-2318-196, 2003 H. Vogel: Gerthsen Physik, Springer Verlag, ISBN 3-540-65479-8, 2001

Detailangaben zum Abschluss

sonstige Studienleistung

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Werkstoffwissenschaft 2013

Bachelor Informatik 2013 Modul: Elektrotechnik

Elektrische Energietechnik

Fachabschluss: Prüfungsleistung alternativ Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 733 Prüfungsnummer:2100016

Fachverantwortlich: Prof. Dr. Frank Berger

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echni	k und Informationstechnik				Fachgebiet:	2162

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	1									

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage energietechnische Fragestellungen einzuordnen, zu verstehen und ihr Wissen auf einfache Problemstellungen anzuwenden. Sie besitzen Basis- und Überblickswissen zur Analyse und Lösung einfacher energietechnischer Fragestellungen, kennen aktuelle Entwicklungstendenzen des Gebietes und kennen Bedürfnisse und den Bedarf an Elektroenergie der Industriegesellschaft unter Berücksichtigung von Umweltaspekten. Ein analytisches und systematisches Denken wird ausgeprägt. Die Arbeitsorganisation zur Lösung von Aufgabenstellungen unterschiedlichen Schwierigkeitsgrades sowie die Eigeninitiative zur Erreichung der Lernziele (zusätzliche Literatur usw.) werden ausgeprägt. Teamorientierung und Arbeitsorganisation wird während der Durchführung der Praktika in 3er Gruppen erreicht.

Vorkenntnisse

Grundlagen der Elektrotechnik Werkstoffe der Elektrotechnik

Teilnahmevoraussetzung für das Praktikum ist das Absolvieren der Arbeitsschutzbelehrung, diese findet einmalig zu Beginn jedes Semesters statt. Termin wird im VLV bekannt gegeben.

Inhalt

Energiebedarf und -bereitstellung in einer modernen Industriegesellschaft; Das Elektroenergiesystem von der Erzeugung, Übertragung, Verteilung bis zu Nutzanwendung; Spannungen, Ströme und Leistungen in elektrischen Kreisen (AC- und Drehstromkreise), Charakteristika der elektrischen Geräte und Anlagen zur Erzeugung, Übertragung und Verteilung, Charakteristik der elektrischen Abnehmer und der Energiewandlungsanlagen; Funktionsprinzipien thermischer (fossiler, Kernkraft) und regenerativer Kraftwerke; Netzelemente (Freileitung, Kabel, Transformator, Generator) und deren Übertragungsverhalten; Betriebs- und Fehlervorgänge in elektrischen Geräten, Anlagen und Netzen (Symmetrie und Unsymmetrie), Elektrische Felder, Isolieren, Potenzialtrennung, Isolierstoffe und Gestaltung von Anordnungen; Stromwirkungen und Begleiterscheinungen; Schaltprinzipien und Schaltgeräte und Schaltanlagen; Wirkung des elektrischen Stromes auf den Menschen und Schutzmaßnahmen; Elektromechanische Energiewandlung in Drehstrom- und Gleichstrommotoren, Gestaltung elektrischer Antriebe als Antriebssystem, Methoden der elektrothermischen Energiewandlung

Medienformen

Tafel, Kreide, Overhead, Beamer, Skript

Literatur

Lehrbuchsammlung F. Noack: Einführung in die elektrische Energietechnik, Carl-Hanser-Verlag, 2003 K. Heuck, K.-D. Dettmann: Elektrische Energieversorgung, Vieweg Verlagsgesellschaft, 2002 R. Flosdorff, G. Hilgarth: Elektrische Energieverteilung, B. G. Teubner Verlag, 2003 V. Crastan: Elektrische Energieversorgung 1 und 2, Springer Verlag, 2000

Detailangaben zum Abschluss

Die alternative Prüfungsleistung besteht aus einer 120-minütigen schriftlichen Klausur sowie einem benoteten Praktikum (4 Versuche). Die Klausur geht mit 2/3, das Praktikum mit 1/3 in die Gesamtbewertung ein.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Informatik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Informatik 2013 Modul: Elektrotechnik

Grundlagen der Elektrotechnik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100255 Prüfungsnummer:2100404

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Elektrot	echni	k und Informationstechnik				Fachgebiet:	2116

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und auf einfache Problemstellungen anwenden können.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu analysieren. Weiterhin soll die Fähigkeit zur Analyse einfacher nichtlinearer Schaltungen bei Gleichstromerregung vermittelt werden.

Die Studierenden sollen die Beschreibung der wesentlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch einwellige Wechselspannungen im stationären Fall zu analysieren, die notwendigen Zusammenhänge und Methoden kennen und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen und ihr Wissen auf praxisrelevante Aufgabenstellungen anwenden können.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

· Grundbegriffe und Grundbeziehungen der Elektrizitätslehre

(elektrische Ladung, Kräfte auf Ladungen, Feldstärke, Spannung, Potenzial)

• Vorgänge in elektrischen Netzwerken bei Gleichstrom

(Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Netzwerkberechnung)

· Das stationäre elektrische Strömungsfeld

(Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien)

• Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

(Grundgleichungen, Berechnung symmetrischer Felder, Kapazität und Kondensatoren, Verschiebungsstrom, Auf- und Entladung eines Kondensators)

· Der stationäre Magnetismus

(Grundgleichungen, magnetische Materialeigenschaften, Berechnung einfacher Magnetfelder)

Elektromagnetische Induktion

(Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion, Selbstinduktion und Induktivität, Gegeninduktion und Gegeninduktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer

Induktivität bei Gleichspannung)

• Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich)

(Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C)

· Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung

(Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, Frequenzkennlinien und Übertragungsverhalten)

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik; Band 1: Gleichstrom - Felder - Wechselstrom; 2009; Unicopy Campus Edition

Detailangaben zum Abschluss

schriftliche Prüfungsleistung 90 min

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2013

Leistungselektronik 1 - Grundlagen

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100264 Prüfungsnummer:2100412

Fachverantwortlich: Prof. Dr. Jürgen Petzoldt

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2161

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	2	0						

Lernergebnisse / Kompetenzen

Die Studierenden kennen grundlegende physikalische Prinzipien der Leistungshalbleiter und ihre Anwendung in leistungselektronischen Schaltungen. Sie verstehen den grundsätzlichen Aufbau von Stromrichterschaltungen, die Beanspruchung leistungselektronischer Bauelemente während der Kommutierung und die wichtigsten Steuerprinzipien leistungselektronischer Schaltungen. Sie sind in der Lage leistungselektronische Schaltungen in ihrem statischen und dynamischen Verhalten und in der Einbindung in einfache Regelkreise zu verstehen und zu dimensionieren.

Vorkenntnisse

Grundlagen des ingenieurwissenschaftlichen Studiums

Inhalt

- Einführung in Kommutierungs- und Schaltvorgänge
- · Systematisierung leistungselektronischer Schaltungskonzepte
- · Pulsstellerschaltungen, Spannungswechselrichter
- · Pulsbreitenmodulation
- selbstgeführte Stromrichter mit Spannungszwischenkreis (Spannungswechselrichter)
- Netzgeführte Stromrichter mit Strom-Zwischenkreis (Thyristorstromrichter)
- · Phasenanschnittsteuerung
- · Stromregelkreis

Medienformen

Skript, Arbeitsblätter, Simulationstools, Anschauungsmaterial, Laborversuche

Literatur

wird in der Veranstaltung bekannt gegeben

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET Master Regenerative Energietechnik 2013 Bachelor Elektrotechnik und Informationstechnik 2013 Bachelor Informatik 2013 Modul: Elektrotechnik

Leistungselektronik und Steuerungen

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 997 Prüfungsnummer:2100096

Fachverantwortlich: Prof. Dr. Jürgen Petzoldt

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2161

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden kennen grundlegende physikalische Prinzipien der Leistungshalbleiter und ihre Anwendung in leistungselektronischen Schaltungen. Sie verstehen den grundsätzlichen Aufbau von Stromrichterschaltungen, die Beanspruchung leistungselektronischer Bauelemente während der Kommutierung und die wichtigsten Steuerprinzipien leistungselektronischer Schaltungen. Sie sind in der Lage leistungselektronische Schaltungen in ihrem statischen und dynamischen Verhalten und in der Einbindung in einfache Regelkreise zu verstehen und zu dimensionieren. Fakultativ wird ein Praktikum zur Lehrveranstaltung angeboten.

Vorkenntnisse

Grundlagen des ingenieurwissenschaftlichen Studiums

Inhalt

- Kommutierungs- und Schaltvorgänge - Klemmenverhalten leistungselektronischer Bauelemente - Pulsstellerschaltungen, Spannungswechselrichter, Pulsbreitenmodulation - Netzgeführte Stromrichter Phasenanschnittsteuerung - Steuer-und Regelprinzipien, PLL- Schaltungen

Medienformen

Skript, Arbeitsblätter, Simulationstools, Anschauungsmaterial, Laborversuche

Literatur

wird in der Veranstaltung bekannt gegeben

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Technische Physik 2008

Master Regenerative Energietechnik 2011

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Informatik 2013

Master Technische Physik 2011

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET Bachelor Fahrzeugtechnik 2008 Bachelor Elektrotechnik und Informationstechnik 2008

Modul: Fahrzeugtechnik

Modulnummer8364

Modulverantwortlich: Prof. Dr. Klaus Augsburg

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Fahrdynamik 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 1621 Prüfungsnummer:2300046

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	3.0	
Fakultät für Maschine	enbau						Fachgebiet:	2324

	1	I.FS	3	2	2.FS	<u> </u>		3.FS	3		1.FS	3		5.FS	3	(6.FS	<u> </u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die einzelnen Fahrwiderstände zu berechnen und Fahrzustandsgrenzen in Abhängigkeit von Motorleistung, dynamischen Radlasten und dem Reibwert zwischen Reifen und Fahrbahn zu analysieren. Sie beherrschen Methoden zum systematischen Vorgehen bei der Lösungsfindung und können auf unterschiedlichen Abstraktionsniveaus arbeiten.

Vorkenntnisse

Technische Mechanik

Inhalt

Fahrwiderstände

Fahrleistungsgrenzen infolge Motorauslegung

Fahrleistungsgrenzen infolge dyn. Radlasten

Kraftübertragung Reifen-Fahrbahn

Grundlagen der Bremsen- und Getriebeauslegung

Kennlinien von Antriebsmotoren und Verbrauchern

Querdynamik, Fahrverhalten

Medienformen

s. Homepage (Folien, Diagramme aus der Vorlesung können heruntergeladen werden)

Literatur

Betzler, Jürgen: Fahrwerktechnik: Grundlagen. Bosch: Kraftfahrtechnisches Taschenbuch. Braess/ Seiffert: Handbuch Kraftfahrzeugtechnik. Mitschke/Wallentowitz: Dynamik der Kraftfahrzeuge.

Zomotor, Adam: Fahrverhalten.

13 x Auto.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Mechatronik 2014

Bachelor Fahrzeugtechnik 2008

Bachelor Fahrzeugtechnik 2013

Bachelor Informatik 2010

Master Mechatronik 2008

Fahrzeugantriebe 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 7616 Prüfungsnummer:2300050

Fachverantwortlich: Prof. Werner Eißler

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Maschin	enbau						Fachgebiet:	2325

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	>	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Den Studierenden wird die Funktionsweise und der Aufbau von Verbrennungsmotoren vermittelt. Die Vorlesung spannt einen Bogen von einfachen thermodynamischen Grundlagen bis zur Beschreibung der Gemischbildung, Zündung, Verbrennung und Schadstoffbildung unter Beachtung der Motorperipherie von Otto- und Dieselmotoren, wie sie für die Entwicklung moderner Verbrennungsmotoren unentbehrlich sind.

Die Studierenden beherrschen verschiedene Methoden zum systematischen Vorgehen bei der Ermittlung und Beurteilung verschiedener Kennwerte und komplexer Zusammenhänge zwischen diesen.

Vorkenntnisse

Technische Thermodynamik (von Vorteil)

Inhalt

Grundaufbau/ Thermodynamik Ladungswechsel Gemischbildung und Verbrennung Ottomotor Gemischbildung und Verbrennung Dieselmotor Abgasemission Aufladung

Medienformen

s. Homepage (Folien, Diagramme aus der Vorlesung können heruntergeladen werden)

Literatur

Merker, G. u.a.: Verbrennungsmotoren. Simulation der Verbrennung und Schadstoffbildung

Merker, G.; Kessen, U.: Technische Verbrennung. Verbrennungsmotoren

Merker, G. P.; Stiesch, G.: Technische Verbrennung. Motorische Verbrennung

Urlaub, A.: Verbrennungsmotoren

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Fahrzeugtechnik 2013

Praktikum Fahrzeugtechnik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 100202 Prüfungsnummer:2300403

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte: 1 Workload (h): 30 Anteil Selbststudium (h): 19 SWS: 1.0 Fakultät für Maschinenbau Fachgebiet: 2324

1.FS 2.FS 3.FS 4.FS 5.FS 6.FS 7.FS S P V S P V S P S P S P S P S P SWS nach Fachsemester 0

Lernergebnisse / Kompetenzen

Die Studierenden erhalten einen Überblick über verschiedene Meßmethoden, Messmittel sowie komplexe Prüfstände der Fahrzeugtechnik im praktischen Einsatz

Vorkenntnisse

Inhalt

Fahrdynamik Reifenprüfstand

Medienformen

Literatur

s. Praktikumsanleitungen (Homepage)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2013 Bachelor Informatik 2013

Fahrdynamik 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7613 Prüfungsnummer:2300047

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschine	enbau						Fachgebiet:	2324

	1	I.FS	3	2	2.FS	3		3.FS	3	4	I.FS	3		5.FS	<u>`</u>	- (3.FS	;	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Die Studieren lernen einzelne Komponenten des Fahrwerks kennen und zu berechnen (Grundauslegung). Sie beherrschen verschiedene Methoden zum systematischen Vorgehen bei der Lösungsfindung. Sie sind in der Lage, auf unterschiedlichen Abstraktionsniveaus zu arbeiten.

Vorkenntnisse

Fahrdynamik 1

Inhalt

Reifen

Radaufhängung

Lenkung

Bremsanlage und Radbremsen

Federung und Dämpfung

Medienformen

PowerPoint-Präsentationen, Folien (Download über Homepage des FG KFT) Tafel

Literatur

Betzler, Jürgen: Fahrwerktechnik: Grundlagen. Bosch: Kraftfahrtechnisches Taschenbuch. Braess/ Seiffert: Handbuch Kraftfahrzeugtechnik. Mitschke/Wallentowitz: Dynamik der Kraftfahrzeuge.

Zomotor, Adam: Fahrverhalten.

13 x Auto.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Fahrzeugtechnik 2013

Fahrzeugantriebe 2

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7617 Prüfungsnummer:2300051

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Maschir	enbau						Fachgebiet:	2324

	1	I.FS	3	2	2.FS	3		3.FS	3	4	I.FS	3		5.FS	<u>`</u>	- (3.FS	;	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Ausgehend von den Kennlinien von Verbrennungs- und Elektromotoren lernen die Studierenden Fahrzeuggetriebe als notwendiges Element zur Anpassung des Antriebs an das jeweilige Fahrzeug kennen. Sie werden in die Lage versetzt, Fahrzeuggetriebe nach verschiedenen Kriterien selbst auszulegen. Sie beherrschen verschiedene Methoden zur Lösungsfindung.

Vorkenntnisse

Getriebetechnik 1 (vorteilhaft)

Fahrzeugantriebe 1

Inhalt

Zusammenwirken von Antriebsmaschinen und Verbrauchern

Getriebeauslegung im KFZ

Handschaltgetriebe

Automatikgetriebe

stufenlose Getriebe

alternative Antriebe

Elemente des Antriebsstranges

Medienformen

PowerPoint-Präsentationen, Folien (Download s. Homepage FG KFT)

Literatur

s. Liste Homepage

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Fahrzeugtechnik 2013

Grundlagen Hydraulik/Pneumatik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 867 Prüfungsnummer:2300042

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	8	SWS:	2.0	
Fakultät für Maschin	enbau						Fachgebiet:	2324

	1	I.FS	3	2	2.FS	3		3.FS	3	4	I.FS	3		5.FS	<u>`</u>	- (3.FS	;	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Den Studierenden werden die Grundlagen für die Entwicklung hydraulischer und pneumatischer Antriebe vermittelt. Sie sind in der Lage, die Funktion von Schaltungen zu erfassen, einfachere Schaltungen selbst zu entwickeln und zu dimensionieren. Dazu beherrschen sie verschiedene Methoden auf unterschiedlichen Abstraktionsebenen. Sie sind in der Lage, Fehler abzuschätzen.

Vorkenntnisse

Strömungsmechanik (von Vorteil)

Inhalt

Allgemeine Grundlagen

Berechnungsgrundlagen

Symbole und Grundschaltungen

Schaltungsaufbau und Steuerungen Aufbau und Wirkungsweise wichtiger Funktionselemente

Medienformen

Lehrblätter (Folien aus der Vorlesung)

Literatur

Will, D.; Ströhl, H.: Einführung in die Hydraulik und Pneumatik

Will, D.; Nollau, R.: Hydraulik. Grundlagen, Komponenten, Schaltungen

Murrenhoff, H.: Grundlagen der Fluidtechnik

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Maschinenbau 2014

Master Maschinenbau 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2011 Vertiefung MB

Master Maschinenbau 2011

Master Wirtschaftsingenieurwesen 2009 Vertiefung MB

Bachelor Informatik 2013
Master Wirtschaftsingenieurwesen 2010
Bachelor Fahrzeugtechnik 2013
Master Wirtschaftsingenieurwesen 2010 Vertiefung MB
Bachelor Fahrzeugtechnik 2008

Praktikum Fahrzeugantriebe

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Generierte Noten

Sprache: Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100203 Prüfungsnummer:2300404

Fachverantwortlich: Prof. Dr. Klaus Augsburg

Leistungspunkte: 1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Maschinenbau	ı					Fachgebiet:	2324

	1	I.FS	3	2	2.FS	<u>`</u>		3.FS	3	4	I.FS	3		5.FS	3	6	3.FS	<u>`</u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester																0	0	1			

Lernergebnisse / Kompetenzen

Die Studierenden erhalten einen Überblick über verschiedene Meßmethoden, Messmittel sowie komplexe Prüfstände der Fahrzeugtechnik im praktischen Einsatz

Vorkenntnisse

Inhalt

Kennlinien Ottomotor Kennlinien Dieselmotor Indikatordiagramm von Ottomotoren (p-V-Diagramm), Abgasmessung

Medienformen

Literatur

s. Praktikumsanleitungen (Homepage)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2013 Bachelor Informatik 2013

Modul: Informations- und Kommunikationstechnik

Modulnummer8365

Modulverantwortlich: Prof. Dr. Jochen Seitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Informations- und Kommunikationstechnik

Signale und Systeme 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1398 Prüfungsnummer:2100006

Fachverantwortlich: Prof. Dr. Martin Haardt

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	5.0	
Fakultät für Elektrot	echn	ik und Informationstechnik				Fachgebiet:	2111

	1	I.FS)		2.FS	3	;	3.FS	3		1.FS	<u> </u>		5.FS	3		3.FS	3		7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	3	0												

Lernergebnisse / Kompetenzen

Den Studenten werden grundlegende Kenntnisse auf dem Gebiet der Signal- und Systemtheorie vermittelt. Durch die Systemtheorie werden die Studenten befähigt, physikalisch/technische Systeme zur Informationsübertragung und - verarbeitung effizient und auf einheitlicher Basis zu beschreiben und zu analysieren. Dazu wird die Signaltheorie vorausgesetzt. In diesem Zusammenhang lernen die Studenten die zweckmäßige Methode der spektralen Darstellung kennen und frequenzmäßig zu denken. Durch den vermittelten sicheren Umgang mit den Gesetzen der Fouriertransformation erwerben die Studenten zugleich das Wissen über die Grundgesetze der Signalübertragung in linearen Systemen. Die Hörer erlernen zudem, die Diskrete Fouriertransformation (DFT) als Werkzeug in der Signal- und Systemanalyse, aber auch als Grundelement in der modernen Signalverarbeitung einzusetzen.

Vorkenntnisse

Pflichtfächer in den Semestern 1 und 2

Inhalt

- 0 Überblick und Einleitung
- + Definition von Signalen und Systemen
- + Beispiele für Signale und Systeme in diversen Wissenschaftsgebieten
- 1 Signaltheorie (Grundlagen)
- + Eigenschaften von Signalen (periodisch aperiodisch, deterministisch stochastisch, Energiesignale Leistungssignale)
- 1.1 Fourier-Reihe
- + komplexe Fourier-Reihe periodischer Signale
- + Berechnung der komplexen Fourier-Koeffiziente
- + Fourier-Reihe der periodischen Rechteckfolge
- 1.2 Fouriertransformation
- 1.2.1 Fourierintegrale

Beispiel 1.1: Rechteckimpuls

Beispiel 1.2:

- a) linksseitig exponentiell ansteigendes Signal
- b) rechtsseitig exponentiell abklingendes Signal
- 1.2.2 Eigenschaften der Fouriertransformation
- + Linearität

Beispiel 1.3: Kombination von einseitig exponentiellen Signalen

+ Symmetrieeigenschaften (gerade, ungerade, reell, imaginär)

+ Verschiebungssatz (Zeitverschiebung, Frequenzverschiebung)

Beispiel 1.4: modulierter Rechteckimpuls

- + Zeitdehnung oder –pressung (Ähnlichkeitssatz)
- + Dualität (Vertauschungssatz)

Beispiel 1.5: Spaltimpuls

- + Zeitdifferentiationssatz
- + Frequenzdifferentiationssatz
- Beispiel 1.6: Gaußimpuls
- + Faltung im Zeitbereich

Beispiel 1.7: Dreieck-Zeitfunktion

- + Faltung im Frequenzbereich
- + Konjugiert komplexe Zeit- und Frequenzfunktion
- + Parsevalsche Gleichung

Beispiel 1.5: Spaltimpuls (Fortsetzung)

- + Inverse Beziehung zwischen Zeit- und Frequenzbeschreibung
- 1.2.3 Fouriertransformation verallgemeinerter Funktionen
- + Ziele:
- Fourier-Reihe als Spezialfall der Fouriertransformation
- Fouriertransformation für Leistungssignale
- Einheitsstoß (Diracscher Deltaimpuls)
- + Ausblendeigenschaft des Einheitsstoßes
- + Fouriertransformierte des Einheitsstoßes
- Beispiel 1.8: Einheitsstoß als Grenzwert des Gaußimpulses
- Beispiel 1.9: Harmonische Funktionen
- Beispiel 1.10: Signumfunktion
- Beispiel 1.11: Einheitssprung
- + Zeitintegrationssatz

Beispiel 1.12: Rampenfunktion

- + Frequenzintegrationsatz
- 1.2.4 Fouriertransformation periodischer Signale
- + Berechnung der Fourierkoeffizienten periodifizierter aperiodischer Funktionen aus der Fouriertransformation der aperiodischen Funktion

Beispiel 1.13: Periodischer Rechteckimpuls

Beispiel 1.14: Periodische Stoßfolge (ideale Abtastfunktion)

- 1.3 Abtastung im Zeit- und Frequenzbereich
- + Ideale Abtastung im Zeitbereich
- 1.3.1 Rekonstruktion aus Abtastwerten im Zeitbereich
- + Varianten der Rekonstruktion nach der Abtastung
- 1.3.2 Abtasttheorem
- + Abtasttheorem im Zeitbereich

Beispiele: PCM, CD

+ Abtasttheorem im Frequenzbereich

Beispiel: Messung von Mobilfunkkanälen (Channel Sounding)

+ Anwendungsbeispiele

Beispiel 1.15: Pulsamplitudenmodulation (PAM) und Sample-and-Hold-Glied

- 1.4 Diskrete Fouriertransformation
- 1.4.1 Berechnung der DFT
- 1.4.2 Spektralanalyse mit Hilfe der DFT
- a) periodische Funktionen
- b) aperiodische Funktionen
- + Abbruchfehler
- + Aliasing
- 1.4.3 Matrixdarstellung der DFT
- + Eigenschaften der DFT
- 1.4.4 Numerische Beispiele

Beispiel 1.16: DFT des abgetasteten Spaltimpulses

Beispiel 1.17: DFT eines sinusförmigen Signals

Beispiel 1.18: DFT der Dreieck-Zeitfunktion

+ Zero-Padding zur Verbesserung der optischen Darstellung der DFT

- 2 Lineare Systeme
- 2.1 Lineare zeitinvariante (LTI) Systeme

Beispiel 2.1: RC-Glied

- 2.2 Eigenschaften und Beschreibungsgrößen von LTI-Systemen
- + BIBO (Bounded-Input-Bounded-Output) Stabilität
- + Kausalität
- + Phasen- und Gruppenlaufzeit
- + Testsignale für LTI-Systeme
- 2.3 LTI-Systeme mit idealisierten und elementaren Charakteristiken
- 2.3.1 Tiefpässe
- + Idealer Tiefpaß
- + Kurzzeitintegrator (Spalttiefpaß)
- Beispiel 2.1: RC-Glied (Fortsetzung)
- +Idealer Integrator

Medienformen

Handschriftliche Entwicklung auf Präsenter und Präsentation von Begleitfolien Folienscript und Aufgabensammlung im Copy-Shop oder online erhältlich Literaturhinweise online

Literatur

- D. Kreß and D. Irmer: Angewandte Systemtheorie. Oldenbourg Verlag, München und Wien, 1990.
- S. Haykin: Communication Systems. John Wiley & Sons, 4th edition, 2001.
- · A. Fettweis: Elemente nachrichtentechnischer Systeme. Teubner Verlag, 2. Auflage, Stuttgart/Leipzig, 1996.
- J. R. Ohm and H. D. Lüke: Signalübertragung. Springer Verlag, 8. Auflage, 2002.
- B. Girod and R. Rabenstein: Einführung in die Systemtheorie. Teubner Verlag, 2. Auflage, Wiesbaden, 2003.
- S. Haykin and B. V. Veen: Signals and Systems. John Wiley & Sons, second edition, 2003.
- T. Frey and M. Bossert: Signal- und Systemtheorie. Teubner Verlag Wiesbaden, 1. ed., 2004.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Informatik 2010

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Mathematik 2009

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008 Bachelor Technische Kybernetik und Systemtheorie 2013 Master Mathematik und Wirtschaftsmathematik 2008

Modul: Informations- und Kommunikationstechnik

Elektrotechnik 1

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten Sprache: deutsch

Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Prüfungsnummer:210399 Fachnummer: 100205

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	8	Workload (h): 240	Anteil Selbststudium (h):	150	SWS:	8.0	
Fakultät für Elektrot	echnil	und Informationstechnik				Fachgebiet:	2116

	1	I.FS	;	2	2.FS	3		3.FS	3	4	1.FS)	Ę	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	2	0	2	2	0									

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und auf einfache Problemstellungen anwenden

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu analysieren. Weiterhin soll die Fähigkeit zur Analyse einfacher nichtlinearer Schaltungen bei Gleichstromerregung vermittelt werden.

Die Studierenden sollen die Beschreibung der wesentlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein.

Die Studierenden sollen in der Lage sein, grundsätzliche Zusammenhänge des Elektromagnetismus (Durchflutungsgesetz, Induktionsgesetz) zu verstehen und auf einfache Anordnungen anwenden zu können (z.B. Schaltvorgänge mit

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektonische Schaltungen und Systeme bei Erregung durch sinusförmige Wechselspannungen im stationären Fall zu analysieren, die notwendigen Zusammenhänge und Methoden kennen und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen und ihr Wissen auf praxisrelevante Aufgabenstellungen anwenden können.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

- Grundbegriffe und Grundbeziehungen der Elektrizitätslehre (elektrische Ladung, Kräfte auf Ladungen, Feldstärke, Spannung, Potenzial)
- Vorgänge in elektrischen Netzwerken bei Gleichstrom

(Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Superpositionsprinzip, Zweipoltheorie für lineare und nichtlineare Zweipole, Knotenspannungsanalyse,)

- Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen
- (Grundgesetze, Erwärmungs- und Abkühlungsvorgang, Anwendungsbeispiele)
- Das stationäre elektrische Strömungsfeld
- (Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien, Leistungsumsatz, Vorgänge an Grenzflächen)
- Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

(Grundgleichungen, Berechnung symmetrischer Felder, Vorgänge an Grenzflächen, Energie, Energiedichte, Kräfte und Momente, Kapazität und Kondensatoren, Kondensatoren in Schaltungen bei Gleichspannung, Verschiebungsstrom, Auf- und Entladung eines Kondensators)

- Der stationäre Magnetismus

(Grundgleichungen, magnetische Materialeigenschaften, Berechnung, einfacher Magnetfelder, Magnetfelder an Grenzflächen, Berechnung technischer Magnetkreise bei Gleichstromerregung, Dauermagnetkreise)

- Elektromagnetische Induktion

(Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion, Selbstinduktion und Induktivität; Gegeninduktion und Gegeninduktivität, Induktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer Induktivität bei Gleichspannung)

- Energie, Kräfte und Momente im magnetischen Feld

(Grundgleichungen, Kräfte auf Ladungen, Ströme und Trennflächen, Anwendungsbeispiele, magnetische Spannung)

- Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich)

(Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C)

- Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung

(Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, komplexe Leistungsgrößen, grafische Methoden: topologisches Zeigerdiagramm, Ortskurven, Frequenzkennlinien und Übertragungsverhalten, Anwendungsbeispiele)

- Spezielle Probleme der Wechselstromtechnik

(Reale Bauelemente, Schaltungen mit frequenzselektiven Eigenschaften: HP, TP, Resonanz und Schwingkreise, Wechselstrommessbrücken, Transformator, Dreiphasensystem)

- rotierende elektrische Maschinen

Medienformen

Präsenzstudium mit Selbststudienunterstüzung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik Gleichstrom - Felder - Wechselstrom;

2009 Unicopy Campus Edition

Detailangaben zum Abschluss

Schriftliche Prüfung nach dem 2. Semester

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Ingenieurinformatik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Modul: Informations- und Kommunikationstechnik

Hochfrequenztechnik 2: Subsysteme

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1336 Prüfungsnummer:2100026

Fachverantwortlich: Prof. Dr. Matthias Hein

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	3.0	
Fakultät für Elektrote	chnik	und Informationstechnik				Fachgebiet:	2113

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS	3	5	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Die Studierenden verstehen die Funktionen und Architekturen hochfrequenztechnischer Subsysteme. Sie analysieren die Bedeutung solcher Subsysteme für diverse Anwendungsfelder wie Kommunikationstechnik, Medientechnik oder Sensorik und diskutieren die Besonderheiten bei höheren Frequenzlagen. Die Studierenden erkennen Zusammenhänge mit Nachbardisziplinen wie der Mikrowellentechnik, Nachrichtentechnik oder Messtechnik. Durch Vertiefung der Fachkompetenzen aus der Vorlesung durch angeleitete oder selbständige Aufgabenlösungen vermögen die Studierenden spezifische Subsysteme zu charakterisieren. Der eigenständige Entwurf projektbezogener Baugruppen oder Maßnahmen der analogen Signalverarbeitung wird motiviert.

Fachkompetenzen: Grundlagen, Entwicklungstrends, neueste Techniken und Methoden.

Methodenkompetenzen: systematisches Erschließen und Nutzen des Fachwissens und Dokumentation von

Arbeitsergebnissen, Modellbildung, Planung, Simulation und Bewertung komplexer Systeme.

Systemkompetenz: Überblickwissen über angren-zende Fachgebiete, die für die Gestaltung von Systemen wichtig sind, fachübergreifendes, systemorientiertes Denken.

Sozialkompetenzen: Kommunikation, Teamwork, Präsentation, Erkennen von Schnittstellen technischer Problemstellungen zu gesellschaftlichen Anforderungen und Auswirkungen.

Vorkenntnisse

Pflichtmodul im Studienschwerpunkt 1 "Informations- und Kommunikationstechnik" hilfreich

Inhalt

Einführung in Funktionen und Architekturen HF-technischer Systeme; Erläuterung der Bedeutung solcher Systeme für Anwendungsfelder wie z.B. Kommunikationstechnik, Medientechnik, Biomedizintechnik, Fahrzeugtechnik und Sensorik/Erkundung. Vertiefung der Inhalte durch typische Anwendungsbeispiele in Übungsgruppen.

- 1. Einführung: Motivation, Frequenzbereiche, Architekturen und Funktionen HF-technischer Systeme
- 2. HF-Empfänger: Rauschphänomene, Rauschen in HF-Schaltungen, Rauschtemperatur
- 3. Frequenzsynthese: Direkte analoge Frequenzsynthese, indirekte Frequenzsynthese, direkte digitale Synthese
- 4. HF-Sender: Nichtlinearitäten, übersteuerter Selektivverstärker, C-Betrieb, Signalverzerrungen durch Nichtlinearitäten des Verstärkers, Entwicklungstendenzen
- 5. Analoge Modulations- und Demodulationsverfahren: Amplituden-(De)modulation, Winkel-(De)modulation (Frequenz und Phase)
- 6. Digitale Modulations- und Demodulationsverfahren: Übersicht, Amplituden- und Winkel-Umtastung, Quadraturverfahren

Medienformen

Tafelbild, interaktive Entwicklung der Stoffinhalte

Illustrationen zur Vorlesung (in elektronischer Form verfügbar)
Hinweise zur persönlichen Vertiefung
Identifikation vorlesungsübergreifender Zusammenhänge
Vorlesungsbegleitende Aufgabensammlung zur selbständigen Nacharbeitung (in elektronischer Form verfügbar)

Literatur

Zinke, Brunswig: Hochfrequenztechnik 1 und 2, Springer-Verlag 1995

Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik. Springer, Berlin 1992

B. Schiek: Meßsysteme der HF-Technik, Hüthig Verlag

Tietze, U., Schenk, Ch.: Halbleiter-Schaltungstechnik, 12.Auflage oder ff., Springer-Verlag, 2002

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Modul: Informations- und Kommunikationstechnik

Digitale Signalverarbeitung

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1356 Prüfungsnummer:2100019

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echn	ik und Informationstechnik				Fachgebiet:	2114

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden kennen grundlegende Zusammenhänge der diskreten Signalverarbeitung. Sie bewerten Verfahren der Analog-Digital-Wandlung in Bezug auf ihre Anwendungseigenschaften. Die Studierenden wenden grundlegende Signalverarbeitungsalgorithmen (diskrete Transformationen, Korrelation, Faltung, sowie zeitdiskrete Filter, Fehlerkorrektur, Chiffrierung und numerische Algorithmen) und analysieren ihren Einsatz in komplexen Signalverarbeitungsaufgaben. Sie analysieren und synthetisieren zeitdiskrete Filter und diskrete Transformationen in modernen Anwendungen der Sprach- und Bildverarbeitung sowie Messtechnik. Die Studierenden wenden grundsätzliche Zusammenhänge der Fehlerkorrekturverfahren und Chiffrierung an. Die Studierenden sind in der Lage, Verfahren der Digitalen Signalverarbeitung anzuwenden, zu bewerten und differenzierte Soft- und Hardware-Realisierungen zu synthetisieren.

Vorkenntnisse

Pflichtfächer in den Semestern 1-4, Nachrichtentechnik Sem. 5 (Vorlauf)

Inhalt

- Analog-Digital-Umsetzer und Digital-Analog-Umsetzer; - Rhythmische und arhythmische Interpolationsverfahren: Tiefpaß-, Lagrange- und Spline-Interpolation. - Ein- und mehrdimensionale diskrete Transformationen: Diskrete Fouriertransformation, Fast-Fourier-Transformation, Hartley-Transformation, Diskrete Cosinus-Transformation, Walsh/Hadamard-Transformation, Haar-Wavelets, Karhunen-Loeve-Transformation; Gram-Schmidt-Verfahren, Laplace- und Z-Transformation. - Zeitdiskrete Systeme, Digitale Filter - Strukturen und Beschreibung im Zeit- und Frequenz-bereich - Katalog-Filterrealisierungen, Lattice-Filter - Beschreibung Digitaler Filter durch Zustandsgrößen. - Numerisches Glätten, Differenzieren und Integrieren. - Diskrete Faltung, diskrete Autokorrelationsfunktion und diskrete Kreuzkorrelationsfunktion - Zufallsgeneratoren, Fehlerkorrektur, Chiffrierung - Einsatz von Signalprozessoren in der Digitalen Signalverarbeitung

Medienformen

Folienpräsentation Elektronische Präsentationen Übungsscript Tafelanschrieb Folienskript bei Copy-Shop erhältlich Literaturverweise und Liste mit Prüfungsfragen online

Literatur

Kreß,D.; Irmer, R.: Angewandte Systemtheorie, Verlag Technik 1990 Harmuth, H.F.: Transmission of information by Orthogonal Functions, Springer Verlag 2. Aufl. 1972 Schrüfer, E.: Signalverarbeitung, Carl Hanser Verlag 1992 Johnson, J. R.: Digitale Signalverarbeitung, Carl Hanser Verlag 1991 Krüger, K.-E.: Transformationen, Vieweg 2002 Kroschel, K.: Statistische Nachrichtentheorie, 3. Auflage Springer-Verlag 1999, ISBN 3-540-61306-4 Fliege,N.: Multiraten-Signalverarbeitung, B.G.Teubner Stuttgart 1993, ISBN 3-519-06140-6 Pratt,W.K.: Digital Image Processing, Wiley & Sons Inc. 2001, ISBN 0-471-37407-5 Mertins,A.: Signaltheorie, Teubner-Verlag 1996, ISBN 3-519-06178-3

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ET

Master Optronik 2010

Master Optronik 2008

Bachelor Informatik 2010

Bachelor Medientechnologie 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Medientechnologie 2008

Master Optische Systemtechnik/Optronik 2014

Master Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Informations- und Kommunikationstechnik

Kommunikationsnetze

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Englisch

Fachnummer: 614 Prüfungsnummer:2100020

Fachverantwortlich: Prof. Dr. Jochen Seitz

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echni	k und Informationstechnik				Fachgebiet:	2115

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS	3	ţ	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Studierenden werden in dieser Veranstaltung die Grundlagen der Kommunikationsnetze näher gebracht. Sie erkennen die grundlegenden Unterschiede von leitungsvermittelten und speichervermittelten Netzen, sind in der Lage, deren Leistungsfähigkeit zu beurteilen und können so aktuelle Kommunikationsnetze kategorisieren und differenzieren. Darüber hinaus bekommen Sie das Rüstzeug zur Definition von Kommunikationsdiensten und -protokollen vermittelt, sodass Sie bestehende Protokolle analysieren und – anhand gegebener Anforderungen – neue spezifizieren können. Diese Vorlesung bietet somit die Grundlage für weiterführende Veranstaltungen, in denen die hier vermittelten Kenntnisse vertieft werden können.

Vorkenntnisse

Pflichtfächer in den Semestern 1-4

Inhalt

- 1. Einführung Trends in der Informations- und Kommunikationstechnologie -- Vernetzung -- Kommunikationsdienst und protokoll -- Grundmodell der Telekommunikation -- Kommunikationsdienstgüte
- 2. Prinzipien und Definitionen Standardisierung -- Charakterisierung von Kommunikationsvorgängen -- Kommunikationsarchitekturen -- Definition von Kommunikationsdienst und Kommunikationsprotokoll
- 3. Beschreibungsmethoden Weg-/Zeit-Diagramme -- Zustandsübergangsdiagramme -- Ablauffestlegungen -- Formatfestlegungen -- Vollständiges Beispiel: Alternating Bit Protocol
- 4. Übertragungstechnik Signalklassen -- Quellen- und Leitungscodierung -- Multiplexverfahren -- Mehrfachzugriffsverfahren
- 5. Vermittlungstechnik Leitungsvermittlung -- Raummultiplex versus Zeitmultiplex -- Speichervermittlung -- Paket- und Nachrichtenvermittlung -- Virtuelle Verbindung -- Datagrammvermittlung
- 6. Integrated Services Network Digitalisierung des Fernsprechnetzes -- ISDN-Referenzpunkte -- Teilnehmerschnittstelle S0 -- Anschlussleitung Uk0 -- ISDN-Protokollreferenzmodell
- 7. Der Aufbau des digitalen Telefonnetzes Synchrone und Plesiochrone Digitale Hierarchie -- Netzinterne Signalisierung -- Das Intelligente Netz -- Aktive Netze
 - 8. Paketvermittelte Kommunikation Das Internet -- X.25 -- Frame Relay
- 9. Mobilkommunikation Infrastruktur- und Ad-hoc-Netze -- Grundlagen der Mobilkommunikation -- Öffentliche Mobilkommunikation: GSM, GPRS, UMTS
- 10. Breitbandkommunikation Arbeitsweise des asynchronen Transfermodus ATM -- ATM-Protokollreferenzmodell -- ATM Adaptation Layer AAL -- B-ISDN-Referenzkonfiguration -- Breitbandiger Netzzugang (Digitale Subscriber Line DSL) --

verschiedene DSL-Standards -- Realisierung -- Asymmetric DSL-Referenzmodell -- ADSL über Satellit

Medienformen

Folienkopien als Skript (auch online verfügbar) Vorlesung mit PowerPoint und Beamer wenige online-Demos

Literatur

ABECK, S.; LOCKEMANN, P.C.; SCHILLER, J.; SEITZ, J.: Verteilte Informationssysteme. BOCKER, P.: ISDN — Digitale Netze für Sprach-, Text-, Daten-, Video-, und Multimediakommunikation COMER, D.E.: Computernetzwerke und Internets mit Internet-Anwendungen. GROTE, H.; SEITZ, J.; STÖPEL, U.; TOSSE, R.: Mobile digitale Kommunikation – Standards, Netze und Applikationen. HALSALL, F.: Data Communications, Computer Networks, and Open Systems. HASSLINGER, G.; KLEIN, T.: Breitband-ISDN und ATM-Netze. KANBACH, A.; KÖRBER, A.: ISDN — die Technik. Schnittstellen, Protokolle, Dienste, Endsysteme. KRÜGER, G.; RESCHKE, D. (Hrsg.): Lehr- und Übungsbuch Telematik: Netze – Dienste – Protokolle. KUROSE, J.F.; ROSS, K.W.: Computer Networking – A Top-Down Approach Featuring the Internet. LOCHMANN,D.: Digitale Nachrichtentechnik — Signale, Codierung, Übertragungssysteme, Netze. LOCKEMANN, P.C.; KRÜGER, G.; KRUMM, H.: Telekommunikation und Datenhaltung. PETERSON, L.; DAVIE, B.S.: Computernetze — Eine systemorientierte Einführung. SEITZ, J.; DEBES, M.; HEUBACH, M.; TOSSE, R.: Digitale Sprach- und Datenkommunikation. Netze - Protokolle - Vermittlung. SIEGMUND, G.: Technik der Netze. SIEGMUND, G. (Hrsg.): Intelligente Netze. SIEGMUND, G.: Next Generation Networks – IP-basierte Telekommunikation. STALLINGS, W.: Data & Computer Communications. STALLINGS, W.: High-Speed Networks and Internets – Performance and Quality of Service. Second Edition. STEIN, E.: Taschenbuch Rechnernetze und Internet. TANENBAUM, A.S.: Computernetzwerke.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Modul: Informations- und Kommunikationstechnik

Elektronische Messtechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 559 Prüfungsnummer:2100024

Fachverantwortlich: Prof. Dr. Reiner Thomä

Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2	Leistungspunkte: 4	Workload (h):	120 Ante	l Selbststudium (h	n): 75	SWS:	4.0	
Takutat far Elektrotechnik and miormationsteerink	Fakultät für Elektrotech	hnik und Informationstecl	hnik				Fachgebiet:	2112

	1	l.FS	<u> </u>		2.FS	3		3.FS	3	4	l.FS	,		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester																2	2	0			

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Hörer sollen in die Lage versetzt werden, die wichtigsten in der Nachrichten- und Informationstechnik angewendeten Messverfahren und Messgerätekonzepte in ihren Grundzügen zu verstehen, ihre Leistungsparameter beurteilen und Messaufgaben lösen zu können. (60%) Methodenkompetenz: Besonderer Wert wird auf die Methoden zur Analyse von informationstechnischen Signalen und Systemen im Zeit- und Frequenzbereich und auf die Untersuchung des Einflusses von Störungen, linearen und nichtlinearen Verzerrungen gelegt. (20 %) Systemkompetenz: Erläuterung der Messmethoden als allgemeine Prinzipien, die nicht nur auf elektrotechnische Problemstellungen anwendbar sind. (10 %) Sozialkompetenz: Diskussion von Einsatz- und Optimierungsgesichtspunkten messtechnischer Lösungen für Entwicklungs- und Produktionsaufgaben. (10 %)

Vorkenntnisse

Signal- und Systemtheorie, Elektrotechnik, analoge und digitale Schaltungstechnik

Inhalt

Einführung, Signale und Störungen, lineare und nichtlineare Verzerrungen; Spannungs-, Leistungs- und Phasenmessung, quadratischer Detektor, phasenempfindlicher Gleichrichter, PLL, Quadraturdemodulator; systematische und zufällige Fehler, Pegel und Dämpfung; Schallpegelmesser, HF-Leistungsmesser; Messung im Zeitbereich, Oszilloskop, Sampling-Oszilloskop-Tastkopf, Bandbreite, Anstiegszeit und Empfindlichkeit; Systemanalyse im Zeitbereich, Impulsreflektometrie, Analyse digital modulierter Signale (Augendiagramm, Zustandsdiagramm) Messung im Frequenzbereich, Spektralanalysator, selektiver Messempfänger (Auflösung, Empfindlichkeit, Verzerrungen, Dynamikbereich, Spiegelfrequenzen, Mehrfachumsetzer), Vektorvoltmeter; Netzwerk- und Systemanalyse im Frequenzbereich, Verzerrungsmessungen, Modulationsanalyse, digitaler Signalanalysator, Abtastung, Digitalisierung und Analoginterface, Messdatenverarbeitung

Medienformen

Skript

Literatur

[1] Kreß, D.; Irmer, R.: Angewandte Systemtheorie. Verlag Technik, Berlin (1989) [2] Meyer, G.: Oszilloskope. Hüthig Verlag, Heidelberg (1989) [3] Lange, K.; Löcherer, K.-H.: Taschenbuch der Hochfrequenztechnik. Springer-Verlag, Berlin (1986) [4] Schuon, E.; Wolf, E.: Nachrichtenmeßtechnik. Springer-Verlag, Berlin (1981), (1987) [5] Mäusl, R.; Schlagheck, E.: Meßverfahren in der Nachrichtenübertragungstechnik. Hüthig-Verlag, Heidelberg (1986) [6] Thumm, M.; Wiesbeck, W.; Kern, S.: Hochfrequenzmeßtechnik. Teubner, Stuttgart (1997) [7] Becker; Bonfig; Höring: Handbuch Elektrische Meßtechnik. Hüthig-Verlag, Heidelberg (2000) [8] van Etten, W.: Introduction to Random Signals and Noise. John Wiley, 2005

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Wirtschaftsingenieurwesen 2014 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2013

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2013

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2013 Vertiefung ET

Modul: Informations- und Kommunikationstechnik

Grundlagen der Signalerkennung

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1375 Prüfungsnummer:2100041

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektro	techni	k und Informationstechnik				Fachgebiet:	2116

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	5		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester																2	1	0			

Lernergebnisse / Kompetenzen

Die Studierenden sollen die wesentlichen Theorien und Methoden der Signalanalyse sowohl für zeitkontinuierliche als auch für zeitdiskrete Signale und stochastische Prozesse kennen, mit den bei der praktischen Umsetzung auftretenden Fragen und Problemen vertraut sein und in der Lage sein, die vermittelten Methoden und Erkenntnisse auf praxisrelevante Probleme anzuwenden. Fachkompetenz: 40% Methodenkompetenz: 40% Systemkompetenz: 10% Sozialkompetenz: 10%

Vorkenntnisse

Gemeinsames Ingenieurwissenschaftliches Grundlagenstudium

Inhalt

- Determinierte zeit- und wertkontinuierliche Signale (Signalbeschreibung durch orthogonale Funktionen, Zeit-Frequenz-Repräsentationen wie Wavelet-Transformation, STFT und Wigner-Distribution) - Zeitdiskrete Signale (Abtastung, Zeitfenster, diskrete Fourier-Transformation, z-Transformation, Systemsimulation durch rekursive Filter) - Stochastische Signale und Prozesse (Grundbegriffe und -gesetze, Systemverhalten bei Erregung durch stochastische Signale, signalangepasste Filter, Optimalfilter, Signalanalyse und Mustererkennung)

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch webbasiertes virtuelles Praktikum und multimediale Präsentation

Literatur

Arbeitsblätter, multimediale Präsentation

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Modul: Informations- und Kommunikationstechnik

Nichtlineare Elektrotechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1342 Prüfungsnummer:2100038

Fachverantwortlich: Prof. Dr. Hannes Töpfer

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	4.0	
Fakultät für Elektro	technil	k und Informationstechnik				Fachgebiet:	2117

	1	I.FS	6	2	2.FS	3	;	3.FS	3	4	1.FS	3		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	2	0			

Lernergebnisse / Kompetenzen

Fachkompetenz:

Naturwissenschaftliche und angewandte Grundlagen der nichtlinearen Elektrotechnik, Einbindung des angewandten Grundlagenwissens in die Bewertung technischer Aufgabenstellungen

Methodenkompetenz:

Systematische Anwendung von Methoden zur Behandlung nichtlinearer Probleme der Elektrotechnik, Systematisches Erschließen und Nutzen des Fachwissens, Erweiterung des Abstraktionsvermögens

Systemkompetenz: Fachübergreifendes systemorientiertes Denken

Sozialkompetenz: Lernvermögen, Mobilität, Flexibilität, Kommunikation

Hörer der Lehrveranstaltung

- können das Verhalten technischer Bauelemente durch nichtlineare Modelle beschreiben
- besitzen grundsätzliche Kenntnisse der Approximation und Interpolation von Kennlinien zur geeigneten Beschreibung von Messkurven
 - · verfügen über Kenntnisse zur Berechnung von nichtlinearen Gleich- und Wechselstrom-Netzwerken
- besitzen Grundkenntnisse der Beschreibung des dynamischen Verhaltens elektrischer Netzwerke durch nichtlineare Differentialgleichungssysteme
 - können die Stabilität nichtlinearer elektrischer Netzwerke bewerten und Bifurkationsphänomene erkennen und zuordnen

Vorkenntnisse

Mathematik, Grundlagen der Elektrotechnik, Lineare Netzwerktheorie

Inhalt

Einführung in die nichtlineare Netzwerktheorie: Grundelemente, Modulierung nichtlinearer Zweipol- und Dreipol-Elemente; Approximation und Interpolation von Zweipol-Kennlinien; Analyse resistiver Netzwerke: mathematische Modellierung, Lösungsmethoden, nichtlineare Wechselstromnetzwerke; Dynamische RLC-Netzwerke: Topologische Analysetechnik, Lösung nichtlinearer Differentialgleichungssysteme, Stabilität stationärer Lösungen, Bifurkationsphänomene, Chaos, Rauschen in nichtlinearen Netzwerken

Medienformen

Tafelvorlesung, Vorlesungsfolien und Übungsaufgaben im pdf-Format

Literatur

[1] Philippow, E.: Nichtlineare Elektrotechnik. Akademische Verlagsgesellschaft Leipzig, 1971 [2] Chua, L.O.; Desoer, Ch.;

Kuh, E.: Linear and Nonlinear Circuits. Mc Graw Hill, 1987 [3] Hasler, M.; Neiryck, J.: Nonlinear Circuits. Artech House Inc., 1986

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Master Technische Kybernetik und Systemtheorie 2014

Bachelor Elektrotechnik und Informationstechnik 2008

Master Elektrotechnik und Informationstechnik 2014 Vertiefung EET

Bachelor Elektrotechnik und Informationstechnik 2013

Modul: Maschinenbau

Modulnummer8366

Modulverantwortlich: Prof. Dr. Jean Pierre Bergmann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Lernergebnis: Studierende sind in der Lage, den erworbenen Sachverstand einzusetzen, um im Rahmen eines Projektes mit einer definierten Aufgabe und Zielsetzung neue Lösungen in der Fertigungs- und Produktionstechnik und Methoden zur Bewertung von Produktionsszenarien zu entwickeln.

Erworbene Kompetenz: Die Studierenden sind in der Lage, komplexer Zusammenhänge zu analysieren, diese zu bewerten und in einzelnen Paketen zu separieren. Darüber hinaus sind Studierende fähig, Ergebnisse ingenieur-wissenschaftlich vorzustellen und diese zu diskutieren.

Vorraussetzungen für die Teilnahme

Grundlagen der Fertigungstechnik, Werkstoffe, Maschinenelemente, Technische Mechanik, Entwicklungsmethodik

Detailangaben zum Abschluss

Die Studierenden sind in der Lage, komplexer Zusammenhänge zu analysieren, diese zu bewerten und in einzelnen Paketen zu separieren. Darüber hinaus sind Studierende fähig, Ergebnisse ingenieur-wissenschaftlich vorzustellen und diese zu diskutieren

Bachelor Informatik 2013 Modul: Maschinenbau

Darstellungslehre und Maschinenelemente 1

Fachabschluss: Prüfungsleistung generiert Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100198 Prüfungsnummer:230396

Fachverantwortlich: Prof. Dr. Ulf Kletzin

Leistungspunkte: 4	4	Workload (h):	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Maschiner	nbau						Fachgebiet:	2311

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	3		5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester							1	1	0	1	1	0									

Lernergebnisse / Kompetenzen

Technische Darstellungslehre:

- Die Studierenden können die räumliche Geometrie existierender technischer Gebilde (Einzelteile, Baugruppen) erfassen und sind fähig, diese norm- und regelgerecht technisch darzustellen.
- Aus technischen Darstellungen können sie auf die räumliche Gestalt und zur Vorbereitung von Berechnungen auf die Funktion schließen.

Maschinenelemente 1:

Die Studierenden sind fähig, bei belasteten einfachen und komplexen Maschinenbauteilen in methodischer Vorgehensweise die Belastungsart zu erkennen und unter Verwendung geeigneter Berechnungsmethoden die Dimensionierung, Nachrechnung und Auswahl von Maschinenelementen vorzunehmen.

Vorkenntnisse

Technische Darstellungslehre:

- Abiturstoff
- räumlich-technisches Vorstellungsvermögen

Maschinenelemente 1:

- Technische Mechanik (Statik und Festigkeitslehre)
- · Technische Darstellungslehre
- Werkstofftechnik
- Fertigungstechnik

Inhalt

Technische Darstellungslehre:

- · Projektionsverfahren
- · Technisches Zeichnen
- Toleranzen und Passungen Grundlagen und Beispiele

Maschinenelemente 1:

- Grundlagen des Entwurfs von Maschinenelementen (Anforderungen, Grundbeanspruchungsarten und deren Berechnung)
 - Gestaltung und Berechnung von Verbindungselementen (Übersicht, Löten, Kleben, Stifte, Passfedern, Schrauben,

Klemmungen)

- Federn (Arten, Dimensionierung ausgewählter Federarten)
- · Achsen und Wellen (Dimensionierung und Gestaltung)
- Lagerungen (Übersicht, Wälzlagerauswahl)

Medienformen

Skripte und Arbeitsblätter in Papier- und elektronischer Form Aufgaben- und Lösungssammlung

Literatur

Technische Darstellungslehre:

- Fucke; Kirch; Nickel: Darstellende Geometrie für Ingenieure. Fachbuchverlag Leipzig, Köln 2004
- Hoischen, H.: Technisches Zeichnen. Verlag Cornelsen Girardet Düsseldorf, 1996
- · Böttcher; Forberg: Technisches Zeichnen. Teubner Verlag Stuttgart; Beuth-Verlag Berlin, Köln
- Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Maschinenelemente 1:

- Niemann, G.: Maschinenelemente. Springer Verlag Berlin 2005
- Decker, K.-H.: Maschinenelemente. Carl Hanser Verlag München 2004
- Roloff; Matek: Maschinenelemente. Verlagsgesellschaft Vieweg & Sohn Braunschweig 2005
- Steinhilper; Röper; Sauer u.a.: Maschinen- und Konstruktionselemente. Springer Verlag Berlin 2000
- Krause, W.: Konstruktionselemente der Feinmechanik. Carl Hanser Verlag München 2004
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinenelemente

Detailangaben zum Abschluss

Alternative Prüfungsleistung (aPL)

- 1.FS (Wintersemester)
- Abschluss des Semesters mit einem benoteten Schein (bS)
- Die Note für den Schein ergibt sich aus mehreren Teilleistungen.
- Das Erbringen der Scheinleistung ist keine Voraussetzung für die Teilnahme an den anderen Prüfungsleistungen.
 - 2. FS (Sommersemester)
 - · Abschluss des Semesters mit zwei einzelnen Prüfungsleistungen
- Hausbeleg
- 180' Klausur

Die Abschlussnote für das Fach "Darstellungslehre / Maschinenelemente 1 wird aus den beiden Prüfungsleistungen gebildet.

- Hausbeleg: 40%
- Klausur: 60%

Damit die Abschlussnote generiert wird, müssen der benotete Schein und beide Prüfungsleistungen bestanden sein.

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Informatik 2013 Modul: Maschinenbau

Technische Mechanik 1.1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1480 Prüfungsnummer:2300079

Fachverantwortlich: Prof. Dr. Klaus Zimmermann

Leistungspunkte: 5 Fakultät für Maschinenbau	٧	Vorklo	oad (h):	150	Д	nteil	Selb	ststu	idium	າ (h):	1	05	S	SWS:	•	Fa		I.0 biet:	23	43
		1.FS	3		2.FS	,		3.F	3		1.FS	;	į	5.FS	}	(6.FS	3	7	7.FS	}
SWS nach	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester	$\cdot \Box$									2	2	0									

Lernergebnisse / Kompetenzen

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realsieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorkenntnisse

Grundlagen der Mathematik (Vektorrechnung, Lineare Algebra, Differentialrechnung)

Inhalt

1. Statik - Kräfte und Momente in der Ebene und im Raum - Lager- und Schnittreaktionen - Reibung 2. Festigkeitslehre - Spannungen und Verformungen - Zug/Druck - Torsion kreiszylindrischer Stäbe - Gerade Biegung 3. Kinematik - Kinematik des Massenpunktes (Koordinatensysteme, Geschwindigkeit, Beschleunigung) - Kinematik des starren Körpers (EULER-Formel, winkelgeschwindigkeit) 4. Kinetik - Kinetik des Massenpunktes (Impuls-, Drehimpuls-, Arbeits-, Energiesatz) - Kinetik des starren Körpers (Schwerpunkt-, Drehimpuls-, Arbeits-, Energiesatz)

Medienformen

Tafel (ergänzt mit Overhead-Folien) Integration von E-Learning Software in die Vorlesung

Literatur

1. Zimmermann: Technische Mechanik-multimedial. Hanser Fachbuchverlag 2003 2. Hahn: Technische Mechanik. Fachbuchverlag Leipzig 1992 3. Magnus/Müller: Grundlagen der Technischen Mechanik. Teubner 2005 4. Dankert/Dankert: Technische Mechanik

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008 Bachelor Technische Physik 2008 Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Ingenieurinformatik 2013

Bachelor Medientechnologie 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Werkstoffwissenschaft 2013

Bachelor Biomedizinische Technik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Informatik 2013 Modul: Maschinenbau

Grundlagen der Fertigungstechnik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1376 Prüfungsnummer:2300013

Fachverantwortlich: Prof. Dr. Jean Pierre Bergmann

Fakultät für Maschinenbau Fachgebiet	
Fakultät für Maschinenbau Fachgebiet	2321

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	5	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden lernen die relevanten Fertigungsverfahren in der industriellen Produktion kennen. Sie können die Verfahren systematisieren und die Wirkmechanismen zwischen Werkstoff, Werkzeug und Fertigungsanlage theoretisch durchdringen. Damit sind sie in der Lage zur fachgerechten Analyse und Bewertung der Einsatzmöglichkeiten der Verfahren. Sie sind fähig, die Verfahren unter den Aspekten der Prozesssicherheit, Umweltverträglichkeit und Wirtschaftlichkeit auszuwählen und kompetent in den Produktentwicklungsprozess einzubringen.

Vorkenntnisse

Physik, Chemie, Mathematik, Werkstofftechnik, Technische Darstellungslehre, Messtechnik

Inhalt

Einteilung der Fertigungsverfahren, Verfahrenshauptgruppen Urformen (Gießen, Sintern), Umformen (Walzen, Fließpressen), Trennen (Drehen, Fräsen, Schleifen, Schneiden), Abtragen (EDM, ECM), Fügen (Schweißen, Löten, Kleben), Beschichten, Stoffeigenschaftsändern

Medienformen

Folien als PDF-File im Netz

Literatur

König, W.: Fertigungsverfahren; Band 1-5 VDI-Verlag Düsseldorf, 2006/07 Spur,G.; Stöfferle,Th: Handbuch der Fertigungstechnik. Carl-Hanser Verlag München, Wien Warnecke, H.J.: Einführung in die Fertigungstechnik. Teubner Studienbücher Maschinenbau. Teubner Verlag 1990 Schley, J. A.: Introduction To Manufacturing Processes. McGraw-Hill Companies, Inc.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Informatik 2013 Modul: Maschinenbau

Mechanismentechnik

Fachabschluss: Prüfungsleistung schriftlich 150 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100967 Prüfungsnummer:2300471

Fachverantwortlich: Prof. Dr. Lena Zentner

Fakultät für Maschinenbau Fachgebiet: 2344	Leistungspunkte: 5	Workload (h): 1	50 Anteil Selt	ststudium (h): 1	05 SWS:	4.0	
	Fakultät für Maschinenbau					Fachgebiet:	2344

	1	l.FS	<u> </u>		2.FS	3		3.FS	3		l.FS	<u> </u>		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Den Studierenden werden Methoden zur Lösung verschiedener mechanismentechnischer Aufgaben vermittelt. Sie können die erlernten Verfahren anwenden und sind in der Lage, eigenständig Mechanismen zur Realisierung unterschiedlichster Bewegungsaufgaben in technischen Systemen zu erfassen, zu analysieren und zu beurteilen. Die Studierenden erwerben weiterhin Kenntnisse von verschiedenen Synthesemethoden und die Fähigkeit diese anzuwenden. Dabei gelingt es ihnen für vorgegebene Bewegungsaufgaben geeignete Syntheseverfahren auszuwählen, neue Mechanismen zu entwickeln und zu bewerten. In den Vorlesungen und Seminaren werden Fach- und Methodenkompetenz vermittelt

Vorkenntnisse

Mathematik, Technische Mechanik, Maschinenelemente, CAD

Inhalt

Einführung (Begriffe und Definition, Einteilung der Getriebe, Aufgaben der Mechanismentechnik)

Methoden zur Ermittlung von bewegungsgeometrischen Grundlagen (struktureller Aufbau und Laufgrad,

Übertragungsfunktion, Führungsfunktion, Bewegungsgüte, kinematische Abmessungen, ebene viergliedrige geschlossene Ketten)

Kinematik (relative Drehachsen, Methoden zur Geschwindigkeits- und Beschleunigungszustand von Punkten in Mechanismen)

Methoden zur a) Synthese einfacher Koppelgetriebe für Übertragungsaufgaben (Koppelmechanismen für vorgeschriebene Übertragungsfunktionen, Koppelmechanismen für vorgeschriebenen Bewegungsbereich)

b) Lagensynthese einfacher Koppelgetriebe

Medienformen

Vorlesungsbegleitendes Lehrmaterial und Übungsaufgaben (Papier),

Animationen von Getrieben,

PowerPoint-Präsentationen

Literatur

- [1] Volmer, J. (Herausgeb.):
- 1. Getriebetechnik Grundlgn. Verlag Technik Berlin/ München 1992;
- 2. Getriebetechnik Lehrbuch. Verlag Technik Berlin 1987;
- 3. Getriebetechnik Koppelgetriebe. Verlag Technik Berlin 1979;
- [2] Lichtenheldt, W./Luck, K.: Konstruktionslehre der Getriebe. Akademie-Verlag Berlin 1979

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Mechatronik 2013

Grundlagen der Kunststoffverarbeitung

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 6537 Prüfungsnummer:2300374

Fachverantwortlich: Prof. Dr. Michael Koch

Leistungspunkte:	4	Workload (h):	120	Anteil Selbststudium (h):	98	SWS:	2.0	
Fakultät für Maschine	enbau						Fachgebiet:	2353

	1	1.FS	3		2.FS	<u>} </u>		3.FS	3		I.FS	3		5.FS	3	(3.FS	<u>`</u>	7	7.FS	}
SWS nach	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester																2	0	0			

Lernergebnisse / Kompetenzen

Die Studierenden lernen Kunststoffe, ihre wesentlichen Eigenschaften und einen Überblick über gängige Verarbeitungsverfahren der Kunststofftechnik kennen.

Vorkenntnisse

Grundlegende Werkstoffkenntnisse, Grundlagenfächer des GIG

Inhalt

- 1. Einführung: Bedeutung und Anwendungen der Kunststoffe
- 2. Überblick über Kunststofftypen und ihre Herstellungsverfahren
- 3. Grundlagen der technologischen Werkstoffeigenschaften von Kunststoffen
- 4. Verarbeitungsverfahren
- 4.1. Aufbereitung und Mischen
- 4.2. Extrusion
- 4.3. Spritzgießen
- 4.4. Blasformen, Umformen und Schäumen
- 4.5. Fügen und Veredeln
- 4.6. Duroplastverarbeitung: Pressen und FVK Verarbeitung
- Praktikum 1: Erkennen von Kunststoffen und deren Eigenschaften (Brandverhalten, Dichte, DSC)
- Praktikum 2: Extruderkennlinie an einem Einschneckenextruder
- Praktikum 3: Spritzgießteilherstellung und Veränderung der Parameter zur Bauteilbeeinflussung
- Praktikum 4: Mechanische Eigenschaften von Kunststoffen (Zugversuch, Schlagzähigkeit, Kerbschlagversuch, Härte)

Medienformen

Literatur

Oberbach, K.(Hrsg.): Saechtling Kunststoff Taschenbuch, Carl Hanser Verlag 2001 Michaeli, W.: Einführung in die Kunststoffverarbeitung, Carl Hanser Verlag, 2006 Michaeli, W., Greif, H., Wolters, L., Vossebürger, F.-J.: Technologie der Kunststoffe, Carl Hanser Verlag, 2008

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Informatik 2013

Modul: Mathematik

Modulnummer8367

Modulverantwortlich: Prof. Dr. Michael Stiebitz

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Bachelor Informatik 2013 Modul: Mathematik

Optimierung

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Englisch

Fachnummer: 8077 Prüfungsnummer:2400273

Fachverantwortlich: Prof. Dr. Gabriele Eichfelder

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathen	าatik เ	und Naturwissenschaften				Fachgebiet:	2415

	1	I.FS)	2	2.FS	3		3.FS	3	4	I.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							2	2	0												

Lernergebnisse / Kompetenzen

Fach- und Methodenkompetenz: Beherrschung der grundlegenden Ideen in der linearen und nichtlinearen Optimierung, Anwendung von elementaren Theorien und Methoden der linearen Algebra und Analysis, Anwendung der Optimerung beim Lösen konkreter Anwendungsmodelle z.T. mit Hilfe des Rechners, Lösen von OR Problemen mit geeigneten Modellen

Vorkenntnisse

Lineare Algebra und Grundlagen der Analysis

Inhalt

Anwendungsprobleme und Modellierung, konvexe Mengen, konvexe Funktionen, Lösungsverhalten linearer Ungleichungssysteme, Dualität, Optimalitätskriterien der linearen Optimierung, Lösungsverfahren,Optimalitätsbedingungen der nichtlinearen Optimierung, Überblick zu Verfahren der restriktionsfreien nichtlinearen Optimierung und Ansätze zu Verfahren der restringierten nichtlinearen Optimierung

Medienformen

Tafel, Folien, Beamer

Literatur

- A. Ben-Tal und A. Nemirovski, Lectures on modern convex optimization (MPS-SIAM Series on Optimization, 2001).
- M. Gerdts und F. Lempio, Mathematische Optimierungsverfahren des Operations Research (De Gruyter, Berlin, 2011).
- C. Geiger und C. Kanzow, Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben (Springer, Berlin, 1999).
- C. Geiger und C. Kanzow, Theorie und Numerik restringierter Optimierungsaufgaben (Springer, Berlin, 2002).
- F. Jarre und J. Stoer, Optimierung (Springer, Berlin, 2004).
- R. Reemtsen, Lineare Optimierung (Shaker Verlag, Aachen, 2001).

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen

Master Informatik 2013

Bachelor Informatik 2013

Master Informatik 2009 Bachelor Informatik 2010 Bachelor Informatik 2013 Modul: Mathematik

Numerik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7158 Prüfungsnummer:2400343

Fachverantwortlich: Prof. Dr. Hans Babovsky

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathem	natik u	ınd Naturwissenschaften				Fachgebiet:	2413

	1	I.FS	5	2	2.FS	3	,	3.FS	3	4	I.FS	3	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Kenntnis der grundlegenden Verfahren der numerischen Mathematik.

Befähigung zum Algorithmenentwurf sowie zu dessen Analyse bzgl. Rechenaufwand und Robustheit.

Vorkenntnisse

Mathematik I und II

Inhalt

Direkte Verfahren für lineare Gleichungssysteme (Gauß, QR): Aufwand, Kondition, Anwendung auf das Ausgleichsproblem, Verfahren für Eigenwertprobleme (Vektoriteration),

Interpolation (Lagrange Polynome, Splines): Fehlerabschätzung, numerische Effekte, Stützstellenwahl,

Numerische Integration,

Algorithmen zur Lösung von nichtlinearen Gleichungen und Gleichungssystemen.

Medienformen

Tafel, Beamer, Folie

Literatur

- T. Huckle und S. Schneider: Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker, 2.Auflage, Springer, 2006.
- L. Grüne: Einführung in die numerische Mathematik, Vorlesungsskript Uni Bayreuth, 5.Auflage.
- P. Deuflhard und A. Hohmann, A.: Numerische Mathematik 1 Eine algorithmisch orientierte Einführung, 4.Auflage, De Gruyter, 2008.

W.Neundorf: Numerische Mathematik - Vorlesungen, Übungen, Algorithmen und Programme, Shaker Verlag, 2002

Detailangaben zum Abschluss

Bachelor- und Masterstudenten (Studienordnung 2013) vertiefen ihre Kenntnisse zusätzlich in Form eines Praktikums.

verwendet in folgenden Studiengängen

Master Informatik 2013

Bachelor Informatik 2013

Master Informatik 2009

Bachelor Informatik 2010

Bachelor Informatik 2013 Modul: Mathematik

Informations- und Kodierungstheorie

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch, auf Nachfrage Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Englisch

Fachnummer: 5776 Prüfungsnummer:2400275

Fachverantwortlich: Prof. Dr. Michael Stiebitz

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathen	natik u	nd Naturwissenschaften				Fachgehiet: 3	2/17

	1	I.FS	5	2	2.FS	3	;	3.FS	3		1.FS	}		5.FS	3	(6.FS	3		7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester																2	2	0			

Lernergebnisse / Kompetenzen

Die Studierenden kennen und beherrschen die gundlegenden Begriffe, Definitionen, Schlussweisen, Methoden und Aussagen der Info- und Kodierungstheorie

Vorkenntnisse

Lineare Algebra, Algebra, Diskrete Mathematik

Inhalt

Einführende Beispiele, Information und Entropie, Shannonsche Hauptsätze der Informationstheorie, lineare Codes, perfekte Codes, Korrekturverfahren, zyklische Codes, endliche Körper, Minimalpolynom, Generator- und Kontrollpolynom, BCH-Schranke und BCH-Codes, Reed-Solomon- und Golay-Codes, Anwendungsbeispiele

Medienformen

Tafel, Folien, Beamer

Literatur

Standardliteratur der Informations- und Codierungstheorie

Detailangaben zum Abschluss

werden bei Bedarf festgelet

verwendet in folgenden Studiengängen

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Master Informatik 2013

Bachelor Informatik 2013

Master Informatik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung WM

Bachelor Informatik 2013 Modul: Mathematik

Diskrete Mathematik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 7159 Prüfungsnummer:2400344

Fachverantwortlich: Prof. Dr. Jochen Harant

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Mathen	natik ι	ınd Naturwissenschaften				Fachgebiet:	2418

	1	1.FS	3		2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester													2	2	0						

Lernergebnisse / Kompetenzen

Abzählungen, Summation und Rekursionen, zweifaches Abzählen, Zählkoeffizienten, Faktorielle, Stirlingzahlen, Inversionsformeln, Differenzenrechnung, partielles Summieren, erzeugende Funktionen, Codierungstheorie, Suchtheorie, Lösung von Rekursionen, extremale Mengentheorie

Vorkenntnisse

Abiturwissen

Inhalt

Abzählmethoden, Abzählkoeffizienten, Rekursionen

Medienformen

Tafel

Literatur

Standardwerke zur Diskreten Mathematik

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen

Master Informatik 2013

Bachelor Informatik 2013

Master Informatik 2009

Bachelor Informatik 2010

Modul: Medientechnologie

Modulnummer8368

Modulverantwortlich: Prof. Dr. Hans-Peter Schade

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden erwerben Kenntnisse über die Erzeugung, Verbreitung, Verarbeitung und Wiedergabe audioviuseller Medien. In Praktika haben sie die Möglichkeit, sich ausgewälte Fertigkeiten im Umgang mit elektronischen Medien anzueignen. Darüber hinaus sollen sie erkennen, dass für viele Problemlösungen im Medienbereich auch Kenntnisse aus unterschiedlichen Gebieten der Informatik benötigt werden.

Vorraussetzungen für die Teilnahme

Mathemaisch-naturwissenschaftliche Grundlagen (im Wesentlichen Abiturstoff und Kenntnisse aus den Modulen "Mathematik für Informatiker")

Detailangaben zum Abschluss

Die Modulnote wird aus den Einzelnoten der Fächer entsprechend ihres Gewichtes generiert.

Grundlagen der Elektrotechnik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100255 Prüfungsnummer:2100404

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2116

	1	I.FS)	2	2.FS	3		3.FS	3		1.FS)		5.FS	}	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und auf einfache Problemstellungen anwenden können.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu analysieren. Weiterhin soll die Fähigkeit zur Analyse einfacher nichtlinearer Schaltungen bei Gleichstromerregung vermittelt werden.

Die Studierenden sollen die Beschreibung der wesentlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein.

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch einwellige Wechselspannungen im stationären Fall zu analysieren, die notwendigen Zusammenhänge und Methoden kennen und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen und ihr Wissen auf praxisrelevante Aufgabenstellungen anwenden können.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

- Grundbegriffe und Grundbeziehungen der Elektrizitätslehre
- (elektrische Ladung, Kräfte auf Ladungen, Feldstärke, Spannung, Potenzial)
 - Vorgänge in elektrischen Netzwerken bei Gleichstrom

(Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Netzwerkberechnung)

- · Das stationäre elektrische Strömungsfeld
- (Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien)
 - Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern

(Grundgleichungen, Berechnung symmetrischer Felder, Kapazität und Kondensatoren, Verschiebungsstrom, Auf- und Entladung eines Kondensators)

· Der stationäre Magnetismus

(Grundgleichungen, magnetische Materialeigenschaften, Berechnung einfacher Magnetfelder)

· Elektromagnetische Induktion

(Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion, Selbstinduktion und Induktivität, Gegeninduktion und Gegeninduktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer

Induktivität bei Gleichspannung)

• Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich)

(Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C)

· Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung

(Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, Frequenzkennlinien und Übertragungsverhalten)

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, Wagner: Allgemeine Elektrotechnik; Band 1: Gleichstrom - Felder - Wechselstrom; 2009; Unicopy Campus Edition

Detailangaben zum Abschluss

schriftliche Prüfungsleistung 90 min

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2013

Bachelor Biotechnische Chemie 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2013

Bachelor Informatik 2013

Grundlagen der Medientechnik - Klausur

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5443 Prüfungsnummer:2100106

Fachverantwortlich: Prof. Dr. Karlheinz Brandenburg

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2181

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden sind fähig, auf der Grundlage der audiovisuellen Wahrnehmungsfähigkeiten des Menschen medientechnische Systeme für die Ein-/Ausgabe und Speicherung zu bewerten.

Vorkenntnisse

keine

Inhalt

Die Studierenden lernen die Grundlagen der auditiven und visuellen Wahrnehmung und deren Leistung und Grenzen für medientechnische Systeme kennen. Im Weiteren werden Verfahren und Geräte zur Medienein- und -ausgabe sowie zur Speicherung von elektronischen Medien erläutert.

Die Themen der Vorlesung im SS 2015 sind:

- · Grundprinzipien der Signalverarbeitung
- · Auditive Wahrnehmung
- Audioaufnahme
- Visuelle Wahrnehmung
- · Licht und Optik
- Fotografie
- · Videoaufnahme
- Audioübertragung
- Bild- und Videoübertragung
- · Audiowiedergabe
- · Flachbildwiedergabe
- · Großbildwiedergabe
- · Speicherung

Medienformen

Skripte zur Vorlesung, Experimentelle Demonstrationen, Übungssaufgaben

Literatur

12.319996948242px; font-family: Arial, Verdana, Helvetica, sans-serif; vertical-align: baseline; list-style: disc; color: #333333; font-variant: normal; letter-spacing: normal; line-height: 19.0959987640381px; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 1; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff;">style="margin: 0px 0px 0px 15px; padding: 0px; border: 0px; outline: 0px; font-weight: inherit; font-style: inherit; font-size: 12.3199996948242px; font-family: inherit; vertical-align: baseline;">Dickreiter, M.: "Handbuch der Tonstudiotechnik Band 1" + "Handbuch der Tonstudiotechnik Band 2", de Gruyter Saur Berlin, 2014.
li>style="margin: 0px 0px 0px 15px; padding: 0px; border: 0px; outline: 0px; font-weight: inherit; font-style: inherit; font-size: 12.3199996948242px; font-family: inherit; vertical-align: baseline;">Schmidt, U.: "Professionelle Videotechnik: Grundlagen, Filmtechnik, Fernsehtechnik, Geräte- und Studiotechnik in SD, HD, DI, 3D", Springer Vieweg Berlin, 2013.
li>style="margin: 0px 0px 0px 15px; padding: 0px; border: 0px; outline: 0px; font-weight: inherit; font-style: inherit; font-size: 12.3199996948242px; font-family: inherit; vertical-align: baseline;">Leute, U.: "Optik für Medientechniker: optische Grundlagen der Medientechnik", Fachbuchverl. Leipzig im Carl-Hanser-Verlag, 2011.
li>style="margin: 0px; border: 0px; outline: 0px; font-weight: inherit; font-size: 12.3199996948242px; font-family: inherit; vertical-align: baseline;">Bruce, E. B.: "Wahrnehmungspsychologie: der Grundkurs", Spektrum Berlin, 2008.
li>s

Detailangaben zum Abschluss

Den Studierende wird die Möglichkeit zum Erwerb von Bonus bis max. 30% durch eine selbstständige Projektarbeit eingeräumt. Dazu wird eine Ergänzungslehrveranstaltung angeboten. In der Ergänzungslehrveranstaltung erfolgt ein Vortrag und eine Demonstration der Ergebnisse.

Der Bonus wird nach erfolgreichen Abschluß der schriftlichen Prüfung auf die erreichten Punkte der Klausur angerechnet.

verwendet in folgenden Studiengängen

Bachelor Informatik 2013
Bachelor Medientechnologie 2013
Bachelor Informatik 2010
Bachelor Medientechnologie 2008

Grundlagen der Videotechnik

Fachabschluss: Studienleistung schriftlich 120 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5441 Prüfungsnummer:2100108

Fachverantwortlich: Prof. Dr. Gerald Schuller

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrote	chnik	und Informationstechnik				Fachgebiet:	2184

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studenen verstehen die Zusammenhänge der menschlichen Wahrnehmung und der technischen Realisierung des Kinos/Fernsehens. Sie sind in der Lage, Bildwiedergabesysteme zu analysieren und hinsichtlich ihrer technischen Leistungsmerkmale zu bewerten. Darüber hinaus verfügen sie über Grundkenntnisse von digitalen Übertragungssystemen.

Vorkenntnisse

- Grundlagen der Medientechnik

Inhalt

Themenschwerpunkte der Vorlesung: - Geschichte der Fersehtechnik - Psycho-Optik - Analoge Fernsehsysteme - Übertragungstechnik - Modulationsverfahren - Digitale Fernsehsysteme

Medienformen

- Tafelanschrieb - Beamer, Folien, Dias

Literatur

- Reimers, Ulrich: Digitale Fersehtechnik; Springer 1997

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Medientechnologie 2013

Bachelor Informatik 2010

Bachelor Medientechnologie 2008

Grundlagen der Elektroakustik

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5440 Prüfungsnummer:2100110

Fachverantwortlich: Prof. Dr. Hans-Peter Schade

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2182

	1	I.FS)	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden erwerben die Befähigung, elektroakustische Sachverhalte zu analysieren und zu bewerten. Das Grundlagenwissen setzt die Studierenden in die Lage, sich in spezifische elektroakustische Fragestellungen einzuarbeiten.

Vorkenntnisse

Grundlagen der Medientechnik

Inhalt

In der Lehrveranstaltung geht es um die technische Unterstützung der akustischen Kommunikation. Dazu müssen zunächst die Eigenschaften des Gehörs und von Schallfeldern und deren messtechnische und mathematische Erfassung betrachtet werden. Weiterhin geht es um die Wandlung von akustischen in elektrische Signale und umgekehrt, sowie um die Verarbeitung und Speicherung der elektrischen Signale. Es werden aber auch die Eigenschaften von Räumen bezüglich der Schallausbreitung untersucht, was u.a. für eine Beschallung mit Lautsprechersystemen wichtig ist.

Medienformen

Vorlesungsskript, Hörbeispiele, Übungsaufgaben

Literatur

M. Zollner, E. Zwicker: Elektroakustik, Springer-Verlag 1998, ISBN 3-540-64665-5 E. Terhardt: Akustische Kommunikation, Springer Verlag; ISBN 3-540-63408-8 D. Franz: Elektroakustik; Franzis Verlag, ISBN 3-7723-9421-3

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Medientechnologie 2013

Bachelor Informatik 2010

Bachelor Medientechnologie 2008

Media Systems Engineering

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 8259 Prüfungsnummer:2100253

Fachverantwortlich: Prof. Dr. Heidi Krömker

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2183

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	3	5	5.FS	3	6	3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Vorkenntnisse

keine

Inhalt

Media Systems Engineering ist ein interdisziplinärer Ansatz, um komplexe technische Mediensysteme in großen Projekten zu realisieren. Systems Engineering integriert unterschiedliche Ingenieursdisziplinen in einen einheitlichen, teamorientierten strukturierten Prozess. Der Ansatz des Systems Engineering geht davon aus, dass ein System mehr als die Summe seiner Teilsysteme ist und daher das Erkennen der Gesamtzusammenhänge im Vordergrund stehen muss. Im Mittelpunkt stehen hierbei zum einen die vom Anwender der Mediensysteme, wie z.B. in IT-gestützten TV-Produktionsabläufen gewünschten Funktionalitäten früh in den Entwicklungszyklus einfließen zu lassen und zum anderen in allen Entwicklungsphasen immer dem gesamte Problem gerecht zu werden. Zur Ergänzung des theoretischen Grundwissens stellen Experten aus der Runfunkbranche Fallstudien zur Projektierung komplexer Rundfunksysteme sowie zur Integration von Zusatzdiensten und Serviceleistungen vor. Die Studierenden wenden in Fallstudien aus den Medienbranchen die Methoden an und erarbeiten sich das medienspezifische Fachwissen.

Medienformen

Folien, Audio- und Videomaterial, Fallstudien, sonstige innovative Lehrformen

Literatur

W. F. Daenzer, F. Huber: Systems Engineering. Methodik und Praxis. 11. Auflage. Verlag Industrielle Organisation, Zürich 2002, ISBN 978-3857439988. Tim Weilkiens: Systems Engineering with SysML/UML. Morgan Kaufmann Publishers Inc, 2008, ISBN 0123742749.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

⁻ Fähigkeit einer systematischen Planung und Projektierung technischer Systeme auf der Basis der - Systemtheorie und des Systems Engineering - Fähigkeit zur Modellbildung und - interpretation sowie zur Strukturierung des Problembereichs - Anwendungskompetenz der Methoden zur Modellbildung und Systemgestaltung

Master Medientechnologie 2009

Videotechnik 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5392 Prüfungsnummer:2100109

Fachverantwortlich: Prof. Dr. Hans-Peter Schade

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	94	SWS:	5.0	
Fakultät für Elektro	technik	k und Informationstechnik				Fachgebiet:	2182

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	1									

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Videostudiosysteme zu bewerten und selbständig Konzepte für den signaltechnischen Teil zu entwerfen.

Vorkenntnisse

Grundlagen der Videotechnik

Inhalt

Fernsehstudio Signalarten in der Videotechnik Bildaufnahmesysteme Licht und Beleuchtung Analoge Bildspeicherung Timecode Bildmischung Videokompression Digitale Bildspeicherung HDTV

Medienformen

Skripte, Experimetelle Demonstrationen, Demovideos, Übungsaufgaben

Literatur

Schmidt, Ulrich: Professionelle Videotechnik; 4., aktualisierte und erw. Aufl. - Berlin [u.a.]: Springer, 2005; ISBN 3-540-24206-6 H.-J. Hentschel: Licht und Beleuchtung; 5. Auflage, Hüthig, 2002; ISBN 3-7785-2817-3 G. Mahler: Die Grundlager der Fersehtechnik, Springer Verlag 2005; ISBN 3-540-21900-5 J.C. Whitaker, K. B. Benson: Standard Handbook of Video and Television Engineering, McGraw-Hill, ISBN 0-07-069627-6

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Medientechnologie 2008

Audio- und Tonstudiotechnik

Fachabschluss: Studienleistung schriftlich 120 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 157 Prüfungsnummer:2100030

Fachverantwortlich: Prof. Dr. Hans-Peter Schade

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrote	echnik	und Informationstechnik				Fachgebiet:	2182

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	٧	S	Р
Fachsemester													2	0	2						

Lernergebnisse / Kompetenzen

Die Studierende werden in dieser Lehrveranstaltung befähigt, die Audiosignalverarbeitung, Speicherung und Übertragung in analogen und digitalen Systemen zu analysieren und zu bewerten. Dies betrifft die Beeinflussung des Pegels, des Klangs, der Abbildungsrichtung, der Effekte ebenso wie die Quellkodierung, den Fehlerschutz, die Übertragung, die Überwachung und die digtale Speicherung auf Band bzw. Platte. Damit sind die Studierenden in der Lage, Audiostudios zu projektieren und in der Praxis zu realisieren.

Vorkenntnisse

Pflichtfächer in den Semestern 1-4 Modul *Grundlagen der IKT*

Inhalt

1. Analoge Tonstudiotechnik Analoge Tonregieanlagen, Aufbau, Leitungsführung, Anpassung und Leitungsverbindung, Studioverstärker, Leistungsverstärker, Pegelsteller, Geräte zur Klanggestaltung (Filter, Effektgeräte), Beeinflussung der Abbildungsrichtung, Künstlicher Nachhall, Regelverstärker, Akustische und optische Signalüberwachung 2. Digitale Tonstudiotechnik Grundlagen der Signalverarbeitung, AD-Wandlung, DA-Wandlung, Quantisierung, Modulationsarten, Kodier- und Datenreduktionsverfahren, Fehlerkorrekturverfahren, Aufzeichnung auf Platten (CD-A, DVD, SACD, Blu-ray Disc, HD-DVD, MD u. a.), Aufzeichnung auf Band (R-Dat, ADAT u. a.)

Medienformen

o Folienpräsentation über Videoprojektor o Eingebettete Audiobeispiele o Übungsanleitung online o Folien im Copy-Shop bzw. online erhältlich o Literaturhinweise o Prüfungsschwerpunkt online

Literatur

[1] Michael Dickreiter: Handbuch der Tonstudiotechnik, Saur Verlag 1997 ISBN: 3-598-10588-6 [2] Johannes Webers: Tonstudiotechnik - analoges und digitales Audiorecording bei Fernsehen, Film und Rundfunk, Franzis Verlag 1999 ISBN: 3-7723-5527-7 [3] ITU-R BS.775-1: Multichannel Stereophonic SoundSystems with and without accompanying pictures, Genf, 1992-1994 [4] Rudolf Mäusl: Digitale Modulationsverfahren, Heidelberg: Hüthig-Verlag, 1995 ISBN: 3-7785-2398-8 [5] Bernhard Krieg: Praxis der digitalen Audiotechnik: digitale Aufnahme und Wiedergabe München: Franzis-Verlag, 1989 ISBN: 3-7723-6012-2 [6] Udo Zölzer: Digitale Audiosignalverarbeitung, Stuttgart: B.G. Teubner, 1997 ISBN 3-519-16180-X [7] Jan Maes: The MiniDisc, Oxford: Focal Press in association with SONY, 1996, ISBN: 0-240-51444-0 [8] Horst Zander: Harddisk-Recording, Würzburg: Vogel-Verlag, ISBN: 3-8023-1466-2 [9] Claus Biaesch-Wiebke: CD-Player und R-DAT-Recorder, Würzburg: Vogel-Verlag, 1992 ISBN: 3-8023-1412-3 [10] Ken C. Pohlmann: Advanced Digital Audio, Carmel (Indiana, USA): SAMS ISBN: 0-672-22768-1 [11] Bernd Friedrichs: Kanalcodierung, Berlin: Springer-Verlag, 1996 ISBN: 3-925786-01-5 [13] Horst Zander: Die digitale Audiotechnik – Grundlagen und Verfahren Berlin: Drei-R-Verlag, 1987, ISBN: 3-925786-01-5 [13]

John Watkinson: The Art of Digital Audio, Focal Press 2001 ISBN: 0 240 51587 0

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Medientechnologie 2013

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2010

Bachelor Medientechnologie 2008

Usability Engineering 1

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus: Sommersemester

Fachnummer: 100537 Prüfungsnummer:2100463

Fachverantwortlich: Prof. Dr. Heidi Krömker

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2183

	1	I.FS	;	2	2.FS	3		3.FS	3	4	I.FS)	!	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden erwerben die folgenden Kompetenzen:

Fachkompetenz:

Aufbau einer Wissenslandkarte im Bereich Mensch-Maschine-Schnittstelle, insbesondere Aufbau eines Verständnisses der funktionalen und psychologischen Anforderungen von Benutzerinnen und Benutzern an Software-Produkte sowie Kenntnis der zur Verfügung stehenden Hilfsmittel und Normen

· Methodenkompetenz:

Aufbau eines Verständnisses zu den grundlegenden Methodeneinsatz im benutzerzentrierten Entwicklungsprozesses für neue Produkte der Informationstechnik

· Handlungskompetenz:

Aufbau von Fähigkeiten zur Gestaltung ergonomischer Benutzeroberflächen

Medienkompetenz:

Weiterentwicklung der Fähigkeiten zur Informationsgewinnung, -strukturierung und -darstellung

· Sozialkompetenz:

Weiterentwicklung von Teamfähigkeiten und Moderationsfähigkeiten

· Selbstkompetenz:

Verstärkung von Fähigkeiten zum selbst gesteuerten Lernen

Vorkenntnisse

keine

Inhalt

Die Vorlesung richtet sich an Studierende, die sich mit Softwareapplikationen befassen, bei denen Kundenakzeptanz und Markterfolg eine Rolle spielt.

Die Studierenden sollen am Ende ein Grundwissen über die funktionalen und psychologischen Anforderungen von Herstellern und Benutzern haben. Sie sollen ferner verstehen, in welcher Weise Computer die Handlungsweise und den Arbeitsablauf von Benutzern beeinflussen können und wie mit Rücksicht darauf der Mensch-Computer-Dialog zu entwerfen und zu gestalten ist. Es soll bekannt sein, welche Hilfsmittel und Normen dabei zur Verfügung stehen und wie im Prozess der Entwicklung und Einführung von neuen Produkten der Informationstechnik den Gesichtspunkten der Benutzungsfreundlichkeit Geltung verschafft werden kann.

Fallstudien aus den unterschiedlichsten Branchen von der Mobilkommunikation über die Medizintechnik bis hin zur Automobilindustrie zeigen die Anwendung der Richtlinien im industriellen Alltag.

Medienformen

Folien, Audio- und Videomaterial, Fallstudien, innovative Lehrformen

Literatur

- Mayhew, Deborah J.: The usability engineering lifecycle, Morgan Kaufmann, 1999.
- Shneiderman, Ben; Plaisant, Catherine: Designing the user interface strategies for effective human-computer interaction, 5. Aufl., Addison-Wesley Longman, 2009.
 - Nielsen, Jacob: Usability engineering, Morgan Kaufmann, 1994.
- Preim, Bernhard: Interaktive Systeme. Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung, 2. Aufl., Springer, 2010.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Informatik 2013 Bachelor Medientechnologie 2013

Modul: Medizinische Informatik

Modulnummer8369

Modulverantwortlich: Prof. Dr. Jens Haueisen

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Der Absolvent soll das aktuelle Wissen und die Methodik der Informatik zur Lösung von Problemen in der Medizin einsetzen können. Er soll die besonderen Sicherheitsaspekte kennen und bei der Lösung von technischen Problemen sowie bei der Überwachung technischer Einrichtungen in der Medizin verantwortungsvoll einsetzen können. Der Absolvent soll die medizinische diagnostische und therapeutische Fragestellung verstehen und geeignete Lösungen entwerfen und realisieren können. Er soll die besonderen Aspekte bei der Wechselwirkung technischer Systeme mit dem menschlichen Körper kennen und berücksichtigen. Der Absolvent soll die Grundprinzipien der klinischen Arbeitsweise bei diagnostischen und therapeutischen Verfahren kennen.

Vorraussetzungen für die Teilnahme

- -Abiturwissen Biologie
- -Mathematik 1+2
- -AFT 1+2

Detailangaben zum Abschluss

Für diese Modulprüfung werden die dem Modul zugehörigen Prüfungen einzeln abgelgt. Die Note dieser Modulprüfung wird errechnet aus dem mit den Leistungspunkten gewichteten Durchschnitt (gewichtetes arithmetisches Mittel) der Noten der einzelnen bestandenen Prüfungsleistungen.

Bachelor Informatik 2013

Modul: Medizinische Informatik

Informationsverarbeitung in der Medizin

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1379 Prüfungsnummer:2200016

Fachverantwortlich: Prof. Dr. Vesselin Detschew

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2222

	1	I.FS	<u> </u>	2	2.FS	3	,	3.FS	3		I.FS)	Ų	5.FS	3	(6.FS	3		7.FS	<u>; </u>
SWS nach	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

• Die Studierenden haben ein Grundverständnis für den Aufbau und die Organisation des Gesundheitswesens • Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren. • Die Studierenden besitzen Grundkenntnisse über Datenverarbeitungsaufgaben und EDV-Systeme im Krankenhaus. • Die Studierenden kennen den Rechtsrahmen ärztlichen Handelns (Datenschutz) und die daraus abgeleiteten Aufgaben (Datensicherheit).

Vorkenntnisse

Grundlegende medizinische Begriffe

Inhalt

• Einsatz von Informationsverarbeitungssystemen (IV) im ärztlich/pflegerischen sowie im wirtschaftlichen Bereich, Struktur und Aufgaben der medizinischen IV; • Krankenhausinformationssysteme – Architektur, Automatisierungsgrad, Aufgaben; • medizinische Dokumentation – Ziele, Umsetzung, konventionelle und elektronische Patientenakte, klinische Basisdokumentation; • Datenschutz und Datensicherheit, Sicherheitskonzept; • elektronischer Datenaustausch – HL7, DICOM; • Telemedizin und E-Health

Medienformen

Tafel, Präsentation, Demonstration

Literatur

Seelos, H.-J.: Medizinische Informatik, Biometrie und Epidemiologie. De-Gruyter 1997 Lehmann, T.: Handbuch der Medizinischen Informatik. Hanser 2005 Kramme, R. (Hrsg.): Medizintechnik - Verfahren, Systeme, Informationsverarbeitung. Springer 2002 Haux, R.: Management von Informationssystemen: Analyse, Bewertung, Auswahl. Teubner 1998 Haas, P.: Medizinische Informationssysteme und elektronische Krankenakte. Springer 2005 Jähn, K. e-Health. Springer 2004

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Wirtschaftsinformatik 2013 Master Wirtschaftsinformatik 2009 Master Wirtschaftsinformatik 2014

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Bachelor Mathematik 2013

Bachelor Informatik 2010

Master Wirtschaftsinformatik 2011

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2010

Bachelor Informatik 2013

Modul: Medizinische Informatik

Einführung in die medizinische Informatik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 622 Prüfungsnummer:2200277

Fachverantwortlich: Dr. Marko Helbig

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2222

	1.FS		2.FS			3.FS			4.FS			5.FS			6.FS		7.FS				
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Der Absolvent soll in das aktuelle Wissen und die Methodik der Informatik zur Lösung von Problemen in der Medizin eingeführt werden. Er soll die besonderen Sicherheitsaspekte kennen und bei der Lösung von technischen Problemen sowie bei der Überwachung technischer Einrichtungen in der Medizin verantwortungsvoll einsetzen können. Der Absolvent soll die medizinische diagnostische und therapeutische Fragestellung verstehen und geeignete Lösungen entwerfen und realisieren können. Er soll die besonderen Aspekte bei der Wechselwirkung technischer Systeme mit dem menschlichen Körper kennen und berücksichtigen. Der Absolvent soll die Grundprinzipien der klinischen Arbeitsweise bei diagnostischen und therapeutischen Verfahren kennen.

Vorkenntnisse

Anatomie und Physiologie 1

Inhalt

Entwicklung und Gegenstand der Medizinischen Informatik; Methoden, Verfahren und Techniken der Biosignalerfassung und -verarbeitung; Bildgebung und Bildverarbeitung in der Medizin; Einsatz wissensbasierter Systeme in der Medizin – Krankenhausinformationssysteme, Telemedizin eHealth; Gegenstand der Biostatistik und Biometrie; Modellierung und Simulation biologischer Systeme

Gliederung:

- Einführung
- Entstehung und Erfassung bioel. Signale
- EKG- und spo2-Messsysteme
- Biostatistik und Biometrie
- Bildgebende Systeme
- Medizinische Bildverarbeitung
- Telemedizin, eHealth

Medienformen

Script, elektronische Präsentation

Literatur

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Bachelor Informatik 2010 Bachelor Informatik 2013

Modul: Medizinische Informatik

Grundlagen der Biosignalverarbeitung

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1707 Prüfungsnummer:2200047

Fachverantwortlich: Prof. Dr. Peter Husar

Leistungspunkte:	4	Workload (h):	120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung					Fachgebiet:	2222

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS	6	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Studierende erweitern ihre Grundkenntnisse aus der Elektrotechnik, Systemanalyse, Automatisierungstechnik und Schaltungstechnik sowie Signalverarbeitung um medizinisch und medizintechnisch relevante Bereiche der Messtechnik für Diagnostik, Therapie und Rehabilitation. Ein neues, erweitertes Grundverständnis für das biologische Objekt aufbauend auf der Kenntnis über die Unterschiede zur Technik, Physik und Ingenieurwissenschaft wird erworben und aus Sicht der Medizin vermittelt. Studierende sind in der Lage, die Problematik der Sensorik, Messtechnik, Signalverarbeitung und Elektronik im medizinischen Bereich aufbauend auf den Kenntnissen aus der Technik zu erfassen und zu analysieren.

Vorkenntnisse

- Regelungs- und Systemtechnik
- Signale und Systeme
- Elektrotechnik
- Mathematik
- Grundlagen der Schaltungstechnik
- Medizinische Grundlagen
- Anatomie und Physiologie
- Elektro- und Neurophysiologie
- Technische Informatik
- Elektronik
- Elektrische Messtechnik
- Prozessmess- und Sensortechnik

Inhalt

Im Rahmen der Vorlesung und Übung werden Grundlagen der Biosignalverarbeitung vermittelt. Die gesamte Messkette, beginnend am Sensor, über den Messverstärker, analoge Filter, Abtastung, Digitalisierung und digitale Filter bis hin zur Auswertung wird hinsichtlich ihrer methodischen Breite, technologischer Lösungsansätze und grundlegenden Eigenschaften behandelt:

- Einführung in die Problematik der medizinischen Messtechnik und Signalverarbeitung
- Sensoren für die medizinische Messtechnik: Messung elektrischer und nichtelektrischer Größen
- Besonderheiten der medizinischen Messverstärkertechnik: Differenzverstärker, Guardingtechnik
- Störungen bei medizintechnischen Messungen ihre Erkennung und Reduktion
- Analoge Filterung, Signalkonditionierung
- Zeitliche Diskretisierung von Biosignalen: Besonderheiten bei instationären Prozessen
- Digitalisierung von Biosignalen: AD-Wandler für den medizintechnischen Bereich

- Prinzip, Analyse und Synthese digitaler Filter
- Adaptive Filterung

Medienformen

Folien mit Beamer für die Vorlesung, Tafel, Computersimulationen. Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. John L. Semmlow: Biosignal and Medical Image Processing, CRC Press, 2. Edition, 2009.
- 2. Hutten, H. (Hrsg.), Biomedizinische Technik Bd. 1, Springer-Verlag Berlin/Heidelberg/New York, 1993
- 3. Meyer-Waarden, K.: Bioelektrische Signale und ihre Ableitverfahren, Schattauer-Verlag Stuttgart/New York 1985
- 4. Webster, J.G. (Ed.): Medical Instrumentation Application and Design, Houghton Mifflin Co. Boston/Toronto, 1992
- 5. Bronzino, J. D. (Ed.): The Biomedical Engineering Handbook, Vol. I + II, 2nd ed., CRC Press, Boca Raton 2000
- 6. Husar, P.: Biosignalverarbeitung, Springer, 2010

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 120 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Bachelor Mathematik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Biomedizinische Technik 2013

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Modul: Medizinische Informatik

Labor BMT 1

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 8413 Prüfungsnummer:2200276

Fachverantwortlich: Dr. Dunja Jannek

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Informa	tik ur	nd Automatisierung					Fachgebiet:	2221

	1	I.FS)	2	2.FS	3		3.FS	3	4	1.FS	3	Ę	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													0	0	1						

Lernergebnisse / Kompetenzen

Die Praktikumsinhalte orientieren sich an den Kerninhalten der Fächer. Die Studierenden vertiefen die methodischen Kenntnisse durch experimentelle Verfahren und Ergebnisse. Sie erwerben praktische Fähigkeiten und Fertigkeiten auf spezifisch technischer Wechselwirkungsebene und gleichzeitig Erfahrungen über Aufwand, Nutzen und Risiko Biomedizinischer Technik als technisches Hilfsmittel im medizinischen Versorgungs- und Betreuungsprozess.

Vorkenntnisse

Kernfächer BMT

Inhalt

Röntgendiagnostikeinrichtung Elektrische Sicherheit

Medienformen

Arbeitsunterlagen für jedes einzelne Praktikum mit Grundlagen, Versuchsplatz, Versuchsaufgaben und Versuchsauswertung

Literatur

Versuchsbezogen aus der Anleitung zu entnehmen

Detailangaben zum Abschluss

Prüfungsform: Praktikum

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Informatik 2010 Bachelor Informatik 2013

Modul: Medizinische Informatik

Bildverarbeitung in der Medizin 1

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5592 Prüfungsnummer:2200084

Fachverantwortlich: Martin Weis

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik und	d Automatisierung				Fachgebiet:	2221

	1	I.FS	;	2	2.FS	3	,	3.FS	3		1.FS	3	į	5.FS	3	(6.FS	3	-	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Der Studierende erkennt die speziellen Probleme der medizinischen Bildverarbeitung und erwirbt die grundlegende Methodenkompetenz, um eigenständig elementare medizinische Bildverarbeitungsprobleme zu lösen. Dabei nutzt der Studierende auch die bereits erworbenen Grundlagen, die zuvor in anderen Fächern zur Signalverarbeitung und zur Bildgebung vermittelt wurden. Der Studierende ist in der Lage die erworbene Methodenkompetenz in Matlab umzusetzen und auf praktische Problemstellungen anwenden zu können. Des Weiteren ist er befähigt auf Basis der erworbenen Grundlagen auch fortgeschrittene Methoden der medizinischen Bildverarbeitung zu untersuchen.

Vorkenntnisse

- Signale und Systeme
- Grundlagen der Biosignalverarbeitung
- Biosignalverarbeitung 1
- Bildgebung in der Medizin 1

Inhalt

Im Rahmen der Vorlesung werden die Grundlagen der Bildverarbeitung mit einem speziellen Fokus auf die in der Medizintechnik relevanten Bereiche vermittelt. Die Schwerpunkte werden dabei insbesondere auf die Bildrepräsentation und Bildeigenschaften, die Bildvorverarbeitung, sowie die Segmentierungsverfahren gelegt. Im Rahmen des Seminars werden die behandelten Methoden zur Lösung praktischer Aufgabenstellungen mit Hilfe von Matlab eingesetzt und diskutiert. Gliederung:

- Einführung in die Bildverarbeitung und Vorstellung spezieller Probleme in medizinischen Anwendungen
- Bildrepräsentation und Bildeigenschaften im Ortsbereich und im Ortsfrequenzbereich (zweidimensionale Fouriertransformation)
- Bildvorverarbeitung (lineare diskrete Operatoren, Bildrestauration, Bildregistrierung, Bildverbesserung)
- Morphologische Operationen
- Segmentierung (Pixelbasierte Segmentierung, Regionenbasierte Segmentierung, Kantenbasierte Segmentierung, Wasserscheidentransformation, Modellbasierte Segmentierung)
- Merkmalsextraktion und Einführung in die Klassifikation

Medienformen

Hauptsächlich Tafel ergänzt um Folien mit Beamer für die Vorlesung; Whiteboard und rechentechnisches Kabinett für das Seminar

Literatur

- 1. Klaus D. Tönnies, "Grundlagen der Bildverarbeitung", Pearson Studium, 1. Auflage, 2005.
- 2. Heinz Handels, "Medizinische Bildverarbeitung", Vieweg + Teubner, 2. Auflage, 2009.
- 3. Bernd Jähne, "Digitale Bildverarbeitung", Springer, 6. Auflage, 2005.
- 4. Angelika Erhardt, "Einführung in die Digitale Bildverarbeitung", Vieweg + Teubner, 1. Auflage, 2008.
- 5. Rafael C. Gonzales and Richard E. Woods, "Digital Image Processing", Pearson International, 3. Edition, 2008.
- 6. Geoff Dougherty, "Digital Image Processing for Medical Applications", Cambridge University Press, 1. Edition, 2009.
- 7. William K. Pratt, "Digital Image Processing", Wiley, 4. Edition, 2007.
- 8. Wilhelm Burger and Mark J. Burge, "Principles of Digital Image Processing Core Algorithms", Springer, 1. Edition, 2009.
- 9. John L. Semmlow, "Biosignal and Medical Image Processing", CRC Press, 2. Edition, 2009.

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 90 min

Abschluss: Prüfungsleistung

verwendet in folgenden Studiengängen

Master Ingenieurinformatik 2014

Master Biomedizinische Technik 2009

Master Mathematik und Wirtschaftsmathematik 2013 Vertiefung AM

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Informatik 2013

Master Biomedizinische Technik 2014

Master Mathematik und Wirtschaftsmathematik 2008

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Modul: Anatomie und Physiologie

Modulnummer 100303

Modulverantwortlich: Prof. Dr. Hartmut Witte

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Anatomie und Physiologie

Modulnummer 100303

Modulverantwortlich: Prof. Dr. Hartmut Witte

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Anatomie und Physiologie

Anatomie und Physiologie 1

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 618 Prüfungsnummer:2300434

Fachverantwortlich: Prof. Dr. Hartmut Witte

Leistungspunkte: Fakultät für Maschine	0 enbau	W	orklo	ad (I	h):	0	Α	nteil	Selb	ststu	ıdium	n (h):		0	5	SWS:		Fac		2.0 biet:	23	48
		,	1.FS	3	:	2.FS	3	;	3.FS	3		I.FS	;	į	5.FS	3	(6.FS	3	7	7.FS	3
SWS	S nach	V	S	Р	V	S	Р	٧	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р

SWS nach Fachsemester

	1.1	,		۷.۱ ر	<u> </u>		J.1 C	,		†.I C	,		J.1 C	,		J.1 C			٠.١ ر	,
V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
						2	0	0												

Lernergebnisse / Kompetenzen

Lernziele und erworbene Kompetenzen sind am Berufsbild "Biomedizinische Technik" orientiert.

- 1. Die Studierenden haben ein Grundverständnis für die innere logische Gliederung der Medizin (Wissenschaft und Praxis).
- 2. Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren (Frage- und Antwortfähigkeit). 3. Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme: 3.a. Bewegungsapparat 3.b. Herz-Kreislauf-System 3.c. Atmungssystem 4. Die Studierenden kennen die Grenzen ihrer medizinischen Kenntnisse und Fähigkeiten. Weitere Kapitel zum Themenkomplex werden in den Veranstaltungen "Anatomie und Physiologie 2", "Elektro- und Neurophysiologie" / "Neurobiologie" und "Biokompatible Werkstoffe" erarbeitet. 5. Die Studierenden kennen den Rechtsrahmen ärztlichen Handelns (wem ist unter welchen Bedingungen mit Einwilligung des Patienten eine Körperverletzung erlaubt?).

Vorkenntnisse

Curriculares Abiturwissen Biologie, Chemie und Physik

Inhalt

Einführung: • Der Systembegriff • Der medizinische Normalitätsbegriff in Abgrenzung zum Pathologischen • Saluto- vs. Pathogenese • Innere Logik der medizinischen Fächergliederung • Medizinische Terminologie Allgemeine Anatomie: • Pariser Nomina Anatomica (PNA), Terminologia Anatomica • Orientierungsbegriffe. • Gewebegliederung, Grundbegriffe der Zytologie Histologie. Spezielle Anatomie, Physiologie und relevante Biochemie folgender Systeme in speziell für Ingenieurstudenten aufbereiteter Form: • Bewegungsapparat: o Muskulatur o Knochen o Gelenke (Diarthrosen, Amphiarthrosen) o Interaktion des Muskels mit den übrigen Elementen des Bewegungsapparates o Kinematische Ketten • Herz-Kreislauf-System: o Blut o Arterien vs. Venen, Definitionen, Aufbau, Funktionen o Flussbild Gesamtsystem, Volumenströme, Drucke o Zeitaufgelöste Pumpfunktionen, Windkesseleffekt o Herzwandaufbau, Höhlen, Einbindung in die Umgebung, topographische Konsequenzen o Herzmechanik o Erregungsbildung und -leitung • Atmung (äußere, innere): o Äußere Atmung – Gastransport im Blut – Innere Atmung o Atemmechanik o Aufbau der Luftwege o Bilanzen der Gasströme, medizinisch übliche Kenngrößen o Laminare vs. turbulente Gasströme, Widerstände o Diffusionsgesetz und Konsequenzen für den Gasaustausch

Medienformen

Präsentation, Tafel, Anatomie am Lebenden, e-Learning (moodle)

Literatur

Allgemeine Primärempfehlung (Prüfungswissen): • Aumüller et al.: Anatomie, MLP Duale Reihe, Thieme, Stuttgart. • Silbernagel et al.: Taschenatlas der Physiologie. Thieme, Stuttgart.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Master Mechatronik 2014

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2009 Vertiefung ABT

Bachelor Biomedizinische Technik 2008

Master Wirtschaftsingenieurwesen 2010

Bachelor Informatik 2010

Master Wirtschaftsingenieurwesen 2011 Vertiefung ABT

Bachelor Mathematik 2009

Master Wirtschaftsingenieurwesen 2010 Vertiefung ABT

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Ingenieurinformatik 2013

Master Mechatronik 2008

Bachelor Informatik 2013

Modul: Anatomie und Physiologie

Einführung in die Neurowissenschaften

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 100522 Prüfungsnummer:2200358

Fachverantwortlich: Dr. Thomas Reiner Knösche

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Informa	atik und	d Automatisierung					Fachgebiet:	2221

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Die Studierenden sind mit den Grundlagen der Anatomie und Physiologie des menschlichen Nervensystems vertraut und verfügen über ein gutes Verständnis der informationsverarbeitenden und regulatorischen Prozesse. Sie sind in der Lage, wichtige anatomische Bestandteile des peripheren und des zentralen Nervensystems zu lokalisieren und kennen deren Funktion. Sie kennen und verstehen die wichtigsten funktionellen Mechanismen, insbesondere der synaptischen Übertragung, der neuroendokrinologischen Kopplung, sowie der sensorischen und effektorischen Systeme. Darüber hinaus sind in der Lage, Messbarkeit wichtiger Aspekte von Struktur und Funktion des Nervensystems zu bewerten. Die Studierenden kennen wichtige Störungen und Krankheiten des Nervensystems, deren Symptome und (soweit bekannt)

Die Studierenden kennen wichtige Störungen und Krankheiten des Nervensystems, deren Symptome und (soweit bekannt) deren zugrundeliegende Mechanismen, sowie grundsätzliche Diagnose- und Therapieansätze.

Neben der direkten Wissensvermittlung erwerben die Studierenden Kompetenz zum Erwerb von Spezialwissen aus Literatur und Internet. Dies ist in Anbetracht der Komplexität der Materie und der Informationsfülle von überragender Bedeutung.

Vorkenntnisse

Abiturwissen Biologie

Inhalt

Schwerpunkte:

- Grundsätzlicher Aufbau des Nervensystems und seine Komponenten.
- Mirkroanatomische Grundlagen: Morphologie und Funktionsweise von Zellen, synaptische Übertragung, Neuronen und Gliazellen, Neurotransmittersysteme, neurovaskuläre Kopplung.
 - Klinische Aspekte des Nervengewebes: Tumore, Läsionen, Multiple Sklerose, degenerative Erkrankungen.
- Anatomische und funktionelle Gliederung des Nervensystems: zentrales (ZNS), peripheres senso-motorisches und autonomes NS, sowie deren Binnengliederungen, einschließlich Blutversorgung, Hirnhäute und Ventrikel.
 - · Vernetzung des ZNS.
- Sensomotorische Systeme: Eigen- und Fremdreflexapparat, Pyramidales und Parapyramidales System, Kleinhirnmotorik.
 - Sensorische Systeme: visuelles, auditorisches, gustatorisches und olfaktorisches System.
 - Limbisches System: Hippocampus, Mandelkern, Stammganglien, cingulärer Kortex und deren Funktionen.
- Klinische Aspekte zu sensomotorischen, sensorischen und limbischen Systemen insbesondere Auswirkungen lokalisierter Läsionen.
- Autonomens Nervensystem: Sympaticus, Parasympaticus, Intermurale Plexus, Störungen der regulatorischen Mechanismen und pharmakologische Intervention
 - · Neuroendokrinologisches System.

- Kognitive Funktionen des ZNS: Aufmerksamkeit, Gedächtnis, Wahrnehmung, Motorsteuerung und –planung, Sprache, Emotionen.
 - Neurobiologische Grundlagen kognitiver Störungen und psychiatrischer Erkrankungen.
 - · Epilepsie.

Messbarkeit wichtiger Aspekte von Struktur und Funktion des Nervensystems.

Medienformen

Tafel, Folien, Beamer

Literatur

- 1. Rohen: Funktionelle Anatomie der Nervensystems. Schattauer 1995
- 2. Gertz: Basiswissen Neuroanatomie, Thieme 2003
- 3. Pinel: Biopsychologie: Spektrum-Akademischer Verlag 2001
- 4. Birbaumer, Schmidt: Biologische Psychologie, Springer 2005

Detailangaben zum Abschluss

Prüfungsform: schriftlich Dauer: 60 min

Abschluss: benotete Studienleistung

verwendet in folgenden Studiengängen

Bachelor Biomedizinische Technik 2013

Bachelor Ingenieurinformatik 2008

Bachelor Informatik 2010

Bachelor Ingenieurinformatik 2013

Bachelor Biomedizinische Technik 2014

Bachelor Informatik 2013

Modul: Anatomie und Physiologie

Anatomie und Physiologie

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 100527 Prüfungsnummer:2300433

Fachverantwortlich: Prof. Dr. Hartmut Witte

Leistungspunkte: 4 Fakultät für Maschinenbau	Workload (h):	120	Anteil Selbststudium (h):	75	SWS:	4.0 Fachgebiet:	2348
	4 =0	o =0	0.50 4.50				. =0

	1	I.FS	`	2	2.FS	3		3.FS	3		1.FS)		5.FS	3	(6.FS	3		7.FS	<u> </u>
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р
Fachsemester							2	0	0	2	0	0									

Lernergebnisse / Kompetenzen

Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren (Frage- und Antwortfähigkeit). 2. Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme. 3. Die Studierenden kennen die Grenzen ihrer medizinischen Kenntnisse und Fähigkeiten (weitere Kapitel zum Thememenkomplex werden in den Veranstaltungen "Elektro- und Neurophysiologie" / "Neurobiologie" und "Biokompatible Werkstoffe" erarbeitet).

Vorkenntnisse

Curriculares Abiturwissen Biologie, Chemie und Physik. In zweiten Teil der Veranstaltung anatomisch-physiologische Kenntnisse in Umfang und Tiefe wie im ersten Teil der Veranstaltung vermittelt (Propädeutik und Allgemeine Anatomie werden vorausgesetzt).

Inhalt

- · Einführung:
- · Der Systembegriff
- · Der medizinische Normalitätsbegriff in Abgrenzung zum Pathologischen
- · Saluto- vs. Pathogenese
- · Innere Logik der medizinischen Fächergliederung
- · Medizinische Terminologie
- · Allgemeine Anatomie:
- · System-, Organ- und Gewebegliederung
- Grundbegriffe der Zytologie und Histologie als eklektizistische Wiederholung curriculären Abiturwissens
- Spezielle Anatomie, Physiologie und relevante Biochemie folgender Systeme in speziell für Ingenieurstudenten aufbereiteter Form:
 - · Bewegungsapparat
 - · Herz-Kreislauf-System incl. Blut
 - Atmung
 - Verdauung
 - Exkretion
 - · Reproduktion
 - · Immumabwehr
 - Endokrinum

• Neuranatomie und Neurophysiologie sind nicht Gegenstand der Veranstaltungen dieses Moduls (-> Veranstaltungen Elektro- und Neurophysiologie, Neurobiologie)

Medienformen

Präsentation, Tafel, Anatomie am Lebenden, e-Learning (moodle)

Literatur

Allgemeine Primärempfehlung (Prüfungswissen): • Aumüller et al.: Anatomie, MLP Duale Reihe, Thieme, Stuttgart. • Silbernagel et al.: Taschenatlas der Physiologie. Thieme, Stuttgart Für "Nebenfächler" individuelle Empfehlungen.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Wirtschaftsingenieurwesen 2013 Vertiefung BT

Bachelor Biotechnische Chemie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Mathematik 2013

Bachelor Mechatronik 2013

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2014 Vertiefung BT

Bachelor Informatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Modul: Anatomie und Physiologie

Anatomie und Physiologie 2

Fachabschluss: über Komplexprüfung Art der Notengebung: unbenotet

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1713 Prüfungsnummer:2300435

Fachverantwortlich: Prof. Dr. Hartmut Witte

Leistungspunkte: 0	W	orklo	ad (h):	0	Α	nteil	Selb	ststu	dium	(h):		0	5	SWS:			2	2.0		
Fakultät für Maschinenbau				,							()						Fac	chge	biet:	23	48
		1.FS	3		2.FS	3		3.F	3	2	I.FS	;	ļ	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester										2	Λ	Λ									

Lernergebnisse / Kompetenzen

1. Die Studierenden können mit Ärzten und medizinischem Hilfspersonal fachlich korrekt und terminologisch verständlich kommunizieren (Frage- und Antwortfähigkeit). 2. Die Studierenden besitzen Grundkenntnisse über Bau und Funktionen ausgewählter Organsysteme: 2 a. Verdauungsapparat 2.b. Exkretionssystem 2.c. Reproduktionssystem (incl. Embryologie) 2.d. Immunsystem 2.e. Endokrinum 3. Die Studierenden kennen die Grenzen ihrer medizinischen Kenntnisse und Fähigkeiten (weitere Kapitel zum Thememenkomplex werden in den Veranstaltungen "Anatomie und Physiologie 1", "Elektround Neurophysiologie" / "Neurobiologie" und "Biokompatible Werkstoffe" erarbeitet).

Vorkenntnisse

1. Curriculares Abiturwissen Biologie, Chemie und Physik 2. Anatomisch-physiologische Kenntnisse in Umfang und Tiefe wie in "Anatomie und Physiologie 1" vermittelt

Inhalt

Vertiefung: • Spezielle Anatomie, Physiologie und relevante Biochemie folgender Systeme in speziell für Ingenieurstudenten aufbereiteter Form: • Verdauung: o Ausgewählte Stoffwechselwege, Substrate o Gliederung Verdauung (cephal, oropharyngeal, gastrointestinal) o Abschnitte Gastrointestinaltrakt, substrat-spezifische Funktionen, logische Einbindung Verdauungsdrüsen • Exkretionssystem: o Topographie Niere und ableitende Harnwege o Renculi o Nephron o Filtration, Sekretion, Resorption, insbesondere Henle-Schleifen, Rinden-Mark-Gliederung o Nierenbecken-Kelch-System o Urothel o Ureteren o Harnblase o Urethra •Reproduktionssystem (incl. Embryologie): o Reproduktionszyklen o Embryogenese o Ontogeneseprinzipien ausgewählter Organsysteme o Weibliches Genitale o Männliches Genitale • Immumsystem • Endokrinum • Vermaschte neuro-endokrino-immunologische Regelkreise anhand von Beispielen (Schilddrüse, Geschlechtshormone)

Medienformen

Präsentation, Tafel, Anatomie am Lebenden, e-Learning (moodle)

Literatur

Allgemeine Primärempfehlung (Prüfungswissen): • Aumüller et al.: Anatomie, MLP Duale Reihe, Thieme, Stuttgart. • Silbernagel et al.: Taschenatlas der Physiologie. Thieme, Stuttgart.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008 Master Mechatronik 2014 Bachelor Biomedizinische Technik 2008 Bachelor Ingenieurinformatik 2013 Master Mechatronik 2008 Bachelor Informatik 2013 Bachelor Informatik 2010

Master Mathematik und Wirtschaftsmathematik 2008

Modul: Wirtschaftswissenschaften

Modulnummer8370

Modulverantwortlich: Prof. Dr. Dirk Stelzer

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Der Teilnehmer erhält Einblicke in ausgewählte Themengebiete der Wirtschaftswissenschaften. Er lernt juristische und wirtschaftswissenschaftliche Probleme kennen und erwirbt Kenntnisse zu deren Lösung.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Das Nebenfach Wirtschaftswissenschaften ist abgeschlossen, wenn Module mindestens im Umfang von 18 LP bestanden wurden. Die Note berechnet sich aus den mit den LP gewichteten Noten der Module.

Modul: Wirtschaftswissenschaften

Einführung in die Wirtschaftsinformatik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5278 Prüfungsnummer:2500028

Fachverantwortlich: Prof. Dr. Steffen Straßburger

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	98	SWS:	2.0	
Fakultät für Wirtsch	aftsv	vissenschaften und Medien				Fachgebiet:	2531

	1	I.FS	6	2	2.FS	3	,	3.FS	3		1.FS)	5	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	\	S	Р	٧	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Aufbauend auf den Grundlagen von Hardware und Systemsoftware erhalten die Studierenden einen Überblick über Aufgaben, Vorgehensweisen und Methoden der Wirtschaftsinformatik.

Die Studierenden sind fähig, ein Anwendungssystem mit all seinen Komponenten zu entwerfen und zu bewerten.

Die Studierenden sind in der Lage, ein geeignetes Informationssystem für konkrete betriebswirtschaftliche

Aufgabenstellungen auszuwählen und in das Unternehmensnetzwerk zu integrieren.

Vorkenntnisse

Keine

Inhalt

Systemhardware

Systembetrieb

Datenmodellierung und Datenbanken

Datenübertragung und Rechnernetze

Softwarestrukturen und Betrieb von Informationssystemen

Anwendungssysteme im Unternehmen

Management der Informationsverarbeitung

Medienformen

Interaktives Tafelbild, PowerPoint-Folien

Literatur

Peter Stahlknecht, Ulrich Hasenkamp:

Einführung in die Wirtschaftsinformatik. 11. Auflage, Springer-Verlag, Berlin-Heidelberg u.a., 2005

Hans R. Hansen, Gustav Neumann:

Wirtschaftsinformatik 1: Grundlagen und Anwendungen.

10. Auflage, UTB 802 - Lucius & Lucius, 2009

Detailangaben zum Abschluss

Das Bestehen des Praktikums Einführung in die Wirtschaftsinformatik ist im Studiengang Wirtschaftsinformatik eine Prüfungsvorleistung für die Modulklausur.

Das Praktikum besteht aus einzelnen Übungsteilen, zu denen Aufgaben formuliert werden und deren richtige Bearbeitung

zum Bestehen des entsprechenden Praktikums führen. Sind alle Übungsteile bestanden, ist die Prüfungsvorleistung erbracht.

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Modul: Wirtschaftswissenschaften

Grundlagen der BWL 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: Prüfungsnummer:2500002

Fachverantwortlich: Prof. Dr. Katrin Haußmann

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Wirtsch	aftsw	issenschaften und Medien				Fachgebiet:	2529

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

Die Studierenden lernen im Rahmen der Veranstaltung die grundsätzlichen betriebswirtschaftlichen Zusammenhänge kennen und sind in der Lage, daraus Konsequenzen für das unternehmerische Handeln abzuleiten. Neben dem Wissen über gängige Marktformen sind den Studierenden auch Problembereiche im Zusammenhang mit Unternehmensgründungen (Rechtsform- und Standortwahl) bekannt. Aufbauend auf der Aufbaustruktur eines Unternehmens sowie dessen Wertschöpfungskette verstehen sie die grundsätzlichen Problembereiche der einzelnen betrieblichen Grundfunktionen und kennen grundlegende methodische Ansätze zu deren Bewältigung. Der Praxisbezug wird über aktuelle Beispiele aus der Praxis und Fallstudien hergestellt.

Vorkenntnisse

keine

Inhalt

Unternehmen und Märkte Unternehmensgründungen Betriebliche Wertschöpfungskette Beschaffungsmanagement Produktionsmanagement Marketingmanagement Personalmanagement

Investition und Finanzierung

Internes und externes Rechnungswesen

Medienformen

Skript, ergänzendes Material (zum Download eingestellt), Beamer, Presenter

Literatur

- Hutzschenreuter, Allgemeine Betriebswirtschaftslehre, 4. Auflage, 2011
- Wöhe, Einführung in die Allgemeine Betriebswirtschaftslehre, 24. Auflage, 2010
- Wöhe/Kaiser/Döring, Übungsbuch zur Allgemeinen Betriebswirtschaftslehre, 13. Auflage, 2010
- Diverse Artikel aus Fachzeitschriften (zum Download eingestellt)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Technische Physik 2011

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Mathematik 2009

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biotechnische Chemie 2013

Modul: Wirtschaftswissenschaften

Marketing 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 727 Prüfungsnummer:2500015

Fachverantwortlich: Prof. Dr. Anja Geigenmüller

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtscha	aftswiss	senschaften und Medien				Fachgebiet:	2523

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	I.FS	6	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden kennen und verstehen Marketing im Sinne einer marktorientierten Unternehmensführung. Sie erwerben grundlegende Kenntnisse zum Marketingmanagement, zu Grundlagen und Zielen des Marketings, zu Marketingstrategien und zur Umsetzung durch Marketinginstrumente (Fachkompetenz). Anhand von Beispielen sowie Fallstudienübungen entwickeln sie Kompetenzen, Markt- und Kundenbeziehungen zu analysieren und durch einen zielführenden Einsatz des Marketinginstrumentariums geeignete Marketingmaßnahmen zu entwickeln und zu präsentieren (Methodenkompetenz).

Vorkenntnisse

keine

Inhalt

- · Grundlagen und Definition von Marketing
- Konsumentenverhalten
- · Marktforschung
- · Marketingstrategien
- Marketingmix
- · Internationales Marketing

Medienformen

begleitendes Skript, Power-Point-Präsentationen

Literatur

Homburg, C. (2012): Marketingmanagement. Strategie - Instrumente - Umsetzung - Unternehmensführung. 4. Aufl., Wiesbaden.

Detailangaben zum Abschluss

Vergabe von Bonuspunkten bis max. 10 % der in der Klausur erreichbaren Punkte durch aktive Teilnahme an der Fallstudienübung.

verwendet in folgenden Studiengängen

Bachelor Angewandte Medienwissenschaft 2008

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsinformatik 2013

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Bachelor Medienwirtschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Angewandte Medienwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Modul: Wirtschaftswissenschaften

Mikroökonomie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 5342 Prüfungsnummer:2500016

Fachverantwortlich: Prof. Dr. Oliver Budzinski

Leistungspunkte: 5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Wirtschaftsv	wissenschaften und Medien				Fachgebiet:	2541

	1	I.FS	3	2	2.FS	3	,	3.FS	3	4	1.FS)	5	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							3	1	0												

Lernergebnisse / Kompetenzen

In der Mikroökonomik werden Grundlagen für das elementare Verständnis von Marktformen und marktlichen Interaktionen vermittelt. Die Studierende sind in der Lage, wesentliche mikroökonomische Modelle zu erkennen, zu verstehen und auf gegebene grundlegende ökonomische Phänomene

Vorkenntnisse

Abitur

Inhalt

- I. Einführung Märkte und Preise
- II. Produzenten, Konsumenten und Wettbewerbsmärkte
- III. Marktstruktur und Wettbewerbsstrategie

Medienformen

Powerpoint Animationen, Übungsaufgaben, Kontrollfragen, Gruppenarbeit

Literatur

Robert Pindyck & Daniel Rubinfeld, Mikroökonomie, jeweils aktuelle Auflage, München: Pearson

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Mathematik 2013

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Medienwirtschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Mathematik 2009

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Wirtschaftswissenschaften

Einführung in das Recht

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 551 Prüfungsnummer:2500012

Fachverantwortlich: Prof. Dr. Frank Fechner

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtsch	aftswis	ssenschaften und Medien				Fachgebiet:	2562

	1	I.FS	6	2	2.FS	3		3.FS	3	4	1.FS	3		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Die Studierenden werden befähigt, die Grundlagen des Rechts, dessen Aufgaben, Wirkungsweise und Grenzen (begriffliches Wissen) zu verstehen. Sie sollen nach dem Besuch der Veranstaltung in der Lage sein, die verschiedenen Rechtsgebiete voneinander abzugrenzen sowie das Recht der obersten Staatsorgane und die Staatsprinzipien (begriffliches Wissen) sowie die Methodik des deutschen Rechts (verfahrensorientiertes Wissen) anzuwenden. Letztlich lernen sie Teilbereiche des Zivilrechts, Verwaltungsrechts und Europarechts kennen (Faktenwissen). Hierdurch werden sie in die Lage versetzt, Erfolgsaussichten von Rechtsstreitigkeiten grob einzuschätzen und sich mit Juristen auf fachlicher Ebene austauschen zu können.

Vorkenntnisse

keine

Inhalt

- A. Hinweise zu Unterlagen und Rechtstexten
- B. Einführung
- I. Zur Bedeutung rechtlicher Grundlagenkenntnisse
- II. Hilfsmittel
- III. Grundlagen und Methoden wissenschaftlichen Arbeitens
- IV. Aufgaben, Wirkungsweise und Grenzen des Rechts
- V. Methoden des Rechts
- C. Staatsprinzipien
- I. Überblick
- II. Die Staatsprinzipien im Einzelnen
- D. Gesetzgebungskompetenzen
- E. Oberste Staatsorgane
- I. Bundestag
- II. Budesrat
- III. Bundesregierung
- IV. Bundespräsident
- F. Grundrechte
- I. Bedeutung und Arten von Grundrechten
- II. Anwendungsbereich der Grundrechte
- III. Grundrechtsadressaten
- IV. Drittwirkung von Grundrechten

- G. Überblick: Verwaltungsrecht
- H. Überblick: Recht der Europäischen Union
- I. Grundlagen
- II. Primär- und Sekundärrecht
- III. Die EU-Organe im Überblick
- J. Grundlagen des BGB
- I. Überblick über die "Bücher" des BGB
- II. Grundlagen des Vertragsschlusses/ Allgemeiner Teil des BGB
- III. Hinweise zum Schuldrecht Allgemeiner Teil
- IV. Hinweise zum Schuldrecht Besonderer Teil
- V. Hinweise zum Sachrecht/ Familienrecht/ Erbrecht

Medienformen

vorlesungsbegleitende Skripte

Literatur

Degenhart, Christoph: Staatsrecht 1. Staatsorganisationsrecht, 30. Aufl., 2014

Detterbeck, Steffen: Öffentliches Recht: Staatsrecht, Verwaltungsrecht, Europarecht mit Übungsfällen, 9. Aufl. 2012

Haug, Volker: Staats- und Verwaltungsrecht: Fallbearbeitung, Übersichten, Schemata, 8. Aufl. 2013

Jung, Jost: BGB Allgemeiner Teil. Der Allgemeine Teil des BGB, 2. Aufl. 2012

Katz, Alfred: Grundkurs im Öffentlichen Recht, 18. Aufl. 2010

Maurer, Hartmut: Staatsrecht I: Grundlagen, Verfassungsorgane, Staatsfunktionen, 6. Aufl. 2010 Sodan, Helge/ Ziekow, Jan: Grundkurs Öffentliches Recht: Staats- und Verwaltungsrecht, 6. Aufl. 2014

Zippelius, Reinhold: Einführung in das Recht, 6. Aufl. 2014

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsinformatik 2013

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Medienwirtschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Angewandte Medienwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Technische Physik 2013

Bachelor Angewandte Medienwissenschaft 2008

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Modul: Wirtschaftswissenschaften

Einführung in ERP-Systeme

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5279 Prüfungsnummer:2500108

Fachverantwortlich: Prof. Dr. Volker Nissen

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtscha	ftswiss	senschaften und Medien				Fachgebiet:	2534

	1.FS 2.F					2.FS 3.FS					1.FS	3	5	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

- Überblick zum Markt für ERP-Systeme gewinnen - Kenntnisse in Kernfunktionen und Prozessen von ERP-Systemen erwerben (am Beispiel SAP) - Grundkenntnisse der Programmierung in ABAP aneignen - Vorstellung von Einführung und Betrieb von ERP-Systemen aus der Sicht der Wirtschaftsinformatik erhalten - Wesentliche Entscheidungsbereiche im Kontext von ERP-Systemen kennen - Bedeutung des Internets für ERP-System einschätzen können

Vorkenntnisse

Grundkenntnisse entsprechend der Veranstaltung "Einführung in die WI", "Systementwicklung", "Modellierung betrieblicher Anwendungssysteme", "Geschäftsprozessmanagement"

Inhalt

- Rolle der IT in heutigen Unternehmen - Verbindung Unternehmensorganisation – Geschäftsprozesse – IT-Systeme - Markt für ERP-Systeme - Datengrundlage von ERP-Systemen - Beziehung von Planungs- und Ausführungssystemen in Unternehmen am Beispiel Supply Chain Management - Architekturen und technologische Grundlagen von ERP-Systemen - Zukunftsperspektive serviceorientierte ERP-Architekturen - Prozesse und Funktionen in ERP-Systemen am Beispiel SAP R/3 (vertieft) - Einführung und Betrieb von ERP-Systemen in Unternehmen - Outsourcing und weitere Dienstleistungen im ERP-Umfeld - unternehmensübergreifende Integration von Systemen im ERP-Umfeld - Programmierung mit ABAP und ABAP/OO (Übung)

Medienformen

- Präsentationsfolien - Tafel - Fallstudien - Übungsaufgaben - Literaturstudium - Diskussion

Literatur

- Färber und Kirchner: ABAP Grundkurs, Galileo Press, 2005 - Bothe und Nissen (Hrsg.): SAP-APO in der Praxis, Vieweg, 2003 - Hesseler, M, Görtz, M.: Basiswissen ERP-Systeme: Auswahl, Einführung und Einsatz betriebswirtschaftlicher Standardsoftware, W3L-Verl., Herdecke; Witten (aktuelle Auflage) - Frick, D., Gadatsch, A.; Schäffer-Külz, U. G.: Grundkurs SAP ERP - geschäftsprozess-orientierte Einführung mit durchgehendem Fallbeispiel, Vieweg: Wiesbaden (aktuelle Auflage) - regelmäßige Lektüre von Computerwoche oder Computer-Zeitung - weitere Literatur wird in der Veranstaltung bekanntgegeben

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsinformatik 2009 Bachelor Wirtschaftsinformatik 2011 Bachelor Wirtschaftsinformatik 2013 Bachelor Informatik 2010 Bachelor Informatik 2013 Bachelor Wirtschaftsinformatik 2010

Modul: Wirtschaftswissenschaften

Steuerlehre 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5301 Prüfungsnummer:2500021

Fachverantwortlich: Prof. Dr. Gernot Brähler

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtschaf	ftswisse	enschaften und Medien				Fachgebiet:	2526

	1.FS 2.F					2.FS 3.FS					1.FS	3	5	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung erlaubt einen schnellen Einstieg in das Fach der Ertragsteuern. Ziel ist es, einen umfassenden Überblick über die Einkommensteuer, Körperschaftsteuer und Gewerbesteuer zu vermitteln. Daher widmet sich die Vorlesung zunächst der Ertragsteuernormendarstellung. Daran anschließend werden die Besteuerungsarten und - unterschiede zwischen den Unternehmensformen dargestellt. Schwerpunktmäßig besprochen werden Spezialfragen der Gewinnermittlung sowie rechtsformabhängige Besteuerungsfolgen. Da Steuern nicht entscheidungsneutral sind und zudem zahlreiche betriebswirtschaftliche Entscheidungsprozesse beeinflussen, sind diese Kenntnisse für die Studenten von hohem Nutzen. Durch die Vorlesung werden sie befähigt, sowohl eigenständig steuerplanerisch tätig zu werden als auch bestehende Gestaltungen nachvollziehen zu können. In den später aufbauenden Vorlesungen zur Steuerlehre werden die in dieser Veranstaltung vermittelten Grundkenntnisse vorausgesetzt.

Vorkenntnisse

Grundkenntnisse Rechnungswesen I und II

Inhalt

- 1. Einführung ins Ertragsteuerrecht
- 2. Einkommensteuer
- 3. Körperschaftsteuer
- 4. Gewerbesteuer
- 5. Rechtsformneutralität der Besteuerung

Medienformen

Beamer, Overhead-Projektor, Tafel, Foliensatz zur Vorlesung und Handout mit Übungsaufgaben im Downloadbereich des Fachgebietes verfügbar

Literatur

Djanani/Brähler/Krenzin/Lösel, Ertragsteuern, 5. Auflage, Frankfurt am Main 2012

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Medienwirtschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Master Allgemeine Betriebswirtschaftslehre 2013

Modul: Wirtschaftswissenschaften

Überbetriebliche Geschäftsprozesse und IT-Integration

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 5287 Prüfungsnummer:2500080

Fachverantwortlich: Prof. Dr. Dirk Stelzer

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtsch	aftswisse	enschaften und Medien				Fachgebiet:	2533

	1	I.FS	6	2.FS 3.FS					3	4	1.FS	3		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Die Studierenden

- 1. kennen organisatorische und technische Grundlagen der überbetrieblichen IT-Integration,
- 2. können wesentliche Aussagen der Transaktionskostentheorie auf überbetriebliche Geschäftsprozesse anwenden,
- 3. kennen Möglichkeiten und Grenzen des Electronic Data Interchange,
- 4. können Optionen für die Gestaltung des E-Procurement diskutieren und
- 5. haben einen Überblick über wesentliche Inhalte anwendungsnaher Standards für die überbetriebliche IT-Integration,
- kennen Möglichkeiten und Grenzen des Managements von Lieferketten (Supply Chain Management) und wissen, wie überbetriebliche Geschäftsprozesse mit Hilfe elektronischer Marktplätze unterstützt werden können.

Vorkenntnisse

Kenntnisse aus den Modulen: Einführung in die Wirtschaftsinformatik, Modellierung betrieblicher Anwendungssysteme & Geschäftsprozessmanagement

Inhalt

Grundlagen

Koordination ökonomischer Leistungen

Electronic Data Interchange

Electronic Procurement

Supply Chain Management

Elektronische B2B-Marktplätze

Relevante Standards für die Integration überbetrieblicher Geschäftsprozesse

Medienformen

Skripte der Vorlesung und Begleitmaterial der Übungen sind auf der Webseite des Fachgebietes Informations- und Wissensmanagement abrufbar; in der Übung arbeiten die Teilnehmer mit einem bzw. mehreren elektronischen Marktplätzen.

Literatur

Arnold Picot, Ralf Reichwald, Rolf T. Wigand: Die grenzenlose Unternehmung - Information, Organisation und Management. Wiesbaden (neueste Auflage).

Daniel Corsten, Christoph Gabriel: Supply Chain Management erfolgreich umsetzen. Grundlagen, Realisierung und Fallstudien. Berlin - Heidelberg - New York, 2. Aufl. 2004

Ulrich M. Löwer: Interorganisational Standards. Managing Web Services Specifications for Flexible Supply Chains. München 2006

Zu den einzelnen Sitzungen werden weitere Literaturhinweise bekannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Informatik 2013

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsinformatik 2013

Modul: Wirtschaftswissenschaften

Grundlagen des Informationsmanagements

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5284 Prüfungsnummer:2500073

Fachverantwortlich: Prof. Dr. Dirk Stelzer

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Wirtsch	aftswis	ssenschaften und Medien				Fachgebiet:	2533

	1.FS 2.FS						,	3.FS 4.FS					į	5.FS	3	6.FS 7.FS					3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Teilnehmer sind in der Lage, praktische und theoretische Probleme des Informationsmanagements zu analysieren und zu lösen. Nachdem Studierende die Veranstaltung besucht haben, können sie die Bedeutung der IT für Unternehmen realistisch einschätzen und verfügen über wesentliche Fähigkeiten, um Führungsaufgaben der Informationsversorgung in Unternehmen ausüben zu können.

Vorkenntnisse

Kenntnisse aus den Fächern: Einführung in die Wirtschaftsinformatik, Systementwicklung & Projektmanagement.

Inhalt

Einführung

Rolle der IT im Unternehmen

Organisation der IT-Aufgaben

Informationsbedarfsanalyse

Datenmanagement

Wirtschaftlichkeit der IT

Kosten- und Leistungs(ver)rechnung zwischen IT- und Fachbereich

Messsysteme im Informationsmanagement

IT-Qualitätsmanagement

IT-Sicherheitsmanagement

Medienformen

Skripte der Vorlesung und Begleitmaterial der Übungen sind auf der Webseite des Fachgebietes Informations- und Wissensmanagement abrufbar. In den Übungen wenden die Studierenden in der Vorlesung vermittelte Instrumente und Methoden an.

Literatur

Lutz J. Heinrich, Dirk Stelzer: Informationsmanagement: Grundlagen, Aufgaben, Methoden. München, jeweils neueste Auflage

Helmut Krcmar: Informationsmanagement. Berlin - Heidelberg - New York, jeweils neueste Auflage.

Zu den einzelnen Themen werden weitere Literaturhinweise bekannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Medienwirtschaft 2011

Bachelor Informatik 2013

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsinformatik 2013

Master Allgemeine Betriebswirtschaftslehre 2010

Master Medienwirtschaft 2014

Modul: Wirtschaftswissenschaften

Methoden und Werkzeuge der digitalen Fabrik

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6301 Prüfungsnummer:2500076

Fachverantwortlich: Prof. Dr. Steffen Straßburger

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	116	SWS:	3.0	
Fakultät für Wirtsch	aftswis	senschaften und Medien				Fachgebiet:	2531

	1.FS 2.FS							3.FS	3	4.FS			Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Methoden und Werkzeuge der Digitalen Fabrik zu bewerten und ihre Nutzung innerhalb von Industriebetrieben zu koordinieren. Die Studierenden haben ein tiefgehendes Verständnis für die IT-Probleme und Prozess-Voraussetzungen, die zur erfolgreichen Umsetzung der "Digitalen Fabrik" in einem Unternehmen notwendig sind. Innerhalb von Übungen erwerben die Studierenden die Kompetenz, mit einzelnen Werkzeugen der digitalen Fabrik zu arbeiten.

Vorkenntnisse

Vorkenntnisse im Bereich Produktionswirtschaft

Inhalt

- · Grundlagen der Digitalen Fabrik
- · Grundlagen der Fabrikplanung
- · Modelle, Methoden und Werkzeuge
- · Verschiedene Modellierungs- und Simulationsansätze
- · Virtual Reality
- Datenstandards, Schnittstellen und Integration
- · Kopplung digitale und reale Fabrik
- · Virtuelle Inbetriebnahme
- · Interoperabilitätsstandards
- · Kommunikationsprotokolle

Medienformen

Interaktives Tafelbild, PowerPoint-Folien

Literatur

- Bracht, U.; Geckler, D.; Wenzel, S.: Digitale Fabrik. Methoden und Praxisbeispiele. Springer, 2011
- Bangsow, S.: Fertigungssimulationen mit Plant Simulation und SimTalk. Hanser, 2008

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Maschinenbau 2014

Master Wirtschaftsingenieurwesen 2013 Vertiefung MB

Master Wirtschaftsingenieurwesen 2014 Vertiefung MB

Master Medienwirtschaft 2010

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Wirtschaftsinformatik 2013

Master Maschinenbau 2011

Master Allgemeine Betriebswirtschaftslehre 2010

Master Medienwirtschaft 2014

Bachelor Informatik 2013

Master Wirtschaftsingenieurwesen 2011

Master Wirtschaftsingenieurwesen 2010

Master Medienwirtschaft 2009

Master Wirtschaftsinformatik 2009

Master Wirtschaftsingenieurwesen 2009

Master Wirtschaftsingenieurwesen 2013

Master Wirtschaftsingenieurwesen 2014

Master Medienwirtschaft 2011

Master Allgemeine Betriebswirtschaftslehre 2011

Modul: Wirtschaftswissenschaften

Modellierung betrieblicher AWS & Geschäftsprozessmanagement

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 5286 Prüfungsnummer:2500109

Fachverantwortlich: Dr. Mathias Petsch

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	112	SWS:	6.0	
Fakultät für Wirtscha	aftswi	issenschaften und Medien				Fachgebiet:	2534

	1	l.FS)	2	2.FS	3	,	3.FS	3	2	1.FS)	ţ	5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	0	2	1	0						

Lernergebnisse / Kompetenzen

Modellierung betrieblicher Anwendungssysteme:

- theoretische Grundkenntnisse über Modelle und Modellierung erwerben
- Die Studierenden können die Zusammenhänge zwischen rechnergestützter Modellierung und der Entwicklung betrieblicher Anwendungssysteme bewerten.
- Die Studierenden sind fähig, die Grundformen der Modellierung betrieblicher Anwendungssysteme anzuwenden und haben praktische Erfahrungen und Kompetenzen im Umgang mit rechnergestützten Modellierungswerkzeugen erworben. Geschäftsprozessmanagement:
 - Die Studierenden haben die theoretischen Grundlagen des Geschäftsprozessmanagement (GPM) erworben.
- Die Studierenden haben die theoretischen Konzepte des GPM verstanden und sind in der Lage, diese auf ausgewählte betriebswirtschaftliche Problemfälle anzuwenden.
 - Die Studierenden können mit den Werkzeugen und Methoden des GPM umgehen.
 - Die Studierenden sind fähig, die Geschäftsprozessorientierung als Organisationsform zu verstehen.
 - Die Studierenden kennen die Terminologie und Zusammenhänge.
- Die Studierenden kennen die Kernaufgaben von Einführung und Betrieb eines GPM-Systems und Vorgehensweise zu deren Bearbeitung.
- Die Studierenden sind in der Lage, wichtige Rollen und Verantwortlichkeiten zu nennen und die Beziehung von GPM und IT-Unterstützung zu erläutern.

Vorkenntnisse

Besuch der Veranstaltung "Einführung in die WI"

Inhalt

Bereich Modellierung betrieblicher AWS:

- Einführung in das Thema Modelle und Modellierung (Metamodelle, Refernezmodelle)
- Grundlagen der Modellierung betrieblicher Anwendungssysteme (Formen der Modellierung, Ziele undf Nutzen, Requirements Engineering)
 - Grundlagen der Organisation (Organisationstheorie/-lehre)
 - Zusammenhang Organisationsmodellierung / Modellierung von Anwendungssystemen
 - Formen der Modellierung betrieblicher Anwendungssysteme: Vorgehensweise, Einsatzbereiche, Vor- und Nachteile

(Ansätze, Frameworks)

- · Von der Modellierung zur Softwareentwicklung und -implementierung
- Software-Werkzeuge zur Analyse und Modellierung von Organisationen
- Erstellen eigener Modelle (Übung)

Bereich Geschäftsprozessmanagement:

- · Einführung, Begriffe und weitere Grundlagen
- · Prozessidentifikation
- · Prozessmodellierung
- · Vorgehensmodell für das GPM
- · Strategisches Geschäftsprozessmanagement
- · Prozessanalyse und -optimierung
- · Prozesscontrolling und QM
- Rolle der IT im Geschäftsprozessmanagement

Medienformen

- Präsentationsfolien
- Tafel
- Diskussion
- Fallstudien bzw. eigenes praktisches Arbeiten am Rechner Literaturstudium

Literatur

Basisliteratur:

- Allweyer, T.: Geschäftsprozessmanagement Strategie, Entwurf, Implementierung, Controlling, W3I: Herdecke u.a. 2005.
 - Gaddatsch, A.: Grundkurs Geschäftsprozess-Management, 6. A., Vieweg+Teubner: Wiesbaden, 2010.
 - Lehner, F.: Wirtschaftsinformatik: theoretische Grundlagen. Hanser: München
- Scheer, A.-W.: Wirtschaftsinformatik. Referenzmodelle für industrielle Geschäftsprozesse, Springer: Berlin (aktuelle Auflage)
- Schmelzer, H.-J.; Sesselmann, W.: Geschäftsprozessmanagement in der Praxis, 6. A., Hanser: München, 2008. Ergänzungsliteratur:
- Becker, J.; Kugeler, M.; Rosemann, M. (Hrsg.): Prozessmanagement ein Leitfaden zur prozessorientierten Organisationsgestaltung, 5. A., Springer: Berlin u.a., 2005
- Hammer, M.; Stanton, S. (2000): Prozessunternehmen wie sie wirklich funktionieren. In: Harvard Business Manager 22 (2000) 3, S. 68 81.
 - Frese, E.: Grundlagen der Organisation: Konzept Prinzipien Strukturen. Gabler, Wiesbaden (aktuelle Auflage)
- Herterich, R. (2005): Prozessmanagement zwischen QM und IT. In: Information Management & Consulting 20 (2005) Sonderausgabe, S. 82 88.
- Schulte-Zurhausen, M.: Organisation, 4. Aufl., Vahlen: München, 2005 (v.a. Teil 1: Einführung und Teil 2: Prozessorganisation)
- Wöhe, G.; Döring, U.: Einführung in die Allgemeine Betriebswirtschaftslehre, Vahlen Franz Gmbh: München (aktuelle Auflage

Sonstige Quellen:

- Ellringmann, H.: Vorgehensmodell für den Aufbau eines Geschäftsprozessmanagements (Vortragsunterlage Softlab), 2005
 - Ellringmann, H.; Schmelzer; H.-J.: Geschäftsprozessmanagement inside, Periodikum, Hanser-Verlag
 - · weitere Literatur wird in der Veranstaltung bekanntgegeben

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2011

Bachelor Informatik 2010 Bachelor Informatik 2013 Bachelor Wirtschaftsinformatik 2010

Modul: Wirtschaftswissenschaften

Produktionswirtschaft 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5296 Prüfungsnummer:2500018

Fachverantwortlich: Prof. Dr. Rainer Souren

Leistun	gspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	2.0	
Fakultä	für Wirtsch	aftswi	issenschaften und Medien				Fachgebiet:	2522

	1	1.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden beherrschen das elementare produktionswirtschaftliche Fachvokabular und können wesentliche Zusammenhänge der Produktions- und Kostentheorie darstellen und erklären. Dabei sind sie in der Lage, Produktionssysteme anhand aktivitätsanalytischer Instrumente zu modellieren und zu bewerten. Die Studierenden beherrschen überdies die wesentlichen Grundlagen der Produktionsplanung und -steuerung und sind in der Lage, grundlegende Verfahren der Erzeugnisprogrammplanung, Losgrößenbestimmung und des Kapazitätsabgleichs anzuwenden.

Vorkenntnisse

Mathematik 1 und 2 für Wirtschaftswissenschaftler

Inhalt

Einführung: Fallbeispiel "Lederverarbeitendes Unternehmen Gerd Gerber"

A) Abbildung realer Produktionszusammenhänge (Technologie)

- 1. Modellierung einzelner Produktionen
- 2. Modellierung aller technisch möglichen sowie realisierbaren Produktionen
- B) Beurteilung realer Produktionszusammenhänge (Produktionstheorie i.e.S.)
- 3. Beurteilung von Objekten und Objektveränderungen
- 4. Effiziente Produktionen und Produktionsfunktionen
- C) Bewertung und Optimierung realer Produktionszusammenhänge (Erfolgstheorie)
- 5. Bewertung von Objekten und Produktionen
- 6. Erfolgsmaximierung

D) Ausgewählte Aspekte der Produktionsplanung und -steuerung

- 7. Statische Materialbedarfsplanung und Kostenkalkulation
- 8. Anpassung an Beschäftigungsschwankungen
- 9. Statische Materialbereitstellungsplanung und Losgrößenbestimmung

Medienformen

Vorlesung: überwiegend Powerpoint-Präsentation per Beamer, ergänzender Einsatz des Presenters

Übung: Presenter

Lehrmaterial: PDF-Dateien der Vorlesungs-Präsentationen sowie Übungsaufgaben und Aufgaben zum Selbststudium auf Homepage und im Copy-Shop verfügbar. Zusätzlich zwei alte Klausuren auf der Homepage verfügbar.

Literatur

- Dyckhoff, H.: Produktionstheorie, 5. Auflage, Berlin et al. 2006.
- Dyckhoff, H./Ahn, H./Souren, R.: Übungsbuch Produktionswirtschaft, 4. Auflage, Berlin et al. 2004.

Detailangaben zum Abschluss

Bonuspunkteklausur mit bis zu 10 % der Maximalpunkte während des Semesters. Gültig für die separate Klausur "Produktionswirtschaft 1" und für die Modulprüfung "Produktionswirtschaft 1 und 2".

verwendet in folgenden Studiengängen

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsinformatik 2013

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Medienwirtschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Master Regenerative Energietechnik 2011

Master Regenerative Energietechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Modul: Wirtschaftswissenschaften

Zivilrecht

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 1512 Prüfungsnummer:2500024

Fachverantwortlich: Prof. Dr. Joachim Weyand

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Wirtsch	aftswisse	enschaften und Medien				Fachgebiet:	2561

	1	1.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, grundlegende Begriffe des Privatrechts/Zivilrechts sicher anzuwenden, sie kennen die Rechtsgrundlagen des privaten Rechts und sind befähigt, die vorgegebenen Sachverhalte unter anzuwendende Vorschriften insbesondere des BGB zu subsumieren. Weiterhin können sie aufgeworfene Problemschwerpunkte strukturieren und mit Hilfe juristischer Auslegungsmethoden lösen.

Vorkenntnisse

keine

Inhalt

I. Zivilrecht in der Rechtsordnung II. Rechtsgrundlagen des Zivilrechts III. Rechtssubjekte und Rechtsobjekte des Zivilrechts IV. Leitprinzipien des Zivilrechts V. Der Abschluss des Vertrages VI. Formfreiheit und formgebundene Rechtsgeschäfte VII. Grenzen des Vertrages/Rechtsgeschäftes VIII. Die Einschaltung von Hilfspersonen in den Vertragsschluss IX. Vertragsdurchführung und -beendigung X. Die Vertragshaftung XI. Durchsetzung des zivilrechtlichen Anspruchs

Medienformen

pp-Präsentation, Vorlesungsskript, Übungsfälle mit ausformulierten Lösungen

Literatur

BGB. Bürgerliches Gesetzbuch, 75. Aufl. 2015

Eisenhardt, Einführung in das Bürgerliche Recht, 6. Aufl. Stuttgart 2011 (Verlag C. F. Müller)

Weyand, Einführung in das Zivilrecht. Studien- und Übungsbuch, 2. Aufl. Erfurt 2014 (Millennium-Verlag)

Detailangaben zum Abschluss

schriftliche Prüfungsleistung, 90 Minuten

verwendet in folgenden Studiengängen

Bachelor Medienwirtschaft 2011

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsinformatik 2013

Bachelor Informatik 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Medienwirtschaft 2009

Master Technische Physik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Technische Physik 2011

Master Allgemeine Betriebswirtschaftslehre 2011

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Modul: Wirtschaftswissenschaften

Systementwicklung & IT-Projektmanagement

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 5277 Prüfungsnummer:2500110

Fachverantwortlich: Prof. Dr. Dirk Stelzer

Leistungspunkte:	6	Workload (h): 180	Anteil Selbststudium (h):	112	SWS:	6.0	
Fakultät für Wirtsch	aftswis	senschaften und Medien				Fachgebiet:	2533

	1	I.FS	3	2	2.FS	3	;	3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0	2	1	0			

Lernergebnisse / Kompetenzen

Nach dem Besuch der Lehrveranstaltungen des Moduls Systementwicklung & IT-Projektmanagement sind die Studierenden mit den Grundlagen des systemischen Denkens bei der Entwicklung von Informationssystemen vertraut und haben Grundkenntnisse über das Management von IT-Projekten.

Die Studierenden sind in der Lage, Modellierungsaufgaben zu lösen und das Vorgehensmodell der Systementwicklung praxisrelevant anzuwenden. Zudem werden den Studierenden wesentliche Aspekte der Planung, Steuerung, Kontrolle und Verbesserung von IT-Projekten vermittelt.

Vorkenntnisse

Keine

Inhalt

Systementwicklung:

Systembegriff

Überblick über Vorgehensmodelle

Aufgabenbereiche

Ist-Analyse

Anforderungsanalyse

Systementwurf (fachlich, technisch)

Implementierung und Integration

IT-Projektmanagement:

Grundlagen

Probleme des Managements von IT-Projekten

Netzplantechnik

Projektinformation

Projektorganisation

Aufwandschätzung

Earned-Value-Analyse

Qualitätsprüfung

Multiprojektmanagement

Medienformen

Hermann Krallmann, Helmut F. Frank, Norbert Gronau: Systemanayse im Unternehmen. Oldenbourg (neueste Auflage)

Helmut Balzert: lehrbuch der software-Technik. Band 2: Software-Management. Software-Qualitätsicherung. Unternehmensmodellierung. Heidelberg - Berlin (neueste Auflage)

Projekt Management Institute: A Guide to the Projekt Management Body of Knowledge: PMBOK Guide (neueste Auflage)

Literatur

Hermann Krallmann, Helmut F. Frank, Norbert Gronau: Systemanayse im Unternehmen. Oldenbourg (neueste Auflage) Helmut Balzert: lehrbuch der software-Technik. Band 2: Software-Management. Software-Qualitätsicherung. Unternehmensmodellierung. Heidelberg - Berlin (neueste Auflage)

Projekt Management Institute: A Guide to the Projekt Management Body of Knowledge: PMBOK Guide (neueste Auflage) Zu den einzelnen Sitzungen werden weitere Literaturhinweise bedkannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsinformatik 2013

Bachelor Wirtschaftsinformatik 2011

Bachelor Informatik 2010

Bachelor Informatik 2013

Bachelor Wirtschaftsinformatik 2010

Modul: Proseminar für IN Bsc

Modulnummer:100346

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss:

Lernergebnisse

Im Proseminar Bachelor Informatik erwerben die Studierenden Kompetenzen in der Erarbeitung wissenschaftlicher Themenstellungen sowie im Ausarbeiten und Halten von Vorträgen.

Vorraussetzungen für die Teilnahme

siehe individuelle Fächerbeschreibungen

Detailangaben zum Abschluss

keine

Modul: Proseminar für IN Bsc

Proseminar für IN Bsc

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 100956 Prüfungsnummer:2200410

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Lei	stungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fak	ultät für Informa	atik un	d Automatisierung					Fachgebiet:	2255

	1	I.FS	5	2	2.FS	}		3.FS	3	4	1.FS	;	Ę	5.FS	3	(6.FS	}	7	7.FS	}
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester													0	2	0						

Lernergebnisse / Kompetenzen

Studierende erarbeiten sich in kleinen Gruppen an praktischen Projektaufgaben fachliche Kompetenzen, praktischmethodische Herangehensweisen und soziale Kompetenzen.

Vorkenntnisse

fachspezifisch

Inhalt

fachspezifisch

Medienformen

fachspezifisch

Literatur

fachspezifisch

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen

Bachelor Informatik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung IN Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung IN

Modul: Bachelorarbeit mit Kolloquium für IN Bsc

Modulnummer 100347

Modulverantwortlich: Prof. Dr. Winfried Kühnhauser

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden vertiefen in einem speziellen fachlichen Thema ihre bisher erworbenen Kompetenzen. Sie werden befähigt, eine komplexe und konkrete Problemstellung zu beurteilen und unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen unter Anleitung zu bearbeiten. Das Thema ist gemäß wissenschaftlicher Standards zu dokumentieren und die Studierenden werden befähigt, entsprechende wissenschaftlich fundierte Texte zu verfassen. Die Studierenden erwerben Problemlösungskompetenz und lernen es, die eigene Arbeit zu bewerten und einzuordnen.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

keine

Modul: Bachelorarbeit mit Kolloquium für IN Bsc

Abschlusskolloquium

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6067 Prüfungsnummer:99002

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	90	SWS:	0.0	
Fakultät für Informa	tik und	Automatisierung					Fachgebiet:	2255

	1	I.FS)	2	2.FS	3		3.FS	3		1.FS	3		5.FS	<u>} </u>	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р
Fachsemester																	90 h				

Lernergebnisse / Kompetenzen

Die Studierenden vertiefen in einem speziellen fachlichen Thema ihre bisher erworbenen Kompetenzen. Sie werden befähigt, eine komplexe und konkrete Problemstellung zu beurteilen und unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen selbstständig zu bearbeiten. Das Thema ist gemäß wissenschaftlicher Standards zu dokumentieren und die Studierenden werden befähigt, entsprechende wissenschaftlich fundierte Texte zu verfassen. Die Studierenden erwerben Problemlösungskompetenz und lernen es, die eigene Arbeit zu bewerten und einzuordnen.

Vorkenntnisse

Zulassung zur Bachelorarbeit durch den Prüfungsausschuss

Inhalt

siehe Modulbeschreibung

Medienformen

wissenschaftlicher Vortrag

Literatur

Literatur wird mit Ausgabe des Themas bekannt gegeben oder ist selbstständig zu recherchieren.

Detailangaben zum Abschluss

keine

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

Modul: Bachelorarbeit mit Kolloquium für IN Bsc

Bachelorarbeit

Fachabschluss: Bachelorarbeit schriftlich 6 Monate Art der Notengebung: Gestufte Noten

Sprache: Deutsch und Englisch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6074 Prüfungsnummer:99001

Fachverantwortlich: Prof. Dr. Winfried Kühnhauser

Leistungspunkte:	12	Workload (h): 360	Anteil Selbststudium (h):	360	SWS:	0.0	
Fakultät für Informa	atik und	d Automatisierung			Fachgebiet:	2255	

	1.FS		2.FS		3.FS		4.FS			5.FS			6.FS			7.FS					
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester																360 h		1			

Lernergebnisse / Kompetenzen

Die Studierenden vertiefen in einem speziellen fachlichen Thema ihre bisher erworbenen Kompetenzen. Sie werden befähigt, eine komplexe und konkrete Problemstellung zu beurteilen und unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen selbstständig zu bearbeiten. Das Thema ist gemäß wissenschaftlicher Standards zu dokumentieren und die Studierenden werden befähigt, entsprechende wissenschaftlich fundierte Texte zu verfassen. Die Studierenden erwerben Problemlösungskompetenz und lernen es, die eigene Arbeit zu bewerten und einzuordnen.

Vorkenntnisse

Zulassung zur Bachelorarbeit durch den Prüfungsausschuss

Inhalt

siehe Modulbeschreibung

Medienformen

wissenschaftlicher Vortrag

Literatur

Literatur wird mit Ausgabe des Themas bekannt gegeben oder ist selbstständig zu recherchieren.

Detailangaben zum Abschluss

ohne

verwendet in folgenden Studiengängen

Bachelor Informatik 2010

Bachelor Informatik 2013

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It. K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis