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ABSTRACT

Cartilage derived stem/progenitor cells (CSPCs) have been isolated from a variety of cartilage sources and are suggested to have high chondrogenic
potential. However, their role in cartilage engineering has not been well described, in particular, compared to other more widely used cell types
such as differentiated chondrocytes and nontissue-specific mesenchymal stem cells (MSCs). The authors performed a systematic review of litera-
ture according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines [Web of Science (Web of Science Core
Collection, BIOSIS Citation Index, KCI-Korean Journal Database, MEDLINE, SciELO Citation Index), PubMed, and Embase] from January 1947
to November 2017, to evaluate CSPC isolation, their characterization, and cartilage regeneration. Two investigators independently reviewed all
studies and extracted the data against standardized inclusion/exclusion criteria. A total of 1189 studies were identified, 65 of which met the inclu-
sion criteria, consisting of 69 reports on CSPC isolation from articular (n¼ 35), intervertebral disk (11), auricular (n¼ 10), meniscal (n¼ 5), naso-
septal (n¼ 5), tracheal (n¼ 2), and costal (n¼ 1) cartilages. Despite the heterogeneity in isolation methods, 75% of studies found CSPCs to have
trilineage differentiation potential, with consistent but nonspecific cell surface marker expression profiles, being positive for the recognized MSC
markers CD90, CD105, CD44, CD166, CD73, and CD29 and negative for hematopoietic markers CD34 and CD45. Four cartilage regenerative
outcomes were assessed: chondrogenic gene and protein expression (quantitative polymerase chain reaction, histology, immunohistochemistry,
and biochemistry), imaging and structural characterization (gross appearance, scanning electron microscopy, and transmission electron micros-
copy) and biomechanical testing. CSPCs have been used for cartilage repair in animal models with excellent outcomes that are comparable to
chondrocytes and superior to MSCs from unrelated tissue sources. The current review concludes that CSPCs represent a promising cell source for
cartilage tissue engineering, but there is currently no consensus on specific cell surface markers or isolation protocols.

VC 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5050814
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INTRODUCTION

Mesenchymal stem cells (MSCs) derived from adult tissues are a
promising cell type for tissue regeneration due to their self-renewal
capacity and ability to form multiple tissue types (Bianco, 2001).
Despite lacking intrinsic reparative ability due to its avascular, aneural,
and immune-privileged nature (Detterline et al., 2005; Cancedda,
2003; and Vinatier, 2009), articular cartilage has been shown to con-
tain a population of cells with progenitor-like qualities that are thought
to be involved in tissue homeostasis (Dowthwaite, 2004; Fickert, 2004;
Alsalameh, 2004; and Martin, 2003). In recent years, increasing evi-
dence suggests that they share many properties with MSCs, as defined
by the International Society of Cellular Therapy (ISCT) (Dominici,
2006) such as adherence to plastic, self-renewal capacity, expression of
stem-cell-related surface markers, and multilineage potential, thus
functioning as bona fide cartilage derived stem/progenitor cells
(CSPCs) (Williams, 2010; Quintin, 2010; Karlsson, 2009; Hattori,
2007; Hayes, 2008; Seol, 2012; Koelling, 2009; McCarthy, 2012; and
Jiang, 2015), similar to populations of stem cells found in many other
adult tissues (Brack, 2012 and Crisan, 2008).

Similarities in the characteristics of CSPCs and MSCs may be
related to the cartilage being a derivative of embryonic mesenchymal
cells, arising from various sources including the neuroectoderm (form-
ing the craniofacial skeleton), paraxial mesoderm (forming the axial
skeleton), and lateral plate mesoderm (forming long bones) (Olsen,
2000). The mesenchymal cells differentiate to form chondroblasts, and
subsequently chondrocytes, with concomitant secretion of extracellu-
lar matrix (ECM), characteristic of various stages of development
(Fig. 1). Findings suggest that at least two subpopulations of chondro-
genic cells coexist in the developing cartilage—multipotent cartilage
stem cells and oligopotent chondrogenic cartilage progenitor cells
(Wu, 2013)—but definitive differences between these subpopulations
in human adult cartilage have remained elusive. Evidence of reduced
adipogenicity despite successful osteogenic and chondrogenic induc-
tion (Alsalameh et al., 2004 and Grogan et al., 2009), low or no expres-
sion of RUNX2, the master transcription factor for chondrocyte
terminal differentiation, and enhanced expression of chondrocyte-
specific markers in chondroprogenitors (Seol et al., 2012) prevents the
synonymity of oligopotent cartilage progenitors and multipotent carti-
lage stem cells. While other reports suggest that cartilage progenitors

share more features with MSCs than chondrocytes, such as in vitro
self-renewal and trilineage differentiation, leading to a lack of consen-
sus in nomenclature (Levato et al., 2017 and Seol et al., 2012).

Chondrocytes secrete the cartilage extracellular matrix when cul-
tured in a 3D environment, but their dedifferentiation following
expansion has limited their widespread use in cartilage tissue engineer-
ing (Hamada et al., 2013 and Darling and Athanasiou, 2005). CSPCs
have been implicated in migration and tissue reparative activities in
response to native articular cartilage injury (Koelling, 2009 and Seol,
2012) and are identified as a promising renewable cell source for carti-
lage tissue engineering (Derks, 2013; Dowthwaite, 2004; Henriksson,
2009; and Kobayashi, 2011) due to their niche-specific lineage prefer-
ence for chondrogenesis (Pizzute, 2015 and Jansen, 2010). Unlike
hematopoietic stem cells, for example, which have a well-defined pop-
ulation of cell-surface antigens to identify cellular immunophenotype
(Spangrude, 1998), CSPCs lack definitive, stable biomarkers, which
has made the developmental origin and correct purification strategy of
these cells difficult to elucidate (Jiang, 2015; Quintin, 2010; Lee, 2009;
and Diaz-Romero, 2005). To date, systematic reviews describing stem/
progenitor cells in cartilage have been lacking and their chondrogenic
capacity is debatable.

The purpose of this systematic review is to examine all the pub-
lished literature looking at progenitor and stem cells from different
cartilage types and summarize the available information about their
isolation and characterization to conclusively determine whether carti-
lage contains stem cells according to ISCT criteria (Dominici, 2006)
and provide clarity in nomenclature for future research in this field.
This review will also assess the cartilage regenerative capacity of these
cells to determine their potential utility for cartilage tissue engineering.

METHODS
Search strategy

A systematic search for relevant articles was performed in accor-
dance with the recommendations of the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Moher,
2015) to evaluate the isolation, characterization, and utilization of
CSPCs for cartilage tissue engineering. Preclinical studies of CSPC iso-
lation and characterization, in particular, with respect to plastic adher-
ence, cell surface markers, and multipotency, were identified through a
systematic search across electronic databases, Web of Science (Web of
Science Core Collection, BIOSIS Citation index, KCI-Korean Journal
Database, MEDLINE, and SciELO Citation Index), PubMed, and
Embase, from January 1947 to November 2017. Due to the varied
nomenclature of CSPCs, broad search terms were used which
included: “mesenchymal progenitor cells” AND cartilage OR “articular
cartilage”; “cartilage derived stem cells”; “perichondrial progenitor
cells”; “cartilage progenitor cells”; “chondroprogenitor cells”;
“chondrogenic progenitors”; “chondroprogenitors”; “cartilage stem
cells”; and “chondrogenic progenitor cells.”

Eligibility criteria

The inclusion criteria were studies that (1) involved the isolation
of cartilage stem/progenitor cells; (2) identified stem cells in adult ani-
mal or human cartilage; (3) assessed the regenerative capacity of carti-
lage stem/progenitor cartilage in vitro or in vivo; and (4) were of
English language articles only.

FIG. 1. Stages of cartilage development. Mesenchymal stem cell condensation
leading to chondrogenic differentiation and extracellular matrix (ECM) synthesis.
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Exclusion criteria

Studies were excluded if they (1) involved stem cells isolated
from noncartilaginous tissues; (2) identified stem cells in nonadults or
embryonic mesenchyme; and (3) were not available for viewing.
Review articles and commentaries were also excluded.

Study selection

Two reviewers (Jessop and Manivannan) independently screened
abstracts to identify studies meeting our inclusion criteria, with differ-
ences being resolved by the senior author (Whitaker). Titles were ini-
tially screened to exclude duplicates and further screened using the
abstracts against inclusion and exclusion criteria. Finally, a full text
review of the remainder was performed to assess their eligibility. The
bibliographies of relevant articles were studied to identify further rele-
vant publications (Fig. 2).

Data extraction and main outcomes

Data were extracted from selected studies using a standardized
format (Microsoft Office Excel 2016). The initial tabulated data collec-
tion included: cartilage source of CSPCs, species, isolation technique,
adherence to plastic, cell surface markers, and multipotency. Because
the surface markers for MSCs from other species have not been uni-
versally characterized, the ISCT criteria were also applied to both

human and nonhuman cartilage derived stem/progenitor cells
(Dominici, 2006). CSPC use for cartilage tissue engineering, including
scaffolds, signaling factors, and chondrogenicity (evidence for cartilage
formation at the gene, protein, structural, or biomechanical level) was
recorded. Also noted were study authors, study design (in vitro/in vivo
model), and the year of publication. Studies directly comparing the
chondrogenicity outcomes of CSPCs with other commonly used cell
sources such as chondrocytes and nontissue-specific MSCs were also
evaluated.

RESULTS
Study characteristics

Our search yielded 2071 results, and after the exclusion of dupli-
cates and preliminary screening 278 studies were identified for full text
review of which 65 fulfilled the eligibility criteria (Fig. 2). A total of 69
reports describing CSPC isolation in 65 preclinical studies were pub-
lished between 2004 and 2017. These reports involved the isolation of
adult animal or human cartilage stem/progenitor cells, and were all
either in vitro (n¼ 50), in vivo animal models (n¼ 13), or both
(n¼ 6), with no first-in-human studies. Of the in vivo studies, the
majority of them used mice (n¼ 8), followed by rabbits (n¼ 5) and
rats (n¼ 3) with only individual studies using large animal models like
dogs, goats, monkeys, and horses.

FIG. 2. PRISMA flow literature search summary diagram. The search identified a total of 2071 English articles. All the articles were screened and shortlisted according to the
inclusion and exclusion criteria. After initial screening, a total of 1189 abstracts were scrutinized, of which 278 abstracts were then further analyzed by retrieving the full text of
the articles. A total of 65 preclinical studies met the inclusion criteria.
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CSPC isolation

CSPCs were isolated from both articular (n¼ 40) and nonarticu-
lar cartilage (n¼ 29) sources (Tables I–III). Articular sources included
articular hyaline (n¼ 35) as well as meniscal (n¼ 5) cartilage (Tables I
and II). Nonarticular cartilage sources included intervertebral disk
(n¼ 11), auricular (n¼ 10), nasoseptal (n¼ 5), tracheal (n¼ 2), and
costal (n¼ 1) locations (Table III).

Various CSPC isolation and cell culture methods have been
adopted. Dowthwaite were the first to use differential adhesion to fibro-
nectin (Dowthwaite, 2004), and since then other studies have adopted
this technique mainly for the isolation of articular CSPCs (n¼ 15).
Other isolation methods include fluorescence activated cell sorting based
on CSPC surface markers, magnetic cell separation as well as identifying
migratory and clonogenic subpopulations. Around half (14/29) of the
studies isolating nonarticular CSPCs do not have specific isolation tech-
niques and rely on simple tissue digest protocols of the perichondrial/
superficial cartilage layer where CSPCs are believed to reside.

CSPC characterization

Of the 69 reports on isolating CSPCs, 53 assessed their cell sur-
face marker expression and 48 assessed their potential to differentiate
into additional lineages, namely osteogenic and adipogenic. CD90,
CD105, CD44, CD166, CD73, and CD29 were the most common pos-
itive cell surface markers for CSPCs across different cartilage locations
(Table IV), and the most commonly studied negative markers were
CD34 and CD45 (Table V). CSPCs were reported to be positive for
HLA-ABC, but lack expression of HLA-DR (Tables IV and V). The
only conflicting results were for CD133 cell surface marker expression,
wherein four studies found it to be positive in articular (Yu, 2014),
nasoseptal (Shafiee, 2011), and IVD CSPCs (Risbud, 2007 and Liu,
2011) and five studies found it to be negative in articular (Joos, 2013
and Su, 2015), auricular (Kobayashi, 2011), and nasoseptal (Shafiee,
2014 and Elsaesser, 2015) CSPCs.

Of the 48 studies that assessed differentiation, only 8 reported
failure to differentiate into either adipogenic or osteogenic lineages,
with 75% confirming trilineage potential for CSPCs. Only 35% (24/69)
reports on CSPCs met the ISCT definition of MSCs due to partial
mesenchymal-lineage differentiation potential, most commonly chon-
drogenic and osteogenic, but failure of adipogenic potential or the lack
of immunophenotyping data, particularly assessing for negative CD
markers, which left the identity of CSPCs in doubt (Table VI). For
instance, Seol (2017) isolated fibroblast-like clonogenic cells from
bovine meniscal cartilages that exhibited multilineage (chondrogenic,
osteogenic, and adipogenic) potential and plastic adherence, but lack
of immunophenotype data means their MSC status was not con-
firmed. Most commonly, there was a simultaneous lack of both immu-
nophenotype and multilineage data implying that these studies did not
attempt to fully characterize CSPCs according to ISCT criteria follow-
ing isolation rather than actively disproving that they are not adult
derived stem cells.

CSPCs for cartilage regeneration

Four cartilage regenerative outcomes were assessed by this
review, namely chondrogenic gene and protein expression [including
quantitative polymerase chain reaction (qPCR), histology, immuno-
histochemistry, and biochemistry], imaging and structural

characterization (gross appearance, SEM, and TEM) and biomechani-
cal testing. The most common chondrogenesis protocols consisted of
pellet culture with TGFb1, TGFb3, or FGF2. Most studies showed that
after chondrogenic induction, CSPCs not only had increased expres-
sion of chondrogenic genes but also secreted cartilage extracellular
matrix in vitro and in vivo, specific to their cartilage subtype origin,
i.e., hyaline (McCarthy, 2012; Yoon, 2013; Williams, 2010; and
Anderson, 2017) or elastic (Kobayashi, 2011; Takebe, 2012; and
Kagimoto, 2016).

One study reported elastic auricular cartilage CSPCs being able
to regenerate hyaline-like articular cartilage in an animal model
(Mizuno, 2014), suggesting plasticity between cartilage subtypes.
While three studies found evidence to support fibrocartilage rather
than functional hyaline articular cartilage formation (Dowthwaite,
2004 and Koelling, 2009) or elastic auricular cartilage formation
(Derks, 2013). Only four studies assessed tissue engineered cartilages’
biomechanical properties (Levato, 2017; Anderson, 2017; Shen, 2013;
and Mizuno, 2014), despite this being a prerequisite for determining
their clinical utility (Gleghorn, 2007 and Roy, 2004). Articular and
meniscal cartilage studies assessed compressive stiffness using either
unconfined uniaxial compression testing (Levato, 2017 and Anderson,
2017) or indentation testing (Shen, 2013). Auricular cartilage elasticity
and stiffness were determined by nano(indentation) using atomic
force microscopy, with the resulting engineered cartilage from auricu-
lar CSPCs more closely matching the mechanical properties of hyaline
rather than elastic cartilage (Mizuno, 2014).

Chondrogenesis of CSPCs vs other cell types

CSPC chondrogenicity was directly compared with other cell
types, most commonly chondrocytes (n¼ 21) and bone marrow
(n¼ 21), adipose (n¼ 4), and synovium (n¼ 2) derived MSCs. MSCs
were found to have increased expression of osteogenic genes resulting
in hypertrophic cartilage formation (McCarthy, 2012; Su, 2015; and
Shen 2014) compared to CSPCs which exhibited a greater tendency
for chondrogenic differentiation (Ding and Huang, 2015; Shafiee,
2011; Baptista, 2013; Togo, 2006; Derks, 2013; Xue, 2015; Liu, 2011;
Shi, 2015; and Derks, 2013), with only one study suggesting compara-
ble results (Alsalameh, 2004). Chondrocytes, on the other hand, were
either comparable (Elsaesser, 2016; Togo, 2006; Kobayashi, 2011; and
Williams, 2010) or superior to CSPCs (Seol, 2017; Marcus, 2014; and
Zhou, 2014) in their chondrogenic differentiation potential, with only
one study suggesting inferior results (Levato, 2017).

In vivo application of CSPCs for cartilage repair

Of the 19 in vivo animal models assessing the use of CSPCs for
cartilage regeneration toward tissue engineering applications, most
used CSPCs isolated from articular hyaline (n¼ 6), auricular (n¼ 6),
and meniscal (n¼ 3) sources, reflecting clinical need for cartilage
repair in those locations (Table VII). Clinical disease models for poten-
tial future utility of CSPCs included osteoarthritis, degenerative disk
disease, as well as facial, tracheal, and thorax reconstruction following
trauma, tumor, degeneration, and congenital conditions resulting in
cartilage defects (Table VII). 90% of studies demonstrated the capabil-
ity of CSPCs for generating the cartilage matrix in vivo, both in xeno-
and auto-transplantation animal models, confirmed using histology,
immunohistochemistry, SEM, TEM, and magnetic resonance imaging
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TABLE I. Cartilage derived stem/progenitor cells (CSPCs) from articular hyaline cartilage. MACS, magnetic cell separation; O, osteogenic differentiation; A, adipogenic differentiation; C, chondrogenic differentia-
tion; N, No; Y, Yes; TGFb1/2/3, transforming growth factor b1/2/3; OA, osteoarthritis; rtPCR, reverse transcriptase polymerase chain reaction; Col1/2/10, collagen type 1/2/10; Agg, aggrecan; GAG, glycosamino-
glycans; COMP, cartilage oligomeric matrix protein; SafO, Safranin O; AB, Alcian blue; TB, toluidine blue; Sox9, SRY-Box 9; MSC, mesenchymal stem cell; BMSC, bone marrow derived mesenchymal stem cell;
TEM, transmission electron microscopy; SEM, scanning electron microscopy; SDF1, stromal cell-derived factor 1; FACS, fluorescence activated cell sorting; IHC, immunohistochemistry; BMP2/6/7, bone morpho-
genetic protein 2/6/7; ICRS, International Cartilage Repair Society; ECM, extracellular matrix; DMMB, 1,9-dimethyl-methylene blue assay; HSA-HA, human serum albumin/hyaluronan; IVD, intervertebral disk;
SCID, severe combined immunodeficiency; FGF2, fibroblast growth factor 2; IL1b, interleukin 1 beta.

Study Species
Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency

ISCT
criteria

In vitro/
in vivo

Chondrogenic
induction Control groups

Evidence for
cartilage

regeneration Outcome

Alsalameh
(2004)

Human MACS (CD105þ
CD166þ)

Y CD105þ, CD166þ O, A. C Y In vitro Micromass,
TGFbl/3

BMSCs OA and
non-OA CSPCs

GAG (AB)
Col1, Col2. Agg

(IHC)

Cartilage formation with
CSPCs comparable to

MSCs
Dowthwaite
et al. (2004)

Bovine Fibronectin
adhesion

Y CD29þ, CD49eþ,
Notch-1

C,O N In vitro,
in vivo
(ovine)

Injection into the
proximal limb of
chick embryo

… Col1 (IHC) Tissue-specific matrix syn-
thesis in ovo

Fickert
et al. (2004)

Human FACS (CD9þ
CD90þCD1 66þ)

Y CD9þ, CD44þ,
CD54þ, CD90þ,

CD166þ

O, A, C N In vitro Pellet, TGFb3 BMSCs,
chondrocytes

Col1, Col2,
COMP (IHC)
GAG (AB)

Dense cartilage nodules in
triple positive CSPCs

Martin
et al. (2005)

Bovine Fibronectin
adhesion

Y … C N In vitro Pellet, TGFb1 þ/� TGFbl GAG (SafO)
Col2 (IHC)

CSPCs are able to produce
cartilage ECM after pro-
longed expansion and

cryopreservation
Thornemo
et al. (2005)

Human Agarose suspension N … C N In vitro 3D agarose Different types of
cell clusters

GAG (Safo)
Col2, Agg
(IHCQ

CSPCs likely form homoge-
nous matrix clusters

Hattori
et al. (2007)

Bovine FACS (Hoechst
33342 side
population)

Y ABCG2þ C N In vitro Micromass,
BMP7 and
TGFb1

Untreated CSPCs GAG (TB) Col2
(IHC)

Growth factor treatment of
CSPCs resulted in increased
GAG and Col2 synthesis

Ustunel
et al. (2008)

Human Fibronectin
adhesion

Y Notch-1þ, Notch-
2þ, Deltaþ,
Jagged-1þ

C N In vitro Pellet Chondrocytes TEM. SEM CSPCs formed larger colo-
nies than chondrocytes,
rounded phenotype

Grogan
et al. (2009)

Human FACS (Hoechst
33342 side
population)

Y CD44þ, CD90þ,
CD105þ, CD166þ,
Stro-1þ, Notch-
1þ, CD106þ,
ABCG2þ

O, C, not A N In vitro Pellet, TGFb1 Non side popula-
tion cells

Col1, Col2,
Agg, Sox9

(rtPCR) GAG
(SafO)

>45% cells in normal carti-
lage positive for MSC
markers. CSPCs higher
GAGs and chondrogenic

gene expression
Khan et al.
(2009)

Bovine Fibronectin
adhesion

Y Notch-1þ C N In vitro Pellet, TGFb1 Chondrocytes GAG (SafO)
Age (IHC)

CSPCs have higher telome-
rase activity and coordi-
nated cartilage growth

Koelling
et al. (2009)

Human Migratory
subpopulation

Y CD29þ, CD44þ,
CD73þ, CD90þ,
CD105þ, Stro-1þ,
CD45�, CD17�

O, A, C Y In vitro 3D alginate,
TGFb3 and

BMP6

Chondrocytes and
osteoblasts

Sox9, Col2
(ISH)

3D culture alone sufficient
for CSPC chondrogenesis,
but enhanced by growth
factors and runx-2 knock-
out, unclear if ECM is bet-
ter than OA fibrocartilage

Williams
et al. (2010)

Human
and

Caprine

Fibronectin
adhesion

Y CD105þ, CD166þ,
CD44þ, CD29þ,
CD49eþ, Notch-
1þ, CD90þ, Stro-
lþ, Jagged-1þ,

Delta-1þ

A, C, limited O N In vitro/
in vivo
(caprine)

Pellet, TGFb3 &
caprine articular

defect

Chondrocytes GAG (TB,
SafO) Col1 &
Col2 (IHC)

CSPCs capable of cartilage
formation in vitro and

in vivo. Comparable ICRS
scores for CSPCs and

chondrocytes.
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TABLE I. (Continued.)

Study Species
Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency

ISCT
criteria

In vitro/
in vivo

Chondrogenic
induction Control groups

Evidence for
cartilage

regeneration Outcome

Chang et al.
(2011)

Human MACS
(CD105þCD166þ)

Y CD105þ, CD166þ O, C N In vitro TGFb1 CSPCs from fetus,
adults, and elderly

Agg, Col2
(rtPCR)

Lower chondrogenic and
higher osteogenic differen-
tiation of CSPCs from

elderly adults
Pretzel
et al. (2011)

Human MACS (CD166þ) Y CD105þ, CD166þ O, A, C N In vitro Pellet, TGFb3 CD166þ enriched
and depleted

GAG (AB) CD166þ enriched CSPCs
showed stronger chondro-
genic phenotype. Suggested
CSPC niche in superficial

and middle zones
McCarthy
et al. (2012)

Equine Fibronectin
adhesion

Y CD90þ, CD166þ,
Stro-Iþ, Notch-1þ

O, A, C N In vitro Pellet, TGFbl BMSC Agg. Col2.
Runx2,

Matrillin-
1(IHC)

CSPCs formed functional
rather than hypertrophic

cartilage of BMSCs

Seol et al.
(2012)

Bovine and
human

Migratory
subpopulation

Y ABCG2þ, Notch-
1þ, CD44þ

O, C, limited A N In vitro Pellet, TGFbl Chondrocytes and
BMSCs

GAG (SafO)
Microarray

Migratory CSPCs have
higher expression of chon-
drogenic genes than MSCs
and may contribute to car-
tilage repair (chondrocyte

> CSPC >MSC)
Benz et al.
(2013)

Human MACS (W5C5þ) Y CD49eþ, CD73þ,
CD90þ, CD105þ,

CD140bþ,
CD166þ, CD34�,
CD45�, CD271�

C but limited O
and A

N In vitro 3D HSA-HA
hydrogel, TGFb3

W5C5 enriched
and depleted, IVD

CSPCS

Sox9. Col2
(rtPCR) GAG
(DMMB)

CSPC chondrogenesis even
after prolonged expansion;
W5C5 and W8B2 were not
exclusively required for

chondrogenicity
Bernstein
et al. (2013)

Human Enzymatic digest
and

dedifferentiation

Y CD9þ, CD44þ,
CD54þ, CD73þ,
CD105þ, CD166þ,

CD 45�

O, C N In vitro Pellet, TGFb3 CSPCs from differ-
ent OA grades

GAG (DMMB) CSPCs maintained capacity
to be reprogrammed into

chondrocytes after
passage 4

Joos et al.
(2013)

Human Migratory
subpopulation

Y CD29þ, CD44þ,
CD73þ, CD90þ,
CD105þ, CD166þ,
CD54þ, MSCA-
1þ, Stro-lþ,

CD88þ, CD34þ,
CD133�, CD45

O, A, C Y In vitro Micromass BMSC Sox9,Col2, Coll,
Agg, COMP
(rtPCR) Col2.
COMP (IHC)

Chondrogenic medium was
required for CSPCs to form

cartilage in vitro

Singh et al.
(2013)

Rabbit Differential plastic
adherence

Y CD106þ, CD44þ C N In vivo
(rabbit)

Pellet, subchon-
dral drilling, then
CSPCs in 3D col-
lagen to fill artic-
ular defect in

rabbits

Subchondral dril-
ling alone

Col2.Ag
(rtPCR) GAG
(TB, ICRS).
Arthroscopy,
radiology, and

SEM

CSPC group is superior to
control after 15 days and
reduced the tide mark,
thereby reducing the
chance of osteophytes

Marcus
et al. (2014)

Bovine Fibronectin
adhesion

Y … C N In vivo
(mouse)

Injection into
SCID

Chondrocytes Col2, Sox9
(rtPCR) Sox9
(IHC) GAG
(AB. SafO)

CSPCs maintain chondro-
genic potential, but fail to
form functional matrix

in vivo
Nelson
et al. (2014)

Human Fibronectin
adhesion

Y Stro-lþ O, A, C N In vitro Pellet, TGFb2 … Sox9, Col2. Agg
(rtPCR) GAG
(SafO, TB)
Col2, Agg
(IHC)

Clonal variation in the
degree of differentiation

suggests further subpopula-
tions of CPSCs
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TABLE I. (Continued.)

Study Species
Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency

ISCT
criteria

In vitro/
in vivo

Chondrogenic
induction Control groups

Evidence for
cartilage

regeneration Outcome

Ozbey et al.
(2014)

Human Fibronectin
adhesion

Y CD90þ, CD105þ,
CD166þ, Stro-lþ

O, A, C N In vitro Pellet, TGFbl … GAG (IHC) CSPCs were also present in
deep zones and continued
to express stem cell markers
and were able to form carti-
lage in vitro after 3 passages

Zhou et al.
(2014)

Bovine Migratory
subpopulation

Y … C N In vitro Pellet, TGFbl Chondrocytes and
synovial fibroblasts

GAG (DMMB)
Microarray

Chondrocytes showed sig-
nificantly higher expression
of ECM genes and GAGs

than CSPCs (ch
ondrocyte>CSPC>Synovi-

al fibroblast
Yu et al.
(2014)

Bovine FACS (single cell
sorting) and
clonogenicity

Y ABCG2þ,
CD133þ, CD105þ,
CD90þ, CD71þ,
CD29þ, Notch 1þ

O, C, limited A N In vitro Pellet, TGFbl CSPCs from differ-
ent zones

Sox9, Col2
(rtPCR) GAG

(SatO)

Deep zone CSPCs are more
chondrogenic than

superficial

Frisbie
et al. (2015)

Equine Fibronectin
adhesion

Y … C N In vivo
(horse)

3D fibrin, TGFbl
and FGF2

injected into
horse articular

defect

Autologous vs allo-
genic CSPCs

GAG (SafO)
Coll, Col2

(IHC) arthros-
copy, and
radiography

Autologous CSPCs superior
to control (6 and 12 m)

Jiang and
Tuan
(2015)

Human NGF cell migration
assay

Y CD271þ, CD90þ,
CD73þ, CD105þ,
CD166þ, CD44þ,
CD29þ, CD34�,

CD45�

O, A, C Y In vitro Pellet, TGFb3 Chondrocytes Coll, Col2. Agg,
Sox9 (rtPCR)
GAG (Safo)

CSPCs formed cartilage
matrix in vitro, reduced by

nerve growth factor
treatment

Neumann
et al. (2015)

Human Fibronectin
adhesion

Y Notch-1þ C N In vitro 3D fibrin and
polyurethane,
BMP2, and
mechanical
stimulation

No mechanical
stimulation/BMP2
overexpression

Coll, Col2. Agg
(rtPCR) No

GAG

Chondrogenic genes
increased by mechanical
stimulation, but hypertro-
phic genes increased by

BMP2
Su et al.
(2015)

Human FACS (CD146þ) Y CD146þ, CD44þ,
CD73þ, CD90þ,
CD105þ, HLA-
ABCþ, CD34�,
CD45�, CD 133�

O, A, C Y In vitro Pellet Chondrocytes and
adipose MSCs

Sox9, Agg, Col2
(rtPCR) GAG

(TB)
Col2.Aeg.Sox9

(IHC)

CSPCs showed higher
chondrogenic capacity than

adipose MSCs

Tong et al.
(2015)

Rat Fibronectin
adhesion

Y CD44þ, CD90þ,
CD31�, CD34�,

CD45�

O, A, C Y In vitro and
in vivo (rat)

Pellet, TGFb1,
and IL1b

Chondrocytes and
BMSCs

Agg, 5ox9, Col2
(rtPCR) GAG

(AB)

TGFb1 induced and IL1b
suppressed CSPC chondro-

genesis in vitro
Xue et al.
(2015)

Porcine Fibronectin
adhesion

Y CD29þ, CD44þ,
CD90þ, CD34�,

CD35�

O, A, C Y In vitro 2D monolayer
and pellet, TGFbl,

and FGF2

BMSCs, auricular/
IVD CSPCs

Agg, Col2,
COMP (rtPCR)
GAG (AB)
Col2 (IHC)

CSPCs increased the
expression of chondrogenic

genes than BMSCs

Li et al.
(2016)

Rabbit Fibronectin
adhesion

Y CD90þ, CD105þ,
CD166þ, CD34�,

CD45�

O, A, C Y In vitro 3D alginate beads
with mechanical
stimulation

Chondrocytes and
fat pad derived

stem cells

GAG (SafO St
DMMB) Col2

(IHC)

Mechanical stimulation
increased chondrogenesis

in CPSCs more than
controls

Zhao
(2016)

Rat Clonogenicity Y CD29þ, CD49eþ,
CD90þ, CD73þ,
CD146þ. CD45�

O, A. C Y In vitro 3D alginate,
TGFb3, and

BMP 6

Chondrocytes GAG (AB)
Col1. Col2
(IHC)

Leptin inhibits chondro-
genesis by C5PCs and
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(MRI). One study reported that CSPCs were unable to produce carti-
lage matrix in vivo unlike chondrocytes, despite their expression of
chondrogenic genes (Marcus, 2014). Of the studies involving other cell
types, CSPCs were found to generate cartilage matrix superior to
nontissue-specific MSCs (Ding and Huang, 2015; Wang, 2014; and
Togo, 2006), but comparable to chondrocytes (Williams, 2010 and
Togo, 2006), thereby confirming in vitro findings.

DISCUSSION

To the best of our knowledge, this systematic review is the first
to comprehensively summarize the available evidence on cartilage
derived stem/progenitor (CSPC) isolation and cartilage regenera-
tive capacity to determine suitability for tissue engineering. Based
on the reported studies, CSPCs exist in both adult animal and
human cartilages, with the articular hyaline cartilage being the ear-
liest and most well-studied source to date. Increasing evidence sug-
gests the existence of CSPCs in other types of cartilages, including
the intervertebral disk, auricular, nasoseptal, tracheal, and costal, in
the order of decreasing frequency and across a variety of species.
CSPCs have been used for cartilage repair in vivo with excellent
outcomes that are comparable to chondrocytes and superior to
MSCs from unrelated tissue sources. The current review concludes
that CSPCs represent a promising cell source for cartilage tissue
engineering, but there is currently no consensus on specific cell sur-
face markers or isolation protocols.

CSPCs were initially described to reside in the superficial zone of
articular cartilage (Dowthwaite, 2004 and Williams, 2010), and this
view has been supported by successful isolation of CSPCs from auricu-
lar perichondrium (Kobayashi, 2011 and Takebe, 2012), superficial
zone of nasoseptal cartilage (do Amaral, 2012 and Baptista, 2013), as
well as tracheal (Yoon, 2013) and costal (Srour, 2015) perichondrium.
It is believed that the surface location of CSPCs allows them to
respond to soluble factors released into the synovium or blood during
injury in order to coordinate in vivo cartilage repair. However, other
studies refute this theory and have also found CSPCs in deeper zones
of cartilage (Ozbey, 2014 and Yu, 2014).

Our results indicate that despite the heterogeneity in CSPC
isolation methods, cell surface marker expression profiles are con-
sistent across different studies and cartilage types. CSPCs are posi-
tive for recognized MSC markers CD90, CD105, CD44, CD166,
CD73, and CD29 and negative for hematopoietic markers CD34
and CD45, with the only conflicting data existing for CD133. This
is unlike adult MSCs from other tissue sources which tend to have
heterogeneous cell surface marker expression profiles with conflict-
ing data between studies (Mafi, 2011). This suggests that CSPCs
represent a relatively homogenous population of cells which could
be attributed to the lack of contaminating cell populations with the
cartilage being recognized as avascular, aneural, and immune
privileged.

Despite the relative overlap in cell surface markers between
articular, meniscal, auricular, nasoseptal, tracheal, and perichondral
CSPCs, those isolated from the intervertebral disk do express some
unique neuronal stem and progenitor cell associated surface
markers. These include p75NTR (neurotrophin receptor) (Risbud,
2007), nestin (Feng, 2010), neuron-specific enolase (Feng, 2010),
and GD2 (neural ganglioside) (Sakai, 2012). This is likely attributed
to the intervertebral disk being a multicomponent structure andTA
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TABLE II. Cartilage derived stem/progenitor cells (CSPCs) from the meniscal cartilage. MHC-II, major histocompatibility complex class II; O, osteogenic differentiation; A, adipogenic differentiation; C, chondro-
genic differentiation; N, No; Y, Yes; TGFb1/3, transforming growth factor b1/3; OA, osteoarthritis; rtPCR, reverse transcriptase polymerase chain reaction; Col1/2/10, collagen type 1/2/10; GAG, glycosaminogly-
cans; SafO, Safranin O; Sox9, SRY-Box 9; MSC, mesenchymal stem cell; BMSC, bone marrow derived mesenchymal stem cell; TEM, transmission electron microscopy; SDF1, stromal cell-derived factor 1;
and FACS, fluorescence activated cell sorting.

Study Species
Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency

ISCT
criteria

In vivo/
in vitro

Chondrogenic
induction

Control
Group

Evidence of
cartilage

regeneration Outcome

Shen et al.
(2013)

Rabbit Clonogenicity Y MHC-II� O, A, C N In vivo
(rabbit)

Pellet, TGFbl, injec-
tion postmeniscec-
tomy/OA rabbits

PBS Col 2 (rtPCR)
GAG (SafO)

biomechanical,
radiological

CSPCs were able to regen-
erate the meniscal cartilage

and prevent OA

Muhammad
et al. (2014)

Human Migratory
subpopulation

Y Strolþ, CD29þ,
CD90þ CD105þ.
CD106þ, CD45�,

CD34�

O, A, C Y In vitro 3D Alginate.
TGFb3

Chondrocytes Sox9, Col2
(Western)

CSPCs’ ability to regenerate
cartilage may be inhibited
by mediators of inflamma-

tion in OA
Shen et al.
(2014)

Human Clonogenicity Y CD44þ, CD90þ,
CD105þ, CD166þ,
CD34�, CD45�

O, A, C Y In vitro and
in vivo (rat)

Injected into rats
with meniscal

defect

Synovial MSCs
and BMSCs

GAG (SafO)
Col1, Col2,
Col10 (IHC)

TEM

CSPCs express higher colla-
gen 2 levels than controls

in vitro and meniscal regen-
eration in vivo via SDF1
mediated migration

Ding and
Huang (2015)

Rabbit Clonogenicity Y SSEA-4þ, CD44þ,
CD90þ, Stro-1,

CD34�

O, A, C Y In vitro and
in vivo (nude

rat)

Pellet, TGFb3, and
implanted in rats
on 3D matrigel

BMSCs GAG (SafO)
Col2 (Western)

CSPCs exhibited greater
tendency to chondrogenic
differentiation than con-
trols in vitro and in vivo

Seol (2017) Bovine FACS (Hoechst
33342 side
population)

Y ABCG2þ O, A, C N In vitro Pellet, TGFbl Chondrocytes GAG (SafO)
Microarray

CSPCs underexpress carti-
lage extracellular matrix
components compared to

chondrocytes

A
p

p
lie

d
P

h
ysics

R
e

vie
w

s
R
EVIEW

scitation.org/journal/are

Appl.Phys.R
ev.6,031301

(2019);doi:10.1063/1.5050814
6,031301-9

V C
Author(s)2019



TABLE III. Cartilage derived stem/progenitor cells (CSPCs) from nonarticular cartilage sources. MSC, mesenchymal stem cell; BMSC, bone marrow derived mesenchymal stem cell; O, osteogenic differentia-
tion; A, adipogenic differentiation; C, chondrogenic differentiation; N, No; Y, Yes; TGFb1/3, transforming growth factor b1/3; FGF2, fibroblast growth factor 2; IGF1, insulin growth factor 1; BMP2, bone morphoge-
netic protein 2; EGF, epidermal growth factor; PLLA/PCL, Poly L-lactide/Polycaprolactone; rtPCR, reverse transcriptase polymerase chain reaction; Col1/2/10, collagen type 1/2/10; Agg, aggrecan; GAG,
glycosaminoglycans; COMP, cartilage oligomeric matrix protein; SafO, Safranin O; AB, Alcian blue; TB, toluidine blue; H&E-hematoxylin and eosin stain; Sox9, SRY-Box 9; TEM, transmission electron micros-
copy; SEM, scanning electron microscopy; IHC, immunohistochemistry; DMMB, 1,9-dimethyl-melthylene blue assay; EVG, elastic van Gieson; FACS, fluorescence activated cell sorting; MACS, magnetic cell
separation; ECM, extracellular cartilage matrix; SCID, severe combined immunodeficiency; HUVEC, human umbilical vein endothelial cell; IVD, intervertebral disk; CEP, cartilage endplate; NP, nucleus pulposus;
AF, annulus fibrosus; HSA-HA, human serum albumin/hyaluronan; and pCT, X-ray microtomography.

Cartilage
type Study Species

Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency ISCT

In vitro/
in vivo

Chondrogenic
induction

Control
groups

Evidence of
cartilage

regeneration Outcome

Nasoseptal Shafiee et al.
(2011)

Human Clonogenicity Y CD90þ, CD105þ,
CD106þ, CD166þ,

HLA-ABCþ, CD133þ.
CD34�, CD45�, HLA-

DR�

O, C, N Y In vitro Pellet BMSCs and
adipose derived

MSCs

GAG (SafO)
Cot 2 (IHC)

CSPCs demon-
strated higher
chondrogenic
potential than

controls
do Amaral et al

(2012)
Human Superficial zone

digest
Y CD44þ, CD73þ,

CD105þ, CD146�
O, C, not A N In vitro Pellet … SOX9 (rtPCR)

GAG (SafO)
CSPCs capable of
chondrogenic dif-
ferentiation even in

the absence of
growth factors

Baptista et al.
(2013)

Human Superficial zone Y … C N In vitro Pellet, TGFb3 Adipose
derived MSCs

GAG (SafO)
Col2 (IHC)

CSPCs able to
regenerate mature
ECM unlike con-
trols even without
growth factors

Shafiee et al.
(2014)

Human Clonogenicity Y CD73þ, CD90þ,
CD105þ, CD106þ,

CD166þ, HLA-ABCþ,
CD34�, CD45�,

CD133�, HLA-DR�

O, A, C Y In vitro 3D PLLA/PCL,
TGFbl

Aligned vs ran-
domly oriented
nanofibers

Agg, Col2
(rtPCR) Col2
(IHC) SEM

Successful cartilage
formation by

CSPCs on aligned
fibers

Elsaesser et al.
(2016)

Human Migratory
subpopulation

Y CD29þ, CD44þ,
CD105þ, CD106þ,
CD90þ, CD34�,
CD133�, CD45�,

CD31�

O, C N In vitro 3D decellular-
ized ECM

BMSCs and
chondrocytes

GAG (DMMB.
AB) Col10,
Col2 (IHC)

CSPCs migrated
faster into scaffold
but cartilage syn-
thesis was compa-

rable to
chondrocytes

Auricular Togo et al.
(2006)

Rabbit Clonogenicity Y … O, A,C N In vivo
(mouse)

Pellet, then
seeded on 3D
collagen and
injected dor-
sally in nude

mice

Chondrocytes
and BMSCs

Col 2. Agg
(rtPCR) GAG
(TB) Elasti n
(EVG) Col1,
Col2 (IHC)

CSPCs from pas-
sage 3 regenerated
the same amount of
carti1age as chon-
drocytes but more

than BMSCs
Kobayashi et al.

(2011) (i)
Human Perichondrium

digest and FACS
(CD44þCD90þ)

Y CD44þ, CD90þ,
CD49eþ, CD73þ, CD

105þ, CD34�,
CD24�, CD117�,
CD133�. CD138�,
CD140a�, CD146�,

CD271�

C N In vivo 2D layers,
FGF2 and

IGF1. injected
SCID mice

Chondrocytes GAG (AB. TB.
SafO) Col10,
Col2 (IHC)

ECM (ELISA)

CSPCs demon-
strated similar car-
tilage regenerative
abi1ity In vitro and
in vivo as controls

Kobayashi
et al2011 (ii)

Murine Perichondrium
digest

Y CD44þ, CD49eþ C N In vitro 2D Dermal
fibroblast

GAG (AB) CSPCs have greater
GAG secretion
than controls
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TABLE III. (Continued.)

Cartilage
type Study Species

Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency ISCT

In vitro/
in vivo

Chondrogenic
induction

Control
groups

Evidence of
cartilage

regeneration Outcome

Takebe et al.
(2012)

Human Perichondrium
digest

Y … C N In vitro 2D layers,
FGF2 Sc IGF1,
3D collagen/

hydroxyapatite/
chondroitin

sulfate scaffold

Noncell seeded
scaffold only

GAG (AB) ifas-
tin (EVG)

CSPCs formed elas-
tic cartilage in a

bioreactor

Derks et al.
(2013)

Porcine Perichondrium
digest

Y … O, A, C N In vitro Pellet. FGF2 Sc
TGFbl

Tracheal
CSPCS and
BMSCs

Col 2. Agg.
COMP. Coll
(rtPCR) GAG
(AB) Col2
(IHC)

CSPCs demon-
strated higher
chondrogenesis

than Controls, but
failed to generate

elastin
Sterodimas and
de Faria (2013)

Rabbit Perichondrium and
decell hNP chon-
drium digest

Y … C N In vivo
(rabbit0

Pellet, TGFb3
and BMP2,

Seeded on 3D
alginate/silk,

implanted sack
of rabbit

CSPCs from
chondrium and
perichondrium

GAG (AB)
Macroscopic
measurements

Formation of carti-
lage with auricular
morphology, size,
and flexibility after

8weeks

Mizuno et al.
(2014)

Canine Perichondrium
digest

Y CD44þ, CD90þ C N In vivo
dog)

2D monolayer.
IGF1 and

FGF2, cell clus-
ters injected
into canine

articular defect

With and with-
out fibrin glue

GAG (DMMB.
AB) Col1, Col2

(IHC)
biomechanical

Formation of carti-
lage similar to hya-
line and stiffer than
auricular cartilage

after 60 days

Takebe et al.
(2014)

Human Perichondrium
digest

Y … C N In vivo
(mouse)

Co-cultured
with HUVECs,
transplanted

into the cranial
window of
SCID mice

Conventional
pellet culture

GAG (AB)
Elastin (EVG)
Col1, Col2 Agg

(IHC)

Formation of carti-
lage superior with
condensed progeni-
tors and HUVEC

co-culture

Xue et al.
(2015)

Porcine Fibronectin
adhesion

Y CD29þ, CD44þ,
CD90þ, CD34�, CD

35�

O, A, C Y In vitro Pellet, TGFbl
and FGF2

BMSC, IVD/
articular CSPCs

Col2, Agg,
COMP (rtPCR)
GAG (AB)
Col2 (IHC)

CSPCs have
increased expres-
sion of chondro-
genic genes than

BMSCs
Kagimoto
(2016)

Monkey
and human

Perichondrium
digest

Y … O, A, C N In vivo
(mouse and
monkey)

FGF2 8c
Insulin, trans-
planted subcu-
taneous and
cranio-facial

Human and
monkey CSPCs

GAG (AB)
Elastin (EVG)
Col1, Col2
(IHC) MRI

Elastic cartilage for-
mation in vitro and

in vivo

IVD Risbud et al.
(2007)

Human
and rat

Clonogenicity Y CD90þ, CD73þ,
p75NTR, CD105þ,
CD166þ, CD63þ,
CD493þ, CD133þ,
CD34�, CD45�

O, A. C Y In vitro Pellet, TGFb3 3D alginate
culture

Sox9, Col2. Agg
(rtPCR) 5AG

(AB)

AF and NP CSPCs
capable of chondro-

genic
differentiation

Blanco et al.
(2010)

Human Clonogenicity Y CD90þ, CD73þ,
CD105þ, CD166þ,
CD106þ, C034�,
CD45�, CD14�,

CD19�, HLA-DR�

O, C not A N In vitro Pellet BMSCs GAG (TB) NP CSPCs capable
of chondrogenic
differentiation
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TABLE III. (Continued.)

Cartilage
type Study Species

Isolation
technique

Plastic
adherence

Cell surface
markers Multipotency ISCT

In vitro/
in vivo

Chondrogenic
induction

Control
groups

Evidence of
cartilage

regeneration Outcome

Feng et al.
(2010)

Human Migratory
subpopulation

Y CD29þ, CD49eþ,
CD51þ, CD73þ,
CD90þ, CD105þ,
CD166þ, CD184þ,
Stro-lþ, Nesting
Neuron specific

enolaseþ

O, A, C N In vitro Pellet … Sox9, Col2, Agg
(rtPCR) GAG

(AB)

AF CSPCs capable
of chondrogenic
differentiation

Liu et al. (2011) Human Agarose suspension N CD1Q5þ, CD73þ,
CD90þ CD44þ,
CD166þ. Stro-lþ,
CD133þ, CD14�,
CD34�, CD19�,

CD45�

O, A, C Y In vitro 3D agarose,
pellet, TGFb3

BMSCs Col 2, Agg,
Sox9 (rtPCR)
GAG (TB, AB)

Agg, Col2
(IHC)

CEP CSPCs exhib-
ited superior chon-

drogenesis to
controls

Sakai et al.
(2012)

Human
and mouse

FACS (Tie2þ) Y Tie2þ, GD2þ, CD44þ,
CD49fþ, CD56þ,
CD73þ, CD90þ,
CD105þ, 166þ

O, A, C Y In vitro and
mouse)

3D methyl cel-
lulose or decell
hNP, trans-
planted into
SCID mice

Chondrocytes GAG (SafO.
TB) Col2, Agg

(IHC)

NP CSPCs capable
of extracellular
matrix synthesis

in vitro and in vivo
but frequency

reduces with age
and IVD

degeneration
Xiong et al.
(2012)

Human Agarose N CD73þ, CD90þ,
CD105þ, CD14�,
CD19�, CD34�,

CD45�, HLA-DR�

O, A, C Y In vitro Pellet, TGFb3 þ/� macro-
phage inhibi-
tory factor

GAG (AB) CEP CSPC migra-
tion can be

enhanced in vitro, a
new target or
regeneration

Benz et al.
(2013)

Human MACS (W5C5þ) Y CD49eþ, CD73þ,
CD90þ, CD105þ,
CD140bþ, CD166þ,

CD34�, CD45,
CD271�

C but limited O
and A

N In vitro 3D HSA-HA.
TGFb3

W5C5 enriched
and depleted,
articular
CSPCS

Sox9, Col2
(rtPCR) GAG
(DMMB)

CSPC chondrogen-
esis even after pro-
longed expansion,
W5C5 and W8B2
were not exclusively

required for
chondrogenicity

Brisby et al.
(2013)

Human IVD digest Y CD105þ, CD90þ,
Stro-lþ, Notch- 1þ,

Jagged-1

C N In vitro Pellet, TGFbl,
disk cell/BMSC
conditioned

media

þ/�
conditioned

GAG (AB) CSPCs formed bet-
ter ECM in vitro
without BMSC

media
Wang et al.
(2014)

Human Agarose suspension Y CD90þ, CD105þ,
CD73þ, CD34�,

CD45�

O, A, C Y In vivo
(rabbit)

3D alginate
injected into
rabbit IVD
degeneration

model

BMSCs, CEP/
NP/AF CSPCs

GAG (AB)
MRI,

radiographs

Cartilage regenera-
tion after 6months
(CEP>MSC>N

P>AF)

Shi et al. (2015) Rat IVD digest Y CD29þ, CD44þ,
CD90þ, CD34,
CD45�, CD19�,

CDllb�

O, A. C Y In vitro 2D high density BMSCs GAG (AB)
Sox9, Col2, Agg

(rtPCR)

CSPCs showed
greater chondro-
genesis than
controls

Xue et al.
(2015)

Porcine Fibronectin
adhesion

Y CD29þ, CD44þ,
CD90þ, CD34�,

CD35�

O, A, C Y In vitro 2D and pellet.
TGFbl and

FGF2

BMSCs, auricu-
lar/articular

CSPCs

Col 2, Agg,
COMP [rtPCR)
GAG (AB)
Col2 (IHC)

ESPCs showed
greater chondro-
genesis than
BMSCs
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that CSPCs were isolated from both the notochord derived nucleus
pulposus and the sclerotome-derived annulus fibrosis and cartilage-
end plate (Risbud, 2011).

Interestingly, many of the MSC markers studied e.g., CD73 and
CD49e, have also found to be positive in mature chondrocytes
(Alsalameh, 2004; de la Fuente, 2004; Dowthwaite, 2004; Diaz-
Romero, 2008; and Williams, 2010) indicating lack of specificity.
Gogan et al. have also reported that the distribution of stem cell
markers (Notch-1, Stro-1, and VCAM-1) was not consistent with
stem cell distribution, concluding that these surface markers may not
be useful for identifying CSPCs (Grogan, 2009). If CSPCs prove to be
useful for future cartilage tissue engineering strategies, more efficient
and specific isolation techniques will be required to isolate and purify
these cells for clinical use.

The progenitor vs stem cell status of CSPCs has been the topic
of much debate in the literature. Like chondrocytes, CSPCs have a
highly chondrogenic profile, but trilineage potential and MSC
marker expression suggest a higher lineage than cartilage commit-
ted progenitors (Kobayashi, 2011). Although the limited self-
renewal of CSPCs, with senescence after 50PD (Khan, 2009) or
60PD (Koelling, 2009), has been previously used to define them as
progenitors rather than true stem cells, there is increasing evidence
that many adult stem cell sources also have a limited proliferative
history (Foudi, 2009 and Wilson, 2008). Of the 69 reports on CSPC
isolation, 24 met the ISCT criteria for an MSC (Dominici, 2006)
with no relationship with the type of isolation technique used,
which included migration assay, fibronectin adhesion, and flow or
magnetic cell sorting. Of those studies that did not meet ISCT crite-
ria, the majority were due to a simultaneous lack of trilineage and
immunophenotype assessment rather than actively failing to meet
stem cell criteria. This may be because the first progenitor studies
predate Dominici criteria in 2006, thereby contributing to confu-
sion in nomenclature. Despite the evidence that these cells may rep-
resent a putative cartilage stem/progenitor cell maintaining
cartilage homeostasis in vivo, a few studies have identified and char-
acterized single cell-derived clonal subpopulations (Barbero, 2003;
Williams, 2010; and Yu, 2014) which means that phenotypic
“stemness” may be the result of a heterogeneous pool of cells
(Janebodin, 2011).

Evidence largely supports subtype-specific extracellular carti-
lage matrix secretion by CSPCs depending on their cartilage origin
using both in vitro and in vivo chondrogenesis models (McCarthy,
2012; Yoon, 2013; Williams, 2010; Anderson, 2017; Kobayashi,
2011; Takebe, 2012; and Kagimoto, 2016), although there are also
studies suggesting that fibrocartilage rather than functional carti-
lage is formed (Derks, 2013; Dowthwaite, 2004; and Koelling,
2009). One study found that CSPCs of auricular elastic cartilage
origin are able to regenerate the hyaline cartilage suggesting their
potential for reprogramming these cells (Mizuno, 2014).
Nasoseptal CSPCs were shown to differentiate into neuronal line-
ages which may be attributed to their neuroectodermal origin
(Shafiee, 2011). A better understanding of the hierarchy of mesen-
chymal cell lineage may allow more focused rather than generic
characterization of CSPCs and allow them to have other applica-
tions beyond cartilage tissue engineering.

We do not yet know whether CSPCs maintain themselves within
their niche in native cartilage to promote repair through extracellularTA

B
LE

III
.(
C
on
tin
ue
d.
)

C
ar
ti
la
ge

ty
pe

St
ud

y
Sp
ec
ie
s

Is
ol
at
io
n

te
ch
ni
qu

e
P
la
st
ic

ad
he
re
nc
e

C
el
ls
ur
fa
ce

m
ar
ke
rs

M
ul
ti
po

te
nc
y

IS
C
T

In
vi
tr
o/

in
vi
vo

C
ho

nd
ro
ge
ni
c

in
du

ct
io
n

C
on

tr
ol

gr
ou

ps

E
vi
de
nc
e
of

ca
rt
ila
ge

re
ge
ne
ra
ti
on

O
ut
co
m
e

T
ra
ch
ea
l

D
er
ks

et
al
.

(2
01
3)

P
or
ci
ne

T
ra
ch
ea
ld

ig
es
t

Y
…

O
.A

,C
N

In
vi
tr
o

P
el
le
t,
FG

F2
an
d
T
G
Fb

l
A
ur
ic
ul
ar

C
SP

C
s
an
d

B
M
SC

s

C
ol
2.
A
gg
.

C
O
M
P
,C

ol
l

(r
tP
C
R
)
G
A
G

(A
B
)
C
ol
2

(I
H
C
)

C
SP

C
s
de
m
on

-
st
ra
te
d
hi
gh
er

ch
on

dr
og
en
es
is

th
an

B
M
SC

s,
bu

t
lo
w
er

th
an

au
ri
cu
-

la
r
C
SP

C
s

Y
oo
n
et
al
20
13

M
ur
in
e

P
er
ic
ho

nd
ri
um

Y
C
D
29
þ
,C

D
90
þ
,

C
D
10
5þ

,C
D
45
�

O
,A

,C
Y

In
vi
vo

(m
ou

se
)

P
el
le
t,
FG

F2
Sc

E
G
F,
in
je
ct
ed

in
to

m
id
ve
nt
ra
l

tr
ac
he
al
de
fe
ct

(0
.3
0.
5
m
m
)

U
nt
re
at
ed

de
fe
ct

B
M
P
2
(I
H
C
)

St
ru
ct
ur
al

(H
&
E
)

H
ya
lin

e
ca
rt
ila
ge

re
ge
ne
ra
te
d
by

C
SP

C
s

P
er
ic
ho

nd
ra
l

Sr
ou

r
et
al
.

(2
01
5)

M
ur
in
e

P
er
ic
ho

nd
ri
um

an
d

ch
on

dr
iu
m

N
…

C
N

In
vi
vo

(m
ou

se
)

P
er
ic
ho

nd
ri
um

vs
no

pe
ri
ch
on

-
dr
iu
m

in
co
st
al

ca
rt
ila
ge

de
fe
ct

N
at
iv
e
co
st
al

G
A
G
(A

B
)
lC

T
C
ar
ti
la
ge

re
ge
ne
r-

at
ed

on
ly
if
pe
ri
-

ch
on

dr
iu
m

is
in
ta
ct

(H
is
to

an
d

lC
T
)

Applied Physics Reviews REVIEW scitation.org/journal/are

Appl. Phys. Rev. 6, 031301 (2019); doi: 10.1063/1.5050814 6, 031301-13

VC Author(s) 2019



signaling factors or differentiate to maintain the cartilage tissue itself.
However, the ability of CSPCs to regenerate cartilage in vitro even after
prolonged expansion (Martin, 2005; Bernstein, 2013; Benz, 2013; and
Ozbey, 2014) suggests that tissue homeostasis involves an element of the
latter, because any mature chondrocytes within the CSPC enriched pop-
ulation would have been expected to dedifferentiate.

CSPCs unlike other stem cell sources [e.g., adipose derived stem
cells (ADSC), BMSC] are capable of spontaneous chondrogenic differ-
entiation in vitro (Keoelling, 2009 and Hattori, 2007), even in the

absence of growth factors, which makes them a more practical cell
source for cartilage tissue engineering (Baptista, 2013 and do Amaral,
2012). Both in vitro and in vivo studies indicate that BMSCs produce
cartilage that is hypertrophic rather than functional due to their line-
age preference for osteogenesis (McCarthy, 2012; Shen, 2014; and
Ding and Huang, 2015), whereas ADSCs fail to reproduce mature
extracellular matrix (Baptista, 2013 and Su, 2015). Although chondro-
cytes are shown to have comparable (Elsaesser, 2016; Togo, 2006;
Kobayashi, 2011; and Williams, 2010) or even superior (Seol, 2017;

TABLE IV. Positive cell surface markers for cartilage derived stem/progenitor cells (CSPCs). Number of studies reporting positive surface markers for different CSPC cartilage
sources.

Cell surface marker Articular Meniscal Auricular Nasoseptal Tracheal IVD Total

CDS 2 2
CD29 8 1 1 1 1 3 15
CD44 12 2 4 2 4 24
CD49a 1 1
CD49d 1 1
CD49e 4 2 2 8
CD49f 1 1
CD51 1 1
CD54 3 3
CD56 1 1
CD63 1 1
CD71 1 1
CD73 9 1 2 9 19
CD88 1 1
CD90 19 3 3 3 1 11 37
CD105 15 2 1 4 1 9 32
CD106 4 1 3 1 9
CD133 1 1 2 4
CD140b 1 1 2
CD146 2 2
CD166 13 1 2 6 24
CD184 1 1
CD271 1 1
Stro-1 7 2 3 12
Notch-1 9 1 10
Notch-2 1 1
Delta-1 2 2
Jagged-1 2 1 3
ABCG2 5 1 9
HLA-ABC 1 2 3
MSCA-1 1 1
p75NTR 1 1
SSEA-4 1 1
Nestin 1 1
Neuron-specific enolase 1 1
Tie2 1 1
GD2 1 1
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Marcus, 2014; and Zhou, 2016) cartilage regenerative capabilities,
unlike CSPCs (Martin, 2005; Bernstein, 2013; Benz, 2013; and Ozbey,
2016), they are not able to maintain their phenotype when expanded
in culture (McCarthy, 2012 and Williams, 2010). The presence of
meniscal and articular CSPCs has even been demonstrated in diseased
states and shown to regenerate cartilage in vitro (Alsalameh, 2004;
Bernstein, 2013; and Muhammad, 2014), but their susceptibility to
various inflammatory mediators i.e., NF-j B and ILb1 in late stages of
osteoarthritis may hamper their utility in vivo (Tong, 2015 and
Muhammad, 2014).

Limitations and future work

This systematic review has several limitations. Heterogeneity of
studies resulted from a lack of standardized CSPC isolation protocols,
chondrogenic culture methods (i.e., pellet, micromass or 3D scaffold),

experimental animals, and cartilage defects. None of the studies had
performed sample size calculations. Future studies should not only
characterize cartilage derived cells according to ISCT criteria to deter-
mine the progenitor vs stem cell status, but also investigate targeted
cell surface markers based on the developmental origin of cartilage
type rather than previously established MSC markers alone, to
improve our understanding of the overall CSPC immunophenotype.
Side-by-side studies directly comparing the chondrogenicity of CSPCs
with differentiated chondrocytes and other tissue derived MSCs are
required in order to definitively determine the utility of CSPCs for car-
tilage tissue engineering.

CONCLUSIONS

CSPCs have been shown to have excellent cartilage regenerative
ability using both in vitro and in vivo studies, with outcomes that are

TABLE V. Negative cell surface markers for cartilage derived stem/progenitor cells (CSPCs). Number of studies reporting negative surface markers for different CSPC cartilage
sources.

Cell surface marker Articular Meniscal Auricular Nasoseptal Tracheal IVD Totals

CD11b 1 1
CD14 3 3
CD17 1 1
CD19 4 A
CD24 1 1
CD31 1 1
CD34 8 3 2 2 8 23
CD35 1 1 1 3
CD45 10 2 2 1 7 22
CD117 1 1
CD133 2 1 2 5
CD138 1 1
CD140a 1 1
CD146 1 I 2
CD271 1 1 1 3
HLA-DR 2 2 4
MHC-11 1 1

TABLE VI. Summary of included studies on cartilage derived stem/progenitor cells (CSPCs). Stem cell classification based on cartilage cells meeting all three minimal
International Society for Cellular Therapy criteria (Dominici,2006). 1. MSC must be plastic-adherent when maintained under standard culture conditions. 2. MSC must express
recognized stem cell surface markers (CD105, CD73, and CD90) and lack expression of unrelated markers (e.g., CD45, CD34, CD14, CD11b, CD79alpha or CD19, and HLA-
DR). 3. MSC must differentiate into osteoblasts, adipocytes, and chondroblasts in vitro. Those that did not meet all three criteria were classified as progenitors.

Study type
Classification of
cartilage cells

Number of studies
Articular Meniscal Nasoseptal Auricular IVD Tracheal Costochondral Total

In vitro Stem cells 9 1 2 1 5 … … 18
Progenitor cells 20 1 3 3 4 1 … 32

In vitro and in vivo Stem cells 1 2 … … 1 … … 4
Progenitor cells 2 … … … … … … 2

In vivo Stem cells … … … … 1 1 … 2
Progenitor cells 3 1 … 6 … … 1 11
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TABLE VII. In vivo applications of cartilage derived stem/progenitor cells (CSPCs) for cartilage repair. TGFb3, transforming growth factor b3; TGFb2, transforming growth factor b2; FGF2, fibroblast growth factor
2; EGF, epidermal growth factor; IHC, immunohistochemistry; Histo, histology; ICRS, International Cartilage Repair Society; rtPCR, reverse transcriptase polymerase chain reaction; SEM, scanning electron
microscopy; SCID, severe combined immunodeficiency; NF-kB, nuclear factor kappa B; TGFb1, transforming growth factor b1; OA, osteoarthritis; HIF-2a, hypoxia inducible factor 2a; IGF1, insulin growth factor
1; BMSC, bone marrow derived mesenchymal stem cell; ECM, extracellular cartilage matrix; BMP2, bone morphogenetic protein 2; HUVEC, human umbilical vein endothelial cell; IVD, intervertebral disk; CEP,
cartilage endplate; NP, nucleus pulposus; AF, annulus fibrosus; MRI, magnetic resonance imaging; and lCT, X-ray microtomography.

Clinical disease
model Study CSPC source

Species (no. per
treatment)

Study type (fol-
low-up period) Intervention Control group Outcome

Osteoarthritis Williams et al.
(2010)

Human articular
cartilage

Goat (6) Animal model
articular defect
(20 weeks)

Pellet and TGFb3 first, then
loaded on 3D collagen with

TGFb2 El FGF2 (6mm defect)

Chondrocytes Cartilage formation confirmed on tissue
samples (IHC, Histo), comparable ICRS

scores
Dowthwaite
et al. (2004)

Bovine articular
cartilage

Chick embryo
(ns)

Animal model
cartilage regen-

eration
(10 days)

Injection into the proximal
limb of developing chick

embryo

Tissue specific matrix synthesis in vivo,
resulting in articular fibrocartilage

Singh et al.
(2013)

Rabbit articular
cartilage

Rabbit (24) Animal model
articular defect

(IS days)

Pellet first, subchondral drilling,
then CSPCs in 3D collagen

(3mm defect)

Subchondral
drilling alone

CSPC group superior to control, as con-
firmed by radiology, arthroscopy, and
tissue samples (rtPCR, Histo, ICR5

score, and SEM)
Marcus et al.

(2014)
Bovine articular

cartilage
SCID mouse

(ns)
Animal model

(2 weeks)
Injection on the back of mouse Chondrocytes CSPCs did not produce any functional

matrix unlike chondrocytes (rtPCR,
1HC, and Histo)

Frisbie et al.
(2015)

Equine articular
cartilage

Horse (12) Animal model
articular defect

(6 and
12months)

3D fibrin, TGFbl and FGF2
injected into horse articular

defect (16mm)

Fibrin only Autologous CSPCs superior to fibrin
only and allogenic CSPC groups on
radiographs, arthroscopy, and tissue

samples (IHC and Histo)
Tong et al.
(2015)

Rat articular
carti1age

Rat (7–10) Animal model
OA (0, 2, 8, 14,

30, 60 or
90 days)

NF-xB inhibitor (BAYL1-7082)
injection twice a week

Dimethyl
sulfoxide

Inhibition of the NF-kB pathway acti-
vated CSPCs and slowed progression

OA

Shen et al.
(2013)

Rabbit meniscal
cartilage

Rabbit (3, 3,
and 12,

respectively)

Animal models
of meniscal

injury (4, 8, and
12)

Pellet, TGFbl, injection into
rabbits postmeniscectomy

Phosphate-
buffered saline

C5PC group showed more neo-tissue
formation than control at 4 and

8weeks, but not at 12 (IHC, Histo, and
biomechanical) and less OA

radiologically
Shen et al.
(2014)

Human meniscal
cartilage

Rat (3 and 3,
respectively)

Animal model
meniscal defect
(4 El 12weeks)

Injected into meniscal defect
rats

Phosphate-
buffered saline

CSPC group showed greater meniscal
regeneration than PBS at week 4, but

comparable at week 12 (IHC, TEM, and
Histo), with delay in OA via HIF 2a

inhibition
Mizuno et al.

(2014)
Canine auricular

cartilage
Dog (4) Animal model

articular defect
(60 days)

2D monolayer, IGF1 and FGF2,
cell clusters injected into canine

articular defect (4mm)

With and with-
out fibrin glue

Formation of cartilage similar to hya-
line and biomechanically stiffer than
auricular cartilage (IHC and Histo)

Ding and
Huang (2015)

Rabbit meniscal
cartilage

Nude rat (4) Animal model
(3 weeks)

Implantation on the back of
mouse, CSPCs in matrigel

BMSC Matrigel-CSPCs expressed more colla-
gen 2 and less osteocalcin than controls

Facial
Reconstruction

Togo et al.
(2006)

Rabbit auricular
perichondrium

Nude mouse
(6)

Animal model
(4 weeks)

Pellet then seeded on 3D colla-
gen and injected dorsally in

nude mice

BMSCs and
chondrocytes

CSPCs formed more ECM than
BMSCs, but same as chondrocytes

(PCR, IHC, and Histo)
Kobayashi et al.

(2011) (i)
Human auricular
perichondrium

SCID mouse
(ns)

Animal model
(6 and

10months)

2D layered, FGF2 and IGF1,
injected SCID mice

Chondrocytes CSPCs formed elastic cartilage (chon-
drium and perichondrium) (IHC and

Histo)
Sterodimas and
de Faria (2013)

Rabbit auricular
cartilage

Rabbit (6) Animal model
(8 weeks)

Pellet, TGFb3 and BMP2,
seeded on 3D alginate/silk,

implanted dorsally in immuno-
competent rabbit

CSPCs from
chondrium and
perichondrium

Formation of carti1age with auricular
morphology (Histo)
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comparable to chondrocytes and superior to MSCs from unrelated tis-
sue sources. The current review concludes that CSPCs represent a
promising cell source for cartilage tissue engineering, but further work
is required to establish a consensus on nomenclature, specific cell sur-
face markers, and isolation protocols.
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