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Summary

Spatial species distributions and the relationship between species and environmental factors have
been studied for several years. Climate change and habitat fragmentation can be considered as the
factors effective in biodiversity changes. Landscape fragmentation can have a significant effect in
reducing migration capabilities of plants by lessening suitable habitats and separating them from
each other, as well as, via increasing, decreasing, or eliminating dispersal barriers and climate
change affects plant species distributions and may create new environments and forces organisms
have to react to. Dynamic climate variables changing with a projection time frame and static
landscape variables have been adopted by most studies to project future species distribution. This
method of application ignores the dynamics landscape changes over time. Also, many studies on
climate change and ecosystems consider unlimited dispersal or no dispersal. Neglecting dispersal
process is usually seen as a defect and limitation in projects of species distribution models under
climate change. Therefore prediction of species range shifts under climate change and other
physical processes is a crucial challenge for the management of natural resources.

The major objective of this thesis was to integrate MigClim, SDM and CA-Markov chain models
so as to assess the effects of future landscape fragmentation and climate change scenarios on the
geographic distributions of three open-land plant species in 21 century.

To simulate future landscape changes, we used a hybrid (CA-Markov) model (chapter 3). This
model was derived by examining past trends in land change and projected changes in basic
environmental and human driven factors. The end result clearly showed if the current trends of
change continue regardless of the actions of sustainable development, drastic natural area decline
will ensue.

A remote sensing study was conducted to identify the best classifier algorithm (three pixel-based
and one object-based method) (chapter 2). This study demonstrates that object-based support
vector machine classifier is the most accurate classifier with an overall classification accuracy of
93.54% and a kappa value of 0.88 for the image 2010. The best method (i.e. object-based support
vector machine) was then used in chapter 3 to obtain the land-cover maps corresponding to
different years.

In chapter 4, we compare six species distribution models (three machine-learning and three
regression models) constructed with different subsets of environmental predictors (climate-only,
topography-only, and topo-climate variables). The generalized additive model (GAM) showed the
best accuracy when projected with a set of topo-climate variables. The best model and the best set
of predictors were used to produce habitat suitability maps of plant species in chapter 5.

For all target plants, simulations were performed for four dispersal events (full dispersal, no
dispersal, regular dispersal (short-distance dispersal), and regular dispersal along with long-

distance dispersal), two landscape (static and dynamic change) and two climate change (RCP4.5
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and RCPS8.5) scenarios (chapter 5). The choice of dispersal events is in line with the choice made
in Engler et al. (2009). In this investigation, it was shown that the predicted distribution areas for
all the three species under RCP8.5 scenario will largely increase in the coming decades. Also, a
significant difference appears to be between the simulations of realistic dispersal limitations and
those considering full or no dispersal for projected future distributions during the 21% century.
Besides, the results obtained by the limited projections of future plant distributions via realistic
dispersal restrictions showed to be generally closer to no-dispersal than to full-dispersal scenario
when compared with real dispersal scenarios.

Overall, the results of this study indicate that dispersal limitations can have an important impact on
the outcome of future projections of species distributions under climate change scenarios. Also our
findings clearly showed that change in landscape fragmentation is more effective than the climate

change impacts on species distributions in our study area.



Zusammenfassung

Die rdumliche Verteilung von Arten sowie ihre Beziehung zu den herrschenden Umweltfaktoren
sind seit vielen Jahren Gegenstand der Forschung. Klimadnderung und Lebensraumfragmentierung
werden als Hauptbedrohungen der Biodiversitit angesehen. Landschaftszerschneidung kann die
Migrationsfahigkeit von Pflanzen einschrianken, indem sie den geeigneten Lebensraum fiir eine
erfolgreiche Kolonisierung verringert. Sie kann ebenso durch Vergroflern, Verringern oder
Beseitigen von Ausbreitungsschranken und Klimaénderungen die Verbreitung von Pflanzenarten
beeintrachtigen und vermag neue Umgebungen zu schaffen und Organismen zum Reagieren zu
zwingen. Die meisten Studien haben den Ansatz dynamischer Klimavariablen in Abhingigkeit
eines Vorhersagezeitraums in Zusammenhang mit statischen Landschaftsvariablen angenommen,
um die zukiinftige Artenverbreitung vorherzusagen. Diese Anwendungsmethode vernachlassigt
dynamische Landschaftsinderungen mit der Zeit. AufBlerdem gehen viele Studien {iber
Klimainderung und Okosysteme entweder von unbegrenzter oder keiner Ausbreitung aus. Die
Vernachlassigung des  Ausbreitungsprozesses wird gewdhnlich in  Projekten  iber
Artenverteilungsmodellen unter Klimaeinfluss als Fehler und Einschriankung betrachtet. Deshalb
ist die Vorhersage einer Verdnderung des Verbreitungsgebiets von Arten bei Klimadnderungen
oder anderen physikalischen Prozessen eine entscheidende Herausforderung fiir die Verwaltung
natiirlicher Ressourcen.

Das Hauptziel dieser These war die Integration von MigClim, SDM und CA-Markov-Ketten-
Modellen, um die Auswirkungen zukiinftiger Landschaftszerschneidungs- und Klimadnderungs-
Szenarien auf die geografische Verbreitung von drei Offenlandpflanzen im 21. Jahrhundert
abzuschétzen.

Um zukiinftige Landschaftsanderungen zu simulieren, benutzten wir ein hybrides (CA-Markov)
Modell (Kapitel 3). Dieses Modell wurde aus der Untersuchung vergangener Trends in
Landschaftsinderungen und vorhergesagten Anderungen in grundlegenden Umwelt- und
anthropogenen Faktoren abgeleitet. Das Endergebnis zeigt ganz klar, dass eine drastische
Verringerung naturnaher Gebiete folgt, wenn der aktuelle Trend der Anderungen anhilt und die
Aktionen einer nachhaltigen Entwicklung nicht beriicksichtigt werden.

Eine Fernerkundungsstudie wurde durchgefiihrt, um die besten Klassifikatoralgorithmen zu
identifizieren (drei Pixel-basierte und eine Objekt-basierte Methode) (Kapitel 2). Diese Studie
zeigt, dass ein Objekt-basierter Support-Vektormaschinen-Klassifikator der genaueste
Klassifikator ist, mit einer Gesamtklassifizierungs-Genauigkeit von 93.54% und einem Kappawert
von 0,88 fiir das Bild von 2010. Die beste Methode (d.h. Objekt-basierte Support-
Vektormaschinen-Klassifikator) wurde anschlieBend in Kapitel 3 verwendet, um die

Bodenbedeckungskarte verschiedener Jahre zu erhalten.
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In Kapitel 4 vergleichen wir sechs Artenverteilungsmodelle (drei Maschinenlern- und drei
Regressions-Modelle), die mit verschiedenen Untermengen von Umwelt-Einflussfaktoren
(Variablen nur fiir Klima, nur fiir Topographie, fiir Klima und Topographie) erstellt wurden. Das
Allgemeine Additive Modell (GAM - "generalized additive model") zeigt die hochste
Genauigkeit, wenn die Abschéitzung nur mit Variablen fiir Klima und Topographie erfolgt. Das
beste Modell und die beste Auswahl an Préadiktorvariablen wurden in Kapitel 5 verwendet, um
Landkarten fiir geeignetem Lebensraum der Pflanzenarten zu erstellen.

Fiir jede Pflanzenart wurden Simulationen von vier Ausbreitungsszenarien (Vollausbreitung, keine
Ausbreitung, realistische Ausbreitung, realistische Ausbreitung mit Fernausbreitungsereignissen),
zwei Landschafts- (statisch und dynamische Anderungen) und zwei Klimainderungs-Szenarien
(RCP4.5 und RCPS8.5) ausgefiihrt (Kapitel 5). Die Festlegung der Dispersal-Ereignisse erfolgte in
Ubereinstimmung mit Engler et al. (2009). In dieser Untersuchung wurde gezeigt, dass das
vorhergesagte Verbreitungsgebiet aller drei Arten unter dem RCPS8.5 Szenario in den drei
kommenden Jahrzehnten stark zunehmen wird. AuBlerdem zeigt sich ein wesentlicher Unterschied
fiir die vorhergesagte Verbreitung im 21. Jahrhundert zwischen Simulationen realistischer
Ausbreitungsgrenzen und solchen mit voller oder abwesender Ausbreitung. Im Ubrigen waren die
erhaltenen Ergebnisse der begrenzten Vorhersage zukiinftiger Pflanzenverteilungen mit
realistischen Ausbreitungsgrenzen i.A. dichter am Szenario ohne Ausbreitung als an der Voll-
Ausbreitung dran, verglichen mit realistischen Ausbreitungs-Szenarien.

Zusammengefasst zeigen die Ergebnisse dieser Studie, dass Ausbreitungsbegrenzungen einen
wesentlichen Einfluss auf das Resultat von Zukunftsabschitzungen der Artenverteilung unter
Klimaédnderungs-Szenarien haben konnen. Auflerdem zeigen unsere Befunde ganz klar, dass
Landschaftszerschneidung in unserem Studienbereich einen grofleren FEinfluss auf die

Artenverbreitung hat als Auswirkungen von Klimadnderungen.
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Chapter 1

General Introduction

Ecologists have been studying for a long time to find out why some species are found only in
certain habitats and how they found their way to these regions (Darwin, 1859; Connell, 1961).
Ecologists often consider the geographical ranges of species, which are explained by the intricate
interactions of each species with the environment it establish in as a basis for answering such
questions. Species distribution models (SDMs) generally specify spatially and temporally suitable
habitats for species by combining species occurrence data with environmental predictors (Brown

et al., 1996; Guisan and Zimmermann, 2000).

1.1. Ecological niche

The conceptual framework of modeling approaches for evaluating and predicting relationships
between living organisms and their environment in a given place and at a given time is referred to
as the ecological niche concept. This concept was first formally defined by Hutchinson (1957).
According to Hutchinson, the ecological niche of a species is the set of environmental conditions
under which the species can sustain a positive growth rate. Hutchinson later modified this concept
by introducing a distinction between “fundamental” and “realized” niche. The first term can only
be considered for lifeless factors such as climate, topography or soil properties, but the second
term can also be considered for biotic interactions such as competition and facilitation (Engler,
2009). Plant species that grow in mountainous areas can be a good example to better describe the
concepts of “fundamental” and “realized” niche. Climatic constraints limit the habitat of these
plants to below a certain altitude, and competition severely limits the possibility of their presence
in low-altitude mountain ranges (Brown et al., 1996). So the low-altitude mountain ranges are a
part of the fundamental niche of this species (i.e. in the absence of competition, they can grow in
these habitats), but not a part of their realized niche because competition does not allow them to be
present in these habitats.

Nowadays, most SDM models are based on Hutchinson’s niche concept. However, some
researchers (e.g., Pulliam, 2000) believe that the presence or absence of a species in a habitat is a
more important factor than the suitability of the habitat or interspecies competition. Limited
distribution, local extinctions, and recolonization are events that constantly occur in nature, and
thus, one can regularly see species not present in their suitable habitat but present in an unsuitable
habitat.

Engler (2009) suggests that "meta-population and source-sink dynamics must also be considered in

the concept of ecological niches because undoubtedly factors like the factor of competition, affect



the formation of ecological niches". For instance, Pulliam (2000) has shown that how dispersal can
maintain population in unsuitable areas. Studies have shown that when dispersal is high, a
significant portion of the population (up to 30%) can live outside of fundamental niche. However
until now most studies have ignored metapopulation and source-sink dynamics.

SDMs assume that by investigating the environmental conditions in which a species exists, it is
possible to satisfy its ecological needs (Pearson and Dawson, 2003). This implies that, the
assumption of equilibrium between a species and its habitat is a basic principle for modeling full
potential distribution of species in SDMs (Guisan and Zimmermann, 2000; Engler, 2009). That is
why sometimes SDMs are called “equilibrium models”. The condition of an invasive species that
is newly arrived to an environment is a good example of non-equilibrium condition. Such a species

is in migration stage, and therefore does not occupy all suitable habitats (Engler, 2009).

1.2. Methodological improvements of SDMs

The geographical ranges of mobile species (such as most animals) may be dynamic and change in
a relatively short period of time (e.g., in summer and winter).Changes in the geographical ranges
of non-mobile species (such as plants), however, often occur at longer intervals, because these
species often live in a single location throughout their lives, and thus, their dispersal and
distribution are limited to their reproduction. Of course, factors such as wind, animals, and humans
may also play a role in this regard (Nathan and Muller-Landau, 2000; Meier, 2011).

SDMs for predicting distribution of living organisms under the influence of climate change in
future generally face two major limitations. One is that they do not consider probable changes in
intragroup and extragroup biological interactions and evolutionary interactions, and the other is
that they cannot study and utilize dispersal-related processes (Pearson and Dawson, 2003, Pearman
et al., 2008).

The biggest limitation of SDMs is that they do not consider the dispersal of a species or the
dynamicity of a population. Although this is not necessarily an issue in modeling for current
climate (assuming that the desired species has reached an environmental equilibrium), it becomes
an important issue when modeling for future climate. The reason is obvious: projections obtained
from SDMs emphasize locations that are expected to be potentially suitable for the species in the
future, but these models do not consider whether these species would actually be able to reach
these new suitable locations. The issue is exacerbated by a significant increase in fragmentation
which is an obstacle for species dispersal (Pitelka et al., 1997; Engler, 2009).

When not examining distribution-limiting factors, studies examining the impact of climate change
on plant species distribution can only examine two scenarios: "no dispersal”" and "full dispersal".
The former assumes that species cannot move to new environments. For this reason, climate

change can affect their survival. Unlike the no-dispersal scenario, the full-dispersal assumes that



species can be established in all areas where the environmental conditions are suitable for their
growth based on the model’s prediction (Bateman et al., 2013). This scenario is widely used and in
some references it is called "unlimited dispersal" and "universal dispersal" (Engler et al., 2009;
Thomas et al., 2004). These two assumptions can lead to significantly different results. The
difference between these two assumptions highlights the need for more dynamic models that

consider the limits of dispersal.

1.3. Evaluating the potential effects of climate change

Studies have shown climate change in previous decades had considerable effects on living
organisms, and sometimes led to migration of species or threatened them with the risk of
extinction. Scientists believe climate change in the twenty first century will have deeper effects on
both biotic and abiotic conditions of the environment. Therefore, researchers are interested in
studying the effects of these changes on distribution of living organisms in the coming years
(Lenoir et al., 2008, Parolo and Rossi, 2008).

Since the climate was relatively stable during the Holocene period, the current ranges are expected
to be the result of adaptation of species with the current environment (Kullman and Kjallgren,
2000). Today, it is assumed that global change is rapidly changing the distribution of plant species
(Thomas, 2010). Many species also have to adjust their ranges with a rate as high as the rate of
climate change to be able to adapt to the new environmental conditions (Parmesan et al., 1999). In
this situation, if a species cannot migrate, it either quickly adapts to the new ecological conditions
of its current habitats or becomes extinct (Channell and Lomolino, 2000).

There are two groups of studies that evaluated the potential impacts of the predicted climate
change on species using the modeling of species distribution methods. The first group that called
global scale was performed over a big geographical area but at a low spatial resolution. The second
group that termed local scale was performed with high spatial resolution but over a small
geographical area. Global scale studies were usually performed at a continental scale or word-
wide, with a spatial resolution of ~10-50 km, sometimes a little fewer. A good example for global
scale SDMs is the project by Thuiller et al (2005) who standardized Europe-wide models at a
resolution of 50 km and projected species habitats at a resolution of ~15 km. Local scale studies
perform with high spatial resolution (usually in the scope of 20-100 m), but over a small spatial
area (a few hundred or a few thousand square kilometers). The works form Dirnbok et al. (2003)
or Randin et al. (2006) are two typical examples of local scale SDMs.

Although global scale studies have been conducted in various regions of the world, local scale
studies are mainly restricted to the region under study with limited spatial ranges. Moreover, since
different studies usually use diverse methods and climate change scenarios, their results are

difficult to compare. Therefore, to compensate for this limitation, various studies should be



conducted on a small scale but in a wide geographical range using the factor of climate change

(Engler, 2009).

1.4. Objectives and structure of the thesis

Species distributions are predicted based on various concepts and assumptions, most of which
have limitations that must be considered. For example, it is expected that the range of a species is
strongly influenced by factors such as landscape fragmentation, climate change scenarios, the
species’ dispersal rate and capacity, and, finally, by the interactions between these processes. Few
of the extensively-used models, however, consider the effects of these factors. Therefore, it is
important to study how climate factors affect species distribution when combined with other
factors (e.g., dispersal limitations, landscape fragmentation, etc.). Such studies would better
explain the effects of these factors and eventually enable the management of the most important
one(s).

To improve the prediction of migration potential of plants under future climate change scenarios I
used a dynamic model —MigClim (Engler et al., 2012)— to couple dispersal processes and
landscape fragmentation scenarios with SDMs in projecting distributional changes under climate
change (Chapter 5). This model has a cellular-automata structure which presents the study field as
a regular network of stations and simulates the changes in species distribution. The main core of
MigClim is based on potential distribution maps of plant species produced by SDMs. For this
reason, Chapter 4 is an evaluation of some of the most common presence-absence distribution
models using data on the distribution of three plant species in central Germany; three different sets
of explanatory variables (climate-only, topography-only and topography-climate combination) are
quantified. MigClim model lets that individual species respond to changes in their habitats, but the
model ignores the dynamics landscape fragmentation changes over time. To solve this deficiency I
applied a cellular automata-Markov chain model (CA-Markov) as an alternative to simulate
landscape change scenarios during the 21% century (Chapter 3). Effective analysis of landscape
changes require a considerable amount of data about the Earth‘s surface. Remote sensing prepares
a great source of data from which updated land-cover maps, and changes can be analyzed and
predicted efficiently. Several image classifier techniques have been developed; the selection of an
appropriate classification method is very important for increasing the accuracy and precision of
land-cover mapping. Thus, Chapter 2 focuses on comparing various machine-learning image
classifier algorithms with land-cover mapping. The framework of this thesis is illustrated in Figure

L.
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Figure 1. Flowchart of different chapters in this PhD thesis.

Based on the aforementioned issues, this dissertation examines the results of landscape
fragmentation and climate changes on spatiotemporal prediction of three plant species. The goal of
my work was to attempt to refine SDMs for better incorporate main processes that are neglected in
last studies. Ultimately, my goal was to apply improved models to develop optimal strategies for

species management. Specifically my study has four specific objectives:

1- To develop a general understanding of the recent historical distribution of land-cover
structures in the study area.

This objective will employ remotely sensed imagery as well as change detection methods. I will
evaluate various machine-learning algorithms and comparing pixel-based and object-based

methods to land-cover mapping.

2- To simulate future land changes using CA-Markov techniques.

This objective will perform CA-Markov model to derive future lands-cover change. Land-cover
change simulation models basically examine changes in land at two different periods (t0 and t1)
and then simulate land changes for future periods (i.e. t2). I will simulate future land-cover
changes in time and space based on their current state and on ancillary information which may

drive future transitions among land-cover classes.

3- Comparing species distribution models constructed with different subsets of environmental
predictors.

This objective seeks to compare some of the most common methods of presence-absence
distribution models using data on the distribution of three plant species in central Germany.
Specifically, I will compare three regression methods and three machine-learning methods. I will
also quantify three different sets of explanatory variables for each species, and will test differences
in the interaction of predictor variables with differences in modeling approaches in determining the

accuracy of predictions.



4- To predict future plant distributions under landscape fragmentation and climate changes.

The major objective of this PhD thesis is to integrate MigClim, CA, and Markov chain models so
as to assess the effects of future landscape fragmentation and climate change scenarios on the
geographic distributions of three open-land plant species in 21% century. For each species,
simulations will run for four dispersal scenarios (full dispersal, no dispersal, realistic dispersal, and
realistic dispersal with long-distance dispersal events), two landscapes (static and dynamic change)
and two climate change (RCP4.5 and RCP8.5) scenarios. To the best of our knowledge, this is the
first study to combine the CA-Markov model with the models of species distribution to investigate

species migration in the future.

Specifically, this study attempted to answer the following four research questions:

1- Can regression-based models as well as machine-learning models be used for prediction suitable
habitat maps?

2- What is the potential impact of climate change on plant species?

3- How much does the inclusion of dispersal limitation events affect projections?

4- To what extent does landscape fragmentation prevent the movement of species toward suitable

habitats?



Chapter 2

Analysis of Landscape Changes Using Multi-Temporal Remote Sensing
Imagery and Machine-Learning Classifier

Hamidreza Keshtkar and Winfried Voigt

2.1. Summary

Frequent human activities resulted by fast urbanization lead to an assortment of environmental
issues. Therefore, for efficient environmental management and urban planning, monitoring land-
cover change is critical. We sought to pursue two objectives: first, to compare pixel-based random
forest (RF) and decision tree (DT) classifier methods and support vector machines (SVM)
algorithm both in pixel-based and object-based approaches to classification of land-cover in a
heterogeneous landscape for 2010; and second, to examine the spatio-temporal land-cover change
in two last decades (1990-2010) using Landsat data. This study demonstrates that object-based
support vector machine classifier is the most accurate classifier with an overall classification
accuracy of 93.54% and a kappa value of 0.88. The post-classification change detection algorithm
was used to determine the trend of changes between land-cover classes. As a consequence, the
most significant change occurred from 1990 to 2010 is caused by the expansion of built-up area. In
addition to the net changes, the rate of annual change for each phenomenon was calculated in order
to have a better understanding of the process of change. Between the years 1990 to 2010, on
average, about 4.53% of lands annually turned to the built-up land, while there is an annual
decrease of about 0.81% in natural lands. Hence, if the current trends of change continue
regardless of the actions of sustainable development, drastic natural area decline will ensue. The
results of this study can be a valuable baseline for land-cover managers in the region to better
understanding the current situation as well as adopt appropriate strategies for management of land-
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Landsat.

2.2. Introduction

Land-cover is a key variable in the Earth system as it is related to most of the human and physical
environments. Change in the situation of land-cover is an important variable among the global

changes that affect environmental systems (Otukei and Blaschke, 2010).



Land-cover changes play a main role in the global carbon cycle, and in the exchange of
greenhouse gases between the atmosphere and the earth surface (Loveland and Belward, 1997). In
general, intense human activities have an increase in construction and farmland and destruction of
forests, meadows and other natural resources (Lambin and Geist, 2003; Lawrence et al., 2012).
Agricultural lands increase the entry of nutrients into the water in the basin and in particular affect
the amount of nitrogen (Robson, 2014). Human activities associated with construction pollute
atmosphere, water and soil (Kang et al., 2010; Li et al., 2009). Destruction of forests and meadows
in addition to the loss of biodiversity causes the release of carbon into atmosphere and changes
land-surface albedo, and as a result affects climate change (Foley et al., 2005; Hua and Chen,
2013). Conversely, afforestation and reforestation remove carbon from the atmosphere. New
evidences show changes in land-cover that have human origin during the past 150 years have led
to the release of large amounts of carbon into the atmosphere. Although the combustion of fossil
fuels is the main source of the release of carbon into the atmosphere, land-cover has still
significant share (~20 percent) in the pollution of the atmosphere. Increase in the level of
greenhouse gases and emission of the heat caused by urbanization have increased the Earth
temperature significantly. In addition, temperature change affects the amount of humidity and
precipitation, which in turn reduces recovery of forests and pastures (Davin and de Noblet-
Ducoudré, 2010; Hasler et al., 2009; Snyder et al., 2004). In general, we can say that change in
land-cover have positive and negative effects on human health and can have favorable or
unfavorable consequences (Hansen and DeFries, 2004). For example, the conversion of forests and
pastures into agricultural land leads to the provision of food, fiber, fuel and hosting of other crops,
which has increased population throughout the human history. At the same time, destruction of
forests and pastures reduces biodiversity, degrades catchment areas and increases soil pollutions.
Data of land-cover are considered as one of the main layers of information for a variety of
scientific activities, managerial affairs and administrative tasks. Land-cover maps have a set of
essential information that should be provided in a clear and reliable manner. Thus detailed and
timely information about land-cover is essential for land change monitoring, management of
ecosystems and urban planning. Technological advances, the availability of data in appropriate
intervals and high-resolution satellite images have made techniques such as remote sensing and
GIS very useful for conducting researches such as the analysis of detection of changes in land-
cover and prediction of future scenario (Lambin et al., 2001).

Today the classification of satellite images in general is a common method for extracting
information related to land-cover patterns and their changes. Several image classifier techniques
have been developed, a recent comprehensive review of which can be found in Lu and Weng
(2007). Selection of appropriate classification methods and imagery is an important factor for

increasing the accuracy and precision of classification.



Land-cover classification by satellite images can be done based on two criteria: 1) pixels, 2)
objects. While analysis based on pixels has been the dominant approach in the classification of
remote sensing images for a long time, object-based image analysis has become very common in
the last years (Blaschke, 2010). Some of the past studies have tested the efficiency of different
image classifier methods that are based on pixels or objects.

After preparing the land-cover maps at different times, the differences between these maps must be
determined using appropriate techniques. Change detection has been specified as a process of
“identifying differences in the state of a phenomenon by comparing it at times A and time B”
(Singh, 1989). Despite a rich archive containing the satellite images from a number of decades, it
is possible to easily detect and analyze the changes that occurred over the years (Hostert et al.,
2003; Kennedy et al., 2007; Rdder et al., 2008). Different techniques have been employed using
satellite data for land-cover change detection for many years (Rogan and Chen, 2004; Singh,
1989). Those methods divided into two groups: (1) pre-classification change detection; (2) post-
classification comparison (Yuan et al., 1998). A set of comparison methods has been developed for
analysis of multi-temporal satellite images and pre-classification change detection. For example it
can be pointed to image regression (Ridd and Liu, 1998), vegetation index differencing (Howarth
and Boasson, 1983), principal components analysis (Gong, 1993), change vector analysis (Chen et
al., 2003; Johnson and Kasischke, 1998), artificial neural networks (Dai and Khorram, 1999), and
classification tree (Rogan et al., 2003). These methods basically create “no-change” vs. “change”
maps, but do not recognize the type of change (Lu et al., 2004; Singh, 1989). Post-classification
change detection techniques identify land change by comparing produced land-cover maps at
different time periods (Singh, 1989; Yuan et al., 1998). Post-classification techniques not only
locate the changes, but also generate “from-to” change data (Jensen, 2005; Yuan et al., 2005). This
method minimizes the problems created by difference in sensors and atmospheric situation, since
images from different times are separately classified (Singh, 1989; Yuan et al., 1998).

This study focuses on comparing various machine learning algorithms, i.e. random forest (RF),
decision tree (DT), support vector machines (SVM), and object-based support vector machines
(OSVM), to classifying Landsat image 2010. Furthermore land-cover maps of 1990 to 2010
produced using multi-temporal Landsat images (TM and ETM+) and the best classifier method.
For this purpose, multispectral images of the study area over a period of two decades have been
chosen to indicate the changes in land-cover phenomena. Our specific objectives were to: (1)
comparing pixel-based and object-based classification methods for land change detection, (2)
mapping land-cover change in our study area between 1990 and 2010, from Landsat TM/ETM+
images, and (3) comparing satellite-based land-cover trends in two last decades (1990-2000 and

2000-2010).



2.3. Materials and methods
2.3.1. Study area

The study area is located in central Germany and covers 690000 hectares (Fig. 1). Elevation ranges
from 114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain
located in the Thuringian Forest. The predominant climate is of the continental type with an
average annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on
monthly recording data of 18 stations, in Free State of Thuringia from 1960—-1990). The soil parent
material is mainly calcareous. The landscape maps presented five classes: forest, built-up area,

grassland, farmland, and water bodies (lakes, rivers, ponds, and reservoirs).

Germany

Free State of Thuringia

0 510 20

Kilometers

Figure 1 Location and land-cover (true color image) of study area for the year 2010.

2.3.2 Landsat image collection and pre-processing

In this study temporal coverage Landsat TM and ETM+ images from 1990 to 2010 with a standard
resolution of 30x30 meters were obtained from the United States Geological Survey (USGS)
archive (http://earthexplorer.usgs.gov/). Since Landsat ETM+ images from 2003 and beyond have
high rates of no data values (stripping), images from 2010 were collected from Landsat TM.

Data must be preprocessed and image quality must be checked before classification and change
detection analysis.Image registration should be considered before any analytical process is
performed on images (in particular, change detection analysis), because slight differences created

by the spatial offset directly impact the image analysis results. In this study, image registration was
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performed by selecting an appropriate number of well-recognized ground control points (i.e. road
intersections). A second order polynomial transformation was used to hold down the root-mean-
square error (RMSE). Eventually, images with an error lower than a half-pixel (about 15 meters)
were registered.

Each sensor that records visible or near-visible electromagnetic radiation generally registers a
combination of two types of energy (Hadjimitsis et al., 2010; Jensen, 2013), so the numerical value
of any pixel in a satellite image does not show the true ground-leaving radiance of that point on the
Earth's surface. Part of this brightness is derived from the reflectance of the intended point, and the
rest is due to atmospheric effects. Absorption and scattering of radiation are two major
atmospheric effects that influence satellite images. In this study, the PCI Geomatica ATCOR
model was used for atmospheric correction (Geomatica, 2013). Atmospheric and terrain effects
were removed to determine the true ground reflectance of the Earth's surface. This model requires
information, some of which is available in the metadata file, including date and time of data
acquisition, sensor type, coordination of the image center, and atmospheric definition area.
Atmospheric definition area was selected as “rural” regions and atmospheric condition was limited

to “mid-latitude summer”.

2.3.3. Image Classification

Satellite Images classification is one of the most important steps in capturing detailed land-cover
information. Determination of a suitable classification algorithm is a critical prerequisite for
performing a precise classification. Therefore, the model used in this study operates in two stages.
At the first stage we compared several classifiers that are considered to be suitable for land-cover
image classification. Training samples were selected for training process before classification. In
this study, the Jeffries-Matusita distance method is used to determine the spectral separability
among different phenomena taken from training samples. After the selection of training samples,
different classification algorithms were used to create the classified maps from Landsat 2010
image. Then the accuracy of classified maps was compared not only by visual observation but also
by statistical methods. The second stage involved classifying all images (1990, 2000 and 2010)
using the best classification algorithm identified in the first stage, and will have a process similar

to that of first stage. Ultimately all classified maps will undergo an accuracy evaluation.

2.3.4. Collection of training data

A suitable classification system and adequate representative training samples are very important
for a successful classification (Lu and Weng, 2007). We determined five land-cover categories
(Built-up area, Forest land, Framland, Grassland, Water bodies) with visual interpretation and

analysis of the satellite images. We gathered ground truth data (training and validation data) based
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on Quickbird images available in Google Earth (http://earth.google.com). For whole of study area,
a sample of ground truth points randomly collected within the area covered by high resolution
Quickbird images, overlaid selected samples on the Quickbird images, and then grouped these
points to appropriate classes based on visual interpretation. A point was assumed as an especial
class if land-cover patches included at least one pixel. Based on visual interpretation of the
Landsat images, the training sites were carefully determined and restricted to homogeneous
regions where class membership was permanent from 1990 to 2010. We checked the separability
of the training samples by Jeffries-Matusita distance measure and optimized the sample dataset
until we achieved maximum stable accuracy. This optimizing task was carried out by removing
training samples that may have been sources of error or collecting new samples to obviously
misclassified categories. Finally, we used a sample of 1374 points were mapped from Quickbird
images. We split all ground truth points into training (75%) and evaluation (25%) data. We finally

used 100% of the ground truth data to produce land-cover maps of the whole study area.

2.3.5. Pixel-based image classification

Pixel-based image classification approaches either automatically allocate all the pixels in an image
to land-cover types or classify them thematically pixel by pixel. In this study, three different pixel-
based machine learning classifiers were applied on each data set, namely: (1) Random Forest
(Breiman, 2001; Ghimire et al., 2010); (2) Decision Tree (Keshtkar et al., 2013; Quinlan, 1987);
and (3) Support Vector Machines (Duro et al., 2012a; Vapnik, 1995).

2.3.5.1. Decision tree

Decision Tree (DT) is a non-parametric classification method which can deal with various types of
datasets containing categorical variables. DT represents a set of constraints or conditions that are
hierarchically organized and is composed of one root node (containing all data), a number of
internal nodes (splits), and a number of terminal nodes (leaves). Each node in this model has only
one parent node and two or more child nodes (Breiman et al., 1984). In this method, the specified
decision tree induction approach determines the variable from which classification begins (root
node). Then the data splitting process repeats until either all samples are assigned to a specific
class or a predetermined stop condition is reached. Once the decision tree is constructed, it must
undergo a cutback (or pruning) process aimed at reducing its structural complexity and improving
its accuracy. Factors such as the number of leaf nodes, tree-depth, or the number of internal nodes
can be considered as the measure of pruning.

This model was run in R software (R Development Core Team, 2009) using the rpart package
(Therneau and Atkinson, 1997). In this study, “information gain” measure was considered for

deciding between alternative splits. The rpart package has two main parameters to be adjusted: The
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minimum number of observations in a node (minsplit), and maximum depth of tree (maxdepth).
Although complex trees are more expressive and potentially allowing higher accuracy, but they do
not generalise the data well and are more likely to overfit. Pruning the model by setting the
minimum number of observations in a node or setting the maximum depth of the tree can avoid

this problem. Therefore, we tried to examine several decision trees to achieve a strong model.

2.3.5.2. Random forests

RF is a nonparametric algorithm which is considered as an improved version of Classification and
Regression Tree (CART). This model consists of a large number of classification trees, each
constructed by taking an individual bootstrap sample from the original data set (sampling with
replacement). Ultimately, the trees will be aggregated and a majority vote rule will be applied to
determine the final category (Breiman, 2001), and that is why this method is also considered as an
ensemble model.

To estimate the misclassification error and variable importance the samples that are not in the
bootstrap sample (out-of-bag data, OOB) were used. The OOB sample composed of approximately
37% of the original data set at each bootstrap iteration. To ensure less similarity (i.e. more
diversity) between the individual trees, no pruning is performed and this model allows all the trees
in the forest to become fully grown (Genuer et al., 2010). RF method has two key parameters that
must be adjusted: The number of tree (ntree) and the number of input variables (mtry). These two
parameters must be optimized to improve the classification accuracy (Breiman, 2001).

The splitting criterion used in this study was the Gini coefficient, and the stop criteria to stop
splitting, i.e. the minimum number of samples in a node and the minimum impurity in a node were
set 1 and 0, respectively, in which values the decision trees will be full grown. We used a grid-
search approach based on the OOB estimate of error to figure out the optimal combination for
ntree and mtry parameters (Tian et al., 2009). Finally, the optimized parameters were entered into

ImageRF in the EnMAP-Box to classify satellite image (Waske et al., 2012).

2.3.5.3. Support vector machines

A Support Vector Machine (SVM) is a discriminative method that classify data according to the
statistical learning theory (Vapnik, 1995). The operation of the SVM algorithm is based on fitting
a separating hyperplane that gives the best separation between training samples in a
multidimensional feature space. On the other world, the optimal hyperplane provides the largest
minimum distance (margin) between the training samples. In case of an optimal separating
hyperplane, distance between the hyperplane and the nearest positive and negative training
example, called the margin, and data points on the margin are known as support vectors. Instead of

using all training samples to separate classes, SVM use only support vectors that describe class
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boundaries (Foody and Mathur, 2004). To separate classes with non-linear boundaries, a set of
kernel functions including the sigmoid, the radial basis function (RBF), and the polynomial can be
used, which transfer training samples into a higher-dimensional space, where linear class
separation is possible and the problem can be solved in the new space (Huang et al., 2002).

In this study, SVM was implemented using the radial basis function (RBF) kernel. The SVM
implementation of ENVI 4.8 software (ITT Visual Solutions Inc., http://www.ittvis.com/) has four
parameters to be adjusted: the kernel width ‘‘gamma (y)’’, the penalty parameter (C), the number
of pyramid levels to use, and the classification probability threshold value. Classification
probability threshold is an important value for the SVM classifier since all rule probabilities less
than this threshold are unclassified. We set zero value for this threshold that means all pixels had
to be classified into one category. Also, we set zero value for the pyramid parameter, which force
the model to processes the image at full resolution.

Gamma and penalty parameters are two important factors that influence the accuracy of SVM
classification. By default, the inverse of the number of bands is set for the value of gamma. This
default value seems to be reasonable but it is not perfect. Studies have shown that the best
combination of y and C depends on the training data and cannot be known by default (Kuemmerle
et al., 2009). Also, SVM needs the normalization of numeric inputs and thus there is a data
normalization prior to SVM classification (Ben-Hur and Weston, 2010). Two methods are usually
well known to data normalization: linear normalization and Gaussian normalization. In this study,

the linear normalization was performed as pre-processing in SVM.

2.3.6. Object-based image classification

In object-based classification methods, every classification is related to a specific scale. This
means that an image can be introduced in different scales. For example, an image may be
represented based on the average size of image objects, whereas a similar image may be divided
into different size of objects (Walsh et al., 2008). Image segmentation illustrates an essential
primary step in object-based image analysis, as the image objects (termed “image segments”)
resultant from this process produce the core of an object-based classifier (Castilla and Hay, 2008).
The process that identifies pixels with a similar characteristic (such as spectral similarity) and
allocates them to a certain group is called segmentation (Petropoulos et al., 2012). The spectral
characteristics of each object are obtained from the mean value of the pixels forming the objects in
each spectral band and from different statistical information such as minimum, maximum, and
standard deviation. In addition to their spectral characteristics, objects can be described and
recognized by their tone, size, shape, and texture (Bock et al., 2005). All these characteristics can

be used in the classification and discrimination processes of objects.
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In this study, image segmentation technique consists of two key steps: (1) edge-based
segmentation (2) Full Lambda Schedule merging method. This procedure starts with a multiscale
edge-based segmentation to divide the images into image objects on the basis of similar spatial,
spectral, and textural characteristics. Two different types of errors may happen in image
segmentation including over-segmentation and under-segmentation (Kampouraki et al., 2008;
Moller et al., 2007). Using a low segmentation level generally is resulted in many small segments,
which in turn brings about over-segmentation. On the contrary, high segmentation levels result in a
few large segments that accord with different land-cover classes. Hence, a precise analysis seems
necessary to choose segmentation scale (Liu and Xia, 2010). Preventing formation of over-
segmented statements, which can be a very difficult task, is one of fundamental phases in this
process. The full lambda schedule model was used to solve over-segmentation problem; hence
segmentation is used in the integration stage where all adjacent segmentations, given their range
and location features, are integrated (Robinson et al., 2002). Merging continues if the algorithm
catches a pair of adjacent regions, i and j, such that merging cost, t;j is less than a described
threshold lambda value, of 0 to 100. The full lambda schedule algorithm is estimated as,

oot =l

Y7 length(8(0;,0)))

where O;j is region i of the image, |Oi | denotes the area of region i, u; is the average value in
region i, u; is the average value in region j, || u; - || is the Euclidean distance between the spectral
values of regions i and j, and length (6(O; , O;)) denotes the length of the common boundary of O;
and O;.

Table 1 Image object features used in object-based classification

Object features Description
Spectral-Mean Mean value of the pixels comprising the region in a specific band
Spectral-STD Standard deviation value of the pixels comprising the region in a specific band
Texture-Mean Average value of the pixels comprising the region inside the kernel

Texture-Variance | Average variance of the pixels comprising the region inside the kernel

Intensity Intensity using the Spectral-Mean attributes, and is measured in floating-point values from 0 to 1.

NDVI Normalized Difference Vegetation Index: (band4 — band3)/(band4 + band3)

We classified several image segmentations of different scales to identify the one with the highest
overall accuracy. This trial-and-error approach is often utilized in object-based classifications (e.g.
Dingle Robertson and King, 2011; Duro et al., 2012b; Myint et al., 2011). Following the image
segmentation process, object features were selected for use in the object-based classification.
There are several types of image object features that could be potentially incorporated into image

analysis (Duro et al., 2012a). Selecting object features for use in object-based classification can be
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based on user experience and previous studies (e.g. Duro et al., 2012a; Pu et al., 2011; Yu et al.,
2006), or a feature selection method can be used prior to final classification (e.g. Qian et al., 2014;
Van Coillie et al., 2007). In this study, the inclusion of object features was based on our
knowledge and previous studies. Consequently, we selected out 16 object features (Table 1).

These 16 features included 12 features calculated based on the 6 multispectral bands, which is
mean value and standard deviation of these bands. In addition, we chose intensity, texture-
variance, texture-mean, and NDVI (Normalized Difference Vegetation Index) for classifications.
Finally, for executing SVM classification method, we selected training samples for each land-
cover type based on the previously segmented and merged objects. All these processes have been

done in ENVI ZOOM (Version 4.8) software (ITT Visual Solutions Inc., http://www.ittvis.com/).

2.3.7. Accuracy assessment

In this study, accuracy evaluation was based on the calculation of the overall accuracy, producer’s
accuracy, user’s accuracy, and the Kappa index. The likelihood that the classifier labels a pixel of
a known class into an accurate class is called the producer’s accuracy (Congalton, 1991), while the
user’s accuracy is a quantity representing the chance that any classified pixel to represent the
accurate class. We also used McNemar test to assess the statistical significance of superiority of
each classification algorithm over another. This test is based on a chi-square (y%) statistics with 1

degree of freedom, computed from two error matrices and given as,

s _ (o= )
f12 + f21

where f12 shows the number of cases that are wrongly classified by classifier one but correctly
classified by classifier two, and f27/ shows the number of cases that are correctly classified by

classifier one but wrongly classified by classifier two (Manandhar et al., 2009).

2.3.8. Analyzing land-cover change

Change detection is the process of identifying the alterations made in an object or phenomenon by
observing it at different times. In this study, we calculated the net changes and annual changes in
the land-cover within the study area to compare the status of this factor at different time periods.
The net changes were obtained by pixel based post-classification change detection algorithm. The
post-classification change detection method not only maps the changes magnitude, but also
determines the trend of changes (from-to) between land-cover classes (Yuan et al., 2005). Net
change was calculated as the difference in land-cover (in ha) between 1990 and 2010, whereas

annual change rates (ACR) were calculated for each time period j as:
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ACR; = [(SC;/CPB;) x 100]/Y

where SC is the sum of changes in time period j, CPB is the cover of each phenomenon at the
beginning of time period j, and Y donates the number of years between image A and image B.

To assess whether land-cover change varied with altitude and slope, we classified the digital
elevation model (DEM) into four classes (class-1 (<255 m), class-2 (255-393 m), class-3 (393-561
m) and class-4 (>561 m)) using Jenks natural breaks classification method and calculated
percentage of net land change for each class. Likewise, we summarized net land-cover changes for
three slope classes: gentle (<5°), moderate (5-10°), and steep (>10°). The Jenks optimization
method has been developed to clustering data into different classes. This model tries to classify the
data in a manner that the classes, while having the least internal variance, can have the greatest

possible variance with respect to each other (Morris and Simon, 2012).

2.4. Results
2.4.1. Class Separability

In this study, the six reflective bands of the Landsat images were used as the reference basis for the
calculation of the separability index of the collected spectra from the training sites indicating the
different classes. Table 2 shows pairwise spectral separability values of different classes of
training samples for 2010 image classification. Values range from 0 to 2. The closer to 2, the more
separable training samples have been selected. Values more than 1.8 indicate that class pairs have
good separability, while values less than 1 represent that the class pairs must be joint into one class
(Petropoulos et al., 2010). Observing the values shown in Table 2, most of the class pairs are well
separated from each other with values more than 1.8. Farmland and grassland have comparatively
lower value (1.65); and class separability value of pair of farmland and built-up area (1.63) is also
relatively lower than other pairs. Thus, no class has to be combined into others because all values

are greater than 1. The selected training samples are satisfactory to be used for classification.

Table 2 Class separability of training samples of 2010 image

Separability Values Forest Water Farmland Grassland Built-up area
Forest * 1.89 1.92 1.97 1.96
Water 1.89 * 1.99 1.99 1.99
Farmland 1.92 1.99 * 1.65 1.63
Grassland 1.97 1.99 1.65 * 1.83
Built-up area 1.96 1.99 1.63 1.83 *

2.4.2. Tuning of machine learning algorithm parameters

For DT classifier, the minsplit was set to 5 and examined a set of maxdepth from 2 to 7, which

yielded a total of 6 classified images. We did not select the minsplit value less than 5 since by
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setting minsplit to too small a value, the model may run toward the risk of overfitting. Results
showed that the highest overall classification accuracy (i.e., the percentage of correctly classified
samples) achieved by a maximum depth value of 6.

In order to optimize ntree and mtry parameters for RF classification model, we investigated a set
of mtry from 1 to 6, while the range of the value for the ntree parameter was set between 100 and
1000 with an interval of 100, which resulted in 60 different classifications. Results indicated that
the ntree value of 900 combined with a mtry value of 2 produced the lowest OOB error rate
(4.54%). On the other hand, the highest OOB error rate (5.81%) was produced by the combination
of mtry value of 1 with ntree value of 100 (Figure 2b).

For SVM-based classifications, a grid-search approach was used to find the optimal combination
for y and C parameters. Therefore, the gamma was adjusted by considering a nested cross-
validation process, where y {1073, 102, 107!, 1, 10, 10% 10%}. Also, we set the C parameter by
considering a nested cross-validation with C {1072, 107!, 1, 10, 10%, 10°}. Results from the grid
search indicated that the y value of 1 combined with a C value of 10 produced the highest accuracy
for the SVM-based classifications (pixel and object-based methods) (Figure 2a).

Also, for object-based classifier, an iterative trial-and-error approach was used to identify the best
image segmentation scale based on the highest overall accuracy. Results show that the scale value
of 50 without merging to reduce the number of segments produced the highest accuracy for the

object-based classification method (Table 3).
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Figure 2 Heat maps resulted from grid search procedure: (a) Optimization of the SVM parameters (C and y). The F1
measure was used to determine the best accuracy for the different combinations (n = 42) of parameters; (b) Optimization
of the RF parameters (mtry and ntree). The OOB sample was used to determine the error rate for the different
combinations (n = 60) of parameters.

2.4.3. Accuracy assessment and statistical comparisons

Classification was conducted on 2010 image using four different machine learning classifiers,

which were DT, RF, SVM, and OSVM. The classification maps are shown in Figure 3. Analyzing
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the classification maps from Figure 3 (a) to (d) visually, indicate that all classifiers can generate

useful land-cover maps and produce consistent classification results.

Table 3 The classification result (overall accuracy) of values for image segmentation parameters used in the object-based
method. Values in bracket are the kappa coefficient.

Scale level

Merge level 20 30 40 50 60 70 80
93.35 93.35 93.35 93.54 92.09 83.56 67.92
0 (0.882) (0.882) (0.882) (0.884) (0.853) (0.715) (0.352)
93.20 93.20 93.20 93.35 91.80 83.51 67.99
20 (0.879) (0.879) (0.879) (0.880) (0.847) (0.697) (0.352)
92.77 92.77 92.77 92.55 91.63 83.01 66.63
40 (0.870) (0.870) (0.870) (0.863) (0.843) (0.691) (0.326)
90.36 90.36 90.36 90.34 91.46 81.27 65.93
60 (0.822) (0.822) (0.822) (0.819) (0.840) (0.678) (0.321)
%0 89.02 89.13 89.15 89.61 88.83 80.64 66.09

(0.794) (0.794) (0.797) (0.803) (0.789) (0.656) (0.313)

In addition to visually observing the classification maps, accuracy assessment was also performed
on the classification maps to quantitatively compare the performance of these classifiers. The
associated classification accuracy statistics are summarized in Table 4. According to the result, in
general, classification using OSVM has highest overall accuracy and Kappa coefficient, which are
93.54% and 0.88 respectively, while DT generates the least accurate classification map with
86.36% overall accuracy and 0.76 Kappa coefficient. Classification maps generated by RF and
SVM have much higher overall accuracy (90.28% and 90.93% respectively) than DT, but
relatively slightly lower than OSVM.

For the OSVM the classes with the highest producer’s accuracy were those of water (96.58%),
forest (96.31%) and farmland (96.13%) followed by the built-up class (94.06%), whereas the
lowest producer’s accuracy was obtained for the class of grassland (63.36%). User’s accuracy was
higher for the water bodies (98.61%), the forests (96.71%) and farmland areas (94.57%) followed
by grassland areas (87.74%), the lowest user’s accuracy was found for the built-up areas class
(78.44%).

All classes were obviously separable in all classifier algorithms applied here. But classes with
relatively poor or indistinct producer’s and user’s accuracy were for the case of SVM and OSVM
classifiers in the grassland areas, whereas for RF classification method the grassland and built-up

areas and for DT classifier method the water, grassland and built-up areas.
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Figure 3 Land-cover maps of 2010 generated by (a) DT, (b) RF, (¢c) SVM, and (d) OSVM classification algorithms.

Also, we used the McNemar test to figure out whether a statistically significant difference exists
between different machine learning algorithm. The McNemar test indicated that the observed
difference between pixel-based image classifications was not statistically significant (p>0.05). For
pixel-based classifier methods and object-based classifier, a statistically significant difference
(p<0.05) between DT and OSVM algorithms (p=0.004) was observed, while RF and SVM
algorithms did not show significant difference with OSVM method (p>0.05).

2.4.4. Analysis of land-cover change

Object-based classification (i.e. OSVM algorithm) was performed on three Landsat images of
1990, 2000 and 2010. Accuracy assessment result of each classification map is summarized in
Table 5. By counting the number of pixels of each phenomena for each year, land-cover coverage

information can be obtained, which is shown as Figure 4.
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Table 4 Summary of mapping accuracy obtained by different classifiers to the Landsat TM 2010 image. OA= overall
accuracy; K= kappa coefficient; UA= user’s acxcuracy; PA= producer’s accuracy.

DT RF SVM OSVM

OA K OA K OA K 0OA K
(86.36) (0.76) (90.28) (0.85) (90.93) (0.86) (93.54) (0.88)

Class UA (%)  PA(%) UA(%)  PA(%) UA(%)  PA(%)  UA(%)  PA(%)
Forest 95.76 84.41 96.19 95.49 97.26 94.05 97.71 96.31
Water 99.17 56.70 99.00 93.86 99.20 94.07 99.61 96.58
Farmland 89.47 89.24 86.24 93.65 88.97 93.31 94.57 96.13
Grassland 66.39 81.53 83.54 61.06 80.77 56.33 87.74 63.36
Built-up 56.09 81.23 63.68 89.77 78.34 90.07 78.44 94.06

According to the change detection results, the most significant change occurred from 1990 to 2010
is caused by the expansion of built-up area. Analysis of land-cover area changes indicate that
during this time period, built-up areas increased from 2.8% to 5.5%. The built-up land was
continuously increased, and the farmland, grassland and forest were continuously decreased.
Grasslands decreased significantly from 4.89% to 4.02% during 1990-2010. During this period,
forest area decreased from 32.38% to 32.26%. Also, the coverage of farmlands reduced from

59.21% to 57.58% in the same time. The area of water increased a little.

1990 2.88% 2000 3.89% 2010 5.48%

59.21%
58.61% 57.58%

4.89% 4.55% 4.02%

¥ Forest ® Water Grassland Farmland ™ Built-up area

Figure 4 Pie chart of land-cover coverage (%) from 1990 to 2010.

Figure 4 only illustrates the static state of each phenomenon in 1990, 2000 and 2010. Table 6
depicts the summarized specific “from-to” change information. This table represents the amount of
change from one class detected in 1990 to another class detected in 2010. The diagonal values in
table represent the area with no change. Forest and farmland are moderately stable classes that
don't have significant change, keeping 91.23% and 94.53% unchanged respectively. About 5.04%
of forest change to farmland and 2.54% change to grasslands. As for farmland, a small portion
(2.94%) of the area changes to built-up area and another small portions, i.e. 1.69%, 0.8% and

0.04%, changes to grassland, forest and water bodies, respectively. Comparatively, grasslands
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experience the most dramatic change. Only about 56.35% of grasslands were kept unchanged.

19.76% and 16.3% of grasslands alter into farmland and forest, respectively.

Table 5 Summary of mapping accuracy obtained by object-based SVM classifier to the Landsat 1990, 2000 and 2010

images. OA= overall accuracy; K= kappa coefficient; UA= user’s accuracy; PA= producer’s accuracy.

1990 2000 2010
OA K OA K OA K
(89.75) (0.84) (92.36) (0.85) (93.54) (0.88)
Class UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)
Forest 97.35 9423 97.14 96.51 96.71 96.31
Water 99.66 96.99 96.97 96.76 98.61 96.58
Farmland 77.39 92.87 91.87 97.64 94.57 96.13
Grassland 97.16 61.65 84.35 65.37 87.74 63.36
Built-up 86.93 89.28 79.46 93.56 78.44 94.06

Table 6 Change detection classification matrix for 1990-2010 based on post classification comparison to specify ‘from—
to’ transitions. The amount of changes is demonstrated by percentage (%). Bold type denotes that there is no change in

land-cover between two dates.

1990
Class Forest Water Built-up Farmland Grassland
Forest 91.23 15.98 2.20 0.80 16.30
Water 0.35 75.94 0.88 0.04 0.57
2010 Built-up 0.84 3.64 94.26 2.94 7.03
Farmland 5.04 3.25 0.96 94.53 19.76
Grassland 2.54 1.19 1.79 1.69 56.35

Table 7 Distribution of land-cover classes (in hectare) and annual change rates (ACR) for 1990-2010.

Year ACR in land-cover structure
1990 2000 2010 A%1990-2000 A%2000-2010 A%1990-2010
Forest 223400 222810 222550 -0.26 -0.12 -0.38
Water 4460 4530 4550 1.57 0.44 2.02
Grassland 33750 31390 27750 -6.99 -11.60 -17.78
Farmland 408490 404370 397270 -1.01 -1.76 -2.75
Built-up area 19840 26840 37820 35.28 4091 90.63

Table 7 shows the ACR of land-cover classes for three time periods, 1990-2000, 2000-2010, and

1990-2010. This table indicates that mean annual deforestation rates were three times higher in

1990-2000 compared to 2000-2010. The maximum rate of annual change in water bodies

belonged to the years 1990-2000 and was about 4 times higher than the rate of the succeeding 10

years (2000-2010). Mean annual degradation rates of farmland and grassland in 1990-2000 were

almost two times higher than the same rates in 2000-2010. Also, the results showed that the ACR
of built-up area for 1990-2000 and 2000-2010 was 3.53% and 4.09%, respectively. Between the

years 1990 and 2010, an annual average of about 4.53% of lands turned to the built-up area.
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2.4.5. Land-cover changes in relation to topographic factors

The elevation distribution of each land-cover class is shown in Table 8. Elevation in the study area
is mostly less than 400 m. The areas with an elevation of <255 m (Class-1), 255-393 m (Class-2),
393-561 m (Class-3), and >561 m (Class-4) accounted for 25.4%, 36.5%, 25.6%, and 12.4% of the
whole area, respectively.

The results show that more than 80% of Class-1 and 60% of Class-2 lands are allocated to
farmland; forest and farmland occupy approximately 47% and 42%, respectively, of Class-3 lands;
and more than 70% of Class-4 land is covered by forest; only 20% of Class-4 land is farmland.
The mean elevation of each land-cover class is, in ascending order, built-up area (about 290 m) <
farmland (about 310 m) < water bodies (about 350 m) < forest and grassland (over 430 m). During
the years 1990-2010, changes in Class-1 land reduced the area of farmland by 98.6 km? and
increased built-up areas by 81.7 km?. The most major change was related to the increase in built-
up lands, which was as much as 60.3 km?. The decrease of 38.5 km? in grassland reflected the
greatest change in Class-3 land. Forest land underwent the largest change with a loss of 16.4 km?”.
The results obtained from the division of the study area based on slope show that about 61% of the
area under study has a slope below 5 degrees (4220.56 km?), and over 70% of this slope category
is farmland. Additionally, over 22% of the study area (1532.28km?) has a slope of 5-10 degrees.
Forest and farmland cover about 46% and 44% of this slope gradient category, respectively. About
17% of the study area has a slope greater than 10 degrees (1146.56 km?), about 75% of which is
covered by forest (Table 9). The mean slope gradients of built-up land and farmland are less than

3.3°, while those of forest, grassland, and water bodies are more than 5°.

2.5. Discussion and Conclusion

This study compared various machine-learning algorithms (i.e. RF, DT, SVM, and OSVM) with
classifying Landsat image 2010. Furthermore, land-cover maps of 1990, 2000, and 2010 were
produced using multi-temporal Landsat images.

The results showed that SVM has the highest accuracy among pixel-based methods compared with
two other methods (i.e. RF and DT), although the McNemar test did not show a significant
difference in the performance of these three models (p > 0.05). It is noteworthy that both RF and
SVM algorithms can obtain similar overall classification accuracies which are usually greater than
those acquired using DT-based algorithms (Table 4). All in all, the classification results reported
here are generally in agreement with results reported by other authors. For example, Duro et al.
(2012) reported that the RF model achieved higher classification accuracies than the DT model.
Pal (2005) found that both RF and SVM image classifiers produced similar classification
accuracies. Conversely, the results disagreed with those described by Otukei and Blaschke (2010),
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who discovered that DT generally achieved better classifications than those obtained using SVM.
Adam et al.(2014) and Rodriguez-Galiano and Chica-Rivas (2012) also reported that the RF model
achieved higher classification accuracies than the SVM model.

Although among the investigated models in this study, the DT method showed the least overall
accuracy (83.36%), but all in all it provided an acceptable quality. Since the maps produced from
the satellite data with an overall classification accuracy of 85%, are determined as acceptable
(Anderson, 1976). One of the most important reasons for high accuracy of classification in the
SVM method is its capability in separating hyperplanes for different classes. This model can
generalize this separation system to unseen samples with the minimal error for all the separating
hyperplanes and consequently can offer the best separation compared to the other models
(Licciardi et al., 2009). Moreover, SVMs use training data in an appropriate space for self-
assessment which are explained by a kernel function.

The ability of pixel-based and object-based methods to classify the land-cover classes was
compared. Both pixel-based and object-based classifiers produced comparable overall accuracies.
Object-based classifier achieved higher classification accuracy than other methods by about 3-7%
(Tables 4). In this study, the classifications resulted from the pixel-based or object-based image
analysis yielded almost similar results of different phenomena from the visual point of view.
According to the results of the McNemar test, there is no statistical reason for preferring pixel-
based methods to the object-based classifier. As expected, the object-based classifier approach (i.e.
OSVM) in comparison to the pixel-based classifications obtained a more generalized visual
appearance and more contiguous representation of land-cover, which possibly better shows how
land-cover interpreters and analysts recognize the landscape (Stuckens et al., 2000).

One of the weaknesses of pixel-based methods is the *‘salt and pepper’’ effect (Fung et al., 2008).
The restriction of the mentioned effect is not a problem in the object-based method. A combined
usage of segmentation using information gained from image objects was resulted in rather more
precision in the object-based method. Segmentation plays a key role in declining the "salt and
pepper" effect considerably. Class discrimination was comparatively higher using the object-based
method compare to pixel-based methods, as showed in the higher user accuracy for different
classes (Table 4). Parallel with our results, different authors have pointed to superiority and
advantages of the object-based methods rather pixel-based classifiers (e.g. Benz et al., 2004; Fung
et al., 2008; Petropoulos et al., 2012). Although the accuracy of classification is an important
feature for selecting the classification methods, choosing an image analysis approach is not always
based on its accuracy (Duro et al., 2012a). In situations in which the statistical difference among
the classification algorithms is low the end-user in selecting these models may consider other
factors. For example, being cost free, user-friendly and availability may be considered which

might encourage the user in selecting a specific model.
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Our results show that, overall accuracies derived from the implementation of the OSVM classifier
to the Landsat images of 1990, 2000 and 2010 were, respectively, 89.75%, 92.36% and 93.54%
(Table 5), thus indicating the suitability of the classified remote sensing images for effective and
reliable land-cover change analysis and modeling. Figure 6 illustrates the produced land-cover

maps.
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Figure 6 Time series of detailed land-cover maps for (a) 1990, (b) 2000, and (c) 2010.

The results of this study showed that natural lands affected by human activities are rapidly
transforming and being damaged. The net built-up cover growth for 1990-2000 and 2000-2010
period was 7000 and 10980 hectares, respectively. Built-up area has continued to expand since
1990 at the average rate of 4.53% per year. The main driving force for built-up area expansion
would appear to be the implement of the urban development, termed “Critical Reconstruction”, in
the region since 1990 (Télle, 2010). This in turn created stress to natural lands like forests and
grasslands.

The results showed that between the years 1990 to 2010, the grasslands are significantly converted
to farmlands, forests and built-up lands and only 56% of the grasslands are remained unchanged

(Table 6). However, during the same time only about 7% of other lands are converted to the
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grassland, which mainly is a consequence of deforestation. Table 7 shows that in the first decade
(1990- 2000), on average, about 0.7% of grasslands’ area is reduced annually, a number which has
become more than two times (%1.16) in the second decade (2000-2010). These results confirmed
the high vulnerability of grasslands in the study area.

Post-classification change detection results showed that the destructed forests mainly converted to
farmland and grassland. Noting the data in table 6 it can be concluded that deforestation and
reforestation are happening concurrently, but the speed and amount of deforestation is higher.
Although, the results of the study on two different decades showed that the amount of
deforestation in the second decade experienced a significant reduction and reduced to one third of
the first decade.

As seen in Table 8, results show that with increasing altitude, land-cover changes were reduced.
Major changes happened in Class-1 and Class-2; approximately 100 km? and 66 km?, respectively,
were transformed from one state to another. In the two classes at higher elevations, a total of 61
km? of land has changed. Built-up areas grew significantly from 198 km? to 378 km? between the
years 1990-2010 (Table 7). This phenomenon covered 81.7 and 60.3 km? of the total land area of
Class-1 and Class-2, respectively. In the same period, farmland lost a total of 2.75% of total area;
in Class-1 and Class-2 alone, 98.6 and 32.8 km? of farmland were transformed into other types of
land, respectively. At higher elevations, however, the surface of the area increased 19.2 km?
because the development in built-up land changed the use of a large part of farmland (Table 8).
However, the results do indicate that about 81% of Class-1 lands remained under farmland use by

2010.

Table 8 Land-cover changes in relation to elevation during 1990-2010.

Forest Built-up Farmland Grassland Water
1990 475 277 306 434 350
Mean (m) 2010 472 295 310 430 340
Changes -3 18 4 -4 -10
Class 1 81.3 105.2 1526.2 304 10.0
5 Class 2 690.4 66.3 1642.6 108.1 142
1990 (k) Class 3 837.5 22.0 750.2 138.4 19.3
Class 4 624.8 4.8 165.9 60.7 1.2
Class 1 79.9 186.9 1427.6 46.2 12.5
2 Class 2 696.6 126.7 1609.8 76.0 12.6
2010 (km?) Class 3 840.6 54.9 753.9 99.9 18.0
Class 4 608.3 9.7 1814 55.5 24
Class 1 -14 81.7 -98.6 15.8 2.5
Land-cover Class 2 6.1 60.3 -32.8 -32.1 -1.6
changes (km?) Class 3 3.1 329 3.8 -38.5 -1.3
Class 4 -16.4 5.0 154 -5.2 1.2

Most grasslands were located at high altitudes, but their area decreased in the years 1990-2010 in
all height classes (except Class-1).Grassland in Class-2 and Class-33 has largely been replaced by

built-up land. This may indicate that the development of built-up areas and their penetration into
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grassland is legally much easier than the penetration into forest or farmland; perhaps grasslands
have the features necessary for urbanism.

The results show that as slope increased, forest areas also increased (Table 9). For example, about
40% of the forest land is located on a slope greater than 10 degrees. Unlike forestland, however,
the area covered by other phenomena decreased as slope increased. This is especially pronounced
in the case of farmland and built-up areas. More than 75% of farmlands are located at a slope
below 5 degrees, and only about 5% appear on slopes greater than 10 degrees. Moreover, more
than 85% of built-up areas occupy slopes below 5 degrees. Although built-up areas spread
significantly in areas with a slope of less than 5 degrees from 1990 to 2010 (157 km?), the
development of these lands has expanded into areas with higher slopes. The development of built-
up areas and farmland has caused the destruction of natural lands, especially grasslands and

forests, which have lost 7 and 15 km? of their area, respectively.

Table 9 Land-cover changes in relation to slope during 1990-2010.

Forest Built-up Farmland Grassland Water
1990 9 3 3 7 6
Mean (degree) 2010 9 3 3 7 5
Changes 0 0 0 0 -1
<5° 681.9 168.5 3194.6 151.6 23.9
1990 (km?) 5°-10° 679.9 26.4 713.4 101.8 10.8
>10° 592.5 2.7 150.9 58.9 6.7
<5° 686.5 3255 3054.0 127.9 26.7
2010 (km?) 5°-10° 681.9 38.6 728.8 72.3 10.6
>10° 583.4 11.9 161.7 48.0 6.5
Land-cover <5° 4.6 157.0 -140.6 -23.6 2.7
changes (km?) 5°-10° 2.1 12.2 15.5 -29.5 -0.2
>10° -15.1 10.6 13.0 -6.8 -1.6

In general, it should be noted that during the years 1990-2010, changes in land-cover occurred
generally in areas with a slope of less than 5 degrees; that includes about 54% of total changes in

these years.
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Chapter 3

A spatiotemporal analysis of landscape change using an integrated Markov
chain and cellular automata models

Hamidreza Keshtkar and Winfried Voigt

This manuscript has been published in 2015, Model. Earth Syst. Environ. 2: 1-13.

3.1. Summary

Spatially land-cover models are necessary for sustainable land-cover planning. The expansion of
human-built land involves the destruction of forests, meadows and farmlands as well as conversion
of these areas to urban and industrial areas which will result in significant effects on ecosystems.
Monitoring the process of these changes and planning for sustainable use of land can be
successfully achieved by using the remote sensing multi-temporal data, spatial criteria and
predictor models. In this study, land-cover change analysis and modeling was performed for our
study area in central Germany. An integrated Cellular Automata-Markov Chain land change model
was carried out to simulate the future landscape change during the period of 2020-2050. The
predictive power of the model was successfully evaluated using Kappa indices. As a consequence,
land change model predicts very well a continuing downward trend in grassland, farmland and
forest areas, as well as a growing tendency in built-up areas. Hence, if the current trends of change
continue regardless of the actions of sustainable development, drastic natural area decline will
ensue. The results of this study can help local authorities to better understanding the current
situation and possible future conditions as well as adopt appropriate strategies for management of
land-cover. In this case, they can create a balance between urban development and environmental

protection.

Keywords: Land-cover change, Markov chain, Cellular automata, Multi criteria evaluation.

3.2. Introduction

Many interacting components affect the global environment change and land-cover change is
probably one of the most important components which has a significant impact on ecological
systems (Vitousek, 1994). Land-cover has long been faced with changes and probably will change
in the future as well (Ramankutty and Foley, 1998). These changes are occurring in different
scales (local to global) and in different time periods (days to millennia) (Townshend et al., 1991).

Given that regional and/or local land-cover changes can be used as an important data layer in

ecological and environmental models (such as species distributions, climate change, sustainable
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development policies, spatial planning and flood risk assessment), the update presence of this data
is of great importance (Castella et al., 2007; Leinenkugel et al., 2013; Funkenberg et al., 2014;
Kuenzer et al., 2014).

The unprecedented rate of land change has become a major concern around the world that’s why
this issue has affected the environmental services and biodiversity at the global level. Both
anthropogenic and natural forces are responsible for these changes in Earth's surface.
Anthropogenic forces such as urban expansion and the destruction of forests and meadows for
economic purposes (development of agricultural land); and natural forces such as fire, flood and
tsunami; have changed the type of land-cover and land-cover all over the world. In recent decades,
the changes caused by anthropogenic forces have found a faster pace than natural variations. This
is because technological development and population growth are the two main factors which are
responsible for the anthropogenic changes and has been unprecedented growth in past two
decades. As a result, human has significantly changed almost all the world's ecosystems or is
going to change them; and therefore the capacity of ecosystems to provide goods and services is
going to be reduced (Lambin and Meyfroidt, 2011).

Rapid landscape changes in the recent decades have negative effects on biodiversity (Pimm and
Raven, 2000; Sala et al., 2000; Balmford et al., 2001), soil erosion (Sidle et al., 2006),
destabilization of watersheds (Rai and Sharma, 1998), increasing levels of greenhouse gas
emissions (Macedo et al., 2013), water pollution, and air pollution (Houghton, 1994). Considerable
evidence has also shown that these changes have an observable impact on the geographical
distribution of species. Land-cover changes can affect distribution of plant species directly through
changing the quality and quantity of habitat suitability and indirectly via increasing, decreasing, or
eliminating dispersal barriers.

Understanding land change trends is a subject of interest and concern among environmental
managers and ecologists (Bagan and Yamagata, 2012). Predicting landscape change is a necessary
but difficult process because it needs access to a large amount of information about the
relationship between phenomena and the factors which influence changes, and also sufficient
information about the current and past status of the landscape. Remote sensing prepares a great
source of data, from which updated land-cover maps and changes can be analyzed and predicted
efficiently. With recent advances in geographic information systems (GIS) and remote sensing
tools and modules enable researchers to predict future land-cover changes effectively.

Several statistical and geospatial models have been used to model land-cover change, including
logistic regression models (Hu and Lo, 2007), neural networks (Pijanowski et al., 2002; Basse et
al., 2014), Markov chains (Kamusoko et al., 2009), and cellular automata(CA; Poelmans and Van

Rompaey, 2010). These techniques are often combined together to produce a hybrid model.
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In this research, we applied a cellular automata-Markov chain model (CA-Markov) to simulate
future land-cover changes. Both cellular automata (CA) and the Markov chain model have great
advantages in the study on land-cover changes (Sang et al., 2011). Markov-Chain model is one of
the most widely used methods for quantifying the probability of land-cover change from state A to
state B (e.g. forest to built-up area) in discrete time stages. These probabilities then enter into the
cellular automata (CA) model to predict spatial changes over a specific time period (Mitsova et al.,
2011; Yang et al., 2012). CA-Markov model is based on the initial distribution and transition
matrix; it assumes that the drivers, which have created the current situation for the region land-
cover, will continue to operate as before in the future (Guan et al., 2011). In many studies, the
combination of remote sensing and GIS are effectively used in CA-Markov model (Mitsova et al.,
2011; Subedi et al., 2013).

The objective of this study is to simulate future land-cover changes based on the CA-Markov
model in our study area which is located in central Germany. Firstly, the Markov model is used to
estimate transition matrices from the land-cover maps (1990, 2000 and 2010) to predict changes of
land-cover. Secondly, an integration evaluation procedure is used to generate transition suitability
maps based on change drivers. Finally, transition suitability map and transition matrix are carried

out in the CA-Markov model to predict spatial distribution of land-cover from 2010 to 2050.

3.3. Materials and methods
3.3.1. Study areas

The study area is located in central Germany and covers 690000 hectares (Fig. 1). Elevation ranges
from 114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain
located in the Thuringian Forest. The predominant climate is of the continental type with an
average annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on
monthly recording data of 18 stations, in the Free state of Thuringia from 1960-1990). The soil
parent material is mainly calcareous. The landscape maps presented five classes: forest, built-up

area, grassland, farmland, and water bodies (lakes, rivers, ponds, and reservoirs).

3.3.2. Modeling framework

In this section, we describe the main components used for the land-cover changes in future. The
process occurs in a raster data environment, most often a grid of uniform cells of a specified
resolution. The workflow that was carried out in this study consists of: 1) land-cover mapping of
1990, 2000 and 2010 using the classification of satellite images, 2) computation of transition area
matrix derived from a Markov process, indicating the number of pixels to be expected to change
each land-cover class to another class over a specified time interval (1990-2000, 2000-2010); 3)

getting transition suitability images by Markov chain and multi-criteria evaluation (MCE) model
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(These suitability images imply the suitability of each cell for a particular land-cover); 4)
Evaluating the predictive power of the model by comparing the difference between the actual and
projected maps of year 2010; and finally, 5) land-cover change simulation using CA-Markov
module for 2020, 2030, 2040, and 2050. Land-cover mapping (first step) was run in ENVI ZOOM
(Version 4.8), and other steps were calculated in IDRISI-Selva software (https://clarklabs.org/).

Germany

Free State of Thuringia
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Figure 1 Location and elevation model of study area.

3.3.2.1. land-cover mapping

A temporal coverage of Landsat TM and ETM+ images (USGS Global Visualization Viewer)
from 1990 to 2010 was collected. Using the landsat images in 1990, 2000 and 2010, the land-cover
maps were generated for the three corresponding years. To remove the distortions, noises, and
errors produced during the imaging process, pre-processing techniques (both geometrically and
atmospherically) were applied to all the images. After geometric and atmospheric corrections, the
land-cover maps were derived from object-based support vector machine (SVM) classification
method (Duro et al., 2012). One of the advantages of object-based classification methods is that in
contrast to pixel-based classification methods, there is no "salt-and-pepper" effect in images
classified by them. The landscape maps presented five classes: forest, farmland, grassland, built-up

area, and water bodies.

3.3.2.2. Generating transition area matrix

In this study, two pairs of land-cover images (1990-2000 and 2000-2010) were applied to calculate
the transition area matrices of land-cover types during the two corresponding periods. Each matrix

records the number of pixels that are expected to vary from a class to another class in a specified
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period in the future. This part of the model according to the trends observed in the past, is used to
estimate the replacement rate of one class by another class. These matrices are obtained using the
Markov Chain model with a proportional error of 0.1.The transition area matrices for the year
2010 were created by overlaying the 1990 and 2000 classifications and delineating the change
between the two time periods on a class-by-class basis. This information is used as the input of the
Markov model to assist in determining the possibility of conversion of any pixels of a land-cover

class (e.g., forest) to other land-cover classes (e.g., farmland) and vice versa.

3.3.2.3. Generating transition potential maps

Since access to information as well as sufficient and accurate data for drawing transition potential
maps for land-cover classes is difficult, drawing these maps is generally a difficult task.
Incorporating all types of factors or constraints that exist within the study area seems is
impossible. In this paper, transition potential maps of land-cover types were extracted by using
GIS algorithms, multi-criteria evaluation (MCE), and fuzzy membership functions. Firstly, two
drivers including neighborhood interaction (Euclidean distance to the same type cell) and
conditional probability image were selected to compute transition potential maps of forest,
grassland and farmland areas. As a rule of thumb, the pixel closer to an existing land-cover class
has the higher possibility to change into that particular class. Since this rule cannot be applied to
all situations (Ahmed and Ahmed, 2012), the conditional probability images are used for each
category to reduce uncertainty in the transition potential maps. The conditional probability images
show, to what extent, each pixel in the next time period will likely belong to the designated
category; and since this probability is conditional on their current state, they are referred to as
conditional probability images. Therefore, these images are a visual presentation of the transition
probability matrix (El-Hallaq and Habboub, 2015). Restrictions for forest, grassland, and farmland
were the built-up areas and water bodies. Finally, four typical biophysical and proximate drivers
including slope, distance from nearest road, neighborhood interaction, and distances from water
bodies were selected to compute transition potential map of built-up areas (Table 1). Also, water
bodies considered as restriction area for built-up lands. Studies have shown that these ancillary
data are closely related to the probability of urban changes (He et al., 2013; Yang et al., 2014).

Since Markov chain does not locate the occurrence of land-cover transitions, GIS algorithms,
multi-criteria evaluation (MCE), and fuzzy membership functions were applied to determine the
suitability and locations of transitioning cells. The fuzzy algorithms can create a standard index
and prevent the selection of unknown Boolean constraints or cut-off values (Eastman, 2006).
Hence, the fuzzy membership functions (e.g., sigmoidal monotonic decrease function) were used
to rescale driver maps into the range 0-255, where 0 represents unsuitable sites and 255 represents

the most suitable sites. Also, in this study, we use an Analytic Hierarchy Process (AHP) to
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determine the weight of driving factors with the use of pairwise evaluations (Malczewski, 1999).
The AHP enables land-cover transition potential based on a collection of potential maps (e.g.,
distance from water sources or magnitude of altitude), and considers growth limitations. The AHP
affords a comprehensive and logical method to solve the decision problem, characterizing and
quantifying its components, correlating the related components towards overall targets, and
assessing alternative solutions. This GIS-based AHP is a strong tool because of its high ability to
incorporate different types of heterogeneous variables and its simplicity to gain the weights of
suitable variables (Hafeez et al., 2002; Ying et al., 2007). This model has a unique advantage when
the quantification and comparison of important variables is difficult, or where the establishment of
communications between working team members becomes problematic by their various
specializations, terminologies, or perspectives. Because the areas of water is small, transition

potentials to water is not computed. A set of transition potential maps are displayed in Fig. 2.

Table 1 Extracted weights based on AHP and fuzzy standardization for built-up areas

Factors Functions Control points Weights
0-50 m highest suitability
Distance from roads J-shaped 50-1500 m decreasing suitability 0.28

>1500 m no suitability

0-100 m no suitability
Distance from water bodies Linear 100-7500 m increasing suitability 0.15
>7500 m highest suitability

0-100 m highest suitability
Distance from built-up areas Linear 100-5000 m decreasing suitability 0.38
>5000 m no suitability

0% highest suitability
Slope Sigmoid 0-15% decreasing suitability 0.19
>15% no suitability

3.3.2.4. Model evaluation

Performance evaluation of the model is one of the most important stages of the modeling although
so far there has been no consensus on the evaluation criteria of landscape change models (Pontius,
2000). The model is evaluated to detect whether the projected land-cover map is giving any abrupt
result or not. To validate the operation of a model the simulated map compares with the real
conditions. This method has been favored in other studies such as by Araya and Cabral (2010) who
used it to verify the accuracy of a model predicting land-cover change. The comparisons between
the actual map of 2010, which was obtained through remote sensing techniques, and the projected
map of year 2010, which observed using changes between 1990 and 2000 images, has been
performed using Kappa variation statistics. The kappa statistics assess the model accuracy in terms
of the quantity of cells properly classified along with the location of the cells. Its range is from 0

(random location) to 1 (perfect location specification) (Pontius, 2000).

33



Forest

I High: 233 l High : 241

Low: 0 Low: 0

Grassland
High : 224

I High : 255

Low:0
Low : 0 0510

20 Kilometers v

Figure 2 Transition potential maps of land-cover type in 2010.

3.3.2.5. CA-Markov Model

CA-Markov modeling is a hybrid modeling technique that binds the strengths of a spatially
explicit, deterministic modeling framework with a stochastically based temporal framework. This
model is a combination of Markov chain and cellular automata (CA) models which has become a
robust method in terms of dynamic spatial phenomenon’s simulation and future land-cover change
prediction in time and space based on their current state and on ancillary information which may
drive future transitions among land-cover classes. These results can in turn be used for theoretical
constructions and for scenario-based projections by recalibrating the ancillary data. Markov chain
is a powerful model and when the description or procedure of landscape changes is ambiguous,

this model can predict the demand for and probability of landscape change using the history of
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changes happened in the past. This model is one in which the future state of environment can be
analyzed solely according to the previous state. Markov chain model is a stochastic process model
that describes how likely one state is to change to another state and use this as the basis to project
future changes. This task can be done by the transition probability matrix of landscape change
through a period of time which shows that the nature of changes in the past years can be used to
predict future landscape change. In this model, the transition probability can be seen for each
phenomenon, but no information is supplied on the spatial distribution of these phenomena. Thus,
the CA is used to characterize the spatial characters. CA model is comprised of a regular lattice
framework where any cell in the lattice is in one of a defined number of states. These states either
remain in their current state or change at every iteration or time step into a different state
(O'Sullivan and Unwin, 2003). The changes are initiated by a set of deterministic rules that are
defined prior to the execution of this process. There are four parameters needed to run cellular
automata: 1) a cellular (or grid) space, 2) a neighborhood definition, 3) a set number of states, and
4) a set of transition rules. The strength of cellular automata is that it can robustly simulate
processes that play out across time and space in human and in natural systems. As such they offer
a useful framework for exploring system interactions (White and Engelen, 1994). Hence, CA
manages spatial dynamics via local transition rules, while Markov processes depict temporal
dynamics of land-cover classes based on transition probabilities (see Appendix A and Eastman
2006; for more information).

To generate future land-cover maps, the suitability images are coupled with base land-cover and
the transition matrices in a process called multi-object land allocation. This process compares all
pixels and their suitability for each land-cover class. Each pixel has the potential to be populated
by each land-cover class during the simulation (except by restricted and unchangeable area). The
class which has the highest suitability at that pixel will be the class that is chosen given the prior
spatial constraints of the cellular automata and the temporal step to be classified for the stated time
period. The process executes for each land-cover class and runs through the process several times
at each time period. By subtracting the least likely pixels to be included in each land-cover class,
the process continues until the correct number of pixels has been identified for the land-cover class
under investigation. Because this process has random elements, an iterative process was used to
create the potential land-cover class for each period. In order to gauge which areas are most likely
to be another area, several iterations of this process were run and then combined into a frequency
image. This image is the overlay of all the iterations for a given land-cover class at a given time

period and shows the proportion of times each cell was classified as a given land-cover class.
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3.4. Results
3.4.1. Land-cover Classification and Accuracy Assessment

An object-oriented image analysis was applied to produce a multi-temporal land-cover geographic
database for the three years under study. In order to use the derived maps for further change
analysis, the classification accuracy were estimated. To assess the accuracy of classified images,
we gathered ground truth data (training and validation data) based on Quickbird images available
in Google Earth (http://earth.google.com). For whole of study area, a sample of ground truth points
randomly collected within the area covered by high resolution Quickbird images, overlaid selected
samples on the Quickbird images, and then grouped these points to appropriate classes based on
visual interpretation. A point was assumed as an especial class if land-cover patches included at
least one pixel. Based on visual interpretation of the Landsat images, the training sites were
carefully determined and restricted to homogeneous regions where class membership was
permanent from 1990 to 2010. We optimized the training sample dataset until we achieved
maximum stable accuracy. This optimizing task was carried out by removing training samples that
may have been sources of error or collecting new samples to obviously misclassified categories.
Finally, we used a sample of 1374 points were mapped from Quickbird images. We split all
ground truth points into training (75%) and evaluation (25%) data. Overall accuracies for the
extract land-cover maps of 1990, 2000 and 2010 were, respectively, 89.75%, 92.36% and 93.54%,
thus indicating the suitability of the classified remote sensing images for effective and reliable
land-cover change analysis and modeling. We finally used 100% of the ground truth data to

produce land-cover maps of the whole study area. Fig. 3 illustrates the produced land-cover maps.
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Figure 3 Time series of land-cover maps for 1990-2010.

3.4.2. Analysis of Landscape Metrics

Analysis of land-cover area changes in table 2 indicate that from 1990 to 2010, built-up areas

increased from 2.8% to 5.5%. For the period between 1990 and 2000, around 7000 ha have been
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changed to built-up lands, and 10980 ha within the period 2000-2010. The built-up land was
continuously increased, and the farmland, grassland and forest were continuously decreased.
Grasslands decreased significantly from 337.5 ha (4.89%) to 277.5 ha (4.02%) during 1990-2010.
During this period, forest area decreased from 223400 ha (32.38%) to 222550 ha (32.26%). Also,
farmlands reduced by 2.75% from 1990 to 2010. Overall, farmlands lost around 11220 ha in this

time period. The area of water increased a little.

Table 2 Distribution of land-cover classes (in hectare) and percentage of changes for 1990-2010.

Year Change in Land-cover Structure
1990 2000 2010 A%1990-2000 A%2000-2010 A%1990-2010
Forest 223400 222810 222550 -0.26 -0.12 -0.38
Water 4460 4530 4550 1.57 0.44 2.02
Grassland 33750 31390 27750 -6.99 -11.60 -17.78
Farmland 408490 404370 397270 -1.01 -1.76 -2.75
Built-up land 19840 26840 37820 35.28 40.91 90.63

3.4.3. Land-cover Modeling and Validation

Evaluation of model was performed by comparing the simulated map of 2010 with the real land-
cover map of 2010 based on Kappa variations. The change trajectories between the observed and
simulated land-cover classes for the year 2010 are shown in Fig. 4, in which five land-cover

classes have relative errors lower than 5%.
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Figure 4 Actual and simulated land-cover classes for the year 2010.

Models with accuracies in excess of 80% are typically considered very strong predictive tools
(Araya and Cabral, 2010). The Ksuandara value was 87.6%, which verifies the accuracy of this
model. Pontius (2000) states that the K, value is a better alternative than Kgandara fOr assessing the
overall accuracy of the model. The model performed very well in its overall ability to predict land-
cover map of 2010 (K=91.5%), and the Kiocation value of 92.2% indicates that the model provides
a reasonable representation of location. Also, visual interpretation of the results (Fig. 5) shows that

there is an evident similarity between the real and simulated maps for the year 2010. Therefore,
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based on the Kappa values obtained, the CA-Markov model can be used to simulate future land-
cover conditions.

In this research, patterns and tendency of land-cover changes were modeled according to the
preceding land-cover states. Although the probability of transformation of a phenomenon to
another phenomenon is determined in this model, it does not allow for prediction of spatial
distribution of phenomena. Hence, the Markov model needs to be integrated with the CA model in
order to add spatial characters to the model and to overcome this inherent limitation. In effect, by
defining the land-cover map of 2010, the transition suitability maps derived from MCE analysis
and Markov model (conditional probability images), transition area matrices of the land-cover
maps of 2000-2010, a contiguity filter selection (5x5 Moore neighborhood kernel) to define
neighborhood interactions, and one iteration per year were employed to predict the future changes
in 2020-2050. The contiguity filter down-weights the suitability of pixels that are far from existing
areas of each land-cover class. The role of this filter is to ensure that the best choices for land-
cover transformation are limited to cells that are both inherently suitable and in close proximity to
existing areas of that land-cover class; this gives preference to contiguous suitable areas. In each
iteration, pixels with the most transition probability to transfer from one category to another
category turn into a new category; while pixels with lower probabilities remain unchanged. If 10
iterations are selected for the model, the model allocates one tenth of all cells which are expected
to be transferred to another category during each repetition (Eastman, 2006). The multi-objective
land allocation (MOLA) procedure was used to resolve the land allocation conflicts. All land-
cover classes act as claimant phenomena and contend for land within the host class (Eastman,

2006).

Table 3 Transition probability matrix of land-cover types for the periods 1990-2000 and 2000-2010.

Land-cover type Forest Built-up land Farmland Grassland Water bodies
1990-2000  Forest 0.9346 0.0087 0.0193 0.0349 0.0025
Built-up land 0.0102 0.9276 0.0428 0.0118 0.0076
Farmland 0.0046 0.0602 0.8686 0.0657 0.0008
Grassland 0.1332 0.0417 0.061 0.7627 0.0014
Water bodies 0.078 0.0185 0.0056 0.0001 0.8978
2000-2010  Forest 0.9247 0.003 0.0404 0.0295 0.0024
Built-up land 0.0094 0.9643 0.0076 0.0122 0.0065
Farmland 0.0107 0.0341 0.9076 0.0475 0.0001
Grassland 0.1095 0.0424 0.0496 0.7982 0.0003
Water bodies 0.0135 0.0083 0.005 0.0017 0.9715

The outcome of this process was a rendering of a potential land-cover distribution at the specified
time of 40 years into the future at four steps of 10 years. Ten years for each time step was chosen
as it corresponded to the time step by which the transition matrix was constructed (between the
years 2000-2010). Firstly, 2010 year is set as starting year; transition area matrix of 2000-2010

periods is used to simulate 2020 year land-cover change; then, 2020 year is set as starting year;
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transition area matrix of 2000-2010 periods is used to simulate 2030 year land-cover change;
thirdly, 2030 year is set as starting year; transition area matrix of 20002010 periods is used to
simulate 2040 year land-cover change; finally, 2040 year is set as starting year; transition area
matrix of 2000-2010 periods is used to simulate 2050 year land-cover change. The forecasted

land-cover maps for 2020 to 2050 are displayed in Fig. 6.
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Figure 5 (a) Actual map and (b) simulated map of land-cover type in 2010.

3.4.4. Analysis of Simulation Results

Our results indicate that 5.5% of the entire study area has been occupied as a built-up area in 2010,
which will increase to 10.5% by 2050, while for the other land-cover types (except water class),
descending rate will observe by 2050 (Table 4). For example, grassland area was seen to decline
from 27750 ha (4%) to 15730 ha (29.3%) during 2010-2050. Also, for the other two land-cover
classes, similar trends were observed, i.e. from 222550 ha (32.3%) to 217410 ha (32.5%) and
397270 ha (57.6%) to 379510 ha (55%) for forest and farmland, respectively.

Table 4 Absolute quantities for land-cover classes (in hectare) for 2010-2050.

Built-up land Forest Water Farmland Grassland
2010 37820 222550 4552 397270 27750
2020 43740 220870 4630 394710 25990
2030 52690 219510 4680 388940 24120
2040 64120 218660 4730 382150 20280
2050 72480 217410 4810 379510 15730

3.5. Discussion and Conclusion

The study reported here investigated land-cover changes over three time periods, 1990-2000,
2000-2010 and 2010-2050 using multi-temporal remote sensing data and GIS. Our results indicate
that built-up areas dramatically increased by 90.6% from 1990 to 2010. Overall, 17980 ha have
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been changed to built-up areas in this time period. This suggests that the development of urban and
rural areas in the past two decades has been a high pace. Araya and Cabral (2010) reported such a
high rate of growth in their study area between the years 1990 to 2006. It highlights the fact that an
increase in built-up area could be interpreted as a decrease in natural lands (Nature land = Total
land area — (Farmland area + Built-up area); Lambin and Meyfroidt, 2011). Table 2 shows that
natural areas decreased from 254852 ha in 1990 to 237950 ha in 2010. For example forest lost 850
ha of its cover from 1990 to 2010. Degradation and loss of natural and semi-natural lands has
become a profound concern which almost has affected the entire Western and Central Europe

(Poschlod et al., 2005; Riecken et al., 2008; CBD, 2010; GBO3, 2010).
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Figure 6 Simulated map of land-cover type from 2020 to 2050