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Summary 

 
Spatial species distributions and the relationship between species and environmental factors have 

been studied for several years. Climate change and habitat fragmentation can be considered as the 

factors effective in biodiversity changes. Landscape fragmentation can have a significant effect in 

reducing migration capabilities of plants by lessening suitable habitats and separating them from 

each other, as well as, via increasing, decreasing, or eliminating dispersal barriers and climate 

change affects plant species distributions and may create new environments and forces organisms 

have to react to. Dynamic climate variables changing with a projection time frame and static 

landscape variables have been adopted by most studies to project future species distribution. This 

method of application ignores the dynamics landscape changes over time. Also, many studies on 

climate change and ecosystems consider unlimited dispersal or no dispersal. Neglecting dispersal 

process is usually seen as a defect and limitation in projects of species distribution models under 

climate change. Therefore prediction of species range shifts under climate change and other 

physical processes is a crucial challenge for the management of natural resources. 

The major objective of this thesis was to integrate MigClim, SDM and CA-Markov chain models 

so as to assess the effects of future landscape fragmentation and climate change scenarios on the 

geographic distributions of three open-land plant species in 21st century.  

To simulate future landscape changes, we used a hybrid (CA-Markov) model (chapter 3). This 

model was derived by examining past trends in land change and projected changes in basic 

environmental and human driven factors. The end result clearly showed if the current trends of 

change continue regardless of the actions of sustainable development, drastic natural area decline 

will ensue. 

A remote sensing study was conducted to identify the best classifier algorithm (three pixel-based 

and one object-based method) (chapter 2). This study demonstrates that object-based support 

vector machine classifier is the most accurate classifier with an overall classification accuracy of 

93.54% and a kappa value of 0.88 for the image 2010. The best method (i.e. object-based support 

vector machine) was then used in chapter 3 to obtain the land-cover maps corresponding to 

different years. 

In chapter 4, we compare six species distribution models (three machine-learning and three 

regression models) constructed with different subsets of environmental predictors (climate-only, 

topography-only, and topo-climate variables). The generalized additive model (GAM) showed the 

best accuracy when projected with a set of topo-climate variables. The best model and the best set 

of predictors were used to produce habitat suitability maps of plant species in chapter 5. 

For all target plants, simulations were performed for four dispersal events (full dispersal, no 

dispersal, regular dispersal (short-distance dispersal), and regular dispersal along with long-

distance dispersal), two landscape (static and dynamic change) and two climate change (RCP4.5 
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and RCP8.5) scenarios (chapter 5). The choice of dispersal events is in line with the choice made 

in Engler et al. (2009). In this investigation, it was shown that the predicted distribution areas for 

all the three species under RCP8.5 scenario will largely increase in the coming decades. Also, a 

significant difference appears to be between the simulations of realistic dispersal limitations and 

those considering full or no dispersal for projected future distributions during the 21st century. 

Besides, the results obtained by the limited projections of future plant distributions via realistic 

dispersal restrictions showed to be generally closer to no-dispersal than to full-dispersal scenario 

when compared with real dispersal scenarios. 

Overall, the results of this study indicate that dispersal limitations can have an important impact on 

the outcome of future projections of species distributions under climate change scenarios. Also our 

findings clearly showed that change in landscape fragmentation is more effective than the climate 

change impacts on species distributions in our study area. 
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Zusammenfassung  

 

Die räumliche Verteilung von Arten sowie ihre Beziehung zu den herrschenden Umweltfaktoren 

sind seit vielen Jahren Gegenstand der Forschung. Klimaänderung und Lebensraumfragmentierung 

werden als Hauptbedrohungen der Biodiversität angesehen. Landschaftszerschneidung kann die 

Migrationsfähigkeit von Pflanzen einschränken, indem sie den geeigneten Lebensraum für eine 

erfolgreiche Kolonisierung verringert. Sie kann ebenso durch Vergrößern, Verringern oder 

Beseitigen von Ausbreitungsschranken und Klimaänderungen die Verbreitung von Pflanzenarten 

beeinträchtigen und vermag neue Umgebungen zu schaffen und Organismen zum Reagieren zu 

zwingen. Die meisten Studien haben den Ansatz dynamischer Klimavariablen in Abhängigkeit 

eines Vorhersagezeitraums in Zusammenhang mit statischen Landschaftsvariablen  angenommen, 

um die zukünftige Artenverbreitung vorherzusagen. Diese Anwendungsmethode vernachlässigt 

dynamische Landschaftsänderungen mit der Zeit. Außerdem gehen viele Studien über 

Klimaänderung und Ökosysteme entweder von unbegrenzter oder keiner Ausbreitung aus. Die 

Vernachlässigung des Ausbreitungsprozesses wird gewöhnlich in Projekten über 

Artenverteilungsmodellen unter Klimaeinfluss als Fehler und Einschränkung betrachtet. Deshalb 

ist die Vorhersage einer Veränderung des Verbreitungsgebiets von Arten bei Klimaänderungen 

oder anderen physikalischen Prozessen eine entscheidende Herausforderung für die Verwaltung 

natürlicher Ressourcen. 

Das Hauptziel dieser These war die Integration von MigClim, SDM und CA-Markov-Ketten-

Modellen, um die Auswirkungen zukünftiger Landschaftszerschneidungs- und Klimaänderungs-

Szenarien auf die geografische Verbreitung von drei Offenlandpflanzen im 21. Jahrhundert 

abzuschätzen. 

Um zukünftige Landschaftsänderungen zu simulieren, benutzten wir ein hybrides (CA-Markov) 

Modell (Kapitel 3). Dieses Modell wurde aus der Untersuchung vergangener Trends in 

Landschaftsänderungen und vorhergesagten Änderungen in grundlegenden Umwelt- und 

anthropogenen Faktoren abgeleitet. Das Endergebnis zeigt ganz klar, dass eine drastische 

Verringerung naturnaher Gebiete folgt, wenn der aktuelle Trend der Änderungen anhält und die 

Aktionen einer nachhaltigen Entwicklung nicht berücksichtigt werden. 

Eine Fernerkundungsstudie wurde durchgeführt, um die besten Klassifikatoralgorithmen zu 

identifizieren (drei Pixel-basierte und eine Objekt-basierte Methode) (Kapitel 2). Diese Studie 

zeigt, dass ein Objekt-basierter Support-Vektormaschinen-Klassifikator der genaueste 

Klassifikator ist, mit einer Gesamtklassifizierungs-Genauigkeit von 93.54% und einem Kappawert 

von 0,88 für das Bild von 2010. Die beste Methode (d.h. Objekt-basierte Support-

Vektormaschinen-Klassifikator) wurde anschließend in Kapitel 3 verwendet, um die 

Bodenbedeckungskarte verschiedener Jahre zu erhalten.  
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In Kapitel 4 vergleichen wir sechs Artenverteilungsmodelle (drei Maschinenlern- und drei 

Regressions-Modelle), die mit verschiedenen Untermengen von Umwelt-Einflussfaktoren  

(Variablen nur für Klima, nur für Topographie, für Klima und Topographie) erstellt wurden. Das 

Allgemeine Additive Modell (GAM – "generalized additive model") zeigt die höchste 

Genauigkeit, wenn die Abschätzung nur mit Variablen für Klima und Topographie erfolgt. Das 

beste Modell und die beste Auswahl an Prädiktorvariablen wurden in Kapitel 5 verwendet, um 

Landkarten für geeignetem Lebensraum der Pflanzenarten zu erstellen. 

Für jede Pflanzenart wurden Simulationen von vier Ausbreitungsszenarien (Vollausbreitung, keine 

Ausbreitung, realistische Ausbreitung, realistische Ausbreitung mit Fernausbreitungsereignissen), 

zwei Landschafts- (statisch und dynamische Änderungen) und zwei Klimaänderungs-Szenarien 

(RCP4.5 und RCP8.5) ausgeführt (Kapitel 5). Die Festlegung der Dispersal-Ereignisse erfolgte in 

Übereinstimmung mit Engler et al. (2009). In dieser Untersuchung wurde gezeigt, dass das 

vorhergesagte Verbreitungsgebiet aller drei Arten unter dem RCP8.5 Szenario in den drei 

kommenden Jahrzehnten stark zunehmen wird. Außerdem zeigt sich ein wesentlicher Unterschied 

für die vorhergesagte Verbreitung im 21. Jahrhundert zwischen Simulationen realistischer 

Ausbreitungsgrenzen und solchen mit voller oder abwesender Ausbreitung. Im Übrigen waren die 

erhaltenen Ergebnisse der begrenzten Vorhersage zukünftiger Pflanzenverteilungen mit 

realistischen Ausbreitungsgrenzen i.A. dichter am Szenario ohne Ausbreitung als an der Voll-

Ausbreitung dran, verglichen mit realistischen Ausbreitungs-Szenarien.  

Zusammengefasst zeigen die Ergebnisse dieser Studie, dass Ausbreitungsbegrenzungen einen 

wesentlichen Einfluss auf das Resultat von Zukunftsabschätzungen der Artenverteilung unter 

Klimaänderungs-Szenarien haben können. Außerdem zeigen unsere Befunde ganz klar, dass 

Landschaftszerschneidung in unserem Studienbereich einen größeren Einfluss auf die 

Artenverbreitung hat als Auswirkungen von Klimaänderungen. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VIII 

Manuscript overview and author contribution to the chapters of this thesis 

 
 
Chapter 2 

 
Analysis of Landscape Changes Using Multi-Temporal Remote Sensing Imagery and 

Machine-Learning Classifier. Hamidreza Keshtkar & Winfried Voigt 

This study aims to use and compare two different classification methods to monitor land-use 
change during last two decades.This study demonstrates that object-based support vector machine 
classifier is the most accurate classifier. 
 
The authors have made the following declarations about their contributions: HK and WV 
conceived the project.  WV provided the data and commented on the paper. HK analyzed the data 
and wrote the first draft. Overall contribution of HK was 90% of the work. 
 
Manuscript status: ready for submission 
 
 
Chapter 3 

 
A spatiotemporal analysis of landscape change using an integrated Markov chain and 

cellular automata models. Hamidreza Keshtkar & Winfried Voigt 

 
This manuscript aims to analysis and modeling of land-use change in our study area in the central 
Germany. An integrated Cellular Automata-Markov Chain land change model was carried out to 
simulate the future landscape change during the period of 2020–2050. As a consequence, land 
change model predicts very well a continuing downward trend in grassland, farmland and forest 
areas, as well as a growing tendency in built-up areas. Hence, if the current trends of change 
continue regardless of the actions of sustainable development, drastic natural area decline will 
ensue. 
 
 
The authors have made the following declarations about their contributions: HK and WV 
conceived the project.  WV provided the data and commented on the paper. HK analyzed the data 
and wrote the first draft. Overall contribution of HK was 95% of the work. 
 
Manuscript status: Published as an article in Model. Earth Syst. Environ Journal, 2:1-13, 2016.  
DOI: 10.1007/s40808-015-0068-4 
 
 

Chapter 4 

 
Comparison of statistical models to predict the spatial distribution of plant species in Central 

Germany. Hamidreza Keshtkar & Winfried Voigt 

 

The objective of this study is to compare the performance of some of the most common methods 
of presence-absence distribution models using data on the distribution of three plant species in 
central Germany. In this study, three different sets of explanatory variables (climate-only, 
topography-only and topography-climate combination) for each species were quantified and the 
interaction of differences among predictor variables with differences in the modeling approaches 



 IX 

in determining the accuracy of predictions was tested.  Regression-based approaches showed better 
performances than machine-learning methods. The results showed that topography-climate 
variables are the most important variables for mapping potential suitable habitats of target species.  
 
The authors have made the following declarations about their contributions: HK and WV 
conceived the project.  WV provided the data and commented on the paper. HK analyzed the data 
and wrote the first draft. Overall contribution of HK was 90% of the work. 
 
Manuscript status: ready for submission 
 
 
Chapter5 

 
Potential Impacts of Climate and Landscape Fragmentation Changes on Plant Distributions: 

Coupling Multi-Temporal Satellite Imagery with GIS-based Cellular Automata Model. 

Hamidreza Keshtkar & Winfried Voigt 

 
The aim of this study is to test probable alteration of future species distribution based on the 
association of land-use and climate change scenarios compared to the classical approach that 
assumed an unchanged land-use. A significant difference appears to be between the simulations of 
realistic dispersal limitations and those considering full or no dispersal for projected future 
distributions. Although simulations accounting for dispersal limitations produced, for our study 
area, results that were closer to no dispersal than to full dispersal. Additionally, our results 
revealed that future land-use change is more effective than the climate change impacts on species 
distributions in this study. 
 
The authors have made the following declarations about their contributions: HK and WV 
conceived the project.  WV provided the data and commented on the paper. HK analyzed the data 
and wrote the first draft. Overall contribution of HK was 90% of the work. 
 
Manuscript status: Published as an article in Ecological Informatics Journal, 32, 145-155, 2016. 
DOI: 10.1016/j.ecoinf.2016.02.002 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

Chapter 1 

General Introduction 

 

Ecologists have been studying for a long time to find out why some species are found only in 

certain habitats and how they found their way to these regions (Darwin, 1859; Connell, 1961). 

Ecologists often consider the geographical ranges of species, which are explained by the intricate 

interactions of each species with the environment it establish in as a basis for answering such 

questions. Species distribution models (SDMs) generally specify spatially and temporally suitable 

habitats for species by combining species occurrence data with environmental predictors (Brown 

et al., 1996; Guisan and Zimmermann, 2000).  
 

 

1.1. Ecological niche 

The conceptual framework of modeling approaches for evaluating and predicting relationships 

between living organisms and their environment in a given place and at a given time is referred to 

as the ecological niche concept. This concept was first formally defined by Hutchinson (1957). 

According to Hutchinson, the ecological niche of a species is the set of environmental conditions 

under which the species can sustain a positive growth rate. Hutchinson later modified this concept 

by introducing a distinction between “fundamental” and “realized” niche. The first term can only 

be considered for lifeless factors such as climate, topography or soil properties, but the second 

term can also be considered for biotic interactions such as competition and facilitation (Engler, 

2009). Plant species that grow in mountainous areas can be a good example to better describe the 

concepts of “fundamental” and “realized” niche. Climatic constraints limit the habitat of these 

plants to below a certain altitude, and competition severely limits the possibility of their presence 

in low-altitude mountain ranges (Brown et al., 1996). So the low-altitude mountain ranges are a 

part of the fundamental niche of this species (i.e. in the absence of competition, they can grow in 

these habitats), but not a part of their realized niche because competition does not allow them to be 

present in these habitats. 

Nowadays, most SDM models are based on Hutchinson’s niche concept. However, some 

researchers (e.g., Pulliam, 2000) believe that the presence or absence of a species in a habitat is a 

more important factor than the suitability of the habitat or interspecies competition. Limited 

distribution, local extinctions, and recolonization are events that constantly occur in nature, and 

thus, one can regularly see species not present in their suitable habitat but present in an unsuitable 

habitat. 

Engler (2009) suggests that "meta-population and source-sink dynamics must also be considered in 

the concept of ecological niches because undoubtedly factors like the factor of competition, affect 
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the formation of ecological niches". For instance, Pulliam (2000) has shown that how dispersal can 

maintain population in unsuitable areas. Studies have shown that when dispersal is high, a 

significant portion of the population (up to 30%) can live outside of fundamental niche. However 

until now most studies have ignored metapopulation and source-sink dynamics. 

SDMs assume that by investigating the environmental conditions in which a species exists, it is 

possible to satisfy its ecological needs (Pearson and Dawson, 2003). This implies that, the 

assumption of equilibrium between a species and its habitat is a basic principle for modeling full 

potential distribution of species in SDMs (Guisan and Zimmermann, 2000; Engler, 2009). That is 

why sometimes SDMs are called “equilibrium models”. The condition of an invasive species that 

is newly arrived to an environment is a good example of non-equilibrium condition. Such a species 

is in migration stage, and therefore does not occupy all suitable habitats (Engler, 2009). 

 
 

1.2. Methodological improvements of SDMs 

The geographical ranges of mobile species (such as most animals) may be dynamic and change in 

a relatively short period of time (e.g., in summer and winter).Changes in the geographical ranges 

of non-mobile species (such as plants), however, often occur at longer intervals, because these 

species often live in a single location throughout their lives, and thus, their dispersal and 

distribution are limited to their reproduction. Of course, factors such as wind, animals, and humans 

may also play a role in this regard (Nathan and Muller-Landau, 2000; Meier, 2011).  

SDMs for predicting distribution of living organisms under the influence of climate change in 

future generally face two major limitations. One is that they do not consider probable changes in 

intragroup and extragroup biological interactions and evolutionary interactions, and the other is 

that they cannot study and utilize dispersal-related processes (Pearson and Dawson, 2003, Pearman 

et al., 2008).  

The biggest limitation of SDMs is that they do not consider the dispersal of a species or the 

dynamicity of a population. Although this is not necessarily an issue in modeling for current 

climate (assuming that the desired species has reached an environmental equilibrium), it becomes 

an important issue when modeling for future climate. The reason is obvious: projections obtained 

from SDMs emphasize locations that are expected to be potentially suitable for the species in the 

future, but these models do not consider whether these species would actually be able to reach 

these new suitable locations. The issue is exacerbated by a significant increase in fragmentation 

which is an obstacle for species dispersal (Pitelka et al., 1997; Engler, 2009). 

When not examining distribution-limiting factors, studies examining the impact of climate change 

on plant species distribution can only examine two scenarios: "no dispersal" and "full dispersal". 

The former assumes that species cannot move to new environments. For this reason, climate 

change can affect their survival. Unlike the no-dispersal scenario, the full-dispersal assumes that 
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species can be established in all areas where the environmental conditions are suitable for their 

growth based on the model’s prediction (Bateman et al., 2013). This scenario is widely used and in 

some references it is called "unlimited dispersal" and "universal dispersal" (Engler et al., 2009; 

Thomas et al., 2004). These two assumptions can lead to significantly different results. The 

difference between these two assumptions highlights the need for more dynamic models that 

consider the limits of dispersal. 

 
 

1.3. Evaluating the potential effects of climate change 

Studies have shown climate change in previous decades had considerable effects on living 

organisms, and sometimes led to migration of species or threatened them with the risk of 

extinction. Scientists believe climate change in the twenty first century will have deeper effects on 

both biotic and abiotic conditions of the environment. Therefore, researchers are interested in 

studying the effects of these changes on distribution of living organisms in the coming years 

(Lenoir et al., 2008, Parolo and Rossi, 2008). 

Since the climate was relatively stable during the Holocene period, the current ranges are expected 

to be the result of adaptation of species with the current environment (Kullman and Kjallgren, 

2000). Today, it is assumed that global change is rapidly changing the distribution of plant species 

(Thomas, 2010). Many species also have to adjust their ranges with a rate as high as the rate of 

climate change to be able to adapt to the new environmental conditions (Parmesan et al., 1999). In 

this situation, if a species cannot migrate, it either quickly adapts to the new ecological conditions 

of its current habitats or becomes extinct (Channell and Lomolino, 2000). 

There are two groups of studies that evaluated the potential impacts of the predicted climate 

change on species using the modeling of species distribution methods. The first group that called 

global scale was performed over a big geographical area but at a low spatial resolution. The second 

group that termed local scale was performed with high spatial resolution but over a small 

geographical area. Global scale studies were usually performed at a continental scale or word-

wide, with a spatial resolution of ~10-50 km, sometimes a little fewer. A good example for global 

scale SDMs is the project by Thuiller et al (2005) who standardized Europe-wide models at a 

resolution of 50 km and projected species habitats at a resolution of ~15 km. Local scale studies 

perform with high spatial resolution (usually in the scope of 20-100 m), but over a small spatial 

area (a few hundred or a few thousand square kilometers). The works form Dirnbök et al. (2003) 

or Randin et al. (2006) are two typical examples of local scale SDMs. 

Although global scale studies have been conducted in various regions of the world, local scale 

studies are mainly restricted to the region under study with limited spatial ranges. Moreover, since 

different studies usually use diverse methods and climate change scenarios, their results are 

difficult to compare. Therefore, to compensate for this limitation, various studies should be 
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conducted on a small scale but in a wide geographical range using the factor of climate change 

(Engler, 2009). 

 
 

1.4. Objectives and structure of the thesis 

Species distributions are predicted based on various concepts and assumptions, most of which 

have limitations that must be considered. For example, it is expected that the range of a species is 

strongly influenced by factors such as landscape fragmentation, climate change scenarios, the 

species’ dispersal rate and capacity, and, finally, by the interactions between these processes. Few 

of the extensively-used models, however, consider the effects of these factors. Therefore, it is 

important to study how climate factors affect species distribution when combined with other 

factors (e.g., dispersal limitations, landscape fragmentation, etc.). Such studies would better 

explain the effects of these factors and eventually enable the management of the most important 

one(s). 

To improve the prediction of migration potential of plants under future climate change scenarios I 

used a dynamic model –MigClim (Engler et al., 2012)– to couple dispersal processes and 

landscape fragmentation scenarios with SDMs in projecting distributional changes under climate 

change (Chapter 5). This model has a cellular-automata structure which presents the study field as 

a regular network of stations and simulates the changes in species distribution. The main core of 

MigClim is based on potential distribution maps of plant species produced by SDMs. For this 

reason, Chapter 4 is an evaluation of some of the most common presence-absence distribution 

models using data on the distribution of three plant species in central Germany; three different sets 

of explanatory variables (climate-only, topography-only and topography-climate combination) are 

quantified. MigClim model lets that individual species respond to changes in their habitats, but the 

model ignores the dynamics landscape fragmentation changes over time. To solve this deficiency I 

applied a cellular automata-Markov chain model (CA-Markov) as an alternative to simulate 

landscape change scenarios during the 21st century (Chapter 3). Effective analysis of landscape 

changes require a considerable amount of data about the Earth‘s surface. Remote sensing prepares 

a great source of data from which updated land-cover maps, and changes can be analyzed and 

predicted efficiently. Several image classifier techniques have been developed; the selection of an 

appropriate classification method is very important for increasing the accuracy and precision of 

land-cover mapping. Thus, Chapter 2 focuses on comparing various machine-learning image 

classifier algorithms with land-cover mapping. The framework of this thesis is illustrated in Figure 

1.  
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Figure 1. Flowchart of different chapters in this PhD thesis. 

 

Based on the aforementioned issues, this dissertation examines the results of landscape 

fragmentation and climate changes on spatiotemporal prediction of three plant species. The goal of 

my work was to attempt to refine SDMs for better incorporate main processes that are neglected in 

last studies. Ultimately, my goal was to apply improved models to develop optimal strategies for 

species management. Specifically my study has four specific objectives: 

 

1- To develop a general understanding of the recent historical distribution of land-cover 

structures in the study area. 

This objective will employ remotely sensed imagery as well as change detection methods. I will 

evaluate various machine-learning algorithms and comparing pixel-based and object-based 

methods to land-cover mapping.  

 

2- To simulate future land changes using CA-Markov techniques. 

This objective will perform CA-Markov model to derive future lands-cover change. Land-cover 

change simulation models basically examine changes in land at two different periods (t0 and t1) 

and then simulate land changes for future periods (i.e. t2). I will simulate future land-cover 

changes in time and space based on their current state and on ancillary information which may 

drive future transitions among land-cover classes. 

 

3- Comparing species distribution models constructed with different subsets of environmental 

predictors. 

This objective seeks to compare some of the most common methods of presence-absence 

distribution models using data on the distribution of three plant species in central Germany. 

Specifically, I will compare three regression methods and three machine-learning methods. I will 

also quantify three different sets of explanatory variables for each species, and will test differences 

in the interaction of predictor variables with differences in modeling approaches in determining the 

accuracy of predictions. 

 

Predicting land cover 
changes using CA-Markov 
chain model (Chapter. 3). 

Comparing different image 
classification algorithms to land-
cover mapping (Chapter. 2). 

Evaluation of different 
SDMs to prediction potential 
distribution maps of plant 
species (Chapter. 4). 

Forecasting future plant distributions 
under landscape fragmentation and 
climate changes from 2000 to 2100 
(Chapter. 5). 
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4- To predict future plant distributions under landscape fragmentation and climate changes. 

The major objective of this PhD thesis is to integrate MigClim, CA, and Markov chain models so 

as to assess the effects of future landscape fragmentation and climate change scenarios on the 

geographic distributions of three open-land plant species in 21st century. For each species, 

simulations will run for four dispersal scenarios (full dispersal, no dispersal, realistic dispersal, and 

realistic dispersal with long-distance dispersal events), two landscapes (static and dynamic change) 

and two climate change (RCP4.5 and RCP8.5) scenarios. To the best of our knowledge, this is the 

first study to combine the CA-Markov model with the models of species distribution to investigate 

species migration in the future. 

 

Specifically, this study attempted to answer the following four research questions: 

1- Can regression-based models as well as machine-learning models be used for prediction suitable 

habitat maps? 

2- What is the potential impact of climate change on plant species?  

3- How much does the inclusion of dispersal limitation events affect projections? 

4- To what extent does landscape fragmentation prevent the movement of species toward suitable 

habitats? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 7 

Chapter 2 

Analysis of Landscape Changes Using Multi-Temporal Remote Sensing 

Imagery and Machine-Learning Classifier 

Hamidreza Keshtkar and Winfried Voigt 
 

 

 
2.1. Summary 

Frequent human activities resulted by fast urbanization lead to an assortment of environmental 

issues. Therefore, for efficient environmental management and urban planning, monitoring land-

cover change is critical. We sought to pursue two objectives: first, to compare pixel-based random 

forest (RF) and decision tree (DT) classifier methods and support vector machines (SVM) 

algorithm both in pixel-based and object-based approaches to classification of land-cover in a 

heterogeneous landscape for 2010; and second, to examine the spatio-temporal land-cover change 

in two last decades (1990-2010) using Landsat data. This study demonstrates that object-based 

support vector machine classifier is the most accurate classifier with an overall classification 

accuracy of 93.54% and a kappa value of 0.88. The post-classification change detection algorithm 

was used to determine the trend of changes between land-cover classes. As a consequence, the 

most significant change occurred from 1990 to 2010 is caused by the expansion of built-up area. In 

addition to the net changes, the rate of annual change for each phenomenon was calculated in order 

to have a better understanding of the process of change. Between the years 1990 to 2010, on 

average, about 4.53% of lands annually turned to the built-up land, while there is an annual 

decrease of about 0.81% in natural lands. Hence, if the current trends of change continue 

regardless of the actions of sustainable development, drastic natural area decline will ensue. The 

results of this study can be a valuable baseline for land-cover managers in the region to better 

understanding the current situation as well as adopt appropriate strategies for management of land-

cover. 

 

Keywords: land-cover; decision tree; random forest; support vector machines; object-based; 

Landsat. 

 

2.2. Introduction 

Land-cover is a key variable in the Earth system as it is related to most of the human and physical 

environments. Change in the situation of land-cover is an important variable among the global 

changes that affect environmental systems (Otukei and Blaschke, 2010). 
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Land-cover changes play a main role in the global carbon cycle, and in the exchange of 

greenhouse gases between the atmosphere and the earth surface (Loveland and Belward, 1997). In 

general, intense human activities have an increase in construction and farmland and destruction of 

forests, meadows and other natural resources (Lambin and Geist, 2003; Lawrence et al., 2012). 

Agricultural lands increase the entry of nutrients into the water in the basin and in particular affect 

the amount of nitrogen (Robson, 2014). Human activities associated with construction pollute 

atmosphere, water and soil (Kang et al., 2010; Li et al., 2009). Destruction of forests and meadows 

in addition to the loss of biodiversity causes the release of carbon into atmosphere and changes 

land-surface albedo, and as a result affects climate change (Foley et al., 2005; Hua and Chen, 

2013). Conversely, afforestation and reforestation remove carbon from the atmosphere. New 

evidences show changes in land-cover that have human origin during the past 150 years have led 

to the release of large amounts of carbon into the atmosphere. Although the combustion of fossil 

fuels is the main source of the release of carbon into the atmosphere, land-cover has still 

significant share (~20 percent) in the pollution of the atmosphere. Increase in the level of 

greenhouse gases and emission of the heat caused by urbanization have increased the Earth 

temperature significantly. In addition, temperature change affects the amount of humidity and 

precipitation, which in turn reduces recovery of forests and pastures (Davin and de Noblet-

Ducoudré, 2010; Hasler et al., 2009; Snyder et al., 2004). In general, we can say that change in 

land-cover have positive and negative effects on human health and can have favorable or 

unfavorable consequences (Hansen and DeFries, 2004). For example, the conversion of forests and 

pastures into agricultural land leads to the provision of food, fiber, fuel and hosting of other crops, 

which has increased population throughout the human history. At the same time, destruction of 

forests and pastures reduces biodiversity, degrades catchment areas and increases soil pollutions. 

Data of land-cover are considered as one of the main layers of information for a variety of 

scientific activities, managerial affairs and administrative tasks. Land-cover maps have a set of 

essential information that should be provided in a clear and reliable manner. Thus detailed and 

timely information about land-cover is essential for land change monitoring, management of 

ecosystems and urban planning. Technological advances, the availability of data in appropriate 

intervals and high-resolution satellite images have made techniques such as remote sensing and 

GIS very useful for conducting researches such as the analysis of detection of changes in land-

cover and prediction of future scenario (Lambin et al., 2001). 

Today the classification of satellite images in general is a common method for extracting 

information related to land-cover patterns and their changes. Several image classifier techniques 

have been developed, a recent comprehensive review of which can be found in Lu and Weng 

(2007). Selection of appropriate classification methods and imagery is an important factor for 

increasing the accuracy and precision of classification. 
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Land-cover classification by satellite images can be done based on two criteria: 1) pixels, 2) 

objects. While analysis based on pixels has been the dominant approach in the classification of 

remote sensing images for a long time, object-based image analysis has become very common in 

the last years (Blaschke, 2010). Some of the past studies have tested the efficiency of different 

image classifier methods that are based on pixels or objects. 

After preparing the land-cover maps at different times, the differences between these maps must be 

determined using appropriate techniques. Change detection has been specified as a process of 

“identifying differences in the state of a phenomenon by comparing it at times A and time B” 

(Singh, 1989). Despite a rich archive containing the satellite images from a number of decades, it 

is possible to easily detect and analyze the changes that occurred over the years (Hostert et al., 

2003; Kennedy et al., 2007; Röder et al., 2008). Different techniques have been employed using 

satellite data for land-cover change detection for many years (Rogan and Chen, 2004; Singh, 

1989). Those methods divided into two groups: (1) pre-classification change detection; (2) post-

classification comparison (Yuan et al., 1998). A set of comparison methods has been developed for 

analysis of multi-temporal satellite images and pre-classification change detection. For example it 

can be pointed to image regression (Ridd and Liu, 1998), vegetation index differencing (Howarth 

and Boasson, 1983), principal components analysis (Gong, 1993), change vector analysis (Chen et 

al., 2003; Johnson and Kasischke, 1998), artificial neural networks (Dai and Khorram, 1999), and 

classification tree (Rogan et al., 2003). These methods basically create “no-change” vs. “change” 

maps, but do not recognize the type of change (Lu et al., 2004; Singh, 1989). Post-classification 

change detection techniques identify land change by comparing produced land-cover maps at 

different time periods (Singh, 1989; Yuan et al., 1998). Post-classification techniques not only 

locate the changes, but also generate “from-to” change data (Jensen, 2005; Yuan et al., 2005). This 

method minimizes the problems created by difference in sensors and atmospheric situation, since 

images from different times are separately classified (Singh, 1989; Yuan et al., 1998). 

This study focuses on comparing various machine learning algorithms, i.e. random forest (RF), 

decision tree (DT), support vector machines (SVM), and object-based support vector machines 

(OSVM), to classifying Landsat image 2010. Furthermore land-cover maps of 1990 to 2010 

produced using multi-temporal Landsat images (TM and ETM+) and the best classifier method. 

For this purpose, multispectral images of the study area over a period of two decades have been 

chosen to indicate the changes in land-cover phenomena. Our specific objectives were to: (1) 

comparing pixel-based and object-based classification methods for land change detection, (2) 

mapping land-cover change in our study area between 1990 and 2010, from Landsat TM/ETM+ 

images, and (3) comparing satellite-based land-cover trends in two last decades (1990-2000 and 

2000-2010). 
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2.3. Materials and methods 

2.3.1. Study area 

The study area is located in central Germany and covers 690000 hectares (Fig. 1). Elevation ranges 

from 114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain 

located in the Thuringian Forest. The predominant climate is of the continental type with an 

average annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on 

monthly recording data of 18 stations, in Free State of Thuringia from 1960–1990). The soil parent 

material is mainly calcareous. The landscape maps presented five classes: forest, built-up area, 

grassland, farmland, and water bodies (lakes, rivers, ponds, and reservoirs).  
 

 
Figure 1 Location and land-cover (true color image) of study area for the year 2010. 

 

2.3.2 Landsat image collection and pre-processing 

In this study temporal coverage Landsat TM and ETM+ images from 1990 to 2010 with a standard 

resolution of 30×30 meters were obtained from the United States Geological Survey (USGS) 

archive (http://earthexplorer.usgs.gov/). Since Landsat ETM+ images from 2003 and beyond have 

high rates of no data values (stripping), images from 2010 were collected from Landsat TM. 

Data must be preprocessed and image quality must be checked before classification and change 

detection analysis.Image registration should be considered before any analytical process is 

performed on images (in particular, change detection analysis), because slight differences created 

by the spatial offset directly impact the image analysis results. In this study, image registration was 

http://en.wikipedia.org/wiki/Thuringian_Forest


 11 

performed by selecting an appropriate number of well-recognized ground control points (i.e. road 

intersections). A second order polynomial transformation was used to hold down the root-mean-

square error (RMSE). Eventually, images with an error lower than a half-pixel (about 15 meters) 

were registered. 

Each sensor that records visible or near-visible electromagnetic radiation generally registers a 

combination of two types of energy (Hadjimitsis et al., 2010; Jensen, 2013), so the numerical value 

of any pixel in a satellite image does not show the true ground-leaving radiance of that point on the 

Earth's surface. Part of this brightness is derived from the reflectance of the intended point, and the 

rest is due to atmospheric effects. Absorption and scattering of radiation are two major 

atmospheric effects that influence satellite images. In this study, the PCI Geomatica ATCOR 

model was used for atmospheric correction (Geomatica, 2013). Atmospheric and terrain effects 

were removed to determine the true ground reflectance of the Earth's surface. This model requires 

information, some of which is available in the metadata file, including date and time of data 

acquisition, sensor type, coordination of the image center, and atmospheric definition area. 

Atmospheric definition area was selected as “rural” regions and atmospheric condition was limited 

to “mid-latitude summer”. 

 

2.3.3. Image Classification 

Satellite Images classification is one of the most important steps in capturing detailed land-cover 

information. Determination of a suitable classification algorithm is a critical prerequisite for 

performing a precise classification. Therefore, the model used in this study operates in two stages. 

At the first stage we compared several classifiers that are considered to be suitable for land-cover 

image classification. Training samples were selected for training process before classification. In 

this study, the Jeffries-Matusita distance method is used to determine the spectral separability 

among different phenomena taken from training samples. After the selection of training samples, 

different classification algorithms were used to create the classified maps from Landsat 2010 

image. Then the accuracy of classified maps was compared not only by visual observation but also 

by statistical methods. The second stage involved classifying all images (1990, 2000 and 2010) 

using the best classification algorithm identified in the first stage, and will have a process similar 

to that of first stage. Ultimately all classified maps will undergo an accuracy evaluation. 

 

2.3.4. Collection of training data 

A suitable classification system and adequate representative training samples are very important 

for a successful classification (Lu and Weng, 2007). We determined five land-cover categories 

(Built-up area, Forest land, Framland, Grassland, Water bodies) with visual interpretation and 

analysis of the satellite images. We gathered ground truth data (training and validation data) based 
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on Quickbird images available in Google Earth (http://earth.google.com). For whole of study area, 

a sample of ground truth points randomly collected within the area covered by high resolution 

Quickbird images, overlaid selected samples on the Quickbird images, and then grouped these 

points to appropriate classes based on visual interpretation. A point was assumed as an especial 

class if land-cover patches included at least one pixel. Based on visual interpretation of the 

Landsat images, the training sites were carefully determined and restricted to homogeneous 

regions where class membership was permanent from 1990 to 2010. We checked the separability 

of the training samples by Jeffries-Matusita distance measure and optimized the sample dataset 

until we achieved maximum stable accuracy. This optimizing task was carried out by removing 

training samples that may have been sources of error or collecting new samples to obviously 

misclassified categories. Finally, we used a sample of 1374 points were mapped from Quickbird 

images. We split all ground truth points into training (75%) and evaluation (25%) data. We finally 

used 100% of the ground truth data to produce land-cover maps of the whole study area. 

 

2.3.5. Pixel-based image classification 

Pixel-based image classification approaches either automatically allocate all the pixels in an image 

to land-cover types or classify them thematically pixel by pixel. In this study, three different pixel-

based machine learning classifiers were applied on each data set, namely: (1) Random Forest 

(Breiman, 2001; Ghimire et al., 2010); (2) Decision Tree (Keshtkar et al., 2013; Quinlan, 1987); 

and (3) Support Vector Machines (Duro et al., 2012a; Vapnik, 1995). 

 
2.3.5.1. Decision tree 

Decision Tree (DT) is a non-parametric classification method which can deal with various types of 

datasets containing categorical variables. DT represents a set of constraints or conditions that are 

hierarchically organized and is composed of one root node (containing all data), a number of 

internal nodes (splits), and a number of terminal nodes (leaves). Each node in this model has only 

one parent node and two or more child nodes (Breiman et al., 1984). In this method, the specified 

decision tree induction approach determines the variable from which classification begins (root 

node). Then the data splitting process repeats until either all samples are assigned to a specific 

class or a predetermined stop condition is reached. Once the decision tree is constructed, it must 

undergo a cutback (or pruning) process aimed at reducing its structural complexity and improving 

its accuracy. Factors such as the number of leaf nodes, tree-depth, or the number of internal nodes 

can be considered as the measure of pruning. 

This model was run in R software (R Development Core Team, 2009) using the rpart package 

(Therneau and Atkinson, 1997). In this study, “information gain” measure was considered for 

deciding between alternative splits. The rpart package has two main parameters to be adjusted: The 
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minimum number of observations in a node (minsplit), and maximum depth of tree (maxdepth). 

Although complex trees are more expressive and potentially allowing higher accuracy, but they do 

not generalise the data well and are more likely to overfit. Pruning the model by setting the 

minimum number of observations in a node or setting the maximum depth of the tree can avoid 

this problem. Therefore, we tried to examine several decision trees to achieve a strong model. 

 
2.3.5.2. Random forests 

RF is a nonparametric algorithm which is considered as an improved version of Classification and 

Regression Tree (CART). This model consists of a large number of classification trees, each 

constructed by taking an individual bootstrap sample from the original data set (sampling with 

replacement). Ultimately, the trees will be aggregated and a majority vote rule will be applied to 

determine the final category (Breiman, 2001), and that is why this method is also considered as an 

ensemble model.  

To estimate the misclassification error and variable importance the samples that are not in the 

bootstrap sample (out-of-bag data, OOB) were used. The OOB sample composed of approximately 

37% of the original data set at each bootstrap iteration. To ensure less similarity (i.e. more 

diversity) between the individual trees, no pruning is performed and this model allows all the trees 

in the forest to become fully grown (Genuer et al., 2010). RF method has two key parameters that 

must be adjusted: The number of tree (ntree) and the number of input variables (mtry). These two 

parameters must be optimized to improve the classification accuracy (Breiman, 2001). 

The splitting criterion used in this study was the Gini coefficient, and the stop criteria to stop 

splitting, i.e. the minimum number of samples in a node and the minimum impurity in a node were 

set 1 and 0, respectively, in which values the decision trees will be full grown. We used a grid-

search approach based on the OOB estimate of error to figure out the optimal combination for 

ntree and mtry parameters (Tian et al., 2009). Finally, the optimized parameters were entered into 

ImageRF in the EnMAP-Box to classify satellite image (Waske et al., 2012). 

 
2.3.5.3. Support vector machines 

A Support Vector Machine (SVM) is a discriminative method that classify data according to the 

statistical learning theory (Vapnik, 1995). The operation of the SVM algorithm is based on fitting 

a separating hyperplane that gives the best separation between training samples in a 

multidimensional feature space. On the other world, the optimal hyperplane provides the largest 

minimum distance (margin) between the training samples. In case of an optimal separating 

hyperplane, distance between the hyperplane and the nearest positive and negative training 

example, called the margin, and data points on the margin are known as support vectors. Instead of 

using all training samples to separate classes, SVM use only support vectors that describe class 
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boundaries (Foody and Mathur, 2004). To separate classes with non-linear boundaries, a set of 

kernel functions including the sigmoid, the radial basis function (RBF), and the polynomial can be 

used, which transfer training samples into a higher-dimensional space, where linear class 

separation is possible and the problem can be solved in the new space (Huang et al., 2002).  

In this study, SVM was implemented using the radial basis function (RBF) kernel. The SVM 

implementation of ENVI 4.8 software (ITT Visual Solutions Inc., http://www.ittvis.com/) has four 

parameters to be adjusted: the kernel width ‘‘gamma (γ)’’, the penalty parameter (C), the number 

of pyramid levels to use, and the classification probability threshold value. Classification 

probability threshold is an important value for the SVM classifier since all rule probabilities less 

than this threshold are unclassified. We set zero value for this threshold that means all pixels had 

to be classified into one category. Also, we set zero value for the pyramid parameter, which force 

the model to processes the image at full resolution.   

Gamma and penalty parameters are two important factors that influence the accuracy of SVM 

classification. By default, the inverse of the number of bands is set for the value of gamma. This 

default value seems to be reasonable but it is not perfect. Studies have shown that the best 

combination of γ and C depends on the training data and cannot be known by default (Kuemmerle 

et al., 2009). Also, SVM needs the normalization of numeric inputs and thus there is a data 

normalization prior to SVM classification (Ben-Hur and Weston, 2010). Two methods are usually 

well known to data normalization: linear normalization and Gaussian normalization. In this study, 

the linear normalization was performed as pre-processing in SVM.  

 

2.3.6. Object-based image classification 

In object-based classification methods, every classification is related to a specific scale. This 

means that an image can be introduced in different scales. For example, an image may be 

represented based on the average size of image objects, whereas a similar image may be divided 

into different size of objects (Walsh et al., 2008). Image segmentation illustrates an essential 

primary step in object-based image analysis, as the image objects (termed “image segments”) 

resultant from this process produce the core of an object-based classifier (Castilla and Hay, 2008). 

The process that identifies pixels with a similar characteristic (such as spectral similarity) and 

allocates them to a certain group is called segmentation (Petropoulos et al., 2012). The spectral 

characteristics of each object are obtained from the mean value of the pixels forming the objects in 

each spectral band and from different statistical information such as minimum, maximum, and 

standard deviation. In addition to their spectral characteristics, objects can be described and 

recognized by their tone, size, shape, and texture (Bock et al., 2005). All these characteristics can 

be used in the classification and discrimination processes of objects. 
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In this study, image segmentation technique consists of two key steps: (1) edge-based 

segmentation (2) Full Lambda Schedule merging method. This procedure starts with a multiscale 

edge-based segmentation to divide the images into image objects on the basis of similar spatial, 

spectral, and textural characteristics. Two different types of errors may happen in image 

segmentation including over-segmentation and under-segmentation (Kampouraki et al., 2008; 

Möller et al., 2007). Using a low segmentation level generally is resulted in many small segments, 

which in turn brings about over-segmentation. On the contrary, high segmentation levels result in a 

few large segments that accord with different land-cover classes. Hence, a precise analysis seems 

necessary to choose segmentation scale (Liu and Xia, 2010). Preventing formation of over-

segmented statements, which can be a very difficult task, is one of fundamental phases in this 

process. The full lambda schedule model was used to solve over-segmentation problem; hence 

segmentation is used in the integration stage where all adjacent segmentations, given their range 

and location features, are integrated (Robinson et al., 2002). Merging continues if the algorithm 

catches a pair of adjacent regions, i and j, such that merging cost, ti,j is less than a described 

threshold lambda value, of 0 to 100. The full lambda schedule algorithm is estimated as, 

 

௜.௝ݐ = |�೔|×|�ೕ||�೔|+|�ೕ| × ௜ݑ‖ − ℎ(�ሺݐ݃�݁�௝‖ଶݑ ௜ܱ  , ௝ܱሻ)  

 
where Oi is region i of the image, │Oi│ denotes the area of region i, ui is the average value in 

region i, uj is the average value in region j, ║ui - uj║ is the Euclidean distance between the spectral 

values of regions i and j, and length (∂(Oi , Oj)) denotes the length of the common boundary of Oi 

and Oj. 
 

Table 1 Image object features used in object-based classification 

Object features Description 

Spectral-Mean Mean value of the pixels comprising the region in a specific band 

Spectral-STD Standard deviation value of the pixels comprising the region in a specific band 

Texture-Mean Average value of the pixels comprising the region inside the kernel 

Texture-Variance Average variance of the pixels comprising the region inside the kernel 

Intensity Intensity using the Spectral-Mean attributes, and is measured in floating-point values from 0 to 1. 

NDVI Normalized Difference Vegetation Index: (band4 – band3)/(band4 + band3) 

 

We classified several image segmentations of different scales to identify the one with the highest 

overall accuracy. This trial-and-error approach is often utilized in object-based classifications (e.g. 

Dingle Robertson and King, 2011; Duro et al., 2012b; Myint et al., 2011). Following the image 

segmentation process, object features were selected for use in the object-based classification. 

There are several types of image object features that could be potentially incorporated into image 

analysis (Duro et al., 2012a). Selecting object features for use in object-based classification can be 
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based on user experience and previous studies (e.g. Duro et al., 2012a; Pu et al., 2011; Yu et al., 

2006), or a feature selection method can be used prior to final classification (e.g. Qian et al., 2014; 

Van Coillie et al., 2007). In this study, the inclusion of object features was based on our 

knowledge and previous studies. Consequently, we selected out 16 object features (Table 1).  

These 16 features included 12 features calculated based on the 6 multispectral bands, which is 

mean value and standard deviation of these bands. In addition, we chose intensity, texture-

variance, texture-mean, and NDVI (Normalized Difference Vegetation Index) for classifications. 

Finally, for executing SVM classification method, we selected training samples for each land-

cover type based on the previously segmented and merged objects. All these processes have been 

done in ENVI ZOOM (Version 4.8) software (ITT Visual Solutions Inc., http://www.ittvis.com/). 

 

2.3.7. Accuracy assessment 

In this study, accuracy evaluation was based on the calculation of the overall accuracy, producer’s 

accuracy, user’s accuracy, and the Kappa index. The likelihood that the classifier labels a pixel of 

a known class into an accurate class is called the producer’s accuracy (Congalton, 1991), while the 

user’s accuracy is a quantity representing the chance that any classified pixel to represent the 

accurate class. We also used McNemar test to assess the statistical significance of superiority of 

each classification algorithm over another. This test is based on a chi-square (χ2) statistics with 1 

degree of freedom, computed from two error matrices and given as,  

 �ଶ = ሺ ଵ݂ଶ − ଶ݂ଵሻଶ
ଵ݂ଶ + ଶ݂ଵ  

 

where f12 shows the number of cases that are wrongly classified by classifier one but correctly 

classified by classifier two, and f21 shows the number of cases that are correctly classified by 

classifier one but wrongly classified by classifier two (Manandhar et al., 2009). 

 

2.3.8. Analyzing land-cover change 

Change detection is the process of identifying the alterations made in an object or phenomenon by 

observing it at different times. In this study, we calculated the net changes and annual changes in 

the land-cover within the study area to compare the status of this factor at different time periods. 

The net changes were obtained by pixel based post-classification change detection algorithm. The 

post-classification change detection method not only maps the changes magnitude, but also 

determines the trend of changes (from-to) between land-cover classes (Yuan et al., 2005). Net 

change was calculated as the difference in land-cover (in ha) between 1990 and 2010, whereas 

annual change rates (ACR) were calculated for each time period j as: 
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ܥܣ ௝ܴ = ௝ܥܵ)] ⁄௝ܤܲܥ ) × ͳͲͲ] �⁄  

 
where SC is the sum of changes in time period j, CPB is the cover of each phenomenon at the 

beginning of time period j, and Y donates the number of years between image A and image B.  

To assess whether land-cover change varied with altitude and slope, we classified the digital 

elevation model (DEM) into four classes (class-1 (<255 m), class-2 (255-393 m), class-3 (393-561 

m) and class-4 (>561 m)) using Jenks natural breaks classification method and calculated 

percentage of net land change for each class. Likewise, we summarized net land-cover changes for 

three slope classes: gentle (<5°), moderate (5-10°), and steep (>10°). The Jenks optimization 

method has been developed to clustering data into different classes. This model tries to classify the 

data in a manner that the classes, while having the least internal variance, can have the greatest 

possible variance with respect to each other (Morris and Simon, 2012). 

 

2.4. Results 

2.4.1. Class Separability 

In this study, the six reflective bands of the Landsat images were used as the reference basis for the 

calculation of the separability index of the collected spectra from the training sites indicating the 

different classes. Table 2 shows pairwise spectral separability values of different classes of 

training samples for 2010 image classification. Values range from 0 to 2. The closer to 2, the more 

separable training samples have been selected. Values more than 1.8 indicate that class pairs have 

good separability, while values less than 1 represent that the class pairs must be joint into one class 

(Petropoulos et al., 2010). Observing the values shown in Table 2, most of the class pairs are well 

separated from each other with values more than 1.8. Farmland and grassland have comparatively 

lower value (1.65); and class separability value of pair of farmland and built-up area (1.63) is also 

relatively lower than other pairs. Thus, no class has to be combined into others because all values 

are greater than 1. The selected training samples are satisfactory to be used for classification.  

 

Table 2 Class separability of training samples of 2010 image 

Separability Values Forest Water Farmland Grassland Built-up area 

Forest * 1.89 1.92 1.97 1.96 
Water 1.89 * 1.99 1.99 1.99 
Farmland 1.92 1.99 * 1.65 1.63 
Grassland 1.97 1.99 1.65 * 1.83 
Built-up area 1.96 1.99 1.63 1.83 * 

 
 
2.4.2. Tuning of machine learning algorithm parameters 

For DT classifier, the minsplit was set to 5 and examined a set of maxdepth from 2 to 7, which 

yielded a total of 6 classified images. We did not select the minsplit value less than 5 since by 
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setting minsplit to too small a value, the model may run toward the risk of overfitting. Results 

showed that the highest overall classification accuracy (i.e., the percentage of correctly classified 

samples) achieved by a maximum depth value of 6. 

In order to optimize ntree and mtry parameters for RF classification model, we investigated a set 

of mtry from 1 to 6, while the range of the value for the ntree parameter was set between 100 and 

1000 with an interval of 100, which resulted in 60 different classifications. Results indicated that 

the ntree value of 900 combined with a mtry value of 2 produced the lowest OOB error rate 

(4.54%). On the other hand, the highest OOB error rate (5.81%) was produced by the combination 

of mtry value of 1 with ntree value of 100 (Figure 2b). 

For SVM-based classifications, a grid-search approach was used to find the optimal combination 

for γ and C parameters. Therefore, the gamma was adjusted by considering a nested cross-

validation process, where γ {10−3, 10-2, 10−1, 1, 10, 102, 103}. Also, we set the C parameter by 

considering a nested cross-validation with C {10−2, 10−1, 1, 10, 102, 103}. Results from the grid 

search indicated that the γ value of 1 combined with a C value of 10 produced the highest accuracy 

for the SVM-based classifications (pixel and object-based methods) (Figure 2a). 

Also, for object-based classifier, an iterative trial-and-error approach was used to identify the best 

image segmentation scale based on the highest overall accuracy. Results show that the scale value 

of 50 without merging to reduce the number of segments produced the highest accuracy for the 

object-based classification method (Table 3). 

 

 
Figure 2 Heat maps resulted from grid search procedure: (a) Optimization of the SVM parameters (C and γ). The F1 
measure was used to determine the best accuracy for the different combinations (n = 42) of parameters; (b) Optimization 
of the RF parameters (mtry and ntree). The OOB sample was used to determine the error rate for the different 
combinations (n = 60) of parameters. 

 

2.4.3. Accuracy assessment and statistical comparisons 

Classification was conducted on 2010 image using four different machine learning classifiers, 

which were DT, RF, SVM, and OSVM. The classification maps are shown in Figure 3. Analyzing 
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the classification maps from Figure 3 (a) to (d) visually, indicate that all classifiers can generate 

useful land-cover maps and produce consistent classification results.  

 

Table 3 The classification result (overall accuracy) of values for image segmentation parameters used in the object-based 
method. Values in bracket are the kappa coefficient. 

Scale level  
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67.92 
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83.56 
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92.09 
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93.35 
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In addition to visually observing the classification maps, accuracy assessment was also performed 

on the classification maps to quantitatively compare the performance of these classifiers. The 

associated classification accuracy statistics are summarized in Table 4. According to the result, in 

general, classification using OSVM has highest overall accuracy and Kappa coefficient, which are 

93.54% and 0.88 respectively, while DT generates the least accurate classification map with 

86.36% overall accuracy and 0.76 Kappa coefficient. Classification maps generated by RF and 

SVM have much higher overall accuracy (90.28% and 90.93% respectively) than DT, but 

relatively slightly lower than OSVM. 

For the OSVM the classes with the highest producer’s accuracy were those of water (96.58%), 

forest (96.31%) and farmland (96.13%) followed by the built-up class (94.06%), whereas the 

lowest producer’s accuracy was obtained for the class of grassland (63.36%). User’s accuracy was 

higher for the water bodies (98.61%), the forests (96.71%) and farmland areas (94.57%) followed 

by grassland areas (87.74%), the lowest user’s accuracy was found for the built-up areas class 

(78.44%).  

All classes were obviously separable in all classifier algorithms applied here. But classes with 

relatively poor or indistinct producer’s and user’s accuracy were for the case of SVM and OSVM 

classifiers in the grassland areas, whereas for RF classification method the grassland and built-up 

areas and for DT classifier method the water, grassland and built-up areas. 
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Figure 3 Land-cover maps of 2010 generated by (a) DT, (b) RF, (c) SVM, and (d) OSVM classification algorithms. 

 

Also, we used the McNemar test to figure out whether a statistically significant difference exists 

between different machine learning algorithm. The McNemar test indicated that the observed 

difference between pixel-based image classifications was not statistically significant (p>0.05). For 

pixel-based classifier methods and object-based classifier, a statistically significant difference 

(p<0.05) between DT and OSVM algorithms (p=0.004) was observed, while RF and SVM 

algorithms did not show significant difference with OSVM method (p>0.05). 

 

2.4.4. Analysis of land-cover change 

Object-based classification (i.e. OSVM algorithm) was performed on three Landsat images of 

1990, 2000 and 2010. Accuracy assessment result of each classification map is summarized in 

Table 5. By counting the number of pixels of each phenomena for each year, land-cover coverage 

information can be obtained, which is shown as Figure 4.  
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Table 4 Summary of mapping accuracy obtained by different classifiers to the Landsat TM 2010 image. OA= overall 
accuracy; K= kappa coefficient; UA= user’s acxcuracy; PA= producer’s accuracy. 
 DT RF SVM OSVM 

 OA 
(86.36) 

K 
(0.76) 

OA 
(90.28) 

K 
(0.85) 

OA 
(90.93) 

K 
(0.86) 

OA 
(93.54) 

K 
(0.88) 

 
Class 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

Forest 95.76 84.41 96.19 95.49 97.26 94.05 97.71 96.31 
Water 99.17 56.70 99.00 93.86 99.20 94.07 99.61 96.58 
Farmland 89.47 89.24 86.24 93.65 88.97 93.31 94.57 96.13 
Grassland 66.39 81.53 83.54 61.06 80.77 56.33 87.74 63.36 
Built-up 56.09 81.23 63.68 89.77 78.34 90.07 78.44 94.06 

 
 

According to the change detection results, the most significant change occurred from 1990 to 2010 

is caused by the expansion of built-up area. Analysis of land-cover area changes indicate that 

during this time period, built-up areas increased from 2.8% to 5.5%. The built-up land was 

continuously increased, and the farmland, grassland and forest were continuously decreased. 

Grasslands decreased significantly from 4.89% to 4.02% during 1990–2010. During this period, 

forest area decreased from 32.38% to 32.26%. Also, the coverage of farmlands reduced from 

59.21% to 57.58% in the same time. The area of water increased a little. 

 

 
Figure 4 Pie chart of land-cover coverage (%) from 1990 to 2010. 

 

Figure 4 only illustrates the static state of each phenomenon in 1990, 2000 and 2010. Table 6 

depicts the summarized specific “from-to” change information. This table represents the amount of 

change from one class detected in 1990 to another class detected in 2010. The diagonal values in 

table represent the area with no change. Forest and farmland are moderately stable classes that 

don't have significant change, keeping 91.23% and 94.53% unchanged respectively. About 5.04% 

of forest change to farmland and 2.54% change to grasslands. As for farmland, a small portion 

(2.94%) of the area changes to built-up area and another small portions, i.e. 1.69%, 0.8% and 

0.04%, changes to grassland, forest and water bodies, respectively. Comparatively, grasslands 
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experience the most dramatic change. Only about 56.35% of grasslands were kept unchanged. 

19.76% and 16.3% of grasslands alter into farmland and forest, respectively. 

 
 

Table 5 Summary of mapping accuracy obtained by object-based SVM classifier to the Landsat 1990, 2000 and 2010 
images. OA= overall accuracy; K= kappa coefficient; UA= user’s accuracy; PA= producer’s accuracy. 

 1990 2000 2010 

 OA 
(89.75) 

K 
(0.84) 

OA 
(92.36) 

K 
(0.85) 

OA 
(93.54) 

K 
(0.88) 

 
Class 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

 
UA (%) 

 
PA (%) 

Forest 97.35 94.23 97.14 96.51 96.71 96.31 
Water 99.66 96.99 96.97 96.76 98.61 96.58 

Farmland 77.39 92.87 91.87 97.64 94.57 96.13 
Grassland 97.16 61.65 84.35 65.37 87.74 63.36 
Built-up 86.93 89.28 79.46 93.56 78.44 94.06 

 
 

Table 6 Change detection classification matrix for 1990–2010 based on post classification comparison to specify ‘from–
to’ transitions. The amount of changes is demonstrated by percentage (%). Bold type denotes that there is no change in 
land-cover between two dates. 

 
 1990 

Class Forest Water Built-up Farmland Grassland 

2010 

Forest 91.23 15.98 2.20 0.80 16.30 

Water 0.35 75.94 0.88 0.04 0.57 

Built-up 0.84 3.64 94.26 2.94 7.03 

Farmland 5.04 3.25 0.96 94.53 19.76 

Grassland 2.54 1.19 1.79 1.69 56.35 

 
 

Table 7 Distribution of land-cover classes (in hectare) and annual change rates (ACR) for 1990-2010. 

 Year ACR in land-cover structure 

 1990 2000 2010 Δ%1990–2000 Δ%2000–2010 Δ%1990-2010 

Forest 223400 222810 222550 -0.26 -0.12 -0.38 
Water 4460 4530 4550 1.57 0.44 2.02 
Grassland 33750 31390 27750 -6.99 -11.60 -17.78 
Farmland 408490 404370 397270 -1.01 -1.76 -2.75 
Built-up area 19840 26840 37820 35.28 40.91 90.63 

 
 

Table 7 shows the ACR of land-cover classes for three time periods, 1990-2000, 2000-2010, and 

1990-2010. This table indicates that mean annual deforestation rates were three times higher in 

1990–2000 compared to 2000–2010. The maximum rate of annual change in water bodies 

belonged to the years 1990-2000 and was about 4 times higher than the rate of the succeeding 10 

years (2000-2010). Mean annual degradation rates of farmland and grassland in 1990-2000 were 

almost two times higher than the same rates in 2000-2010. Also, the results showed that the ACR 

of built-up area for 1990-2000 and 2000-2010 was 3.53% and 4.09%, respectively. Between the 

years 1990 and 2010, an annual average of about 4.53% of lands turned to the built-up area. 
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2.4.5. Land-cover changes in relation to topographic factors 

The elevation distribution of each land-cover class is shown in Table 8. Elevation in the study area 

is mostly less than 400 m. The areas with an elevation of <255 m (Class-1), 255-393 m (Class-2), 

393-561 m (Class-3), and >561 m (Class-4) accounted for 25.4%, 36.5%, 25.6%, and 12.4% of the 

whole area, respectively. 

The results show that more than 80% of Class-1 and 60% of Class-2 lands are allocated to 

farmland; forest and farmland occupy approximately 47% and 42%, respectively, of Class-3 lands; 

and more than 70% of Class-4 land is covered by forest; only 20% of Class-4 land is farmland. 

The mean elevation of each land-cover class is, in ascending order, built-up area (about 290 m) < 

farmland (about 310 m) < water bodies (about 350 m) < forest and grassland (over 430 m). During 

the years 1990-2010, changes in Class-1 land reduced the area of farmland by 98.6 km2 and 

increased built-up areas by 81.7 km2. The most major change was related to the increase in built-

up lands, which was as much as 60.3 km2. The decrease of 38.5 km2 in grassland reflected the 

greatest change in Class-3 land. Forest land underwent the largest change with a loss of 16.4 km2. 

The results obtained from the division of the study area based on slope show that about 61% of the 

area under study has a slope below 5 degrees (4220.56 km2), and over 70% of this slope category 

is farmland. Additionally, over 22% of the study area (1532.28km2) has a slope of 5-10 degrees. 

Forest and farmland cover about 46% and 44% of this slope gradient category, respectively. About 

17% of the study area has a slope greater than 10 degrees (1146.56 km2), about 75% of which is 

covered by forest (Table 9). The mean slope gradients of built-up land and farmland are less than 

3.3°, while those of forest, grassland, and water bodies are more than 5°. 

 
 
2.5. Discussion and Conclusion 

This study compared various machine-learning algorithms (i.e. RF, DT, SVM, and OSVM) with 

classifying Landsat image 2010. Furthermore, land-cover maps of 1990, 2000, and 2010 were 

produced using multi-temporal Landsat images. 

The results showed that SVM has the highest accuracy among pixel-based methods compared with 

two other methods (i.e. RF and DT), although the McNemar test did not show a significant 

difference in the performance of these three models (p > 0.05). It is noteworthy that both RF and 

SVM algorithms can obtain similar overall classification accuracies which are usually greater than 

those acquired using DT-based algorithms (Table 4). All in all, the classification results reported 

here are generally in agreement with results reported by other authors. For example, Duro et al. 

(2012) reported that the RF model achieved higher classification accuracies than the DT model. 

Pal (2005) found that both RF and SVM image classifiers produced similar classification 

accuracies. Conversely, the results disagreed with those described by Otukei and Blaschke (2010), 
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who discovered that DT generally achieved better classifications than those obtained using SVM. 

Adam et al.(2014) and Rodriguez-Galiano and Chica-Rivas (2012) also reported that the RF model 

achieved higher classification accuracies than the SVM model.   

Although among the investigated models in this study, the DT method showed the least overall 

accuracy (83.36%), but all in all it provided an acceptable quality. Since the maps produced from 

the satellite data with an overall classification accuracy of 85%, are determined as acceptable 

(Anderson, 1976). One of the most important reasons for high accuracy of classification in the 

SVM method is its capability in separating hyperplanes for different classes. This model can 

generalize this separation system to unseen samples with the minimal error for all the separating 

hyperplanes and consequently can offer the best separation compared to the other models 

(Licciardi et al., 2009). Moreover, SVMs use training data in an appropriate space for self-

assessment which are explained by a kernel function. 

The ability of pixel-based and object-based methods to classify the land-cover classes was 

compared. Both pixel-based and object-based classifiers produced comparable overall accuracies. 

Object-based classifier achieved higher classification accuracy than other methods by about 3-7% 

(Tables 4). In this study, the classifications resulted from the pixel-based or object-based image 

analysis yielded almost similar results of different phenomena from the visual point of view. 

According to the results of the McNemar test, there is no statistical reason for preferring pixel-

based methods to the object-based classifier. As expected, the object-based classifier approach (i.e. 

OSVM) in comparison to the pixel-based classifications obtained a more generalized visual 

appearance and more contiguous representation of land-cover, which possibly better shows how 

land-cover interpreters and analysts recognize the landscape (Stuckens et al., 2000). 

One of the weaknesses of pixel-based methods is the ‘‘salt and pepper’’ effect (Fung et al., 2008). 

The restriction of the mentioned effect is not a problem in the object-based method. A combined 

usage of segmentation using information gained from image objects was resulted in rather more 

precision in the object-based method. Segmentation plays a key role in declining the "salt and 

pepper" effect considerably. Class discrimination was comparatively higher using the object-based 

method compare to pixel-based methods, as showed in the higher user accuracy for different 

classes (Table 4). Parallel with our results, different authors have pointed to superiority and 

advantages of the object-based methods rather pixel-based classifiers (e.g. Benz et al., 2004; Fung 

et al., 2008; Petropoulos et al., 2012). Although the accuracy of classification is an important 

feature for selecting the classification methods, choosing an image analysis approach is not always 

based on its accuracy (Duro et al., 2012a). In situations in which the statistical difference among 

the classification algorithms is low the end-user in selecting these models may consider other 

factors. For example, being cost free, user-friendly and availability may be considered which 

might encourage the user in selecting a specific model. 
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Our results show that, overall accuracies derived from the implementation of the OSVM classifier 

to the Landsat images of 1990, 2000 and 2010 were, respectively, 89.75%, 92.36% and 93.54% 

(Table 5), thus indicating the suitability of the classified remote sensing images for effective and 

reliable land-cover change analysis and modeling. Figure 6 illustrates the produced land-cover 

maps. 

 

 
Figure 6 Time series of detailed land-cover maps for (a) 1990, (b) 2000, and (c) 2010. 

 

The results of this study showed that natural lands affected by human activities are rapidly 

transforming and being damaged. The net built-up cover growth for 1990–2000 and 2000–2010 

period was 7000 and 10980 hectares, respectively. Built-up area has continued to expand since 

1990 at the average rate of 4.53% per year. The main driving force for built-up area expansion 

would appear to be the implement of the urban development, termed “Critical Reconstruction”, in 

the region since 1990 (Tölle, 2010). This in turn created stress to natural lands like forests and 

grasslands. 

The results showed that between the years 1990 to 2010, the grasslands are significantly converted 

to farmlands, forests and built-up lands and only 56% of the grasslands are remained unchanged 

(Table 6). However, during the same time only about 7% of other lands are converted to the 



 26 

grassland, which mainly is a consequence of deforestation. Table 7 shows that in the first decade 

(1990- 2000), on average, about 0.7% of grasslands’ area is reduced annually, a number which has 

become more than two times (%1.16) in the second decade (2000-2010). These results confirmed 

the high vulnerability of grasslands in the study area. 

Post-classification change detection results showed that the destructed forests mainly converted to 

farmland and grassland. Noting the data in table 6 it can be concluded that deforestation and 

reforestation are happening concurrently, but the speed and amount of deforestation is higher. 

Although, the results of the study on two different decades showed that the amount of 

deforestation in the second decade experienced a significant reduction and reduced to one third of 

the first decade. 

As seen in Table 8, results show that with increasing altitude, land-cover changes were reduced. 

Major changes happened in Class-1 and Class-2; approximately 100 km2 and 66 km2, respectively, 

were transformed from one state to another. In the two classes at higher elevations, a total of 61 

km2 of land has changed. Built-up areas grew significantly from 198 km2 to 378 km2 between the 

years 1990-2010 (Table 7). This phenomenon covered 81.7 and 60.3 km2 of the total land area of 

Class-1 and Class-2, respectively. In the same period, farmland lost a total of 2.75% of total area; 

in Class-1 and Class-2 alone, 98.6 and 32.8 km2 of farmland were transformed into other types of 

land, respectively. At higher elevations, however, the surface of the area increased 19.2 km2, 

because the development in built-up land changed the use of a large part of farmland (Table 8). 

However, the results do indicate that about 81% of Class-1 lands remained under farmland use by 

2010.  

 

Table 8 Land-cover changes in relation to elevation during 1990-2010. 
  Forest Built-up Farmland Grassland Water 

Mean (m) 

1990 475 277 306 434 350 
2010 472 295 310 430 340 

Changes -3 18 4 -4 -10 

1990 (km2) 

Class 1 81.3 105.2 1526.2 30.4 10.0 
Class 2 690.4 66.3 1642.6 108.1 14.2 
Class 3 837.5 22.0 750.2 138.4 19.3 
Class 4 624.8 4.8 165.9 60.7 1.2 

2010 (km2) 

Class 1 79.9 186.9 1427.6 46.2 12.5 
Class 2 696.6 126.7 1609.8 76.0 12.6 
Class 3 840.6 54.9 753.9 99.9 18.0 
Class 4 608.3 9.7 181.4 55.5 2.4 

Land-cover 
changes (km2) 

Class 1 -1.4 81.7 -98.6 15.8 2.5 
Class 2 6.1 60.3 -32.8 -32.1 -1.6 
Class 3 3.1 32.9 3.8 -38.5 -1.3 
Class 4 -16.4 5.0 15.4 -5.2 1.2 

 

Most grasslands were located at high altitudes, but their area decreased in the years 1990-2010 in 

all height classes (except Class-1).Grassland in Class-2 and Class-33 has largely been replaced by 

built-up land. This may indicate that the development of built-up areas and their penetration into 
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grassland is legally much easier than the penetration into forest or farmland; perhaps grasslands 

have the features necessary for urbanism.  

The results show that as slope increased, forest areas also increased (Table 9). For example, about 

40% of the forest land is located on a slope greater than 10 degrees. Unlike forestland, however, 

the area covered by other phenomena decreased as slope increased. This is especially pronounced 

in the case of farmland and built-up areas. More than 75% of farmlands are located at a slope 

below 5 degrees, and only about 5% appear on slopes greater than 10 degrees. Moreover, more 

than 85% of built-up areas occupy slopes below 5 degrees. Although built-up areas spread 

significantly in areas with a slope of less than 5 degrees from 1990 to 2010 (157 km2), the 

development of these lands has expanded into areas with higher slopes. The development of built-

up areas and farmland has caused the destruction of natural lands, especially grasslands and 

forests, which have lost 7 and 15 km2 of their area, respectively.  

 

Table 9 Land-cover changes in relation to slope during 1990-2010. 
  Forest Built-up Farmland Grassland Water 

Mean (degree) 

1990 9 3 3 7 6 
2010 9 3 3 7 5 

Changes 0 0 0 0 -1 

1990 (km2) 

<5° 681.9 168.5 3194.6 151.6 23.9 
5°-10° 679.9 26.4 713.4 101.8 10.8 
>10° 592.5 2.7 150.9 58.9 6.7 

2010 (km2) 

<5° 686.5 325.5 3054.0 127.9 26.7 
5°-10° 681.9 38.6 728.8 72.3 10.6 
>10° 583.4 11.9 161.7 48.0 6.5 

Land-cover 
changes (km2) 

<5° 4.6 157.0 -140.6 -23.6 2.7 
5°-10° 2.1 12.2 15.5 -29.5 -0.2 
>10° -15.1 10.6 13.0 -6.8 -1.6 

 

In general, it should be noted that during the years 1990-2010, changes in land-cover occurred 

generally in areas with a slope of less than 5 degrees; that includes about 54% of total changes in 

these years. 
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Chapter 3 

A spatiotemporal analysis of landscape change using an integrated Markov 

chain and cellular automata models 

Hamidreza Keshtkar and Winfried Voigt 
 
This manuscript has been published in 2015, Model. Earth Syst. Environ. 2: 1-13. 
 

 
3.1. Summary 

Spatially land-cover models are necessary for sustainable land-cover planning. The expansion of 

human-built land involves the destruction of forests, meadows and farmlands as well as conversion 

of these areas to urban and industrial areas which will result in significant effects on ecosystems. 

Monitoring the process of these changes and planning for sustainable use of land can be 

successfully achieved by using the remote sensing multi-temporal data, spatial criteria and 

predictor models. In this study, land-cover change analysis and modeling was performed for our 

study area in central Germany. An integrated Cellular Automata-Markov Chain land change model 

was carried out to simulate the future landscape change during the period of 2020–2050. The 

predictive power of the model was successfully evaluated using Kappa indices. As a consequence, 

land change model predicts very well a continuing downward trend in grassland, farmland and 

forest areas, as well as a growing tendency in built-up areas. Hence, if the current trends of change 

continue regardless of the actions of sustainable development, drastic natural area decline will 

ensue. The results of this study can help local authorities to better understanding the current 

situation and possible future conditions as well as adopt appropriate strategies for management of 

land-cover. In this case, they can create a balance between urban development and environmental 

protection. 

 
Keywords: Land-cover change, Markov chain, Cellular automata, Multi criteria evaluation.  
 
 
3.2. Introduction 

Many interacting components affect the global environment change and land-cover change is 

probably one of the most important components which has a significant impact on ecological 

systems (Vitousek, 1994). Land-cover has long been faced with changes and probably will change 

in the future as well (Ramankutty and Foley, 1998). These changes are occurring in different 

scales (local to global) and in different time periods (days to millennia) (Townshend et al., 1991). 

Given that regional and/or local land-cover changes can be used as an important data layer in 

ecological and environmental models (such as species distributions, climate change, sustainable 
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development policies, spatial planning and flood risk assessment), the update  presence of this data 

is of great importance (Castella et al., 2007; Leinenkugel et al., 2013; Funkenberg et al., 2014; 

Kuenzer et al., 2014). 

The unprecedented rate of land change has become a major concern around the world that’s why 

this issue has affected the environmental services and biodiversity at the global level. Both 

anthropogenic and natural forces are responsible for these changes in Earth's surface. 

Anthropogenic forces such as urban expansion and the destruction of forests and meadows for 

economic purposes (development of agricultural land); and natural forces such as fire, flood and 

tsunami; have changed the type of land-cover and land-cover all over the world. In recent decades, 

the changes caused by anthropogenic forces have found a faster pace than natural variations. This 

is because technological development and population growth are the two main factors which are 

responsible for the anthropogenic changes and has been unprecedented growth in past two 

decades. As a result, human has significantly changed almost all the world's ecosystems or is 

going to change them; and therefore the capacity of ecosystems to provide goods and services is 

going to be reduced (Lambin and Meyfroidt, 2011). 

Rapid landscape changes in the recent decades have negative effects on biodiversity (Pimm and 

Raven, 2000; Sala et al., 2000; Balmford et al., 2001), soil erosion (Sidle et al., 2006), 

destabilization of watersheds (Rai and Sharma, 1998), increasing levels of greenhouse gas 

emissions (Macedo et al., 2013), water pollution, and air pollution (Houghton, 1994). Considerable 

evidence has also shown that these changes have an observable impact on the geographical 

distribution of species. Land-cover changes can affect distribution of plant species directly through 

changing the quality and quantity of habitat suitability and indirectly via increasing, decreasing, or 

eliminating dispersal barriers. 

Understanding land change trends is a subject of interest and concern among environmental 

managers and ecologists (Bagan and Yamagata, 2012). Predicting landscape change is a necessary 

but difficult process because it needs access to a large amount of information about the 

relationship between phenomena and the factors which influence changes, and also sufficient 

information about the current and past status of the landscape. Remote sensing prepares a great 

source of data, from which updated land-cover maps and changes can be analyzed and predicted 

efficiently. With recent advances in geographic information systems (GIS) and remote sensing 

tools and modules enable researchers to predict future land-cover changes effectively.    

Several statistical and geospatial models have been used to model land-cover change, including 

logistic regression models (Hu and Lo, 2007), neural networks (Pijanowski et al., 2002; Basse et 

al., 2014), Markov chains (Kamusoko et al., 2009), and cellular automata(CA; Poelmans and Van 

Rompaey, 2010). These techniques are often combined together to produce a hybrid model.  
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In this research, we applied a cellular automata-Markov chain model (CA-Markov) to simulate 

future land-cover changes. Both cellular automata (CA) and the Markov chain model have great 

advantages in the study on land-cover changes (Sang et al., 2011). Markov-Chain model is one of 

the most widely used methods for quantifying the probability of land-cover change from state A to 

state B (e.g. forest to built-up area) in discrete time stages. These probabilities then enter into the 

cellular automata (CA) model to predict spatial changes over a specific time period (Mitsova et al., 

2011; Yang et al., 2012). CA-Markov model is based on the initial distribution and transition 

matrix; it assumes that the drivers, which have created the current situation for the region land-

cover, will continue to operate as before in the future (Guan et al., 2011). In many studies, the 

combination of remote sensing and GIS are effectively used in CA-Markov model (Mitsova et al., 

2011; Subedi et al., 2013). 

The objective of this study is to simulate future land-cover changes based on the CA-Markov 

model in our study area which is located in central Germany. Firstly, the Markov model is used to 

estimate transition matrices from the land-cover maps (1990, 2000 and 2010) to predict changes of 

land-cover. Secondly, an integration evaluation procedure is used to generate transition suitability 

maps based on change drivers. Finally, transition suitability map and transition matrix are carried 

out in the CA-Markov model to predict spatial distribution of land-cover from 2010 to 2050. 

 

3.3. Materials and methods 

3.3.1. Study areas 

The study area is located in central Germany and covers 690000 hectares (Fig. 1). Elevation ranges 

from 114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain 

located in the Thuringian Forest. The predominant climate is of the continental type with an 

average annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on 

monthly recording data of 18 stations, in the Free state of Thuringia from 1960–1990). The soil 

parent material is mainly calcareous. The landscape maps presented five classes: forest, built-up 

area, grassland, farmland, and water bodies (lakes, rivers, ponds, and reservoirs).  

 
3.3.2. Modeling framework 

In this section, we describe the main components used for the land-cover changes in future. The 

process occurs in a raster data environment, most often a grid of uniform cells of a specified 

resolution. The workflow that was carried out in this study consists of: 1) land-cover mapping of 

1990, 2000 and 2010 using the classification of satellite images, 2) computation of transition area 

matrix derived from a Markov process, indicating the number of pixels to be expected to change 

each land-cover class to another class over a specified time interval (1990-2000, 2000-2010); 3) 

getting transition suitability images by Markov chain and multi-criteria evaluation (MCE) model 

http://en.wikipedia.org/wiki/Thuringian_Forest
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(These suitability images imply the suitability of each cell for a particular land-cover); 4) 

Evaluating the predictive power of the model by comparing the difference between the actual and 

projected maps of year 2010; and finally, 5) land-cover change simulation using CA-Markov 

module for 2020, 2030, 2040, and 2050. Land-cover mapping (first step) was run in ENVI ZOOM 

(Version 4.8), and other steps were calculated in IDRISI-Selva software (https://clarklabs.org/). 

 

 
Figure 1 Location and elevation model of study area. 

 

3.3.2.1. land-cover mapping 

A temporal coverage of Landsat TM and ETM+ images (USGS Global Visualization Viewer) 

from 1990 to 2010 was collected. Using the landsat images in 1990, 2000 and 2010, the land-cover 

maps were generated for the three corresponding years. To remove the distortions, noises, and 

errors produced during the imaging process, pre-processing techniques (both geometrically and 

atmospherically) were applied to all the images. After geometric and atmospheric corrections, the 

land-cover maps were derived from object-based support vector machine (SVM) classification 

method (Duro et al., 2012). One of the advantages of object-based classification methods is that in 

contrast to pixel-based classification methods, there is no "salt-and-pepper" effect in images 

classified by them. The landscape maps presented five classes: forest, farmland, grassland, built-up 

area, and water bodies. 

 
3.3.2.2. Generating transition area matrix 

In this study, two pairs of land-cover images (1990-2000 and 2000-2010) were applied to calculate 

the transition area matrices of land-cover types during the two corresponding periods. Each matrix 

records the number of pixels that are expected to vary from a class to another class in a specified 
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period in the future. This part of the model according to the trends observed in the past, is used to 

estimate the replacement rate of one class by another class. These matrices are obtained using the 

Markov Chain model with a proportional error of 0.1.The transition area matrices for the year 

2010 were created by overlaying the 1990 and 2000 classifications and delineating the change 

between the two time periods on a class-by-class basis. This information is used as the input of the 

Markov model to assist in determining the possibility of conversion of any pixels of a land-cover 

class (e.g., forest) to other land-cover classes (e.g., farmland) and vice versa. 

 
3.3.2.3. Generating transition potential maps 

Since access to information as well as sufficient and accurate data for drawing transition potential 

maps for land-cover classes is difficult, drawing these maps is generally a difficult task. 

Incorporating all types of factors or constraints that exist within the study area seems is 

impossible. In this paper, transition potential maps of land-cover types were extracted by using 

GIS algorithms, multi-criteria evaluation (MCE), and fuzzy membership functions. Firstly, two 

drivers including neighborhood interaction (Euclidean distance to the same type cell) and 

conditional probability image were selected to compute transition potential maps of forest, 

grassland and farmland areas. As a rule of thumb, the pixel closer to an existing land-cover class 

has the higher possibility to change into that particular class. Since this rule cannot be applied to 

all situations (Ahmed and Ahmed, 2012), the conditional probability images are used for each 

category to reduce uncertainty in the transition potential maps. The conditional probability images 

show, to what extent, each pixel in the next time period will likely belong to the designated 

category; and since this probability is conditional on their current state, they are referred to as 

conditional probability images. Therefore, these images are a visual presentation of the transition 

probability matrix (El-Hallaq and Habboub, 2015). Restrictions for forest, grassland, and farmland 

were the built-up areas and water bodies. Finally, four typical biophysical and proximate drivers 

including slope, distance from nearest road, neighborhood interaction, and distances from water 

bodies were selected to compute transition potential map of built-up areas (Table 1). Also, water 

bodies considered as restriction area for built-up lands. Studies have shown that these ancillary 

data are closely related to the probability of urban changes (He et al., 2013; Yang et al., 2014). 

Since Markov chain does not locate the occurrence of land-cover transitions, GIS algorithms, 

multi-criteria evaluation (MCE), and fuzzy membership functions were applied to determine the 

suitability and locations of transitioning cells. The fuzzy algorithms can create a standard index 

and prevent the selection of unknown Boolean constraints or cut-off values (Eastman, 2006). 

Hence, the fuzzy membership functions (e.g., sigmoidal monotonic decrease function) were used 

to rescale driver maps into the range 0–255, where 0 represents unsuitable sites and 255 represents 

the most suitable sites. Also, in this study, we use an Analytic Hierarchy Process (AHP) to 
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determine the weight of driving factors with the use of pairwise evaluations (Malczewski, 1999). 

The AHP enables land-cover transition potential based on a collection of potential maps (e.g., 

distance from water sources or magnitude of altitude), and considers growth limitations. The AHP 

affords a comprehensive and logical method to solve the decision problem, characterizing and 

quantifying its components, correlating the related components towards overall targets, and 

assessing alternative solutions. This GIS-based AHP is a strong tool because of its high ability to 

incorporate different types of heterogeneous variables and its simplicity to gain the weights of 

suitable variables (Hafeez et al., 2002; Ying et al., 2007). This model has a unique advantage when 

the quantification and comparison of important variables is difficult, or where the establishment of 

communications between working team members becomes problematic by their various 

specializations, terminologies, or perspectives. Because the areas of water is small, transition 

potentials to water is not computed. A set of transition potential maps are displayed in Fig. 2. 

 
Table 1 Extracted weights based on AHP and fuzzy standardization for built-up areas 

Factors Functions Control points Weights 

Distance from roads J-shaped 
0-50 m highest suitability 

50-1500 m decreasing suitability  
>1500 m no suitability 

0.28 

Distance from water bodies Linear 
0-100 m no suitability 

100-7500 m increasing suitability 
>7500 m highest suitability 

0.15 

Distance from built-up areas Linear 
0-100 m highest suitability 

100-5000 m decreasing suitability 
>5000 m no suitability 

0.38 

Slope Sigmoid 
0% highest suitability 

0-15% decreasing suitability 
>15% no suitability 

0.19 

 

3.3.2.4. Model evaluation 

Performance evaluation of the model is one of the most important stages of the modeling although 

so far there has been no consensus on the evaluation criteria of landscape change models (Pontius, 

2000). The model is evaluated to detect whether the projected land-cover map is giving any abrupt 

result or not. To validate the operation of a model the simulated map compares with the real 

conditions. This method has been favored in other studies such as by Araya and Cabral (2010) who 

used it to verify the accuracy of a model predicting land-cover change. The comparisons between 

the actual map of 2010, which was obtained through remote sensing techniques, and the projected 

map of year 2010, which observed using changes between 1990 and 2000 images, has been 

performed using Kappa variation statistics. The kappa statistics assess the model accuracy in terms 

of the quantity of cells properly classified along with the location of the cells. Its range is from 0 

(random location) to 1 (perfect location specification) (Pontius, 2000). 
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Figure 2 Transition potential maps of land-cover type in 2010. 

 
 

3.3.2.5. CA–Markov Model 

CA-Markov modeling is a hybrid modeling technique that binds the strengths of a spatially 

explicit, deterministic modeling framework with a stochastically based temporal framework. This 

model is a combination of Markov chain and cellular automata (CA) models which has become a 

robust method in terms of dynamic spatial phenomenon’s simulation and future land-cover change 

prediction in time and space based on their current state and on ancillary information which may 

drive future transitions among land-cover classes. These results can in turn be used for theoretical 

constructions and for scenario-based projections by recalibrating the ancillary data. Markov chain 

is a powerful model and when the description or procedure of landscape changes is ambiguous, 

this model can predict the demand for and probability of landscape change using the history of 
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changes happened in the past. This model is one in which the future state of environment can be 

analyzed solely according to the previous state. Markov chain model is a stochastic process model 

that describes how likely one state is to change to another state and use this as the basis to project 

future changes. This task can be done by the transition probability matrix of landscape change 

through a period of time which shows that the nature of changes in the past years can be used to 

predict future landscape change. In this model, the transition probability can be seen for each 

phenomenon, but no information is supplied on the spatial distribution of these phenomena. Thus, 

the CA is used to characterize the spatial characters. CA model is comprised of a regular lattice 

framework where any cell in the lattice is in one of a defined number of states. These states either 

remain in their current state or change at every iteration or time step into a different state 

(O'Sullivan and Unwin, 2003). The changes are initiated by a set of deterministic rules that are 

defined prior to the execution of this process. There are four parameters needed to run cellular 

automata: 1) a cellular (or grid) space, 2) a neighborhood definition, 3) a set number of states, and 

4) a set of transition rules. The strength of cellular automata is that it can robustly simulate 

processes that play out across time and space in human and in natural systems. As such they offer 

a useful framework for exploring system interactions (White and Engelen, 1994). Hence, CA 

manages spatial dynamics via local transition rules, while Markov processes depict temporal 

dynamics of land-cover classes based on transition probabilities (see Appendix A and Eastman 

2006; for more information). 

To generate future land-cover maps, the suitability images are coupled with base land-cover and 

the transition matrices in a process called multi-object land allocation. This process compares all 

pixels and their suitability for each land-cover class. Each pixel has the potential to be populated 

by each land-cover class during the simulation (except by restricted and unchangeable area). The 

class which has the highest suitability at that pixel will be the class that is chosen given the prior 

spatial constraints of the cellular automata and the temporal step to be classified for the stated time 

period. The process executes for each land-cover class and runs through the process several times 

at each time period. By subtracting the least likely pixels to be included in each land-cover class, 

the process continues until the correct number of pixels has been identified for the land-cover class 

under investigation. Because this process has random elements, an iterative process was used to 

create the potential land-cover class for each period. In order to gauge which areas are most likely 

to be another area, several iterations of this process were run and then combined into a frequency 

image. This image is the overlay of all the iterations for a given land-cover class at a given time 

period and shows the proportion of times each cell was classified as a given land-cover class. 
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3.4. Results 

3.4.1. Land-cover Classification and Accuracy Assessment 

An object-oriented image analysis was applied to produce a multi-temporal land-cover geographic 

database for the three years under study. In order to use the derived maps for further change 

analysis, the classification accuracy were estimated. To assess the accuracy of classified images, 

we gathered ground truth data (training and validation data) based on Quickbird images available 

in Google Earth (http://earth.google.com). For whole of study area, a sample of ground truth points 

randomly collected within the area covered by high resolution Quickbird images, overlaid selected 

samples on the Quickbird images, and then grouped these points to appropriate classes based on 

visual interpretation. A point was assumed as an especial class if land-cover patches included at 

least one pixel. Based on visual interpretation of the Landsat images, the training sites were 

carefully determined and restricted to homogeneous regions where class membership was 

permanent from 1990 to 2010. We optimized the training sample dataset until we achieved 

maximum stable accuracy. This optimizing task was carried out by removing training samples that 

may have been sources of error or collecting new samples to obviously misclassified categories. 

Finally, we used a sample of 1374 points were mapped from Quickbird images. We split all 

ground truth points into training (75%) and evaluation (25%) data. Overall accuracies for the 

extract land-cover maps of 1990, 2000 and 2010 were, respectively, 89.75%, 92.36% and 93.54%, 

thus indicating the suitability of the classified remote sensing images for effective and reliable 

land-cover change analysis and modeling. We finally used 100% of the ground truth data to 

produce land-cover maps of the whole study area. Fig. 3 illustrates the produced land-cover maps. 

 

 

 

Figure 3 Time series of land-cover maps for 1990-2010. 

 

 

3.4.2. Analysis of Landscape Metrics 

Analysis of land-cover area changes in table 2 indicate that from 1990 to 2010, built-up areas 

increased from 2.8% to 5.5%. For the period between 1990 and 2000, around 7000 ha have been 
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changed to built-up lands, and 10980 ha within the period 2000–2010. The built-up land was 

continuously increased, and the farmland, grassland and forest were continuously decreased. 

Grasslands decreased significantly from 337.5 ha (4.89%) to 277.5 ha (4.02%) during 1990–2010. 

During this period, forest area decreased from 223400 ha (32.38%) to 222550 ha (32.26%). Also, 

farmlands reduced by 2.75% from 1990 to 2010. Overall, farmlands lost around 11220 ha in this 

time period. The area of water increased a little.  

 

Table 2 Distribution of land-cover classes (in hectare) and percentage of changes for 1990-2010. 

 Year Change in Land-cover Structure 

 1990 2000 2010 Δ%1990–2000 Δ%2000–2010 Δ%1990-2010 

Forest 223400 222810 222550 -0.26 -0.12 -0.38 
Water 4460 4530 4550 1.57 0.44 2.02 
Grassland 33750 31390 27750 -6.99 -11.60 -17.78 
Farmland 408490 404370 397270 -1.01 -1.76 -2.75 
Built-up land 19840 26840 37820 35.28 40.91 90.63 

 

3.4.3. Land-cover Modeling and Validation 

Evaluation of model was performed by comparing the simulated map of 2010 with the real land-

cover map of 2010 based on Kappa variations. The change trajectories between the observed and 

simulated land-cover classes for the year 2010 are shown in Fig. 4, in which five land-cover 

classes have relative errors lower than 5%.  

 
Figure 4 Actual and simulated land-cover classes for the year 2010. 

 
Models with accuracies in excess of 80% are typically considered very strong predictive tools 

(Araya and Cabral, 2010). The Kstandard value was 87.6%, which verifies the accuracy of this 

model. Pontius (2000) states that the Kno value is a better alternative than Kstandard for assessing the 

overall accuracy of the model. The model performed very well in its overall ability to predict land-

cover map of 2010 (Kno=91.5%), and the Klocation value of 92.2% indicates that the model provides 

a reasonable representation of location. Also, visual interpretation of the results (Fig. 5) shows that 

there is an evident similarity between the real and simulated maps for the year 2010. Therefore, 
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based on the Kappa values obtained, the CA-Markov model can be used to simulate future land-

cover conditions. 

In this research, patterns and tendency of land-cover changes were modeled according to the 

preceding land-cover states. Although the probability of transformation of a phenomenon to 

another phenomenon is determined in this model, it does not allow for prediction of spatial 

distribution of phenomena. Hence, the Markov model needs to be integrated with the CA model in 

order to add spatial characters to the model and to overcome this inherent limitation. In effect, by 

defining the land-cover map of 2010, the transition suitability maps derived from MCE analysis 

and Markov model (conditional probability images), transition area matrices of the land-cover 

maps of 2000–2010, a contiguity filter selection (5×5 Moore neighborhood kernel) to define 

neighborhood interactions, and one iteration per year were employed to predict the future changes 

in 2020-2050. The contiguity filter down-weights the suitability of pixels that are far from existing 

areas of each land-cover class. The role of this filter is to ensure that the best choices for land-

cover transformation are limited to cells that are both inherently suitable and in close proximity to 

existing areas of that land-cover class; this gives preference to contiguous suitable areas. In each 

iteration, pixels with the most transition probability to transfer from one category to another 

category turn into a new category; while pixels with lower probabilities remain unchanged. If 10 

iterations are selected for the model, the model allocates one tenth of all cells which are expected 

to be transferred to another category during each repetition (Eastman, 2006). The multi-objective 

land allocation (MOLA) procedure was used to resolve the land allocation conflicts. All land-

cover classes act as claimant phenomena and contend for land within the host class (Eastman, 

2006). 

 

Table 3 Transition probability matrix of land-cover types for the periods 1990–2000 and 2000–2010. 

 Land-cover type Forest Built-up land Farmland Grassland Water bodies 

1990-2000 Forest 0.9346 0.0087 0.0193 0.0349 0.0025 
 Built-up land 0.0102 0.9276 0.0428 0.0118 0.0076 
 Farmland 0.0046 0.0602 0.8686 0.0657 0.0008 
 Grassland 0.1332 0.0417 0.061 0.7627 0.0014 
 Water bodies 0.078 0.0185 0.0056 0.0001 0.8978 

2000-2010 Forest 0.9247 0.003 0.0404 0.0295 0.0024 
 Built-up land 0.0094 0.9643 0.0076 0.0122 0.0065 
 Farmland 0.0107 0.0341 0.9076 0.0475 0.0001 
 Grassland 0.1095 0.0424 0.0496 0.7982 0.0003 
 Water bodies 0.0135 0.0083 0.005 0.0017 0.9715 

 

The outcome of this process was a rendering of a potential land-cover distribution at the specified 

time of 40 years into the future at four steps of 10 years. Ten years for each time step was chosen 

as it corresponded to the time step by which the transition matrix was constructed (between the 

years 2000-2010). Firstly, 2010 year is set as starting year; transition area matrix of 2000–2010 

periods is used to simulate 2020 year land-cover change; then, 2020 year is set as starting year; 
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transition area matrix of 2000–2010 periods is used to simulate 2030 year land-cover change; 

thirdly, 2030 year is set as starting year; transition area matrix of 2000–2010 periods is used to 

simulate 2040 year land-cover change; finally, 2040 year is set as starting year; transition area 

matrix of 2000–2010 periods is used to simulate 2050 year land-cover change. The forecasted 

land-cover maps for 2020 to 2050 are displayed in Fig. 6. 

 

 
Figure 5 (a) Actual map and (b) simulated map of land-cover type in 2010. 

 
 

3.4.4. Analysis of Simulation Results 

Our results indicate that 5.5% of the entire study area has been occupied as a built-up area in 2010, 

which will increase to 10.5% by 2050, while for the other land-cover types (except water class), 

descending rate will observe by 2050 (Table 4). For example, grassland area was seen to decline 

from 27750 ha (4%) to 15730 ha (29.3%) during 2010-2050. Also, for the other two land-cover 

classes, similar trends were observed, i.e. from 222550 ha (32.3%) to 217410 ha (32.5%) and 

397270 ha (57.6%) to 379510 ha (55%) for forest and farmland, respectively. 

 

Table 4 Absolute quantities for land-cover classes (in hectare) for 2010-2050. 

 Built-up land Forest Water  Farmland Grassland 

2010 37820 222550 4552 397270 27750 
2020 43740 220870 4630 394710 25990 
2030 52690 219510 4680 388940 24120 
2040 64120 218660 4730 382150 20280 
2050 72480 217410 4810 379510 15730 

 
 

3.5. Discussion and Conclusion 

The study reported here investigated land-cover changes over three time periods, 1990–2000, 

2000–2010 and 2010-2050 using multi-temporal remote sensing data and GIS. Our results indicate 

that built-up areas dramatically increased by 90.6% from 1990 to 2010. Overall, 17980 ha have 



 40 

been changed to built-up areas in this time period. This suggests that the development of urban and 

rural areas in the past two decades has been a high pace. Araya and Cabral (2010) reported such a 

high rate of growth in their study area between the years 1990 to 2006. It highlights the fact that an 

increase in built-up area could be interpreted as a decrease in natural lands (Nature land = Total 

land area – (Farmland area + Built-up area); Lambin and Meyfroidt, 2011). Table 2 shows that 

natural areas decreased from 254852 ha in 1990 to 237950 ha in 2010. For example forest lost 850 

ha of its cover from 1990 to 2010. Degradation and loss of natural and semi-natural lands has 

become a profound concern which almost has affected the entire Western and Central Europe 

(Poschlod et al., 2005; Riecken et al., 2008; CBD, 2010; GBO3, 2010). 

 

 

 
Figure 6 Simulated map of land-cover type from 2020 to 2050. 

 

 

The results of this study revealed that between the years 1990 to 2010, grasslands have lost a 

greater percentage of their area compared with forest lands. Table 2 shows that grasslands have 

lost 17.7% of their land, while forests have lost just 0.38 percent in the same period. These results 

confirmed the high vulnerability of grasslands in European regions. The grasslands are decreasing 

in our study area, while previous studies warned that grassland deterioration could have a 
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significant impact on ecosystem services (i.e. the carbon cycle, regional economy and climate) (Le 

Houérou, 1996; Angell and McClaran, 2001; Wen et al., 2013). Despite the fact that grasslands are 

the habitat for more than 50% of vascular plant species in Central Europe (Lind et al., 2009), the 

European Topic Centre for Biological Diversity (ETC-BD) reports that grasslands are among the 

endangered habitats in the European regions and only 20 percent of them are in a favorable 

conditions (EU-COM, 2009; Siehoff et al., 2011). 

The U.S. office of Military Government (1946) reported that after the Second World War, timber 

exports from Germany were particularly heavy, and forest area dramatically decreased 

consequently. But with change of national and regional policies the rate of deforestation started to 

decline (FAO, 2011). The effect of this policy change is also visible in the results of this study, so 

that deforestation in the second decade (2000-2010) was almost half (0.44) of the first decade 

(2000-1990), while a downward trend has accelerated in grasslands so that in the second decade, 

this area declined approximately 1.67 times more than the first decade. 

Seen from Fig. 7, area change results show that built-up patches will increase in area by the year 

2050. The built-up areas are predicted to gain about 34660 ha. Whiles grasslands and forest areas 

would lose 12020 and 5140 ha, respectively, in the same period. As can be seen in figure 6, the 

built-up areas have spread towards the suburban side, because farmlands in the suburbs easily 

change into built-up areas. 

In total, results from CA-Markov models indicated a decrease in natural areas. The natural areas 

are expected to cover 31.5% of our study area in year 2050, which means a 4.7% decrease in 

comparison with its current distribution. These results clearly showed the high degree of habitat 

loss and landscape fragmentation in study area which can break habitat connectivity and create a 

landscape mosaic of suitable, less suitable, and unsuitable habitat patches for species (Wiens et al., 

2009). Due to the occurrences of less suitable habitats for establishment of species, the 

competition between species might increase. It is expected that competition among species 

significantly reduce their migration speed (Meier et al., 2012; Urban et al., 2012). Increasing 

competition and declining emigration, can lead to disappearing endangered species. Previous 

studies (Kinezaki et al., 2010; Meier et al., 2012) indicated that landscape changes will have a 

strong role in reducing the distribution areas of species in the coming decades, especially at a local 

scale (Pearson and Dawson, 2003; Engler et al., 2011) like our study area. 
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Figure 7 Area changes of land-cover classes from 2010 to 2050. 

 

Although the model used in this study has so well performed the simulation, there are a number of 

uncertainties in the projections of land-cover classes in the future, which are described as follows: 

First, it is important to note that some differences are evident between the observed and simulated 

land-cover maps of 2010. Accuracy of simulated land-cover changes will undoubtedly undergo 

image classification results (Araya and Cabral, 2010). Although, object-based SVM is a very 

efficient classification method in handling complex class distributions (Huang et al., 2002; Pal and 

Mather, 2005), but the classified images are somewhat erroneous. This misclassification can be 

considered as an uncertainty source in such studies. 

Second, inadequate suitability maps for modeling the land-cover classes and the shape of the 

contiguity filter used in this study have been another source of uncertainty discussed in various 

studies (Sun et al., 2007; Araya and Cabral, 2010). The suitability maps used in this study have a 

great influence on the land-cover simulations. This is because they are used as rules during the 

modeling process. Different suitability maps will lead to different rules that in turn may produce 

utterly different results. Further research is required to investigate the sensitivity of the predictions 

to the suitability maps. 

Third, although this study confirmed that the procedure used in the analysis of the Markov chain is 

an effective method to calculate the transition probabilities of land-cover classes; these procedures 

assumed that transition probabilities do not change over time. In other words, the land-cover 

changes in the future in this model form up on the basis of land-cover patterns that have been 

identified in the past. This issue causes uncertainty in the simulation of land-cover changes 

because the model is not able to assess the new processes occurring on land-cover structures. For 

example our results show that from 1990 to 2010, the transition probabilities from various lands to 

built-up areas were extremely high and future land changes simulated based on these transition 

probabilities. But the evidence suggests that the reality will be something else. After the fall of the 

Berlin Wall in 1990, the need for modernization and spatial expansion in eastern regions (Former 



 43 

East Germany) was absolutely essential(Braun et al., 2012). As a result, a new framework for 

planning the urban development, termed “Critical Reconstruction”, was implemented in these 

areas (Neill and Schwedler, 2001; Tölle, 2010). The implementation of this policy caused open 

and empty areas within cities and many lands (i.e. agricultural lands) in the countryside to be 

converted quickly into industrial and urban areas after the year1990(Loeb, 2006). Therefore, 

transition probability from other lands to built-up areas was extremely high in eastern regions 

(such as our study area) during these years. But, at present, the majority of these changes are over 

and it predicts that urban development (transition probability to built-up area) would significantly 

reduce in the coming years. 

Finally, predicting future landscape changes would be full of uncertainty due to unpredictable 

events (such as fires and floods), effects of climate change(Vittoz et al., 2009), possible changes in 

managerial attitudes, and potential uncertainty which coming from simulator models.   

The obtained results in this study show that the integration of remote sensing, GIS techniques and 

land change modeling can expand our understanding of the future trends which landscape will 

face. In dealing with the problems of the loss of natural land, the simulated maps for future land-

cover can prepare better understanding of land-cover changes. Ultimately, these findings can be 

presented to local authorities (policy makers, urban planners, and natural resource managers) as a 

comprehensive guide for planning and managing land-covers so that they can have a better 

understanding of the relationship between landscapes; consequently, this can result in a balance 

between the interactions of urban development and environmental factors. To determine whether 

the patterns of projected landscape change are specific to our study area, this technique should be 

empirically repeated and needs more comparative studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 44 

Chapter 4 

Comparison of statistical models to predict the spatial distribution of plant 

species in Central Germany 

Hamidreza Keshtkar and Winfried Voigt 

 

 

4.1. Summary 

A variety of statistical techniques has been used in species distribution modeling that attempt to 

predict occurrence of a given species in respect to environmental conditions. We compared the 

performance of three regression-based models (GAM, GLM, and MARS) with three machine-

learning algorithms (RF, ANN, and GBM). Also in this study, three different sets of explanatory 

variables (climate-only, topography-only and topography-climate combination) for each species 

were quantified and the interaction of differences among predictor variables with differences in the 

modeling approaches in determining the accuracy of predictions was tested. Model accuracy was 

evaluated using the area under Receiver Operating Characteristics curve (AUC) and true skill 

statistics (TSS). Regression-based approaches showed better performances than machine-learning 

methods. The results showed that topography-climate variables are the most important variables 

for mapping potential suitable habitats of target species.  

  

Keywords: Machine-learning algorithm, regression methods, plant distribution, explanatory 

variable. 

  

4.2. Introduction 

Spatial species distributions and the relationship between species and environmental factors have 

been studied for several years (Guisan and Zimmerman, 2000). Linking environmental variables 

with physiological tolerance threshold of species makes it possible to model the impacts and 

consequences of environmental changes on species and ecological systems. To implement such 

schemes, a proper understanding of the relationship between the species and environment is 

required. This understanding is usually achieved through theoretical and statistical methods which 

can relate the environmental variables and emergence of the species. Secondly, we should relate 

the relationships between species and environment with structural characteristics of the habitat in 

terms of GIS data.  

Ecologists commonly assume that the ranges of current geographic species represent the 

characteristics of species habitats, which support or limit their presence in a specific location. 

Accordingly, a range shift is justified by measuring changes in the bioclimatic envelope (a set of 
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biological and physical conditions suitable for the development and establishment of particular 

species). In fact, they are under the influence of environmental change processes (Dullinger et al., 

2012; Bateman et al., 2013). 

Predicting geographical species distributions using statistical models has become essential in 

several aspects of biogeography, ecology and biology. Species distribution models (SDMs) have 

been widely used to predict the impact of ecological factors on distribution of species plants 

(Hijmans and Graham, 2006; Elith et al., 2010; Dirnböck et al., 2011) that rely on the estimation of 

statistical species–environment relationships (Guisan and Zimmermann, 2000, Guisan and 

Thuiller, 2005, Zimmermann et al., 2010). Using these models, researchers can predict a 

probability of existence species in a location where no occurrence data is known. 

Various models and methods are used to examine maps which represent the status of organisms in 

their habitat. The type of required data is one of the most important differences between these 

models; therefore, they can be divided into two main groups: the first group of these models 

requires presence/absence data to create statistical tasks or discriminative rules that permit habitat 

suitability to be graded based on distributions of presence and absence of species (e.g. generalized 

additive models and artificial neural networks) (Guisan and Zimmerman, 2000); the second group 

simply requires presence data and they are generally used when the knowledge of the samples of 

absences is insufficient or inaccessible; these methods include the Ecological Niche Factor 

Analysis (ENFA), Maximum Entropy Modeling (MaxEnt), BIOCLIM and DOMAIN (Farber and 

Kadmon, 2003). 

Recently, regression and machine learning techniques have been used more than other methods. 

Most of the regression models used to predict the geographic species distribution presents the 

highly interpretable and meaningful results. These models are usually restricted to binary data 

organizations that have a precise and regular sampling strategy; GAM is one such modeling 

method that has a specifically forceful performance when modeling species presence/absence data 

(Lehmann et al., 2002). Machine learning techniques include a variety of non-parametric methods 

able to compute regression or classification tasks using available information. These methods 

show some benefits with reference to statistical methods: they are capable of handling non-linear 

relationships among predictors, able to deal with complicated relationships among predictors that 

can occur in big data sets and capable of managing complicated and noise data (Recknagel, 2001).  

Selection of environmental factors to apply as predictors is one of the big challenges in SDMs 

(Araujo and Guisan, 2006). Selection of predictors with direct effect on species distribution is the 

best solution for this problem (Austin, 2002, 2007). But most of the time it is not possible to 

include different types of predictor factors because of the limitation in availability of data, time 

and/or resource limitations (Bucklin et al., 2015). Since climate is an effective driver of species 

distribution, one subclass of SDMs comprises only climate (hereafter climate-only) predictors 
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(Pearson and Dawson, 2003). Climate-only SDMs are essential implements for guiding future 

conservation efforts (Elith and Leathwick, 2009), although due to the lack of enough information 

for determination of climate range in species distribution, some scientists have criticized climate-

only models (Beale et al., 2008). If non-climatic variables are used along with climatic 

information, this problem will be solved (Austin and Van Niel, 2011). Although various studies 

have incorporated climatic and topographic variables in modeling, a few of these studies have 

examined the climate-only and topography-only models versus combination models. 

The objective of this study is to compare the performance of some of the most common methods 

of presence-absence distribution models using data on the distribution of three plant species in 

central Germany. Specifically, we compare three regression methods and three machine-learning 

methods. Considering previous evidence that differences in predictive accuracy among models is 

depend on the explanatory variables (Bucklin et al., 2015; Oppel et al., 2012; Tsoar et al., 2007; 

Zhang and Zhang, 2012), we also quantified three different sets of explanatory variables (climate-

only, topographic-only and topographic-climate combination) for each species and tested the 

differences among predictor variables interact with differences in the modeling approaches in 

determining the accuracy of predictions. Such knowledge could assist to selection of predictors for 

practical SDM applications, and providing information on which modeling techniques are useful 

for a group of species. 

 

4.3. Methods 

4.3.1. Study areas 

The study area is located in central Germany and covers 690000 hectares. Elevation ranges from 

114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain located 

in the Thuringian Forest. The predominant climate is of the continental type with an average 

annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on monthly 

recording data of 18 stations, in Free State of Thuringia from 1960–1990). The soil parent material 

is mainly calcareous. The study area is covered by 5 major phenomena: forest, built-up area, 

grassland, farmland, and water bodies (lakes, rivers, ponds, and reservoirs).  

 

4.3.2. Species and data preparation 

In this study we chose three non-woody species that are native in grasslands of the study area: 

Festuca rupicola (F. rupicola), Achillea millefolium millefolium (A. millefolium), and Centaurea 

jacea ssp. Angustifolia (C. jacea). The selected species represent a balanced mix of occurrence 

frequency, with species being respectively very common (F. rupicola), relatively frequent (A. 

millefolium) and relatively rare (C. jacea). Species-presence data were obtained from an 

http://en.wikipedia.org/wiki/Thuringian_Forest
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unpublished data (Christiane Roscher) which were sampled during the summers of 1994-1996. Out 

of 201 available vegetation plots, we randomly selected occurrences separated by a minimum 

distance of 250 metres to minimize spatial autocorrelation effect. The process was separately 

performed for the observation points of each species. This yielded 144, 102, and 58 occurrences of 

F. rupicola, A. millefolium, and C. jacea, respectively. 

 

4.3.3. Environmental predictors 

We selected a set of quantitative topographic and climatic predictors that cover the main 

physiological requirements (i.e. water, nutrients, and energy) of species (Körner, 2003; Pearson et 

al., 2002).In total, 11 predictor variables were calculated at a 25 m spatial resolution: six climatic 

and five topographic predictors (Table 1). The environmental variables used in this study are 

described in Zimmermann and Kienast (1999) and Parviainen et al. (2008) and thus we only 

discussed here in brief. All topographic predictors were derived from the digital elevation model 

(DEM). The topographic wetness index (TWI) is a popular measure to infer information about the 

local relative differences in moisture conditions (Grabs et al., 2009). Topographic position index 

(TPI) or difference from mean elevation (DIFF) is a useful measure that increasingly used to 

express the exposure of a central point in space compared to the surrounding terrain (Wilson and 

Gallant, 2000). 

 
Table 1 List of environmental variables which tested for multi-collinearity. 
Variables Unit Details 

Topography   
 Slope* Degrees Slope inclination 
 Aspect* Degrees The compass direction that a slope faces 
 Elevation* m The elevation of a geographic locations 
 Topographic wetness  index* m It quantifies the role of topography for redistributing water in the landscape 
 Topographic position Index Unitless Identification of topographic features at various spatial scales 
Climate   
 Mean annual temperature °C Average  of annual temperature  
 Mean summer temperature* °C Average temperature from April to September 
 Sum annual precipitation mm Sum of annual precipitation 
 Sum summer precipitation* mm Sum of precipitation from April to September 
 Summer solar radiation* kJ×m-2×day-1 Sum of monthly average of daily global solar radiation from April to September 
 Soil moisture index* mm Difference between precipitation and potential evapotranspiration 

 

The long-term daily climatic data were derived from the German Meteorological Service for the 

period 1961-1990. Given that topography strongly affects temperature and precipitation (Fontaine 

et al., 2002; Hong et al., 2005) a co-kriging technique was executed to interpolate the long-term 

values over the whole study area using DEM as a co-variable. Soil moisture index was calculated 

as the monthly difference between precipitation and potential evapotranspiration (see 

Zimmermann et al., 2007 for details). Solar radiation is a direct ecological factor which can affect 

the habitat conditions by influencing soil moisture, soil temperature and near surface air 

temperature (Bennie et al., 2008). 

http://en.wikipedia.org/wiki/Geographic
http://en.wikipedia.org/wiki/Location_(geography)
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4.3.4. Multi-collinearity analysis 

To minimize the effect of multicollinearity, explanatory variables were examined through Pearson 

correlation coefficient, and predictors that showed strong correlation with other variables (>|0.7|) 

were left out of the model before running. Finally, 8 environmental predictors were kept for model 

calibration (marked with ‘*’ in Table 1), out of the original 11 variables. 

 

4.3.5. Calibration of statistical models 

Six predictive models (three regression methods and three machine-learning methods) were run 

and compared to predict species distributions, which are known to provide good predictions: (1) 

generalized linear models (GLMs; McCullagh and Nelder, 1989; Meynard and Quinn, 2007); (2) 

generalized additive model (GAM; Hastie and Tibshirani, 1990; Yee and Mitchell, 1991); (3) 

multivariate adaptive regression splines (MARS; Friedman, 1991; Muñoz and Felicísimo, 2004); 

(4) generalized boosted models (GBMs, also known as boosted regression trees (BRT); Ridgeway, 

1999; Friedman et al., 2000); (5) random forest (RF; Breiman, 2001; Williams et al., 2009); (6) 

artificial neural networks (ANNs; Ripley, 1996; Segurado and Araújo, 2004). By relating the 

independent and dependent variables, all the models mentioned here can specify at what 

probability percentage a pixel will be hosting the target species.  

GLMs and GAMs were fitted for each species with a binomial variance and a logit transformation. 

In both models, the selection of significant variables was done with an Akaike information 

criterion-based stepwise method (Akaike, 1973) in forward and backward directions. GBMs were 

calibrated with a maximum number of 2500 trees and internal 3-fold cross-validation procedure to 

select the optimal numbers of trees to be kept and a value of 7 as maximum depth of variable 

interactions. MARS models were calibrated using a maximum interaction degree equal to 2. For 

RF model, we set 500 for the number of trees to grow (ntree), and for the number of input 

variables (mtry) we used the default value, which is the square root of variables’ number. For 

ANN model, the model optimized the number hidden layer (size) and the weight decay (decay) 

factor by cross validation based on area under the curve (AUC) of the receiver operating 

characteristic (ROC). To optimizing, the model test different values for “size” and “decay”, 

respectively, (2, 4, 6, 8) and (0.001, 0.01, 0.05, 0.1), and the one given the best AUC will be 

selected. All models were run in R software (R Development Core Team, 2009) using the biomod2 

package (Thuiller et al., 2013). 

For each species, above models were fitted using three different sets of explanatory variables: (1) 

Topographic variable only (hereafter abbreviated ‘‘Topo’’; Table 1); (2) climate only (abbreviated 

‘‘Clim’’; Table 1); and (3) Topo + Clim variables (abbreviated ‘‘ALL’’). 
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4.3.6. Assessment of model performance 

As no independent data were available to evaluate the predictive power of the model, we used a 

repeated data-splitting procedure. To determining the optimum proportion of training and testing 

data, we used the formula which provided by Huberty (1994). This heuristic formula is restricted 

to presence/absence models, and the ratio of testing data should be [1 + (p - 1)½]-1, where p is the 

number of predictors. Accordingly, a model was trained using a random data sample (70% of 

presences and pseudo-absences data) and evaluated on the remaining 30% with using both the 

widely reported true skill statistics (TSS, Allouche et al., 2006), and the AUC (Hanley and 

McNeil, 1982). The TSS evaluation value varies from 0 to 1, where a value of 0 can be interpreted 

as random predictions and value 1.0 indicates a perfect agreement (Franklin, 2009). The AUC 

value varies from 0 to 1, where a value below than 0.5 interprets that predictions are no better than 

random, values of 0.5–0.7 indicate low predictions, 0.7-0.9 indicate useful predictions, and >0.9 

indicate excellent predictions (Franklin, 2009; Swets, 1988). This index is calculated as specificity 

(proportion of correctly predicted presences) + sensitivity (proportion of correctly predicted 

absences)-1 (Franklin, 2009). The resampling technique (data-splitting) was repeated 25 times for 

the models and the evaluation metrics averaged. We weighted the presence and pseudo-absence 

data in the modeling procedure so that both gave prevalence of 0.5. This equal prevalence prevents 

the model bias towards over-prediction of either presences or pseudo-absences data (Isabelle et al., 

2014).   

For the final calibration of each model the whole of data used to carry out spatial projections. The 

predictive maps were developed for the target species after calibration of the models. While 

continuous predictions need conversion to a binary map (i.e. a species is either predicted present or 

absent), we used threshold classification according to the sensitivity-specificity sum maximization 

approach (Liu et al., 2005). To test whether the probability of occurrence values for each species 

predicted by different predictive models and three different sets of explanatory variables differed 

from each other, we used a non-parametric Wilcoxon’s signed-rank test (Phillips et al., 2009; 

Randin et al., 2006). 

 

4.4. Results 

4.4.1. Multi-collinearity among variables 

All of the variables that were used for model calibration had correlation values <0.7. Table 1 

shows variables that kept for modeling. All in all, one topography and two climate variables were 

deleted from study. Topography and climate variables showed almost no correlation with each 

other. 
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4.4.2. Performance of distribution models 

The selection of the best model is obtained by considering AUC and TSS measures. The mean 

AUC values of the six models ranged from 0.64 (ANN) to 0.94 (GAM and MARS) and from 0.42 

(ANN) to 0.80 (GAM) for TSS index. All three species were classified useful and excellent with 

all models, except ANN model that classified poorly (Fig. 1). Tables 2 present the results of the 

different statistical techniques constructed with different subset of environmental variable which 

applied to the F. rupicola, A. millefolium and C. jacea data sets. The statistical tests by Wilcoxon 

signed rank test depicted that there were no statistically difference between performance of 

regression models (GLM, MARS and GAM; P>0.05, Table 3).  

 

Table 2 Mean evaluation values of TSS (true skill statistics) and AUC (the area under the receiver-operated 
characteristic curve) of six modeling techniques for predicting the distribution of three plant species based on three set of 
explanatory variables. TOPO= topography-only variables, CLIM= climate-only variables, All= topo-climate variables. 
See Fig. 1 for the techniques abbreviations.  

Models 
 TOPO  CLIM  ALL 

 TSS AUC  TSS AUC  TSS AUC 

C. jacea          
          RF  0.62 0.78  0.61 0.76  0.66 0.84 
          ANN  0.42 0.65  0.47 0.67  0.55 0.73 
          GBM  0.61 0.74  0.68 0.84  0.67 0.85 
          GAM  0.65 0.78  0.70 0.87  0.71 0.90 
          GLM  0.67 0.81  0.71 0.84  0.73 0.92 
          MARS  0.63 0.76  0.67 0.79  0.70 0.87 

A. millefolium          
          RF  0.63 0.77  0.65 0.80  0.69 0.84 
          ANN  0.57 0.69  0.57 0.72  0.61 0.74 
          GBM  0.62 0.75  0.68 0.80  0.72 0.89 
          GAM  0.71 0.78  0.73 0.85  0.74 0.93 
          GLM  0.66 0.76  0.71 0.84  0.69 0.83 
          MARS  0.68 0.84  0.69 0.79  0.71 0.85 

F. rupicola          
          RF  0.65 0.79  0.70 0.81  0.71 0.83 
          ANN  0.49 0.64  0.53 0.68  0.56 0.73 
          GBM  0.68 0.82  0.69 0.87  0.72 0.86 
          GAM  0.72 0.87  0.74 0.93  0.80 0.94 
          GLM  0.73 0.83  0.76 0.89  0.75 0.89 
          MARS  0.71 0.89  0.76 0.92  0.79 0.94 

 

With the F. rupicola data set the best performance was achieved by the MARS with AUC=0.92, 

and TSS = 0.76, although GAM results were very similar. For C. jacea, the best performance was 

obtained by the GLM with AUC=0.92 and TSS= 0.73. The best projection was carried out using 

the GAM with AUC=0.93 and TSS= 0.74 for A. millefolium. Our results illustrated that the GAM 

method provided significantly more robust predictions than all the machine-learning algorithms 

(Wilcoxon signed rank test; P< 0.05; Table 3 and Fig. 1). 
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Fig. 1 Comparison of AUC (a) and TSS (b) model evaluations between modeling techniques based on “All” explanatory 
variables. Each box-plot is built form three values (i.e. plant species). The boxes extend from the data's 1st to 3rd 
quartiles, box boundaries show the interquartile range and the horizontal bars in the box represent the median. RF= 
random forest, ANN = artificial neural networks, GBM = boosted regression trees, GAM = generalized additive models, 
GLM = generalized linear models, MARS = multivariate adaptive regression splines. 

 

4.4.3. Comparison of models fitted with different explanatory 

All of the models exhibited very good correctness under all three sets of the environmental 

variables (Table 2). Modeling with climate-only variables was significantly better than modeling 

with environment-only variables (Wilcoxon signed rank test; P < 0.001). Also, modeling using a 

set of climatic and environmental factors had a superior predictive ability than two other variable 

sets (Wilcoxon signed rank test from climate-only models; P < 0.01). According theses results, all 

analyses hereinafter consider only the models calibrated with both the climatic and topographic 

variables (ALL).  

 

 
Fig. 2 Importance of each predictor used in calibrated models for three species; F. rupicola (a), C. jacea (b) and A. 

millefolium (c). A high value (like Temp) indicates an important influence of the predictor in the model. DEM= digital 
elevation model; SLO= slope in degrees; ASP= aspect in degrees; TWI= topographic wetness index; SOL= sum of solar 
radiation for the growing season (April–September); PRE= sum precipitation over the growing season; TEM= mean 
temperature for the growing season; SMI= soil moisture index. 
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The most important predictor for modeling the distribution of F. rupicola was the mean summer 

temperature (Fig. 2), followed by the sum summer precipitation, the slope and the DEM. The 

results show that the mean summer temperature followed by the sum summer precipitation, the 

slope are most important predictors for modeling the distribution of C. jacea and A. millefolium. 

Soil moisture index (SMI) was the least important predictor for these two plant species. The 

response curves of the best model in this study (i.e. GAM) in F. rupicola showed that the optimal 

value for the sum summer precipitation was between 300-400 mm (Fig. 3). Also, the suitability of 

habitat increased with decreasing elevation (< 430 m) and increasing slope (>5 degrees) and mean 

summer temperature (>14 °C). 

 

 
Fig. 3 Response curves for A. millefolium (a-d), C. jacea (e-h) and F. rupicola (i-l) based on GAM for the four most 
important predictors. Frequency distribution of the each predictor in study area is shown by black bands on x-axis. 

 

4.4.4. Comparison of models across species 

When investigating the distribution projections, all species obtained high evaluation scores (except 

ANN model for F. rupicola and C. jacea), with TSS values between 0.61 and 0.80 (Table 2). Such 

a value of TSS means that, on average, with the probability of 80-90% the model was properly 

able to predict the presence and absence of the species. F. rupicola is the species that obtained the 

highest evaluation score. A. millefolium is at average and C. jacea reached slightly lower 

evaluation scores than the other species.  
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Table 3 Statistical differences in the predictive performance of six different models for three plant species. Statistical 
tests of the differences among the predictive accuracies of different methods based on AUC scores were tested by 
Wilcoxon signed rank test (P-values). See Fig. 1 for the techniques abbreviations. 

Models RF ANN GBM GAM GLM MARS 

RF - < 0.001 0.008 < 0.001 0.001 < 0.001 
ANN  - < 0.001 < 0.001 < 0.001 < 0.001 
GBM   - < 0.001 0.011 0.007 
GAM    - 0.016 0.091 
GLM     - 0.253 
MARS      - 

 

4.5. Discussion 

SDMs are valuable tools for the evaluation and protection of regions degrading and losing their 

biodiversity due to various factors (Bustamante and Seoane, 2004; Rodriguez et al., 2007). 

Robertson (2003) suggested that the prediction provided by each model may present different 

conceptions of the potential distribution and biology of the target species, though investigators 

should have a perfect perception of the restrictions and ambiguities embedded in species 

distribution modeling to produce suitable and precise models (e.g. Elith et al., 2002; Loiselle et al., 

2003; Barry and Elith, 2006; Gibson et al., 2007). This study predicted the spatial location of three 

individual plant species at a 25 m spatial resolution and investigated the impact that different 

modeling techniques and different sets of explanatory variables (climate-only, topography-only 

and topo-climatic) have on model performance. 

 

 
Fig. 4 Predicted environmental suitability maps for F. rupicola using six predictor algorithms. See Fig. 1 for the 
algorithms abbreviations. 
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Comparing the predictive power of the different SDMs, it was found that overall, the GAM model 

showed the best results (Fig. 1). This is consistent with the results of experiments performed by 

Leathwick et al. (2005) and Heikkinen et al. (2012) in the field of species distribution modeling. 

The performance of GBM and RF was acceptable but poorer than that of regression approaches 

when applied to predict suitable habitats. The ANN modeling technique received lower evaluation 

scores. The MARS and GLM models, very similar in performance to the GAM model, can then be 

considered as substitute mapping methods (Fig. 1 and Table 2). This result is consistent with the 

results obtained by Leathwick et al. (2005). They compared GAM and MARS techniques, 

including a number of new techniques applied to freshwater fish, and indicated that the two 

methods present similar outcomes. Additionally, previous studies also revealed that MARS is 

comparable to other regression techniques (i.e. GAM and GAM) in terms of function and 

capability (Leathwick et al., 2006; Guisan et al., 2007). In spite of comparable predictive 

operations, the quality of predicted distributions can differ owing to different emphasis on and 

modeled relationships with environmental variables (Elith and Graham, 2009; Ready et al., 

2010). In the current study, for example, the MARS and GAM models had similar predictive 

performance (Fig. 1 and Table 3), but would have selected very different suitable habitat areas 

forF. rupicola and C. jacea (Fig. 4 and 5). 

 

 
Fig. 5 Predicted environmental suitability maps for C. jacea using six predictor algorithms. See Fig. 1 for the algorithms 
abbreviations. 
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The explanatory variables included in this study were chosen so that they covered a broad 

spectrum of the possible ecological determinants of the distributions of the modeled plant species. 

Climate variables, particularly temperature and precipitation in the growing seasons, and 

topographic factors such as elevation and slope, appeared as significant determinants across all 

modeling techniques (Fig. 2). Such variables represent primary environmental regimes related to 

the physiological requirements of plants (Körner, 2003; Pearson et al., 2002). 

Results of the current study show that the ALL scenarios (topo-climate variables) are the most 

important variables for predicting potential suitable habitats of target species. On the contrary, 

models based solely on TOPO variables showed lower evaluation scores. Likewise, simultaneous 

incorporation of topographic and climatic variables increased the models’ prediction power 

significantly (Wilcoxon signed rank test comparing ALL and CLIM models; P < 0.01). For 

example, under the ALL scenario, mean TSS for F. rupicola showed 2.7% and 6% higher 

performance than CLIM and TOPO scenarios, respectively. Some earlier studies confirmed that 

topo-climate explanatory variables (ALL scenario) strongly predict habitat distribution of species 

(Engler et al., 2009; Gonzalez et al., 2010; Kissling et al., 2010).  

 

 
Fig. 6 Predicted environmental suitability maps for A. millefolium using six predictor algorithms. See Fig. 1 for the 
algorithms abbreviations. 

 
 

Predictive species modeling can provide good information about the habitat of species and their 

method of interacting with their environment. Response curves are one of the important 

components in species distribution studies, because they show the tolerance range for 
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environmental changes by species. The most important predictor in the models was temperature 

with a higher suitability for mean summer temperatures >14°C for all plant species, corresponding 

approximately to elevations <430 m a.s.l. This result could not translate into a preference for 

lowland regions, because higher elevations are covered by forestland in the study area while target 

plant species occurred only in open lands.  

Although most models used in this study performed the predictions well, there are a number of 

uncertainties in the projections of plant species distribution. First, all the models are sensitive to 

the qualities and quantities of the predictor and response variables. Although most of the factors 

used in this study demonstrated good predictive abilities for the projections of the species suitable 

habitats, these species were likely to be affected by other factors, the impacts of which were 

neglected in this study. However, to reduce uncertainties in this research, a combination of 

environmental and climate variables were utilized to display a better performance compared with 

those using only climate variables (Barbet-Massin et al., 2012).  

Second, the validity of adequate information on species used to run niche models is contingent 

upon the potential biases in the availability of adequate information on the presence or absence of 

species. Several studies have shown that if absence data is collected along with presence data, 

niche models would be strengthened and the results could be closer to reality (Wiens et al., 2009). 

In the current study, the true absence data of the species was not available. Collecting presence and 

absence data of species during the growing season and performing replications within several 

successive years, like what was done in this study, can significantly enhance the quality of the 

observed data (Wiens et al., 2009).  

All in all, the accuracy of the fitted models obtained from the GAM modeling technique in this 

study suggest that, at least at a regional level, useful and informative suitable habitat maps for 

species can be produced, and they can be used for a range of research and management 

applications. 
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Chapter 5 

Potential Impacts of Climate and Landscape Fragmentation Changes on Plant 

Distributions: Coupling Multi-Temporal Satellite Imagery with GIS-based 

Cellular Automata Model 

Hamidreza Keshtkar and Winfried Voigt 
 
This manuscript has been published in 2016, Ecological informatics, 32, 145-155. 
 
 
5.1. Summary 

Climate change and landscape fragmentation are considered to be the main treats to biodiversity. 

In this study, probable alteration of future species distribution was tested based on the association 

of landscape fragmentation and climate change scenarios compared to the classical approach that 

assumed an unchanged landscape. Also, projected range shifts including realistic dispersal 

scenarios were compared with classical models, in which no or full dispersal has been supposed. 

A GIS-based cellular automata model, MigClim, was implemented to projection of future 

distribution over the 21st century for three plant species in a study area of the central Germany. For 

each species, simulations were run for four dispersal scenarios (full dispersal, no dispersal, 

realistic dispersal, and realistic dispersal with long-distance dispersal events), two landscape 

fragmentation (static and dynamic change) and two climate change (RCP4.5 and RCP8.5) 

scenarios. In this research, temporal satellite data were utilized to simulate landscape changes by 

the use of a hybrid (CA-Markov) model for the years 2020, 2040, 2060 and 2080. 

A significant difference appears to be between the simulations of realistic dispersal limitations and 

those considering full or no dispersal for projected future distributions. Although simulations 

accounting for dispersal limitations produced, for our study area, results that were closer to no 

dispersal than to full dispersal. Additionally, our results revealed that change in landscape 

fragmentation is more effective than the climate change impacts on species distributions in this 

study. 

 

Keywords: climate change, dispersal distance, landscape fragmentation, Cellular automata, 

Markov chain, plant species distribution. 

 

5.2. Introduction 

Due to human activities during the past century, we have been witnessing increased concentrations 

of greenhouse gases, especially carbon dioxide and methane; this issue has resulted in global 

warming. Climatic change may create new environments and forces the organisms to react. The 
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species generally go after suitable climatic conditions through displacement, and expanding or 

shrinking their dispersal range (Collingham and Huntley, 2000; Tingley et al., 2009; Huntley et al., 

2010), or even may lead to extinction of native species (Thomas et al., 2004). These responses 

could have a significant impact on the future of biodiversity (Lambers, 2015), distributions 

(Parmesan and Yohe, 2003); phenological patterns (Fitter and Fitter, 2002) and carbon storage 

(Purves and Pacala, 2008). Therefore prediction of species range shifts under climate change and 

other physical processes is a crucial challenge for the management of natural resources. 

Species distribution models (SDMs) have been widely used to predict the impact of future climate 

change on distribution of species plants (Hijmans and Graham, 2006; Elith et al., 2010; Dirnböck 

et al., 2011) that rely on the estimation of statistical species–environment relationships (Guisan 

and Zimmermann, 2000; Guisan and Thuiller, 2005; Zimmermann et al., 2010). Previous studies 

generally assumed that species are in equilibrium with their environment and hence, did not 

investigate adaptation and tolerance threshold of species towards climatic changes (Engler et al., 

2009). But in the past decade, some researchers tried to predict the effects of climate change on 

distribution of plant species using dispersal models based on statistical relationships between 

species and environment (McConkey et al., 2012; Bateman et al., 2013). These models can predict 

suitable sites for establishment of the species based on future climate changes. However, it should 

be considered that the spread of species relies on the dispersal ability of species, presence of 

effective factors as well as barriers to dispersal. Neglecting dispersal process is usually seen as a 

defect and limitation in projects of SDM climatic change(Franklin, 2010). For predicting 

distribution of plant species, these models usually combine the current distribution of species with 

future climate scenarios in which dispersal biology is not regarded and full- or no-dispersal 

scenarios are used. In these two scenarios, ability of the species for migrating at different distances 

as well as the limiting factors of dispersal are ignored. Combining dispersal patterns of species 

with predictor models can clearly enhance the performance of these models in response to global 

changes (Meier et al., 2010). 

Changes in landscape fragmentation (LF) can affect distribution of plant species through changing 

the quality and quantity of habitat suitability, as well as, via increasing, decreasing, or eliminating 

dispersal barriers. Natural barriers such as forests and mountains, and artificial barriers such as 

cities and villages can prevent or restrict plant species dispersal (Bateman et al., 2013). Although 

in some studies climate change scenarios have been used to examine future plant distributions 

(Elith et al., 2010; Dirnböck et al., 2011), little attention was paid to the synergetic effects of 

landscape fragmentation and climate change. This method of application assumes a negligible 

effect of LF change on future species distribution compared to climate change impact, which is 

expected to occur more rapidly and severely than LF change (Barbet-Massin et al., 2012), or 

alternatively, assumed that dynamic landscape variables are unavailable (Stanton et al., 2012). 
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To improve the prediction of migration potential of vegetation under future climate change 

scenarios, Engler et al. (2012) developed a dynamic model -MigClim- to couple dispersal 

processes and LF scenarios with SDMs in projecting distributional changes under climate change. 

The mentioned model has a cellular-automata structure which presents the study field as a regular 

network of stations and simulates the changes in species distribution. These changes are imposed 

by climatic time series and are under the influence of adjacent cells. MigClim lets that individual 

species respond to changes in their habitats, but the model ignores the dynamics LF changes over 

time. 

To estimate the possible effects of these processes on dynamics of target plants, we applied a 

cellular automata-Markov chain model (CA-Markov) as an alternative to simulate landscape 

change scenarios during the 21st century. Markov-Chain model is one of the most widely used 

methods for quantifying the probability of landscape change from state A to state B (e.g. forest to 

built-up area) in discrete time stages. These probabilities then enter into the cellular automata (CA) 

model to predict spatial changes over a specific time period (Mitsova et al., 2011; Yang et al., 

2012). CA-Markov model is based on the initial distribution and transition matrix; it assumes that 

the drivers, which have created the current situation for the region land-cover, will continue to 

operate as before in the future (Guan et al., 2011). In many studies, the combination of remote 

sensing and GIS are effectively used in CA-Markov model (Peterson et al., 2009). Although a few 

studies have examined the roles of climate change and habitat fragmentation on species 

distribution (Opdam and Wascher, 2004; Leimu et al, 2010; Oliver et al, 2015), to the best of our 

knowledge, this is the first study to combine the CA-Markov model with the models of species 

distribution to investigate species migration in the future. 

The target species, spermatophyte plants, have logically dispersal abilities; thus, this research 

aimed to establish the realistic estimates of the abilities of these species to disperse within the 

study area. Here, the potential impacts of LF and climate change scenarios on the distributions of 

target plants were estimated and compared. To evaluate the possible effects of global changes on 

the range dynamics of the plants, MigClim model was employed to combine the projections of 

geographical habitat shifts under future climate changes with the mechanistic simulations of seed 

dispersal. The major objective of this paper was to integrate MigClim, SDM, CA, and Markov 

chain models so as to assess the effects of future LF and climate change scenarios on the 

geographic distributions of three open-land plant species. To this goal, the following procedures 

were followed: 1) Future LF changes were simulated through a temporal mapping of land-cover 

changes in 2000 and 2010 within central Germany; 2) Different simulations were run for the target 

plants under two climate change scenarios during the period of 1995–2100 besides investigating 

landscape changes and various dispersal limitations; and 3) the spatial patterns of the results were 

compared with the distributions under full and no dispersal scenarios and static land-cover. 
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Overall, the future potential distribution map of each species was simulated under two climate 

change scenarios (RCP4.5 and RCP8.5), four dispersal scenarios (no dispersal, full dispersal, and 

realistic dispersal distances with and without long-distance dispersal events), and two landscape 

patterns (static and dynamic) to investigate whether the plant species would likely gain or lose 

suitable environmental spaces. 

 

5.3. Materials and methods 

5.3.1. Study areas 

The study area is located in Central Germany and covers 6900 km2 (Fig. 1). Elevation ranges from 

114 to 982 m.a.s.l, with higher elevations concentrated in the Grosser Beerberg Mountain located 

in the Thuringian Forest. The predominant climate is of the continental type with an average 

annual rainfall of 604 mm, and an average annual air temperature of 8.6 °C (based on monthly 

recording data of 18 stations, in Free State of Thuringia from 1960–1990). The soil parent material 

is mainly calcareous. The land-cover is a heterogeneous mixture of forest, grasslands, farmland, 

water bodies and built-up areas.  

 
Figure 1 Location of study area and extracted barrier areas for year 1995. Other land contains farm land, grassland and 
water bodies, and barrier land contains forest and built-up areas. 
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5.3.2. Species and data preparation 

In this study we chose three non-woody species that are native in grasslands of the study area: 

Festuca rupicola (F. rupicola), Achillea millefolium millefolium (A. millefolium), and Centaurea 

jacea ssp. Angustifolia (C. jacea). The selected species represent a balanced mix of occurrence 

frequency, with species being respectively very common (F. rupicola), relatively frequent (A. 

millefolium) and relatively rare (C. jacea). They are seed-bearing and short-lived perennial plants 

which grow in open-land area. Species-presence data were obtained from an unpublished data 

(Christiane Roscher) which were sampled during the summers of 1994-1996. Out of 201 available 

vegetation plots, we randomly selected occurrences separated by a minimum distance of 250 

metres to minimize spatial autocorrelation effect. The process was separately performed for the 

observation points of each species. This yielded 144, 102, and 58 occurrences of F. rupicola, A. 

millefolium, and C. jacea, respectively. 

 

5.3.3. Modeling framework 

The modeling framework consisted of four steps (Fig. 2). For each species: 1) Land-cover change 

projection was based on spatially and temporally simulations of explicit landscape changes into the 

future using a hybrid model (CA-Markov) since the future landscape impacts on habitat extent and 

pattern were of our particular concerns; 2) Climate change scenarios were based on two socio-

economic scenarios (RCP4.5 and RCP8.5) used with the SDM to project suitable habitat 

distributions under future climate scenarios; 3) Species distribution model was based on modeling 

habitat suitability maps for the target species using species location records and environmental 

predictor maps (including current climate variables); 4) Future distributions of plants were 

simulated over the 21st century using a GIS-based model, MigClim, that is capable of  

implementing various parameters such as dispersal distance, reproductive potential increase over 

time, and LF. The initial habitat patch map and time series of habitat suitability maps which 

constructed in the previous steps are the core data for this model.  

 

5.3.3.1. Modeling landscape changes 

In this section, we intended to monitor the trend of landscape change in the study area in order to 

simulate future changes in forests and built-up areas, which are considered as barriers and 

unsuitable locations to the observation of plant dispersal. To do so, remote sensing, GIS 

techniques, Markov chain and cellular-automata models were integrated to predict the forthcoming 

changes of landscape, comprising the following stages: 1) land-cover mapping of 1990, 2000 and 

2010 using the classification of satellite images derived from object-based support vector machine 

(SVM) classification method, 2) computation of transition area matrix derived from a Markov 

process, indicating the number of pixels to be expected to change each land-cover class to another 
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class over a specified time interval (1990-2000 and 2000-2010); 3) getting transition suitability 

images by a multi-criteria evaluation (MCE) model based on the driving factors (These suitability 

images imply the suitability of each cell for a particular land-cover); and 4) land-cover change 

simulation using CA-Markov module. The input data were calibrated for simulating the selected 

landscape transitions by 2020, 2040, 2060 and 2080. In this study, although beside forest and built-

up area, water bodies and roads are also considered as unsuitable locations to plant dispersal, 

however, we supposed that water bodies and roads have no change in future. Land-cover mapping 

(first step) was run in ENVI ZOOM (Version 4.8), and other steps were calculated in IDRISI-

Selva software (https://clarklabs.org/). The detailed methodology steps are described in chapter 3.   

 

 
Figure 2 Conceptual framework showing the different databases used in the study. 

 

5.3.3.2. Habitat suitability modeling  

To model the species distributions, we used a generalized additive model (GAM; Hastie and 

Tibshirani, 1990); which is known to provide good predictions. This model relate the response to 

the independent variable in order to derive the probability of a pixel to host a given target species. 

GAM was fitted using a binomial error distribution and a logit link function. A bidirectional 

(forward-backward) stepwise procedure was used to select the most significant predictors, based 

on the Akaike information criterion (Akaike, 1998). This model was run in R software (R 

Development Core Team, 2009) using the biomod2 package (Thuiller et al., 2013). 

As no independent data were available to evaluate the predictive power of the model, we used a 

repeated data-splitting procedure. To determining the optimum proportion of training and testing 



 63 

data, we used the formula which provided by Huberty (1994). This heuristic formula is restricted 

to presence/absence models, and the ratio of testing data should be [1 + (p - 1)½]-1, where p is the 

number of predictors. Accordingly, a model was trained using a random data sample (70% of 

presences and pseudo-absences data) and evaluated on the remaining 30% with using both the 

widely reported true skill statistics (TSS, Allouche et al., 2006), and the area under the receiver 

operating characteristic curve (AUC; Hanley and McNeil, 1982). For the final calibration of each 

model the whole of data used to carry out spatial projections. While continuous predictions need 

conversion to a binary map, we used threshold classification according to the minimizing the 

absolute difference between sensitivity and specificity (Liu et al., 2005). 

To minimize the effect of multicollinearity, explanatory variables were examined through Pearson 

correlation coefficient, and predictors that showed strong correlation with other variables (>|0.6|) 

were left out of the model before running. The model was run with the final selected topo-climatic 

predictors (summer precipitation (April to September), summer temperature, summer solar 

radiation, digital elevation model, slope and topographic wetness index) variables at a 25 m spatial 

resolution (Table 1), that cover the main physiological requirements (i.e. water, nutrients, and 

energy) of species (Pearson et al., 2002; Körner, 2003). All topographic predictors were derived 

from the digital elevation model (DEM). The topographic wetness index (TWI) is a popular 

measure to infer information about the local relative differences in moisture conditions (Grabs et 

al., 2009). Solar radiation is a direct ecological factor which can affect the habitat conditions by 

influencing soil moisture, soil temperature and near surface air temperature (Bennie et al., 2008). 

The long-term monthly means climatic data (i.e. average temperature (°C), and sum of 

precipitation (mm)) were derived from the German Meteorological Service for the period 1961-

1990. Given that topography strongly affects temperature and precipitation (Fontaine et al., 2002; 

Hong et al., 2005) a co-kriging technique was executed to interpolate the long-term values over the 

whole study area using DEM as a co-variable.  

 
Table 1 Topo-climatic variables used to model species distributions. 

Details Unit Variables 

Slope inclination Degrees Slope 
The elevation of a geographic locations m Elevation 
It quantifies the role of topography for redistributing water in the landscape m Topographic wetness  index 
Sum of monthly average of daily global solar radiation from April to September kJ×m-2×day-1 Summer solar radiation 
Average temperature from April to September °C Mean summer temperature 
Sum of precipitation from April to September mm Sum summer precipitation 

 

In this study, the current and future distributions were modeled using both dynamic and static 

variables (climate and topography) to improve the modeling accuracy and to predict a more 

realistic response to the global changes. To avoid over-predictions about the species occurrence, 

the future habitat suitability maps were filtered by masking forests, built-up areas, and water 

bodies (rivers, lakes and reservoirs) which were considered as unsuitable locations for colonizing 

http://en.wikipedia.org/wiki/Geographic
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of species. Likewise, in order to precise estimation of the initial distribution of species –as source 

area– and to avoid misleading predictions of the plant colonization in the future, the initial 

distribution maps were restricted to only grassland areas. The grassland areas were extracted from 

land-cover map made of satellite images taken in 1995. 

 
5.3.3.3. Climate change scenarios  

In this research, for all the species, the current climatic conditions were used to map the initial 

distributions (i.e. in 1995) within their potential suitable habitats. Since changes in the climatic 

factors can make the current habitats climatically unsuitable, the possible shifts in habitat 

suitability of the species were created every five years from 2000 to 2100. To create a time series 

of dynamic suitable habitat, we used downscaled and calibrated climate data based on a multi-

model ensemble mean for two socio-economic scenarios (RCP4.5 “medium emissions”, and 

RCP8.5 “high emissions”) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 

(Taylor et al., 2011), and 17 global climate models (See Appendix B). The future mean 

temperatures and precipitations were simulated in the web-based stochastic weather generator 

“MarkSim” based upon the method described by Jones and Thornton (2013). Each unique location 

in an area can be examined by MarkSim, proving to be thus often better than other climate 

predictors in terms of simulating climate variances in temperate climates. Moreover, it is able to 

closely model real climatic variances within special climate clusters by utilizing stochastic 

downscaling and weather typing (Boeckmann and Joyner, 2014). 

 
5.3.3.4. MigClim model 

MigClim is a GIS-based (hybrid) model that focuses on simulation the temporal and spatial 

dynamics of species. This model is a cellular automaton that linked to habitat suitability from 

SDMs, to generate range predictions that consider climate change scenarios and dispersal 

limitations.  

This model requires the following data and parameters: 1) initial distribution map of plants; 2) 

habitat suitability maps to assess plant distribution shifts under climate change scenarios; 3) LF 

maps (i.e. pixels acting as barriers to dispersal and those showing permanent unfavorable 

locations); and 4) species’ dispersal parameters such as dispersal kernel (the probability of 

colonization for a target cell based on its distance from a productive pixel), propagule production 

potential (probability of an occupied cell to produce seed as an incubation time function) and long-

distance dispersal (Table 2). MigClim allows for comparing a regular dispersal (short-distance 

dispersal) and long-distance dispersal (LDD) using full-dispersal (FD) and no-dispersal (ND) 

scenarios. According to Engler and Guisan (2009), most of the seeds (e.g. 99%) are distributed 

within short distances with expected patterns and only a small number of them are affected by 
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LDD events. Unlike short-distance dispersal (SDD), LDD events can distribute seeds over the 

other side of a geographical barrier. In this study, the dispersal behavior of each species considered 

was specified according to the seed dispersal types defined in Vittoz and Engler (2007) and the 

required time to convert a newly-colonized cell into a cell source was set based on the information 

in Engler et al. (2009) and expert knowledge. Also, since a distance increase from a seed 

producing the source cell causes a decrease in the colonization probabilities of the target cells, a 

negative exponential seed dispersal kernel was presented to model regular seed dispersal. More 

detailed information in Engler and Guisan (2009). 

 
Table 2 Parameters used in the MigClim model for each plant species. SDD= short-distance dispersal, LDD= long-
distance dispersal. 

Reference C. jacea A. millefolium F. rupicola  

Aeschimann and Heitz (1996) 1 year 2 year 2 year Maturity age  
Vittoz and Engler (2007) 1500 m 1500 m 15 m Max SDD 
Vittoz and Engler (2007) 5000 m 5000 m 1000 m Max LDD 
Engler et al. (2009) 0.01 0.01 0.01 LDD frequency 
 1 year 1 year 2 year Dispersal event freq. * 
 Forest and built-up areas Barriers 
 Roads and water bodies (lake, river and reservoirs) Unsuitable habitats 

* Dispersal event frequency indicates the time between two successive dispersal events. 

 
To run MigClim over the study area, three interrelated sub-models were employed to simulate the 

overall dynamics: Firstly, an initial distribution map was produced for each plant using correlative 

species distribution models. This map displays the cells occupied by the target species at the 

beginning of the simulation. Secondly, habitat suitability modeling was established to indicate 

which cells are suitable for the species in future years. To this end, an initial distribution map was 

developed to refine projections of the species distributions under future climate change scenarios 

in each environmental change step (i.e. every five years). For each species, the future potential 

distribution maps were simulated under two IPCC (AR5) climate change scenarios (RCP4.5 and 

RCP8.5) on the basis of four dispersal scenarios (ND, FD, SDD, and LDD). In addition, each of 

the mentioned scenarios were implemented with two LF patterns (static landscape (SLS) and 

dynamic landscape (DLS)), except for the no-dispersal scenario (totally 14 scenarios). In this 

research, dispersal of the target species except for F. rupicola was simulated for each year. Since 

F. rupicola has a short dispersal distance (15 m), it cannot be modeled every year. Therefore, the 

dispersal distance of F. rupicola was multiplied by two and dispersal was simulated every two 

year. LDD event was generated with a probability of 0.01 in a random direction. All the 

simulations were performed over a period of 105 years (1996–2100) and repeated 25 times. In this 

research, forest and built-up areas were considered as the barrier pixels preventing dispersal, 

except for LDD events which are not affected by the barriers. These barrier areas were updated 

every 20 years (i.e. 2020, 2040, 2060, and 2080). 
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5.4. Results 

5.4.1. Model performance and contribution of predictors 

The evaluation values obtained for GAM model showed that all species under the present and 

future climatic conditions attained AUC values >0.9 and TSS Values >0.77. These modeling 

results were considered to be of an excellent standard (Swets, 1988). Among all predictors, mean 

summer temperature was the variable most frequently selected by the stepwise procedure for the 

current projecting of F. rupicola and C. jacea species (Fig. 3). While the most important predictor 

for A. millefolium was the sum of summer precipitation. TWI and solar radiation were the least 

important predictors across all species.  

 

 
Figure 3 Importance of each predictor used in GAM model for three species: a high value (like Temp) indicates an 
important influence of the predictor in the model. DEM= digital elevation model; Slope= slope in degrees; TWI= 
topographic wetness index; Solar= sum of solar radiation for the growing season (April–September); Prec= sum 
precipitation over the growing season; Temp= mean temperature for the growing season. 

 

5.4.2. Temporal landscape mapping 

In order to validate the performance of the CA–Markov model, the Kappa coefficient (Kraemer, 

1982) was computed. This statistical measure is based on a comparison of the actual changes and 

predicted changes. The actual land-cover map of the study area of 2010, which was obtained 

through remote sensing techniques, was used to assess the simulated results. The Kappa value was 

0.87, which verifies the accuracy of this model. Our results indicate that 3.1% of the entire study 

area has been occupied as a built-up area in 1995, which will increase to 14.5% by 2080, while 

forest areas will show a decrease from 32.4% to 31.2% within the same period (Table 3). 

Generally, multi-temporal change analyses of barrier areas permit growth quantification over time. 
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Therefore, our spatial comparisons of the land-cover maps were able to represent enhancement of 

the barrier areas from 35.6% in 1995 to 45.7% in 2080. The extracted and simulated barrier maps 

for 1995 to 2080 are displayed in Figure 1 and Appendix D. 

 
Table 3 Absolute quantities for land-cover classes (in km2) for 1995-2080. Other land contains farm land, grassland, and 
water bodies. 

  1995 2020 2040 2060 2080 

Forest 2233.8 2208.7 2186.6 2168.2 2149.6 

Built-up area 211.6 437.4 641.2 825.7 1003.3 

Other land 4454.0 4253.3 4071.6 3905.5 3746.5 

 

5.4.3. Projections of regional climate change 

The mean summer temperatures and sum of summer precipitations were calculated in each grid 

cell using 17 global climate models under two emission scenarios for every five years. The 

estimated changes in the mentioned factors under each emission scenario are shown in Appendix 

C. The two different estimates of emissions are indicative of consistent warming trends by 2100 

(i.e. 2.4◦C under RCP4.5 and 5.3◦C under RCP8.5). Under the high emissions scenario, 

precipitation sum during the growing season demonstrated a consistent decline from 2000 to 2100 

(56.4 mm), while precipitation under the medium emissions scenario illustrated an oscillating 

motion and thus a total reduction of 17.3 mm was predicted.  

 

5.4.4. Projected distributions under different scenarios 

Comparison of the projected distributions of all the three species with their initial distributions for 

the year 2100 indicates that their distributions are always augmented under all the dispersal 

scenarios, except for no-dispersal scenario (Table 4). 

Table 4 depicts that among the three plants, F. rupicola has the widest potentially suitable habitat 

(PSH, i.e. the area a species could occupy under full-dispersal scenario; Engler and Guisan, 2009) 

in a way to occupy 26% and 38% of the study area more than A. millefolium and C. jacea on the 

average, respectively. Furthermore, comparing the initial distributions of the study plant species 

with their projected distributions for 2100, A. millefolium and C. jacea were observed to lose 

distribution under ND scenario. A. millefolium and C. jacea were predicted to lose 30% and nearly 

32% of their initial occupied areas, respectively, whereas F. rupicola distribution surface was seen 

to be constant over time. The comparisons revealed the differences between the dispersal scenarios 

(ND, FD, SDD, and LDD) in 2100 increment with growing initial PSH areas (except for the 

difference between SDD/LDD scenarios with ND scenario for A. millefolium) (Table 4).   

The difference between the projections obtained using FD scenario demonstrated a significant 

expansion in the projected distributions of 2100. For example, as the occupied areas of F. rupicola 
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species were predicted to be 1.2%, 11.9%, and 13% under ND, SDD, and LDD scenarios on the 

average for 2100, respectively, its occupied area was found to be nearly 59.7% under FD scenario 

(Table 4). Also, it is worth mentioning that the results obtained from SDD and LDD scenarios 

indicated all the three plants will occupy less than 50% of PSH by 2100. These results actually 

portray an overestimated assessment under FD scenario. 

 

Table 4 Estimated mean percentage of area for three species by 2100 as output by two climate change scenarios 
(RCP4.5, RCP8.5), four dispersal scenarios (ND, FD, SDD, LDD), and two landscape fragmentation change scenarios 
(SLS, DLS). Initial shows the percentage of occupied areas by each species in 1995. ND= no dispersal, FD= full 
dispersal, SDD= short distance dispersal, LDD= long-distance dispersal, SLS= static landscape, DLS= dynamic 
landscape.  

      SLS   DLS 

      A. millefolium C. jacea F. rupicola   A. millefolium C. jacea F. rupicola 

Initial 
 

0.82 0.57 1.21 

 

0.82 0.57 1.21 

SDD 
        

 
RCP4.5 14.96 10.17 12.82 

 

12.93 8.88 10.91 

 
RCP8.5 15.35 10.23 12.93 

 

13.30 8.94 11.03 

LDD 
        

 
RCP4.5 15.52 10.72 13.97 

 

13.42 9.30 11.91 

 
RCP8.5 15.94 10.73 14.11 

 

13.86 9.36 12.07 

ND 
        

 
RCP4.5 0.57 0.39 1.21 

 

0.57 0.39 1.21 

 
RCP8.5 0.58 0.39 1.21 

 

0.58 0.39 1.21 

FD 
        

 
RCP4.5 34.63 23.09 64.40 

 

29.20 19.56 54.97 

  RCP8.5 37.61 22.42 64.40   31.73 19.02 54.97 

 
 

As it can be inferred from the results, the response of a given climate change scenario is not 

always similar to that of each dispersal distance scenario. For instance, the difference between 

SDD and LDD dispersal projections of 2100 is slightly larger under the high climate change 

scenario than the medium climate change scenario (except for C. jacea species under the SDD 

scenario) (Fig. 4). Moreover, the results were indicative of the existence of larger differences 

between ND and SDD/LDD under RCP8.5 climate change scenario, while the differences between 

FD and SDD/LDD were larger under RCP4.5 scenario (with the exception of A. millefolium 

showing a greater difference under the high-emission scenario in both cases). Except for F. 

rupicola, the projected future distributions for the plants were significantly different between two 

emission scenarios when using FD modeling approach (p<0.001). However, no significant 

difference was observed between the projections made under two climate change scenarios when 

considering LDD and SLS scenarios for C. jacea (p>0.05), while a significant difference existed 

between all the other projections made under LDD scenario (p<0.001) (Fig. 4). 
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Figure 4 Colonised areas for three species in 2100 under the two climate changes (RCP4.5, RCP8.5) and dispersal 
scenarios (ND, FD, SDD, LDD). (a) Projected distributions in which species migrate under SLS scenario. (b) Projected 
distributions in which species migrate under DLS scenario. Data are expressed as means ± SEM (n=25). ns= non-
significant (p>0.05), **= significant (p<0.01). Abbreviations as in table 4. 

 

Introducing LF change scenarios in our simulations allowed for determining the descending rate of 

the projected distributions (Table 4) ranging from no (under ND scenario) up to 9.4% (for F. 

rupicola under FD scenario). Under SDD/LDD scenarios, F. rupicola projected area was seen to 

decline from 13.5% under SLS scenario to 11.5% under DLS scenario on the average for 2100. 

Also, for the other two plants under the mentioned scenarios, similar trends were observed, i.e. 

from 15.5% to 13.4% and 10.5% to 9.1% for A. millefolium and C. jacea, respectively (Table 4). 

These results demonstrated that the difference obtained under FD scenario for F. rupicola species 

is higher than those of the other species and the differences of the projected areas under SDD/LDD 

scenarios are greater for A. millefolium species when comparing landscape scenarios. 
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5.5. Discussion 

5.5.1. Effects of dispersal limitations 

In this study we produced 14 consensus forecasts for each grass species over the 21st century, one 

for each possible combination of two IPCC emission scenarios (RCP4.5 and RCP8.5), one for each 

dispersal scenarios, i.e. no-dispersal (species will persist only in their current suitable habitat 

inside grasslands), full-dispersal (species could disperse to all new potential suitable areas inside 

the study area), short distance distribution, long distance distribution and of two LF scenario, i.e. 

static and dynamic landscape. Table 4 shows A. millefolium and C. jacea species will lose a 

considerable part of their areas under ND scenarios by 2100. Thuiller et al. (2006), McKenney et 

al. (2007) and Engler et al. (2009) also obtained similar results. The reason should be sought in the 

hypothesis of this scenario which states that due to various constraints, the species cannot migrate 

to other habitats. Thus, they will have no chance of migration under this scenario and their range 

reductions in the coming decades will not be a surprise. Perhaps, that is why this scenario is 

referred to as the worst-case scenario for plant species distributions although the results of this 

scenario can be more realistic for the species that have lost their abilities to disperse under the 

influences of intrinsic and extrinsic factors or those having low speed and distribution powers 

(especially, when using coarse grid scales) (Bateman et al., 2013).  

Besides, the results obtained by the limited projections of future plant distributions via realistic 

dispersal restrictions showed to be generally closer to ND than to FD scenario when compared 

with SDD/LDD scenarios (Fig. 4, 5). This result is inconsistent with the results obtained by Engler 

et al. (2009). The cause for this conflict can be found in the configuration differences of the two 

regions since their study was conducted in a mountainous area. Since the slope of climate changes 

is steeper in mountainous regions, when a prediction is made based on climate changes, a decrease 

in displacement of suitable habitats is the result. This is because shorter distances are probably 

required to follow suitable weather conditions as compared to flat areas (Engler et al., 2009). 

Therefore, it must have been unexpected to find much smaller differences between SDD/LDD and 

FD scenarios in mountainous areas when compared to our results. 

This conclusion confirms that the projection of species distribution under FD scenario is generally 

overestimated (Midgley et al., 2006; Engler et al., 2009), especially in non-mountainous areas. For 

example, in this study, the difference in projected areas between FD and SDD/LDD scenarios were 

about 52%, 11%, and 19% on the average for F. rupicola, C. jacea, and A. millefolium, 

respectively, when simulations are made for high emission scenario (Fig. 4). Although FD 

scenario might be favorable for some species, such as invasive species and birds (Thuiller et al., 

2005; Barbet-Massin et al., 2012), unrealistic results are mainly resulted for plant species 

(Bateman et al., 2013). That is why Midgley et al. (2006) have suggested that this scenario should 

be removed from plant species studies.  
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Figure 5 Area representation of plant distributions by 2100 under the four dispersal scenarios (ND, FD, SDD, LDD) and 
two landscape change events (SLS, DLS). (a) Projected distributions in which species migrate under RCP4.5 climate 
change scenario. (b) Projected distributions in which species migrate under RCP8.5 climate change scenario. Data are 
expressed as means ± SEM (n=25). ns = non-significant (p>0.05), **= significant (p<0.01). Abbreviations as in table 4. 

 

Despite the fact that the use of SDD/LDD scenarios require information that is not generally 

available for many plants, these scenarios can significantly make closer to reality the projection of 

species distribution in the future even with guesswork and less accurate information at hand 

(Engler and Guisan, 2009; Bateman et al., 2013). For example, under the warmest climate change 

scenarios, the predicted area for F. rupicola under FD scenario was 53 times as large as its area 

under ND scenario for 2100, while SDD/LDD scenarios were only 12 times higher than ND 

scenario. When the difference was examined for the other two species of A. millefolium and C. 

jacea, reductions from 65 to 27 and 57 to 26 were observed, respectively (Fig. 4). 

In our research, addition of LDD events to our simulations resulted significantly different from 

SDD simulations (as found by Imbach et al., 2013). Results from Engler et al. (2009) are in 
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contradiction with ours, they found no significant differences on species distributions between 

SDD and LDD dispersal rates. This is probably due to the smaller size of their study area and the 

nature of investigated species pool. The larger a study area is, the better an LDD event can show 

its effectiveness. In addition, the existence of unsuitable areas and barriers can affect its 

performance (Engler et al., 2009). Average increases of the predicted areas under LDD scenario 

were approximately 10.2%, 5.2%, and 4.1% for F. rupicola, C. jacea, and A. millefolium species, 

respectively, depending on the LF and climate change scenarios (Fig. 4 and 5). 

 

5.5.2. Effects of climate change scenarios 

The effect of climate change on plants has been considered as a permanent factor (Pearson and 

Dawson, 2003; Kelly and Goulden, 2008) influencing plant distribution in many studies (Pearson 

et al., 2002; Dirnböck et al., 2003; Loarie et al., 2008; Martin et al., 2013). In this investigation, it 

was shown that the predicted distribution areas for all the three species under RCP8.5 scenario will 

largely increase in the coming decades, which is probably due to the fact that at low altitudes, 

plants are more tolerant to heat and drought than in highlands. In addition, the plants in these areas 

are less sensitive to climate changes since they still have the chance to migrate to higher elevations 

and thus less likely face extinction (Engler et al., 2011) unless some factors limit their migrations 

to higher areas. Vittoz et al. (2009) also revealed that rises in temperature have been still suitable 

for lowland species since the past decades. 

Our results demonstrated that the studied species have no greatly different responses to different 

climate change scenarios (Fig. 4, table 3) which might be due to little restrictions they have had for 

distribution and have thus been less affected by varied climate scenarios. Some studies have 

suggested that climate changes have greatest impacts on the plants in mountainous areas where 

they confront greater distribution restrictions due to the occurrences of less suitable habitats and 

increased competitions (Engler et al., 2009; Vittoz et al., 2009). Yet, the results obtained in this 

study cannot indicate the overall climate change impacts on the species distributions in our study 

areas because in addition to having direct effects on the habitat conditions, these changes 

(anthropogenic climatic changes)can exert an influence on the species distribution speeds and 

abilities by affecting some other factors such as phenological variability (Hampe, 2011; Nathan et 

al., 2011), seed dispersal by wind (Bullock et al., 2012), species interactions such as competition 

(Gilman et al., 2010), and the frequencies of disturbance factors such as fires (Hampe, 2011). 

Therefore, climate change certainly has a decisive role in plant growths and migrations 

(Kawakami et al., 2009; Bullock et al., 2012). 
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5.5.3. Effects of landscape change scenarios 

Our results indicated that built-up patches will increase in area by the year 2080 (Table 3). The 

built-up areas are predicted to gain about 792 km2. Whiles forest areas are forecasted to lose 84 

km2 in the same period. In total, results from CA-Markov model indicated an increase in barriers 

(forest and built-up areas). The barrier areas is expected to cover 45.7% of our study area in year 

2080, which means a 28.4% increase in comparison with its current distribution. These results 

clearly showed the high degrees of habitat loss and LF in study area which can break habitat 

connectivity and create a landscape mosaic of suitable, less suitable, and unsuitable habitat patches 

(Wiens et al., 2009). 

As expected, an increase in the barrier areas led to a decrease in suitable and colonised habitat 

areas for the studied species (Fig. 5, 6 and Appendix E). For instance, the PSH areas of F. rupicola 

are projected to lose 651 Km2, which means a 9.4% reduction in comparison with its distribution 

under SLS scenario, which, in comparison to the two other plants, is the largest amount of 

reduction observed (5.7% and 3.5% declines for A. millefolium and C. jacea, respectively). 

 

 
Figure 6 Predicted distribution maps of F. rupicola (green areas) for year 2100 with high-greenhouse-gas emission and 
long-dispersal (LDD) events under static (left) and dynamic (right) landscape scenarios. PSH= potentially suitable 
habitat. 

 

A species needs to be able to distribute throughout suitable habitats to occupy parts of an 

environmental niche space (Pearson and Dawson, 2003; Jeschke and Strayer, 2008), while 

landscape patterns actually manage the existing corridors for its migration (Hannah, 2011). For 

this reason, some studies have investigated the effects of reducing habitat areas and increasing 

isolations on the distances and distribution qualities of seeds within and between the fragments of 

ecosystems (Rodríguez-Cabal et al., 2007; Kirika et al., 2008; Cordeiro et al., 2009; Lehouck et al., 

2009; Uriarte et al., 2011) and proven the roles of barriers and fragmentation in the distribution 
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rates of species (Levey et al., 2008; Dewhirst and Lutscher, 2009; Brown et al., 2012). In 

consistency with the previous studies (Kinezaki et al., 2010; Meier et al., 2012), our projections 

indicated that landscape changes will have a strong role in reducing the distribution areas of plants 

in the coming decades, especially in local studies (Pearson and Dawson, 2003; Engler et al., 2011) 

like our study area. If human land-cover and fragmentation significantly limit the relationship 

between suitable habitats, application of ND scenario would seem to be appropriate in such 

circumstances (Lu et al., 2012). 

 

5.5.4. Sources of uncertainty 

Although the model used in this study has so well performed the predictions, there are a number of 

uncertainties in the projections of plant species distribution in the future, which are described as 

follows: First, lack of information on how the trend of climate change and its consequences will be 

followed in the coming years is considered as a source of uncertainty (Vittoz et al., 2009). Climate 

envelope techniques have been extensively used to evaluate climate change effects on the spatial 

patterns of biodiversity, while many of their uncertainty aspects have been debated (Heikkinen et 

al., 2006; Jeschke and Strayer, 2008). Vittoz et al. (2009) stated that the effects of climate change 

on landscape change should not be ignored. Some studies (e.g., Reichler and Kim, 2008; Pierce et 

al., 2009) showed that the multi-model ensemble average is the best determinant for predicting the 

global and regional climate. For this purpose, in this study the ensemble mean of the 17 climate 

models were calculated to reduce the uncertainties in future climate change projections.  

Second, evolution of ecosystems and biotic interactions will undoubtedly undergo future climate 

changes (Davis et al., 1998; Brooker, 2006; Memmott et al., 2007; Suttle et al., 2007). 

Nevertheless, due to the lack of information on how our study species adapt or response to 

environmental changes, their evolutions were assumed to occur under constant conditions. Also, 

because insufficient information was available to evaluate the effects of biotic interactions on the 

present and future distributions of species, we considered the target species as independent entities. 

Therefore, competition as one of the most important biological factors was removed in this study. 

It is expected that competitions among species significantly reduce their migration speeds (Meier 

et al., 2012; Urban et al., 2012). 

Third, predicting future landscape changes would be full of uncertainty due to unpredictable 

events (such as fires and floods), socioeconomic changes (Radeloff et al., 2012), possible changes 

in managerial attitudes, and potential uncertainty which coming from simulator models. In 

addition to the mentioned sources of uncertainty, we assumed that the categories of landscape will 

remain unchanged for 2080-2100, which possibly leading to overestimate in the forecasting. 

Fourth, lack of knowledge about species distribution quantities and qualities has been another 

cause of uncertainty discussed in various studies (Engler et al., 2009; Bateman et al., 2013). The 
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question of how far the seeds can exactly migrate from their native plants or whether they will 

have the ability or chance of germination and production of new individuals will remain as a 

controversial issue. Also in our study the role and effect of aboveground and belowground 

herbivores were disregarded. The previous studies have shown that grazing reduces seed 

production in plants, especially in grasslands and can thus affect plant community composition, 

competition among species, and their ability to disperse (Collins and Gordon, 1985; Marage et al., 

2006). 

 

5.6. Conclusion 

This study revealed how miscellaneous plant species distribution can be under the influence of 

different dispersal scenarios. The impact of different dispersal scenarios on distribution projections 

by 2100 clearly shows the overestimation made when using the full dispersal modeling approach. 

Generally, species distributions modeling under the influence of realistic dispersal limitation in the 

21st century have produced results closer to ND rather than to FD scenario. Our results revealed 

that future barrier growth is more effective than the climate change impacts on species distribution, 

while affirming the particular importance of landscape structure and its effect on future plant 

distribution to be considered in fine-scale studies and the fact that more realistic results are 

obtained when incorporating future landscape changes in modeling (as stated by e.g. Gilman et al., 

2010; Kissling et al., 2010). The projected future distributions under the two climate scenarios 

used in this study showed small differences. Nonetheless, significant differences were observed 

between SDD and LDD distribution scenarios for all three plants. Finally, our results highlighted 

the fact that the appropriate interpretation of the outputs of the models requires a careful selection 

of dispersal scenarios related to the mentioned questions when projecting them into new 

environments. 
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Chapter 6 

General Discussion 

 

6.1. General finding of this thesis 

This thesis is compiled in five principal chapters. Chapter 1 reviews the fundamentals of this 

research that were supposed to deal within this project (e.g. problem statement, research 

questions, research objectives and research approach). Chapter 2 different algorithms to the 

classification of satellite images were examined to determine the best classifier approach with 

respect to characteristics of the study area and features of the used satellite images. The best 

method was then used to obtain the land-cover maps corresponding to different years. In 

Chapter 3, the classified maps in the previous chapter were imported into CA-Markov model. 

This model uses the changes observed in the past few years to simulate possible future 

changes in future land-cover over time and space. These simulated maps show the future 

changes in dispersal barriers and suitable and unsuitable habitats. In Chapter 4 several SDM 

models were evaluated to determine the model and the set of predictors most suitable to 

forecast the distribution of studied species. In chapter 5 we investigate the potential impacts of 

climate and landscape fragmentation changes on distribution of three individual plant species.   

 

Can regression-based models as well as machine-learning models be used for prediction 

suitable habitat maps? 

In Chapter 4, we compared the performance of some of the most common methods of 

presence-absence distribution models. Specifically, two categories of methods, machine-

learning algorithms and regression-based methods, were compared. It was found that 

regression-based methods (GAM, GLM, and MARS), showed a better performance than 

machine-learning algorithms (RF, ANN, and GBM), whereas the opposite was found by 

Bucklin et al. (2015). 

One of the machine-learning methods, GBM, produced a prediction map that performed as 

well as the regression models (mean AUC= 0.87). A visual comparison between the predicted 

maps revealed that the map produced by GBM is very similar to maps obtained from the 

regression models (Chapter 4, Figures 4, 5, and 6). Among all predictor techniques used in this 
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study, GAM and MARS performed better. This finding verifies previous results of species 

dispersal modeling (Leathwick et al., 2005; Heikkinen et al., 2012). 

We also investigated the impact of different set of explanatory variable (climate-only, 

topography-only and topo-climatic) on model performance. Selection of ecological factors to 

apply as predictors is one of the big challenges in species distribution modeling (SDM) 

(Araujo and Guisan, 2006).  Selection of predictors with direct effect on species distribution is 

the best solution for this problem (Austin, 2002, 2007). In many cases, due to unavailability of 

adequate information, limitation of accessible resources, or incomplete ecological knowledge, 

it is not generally possible to examine a large number of variables in a study (Bucklin et al., 

2015). 

Given the simplicity of climate data provision and collection, in some studies, researchers only 

use climatic factors as the driver of species distributions (Pearson and Dawson, 2003). For 

example, Martinez-Meyer (2005) stated that the combination of precipitation and temperature 

as the two main factors among climate parameters could express the extent of physiological 

tolerance for living organisms.  

Some researchers criticize studies in which climatic factors are only used as predictors, 

because they think there is not enough evidence for climatic range determination in species 

distributions (Bahn and McGill, 2007; Beale et al., 2008), and climatic data alone cannot show 

the environmental conditions required for the establishment of species (Araujo and Peterson, 

2012; Bucklin et al., 2015). In response to those criticisms, along with other modelers (Austin 

and Van Niel, 2011) we include additional, non-climate predictors (topography variables) 

beside climate variables in SDMs. 

Topography variable are commonly believed to influence species ranges, and have been often 

been included in SDMs (e.g. Marmion et al., 2009; Tsoar et al., 2007). Our results have 

shown that using climatic and topographic parameters improved the accuracy of 

predictions. This result is inconsistent with the results obtained by Tsoar et al. (2007). 

Many previous studies tried to predict suitable sites for establishment of the species based 

on similar indices (Box et al., 1993; Carpenter et al., 1993; Gonzalez et al., 2010; Kissling 

et al., 2010). 
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What is the potential impact of climate change on plant species? 

Climate change is one of the factors that cause significant changes in plant distribution and 

landscape change. So development and the use of models that can incorporate climatic change 

scenarios are of great important, especially in local scale studies. The major achievement of 

this thesis has been to assessment of potential climate change impacts on three plant species 

distribution in future (Chapter 5).  

Our results show that the predicted distribution areas for all the three species under RCP8.5 

scenario will largely increase in the coming decades. Response curves of predictor variables in 

chapter 4 (Fig. 3) clearly show that target plants prefer low altitude, low precipitation and high 

temperature in the study area, which corroborate our results in chapter 5. Also, studies 

revealed that rises in temperature have been still suitable for lowland species since the past 

decades (Vittoz et al., 2009).  

Our results demonstrated that the studied species have no greatly different responses to 

different climate change scenarios (Chapter 5: Fig. 4, Table 3) which might be due to little 

restrictions they have had for distribution and have thus been less affected by varied climate 

scenarios. 

 

How much does the inclusion of dispersal limitation events affect projections? 

Migration processes should also be paid attention to in order to study changes in the ranges of 

biological diversities of species caused by climate change. For this very reason, dispersal 

limitation have been mentioned as one of the most important sources of uncertainty in the 

process of studying species distributions as influenced by climate change (Araújo and Guisan, 

2006). SDMs have the capacity to investigate distribution of species on various scales (from 

fine to large), although they do not study the capability and/or the power of species dispersal 

(Guisan and Zimmermann, 2000; Engler et al., 2009). Therefore, incorporating migration 

processes into SDMs is one of the basic factors in improving predictions under varying 

conditions (Guisan and Thuiller, 2005; Zurell et al., 2009; Meier, 2011). Thus, the importance 

of dispersal limitations in projections of future species distribution under climate change has 

been given special attention in this thesis (Chapter 5). 

When assessing species dispersal in our study area (local or regional assessment), considering 

no-dispersal provided satisfying results that were close to those obtained from the simulations 
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that accounted for dispersal limitations. Although the obtained results must be tested in other 

study regions and on other plant species, yet it seems logical to think that these results can be 

extrapolated to other regions with similar features and sizes. 

Nevertheless, as mentioned above, this obtained result is only valid for projections made on 

local to regional scales. Moreover, it is only valid for non-mountainous regions, because 

results for mountainous regions are expected to be very different. In other words, simulations 

of limited dispersal can be closer to full-dispersal than to no-dispersal (e.g., see Engler et al., 

2009). 

One of the parameters that was particularly paid attention to in this research was long distance 

dispersal (LDD) events that allow movement and transfer of seeds over long distances often 

through unusual dispersal agents and methods. Despite the fact that many studies have been 

carried out on seed dispersal, the importance of long distance dispersal in migration and 

dispersal of plants is still a controversial issue (Pearson, 2006). 

Although various methods were developed to estimate LDD events, and considerable progress 

was made in modeling LDD (e.g., Teckenberg, 2003; Soons et al., 2004; Nathan et al., 2006), 

yet it is still difficult to combine them accurately into species distribution and dispersal. In 

fact, some have acknowledged that accurate prediction of LDD events may be impossible due 

to their unpredictability (Clark et al., 2003). Nevertheless, it seems illogical to ignore this type 

of dispersal and omit it from studies on distribution of plant species (Engler, 2009).   

When the importance of LLD events is discussed, using certain models, which make possible 

studying various scenarios and states, allow researchers to scrutinize species distribution 

process more closely. For example, in this specific case, we can test whether incorporating this 

type of dispersal can have significant effects on projections. Moreover, repeating simulations 

with LDD events may reveal LDD-related uncertainty both temporally and spatially. This type 

of uncertainties must be included in studies in order to increase the ability of models in 

making projections and somehow give researchers more assurance. This issue becomes 

significantly important when the results of these models are used to enforce climate change 

reduction policies. 

I applied different dispersal scenarios in an SDM-based projection framework (MigClim), in 

which migration depends on dispersal distance and landscape fragmentation. MigClim has 

already been used to investigate the relative impacts of dispersal distance in a local study in 



 80 

Western Swiss Alps (Engler et al., 2009). Engler (2009) stated that the MigClim model has 

considerable strengths. For example, he states that this model can be linked with different 

modeling techniques, and its parameters are flexible. Engler (2009) also suggested that this 

model can examine the potential distribution of a species steadily over time. Also, there is the 

possibility for a researcher to not only show the potential distribution map of the desired 

species at the end of the simulation, but also examine the process of the distribution in specific 

intervals. 

 

To what extent does landscape fragmentation prevent the movement of species toward 

suitable habitats? 

One of major methodological limitation of SDMs is that they do not take limitation of 

migration into account. Nowadays, with the increase in landscape fragmentation, the 

significance of this limitation is more than ever before, since there have been more barriers in 

the way of species movement pattern that can reduce the speed and rate of dispersal (Engler, 

2009). 

Most of modelers ignore the change of landscape fragmentation over time. In this study we 

simulated future landscape changes and projected future plants distribution under two 

scenarios (static and dynamic). A cellular automata-Markovian spatial modeling process was 

used (chapter 3) to simulate future landscape changes (dynamic scenario) based on 

biophysical and proximate drivers. Our results showed that the barrier areas is expected to 

cover 45.7% of our study area in year 2080, which means a 28.4% increase in comparison 

with its current distribution.  

As expected, an increase in the barrier areas led to a decrease in suitable and colonised habitat 

areas for the studied species. For instance, the potential suitable habitat of F. rupicola is 

projected to lose 651 Km2 when projections were carried out under dynamic landscape 

scenario, which means a 9.4% reduction in comparison with its distribution under static 

scenario. Our projections indicated that expected change in landscape fragmentation will have 

a strong role in reducing the distribution areas of plants in the coming decades, especially in 

local studies (Pearson and Dawson, 2003; Engler et al., 2011). In total, our results revealed 

that change in landscape fragmentation is more effective than the climate change impacts on 

species distributions in this study. 
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Appendix 

 
Appendix A The theoretical basics of cellular automata and Markov chain models are explained in 

this section. 

 

1. Cellular Automata  

Cellular automaton (CA) is a mathematical model used for system simulations and calculations. 

Cellular automata are discrete simple systems, which can display complicated behavior and 

calculations using simple local rules. The “local” part implies that in determining the new value of 

each cell, adjacent cells (the neighborhood) are influential while distant cells are not. Each cell has 

a set of states, and the cell momentarily switches between the states depending on its states and 

those of its neighbors. States of all cells are updated simultaneously. The overall system behavior 

is determined based on the combined effects of all of the local transition rules. Therefore, the 

system’s state evolves throughout discrete time steps (Liu, 2009; Wolfram, 1984). 

Based on the above definitions, the CA model consists of the following five basic components: 

 

Cell 

The CA model is defined as cellular units within a raster network. The cells may exist in either a 

two- or three dimensional spatial tessellations. Even though CA models often have a two-

dimensional structure, other structures, such as one dimensional ones, are also employed for 

solving linear problems. The cellular space can also be designed as a three-dimensional grid 

(lattice) (Nagel et al., 1997).  

 

State 

A state is defined as a system attribute. At any given time, each cell has a specific state which can 

change to another state during a unit of time. A cell’s state can reflect different land uses such as 

forest or urban uses (Portugali et al., 1995). 

 

Neighborhood 

A neighborhood is composed of a cell and other cells situated at a radial distance from the cell of 

concern. The cell changes state based on its mutual relations with its neighbor as a result of 

transition rules. Size of a neighborhood varies for different CA model. In a one-dimensional CA, 

each cell has three neighboring cells. The most well-known neighborhood in two-dimensional CA 

is the Moore neighborhood, which consists of nine cells arranged in the 3×3 order, and the Von 

neighborhood consists of five cells (Rezazadeh et al., 2010). The von Neumann and Moore 

neighborhoods are shown in Fig. 1. 
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Fig. 1 CA neighborhoods. A: Neighborhood in one-dimensional CA. B: von Neumann Neighborhood. C: 3×3 Moore 
Neighborhood. D: 5×5 Moore Neighborhood (Rezazadeh et al., 2010). 
 

Transition rules  

The transition rule determines the change of a cell’s state according to its current state and its 

adjacent cells. This element is one of the main parts of CA, because these rules reflect the system 

modeling and are necessary for success of modeling (White, 1998).  

 

Time 

A CA model is defined in a time dimension; as mentioned earlier, cells can change from one state 

to another during a unit of time. In other words, all the cells within a network are updated 

simultaneously, and they either change according to the rules of the model or remain unchanged 

until the next time unit (White, 1994). 

 

A general example 

In a one-dimensional CA, cells form a circle, with each cell having two neighbors and two states. 

In the T time step, the cell’s state depends on its own state and state of its neighbors in the T-1 

time step. For example, if the target cell’s state is shown by A in the T-1 time step and states of its 

two neighbors are shown by B, and if the transition rules are designed to transform the target cell 

to B, then the rule can be written as follows: BAB=B 

Each cell can generate 8 different combinations with its neighboring cells: BBB, BBA, BAB, 

ABB, BAA, AAB, ABA, and AAA.  

 

Imagine we have the following transition rules: (AAA→ B), (BBB→ B), (BBA→ A), (BAB→ A), 

(ABB→ B), (BAA→ A), (AAB→ A), (ABA→ A). Transition rules determine the target cell’s 

state in each of the composition of the next step. In this case, with AAAABAAAA as the state, this 

line will be written as BBBAAABBB in the next step (the first and last cells are linked as the 9 

cells form a circle). This is because the middle cell B follows the ABAA rule. The cell on the 

right center follows the BAAA rule, whereas the left cell follows the AABA transition rule. 
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Other cells follow the AAAB rule for state transition. Using the same rules, the following 

combination is obtained in the third phase: BBAABABBB. 

 

Game of Life 

The "Game of Life" is another example which can be mentioned regarding CA models. This 

model was designed by John Conway (Gardner, 1972). In this game, cells exist in a two-

dimensional network, and they can assume two states: "Dead" or "Alive". Moreover, in this game, 

the state of the target cell is determined based on the state of its Moore Neighborhood – i.e. its 

eight neighboring cells. 

The rules of transformation in a CA model are a set of If-then rules. For examples, a set of three 

rules are used in the "Game of Life". In this game, cells can remain alive, die, or be born in the 

next time unit based on the rules. The first rule dictates that if a cell is neighboring two or three 

alive cells, then it will remain alive. The second rule holds that if a cell is placed next to less than 

two or more than three alive cells, then it will die because of seclusion or overpopulation in the 

next step. The third rule dictates that if a dead cell has exactly three alive cells in its immediate 

surroundings it will become alive. Fig. 2 depicts an example of simulations by this model. 

 

 
Fig. 2 A simple simulation based on "Game of Life" (brown cells are alive, and white cells are dead; T also shows the 
time step)  
 

2. Markov Chain  

A random process is a set of random variables shown by {X(n), n€N}, in which the possible 

values of X(n) form the process state. In practice, the N subscript set refers to time, and values of 

X(n) normally show sizes or observations of a system at time n. Markov chain is a random process 

in which random variables transfer from one state to another. A Markov property indicates that the 

subsequent state of a variable only depends on its current state and is independent of previous 

events (Higgins and Keller-McNulty, 1995).  
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Assume {X(n)} is a random process and {X(n)} shows different states of the random process. 

Therefore, the Markov property applies to the process, if: 

P[X(n+1)= S(n+1) | X(n)= S(n), X(n-1)= S(n-1),…,X(0)= S(0)]= P[X(n+1)= S(n+1) | X(n) = S(n)]           (1) 

 

The random process to which the Markov property applies is called a Markov process, and 

processes with discrete states form a Markov chain. Fig. 3 depicts a Markov property. As seen, 

each cell only depends on a precedent cell and is independent of other cells (Papoulis, 2002). The 

probability of a one-stage transition is defined as follows based on conditional probabilities: 

P(i→j)=P[X=j | X-1=i)                                                                                                                                    (2) 

 

The probability of a one-stage transition has a key role in the theory and application of Markov 

chains and it is equal to the probability of transition for state i to state j. Table 1 presents an 

example of the transition probability matrix for three states. In this matrix, elements of the 

transition matrix correspond to probabilities of transition from state i to j. Dimensions of this 

matrix are defined based on possible states of a random variable. In addition, the row and column 

indices correspond to the current (i) and subsequent states (j), respectively (Papoulis, 2002). In 

Table 1, the element on the third row and second column indicates that probability of transition 

from state 3 to the next state is 0.36, if the next state is 2. Evidently, elements on a row sum up to 

one. 

 

Table 2 An example of transition probability matrix for three states (Papoulis, 2002) 

State A B C 

A 0.65 0.28 0.07 
B 0.15 0.67 0.18 
C 0.12 0.36 0.52 

 

 

 
Fig. 3 A schematic view of a Markov property 

 

In Fig. 4, there is a sequence of events with the Markov property. Cells x, x-1, and N are in states 

Sk, S1 and Sq, respectively. Occurrence of the event Sk also depends on events S1 and Sq (Zi denotes 

the state of cell x=1,…, N). Probability of a state transition (pr) from state i to j is expressed as 

follows (Li and Zhang, 2008): 

Pr(Zi=Sk | Zi-1=S1, Zn=Sq)                                                                                                                                (3) 
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Relation (3) can be written as follows: 

Pr(Zi=Sk | Zi-1=S1, Zn=Sq)= 
୮୰(Zi−1=S1, Z1=Sౡ, Zn=Sq)୮୰(Zi−1=S1, Zn=Sq)                                                                                                  (4) 

 

Considering the Markov chain, conditional probabilities of equation (4) can be expressed as 

follows: 

Pr(Zi=Sk | Zx-1=S1, Zn=Sq)= 
PౡqሺN−xሻP୪୩PౢqሺN−x+1ሻ                                                                                                                           (5) 

Where, P୩୯ሺN−xሻ shows probability of transition from state k to q with a (N-x)-cell interval, and P୪୯ሺN−x+ଵሻ is probability of transition from state l to q with a (N-x+1)-cell interval (Li and Zhang, 

2008; Nikoogoftar et al., 2015). By assuming an initial value as the observed space and a one-stage 

transition matrix, the movement paths of the Markov chain can be simulated. 
 

 

 
Fig. 4 A sequence of events for the subsequent Markov chain (values of the blue cells are known and values of the white 
cells are estimated by the Markov method) (Nikoogoftar et al., 2015). 
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Appendix B List of IPCC (AR5) GCMs used in this study with a brief indication of their origin, 
and resolution for each climate change scenario. 

Modeling Center Institution ID Model 
Resolution 

(lon by lat) 

Beijing Climate Center, China BCC BCC-CSM1-1 2.815 × 2.815 

Beijing Climate Center, China BCC BCC-CSM1-1-M 1.12 × 1.12 

Commonwealth Scientific and Industrial Research, Australia CSIRO CSIRO-Mk3.6 1.875 × 1.875 

The First Institute of Oceanography, SOA, China FIO FIO-ESM 2.8 × 2.8 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-CM3 2.5 × 2.0 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2G 2.5 × 2.0 

NOAA Geophysical Fluid Dynamics Laboratory NOAA GFDL GFDL-ESM2M 2.5 × 2.0 

NASA Goddard Institute for Space Studies, USA NASA GISS GISS-E2-H 2.5 × 2.0 

NASA Goddard Institute for Space Studies, USA NASA GISS GISS-E2-R 2.5 × 2.0 

Met Office Hadley Centre, UK MOHC HadGEM2-ES 1.875 × 1.25 

Institut Pierre-Simon Laplace, France IPSL IPSL-CM5A-LR 3.75 × 1.875 

Institut Pierre-Simon Laplace, France IPSL IPSL-CM5A-MR 2.5 × 1.25 

Atmosphere and Ocean Research Institute, Japan MIROC MIROC5 1.40 × 1.40 

Japan Agency for Marine–Earth Science and Technology, Japan MIROC MIROC-ESM 2.815 × 2.815 

Japan Agency for Marine–Earth Science and Technology, Japan MIROC MIROC-ESM-CHEM 2.815 × 2.815 

Meteorological Research Institute, Japan MRI MRI-CGCM3 1.125 × 1.125 

Norwegian Climate Centre, Norway NCC NorESM1-M 2.5 × 1.875 
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Appendix C Projected changes of precipitation and temperature under RCP4.5 and RCP8.5 

scenarios. RCP4.5T and RCP8.5T show the summer mean temperature under medium and high 

emission scenarios, respectively. RCP4.5P and RCP8.5T are the summer total precipitations 

correspond respectively to medium and high emission scenarios. BP was obtained by averaging 

the baseline period (1960-1990). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 101 

Appendix D Time series of simulated barrier maps for 2020-2080. Other land contains farm land, 

grassland and water bodies, and barrier land contains forest and built-up areas. 
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Appendix E Examples of distribution maps obtained for year 2100 with RCP8.5 scenario and 

LDD events for A. millefolium and C. jacea based on static landscape (SLS) scenario (left) and 

dynamic landscape (DLS) scenario (right). PSH= potentially suitable habitat. 
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