

Modulhandbuch

Bachelor Werkstoffwissenschaft

Studienordnungsversion: 2009

gültig für das Wintersemester 2016/17

Erstellt am: 01. November 2016

aus der POS Datenbank der TU Ilmenau

Herausgeber: Der Rektor der Technischen Universität Ilmenau

URN: urn:nbn:de:gbv:ilm1-mhb-4283

Inhaltsverzeichnis

Name des Moduls/Fachs			S 5.FS 6.F				
Mathematik 1	VSPVSP	VSPVS	SPVSPVS	PVSF	Abschluss FP	LP 7	Fachnr.
Mathematik 1 für Wirtschaftsingenieure	420				PL 90min	7 7	5136
-	420				FP 90111111		5130
Mathematik 2 Mathematik 2 für Wirtschaftsingenieure	420				PL 90min	7 7	5137
· ·	420						5157
Mathematik 3 für Wirtschaftsingenieure		420			FP PL 30min	7 7	5138
Mathematik 3 für Wirtschaftsingenieure		420			FP Sollilli		5136
Physik 1 Mechanik und Thermodynamik	320				SL 90min	9 5	722
·					l I		
Schwingungen, Wellen und Felder	220				PL 30min	4	723
Physik 2		0.00			MO	4	704
Elektrizitätslehre und Optik		220			SL 90min	4	724
Chemie 1	2.4.0				FP	8	000
Allgemeine und Anorganische Chemie	310				PL 90min	4	832
Organische Chemie	200				PL 90min	2	836
Physikalische Chemie	110				PL 90min	2	443
Chemie 2	_				FP	7	
Physikalische Chemie / Elektrochemie		2 0	0		PL 30min	2	6641
Polymerchemie		2 0	0		SL 60min	2	6642
Technische Thermodynamik		2 1	0		PL 90min	3	1614
Informatik			_		FP	7	
Algorithmen und Programmierung	2 1 0				SL 90min	3	1313
Technische Informatik	2 1 0				PL 90min	4	5131
Ingenieurwissenschaften 1					МО	9	
Technische Mechanik 2.1	220				SL 120min	5	5132
Technische Mechanik 2.2		220			SL 120min	4	6702
Ingenieurwissenschaften 2					FP	9	
Grundlagen der Fertigungstechnik		210			SL 90min	3	1376
Werkstofforientierte Konstruktion 1		210			SL 90min	3	6622
Werkstofforientierte Konstruktion 2		2 1	0		PL 120min	3	7973
Ingenieurwissenschaften 3					FP	11	
Allgemeine Elektrotechnik 1		220			PL 120min	4	1314

Allgemeine Elektrotechnik 2	220	PL 120min	4	1315
Elektrische Messtechnik	210	SL 60min	3	1360
Kristallografie		FP	3	
Kristallografie 1	200	SL 90min	2	6659
Kristallografie 2	100	PL 30min	1	7050
Werkstoffwissenschaft 1		FP	6	
Grundlagen der Werkstoffwissenschaft 1	210	SL 30min	3	6658
Grundlagen der Werkstoffwissenschaft 2	210	PL 30min	3	7976
Werkstoffwissenschaft 2		FP	6	
Grundlagen der Werkstoffwissenschaft 3	200	SL 90min	3	6655
Grundlagen der Werkstoffwissenschaft 4	200	PL 30min	3	7977
Werkstofftechnologie und -analytik		FP	9	
Werkstofftechnologie	200	SL 60min	2	6649
Praktikum Werkstofftechnologie und -analytik	0 0 4	SL	5	6700
Werkstoffanalytik	200	PL 90min	2	6699
Werkstofftechnik 1		FP	8	
Glas und Keramik	200	PL 30min	2	6690
Metalle und Halbleiter	200	PL 30min	2	6698
Grundlagen der Oberflächentechnik	200	PL 30min	2	6696
Kunststoffe und Verbundwerkstoffe	200	PL 30min	2	6697
Werkstofftechnik 2		MO	10	
Bildgebende und analytische Verfahren	2 0 1	SL 30min	3	6709
Eigenschaften galvanischer Schichten	2 0 1	SL 30min	3	6703
Galvanotechnische Verfahren	2 0 1	SL 30min	3	6705
Glas und Keramik in der Mikro- und Nanotechnik	201	SL 30min	3	6692
Oxidische magnetische Werkstoffe	200	SL 30min	2	6694
Schichtmesstechnik und physikalische Verfahren	200	SL 90min	2	6701
Technologie des thermischen Plasmas	2 0 1	SL 30min	3	6706
Vakuum-Plasmatechnik	200	SL 30min	2	6707
Verbundwerkstoffe	210	SL 30min	3	6708
Werkstoffe der Mikro- und Nanotechnologie	2 0 1	SL 90min	3	6956
Werkstoffe und Verfahren für die Sensorik	210	SL 30min	3	6711
Werkstofftechnik 3		FP	4	

Projekt mit Seminar		020	PL 30min	4	6652
Recht			MO	2	
Einführung in das Recht	200		SL 90min	2	551
Wirtschaft			FP	2	
Grundlagen der BWL 1		200	PL 60min	2	488
Fremdsprache und studium generale			МО	4	
Fachsprache der Technik (Fremdsprache)		200	SL	2	1556
Studium generale		200	SL	2	1609
Internes Praktikum 1			MO	6	
Grundlagenpraktikum 1	002004		SL	6	7979
Internes Praktikum 2			MO	9	
Grundlagenpraktikum 2	00200	5	SL	9	7981
Externes Praktikum			MO	12	
Betriebspraktikum			SL	12	6614
Bachelor-Arbeit mit Kolloquium			FP	14	
Abschlusskolloquium zur Bachelorarbeit			PL 30min	2	6611
Bachelorarbeit			BA 6	12	6610

Modul: Mathematik 1

Modulnummer8170

Modulverantwortlich: Prof. Dr. Jochen Harant

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Vorlesung Mathematik überstreicht einen Zeitraum von drei Semestern. Aufbauend auf die Mathematikausbildung in den Schulen, werden mathematische Grundlagen gelegt und in steigendem Maße neue mathematische Teilgebiete zwecks Anwendung im physikalisch-technischen Fachstudium vermittelt. Der Studierende soll • sicher und selbstständig rechnen können. Dabei sollen die neuen mathematischen Inhalte, einschließlich der neuen mathematischen Begriffe und Schreibweisen verwendet werden, • die physikalisch-technischen Anwendungsfälle der neuen mathematischen Disziplinen erfassen, bei vorgelegten physikalisch-technischen Aufgaben das passende mathematische Handwerkszeug auswählen und richtig verwenden können, • in der Lage sein, den Zusammenhang und den Unterschied von mathematischen und physikalisch-technischen Modellen zu erfassen und hieraus folgernd in der Lage sein, den Geltungsbereich mathematischer Ergebnisse in Bezug auf technische Aufgabenstellungen abzuschätzen und die durch die Mathematik gelieferten Vorhersagen für das Verhalten von technischen Systemen zu beurteilen.

Vorraussetzungen für die Teilnahme

Abiturwissen

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

Modul: Mathematik 1

Mathematik 1 für Wirtschaftsingenieure

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5136 Prüfungsnummer:2400105

Fachverantwortlich: Prof. Dr. Jochen Harant

Leistungspunkte: 7 Workload (h): 210 Anteil Selbststudium (h): 142 SWS: 6.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2418

	1	I.FS	3		2.FS	3		3.FS	3		1.FS	<u> </u>		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	4	2	0																		

Lernergebnisse / Kompetenzen

In Mathematik 1 werden Grundlagen für eine dreisemestrige Vorlesung Mathematik vermittelt. Der Studierende soll - unter Verwendung von Kenntnisse aus der Schulzeit solide Rechenfertigkeiten haben, - den Inhalt neuer Teilgebiete der Mathematik (und die zugehörige Motivation) erfassen und Anwendungsmöglichkeiten der Mathematik für sein ingenieurwissenschaftliches Fachgebiet erkennen In Vorlesungen und Übungen werden Fach- und Methodenkompetenz vermittelt.

Vorkenntnisse

Mathematik (Abitur)

Inhalt

Logik, Mengenlehre, Abbildungen, Zahlenbereiche, Ungleichungen, Schranken, Betrag, vollständige Induktion, Binomialkoeffizient, binomischer Satz, komplexe Zahlen, elementare Funktionen, Umkehrfunktionen, Polynome, rationale Funktionen, lineare Gleichungssysteme, Matrizen, Vektorräume, Determinanten, Eigenwerte, Eigenvektoren, analytische Geometrie

Medienformen

Tafel, Übungsserien

Literatur

- Meyberg K., Vachenauer, P.: Höhere Mathematik 1 und 2, - Hoffmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Person Verlag 2005

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Mathematik 2

Modulnummer8171

Modulverantwortlich: Prof. Dr. Jochen Harant

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Vorlesung Mathematik überstreicht einen Zeitraum von drei Semestern. Aufbauend auf die Mathematikausbildung in den Schulen, werden mathematische Grundlagen gelegt und in steigendem Maße neue mathematische Teilgebiete zwecks Anwendung im physikalisch-technischen Fachstudium vermittelt. Der Studierende soll • sicher und selbstständig rechnen können. Dabei sollen die neuen mathematischen Inhalte, einschließlich der neuen mathematischen Begriffe und Schreibweisen verwendet werden, • die physikalisch-technischen Anwendungsfälle der neuen mathematischen Disziplinen erfassen, bei vorgelegten physikalisch-technischen Aufgaben das passende mathematische Handwerkszeug auswählen und richtig verwenden können, • in der Lage sein, den Zusammenhang und den Unterschied von mathematischen und physikalisch-technischen Modellen zu erfassen und hieraus folgernd in der Lage sein, den Geltungsbereich mathematischer Ergebnisse in Bezug auf technische Aufgabenstellungen abzuschätzen und die durch die Mathematik gelieferten Vorhersagen für das Verhalten von technischen Systemen zu beurteilen.

Vorraussetzungen für die Teilnahme

Abiturwissen, Mathematik 1

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

Modul: Mathematik 2

Mathematik 2 für Wirtschaftsingenieure

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5137 Prüfungsnummer:2400106

Fachverantwortlich: Prof. Dr. Jochen Harant

Leistungspunkte:	7	Workload (h): 210	Anteil Selbststudium (h):	142	SWS:	6.0	
Fakultät für Mather	natik ເ	und Naturwissenschaften				Fachgebiet:	2418

	1	I.FS)	2	2.FS	3		3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				4	2	0															

Lernergebnisse / Kompetenzen

Fortführung der Grundlagenausbildung bei steigendem Anteil von Anwendungsfällen Der Studierende soll - selbstständig und sicher rechnen können, - die Einordnung der neuen mathematischen Teildisziplinen in das Gesamtgebäude der Mathematik erfassen und die jeweiligen Anwendungsmöglichkeiten dieser Disziplinen (innermathematische und fachgebietsbezogene) erkennen, - die Fähigkeit entwickeln, zunehmend statt Einzelproblemen Problemklassen zu behandeln, - den mathematischen Kalkül und mathematische Schreibweisen als Universalsprache bzw. Handwerkszeug zur Formulierung und Lösung von Problemen aus Naturwissenschaft und Technik erfassen und anwenden können. In Vorlesungen und Übungen werden Fach- und Methodenkompetenz vermittelt.

Vorkenntnisse

Abiturstoff, Vorlesung Mathematik 1

Inhalt

Zahlenfolgen, Zahlenreihen, Grenzwerte, Konvergenzkriterien, Grenzwerte und Stetigkeit von Funktionen, Differenzierbarkeit, Extremwerte, Mittelwertsatz, Regel von l'Hospital, Satz von Taylor, Potenzreihen, Integration, bestimmtes Integral, Mittelwertsatz, Stammfunktion, Hauptsatz, Regeln, Integrationsmethoden, Integration von rationalen Funktionen, uneigentliche Integrale, numerische Integration, Funktionen von zwei und drei Variablen, Niveaulinien, Grenzwerte, Stetigkeit, partielle Ableitung, Gradient, Extremwerte (mit und ohne Nebenbedingung), implizite Funktionen, Parameterintegrale, Kurvenintegrale, Bereichsintegrale

Medienformen

Tafel, Übungsserien

Literatur

- Meyberg K., Vachenauer,P.: Höhere Mathematik 1 und 2, - Hofmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Person Verlag 2005

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Mathematik 3

Modulnummer8172

Modulverantwortlich: Prof. Dr. Jochen Harant

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Vorlesung Mathematik überstreicht einen Zeitraum von drei Semestern. Aufbauend auf die Mathematikausbildung in den Schulen, werden mathematische Grundlagen gelegt und in steigendem Maße neue mathematische Teilgebiete zwecks Anwendung im physikalisch-technischen Fachstudium vermittelt. Der Studierende soll • sicher und selbstständig rechnen können. Dabei sollen die neuen mathematischen Inhalte, einschließlich der neuen mathematischen Begriffe und Schreibweisen verwendet werden, • die physikalisch-technischen Anwendungsfälle der neuen mathematischen Disziplinen erfassen, bei vorgelegten physikalisch-technischen Aufgaben das passende mathematische Handwerkszeug auswählen und richtig verwenden können, • in der Lage sein, den Zusammenhang und den Unterschied von mathematischen und physikalisch-technischen Modellen zu erfassen und hieraus folgernd in der Lage sein, den Geltungsbereich mathematischer Ergebnisse in Bezug auf technische Aufgabenstellungen abzuschätzen und die durch die Mathematik gelieferten Vorhersagen für das Verhalten von technischen Systemen zu beurteilen.

Vorraussetzungen für die Teilnahme

Abiturwissen, Mathematik 1 und 2

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

Modul: Mathematik 3

Mathematik 3 für Wirtschaftsingenieure

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5138 Prüfungsnummer:2400300

Fachverantwortlich: Prof. Dr. Jochen Harant

Leistungspunkte: 7 Workload (h): 210 Anteil Selbststudium (h): 142 SWS: 6.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2418

	1	I.FS)		2.FS	3	;	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							4	2	0												

Lernergebnisse / Kompetenzen

Vermittlung von ausschließlich neuen mathematischen Teildisziplinen, die alle auf eine Anwendung in Naturwissenschaft und Technik zielen. Der Studierende soll - sicher und selbstständig rechnen können. Dabei sollen die neuen mathematischen Begriffe, Schreib- und Schlussweisen verwendet werden, - sichere mathematische Kenntnisse für das Verständnis der mathematischen Teile der nichtmathematischen Fachvorlesungen haben, - in der Lage sein, bei der Lösung von physikalisch-technischen Aufgaben das benötigte mathematische Handwerkszeug auszuwählen und richtig anzuwenden, - in der Lage sein, den Zusammenhang und den Unterschied von mathematischen und physikalisch-technischen Modellen zu erfassen und hieraus folgernd in der Lage sein, den Geltungsbereich mathematischer Ergebnisse in Bezug auf technische Aufgabenstellungen abzuschätzen und die durch die Mathematik gelieferten Vorhersagen für das Verhalten von technischen Systemen zu beurteilen. In Vorlesungen und Übungen wird Fach-, Methoden- und Systemkompetenz vermittelt.

Vorkenntnisse

Abiturstoff, Vorlesungen Mathematik 1 und 2

Inhalt

gewöhnliche Differentialgleichungen, Ordnung, Richtungsfeld, Polygonzugmethode, Orthogonaltrajektorien, spezielle Differentialgleichungen 1. Ordnung und 2. Ordnung, lineare Differentialgleichungen n-ter Ordnung mit konstanten Koeffizienten, numerische Lösung, Systeme von Differentialgleichungen, Laplace-Transformation

Medienformen

Tafel, Übungsserien

Literatur

- Meyberg K., Vachenauer,P.: Höhere Mathematik 1 und 2, - Hoffmann A., Marx B., Vogt W.: Mathematik für Ingenieure I, Lineare Algebra, Analysis-Theorie und Numerik. Person Verlag 2005

Detailangaben zum Abschluss

werden bei Bedarf festgelegt

verwendet in folgenden Studiengängen

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Modul: Physik 1

Modulnummer:101576

Modulverantwortlich: Prof. Dr. Jörg Kröger

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Physik 1

Mechanik und Thermodynamik

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 722 Prüfungsnummer:2400295

Fachverantwortlich: Prof. Dr. Jörg Kröger

Leistungspunkte: 5 Workload (h): 150 Anteil Selbststudium (h): 94 SWS: 5.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2424

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS Ρ S P SP S SP SP SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung vermittelt das experimentalphysikalische Grundwissen auf den Gebieten der Mechanik, der Statistik und der Wärmelehre. Die Studierenden sind dadurch in der Lage, die erweiterten Zusammenhänge dieser Bereiche der klassischen Physik zu verstehen und sowohl in anderen experimentalphysikalischen Vorlesungen als auch im physikalischen Teil des Grundpraktikums anzuwenden.

Vorkenntnisse

Hochschulzugangsberechtigung (Sehr gute Kenntnisse in Mathematik und Physik)

Inhalt

Kinematik und Dynamik der Punktmasse; Kräfte; Arbeit, Energie; Punktmassesysteme, Impulserhaltung; Rotation, Drehimpulserhaltung; Starrer Körper; Deformierbare Medien; Mechanische Schwingungen; Relativistische Mechanik; Temperatur und Wärme; Kinetische Gastheorie; Gasgesetze; Hauptsätze der Thermodynamik; Wärmetransport und Diffusion; Aggregatzustände, Phasen, Lösungen; Tiefe Temperaturen.

Medienformen

Experimentalvorlesungen, Folien, Beamer, Videos, Simulationen; Wöchentliche Übungsserien

Literatur

H. Vogel: Gerthsen Physik, Springer-Verlag Berlin; W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag Berlin Heidelberg New York

Bergmann Schäfer, Lehrbuch der Experimentalphysik, Bd. 1 Mechanik und Wärme, Walter de Gruyter, Berlin, New York Stroppe, H.: Physik für Studenten der Natur- und Technikwissenschaften, Fachbuchverlag Leipzig

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Biotechnische Chemie 2013

Bachelor Mathematik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Mathematik 2013

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Modul: Physik 1

Schwingungen, Wellen und Felder

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 723 Prüfungsnummer:2400296

Fachverantwortlich: Prof. Dr. Jörg Kröger

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Mathem	natik	und Naturwissenschaften				Fachgebiet:	2424

	1	I.FS	<u> </u>		2.FS	3		3.FS	3		1.FS	3	į	5.FS	<u>`</u>	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	٧	S	Р	V	S	Р	V	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung vermittelt das experimentalphysikalische Grundwissen auf den Gebieten der mechanischen Schwingungen sowie Wellen und Felder. Die Studierenden sind dadurch in der Lage, die erweiterten Zusammenhänge dieser Bereiche der klassischen Physik zu verstehen und sowohl in anderen experimentalphysikalischen Vorlesungen als auch im physikalischen Teil des Grundpraktikums anzuwenden.

Vorkenntnisse

Mechanik und Thermodynamik

Inhalt

Strömungen; Felder; Schwingungen, Schwingungsarten und Schwingungsphänomene; Wellen, Wellenarten, Eigenschaften von Wellen

Medienformen

Experimentalvorlesungen, Folien, Beamer, Videos, Simulationen; Wöchentliche Übungsserien

Literatur

H. Vogel: Gerthsen Physik, Springer-Verlag Berlin; W. Demtröder, Experimentalphysik 1, Mechanik und Wärme, Springer-Verlag Berlin Heidelberg New York; Bergmann Schäfer, Lehrbuch der Experimentalphysik, Bd. 1 Mechanik und Wärme, Walter de Gruyter, Berlin, New York; Stroppe, H.: Physik für Studenten der Natur- und Technikwissenschaften, Fachbuchverlag Leipzig.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Biotechnische Chemie 2013

Bachelor Mathematik 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Mathematik 2013

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Modul: Physik 2

Modulnummer:101577

Modulverantwortlich: Prof. Dr. Jörg Kröger

Modulabschluss:

Lernergebnisse

Die Lehrveranstaltung stellt das experimentalphysikalische Grundwissen auf den Gebieten Akustik, Elektromagnetismus, Geometrische Optik, Wellenoptik, Welle-Teilchen-Dualismus, Atomphysik, Kernphysik, Teilchenphysik. Es bildet die Basis insbesondere für die Module GP2, Th2 und TP2. Der Studierende bekommt einen Einblick in die Konzepte und experimentellen Methoden der genannten Gebiete.

Vorraussetzungen für die Teilnahme

Experimentalphysik 1 und 2

Detailangaben zum Abschluss

Modul: Physik 2

Elektrizitätslehre und Optik

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 724 Prüfungsnummer:2400297

Fachverantwortlich:Prof. Dr. Jörg Kröger

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 75 SWS: 4.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2424

	1	1.FS)		2.FS	<u>} </u>		3.FS	3		1.FS	<u> </u>		5.FS	3	(6.FS	<u>; </u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester							2	2	0												

Lernergebnisse / Kompetenzen

Die Studierenden erhalten einen Einblick in die Grundlagen des Elektromagnetismus. Die Kombination aus Vorlesung und Übung versetzt sie in die Lage, eigenständig Probleme zu lösen. Idealerweise entwickeln die Studierenden eine Intuition für die physikalischen Vorgänge.

Vorkenntnisse

Experimentalphysik I

Inhalt

Die Vorlesung behandelt die Elektro- und Magnetostatik. Das Coulombsche Kraftgesetz und das Gaußsche Gesetz der Elektrostatik sind zentrale Ergebnisse. Magnetfelder bewegter Ladungen werden durch das Ampèresche und Biot-Savart-Gesetz beschrieben. Ein herausragendes Ergebnis stellt die Erscheinung der elektromagnetischen Induktion und das sie beschreibende Faradaysche Gesetz dar. Eine Zusammenfassung der Gesetze führt zur Formulierung der Maxwellschen Gleichungen. Es schließt sich die Wellenoptik an. Das Huygensche und Fermatsche Prinzip für die Lichtausbreitung stehen am Anfang dieses Kapitels. Es werden dann Interferenzerscheinungen und das Auflösungsvermögen optischer Instrumente behandelt. Zeitliche und räumliche Kohärenz werden diskutiert. Doppelbrechung, Phasenverschiebungsplättchen, Laser und Holographie bilden den Abschluss der Vorlesung.

Medienformen

Tafel, Computer-Präsentation

Literatur

Berkeley Physik-Kurs Band 2, Elektrizität und Magnetismus (Vieweg, 1989)

Berkeley Physik-Kurs Band 3, Schwingungen und Wellen (Vieweg, 1989)

A. Recknagel: Elektrizität und Magnetismus (VEB, 1986) und Schwingungen und Wellen (VEB, 1988) und Optik (VEB, 1988)

R. Feynman: Mainly electromagnetism and matter (Volume 2, Addison-Wesley, 1964)

E. Hecht: Optics (Addison-Wesley, 2002)

Detailangaben zum Abschluss

Schein benotet, Klausur 90 Minuten

verwendet in folgenden Studiengängen

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung PH Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Technische Physik 2011

Master Biotechnische Chemie 2016

Bachelor Werkstoffwissenschaft 2011

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Modul: Chemie 1

Modulnummer:1520

Modulverantwortlich: apl. Prof. Dr. Uwe Ritter

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind fähig chemisches Stoffwissen mit grundlegenden Beziehungen und Gesetzmäßigkeiten der Natur zu verknüpfen. Nach erfolgreichem Abschluss des Moduls kann der Studierende:

- einfache anorganische und organische Stoffe systematisch den Stoffklassen zuordnen,
- die Modelle der chemischen Bindung anwenden und die Zusammenhänge zwischen Struktur und Eigenschaften der Elementverbindungen der Haupt- und Nebengruppen erkennen
- grundlegende physikalisch-chemische Zusammenhänge erkennen und anwenden

Vorraussetzungen für die Teilnahme

Hochschulzugangsberechtigung

Detailangaben zum Abschluss

Alternative Prüfungsleistung

Die Prüfungsleistung setzt sich aus drei Teilprüfungen in den Fächern Allgemeine und Anorganische Chemie, Organische Chemie und Physikalische Chemie zusammen. Die Teilprüfungen werden schriftlich abgelegt. Die Teilprüfung Allgemeine und Anorganische Chemie findet erstmals zum Ende des 1. FS statt, die Teilprüfungen Organische Chemie und Physikalische Chemie erstmals zum Ende des 2. FS . Die Anmeldung zur Modulprüfung beim Prüfungsamt erfolgt erstmals im Sommersemester (2. FS). Alle Teilprüfungen müssen bestanden werden. Die Teilprüfungsnoten gehen jeweils zu einem Drittel in die Modulnote ein. Wird eine oder mehrere Teilprüfungen nicht bestanden, muss die Prüfung wiederholt werden. Die bereits bestandenen Teilprüfungen werden für die Wiederholungsprüfung angerechnet und müssen nicht nochmal wiederholt werden. Insgesamt darf die Modulprüfung laut PO zweimal wiederholt werden.

Modul: Chemie 1

Allgemeine und Anorganische Chemie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 832 Prüfungsnummer:2400062

Fachverantwortlich: Prof. Dr. Peter Scharff

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 75 SWS: 4.0 Fakultät für Mathematik und Naturwissenschaften Fachgebiet: 2425

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS Ρ SP S P S P SP S SP S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung gibt eine Einführung in die Grundlagen der Chemie in den Teilgebieten der allgemeinen und anorganischen Chemie. Die Studierenden sind fähig aufgrund der erworbenen Kenntnisse der allgemeinen und anorganischen Chemie Reaktionen und Reaktivität der Elemente und Verbindungen zu bewerten. Die Studierenden sind in der Lage chemisches Stoffwissen mit grundlegenden Beziehungen und Gesetzmäßigkeiten der allgemeinen Chemie zu verknüpfen

Vorkenntnisse

Hochschulzugangsberechtigung

Inhalt

Atombau, Periodensystem, Elemente, chemische Bindung, chemische Reaktionen, chemische Energetik und Kinetik, chemisches Gleichgewicht, Säure-Basen-Reaktionen, Redox-Reaktionen, elektrochemische Prozesse, Komplexbildung, Anwendung des chemischen Gleichgewichts

Medienformen

Experimentalvorlesungen: Folien, Beamer, Videos, Simulationen; Übungsserien: Folien aus der Vorlesung. Zusammenfassungen und Musterlösungen können durch die Studierenden elektronisch von der Homepage des Institutes für Chemie und Biotechnik abgerufen werden

Literatur

E. Riedel: Allgemeine und Anorganische Chemie;

A. F. Hollemann, E. Wiberg: Lehrbuch der Anorganischen Chemie, Gruyter-Verlag, Berlin

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung CH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung CH

Bachelor Technische Physik 2008

Bachelor Biotechnische Chemie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung PH Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung CH Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung CH Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH Bachelor Werkstoffwissenschaft 2013

Modul: Chemie 1

Organische Chemie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 836 Prüfungsnummer:2400063

Fachverantwortlich:apl. Prof. Dr. Uwe Ritter

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Mathem	natik u	nd Naturwissenschaften				Fachgebiet:	2425

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)		5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Die Studierenden sind fähig aufgrund der erworbenen Kenntnisse der organischen Chemie Reaktionen und die Reaktivität von Verbindungen und Reaktionstypen zu bewerten. Die Studierenden sind in der Lage chemisches Stoffwissen der organischen Chemie mit grundlegenden Beziehungen und Gesetzmäßigkeiten der Chemie zu verknüpfen. Die Studierenden sind in der Lage einfache Operationen der organischen Chemie zu planen und im Praktikum exemplarisch organische Reaktionen zu entwerfen und durchzuführen.

Vorkenntnisse

Hochschulzugangsberechtigung

Inhalt

Die Lehrveranstaltung gibt eine Einführung in die Grundlagen der Chemie im Teilgebiet der organischen Chemie. Es werden wichtige organische Stoffgruppen. Alkane und Cycloalkane, ungesättigte Kohlenwasserstoffe, einfache sauerstoffhaltige organische Verbindungen, Verbindungen mit funktionellen Gruppen behandelt. Es erfolgt eine Einführung in die Spektroskopie organischer Verbindungen, Molekülbau, Organische Reaktionen und Reaktionstypen, spezielle organische Chemie, technische organische Chemie.

Medienformen

Experimentalvorlesungen: Folien, Beamer, Videos, Simulationen; Übungsserien: Folien aus der Vorlesung. Zusammenfassungen und Musterlösungen können durch die Studierenden elektronisch von der Homepage des Institutes für Chemie abgerufen werden

Literatur

Allgemeine Lehrbücher der organischen Chemie;

H.R. Christen, F. Vögtle: Organische Chemie Band 1 und 2, Verlag Sauerländer Frankfurt

K. P. C. Vollhard, Organische Chemie, Wiley-VCH

Detailangaben zum Abschluss

BTC und LA:

Das bestandene Praktikum ist Voraussetzung für die schriftliche Prüfung. Die Praktikumsnote wird bei der Ermittlung der Gesamtnote berücksichtigt.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung CH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung CH

Bachelor Technische Physik 2008

Bachelor Biotechnische Chemie 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung CH

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung CH

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Modul: Chemie 1

Physikalische Chemie

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 443 Prüfungsnummer:2400064

Fachverantwortlich: Prof. Dr. Michael Köhler

Leistungspunkte:	2	Workload (h): 60	0	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Mathem	natik ι	und Naturwissenschafter	n				Fachgebiet:	2429

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester				1	1	0															

Lernergebnisse / Kompetenzen

In der Vorlesung werden die Grundlagen der Physikalischen Chemie als Schnittstelle zwischen Physik und Chemie vermittelt. Im Seminar werden spezifische physikochemische Fragestellung (z.B. Enthalpie, Entropie u.a.) mathematisch abgehandelt. Die Studenten sind fähig, physikochemische Phänomene zu verstehen und das vermittelte Wissen zu nutzen, physikochemische Größen mathematisch zu bestimmen.

Vorkenntnisse

Hochschulzugangsberechtigung

Inhalt

Die Vorlesung vermittelt Grundlagen der Physikalischen Chemie. Ausgehend von Atombau und Bindung wird traditionsgemäß zunächst in die chemische Thermodynamik für gleichgewichtsnahe Prozesse eingeführt, wobei u.a. Begriffe wie Innere Energie, Reaktionsenthalpie und chemisches Potential sowie die Bestimmung von Bildungsenthalpien behandelt werden. Phasenübergänge und -diagramme werden für binäre Systeme mit unterschiedlichen Eigenschaften diskutiert. Die Vorlesung behandelt die Grundlagen der Gastheorie, der chemischen Kinetik sowie von thermisch, photo- und elektrochemisch aktivierten Prozesse. Dabei werden auch molekulare Anregungszustände und die Grundlagen der molekularen Spektroskopie besprochen. Mit der Diskussion des Zeitpfeils in chemischen Prozessen, von Autokatalyse, Bistabilität, chemischen Oszillationen und Strukturbildung werden gleichgewichtsferne chemische Prozesse behandelt und ihre Konsequenzen für die unbelebte und die lebende Natur erklärt.

Medienformen

Experimentalvorlesungen: Folien, Beamer, Videos, Simulationen; Übungsserien: Folien aus der Vorlesung. Zusammenfassungen und Musterlösungen können durch die Studierenden elektronisch von der Homepage des Institutes für Physik/Fachbereich Chemie abgeruf

Literatur

P. W. Atkins, J. A. Beran; "Chemie - Einfach alles", 1. Ausgabe, Wiley-VCH, 1998. ISBN: 3527292594; P. W. Atkins, "Physikalische Chemie", 3., korr. Auflage; Wiley-VCH, 2002. ISBN: 3527302360

Detailangaben zum Abschluss

Bachelorstudiengang Werkstoffwissenschaften (ab 2013):

Die Gesamtnote bildet sich aus der Klausur und um dem Praktikum (jeweils 50%).

Wird die schriftliche Prüfungsleistung mit der Note 5,0 abgeschlossen, erfolgt keine Berechnung der Gesamtnote mittels Wichtung mit der Praktikumsnote. In diesem Fall ist die Gesamtnote des Fachs, mit der Prüfungsleistung gleichzusetzen.

Das Fach gilt damit als nicht bestanden.

Voraussetzung für die Teilnahme an der Prüfung ist ein bestandenes Praktikums laut Praktikumsordnung.

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung CH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung CH

Bachelor Technische Physik 2008

Master Maschinenbau 2014

Bachelor Biotechnische Chemie 2013

Master Maschinenbau 2009

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung CH

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung CH

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Master Maschinenbau 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung PH

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung PH

Bachelor Werkstoffwissenschaft 2013

Modul: Chemie 2

Modulnummer6635

Modulverantwortlich: Prof. Dr. Andreas Bund

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Nach erfolgreichem Abschluss besitzen die Studierenden die erforderlichen naturwissenschaftlichen-chemischen Kenntnisse für das Gebiet der Werkstoffwissenschaft und sind in der Lage, einschlägige Probleme selbständig zu behandeln. Dies bedeutet, dass die Studierenden naturwissenschaftlich-chemische Anwendungsfälle erfassen, das passende Instrumentarium auswählen und richtig verwenden können. Sie sind in der Lage, naturwissenschaftliche-chemische Erkenntnisse auf werkstofftechnische Anwendungen anzuwenden und hieraus das Verhalten von Werkstoffsystemen unter physikalischen und chemischen Gesichtspunkten abzuschätzen und ihr Verhalten zu beurteilen. In den Vorlesungen und Übungen werden Fach-, Methoden- und Systemkompetenz vermittelt.

Vorraussetzungen für die Teilnahme

Grundkenntnisse in Chemie und Physik

Detailangaben zum Abschluss

ACHTUNG: Fach wird nicht mehr angeboten!

Bachelor Werkstoffwissenschaft 2009

Modul: Chemie 2

Physikalische Chemie / Elektrochemie

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6641 Prüfungsnummer:2100276

Fachverantwortlich: Prof. Dr. Andreas Bund

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2175

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS SP S P S P SP S Р S Р S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

• Die Studierenden sind in der Lage, die elektrochemischen Prozesse im außen stromlosen und stromführenden Prozess der Galvanotechnik und anderen stromgeschützten Beschichtungsverfahren anzuwenden und Technologien zu entwickeln. • Das Zusammenspiel der verschiedenen Felder wird erlernt und praxisorientiert angwendet. • Sowohl Metallabscheidungen als auch organische Beschichtungen werden aus den Grundlagen der Elektrochemie entwickelt und in praxistaugliche Technologien umgesetzt. • Korrosionsvorgänge können von den Studierenden aus den Grundlagen der Elektrochemie abgeleitet und interpretiert werden.

Vorkenntnisse

Modul Chemie 1

Inhalt

1. Thermodynamik der Einfachen Elektrode 2. Elektrochemische Zelle 3. Phasengrenze der elektrochemischen Reaktion Elektrochemische Doppelschicht Stromdichte- Potentalkurve Diffusionsgrenzstrom Butler- Vollmer- Gleichung 4. Kinetik der Mehrfachelektrode 5. Mischpotentialtheorie 6. Passivität 7. Gleichmäßige Korrosion Wasserstoffkorrosion, Sauerstoffkorrosion 8. Ungleichmäßige Korrosion Lokalelementetheorie Kontaktkorrosion Belüftungszellen 9. Selektive Korrosion 10. Spannungskorrosion

Medienformen

· Vorlesungsskript · Tafel · Folien

Literatur

C.H. Hamann, W. Vielstich; "Elektrochemie"; Viley VCH Verl. Winheim (1989) H. Kaesche; "Korrosion der Metalle; Springer Verlag (1990) W. Forker; "Elektrochemische Kinetik"; Akademie Verlag Berlin(1989)

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2009

Modul: Chemie 2

Polymerchemie

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6642 Prüfungsnummer:2400298

Fachverantwortlich: Prof. Dr. Klaus Heinemann

Leistungspunkte:	2	Workload (h): 60)	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Mathem	natik u	nd Naturwissenschaften	l				Fachgebiet:	2425

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Die Lehrveranstaltung gibt eine Einführung in die chemischen Grundlagen der im industriellen Maßstab durchgeführten Polymersynthesen und vermittelt die wichtigsten Struktur-Eigenschafts-Beziehungen. Die Studierenden können funktionale Eigenschaften der unterschiedlichen Polymerwerkstoffe aus ihren molekularen und supramolekularen Strukturprinzipien erklären und sind in der Lage, Additive auszuwählen, um die strukturdeterminierten Basiseigenschaften der Polymere gezielt zu beeinflussen. Diese Grundkenntnisse nutzend ist es ihnen möglich, exemplarisch geeignete Polymersysteme zur Lösung ingenieurwissenschaftlicher Fragestellungen vorzuschlagen. Die Lehrveranstaltung vermittelt diesbezügliche Basiskompetenz.

Vorkenntnisse

Modul Chemie 1

Inhalt

1. Grundbegriffe [Monomer – Makromolekül – Struktur von Makromolekülen (Kohlenstoff, Konstitution, Konfiguration, Konformation) – Polymerwerkstoff] 2. Natürliche und abgewandelte, natürliche Polymere [Cellulose und Cellulosederivate; Stärke; Peptide, Proteine und Nukleinsäuren; Naturkautschuk] 3. Synthetische Polymere – Polymersynthesen [Polymerisate (Grundlagen, radikalische und ionische Polymerisationen, Polyinsertion, Metathese, Copolymerisation) – Polykondensate (Grundlagen, Polyester, PC, LCP, UP- und Alkydharze, Polyamide, Polyimide, S-haltige Polymere, Polyaryletherketone, Formaldehy-Harze, Si-haltige Polymere) – Polyaddukte (Grundlagen, Polyurethane, Epoxid-Harze)] 4. Chemische Reaktionen an Polymeren [Polymeranaloge Reaktionen; Vernetzungsreaktionen; Abbaureaktionen, Polymerdegradation] 5. Additive, Hilfsstoffe und Füllstoffe [Antioxidantien; Lichtschutzmittel; Gleitmittel; Weichmacher, Füllstoffe, Schlagzähmodifier, Antistatika; Flammschutzmittel, Antimikrobiale, etc.] 6. Eigenschaften von Polymerwerkstoffen {Thermische Eigenschaften [Tg & Tm = f(Struktur), Rheologie] – Mechanische Eigenschaften [SDV = f(Struktur), Viskoelastizität] – Elektrische, optische, akustische, thermische, Permeabilität und chemische Eigenschaften} 7. Aktuelle Aspekte der Polymerwerkstoff – Forschung [Naturfaserverstärkte Polymerwerkstoffe und Wabenverbunde; Synthesefasercompounds und Nanocomposites; Funktionswerkstoffe auf Cellulosebasis; Funktionspolymersysteme für Polymerelektronik, Photovoltaik und Aktuatorik]

Medienformen

Vorlesungsskript, Tafel / Whiteboard, Folien, Computer Demo + "Beamer"

Literatur

- Bernd Tieke "Makromolekulare Chemie – Eine Einführg." Wiley-VCH-Verlag; 1997; 3-527-29364-7 - Hans-Georg Elias "Polymere – Von Monomeren und Makromolekülen zu Werkstoffen" Hüthig & Wepf, Zug, Heidelberg, Oxford, CT/USA, 1996, 3-85739-125-1 - Hans-Georg Elias "An Introduction to Plastics" Wiley-VCH-Verlag; 2003; 3-527-29602-6

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung CH

Bachelor Werkstoffwissenschaft 2009

Master Maschinenbau 2014

Bachelor Biotechnische Chemie 2013

Master Maschinenbau 2011

Bachelor Maschinenbau 2013

Master Werkstoffwissenschaft 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung CH

Modul: Chemie 2

Technische Thermodynamik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 1614 Prüfungsnummer:2300039

Fachverantwortlich:apl. Prof. Dr. Christian Karcher

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	45	SWS:	3.0	
Fakultät für Maschine	enbau						Fachgebiet:	2346

	1.FS			2.FS			3.FS			4.FS			5.FS			6.FS			7.FS		
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	1	0									

Lernergebnisse / Kompetenzen

Nach einer Vermittlung der physikalischen Mechanismen der Technischen Thermodynamik sollen die Studierenden in der Lage sein, - technisch relevante thermodynamische Probleme ingenieursmäßig zu analysieren, - die physikalische und mathematische Methoden zur Modellbildung beherrschen, - die problemspezifischen Zustandsänderungen zu erkennen und physikalisch zu interpretieren, - die mathematische Beschreibung von Zustandsänderungen sicher zu verwenden, - die Lösungsansätze gezielt auszuwählen, - die erzielten Lösungen zu diskutieren und auf ihre Plausibilität prüfen zu können. In Vorlesung und Übung wird Fachkompetenz vermittelt, um die physikalisch-technischen Methoden der Technischen Thermodynamik speziell auf aktuelle Forschungsprojekte des Fachgebiets Thermo- und Magnetofluiddynamik anzuwenden.

Vorkenntnisse

Abitur

Inhalt

- Konzepte und Definitionen - Energieformen und 1. Hauptsatz - Ideales Gas - Nassdampf-Thermodynamik - Erhaltungssätze für Kontrollvolumen - Dampfkraftprozesse - Gaskraftprozesse - Wärmepumpen- und Kälteprozesse

Medienformen

Tafel, Übungsblätter, Internet

Literatur

H. D. Baehr: Thermodynamik, Springerverlag, Berlin 1996. M.J. Moran & H.N. Shapiro: Fundamentals of Engineering Thermodynamics, Wiley & Sons, New York, 1998.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Biotechnische Chemie 2013

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung MR

Bachelor Mechatronik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung MR

Bachelor Werkstoffwissenschaft 2009

Modul: Informatik

Modulnummer:1509

Modulverantwortlich: Prof. Dr. Andreas Mitschele-Thiel

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Fachkompetenz: Die Studierenden verstehen detailliert Aufbau und Funktionsweise von digitalen Schaltungen, Prozessoren und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der Rechnerarchitektur. Die Studierenden sind mit algorithmischen Modellen, Basisalgorithmen und grundlegenden Datenstrukturen der Informatik vertraut. Methodenkompetenz: Die Studierenden sind in der Lage, adäquate Beschreibungsmittel für die Modellierung von Strukturen und Abläufen mit formalen Mitteln anzuwenden. Die Studierenden entwerfen und analysieren einfache digitale Schaltungen und maschinennahe Programme. Sie sind in der Lage, Basisalgorithmen und grundlegenden Datenstrukturen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu bewerten und in eigenen kleineren Programmierprojekten in der Programmiersprache Java anzuwenden. Sozialkompetenz: Die Studierenden sind in der Lage, praktische Problemstellungen der Informatik in der Gruppe zu lösen.

Vorraussetzungen für die Teilnahme

Abiturwissen

Detailangaben zum Abschluss

keine

Modul: Informatik

Algorithmen und Programmierung

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1313 Prüfungsnummer:2200245

Fachverantwortlich: Prof. Dr. Kai-Uwe Sattler

Leistungspunkte: 3 Workload (h): 90 Anteil Selbststudium (h): 56 SWS: 3.0 Fakultät für Informatik und Automatisierung Fachgebiet: 2254

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS S P SP S P S Ρ SP S Р S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Nachdem Studierende diese Veranstaltung besucht haben, können sie die Grundlagen algorithmischer Modelle beschreiben und verstehen die Wirkungsweise von Standardalgorithmen und klassischen Datenstrukturen. Sie sind in der Lage, kleinere Programme zu entwerfen sowie in der Programmiersprache Java zu implementieren und dabei Algorithmenmuster anzuwenden.

Die Studierenden sind in der Lage, algorithmische Lösungen hinsichtlich ihrer Eigenschaften und Anwendbarkeit für konkrete Problemstellungen zu bewerten und in eigenen Programmierprojekten anzuwenden.

Vorkenntnisse

Abiturwissen

Inhalt

Historie, Grundbegriffe, Grundkonzepte von Java; Algorithmenbegriff, Sprachen & Grammatiken, Datentypen; Struktur von Java-Programmen, Anweisungen; Entwurf von Algorithmen; Applikative und imperative Algorithmenparadigmen; Berechenbarkeit und Komplexität; Ausgewählte Algorithmen: Suchen und Sortieren; Algorithmenmuster: Rekursion, Greedy, Backtracking; Abstrakte Datentypen und Objektorientierung; Listen, Bäume, Hashtabellen

Medienformen

Vorlesung mit Präsentation und Tafel, Handouts, Moodle

Literatur

Saake, Sattler: Algorithmen und Datenstrukturen: Eine Einführung mit Java, 4. Auflage, dpunkt-Verlag, 2010.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Wirtschaftsinformatik 2013

Bachelor Medientechnologie 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Biomedizinische Technik 2014

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Master Biotechnische Chemie 2016

Bachelor Werkstoffwissenschaft 2009

Modul: Informatik

Technische Informatik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 5131 Prüfungsnummer:2200001

Fachverantwortlich: Prof. Dr. Wolfgang Fengler

Leistungspunkte:	4	Workload (h): 12	20	Anteil Selbststudium (h):	86	SWS:	3.0	
Fakultät für Informa	tik un	d Automatisierung					Fachgebiet:	2231

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	6	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	1	0																		

Lernergebnisse / Kompetenzen

Fachkompetenz: Die Studierenden verfügen über Kenntnisse und Überblickswissen zu den wesentlichen Strukturen und Funktionen von digitaler Hardware und haben ein Grundverständnis für den Aufbau und die Wirkungsweise von Funktionseinheiten von Digitalrechnern. Die Studierenden verstehen detailliert Aufbau und Funktionsweise von Prozessoren, Speichern, Ein-Ausgabe-Einheiten und Rechnern. Die Studierenden verstehen Entwicklungstendenzen der Rechnerarchitektur. Methodenkompetenz: Die Studierenden sind in der Lage, einfache digitale Schaltungen zu analysieren und zu synthetisieren. Sie können einfache Steuerungen sowohl mit Hilfe von diskreten Gatterschaltungen als auch mit Hilfe programmierbarer Schaltkreise erstellen. Sie sind in der Lage, Automatenmodelle zu verstehen und anzuwenden. Sie können die rechnerinterne Informationsverarbeitung modellieren und abstrakt beschreiben sowie die zugehörigen mathematischen Operationen berechnen. Die Studierenden entwerfen und analysieren einfache maschinennahe Programme. Systemkompetenz: Die Studierenden verstehen das grundsätzliche Zusammenspiel der Baugruppen eines Digitalrechners als System. Sie erkennen den Zusammenhang zwischen digitalen kombinatorischen und sequentiellen Schaltungen, Funktionsabläufen innerhalb von Rechnern und der Ausführung von Maschinenprogrammen anhand praktischer Übungen. Sozialkompetenz: Die Studierenden erarbeiten Problemlösungen einfacher digitaler Schaltungen, der Rechnerarchitektur und von einfachen Maschinenprogrammen in der Gruppe. Sie können von ihnen erarbeitete Lösungen gemeinsam in Übungen auf Fehler analysieren, korrigieren und bewerten.

Vorkenntnisse

Hochschulzulassung

Inhalt

1. Mathematische Grundlagen • Aussagen und Prädikate, Abbildungen, Mengen • Anwendung der BOOLEschen Algebra und der Automatentheorie auf digitale Schaltungen 2. Informationskodierung / ausführbare Operationen • Zahlensysteme (dual, hexadezimal) • Alphanumerische Kodierung (ASCII) • Zahlenkodierung 3. Struktur und Funktion digitaler Schaltungen • BOOLEsche Ausdrucksalgebra, Schaltalgebraische Ausdrücke, Normalformen • Funktions- und Strukturbeschreibung kombinatorischer und sequenzieller Schaltungen, programmierbare Strukturen • Analyse und Synthese einfacher digitaler Schaltungen • digitale Grundelemente der Rechnerarchitektur (Tor, Register, Bus, Zähler/Zeitgeber) 4. Rechnerorganisation • Kontroll- und Datenpfad • Steuerwerk (Befehlsdekodierung und -abarbeitung) • Rechenwerk (Operationen und Datenübertragung) 5. Rechnergrundarchitekturen und Prozessoren • Grundarchitekturen • Prozessorgrundstruktur und Befehlsablauf • Erweiterungen der Grundstruktur • Befehlssatzarchitektur und einfache Assemblerprogramme 6. Speicher • Speicherschalkreise als ROM, sRAM und dRAM • Speicherbaugruppen 7. Ein-Ausgabe • Parallele digitale E/A • Serielle digitale E/A • periphere Zähler-Zeitgeber-Baugruppen • Analoge E/A 8. Fortgeschrittene Prinzipien der Rechnerarchitektur • Entwicklung der Prozessorarchitektur • Entwicklung der Speicherarchitektur • Parallele Architekturen

Medienformen

Vorlesung mit Tafel/Auflicht-Presenter und Powerpoint-Präsentation, Video zur Vorlesung, eLearnig-Angebote im Internet, Arbeitsblätter und Aufgabensammlung für Vorlesung und Übung (Online und Copyshop), Lehrbuch Allgemein: Webseite (Materialsammlung und weiterführende Infos) http://www.tu-ilmenau.de/ra http://www.tu-ilmenau.de/ihs

Literatur

Primär: Eigenes Material (Online und Copyshop) Wuttke, H.-D.; Henke, K: Schaltsysteme - Eine automatenorientierte Einführung, Verlag: Pearson Studium, 2003 Hoffmann, D.W.: Grundlagen der Technischen Informatik, Hanser- Verlag, 2007 Märtin, C.: Einführung in die Rechnerarchitektur - Prozessoren und Systeme. ISBN 3-446-22242-1, Hanser 2003. Flik, T.: Mikroprozessortechnik. ISBN 3-540-42042-8, Springer 2001 Allgemein: Webseite (Materialsammlung und weiterführende Infos) http://www.tu-ilmenau.de/ra http://www.tu-ilmenau.de/ihs (dort auch gelegentlich aktualisierte Literaturhinweise und Online-Quellen).

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Werkstoffwissenschaft 2011

Bachelor Medientechnologie 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Wirtschaftsinformatik 2013

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Modul: Ingenieurwissenschaften 1

Modulnummer6619

Modulverantwortlich: Prof. Dr. Klaus Zimmermann

Modulabschluss:

Lernergebnisse

Die Studierenden werden durch die vor allem auf die Vermittlung von Fach- und Methodenkompetenz ausgerichteten Inhalte des Moduls befähigt, ein technisches Problem von der mechanischkonstruktiven Seite her zu analysieren und problemspezifische Lösungsmethoden anzuwenden. Gerade der letztgenannte Aspekt "Anwenden" steht im Mittelpunkt. Seminare und individuelle Belege führen dazu, dass die Studierenden selbständig Problemstellungen bewerten können und mit einem konstruktiven Entwurf auch eigene Lösungen in Form von Geräten synthetisieren können. Die Brücke wird nicht nur berechnet, sondern auch in ihrer konstruktiven Vielfalt entworfen.

Vorraussetzungen für die Teilnahme

Grundlagen der Mathematik (Vektorrechnung, Lineare Algebra, Differentialrechnung)

Detailangaben zum Abschluss

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 1

Technische Mechanik 2.1

Fachabschluss: Studienleistung schriftlich 120 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 5132 Prüfungsnummer:2300308

Fachverantwortlich: Prof. Dr. Klaus Zimmermann

Leistungspunkte:	5	Workload (h):	150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Maschine	enbau						Fachgebiet:	2343

	1	I.FS)		2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	<u>; </u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester				2	2	0															

Lernergebnisse / Kompetenzen

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realsieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorkenntnisse

- Mathematik (Vektorrechnung, Analysis, Differentialgleichungen)

Inhalt

1. Statik - Kräfte und Momente - Gleichgewicht - Lager- und Schnittreaktionen - Reibung 2. Festigkeitslehre - Spannungen und Verformungen - Zug/Druck - Torsion - Biegung

Medienformen

- überwiegend Tafel/Kreide - eLearning-Software - Folien - Animationen

Literatur

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 1

Technische Mechanik 2.2

Fachabschluss: Studienleistung schriftlich 120 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6702 Prüfungsnummer:2300309

Fachverantwortlich: Prof. Dr. Klaus Zimmermann

Leistungspunkte: 4		Workload (h):	120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Maschinen	nbau						Fachgebiet:	2343

	1	I.FS	<u> </u>		<u>2.FS</u>	<u>`</u>		3.FS	<u>`</u>	4	I.FS	5		5.FS	<u>`</u>	- 6	3.FS	<u>`</u>		7.FS	<u>`</u>
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							2	2	0												

Lernergebnisse / Kompetenzen

Die auf die Vermittlung von Fach- und Methodenkompetenz ausgerichtete Lehrveranstaltung bildet eine Bindeglied zwischen den Natur- (vor allem Mathematik und Physik) und Technikwissenschaften (Konstruktionstechnik, Maschinenelemente) im Ausbildungsprozess. Die Studierenden werden mit dem methodischen Rüstzeug versehen, um den Abstraktionsprozess vom realen technischen System über das mechanische Modell zur mathematischen Lösung realsieren zu können. Dabei liegt der Schwerpunkt neben dem Kennen und Verstehen von Methoden (Schnittprinzip, Gleichgewicht, u.a.) vor allem auf der sicheren Beherrschung dieser beim Anwenden. Durch eine Vielzahl von selbständig bzw. im Seminar gemeinsam gelösten Aufgaben sind die Studierenden in der Lage aus dem technischen Problem heraus eine Lösung zu analytisch oder auch rechnergestützt numerisch zu finden.

Vorkenntnisse

Grundlagen der Mathematik (Vektorrechnung, lineare Algebra, Differentialgleichung)

Inhalt

Kinematik - Koordinatensysteme - Relativkinematik - Kinematik des starren Körpers (Rotation/Translation) Dynamik - Dynamik des Massenpunktes - Impuls-/Drehimpuls-/Arbeitssatz - Eingeprägte Kräfte - Dynamik des starren Körpers - Schwerpunktsatz, Drehimpulssatz

Medienformen

Tafel (selten Overhead-Folien) Integration von E-Learning Software in die Vorlesung

Literatur

1. Zimmermann, K.: Technische Mechanik-multimedial. Hanser Fachbuchverlag 2003 2. Hahn, H.G.: Technische Mechanik. Fachbuchverlag Leipzig 1992 3. Magnus, K., Müller-Slany, H.H.: Grundlagen der Technischen Mechanik. Teubner 2005 4. Dankert, H., Dankert, J.: Technische Mechanik. Teubner Verlag 2006

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Modul: Ingenieurwissenschaften 2

Modulnummer6620

Modulverantwortlich: Prof. Dr. Christian Weber

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Das Modul vermittelt die erforderlichen Kenntnisse in Konstruktion und Fertigung. Damit werden die Studierenden befähigt, den im Beruf notwendigen Dialog zwischen Werkstoffwissenschaftlern und Ingenieuren mit der gebotenen Kompetenz selbstständig zu führen. Insbesondere sind sie in der Lage, konstruktive und fertigungstechnische Aufgaben zu analysieren und sie unter werkstoffwissenschaftlichen Gesichtspunkten zu bewerten. In den Vorlesungen und Übungen werden Fach-, Methoden- und Systemkompetenz vermittelt.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 2

Grundlagen der Fertigungstechnik

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1376 Prüfungsnummer:2300092

Fachverantwortlich: Prof. Dr. Jean Pierre Bergmann

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschine	enbau						Fachgebiet:	2321

	1	I.FS)		2.FS	3	;	3.FS	3		1.FS)		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Die Studierenden lernen die relevanten Fertigungsverfahren in der industriellen Produktion kennen. Sie können die Verfahren systematisieren und die Wirkmechanismen zwischen Werkstoff, Werkzeug und Fertigungsanlage theoretisch durchdringen. Damit sind sie in der Lage zur fachgerechten Analyse und Bewertung der Einsatzmöglichkeiten der Verfahren. Sie sind fähig, die Verfahren unter den Aspekten der Prozesssicherheit, Umweltverträglichkeit und Wirtschaftlichkeit auszuwählen und kompetent in den Produktentwicklungsprozess einzubringen.

Vorkenntnisse

Physik, Chemie, Mathematik, Werkstofftechnik, Technische Darstellungslehre, Messtechnik

Inhalt

Einteilung der Fertigungsverfahren, Verfahrenshauptgruppen Urformen (Gießen, Sintern), Umformen (Walzen, Fließpressen), Trennen (Drehen, Fräsen, Schleifen, Schneiden), Abtragen (EDM, ECM), Fügen (Schweißen, Löten, Kleben), Beschichten, Stoffeigenschaftsändern

Medienformen

Folien als PDF-File im Netz

Literatur

König, W.: Fertigungsverfahren; Band 1-5 VDI-Verlag Düsseldorf, 2006/07 Spur,G.; Stöfferle,Th: Handbuch der Fertigungstechnik. Carl-Hanser Verlag München, Wien Warnecke, H.J.: Einführung in die Fertigungstechnik. Teubner Studienbücher Maschinenbau. Teubner Verlag 1990 Schley, J. A.: Introduction To Manufacturing Processes. McGraw-Hill Companies, Inc.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Informatik 2010

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Maschinenbau 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 2

Werkstofforientierte Konstruktion 1

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6622 Prüfungsnummer:2300310

Fachverantwortlich: Prof. Dr. Christian Weber

Falsolt # 4 file Manakin and a control file and a c	. •
Fakultät für Maschinenbau Fachge	biet: 2312

	1	I.FS	<u> </u>	2	2.FS	3		3.FS	3		I.FS	3	5	5.FS	<u> </u>	- (3.FS	3	7	7.FS	<u> </u>
SWS nach	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	1	0												

Lernergebnisse / Kompetenzen

Konstruktion (Maschinenelemente und Grundlagen der Konstruktion I): Studierende beherrschen: - Festigkeitsberechnungen einfacher Maschinenelemente und deren Verbindungen - die Analyse technischer Gebilde geringer Komplexität auf Basis der technischen Darstellung, Ermittlung ihrer Gesamtfunktion, Teilfunktionen und Koppelstellen Studierende kennen: - Verschiedene Arten von Maschinenelementen, Spannungszustände an Maschinenelementen und deren Berechnung - systematische Arbeitsweise bei der Analyse und Synthese technischer Systeme Studierende sind in der Lage: - gemäß der Belastungsart geeignete Berechnungsmethoden auszuwählen und die Elemente zu dimensionieren bzw. nachzurechnen - Zeichnungen zu interpretieren, Vorschläge zur werkstofforientierten Gestaltung zu unterbreiten • Konstruktion (Grundlagen der Konstruktion II und Konstruktive Gestaltung): Studierende beherrschen: - die Analyse technischer Gebilde geringer Komplexität auf Basis der technischen Darstellung, Ermittlung ihrer Gesamtfunktion, Teilfunktionen und Koppelstellen - Gestaltungsrichtlinien für die Werkstoffe, die bei den Fertigungsverfahren Gießen, Pressen, Spanen, Schmieden, Schweißen und Montage zu berücksichtigen sind Studierende kennen: - systematische Arbeitsweise bei der Analyse und Synthese technischer Systeme - Konstruktive Anforderungen für die o.g. Werkstoffe und Fertigungsverfahren Studierende sind in der Lage: - Zeichnungen zu interpretieren, Vorschläge zur werkstofforientierten Gestaltung zu unterbreiten - Einzelteile in Form von Handskizzen eindeutig darzustellen sowie die Fertigungs- und Werkstoffgerechtheit einzuschätzen

Vorkenntnisse

• Konstruktion (Maschinenelemente und Grundlagen der Konstruktion I): Kenntnisse in Technischer Mechanik (Statik und Festigkeitslehre), Werkstoffwissenschaft und Fertigungstechnik • Konstruktion (Grundlagen der Konstruktion II und Konstruktive Gestaltung): Kenntnisse in Technischer Mechanik, Werkstoffwissenschaft und Fertigungstechnik Lehrveranstaltung "Konstruktion" des 3. Semesters

Inhalt

• Konstruktion (Maschinenelemente und Grundlagen der Konstruktion I): Grundlagen des Entwurfs von Maschinenelementen - Anforderungen, Grundbeanspruchungsarten und deren Berechnung Gestaltung und Berechnung von Verbindungen - Löten, Kleben Stifte, Passfedern, Schrauben, Klemmungen Federn - Arten, Dimensionierung ausgewählter Federarten Achsen und Wellen - Dimensionierung und Gestaltung Lagerungen - Übersicht, Wälzlagerauswahl Getriebe Grundlagen der Konstruktion: Aufbau und Beschreibung technischer Gebilde Grundlagen des Gestaltens Grundlagen der Konstruktionsmethodik • Konstruktion (Grundlagen der Konstruktion II und Konstruktive Gestaltung): Grundlagen der Konstruktion: Aufbau und Beschreibung technischer Gebilde Grundlagen des Gestaltens Grundlagen der Konstruktionsmethodik Gestaltungsrichtlinien zum werkstofforientierten Konstruieren für die Fertigungsverfahren Gießen, Pressen, Spanen, Schmieden, Schweißen und Montage; Anfertigen von Seminarbelegen in Form von Handzeichnungen zur werkstofforientierten Gestaltung von Einzelteilen.

Medienformen

Vorlesung wird per Tele-Teaching an die FSU Jena übertragen Übungen finden getrennt an TU Ilmenau und FSU Jena statt PowerPoint-Präsentationen; Foliensammlungen; Arbeitsblätter, Tafelbild

Literatur

- Hoischen, H.; Hesser, W.: Technisches Zeichnen. Cornel-sen, Berlin
- · Labisch, S.; Weber, C.: Technisches Zeichnen. Vieweg, Wies-baden
- Steinhilper, W.; Sauer, B. (Hrsg.): Konstruktionselemente des Ma-schi-nen-baus. Springer, Berlin
- Roloff/Matek Maschinenelemente. Vieweg + Teubner, Wiesbaden
- Decker Maschinenelemente. Hanser, München
- Niemann Maschinenelemente. Springer, Berlin
- · Pahl/Beitz Kon-struk-tions-lehre. Springer, Berlin-Heidelberg
- Krause, W. (Hrsg.): Gerätekonstruktion in Feinwerktechnik und Elek-tro-nik. Hanser, München
- Krause, W. (Hrsg.): Konstruktionselemente der Feinmechanik. Hanser, München
- Krause, W.: Fertigung in der Feinwerk- und Mikrotechnik. Hanser, Mün-chen
- Spur, G.: Handbuch der Fertigungstechnik. Hanser, München 1979
- Bode, E: Konstruktionsatlas werkstoffgerechtes Konstruieren, ver-fah-rensgerechtes Konstruieren, Vieweg,

Braunschweig

- Foliensammlung und Lehrblätter des Fachgebietes Konstruk-tions-technik
- · Lehrblätter und Aufgabensammlung des Fachgebietes Maschinen-elemente

Detailangaben zum Abschluss

1 Haus-Beleg Technische Darstellungslehre, Klausur (90 Minuten)

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Master Mikro- und Nanotechnologien 2008

Master Mikro- und Nanotechnologien 2013

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 2

Werkstofforientierte Konstruktion 2

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7973 Prüfungsnummer:2300311

Fachverantwortlich: Prof. Dr. Christian Weber

Leistungspunkte: 3	3	Workload (h):	90	Anteil Selbststu	dium (h):	56	SWS:	3	3.0	
Fakultät für Maschiner	nbau							Fachge	biet:	2312
		1.FS	2.FS	3.FS	4.FS		5.FS	6.FS	7	.FS

Lernergebnisse / Kompetenzen

Studierende beherrschen: - die Analyse technischer Gebilde geringer Komplexität auf Basis der technischen Darstellung, Ermittlung ihrer Gesamtfunktion, Teilfunktionen und Koppelstellen Modulhandbuch Ergänzungsblatt Seite 2 von 2 - Gestaltungsrichtlinien für die Werkstoffe, die bei den Fertigungsverfahren Gießen, Pressen, Spanen, Schmieden, Schweißen und Montage zu berücksichtigen sind Studierende kennen: - systematische Arbeitsweise bei der Analyse und Synthese technischer Systeme - Konstruktive Anforderungen für die o.g. Werkstoffe und Fertigungsverfahren Studierende sind in der Lage: - Zeichnungen zu interpretieren, Vorschläge zur werkstofforientierten Gestaltung zu unterbreiten - Einzelteile in Form von Handskizzen eindeutig darzustellen sowie die Fertigungs- und Werkstoffgerechtheit einzuschätzen

Vorkenntnisse

Kenntnisse in Technischer Mechanik, Werkstoffwissenschaft und Fertigungstechnik

Inhalt

Grundlagen der Konstruktion: Aufbau und Beschreibung technischer Gebilde Grundlagen des Gestaltens Grundlagen der Konstruktionsmethodik Gestaltungsrichtlinien zum werkstofforientierten Konstruieren für die Fertigungsverfahren Gießen, Pressen, Spanen, Schmieden, Schweißen und Montage; Anfertigen von Seminarbelegen in Form von Handzeichnungen zur werkstofforientierten Gestaltung von Einzelteilen

Medienformen

Vorlesung wird per Tele-Teaching an die FSU Jena übertragen Übungen finden getrennt an TU Ilmenau und FSU Jena statt PowerPoint-Präsentationen; Foliensammlungen; Arbeitsblätter, Tafelbild

Literatur

- Hoischen, H.: Technisches Zeichnen; Cornelsen Girardet, Berlin, 2003 - Krause, W.: Grundlagen der Konstruktion; Hanser-Verlag, München, 2002 - Krause, W.: Konstruktionselemente der Feinmechanik; Hanser-Verlag, München, 1998 - Krause, W.: Fertigung in der Feinwerk- und Mikrotechnik; Hanser-Verlag, München, 1995 - Niemann, G.: Maschinenelemente; Springer Verlag, Berlin - Pahl, G.; Beitz, W.: Konstruktionslehre; Springer Verlag, Berlin - Spur, G.: Handbuch der Fertigungstechnik; Carl-Hanser-Verlag, 1979 - Lehrblätter und Aufgabensammlung des Fachgebietes

Detailangaben zum Abschluss

Hausbeleg, 3 Seminarbelege, Klausur

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Master Mikro- und Nanotechnologien 2008

Master Mikro- und Nanotechnologien 2013

Modul: Ingenieurwissenschaften 3

Modulnummer6625

Modulverantwortlich: Dr. Sylvia Bräunig

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus umfassend und tiefgründig verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und die Theorie des elektromagnetischen Feldes zur Berechnung von Feldern in der Praxis anwenden können. Sie sollen die Beschreibung der wesentlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein. Sie sollen in der Lage sein, lineare und einfache nichtlineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichspannung, sinus- und nichtsinusförmige Wechselgrößen sowie bei transienten Vorgängen zu analysieren und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen. Die Studierenden sollen die Besonderheiten der Ausbreitung elektrischer Energie längs Leitungen und im freien Raum sowohl im stationären Fall als auch bei transienten Vorgängen verstehen, den mathematischen Formalismus beherrschen und ebenfalls auf praxisrelevante Probleme anwenden können.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 3

Allgemeine Elektrotechnik 1

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1314 Prüfungsnummer:2100001

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2116

	1	I.FS	3		2.FS	3	;	3.FS	3		1.FS)		5.FS	3		3.FS	3		7.FS	3
SWS nach	V	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester							2	2	0												

Lernergebnisse / Kompetenzen

Die Studierenden sollen die physikalischen Zusammenhänge und Erscheinungen des Elektromagnetismus verstehen, den zur Beschreibung erforderlichen mathematischen Apparat beherrschen und auf einfache Problemstellungen anwenden können. Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch Gleichgrößen, sowie bei einfachsten transienten Vorgängen zu analysieren. Weiterhin soll die Fähigkeit zur Analyse einfacher nichtlinearer Schaltungen bei Gleichstromerregung vermittelt werden. Die Studierenden sollen die Beschreibung der wesenlichsten Umwandlungen von elektrischer Energie in andere Energieformen und umgekehrt kennen, auf Probleme der Ingenieurpraxis anwenden können und mit den entsprechenden technischen Realisierungen in den Grundlagen vertraut sein.

Vorkenntnisse

Allgemeine Hochschulreife

Inhalt

- Grundbegriffe und Grundbeziehungen der Elektrizitätslehre (elektrische Ladung, Kräfte auf Ladungen, Feldstärke, Spannung, Potenzial)
- Vorgänge in elektrischen Netzwerken bei Gleichstrom (Grundbegriffe und Grundgesetze, Grundstromkreis, Kirchhoffsche Sätze, Superpositionsprinzip, Zweipoltheorie für lineare und nichtlineare Zweipole, Knotenspannungsanalyse, Maschenstromanalyse)
- Elektrothermische Energiewandlungsvorgänge in Gleichstromkreisen (Grundgesetze, Erwärmungs- und Abkühlungsvorgang, Anwendungsbeispiele)
- Das stationäre elektrische Strömungsfeld (Grundgleichungen, Berechnung symmetrischer Felder in homogenen Medien, Leistungsumsatz, Vorgänge an Grenzflächen)
- Das elektrostatische Feld, elektrische Erscheinungen in Nichtleitern (Grundgleichungen, Berechnung symmetrischer Felder, Vorgänge an Grenzflächen, Energie, Energiedichte, Kräfte und Momente, Kapazität und Kondensatoren, Kondensatoren in Schaltungen bei Gleichspannung, Verschiebungsstrom, Auf- und Entladung eines Kondensators)- Der stationäre Magnetismus (Grundgleichungen, magnetische Materialeigenschaften, Berechnung, einfacher Magnetfelder, Magnetfelder an Grenzflächen, Berechnung technischer Magnetkreise bei Gleichstromerregung, Dauermagnetkreise)
- Elektromagnetische Induktion (Teil 1) (Faradaysches Induktionsgesetz, Ruhe- und Bewegungsinduktion, Selbstinduktion und Induktivität)

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch webbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, H.-U.; Wagner, E.: Allgemeine Elektrotechnik: Gleichstrom - Felder - Wechselstrom, 3., neu bearbeitete Auflage , Carl Hanser Verlag München Wien 2003

Detailangaben zum Abschluss

schriftl. Prüfung 120 Min.

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mathematik 2009

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Maschinenbau 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 3

Allgemeine Elektrotechnik 2

Fachabschluss: Prüfungsleistung schriftlich 120 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 1315 Prüfungsnummer:2100002

Fachverantwortlich: Dr. Sylvia Bräunig

Leistungspunkte:	4	Workload (h): 120	Anteil Selbststudium (h):	75	SWS:	4.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2116

	1	I.FS	3	2	2.FS	3	,	3.FS	3	2	I.FS	3	5	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	2	0									

Lernergebnisse / Kompetenzen

Die Studierenden sollen in der Lage sein, lineare zeitinvariante elektrische und elektronische Schaltungen und Systeme bei Erregung durch einwellige Wechselspannungen im stationären Fall zu analysieren, die notwendigen Zusammenhänge und Methoden kennen und die Eigenschaften von wesentlichen Baugruppen, Systemen und Verfahren der Wechselstromtechnik verstehen und ihr Wissen auf praxisrelevante Aufgabenstellungen anwenden können.

Vorkenntnisse

Allgemeine Elektrotechnik 1

Inhalt

- Elektromagnetische Induktion (Teil 2) (Grundgleichungen, Gegeninduktion und Gegeninduktivität, Induktivität und Gegeninduktivität in Schaltungen, Ausgleichsvorgänge in Schaltungen mit einer Induktivität bei Gleichspannung) - Energie, Kräfte und Momente im magnetischen Feld (Grundgleichungen, Kräfte auf Ladungen, Ströme und Trennflächen, Anwendungsbeispiele, magnetische Spannung) - Wechselstromkreise bei sinusförmiger Erregung (Zeitbereich) (Kenngrößen, Darstellung und Berechnung, Bauelemente R, L und C) - Wechselstromkreise bei sinusförmiger Erregung mittels komplexer Rechnung (Komplexe Darstellung von Sinusgrößen, symbolische Methode, Netzwerkanalyse im Komplexen, komplexe Leistungsgrößen, graf. Methoden: topologisches Zeigerdiagramm, Ortskurven, Frequenzkennlinien und Übertragungsverhalten, Anwendungsbeispiele) - Spezielle Probleme der Wechselstromtechnik (Reale Bauelemente, Schaltungen mit frequenzselektiven Eigenschaften: HP, TP, Resonanz und Schwingkreise, Wechselstrommessbrücken, Transformator, Dreiphasensystem) - rotierende elektrische Maschinen

Medienformen

Präsenzstudium mit Selbststudienunterstützung durch internetbasierte multimediale Lernumgebungen (www.getsoft.net)

Literatur

Seidel, H.-U.; Wagner, E.: Allgemeine Elektrotechnik Gleichstrom - Felder - Wechselstrom, 3. neu bearbeitete Auflage, Carl Hanser Verlag München Wien 2003 Seidel, H.-U.; Wagner, E.: Allgemeine Elektrotechnik Wechselstromtechnik - Ausgleichsvorgänge - Leitungen, 3. neu bearbeitete Auflage, Carl Hanser Verlag München Wien 2005

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mathematik 2009

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Maschinenbau 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Werkstoffwissenschaft 2009 Modul: Ingenieurwissenschaften 3

Elektrische Messtechnik

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 1360 Prüfungsnummer:2100258

Fachverantwortlich: Dr. Jürgen Sachs

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2112

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	>	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Ausgehend von der Einführung grundlegender Messverfahren zur Bestimmung der wichtigsten elektrischen Größen und einiger nichtelektrischer Größen wird der Student in die Lage versetzt, selbständig Messprobleme zu bearbeiten und zu bewerten. Durch Arbeiten mit Blockschaltbildern wird das "Systemdenken" geschult, um komplexere Problemstellungen analysieren und gezielt in Teilprobleme untergliedern zu können und darauf aufbauend geeignete Messstrategien zu entwerfen. Die Erfassung, Wandlung und Verarbeitung von Messwerten wird in erster Linie anhand digitaler Methoden erläutert, damit der Studierende die Vorteile der digitalen Messdatenverarbeitung erkennt und diese gewinnbringend bei der Lösung von Messaufgaben einsetzen kann.

Vorkenntnisse

Allgemeine Elektrotechnik 1. und 2. Semester, Mathematik 1. und 2. Semester, Grundlagen der Physik; Signale und Systeme; Elektronik, Grundlagen der Schaltungstechnik

Inhalt

Grundbegriffe der Messtechnik, Messkette, Messdynamik, zufällige und systematische (statische und dynamische) Messfehler, Fehlerfortpflanzung, Kenngrößen von Signalen; Strom- und Spannungsmessung, mechanische Messwerke, Analog-Digital-Konverter, Gleichrichter, analoges und digitales Oszilloskop, Logikanalysator; Messung von Leistung und Energie; Zeit- und Frequenzmessung, Zeit- und Frequenznormale, Messbrücken; Messungen an Zwei- und Vierpolen (Kleinsignalparameter und Betriebskenngrößen), Sensoren für geometrische und mechanische Größen, Temperatur, optische, induktive, resistive und kapazitive Sensoren

Medienformen

PowerPoint-Folien mit Tafelunterstützung; Aufgabensammlung für Übung

Literatur

- E. Schrüfer: Elektrische Messtechnik. Carl Hanser Verlag München
- J. Sachs: Grundlagen der Elektrischen Messtechnik. PowerPoint-Folien, TU Ilmenau

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Medientechnologie 2008

Bachelor Biomedizinische Technik 2014

Bachelor Mechatronik 2013

Modul: Kristallografie

Modulnummer7974

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden kennen die Methoden zur Bestimmung und Klassifizierung von Kristallen nach ihrer äußeren Form und nach ihrer Atomanordnung. Sie kennen Kristallsysteme, Symmetrieoperationen, die Raumgruppen und die dreiminsionalen Raumgruppen. Die Studierenden können an Hand von Raummodellen Symmetrieelemente, allgemeine und spezielle Formen beschreiben. Der Umgang mit entsprechenden Programmen ist ihnen vertraut. Sie können Realstruktur und Idealstruktur unterscheiden und die Beziehung Struktur- Gefüge-Eigenschaft anwenden. Ferner sind sie in der Lage, diese Zusammenhänge darzustellen und an Beispielen (Kohlenstoffmodifikationen, Eisenallotropie, Eisen-Kohlenstoff, Supraleiter) zu beschreiben.

Vorraussetzungen für die Teilnahme

Detailangaben zum Ab<u>schluss</u>

Bachelor Werkstoffwissenschaft 2009

Modul: Kristallografie

Kristallografie 1

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6659 Prüfungsnummer:2100259

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester	2	0	0																		

Lernergebnisse / Kompetenzen

Die Studierenden kennen die Methoden zur Bestimmung und Klassifizierung von Kristallen nach ihrer äußeren Form und nach ihrer Atomanordnung. Es werden die 7 Kristallsysteme, die 10 Symmetrieoperationen, die 17 ebenen Raumgruppen und die 230 dreiminsionalen Raumgruppen eingeführt. Die Studierenden können an Hand von Raummodellen Symmetrieelemente, allgemeine und spezielle Formen beschreiben. Der Umgang mit entsprechenden Programmen (Carine, Powdercell, WinXmorph, Faces) ist ihnen vertraut. Die Realstruktur in Unterscheidung zur Idealstruktur wird exemplarisch eingeführt, und die Beziehung Struktur-Gefüge-Eigenschaft ist als Grundkenntnis den Studierenden bekannt. Ferner sind sie in der Lage, diese Zusammenhänge darzustellen und an Beispielen (Kohlenstoffmodifikationen, Eisenallotropie, Eisen-Kohlenstoff, Supraleiter) zu beschreiben.

Vorkenntnisse

Kenntnisse des Abiturs

Inhalt

Dozent: apl. Prof. Dr. Lothar Spieß

- 1. Einleitung
- 2. Mathematische Grundlagen
- 3. Kristallsysteme
- 4. Indizes
- 5. Kristallprojektionen
- 6. Symmetrieelemente ohne Translation
- 7. Kristallklassen
- 8. Die 14 Bravaisgitter
- 9. Das reziproke Gitter
- 10. Symmetrieelemente mit Translation

Medienformen

• Vorlesungsskript • Tafel • Folien • Computer Demo

Literatur

- W. Kleber, H.-J. Bautsch, J. Bohm: Einführung in die Kristallographie
- · W. Borchardt-Ott:Kristallographie
- · G. Strübel:Mineralogie

• L. Spiess, R. Schwarzer, H. Behnken, Teichert. G.: Moderne Röntgenbeugung

Detailangaben zum Abschluss

sPL 90

schriftliche Prüfung, 90 Minuten

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Kristallografie

Kristallografie 2

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7050 Prüfungsnummer:2100260

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	1	Workload (h):	30	Anteil Selbststudium (h):	19	SWS:	1.0	
Fakultät für Elektrot	echnik u	ind Informationstec	hnik				Fachgebiet:	2172

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	I.FS)		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				1	0	0															

Lernergebnisse / Kompetenzen

Die Studierenden lernen Methoden zur Bestimmung und Klassifizierung von Kristallen nach ihrer äußeren Form und vor allem nach ihrer Atomanordnung. Es werden die 7 Kristallsysteme, die 10 Symmetrieoperationen, die 17 ebenen Raumgruppen und die 230 dreiminsionalen Raumgruppen eingeführt. Die Studierenden können an Hand von Raummodellen Symmetrieelemente, allgemeine und spezielle Formen beschreiben. Der Umgang mit entsprechenden Programmen (Carine, Powdercell, WinXmorph, Faces) ist bekannt. Die Realstruktur in Unterscheidung zur Idealstruktur wird exemplarisch eingeführt, und die Beziehung Struktur-Gefüge-Eigenschaft ist als Grundkenntnis den Studierenden bekannt. Ferner sind sie in der Lage, diese Zusammenhänge darzustellen und an Beispielen (Kohlenstoffmodifikationen, Eisenallotropie, Eisen-Kohlenstoff, Supraleiter) zu beschreiben.

Vorkenntnisse

Kristallographie 1

Inhalt

11. Untergruppen 12. Raumgruppen 13. Zwillinge 14. Kristallchemie 15. Mineralienbestimmung nach äußeren Kennzeichen

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- W. Kleber, H.-J. Bautsch, J. Bohm: Einführung in die Kristallographie - W. Borchardt-Ott:Kristallographie - G. Strübel:Mineralogie - L. Spiess, R. Schwarzer, H. Behnken, Teichert. G.: Moderne Röntgenbeugung

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstoffwissenschaft 1

Modulnummer7975

Modulverantwortlich: Prof. Dr. Edda Rädlein

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

• Die Studierenden besitzen Grundkenntnisse über den inneren Aufbau sowie die sich daraus ergebenden Zustände und Eigenschaften von Werkstoffen und verstehen, diese auf ingenieurwissenschaftliche Anwendungen zu übertragen. • Die Studierenden kennen die Mechanismen und Möglichkeiten zur Veränderung von Werkstoffen und können ihre Wirkungen zur gezielten Beeinflussung der Eigenschaften von Werkstoffen nutzen. • Sie sind in der Lage, aus dem mikroskopischen und submikroskopischen Aufbau die resultierenden mechanischen Eigenschaften abzuleiten und Eigenschaftsveränderungen gezielt vorzuschlagen. Dabei können sie kinetische Wechselwirkung einbeziehen und gezielt für eine thermische und/oder thermomechanische Werkstoffveränderung nutzen.

Vorraussetzungen für die Teilnahme

Detailangaben zum Ab<u>schluss</u>

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstoffwissenschaft 1

Grundlagen der Werkstoffwissenschaft 1

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Prüfungsnummer:2300313 Fachnummer: 6658

Fachverantwortlich: Prof. Dr. Edda Rädlein

Workload (h): 90 SWS: Leistungspunkte: Anteil Selbststudium (h): 3.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 5.FS 6.FS 1.FS 3.FS 4.FS 7.FS Р S P S P S P S P V SP S S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Studierenden besitzen Grundkenntnisse über die Einteilung von Werkstoffgruppen nach Zusammensetzung und Bindungsarten und über die Beschreibung von atomarem Aufbau und Gefüge. Sie können einfache Beziehungen zwischen Struktur und Eigenschaften zur anwendungsorientierten Auswahl und Modifizierung von Werkstoffen nutzen. Sie haben Grundprinzipien der Diffusion verstanden und kennen thermodynamische Zustandsgrößen. Sie verstehen Grundlagen von Keimbildung, Kristallwachstum, Glasbildung und Übergängen gasförmig - fest und können Zustandsänderungen anhand von Phasendiagrammen beschreiben. Grundbegriffe von Korrosion und Modelle mechanischen Verhaltens sind ihnen bekannt.

Vorkenntnisse

Zulassung zum Bachelorstudiengang Werkstoffwissenschaft

Inhalt

- 1. Werkstoffe: Einleitung
- 2. Chemische Bindung
- 3. Koordination, Gitter, Strukturen
- 4. Kristallbaufehler, Gefüge, Analytik
- 5. Thermisch aktivierte Vorgänge
- 6. Thermodynamik realer Kristalle
- 7. Übergänge in den festen Zustand
- 8. Übergänge im festen Zustand
- 9. Phasen, -diagramm, -umwandlung
- 10. Chemische Vorgänge: Korrosion
- 11. Mechanisches Verhalten

Fachbeschreibung Kristallografie

Kapitel 1: Einleitung

Kapitel 2: Mathematische Grundlagen (Selbststudium)

Kapitel 3: Kristallsysteme

Kapitel 4: Indizees

Kapitel 5: Kristallprojektionen

Kapitel 6: Symmetrieelemente ohne Translation

Kapitel 7: Kristallklassen

Kapitel 8: 14 Bravaisgitter

Kapitel 9: reziproke Gitter

Kapitel 10: Symmetrieelemente mit Translation

Kapitel 11: Ebenengruppen

Kapitel 12: Raumgruppen - Kristallographische Hierarchien

Kapitel 13: Zwillinge

Kapitel 14: Kristallchemie

Kapitel 15: Mineralogie, Mineralbestimmung nach äußeren Kennzeichen

Kapitel 16: Anwendungen kristallographischer Grundkenntnisse

Die Vorlesung wird mit einer Stunde fakultativ im RTK mit einer Übung (5 Termine a 2 Zeitstunden) am Ende des Semesters vertieft.

Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript

Literatur

J.F. Shackelford: Werkstofftechnologie für Ingenieure; Pearson, München etc. 2005; ISBN 3-8273-7159-7 W. Schatt, H. Worch, hrsg.: Werkstoffwissenschaft; Wiley-VCH, Weinheim, 2003; ISBN 3-527-30535-1 E. Hornbogen: Werkstoffe; Springer, Berlin etc. 1987; ISBN 3.540-17122-3 D.R. Askeland: Materialwissenschaften; Spektrum, Heidelberg etc. 1996; ISBN 3-86025-357-3 W.D. Callister: Materials Science and Engineering; Wiley, New York etc. 1994; ISBN 0-471-58128-3 M.Merkel, K.-H. Thomas: Taschenbuch der Werkstoffe; Fachbuchverlag Leipzig, Carl Hanser, München und Wien, 2003; ISBN 3-446-22084-4

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009 Modul: Werkstoffwissenschaft 1

Grundlagen der Werkstoffwissenschaft 2

Fachabschluss: Prüfungsleistung alternativ 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7976 Prüfungsnummer:2300314

Fachverantwortlich: Dr. Günther Lange

Leistungspunkte: 3	}	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschinen	nbau						Fachgebiet:	2352

	1	I.FS	3	2	2.FS	3	,	3.F	3	4	I.FS	6	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	1	0															

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Phasendiagramme lesen und aufstellen zu können, um dadurch die Eigenschaften der Legierungen beschreiben und beeinflussen zu können. Die Entwicklung und Herstellung von Eisen und Stahl mit entsprechenden Wärmebehandlung (dadurch die Beeinflussung der Eigenschaften) versetzt die Studierenden in die Lage ingenieurwissenschaftlich relevante Anwendungen grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

Vorkenntnisse

WSW - Grundlagen der Werkstoffwissenschaften 1

Inhalt

- Aufbau von metallischen Werkstoffen
- Eisen-Kohlenstoff-Diagramm
- Zeit-Temperatur-Diagramm
- Grundtypen der Phasendiagramme
- Eisen- und Stahlherstellung
- Legieren
- Wärmebehandlungen
- Festigkeitssteigerung

Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereitgestellt.

Anschauungsobjekte werden in der Vorlesung besprochen.

Literatur

- Werkstoffe Aufbau und Eigenschaften; E. Hornbogen, G. Eggeler, E. Werner; 9. Auflage, Springer, 2008
- Werkstoffwissenschaft; W. Schatt, H. Worch; 9. Auflage, Wiley-VCH, 2003
- Werkstofftechnik 1; W. Bergmann; 6. Auflage, Hanser Verlag, 2008
- Werkstofftechnik 2; W. Bergmann; 4. Auflage, Hanser Verlag, 2009
- Werkstoffwissenschaften und Fertigungstechnik; B. Ilschner, R. Singer; 4. Auflage, Springer, 2004
- Werkstoffkunde und Werkstoffprüfung; W. Weißbach; 16. Auflage, Vieweg+Teubner, 2007
- Werkstoffe 1 Eigenschaften, Mechanismen, Anwendung; M. Ashby, D. Jones; 3. Auflage,

Spektrum Akademischer Verlag, 2006

- Werkstoffkunde; Bargel-Schulze, Springer
- Fundamentals of Material Science and Engeneering; W. Callister, D. Rethwisch; 3. Auflage, Wiley & Sons, 2008
- The Science and Engeneering of Materials; D. Askeland, P. Phule; 5. Auflage, Thomson Learning, 2006
- Materialwissenschaften; D. Askeland, P. Phule; 5. Auflage, Spektrum Akademischer Verlag, 2006
- Neuere Literatur wird in der Vorlesung bekannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstoffwissenschaft 2

Modulnummer6656

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

• Die Studierende sind in der Lage, Grundkenntnisse über Zustand und Eigenschaften von Werkstoffen zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen. • Die Studierenden können funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen. • Die Studierende sind in der Lage, Grundkenntnisse über Werkstoffprüfverfahren zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen. • Die Studierenden kennen die werkstofftechnologischen Grundprinzipen und sind in der Lage, Werkstoffe für ingenieurmäßige Anwendungen auszuwählen und vorzuschlagen. Das Modul vermittelt überwiegend Fach- und Methodenkompetenz.

Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft 1 und physikalische und chemische Grundkenntnisse.

Detailangaben zum Abschl<u>uss</u>

Bachelor Werkstoffwissenschaft 2009 Modul: Werkstoffwissenschaft 2

Grundlagen der Werkstoffwissenschaft 3

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6655 Prüfungsnummer:2100261

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Elektrot	echni	k und Informationstechnik				Fachgebiet:	2172

	1	1.FS)	2	2.FS	3	;	3.FS	3	4	I.FS)	Ų	5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester							2	0	0												

Lernergebnisse / Kompetenzen

• Die Studierende sind in der Lage, Grundkenntnisse über Zustand und Eigenschaften von Werkstoffen zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen. • Die Studierenden können funktionale Eigenschaften der Werkstoffe aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien erklären und Eigenschaftsveränderungen gezielt vorschlagen. Das Fach vermittelt überwiegend Fachkompetenz.

Vorkenntnisse

Modul Werkstoffwissenschaft 1

Inhalt

1. Elektrische Eigenschaften 2. Supraleitung 3. Halbleitende Eigenschaften 4. Dielektrische Eigenschaften 5. Magnetische Eigenschaften 6. Optische Eigenschaften 7. Thermische Eigenschaften

Medienformen

• Vorlesungsskript • Tafel • Computer Demo • Skript

Literatur

1. Werkstoffwissenschaft (hrsg. von W. Schatt und H. Worch).- 8. Aufl., - Stuttgart: Deutscher Verlag für Grundstoffindustrie, 1996 2. Schaumburg, H.: Werkstoffe. – Stuttgart: Teubner, 1990 3. Askeland, D. R.: Materialwissenschaften: Grundlagen, Übungen, Lösungen. – Heidelberg; Berlin; Oxford: Spektrum, Akad. Verlag, 1996 4. Funktionswerkstoffe der Elektrotechnik und Elektronik (hrsg. von K. Nitzsche und H.-J. Ullrich). – 2. stark überarb. Aufl. – Leipzig; Stuttgart: Dt. Verlag für Grundstoffindustrie, 1993 5. Bergmann, W.: Werkstofftechnik, – Teil 1: Grundlagen. – 2., durchges. Aufl. – München; Wien: Hanser, 1989 6. Bergmann, W.: Werkstofftechnik, - Teil 2: Anwendung. – München; Wien: Hanser, 1987 7. Fasching, G.: Werkstoffe für die Elektrotechnik: Mikrophysik, Struktur, Eigenschaften. – 3., verb. und erw. Aufl. – Wien; York: Springer, 1994 8. Göbel, W.; Ziegler, Ch.: Einführung in die Materialwissenschaften: physikalisch-chemische Grundlagen und Anwendungen. – Stuttgart; Leipzig: Teubner, 1996 9. Hilleringmann, U.: Silizium- Halbleitertechnologie.- 3. Aufl.: Stuttgart, Leipzig, Wiesbaden: B.G. Teubner, 2002 10. Magnettechnik. Grundlagen und Anwendungen (hrsg. von L. Michalowsky). – 2., verb. Aufl. – Leipzig; Köln: Fachbuchverl., 1995

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Seite 69 von 130

Bachelor Werkstoffwissenschaft 2009 Modul: Werkstoffwissenschaft 2

Grundlagen der Werkstoffwissenschaft 4

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 7977 Prüfungsnummer:2100262

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	68	SWS:	2.0	
Fakultät für Elektro	techni	k und Informationstechnik			Fachgebiet:	2172	

	1.FS		2.FS		3.FS		4.FS			5.FS			6.FS			7.FS					
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

• Die Studierende sind in der Lage, Grundkenntnisse über Werkstoffprüfverfahren zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen. • Die Studierenden können Werkstoffe mit ihren mikroskopischen und submikroskopischen Aufbauprinzipien, ihren mechanischen und physikalischen Eigenschaften für ingenieurmäßige Anwendungen vorschlagen. Das Fach vermittelt überwiegend Fach- und Methodenkompetenz.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-3

Inhalt

1. Bedeutung und Aufgaben der Werkstoffprüfung 1.1. Aufgaben und Ziele 1.2. Normen und Regelwerke 1.3. Historische Entwicklung 1.4. Grundbegriffe der Messtechnik 1.5. Hauptgruppen der Werkstoffprüfung 2. Mechanische Prüfverfahren 2.1. Verfahren mit statischer Beanspruchung 2.2. Verfahren mit dynamischer Beanspruchung 2.3. Verfahren zur Ermittlung bruchmechanischer Kennwerte 2.4. Härteprüfung 3. Zerstörungsfreie Prüfverfahren 3.1. Radiografische Prüfverfahren 3.2. Ultraschallprüfverfahren 3.3. Magnetische Prüfverfahren 3.4. Wirbelstromverfahren 3.5. Penetrationsverfahren 3.6. Thermoelektrische Verfahren 4. Qualitätssicherung 5. Werkstoffkennzeichnung 6. Werkstoffauswahl

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo Skript

Literatur

- Werkstoffprüfung (Herausg.: H. Blumenauer). 6. durchges. Aufl., Leipzig: Dt. Verl. für Grundstoffindustrie, 1994 - Weißbach, W.: Werkstoffkunde und Werkstoffprüfung.- 12., vollst. überarb. und erw. Aufl..- Braunschweig; Wiesbaden: Vieweg, 1998 Ergänzungsliteratur: - Seidel, W.: Werkstofftechnik. Werkstoffe - Eigenschaften - Prüfung - Anwendung, -3., neubearb. Aufl.- München, Wien: Hanser, 1999 - Fischer, H.; Hofmann, H.; Spindler, J.: Werkstoffe in der Elektrotechnik. Grundlagen - Aufbau - Eigenschaften - Prüfung – Anwendung - Technologie.- 4., vollig neubearb. Aufl., München, Wien: Hanser, 2000 - Werkstoffkunde (Herausg.: H.-J. Bargel; G. Schulze).- 7., überarb. Aufl.- Berlin u. a.: Springer, 2000 - Nitzsche, K.: Schichtmeßtechnik, Würzburg: Vogel, 1997

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Seite 71 von 130

Modul: Werkstofftechnologie und -analytik

Modulnummer6648

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

• Die Studierenden besitzen umfassende Kenntnisse über Werkstoffe. Sie kennen deren inneren Aufbau und die sich ergebenden Eigenschaften, wobei sie zwischen den unterschiedlichen Werkstoffhauptgruppen differenzieren können. Sie sind befähigt, Werkstoffe anforderungsgerecht auszuwählen und Vorschläge zur Be- und Verarbeitung unter werkstofflichen Gesichtspunkten zu unterbreiten. Weiterhin sind sie in der Lage, Möglichkeiten zur gezielten Beeinflussung des Werkstoffverhaltens zu bestimmen und für geforderte Eigenschaftsprofile anzuwenden. • Die Studierenden kennen die an Werkstoffoberflächen wirksamen Mechanismen und sind in der Lage, diese gezielt für deren Modifikation auszunutzen. Weiterhin sind sie befähigt, Werkstoffsysteme auszuwählen und geeignete Herstellungsverfahren vorzuschlagen, mit denen sich die Eigenschaften von Oberflächen an vorgegebene Anforderungsprofile anpassen lassen. • Die Studierenden verfügen über umfassende Kenntnisse in der Werkstoffanalytik und -prüfung sowie der Werkstoffklassifikation und sind in der Lage, diese auf ingenieurwissenschaftliche Anwendungen zu übertragen. Ferner sind sie befähigt, entsprechend den vorliegenden Fragestellungen Untersuchungspläne zu erstellen, umzusetzen, die Ergebnisse zu interpretieren und darzustellen und geeignete Lösungen vorzuschlagen.

Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft

Detailangaben zum Abschluss

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnologie und -analytik

Werkstofftechnologie

Fachabschluss: Studienleistung schriftlich 60 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 6649 Prüfungsnummer:2300315

Fachverantwortlich: Dr. Günther Lange

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Maschinenbau Fachgebiet: 2352

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS S P SP SP S P S P S Ρ S SWS nach Fachsemester

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Eigenschaften metallischer Werkstoffe in den einzelnen Herstellungsstufen bis zum Halbzeug zu beschreiben. Dadurch werden die Studierenden in die Lage versetzt ingenieurwissenschaftlich relevante Anwendungen (sowohl bezogen auf das Produkt wie auch auf die Herstellungstechnologie) auf Basis der behandelten Werkstoffe, Technologie und Verfahren grundlegend zu analysieren, um dann entsprechende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

Vorkenntnisse

Bachelor in MB, FZT oder Werkstoffwissenschaften

Inhalt

Die Vorlesung betrachtet den Weg vom Erz bis zum fertigen Produkt (Definition der "Technologie"). Dabei werden die notwendigen Fertigungsverfahren (umformende Verfahren) betrachtet und analysiert. Die Veränderung der Werkstoffeigenschaften in Abhängigkeit der Bearbeitungsverfahren werden ebenso wie die dazu notwendige Anlagentechnik beschrieben, diskutiert und analysiert. Notwendige Prüfverfahren (z. B. Blechprüfverfahren) sind ebenso Bestandteil der Vorlesung.

Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereitgestellt.

Literatur

- Einführung in die Werkstoffwissenschaft; W. Schatt, Dt. Verl. für Grundstoff, ISBN 3-342-00521-1
- Werkstofftechnik; W. Bergmann, Hanser Verlag, ISBN 3-446-15598-8
- Grundlagen der Werkstofftechnik; M. Riehle, E. Simmchen, VDI-Verlag, ISBN 3-18-400823-1
- Handbuch der Umformtechnik; E. Doege, B.-A. Behrens, Springer Verlag 2010
- Praxis der Umformtechnik: Arbeitsverfahren, Maschinen, Werkzeuge; H. Tschätsch, J. Dietrich, Vieweg und Teubner, 2010
- Metal forming: mechanics and metallurgy; F. W. Hosford, R. M. Caddell, Cambridge Univ. Press, 2011
- Neuere Literatur wird in der Vorlesung bekannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009 Modul: Werkstofftechnologie und -analytik

Praktikum Werkstofftechnologie und -analytik

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6700 Prüfungsnummer:2100267

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	5	Workload (h): 150	Anteil Selbststudium (h):	105	SWS:	4.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	2172

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	>	S	Р
Fachsemester													0	0	4						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, ihr erworbenes fachliches und methodisches Wissen anzuwenden, um thematisch begrenzte Problemstellungen in Form von praktischen Arbeiten im Labor, die die Vorlesungen ergänzen, zu untersuchen. Sie können unter Anwendung der grundlegenden Methoden werkstoffwissenschaftliche Problemstellungen bearbeiten und auswerten. Sie können die Befunde interpretieren, in geeigneter Weise darstellen und verständlich präsentieren.

Vorkenntnisse

Module Werkstoffwissenschaft 1-2

Inhalt

Werkstoffwissenschaftliches Praktikum zu den Veranstaltungen: - Metalle und Halbleiter - Glas- und Keramiktechnologie - Kunststoffe und Verbundwerkstoffe - Grundlagen der Oberflächentechnik - Werkstoffanalytik - 15 Versuche

Medienformen

- Praktikumsanleitungen - Praktikumsversuche - Lehrbücher zu Werkstoffwissenschaft 1-2

Literatur

Zum Schrifttum werden entsprechend dem jeweiligen Praktikum von den betreuenden Fachgebieten Hinweise gegeben, wobei der Bezug zur jeweiligen Fachvorlesung gegeben ist. Die Literaturrecherche und -auswertung gehört zu den Aufgaben im Rahmen des Praktikums.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009 Modul: Werkstofftechnologie und -analytik

Werkstoffanalytik

Fachabschluss: Prüfungsleistung schriftlich 90 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6699 Prüfungsnummer:2100263

Fachverantwortlich: Prof. Dr. Peter Schaaf

Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172	Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
	Fakultät für Elektrote	echnik	und Informationstechnik				Fachgebiet:	2172

	1	.FS	<u> </u>		2.FS	3		3.FS	3	4	l.FS	<u> </u>		5.FS	3	- 6	3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, Grundkenntnisse über werkstoffanalytische Verfahren zu verstehen und auf ingenieurwissenschaftliche Anwendungen zu übertragen.
- Die Studierenden können Werkstoffe mit ihren mikroskopischen und submikroskopischen Aufbauprinzipien beschreiben. Das Fach vermittelt überwiegend Fach- und Methodenkompetenz.

Vorkenntnisse

Module Werkstoffwissenschaft 1-2

Inhalt

Dozent: apl. Prof. Dr. Lothar Spieß

0. Einführung 1. Röntgenfeinstrukturanalyse 1.1. Erzeugung und Nachweis von Röntgenstrahlung 1.2. Beugung von Röntgenstrahlung an Kristallgittern 1.3. Vielkristalluntersuchungen / Pulveraufnahmeverfahren 1.4. Einkristalluntersuchungen 2. Metallographie und Lichtmikroskopie 2.1. Gefügeelemente 2.2. Präparation 2.3. Lichtmikroskopie 2.4. Quantitative Gefügeanalyse 3. Transmissionselektronenmikroskopie 3.1. Abbildung nach Durchstrahlung 3.2. Elektronenbeugung 4. Rasterelektronenmikroskopie 4.1. Topographie 4.2. Präparation 4.3. Abbildung elektrischer Potentiale 4.4. Vergleich REM mit TEM und LM 5. Rastersondenmethoden 5.1. Rastertunnelmikroskopie 5.2. Rasterkraftmikroskopie 6. Spektroskopische Methoden 6.1. Auger-Elektronen-Spektroskopie 6.2. Massenspektrometrie 6.3. Elektronenstrahlmikroanalyse 6.4. Atomemissionsspektroskopie

Medienformen

Vorlesungsskript Tafel / Whiteboard Computer Demo

Literatur

- Werkstoffwissenschaft, 9. Aufl., (Herausg.: W.Schatt, H. Worch), Wiley-VCH; Auflage: (November 2002); ISBN: 978-3527305353 - Werkstoffprüfung /Herausg.: H. Blumenauer.- 6., stark überarb. und erw. Aufl.- Leipzig; Stuttgart: Dt. Verlag für Grundstoffindustrie, 1994 - Spieß, L.; Schwarzer, R.; Behnken, H.; Teichert, G.: Moderne Röntgenbeugung. Röntgendiffraktometrie für Materialwissenschaftler, Physiker und Chemiker.- Wiesbaden: B. G. Teubner, 2005 - Werkstoffanalytische Verfahren /Herausg.: H.-J. Hunger - 1. Aufl.- Leipzig; Stuttgart: Dt. Verlag für Grundstoffindustrie, 1995 eine Auswahl; 1. Auflage, Deutscher Verlag für Grundstoffindustrie 1995 - Reimer, I.: Scanning Electron Microscopy; 2. Auflage, Springer Verlag 2008 - Reimer, L; Pfefferkorn, G.: Raster- Elektronenmikroskopie; 2. Auflage, Springer Verlag 1977 - Eggert, F.: Standardfreie Elektronenstrahl-Mikroanalyse (mit dem EDX im Rasterelektronenmikroskop): Ein Handbuch für die Praxis (Taschenbuch); Books on Demand Gmbh; Auflage: 1 (Februar 2005); ISBN: 978-3833425998 - Schumann, H.: Metallographie, 14., neubearb. Aufl., Wiley-VCH; (Oktober 2004); ISBN: 978-3527306794 - Elektronenmikroskopie in der

Festkörperphysik [Herausgeber.: H. Bethge, J. Heydenreich]; Berlin: Deutscher Verlag der Wissenschaften, 1982 - Kuzmany, H.: Festkörperspektroskopie.- Berlin u. a.: Springer, 1989

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Master Regenerative Energietechnik 2011

Modul: Werkstofftechnik 1

Modulnummer7978

Modulverantwortlich: Prof. Dr. Edda Rädlein

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden besitzen umfassende Kenntnisse über Werkstoffe. Sie kennen deren inneren Aufbau und die sich ergebenden Eigenschaften, wobei sie zwischen den unterschiedlichen Werkstoffhauptgruppen differenzieren können. Sie sind befähigt, Werkstoffe anforderungsgerecht auszuwählen und Vorschläge zur Be- und Verarbeitung unter werkstofflichen Gesichtspunkten zu unterbreiten. Weiterhin sind sie in der Lage, Möglichkeiten zur gezielten Beeinflussung des Werkstoffverhaltens zu bestimmen und für geforderte Eigenschaftsprofile anzuwenden. Die Studierenden kennen die an Werkstoffoberflächen wirksamen Mechanismen und sind in der Lage, diese gezielt für deren Modifikation auszunutzen. Weiterhin sind sie befähigt, Werkstoffsysteme auszuwählen und geeignete Herstellungsverfahren vorzuschlagen, mit denen sich die Eigenschaften von Oberflächen an vorgegebene Anforderungsprofile anpassen lassen. Die Studierenden verfügen über umfassende Kenntnisse in der Werkstoffanalytik und -prüfung sowie der Werkstoffklassifikation und sind in der Lage, diese auf ingenieurwissenschaftliche Anwendungen zu übertragen. Ferner sind sie befähigt, entsprechend den vorliegenden Fragestellungen Untersuchungspläne zu erstellen, umzusetzen, die Ergebnisse zu interpretieren und darzustellen und geeignete Lösungen vorzuschlagen.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 1

Glas und Keramik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6690 Prüfungsnummer:2300319

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 38 SWS: 2.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS S P S P S P V SP S P S Р S SWS nach Fachsemester 0

Lernergebnisse / Kompetenzen

Fachkompetenz: Kenntnis kommerziell relevanter Gläser und Keramiken, Verknüpfung naturwissenschaftlicher und technischer

Grundlagen, Durchgängige Gestaltung technologischer Abläufe zur

Herstellung von Glas und Keramik Systemkompetenz: Einbeziehung betriebswirtschaftlicher Aspekte

Sozialkompetenz: Mitwirkung in und Anleitung von Technologieteams

Vorkenntnisse

Module Werkstoffwissenschaft 1-2

Inhalt

Typen von Gläsern und Keramiken

Überblick über Herstellungsprozesse und Anwendungen: Rohstoffe, Gemenge- und Massebereitung, Schmelzaggregate, Vorgänge beim Glasschmelzen und Sintern

Ausgewählte Beispiele für die Formgebung kommerziell relevanter Glas- und Keramikprodukte

Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Skript

Literatur

Varshneya, A.K.: Fundamentals of Inorganic Glasses, The Society of Glass Technology, Sheffield, 2006.

Nölle, G.: Technik der Glasherstellung, 3. ed, Deutscher Verlag für Grundstoffindustrie, Leipzig, 1997.

Salmang, H., Scholze, H.: Keramik, 7. ed, Springer Verlag, Berlin, 2007

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 1

Metalle und Halbleiter

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Sommersemester

Fachnummer: 6698 Prüfungsnummer:2100265

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	2	Workload (h): 60)	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Elektrot	echnik ι	und Informationstechnil	ik				Fachgebiet:	2172

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS	3		5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester										2	0	0									

Lernergebnisse / Kompetenzen

Die Studierenden besitzen umfassende Kentnisse über metallische und Halbleiterwerkstoffe. Sie kennen die verschiedenen Prozesse und sind in der Lage, eine werkstoffgerechte Einordnung und Auswahl vorzunehmen und auf ingenieurwissenschaftliche Anwendungen zu übertragen

Vorkenntnisse

Module Werkstoffwissenschaft 1-2

Inhalt

Dozent: Dr. Volkmar Breternitz

- Eisen- und Stahlwerkstoffe
- Leichtmetalle und -legierungen (Aluminium, Magnesium, Titan)
- Buntmetalle und -legierungen (Kupfer, Nickel, Zinn, Zink)
- Sonderwerkstoffe, pulvermetallurgische Werkstoffe
- Kurzübersicht Halbleiterwerkstoffe

Medienformen

Vorlesungsskript Tafel / Whiteboard Computer Demo

Literatur

- Hornbogen, E.: Werkstoffe, Springer-Verlag
- Ilschner, B.: Werkstoffwissenschaften, Springer- Verlag
- Hornbogen, E, Warlimont, H.: Metallkunde, Springer-Verlag
- Peters, M., Leyens, Ch.: Titan und Titanlegierungen, Wiley-VCH
- Aluminum-Taschenbuch, Aluminiumzentrale, Düsseldorf
- Kainer, K.: Magnesium, Wiley-VCH
- Bürgel, R.: Handbuch Hochtemperaturwerkstofftechnik, Vieweg-Verlag
- Hilleringmann, U.: Silizium-Halbleitertechnologie.- 3. Aufl.- Stuttgart, Leipzig, Wiesbaden: B. G. Teubner, 2002
- Schaumburg, H.: Halbleiter.- Stuttgart: B. G. Teubner, 1991
- Nitzsche, K.; Ullrich, H.-J.: Funktionswerkstoffe der Elektrotechnik und Elektronik.- Leipzig, Stuttgart: Dt. Verlag für Grundstoffindustrie, 1993
- Bachmann, K. J.: Materials Science of Microelectronics.- New York: VCH, 1995

Detailangaben zum Abschluss

schriftliche Modulprüfung.

Das Fach kann mit einem unbenoteten Schein abgeschlossen werden.

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 1

Grundlagen der Oberflächentechnik

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6696 Prüfungsnummer:2100264

Fachverantwortlich: Prof. Dr. Andreas Bund

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Elektrot	echnik	c und Informationstechnik				Fachgebiet:	2175

	1	I.FS	6	2	2.FS	3	,	3.FS	3	4	I.FS)	į	5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	V	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Grundkenntnisse über Zustand und Eigenschaften der Oberfläche zu verstehen und die Oberflächen funktionell zu verändern. Sie kennen die wichtigsten elektrochemischen und physikalischen Verfahren der Oberflächentechnik und sind in der Lage, diese Verfahren zu beschreiben und hinsichtlich ihrer Anwendbarkeit auf eine bestimmte Problemstellung zu vergleichen bzw. zu bewerten. Die Studierenden sind befähigt, Verfahren zur Erzielung spezifischer funktioneller Eigenschaften auszuwählen sowie die Zielfunktionen zu beurteilen und die Beschichtungstechniken für gegebene Anforderungsprofile anzupassen.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

- Definition der Oberfläche - Zustand der Oberfläche - Vorbehandlungs- und Reinigungsverfahren - Metallabscheidung - mechanische Beschichtungen - Elektrophorese, lackieren, emaillieren - Konversionsschichten - Eloxieren - thermische Spritzverfahren - Niederdruck-Plasmaverfahren - plasmalose thermische Verfahren - Beanspruchung technischer Oberflächen

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- A. Knauscher; "Oberflächenveredeln und Plattinieren von Metallen"; Verlag für Grundstoffindustrie Leipzig 1973 - Conrad/Krampitz; "Elektrotechnologie"; Verlag Technik Berlin 1983 - Simon/Thoma; "Angewandte Oberflächentechnik für metallische Werkstoffe, Eignung-Verfahren-Prüfung; Carl Hanser Verlag, München, Wien 1989 - Steffens/Brandl: Moderne Beschichtungsverfahren, DGM Informationsgesellschaft Verlag, Dortmund, 1992 - Müller: Praktische Oberflächentechnik (4. Aufl.), Fr. Viehweg Verlagsgesellschaft Braunschweig, 2003

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 1

Kunststoffe und Verbundwerkstoffe

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6697 Prüfungsnummer:2300320

Fachverantwortlich: Prof. Dr. Michael Koch

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschine	nbau						Fachgebiet:	2353

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	5		5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	V	S	Р	٧	S	Р	V	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden verfügen über Kenntnisse zu den Grundlagen, Eigenschaften und Herstellung von Kunststoffen und Verbundwerkstoffen. Sie kennen die verschiedenen Prozesse zur Be- und Verarbeitung sowie zum Recycling und sind in der Lage, eine werkstoffgerechte Einordnung und Auswahl vorzunehmen und auf ingenieurwissenschaftliche Anwendungen zu übertragen.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

Kunststoffe - Chemie der Kunststoffe - Eigenschaften und Werkstoffkunde - Kunststoffverarbeitungsverfahren - Berechnungsgrundlagen Verrbeitungsprozesse - Einsatz und Anwendung von Kunststoffen - Umweltaspekte und Recycling Verbundwerkstoffe - Aufbau und Eigenschaften - Herstellung und Verarbeitung - Werkstoffberechnungsmodelle - Konstruktion und Auslegung von Faserverbundbauteilen

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Michael, W. et.al.: Technologie der Kunststoffe, Carl Hanser Verlag, München 2008 - Menges, G., Haberstroh, E., Michaeli, W., Schmachtenberg, E.: Werkstoffkunde Kunststoffe, Carl Hanser Verlag, München 2002 - Ehrenstein, G.W.: Polymer Werkstoffe, Carl Hanser Verlag, München 1999 - Neitzel, M., Mitschang, P.: Handbuch der Verbundwerkstoffe, Carl Hanser Verlag, München 2004 - Ehrenstein, G. W.: Faserverbund-Kunststoffe. Werkstoffe, Carl Hanser Verlag - Michaeli, W., Wegener, M.:Einführung in die Technologie der Faserverbundwerkstoffe, Carl Hanser Verlag, München - Flemming, M., Roth, S., Ziegmann, G.: Faserverbundbauweisen, - 4 Bände, Springer-Verlag

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Werkstofftechnik 2

Modulnummer6650

Modulverantwortlich: Prof. Dr. Edda Rädlein

Modulabschluss:

Lernergebnisse

- Das Modul eröffnet den Studierenden die Möglichkeit, über die Wahl von Veranstaltungen im Umfang von 8 SWS aus dem angebotenen Spektrum sich entsprechend der persönlichen Neigungen zu spezialisieren und weiter fachlich zu vertiefen.
- Damit besitzen die Studierenden in der ausgewählten Vertiefung umfassende, über die im Modul "Werkstofftechnik I" hinausgehende Kenntnisse. Sie sind weiterhin in der Lage, diese vertieften Kenntnisse zur selbstständigen Lösung umfänglicher Aufgabenstellungen anzuwenden, die Lösungen zu bewerten und Alternativen vorzuschlagen. Zudem besitzen sie die notwendigen Kenntnisse, um die Ergebnisse umfassend darzustellen, öffentlich zu präsentieren und zu verteidigen.
- Bemerkungen: Die Prüfungen in den gewählten Vertiefungsfächern erfolgen mündlich gemeinsam mit den fachlich zugehörigen Pflichtfächern aus dem Modul "Werkstofftechnik I".

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

Modul: Werkstofftechnik 2

Bildgebende und analytische Verfahren

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6709 Prüfungsnummer:2100273

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik un	d Informationsted	chnik				Fachgebiet:	2172

	1	I.FS)		2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

Bewertung und Messung von Oberflächen vom technischem Bereich bis zur atomaren Auflösung kennen. Es werden die Methoden Lichtmikroskopie, Elektronenmikroskopie und Rastersondenmikroskopie den Studenten vermittelt. Die Studenten sollen danach selbständig das passende Verfahren für ihre Anwendungen auswählen und anwenden können.

Vorkenntnisse

Grundlagen Werkstoffwissenschaft, Kristallographie, Mathematik, Physik

Inhalt

Dozent: Dr. Thomas Kups

1. Einleitung: Bereiche, wo bildgebende und analytischeVerfahren notwendig sind, Einteilung der Verfahren der Werkstoffdiagnose 2. Lichtmikroskopie: Auflösungsvermögen des Auges, scharfes Sehen, Abbe'sche Gleichung, Förderliche und leere Vergrößerungen, Hellfeld- und Dunkelfeldmikroskopie 3. Materialographie: Wiederholung Gefügesichtbarmachung, Verfahren zur Bestimmung der Kontrastverbesserung, Verfahren zur Bestimmung der Kornverteilung, Anwendungsbeispiele 4. Rastersondenmikroskopie: Abbildungsprinzipien für atomare Auflösungen, Aufbau und Arbeitsweise Rastertunnelmikroskop, Aufbau und Arbeitsweise Rasterkraftmikroskop 5. Elektronenmikroskopie: Erzeugung hoch fokussierter Elektronenstrahlen (Kathoden, Linsen), Detektoren, Wechselwirkungskette (Sekundär, Rückstreuelektronen, Augerelektronen ...), Bildaufbau im Elektronenmikroskop - Rasterelektronenmikroskopie - Verfahren, Sekundärelektronenverfahren, Rückstreuelektronenverfahren 6. Analytische Elektronenmikroskopie - Elektronenstrahl induzierte Röntgenstrahlung - Detektionsmöglichkeiten (EDX, WDX) - Detektoraufbau - gualitative und guantitative EDX 7.

Zusammenfassung: Vergleich der Verfahren bezüglich Auflösung, Quantifizierbarkeit, Kosten, Probenanforderung

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Hunger, H.J.: Werkstoffanalytische Verfahren: eine Auswahl; 1. Auflage, Deutscher Verlag für Grundstoffindustrie 1995 eine Auswahl; 1. Auflage, Deutscher Verlag für Grundstoffindustrie 1995 - Reimer, I.: Scanning Electron Microscopy; 2. Auflage, Springer Verlag 2008 - Reimer, L; Pfefferkorn, G.: Raster- Elektronenmikroskopie; 2. Auflage, Springer Verlag 1977 -Schmidt, P. F.: Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse, expert-Verlag 1994 - Slayter, E.: Light and electron microscopy, Cambridge Univ. Press 1992 - Schäfer; Terlecki: Halbleiterprüfung, Hüthig- Verlag 1986 - Eggert, F.: Standardfreie Elektronenstrahl-Mikroanalyse (mit dem EDX im Rasterelektronenmikroskop): Ein Handbuch für die Praxis (Taschenbuch); Books on Demand Gmbh; Auflage: 1 (Februar 2005); ISBN: 978-3833425998 - Reimer, I.: Scanning Electron Microscopy; 2. Auflage, Springer Verlag 1998 - Reimer, L; Pfefferkorn, G.: Raster- Elektronenmikroskopie; 2. Auflage,

Springer Verlag 1977 - Schmidt, P. F.: Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse, expert-Verlag 1994 - Slayter, E.: Light and electron microscopy, Cambridge Univ. Press 1992 - Riesebeck; Beyer, H.: Handbuch der Mikroskopie, Verlag Technik Berlin 1988 - Schäfer; Terlecki: Halbleiterprüfung, Hüthig-Verlag 1986

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstofftechnik 2

Eigenschaften galvanischer Schichten

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6703 Prüfungsnummer:2100268

Fachverantwortlich: Prof. Dr. Andreas Bund

Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2175	Leistungspunkte:	3	Workload (h): 90	0	Anteil Selbststudium (h):	56	SWS:	3.0	
	Fakultät für Elektrote	echnil	k und Informationstechn	nik				Fachgebiet:	2175

	1	.FS	<u> </u>		2.FS	3		3.FS	3	4	l.FS	<u> </u>		5.FS	3	- 6	3.FS	3		7.FS	3
SWS nach	>	S	Р	٧	S	Р	V	S	Р	>	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, die Eigenschaften der beschichteten Werkstoffe zu bestimmen und die geeigneten Meßverfahren zielführend anzuwenden. - Die Studierenden kennen die Meß- und Prüfverfahren und sind in der Lage, die Ergebnisse zu bewerten und zu vergleichen. - Die Studierenden können Meß- und Prüfverfahren in den technologischen Prozess einordnen und die Qualitätssicherung garantieren.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

- Mechanische Eigenschaften - IS, Härte, Haftfestigkeit, Verschleiß, Lötbarkeit - Elektrische Eigenschaften - Magnetische Eigenschaften - Widerstandsmessung - Optische Eigenschaften, Glanz - Elektropolieren

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Bergmann, W.: Werkstofftechnik Teil 1: Grundlagen, Carl Hanser Verlag München Wien, 3. Auflage (2000) - Bergmann, W.: Werkstofftechnik Teil2: Werkstoffherstellung- Werkstoffverarbeitung- Werkstoffanwendung, Carl Hanser Verlag München Wien, 3. Auflage (2002) - Dettner, W., Elze, J.: Handbuch der Galvanotechnik, Carl Hanser Verlag München (1966) - Fischer, H.: Elektrolytische Abscheidung und Elektrokristallisation von Metallen, Springer Verlag Berlin- Göttingen- Heidelberg (1954) - Fischer, H., Hofmann, H., Spindler, J.: Werkstoffe in der Elektrotechnik, Carl Hanser Verlag München Wien, 4. Auflage (2000) - Fischer, K.-F., u.a.: Taschenbuch der Technischen Formeln, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 2. Auflage (1999) - Gräfen, H.: VDI Lexikon Werkstofftechnik, VDI Verlag Düsseldorf (1993) - Hamann, C. H., Vielstich, W.: Elektrochemie, Wiley-VCH (1998) - Heuberger, U., Pfund, A., Zielonka, A.: MSM 200-Entwicklung eines in-situ-Meßsystems zur Erfassung von inneren Spannungen in galvanisch und außenstromlos abgeschiedenen Schichten, Zeitschrift Galvanotechnik 91 (2000)5, S. 1236/40, Eugen G. Leuze Verlag Saulgau/Württ. - Hitzig, J., Jüttner, K., Lorenz, W. J., Paatsch, W.: ACImpedance Measurements on Corroded Porous Aluminum Oxide Films, J. Electrochem. Soc. 133 (1986) No.5, 887 - Jelinek, T. W. u.a.: Prüfung von funktionellen metallischen Schichten, Eugen G. Leuze Verlag Saulgau/Württ., 1. Auflage (1997) - Jehn, H. A. u.a.: Galvanische Schichten Abscheidung, Eigenschaften, Anwendungen, Meßmethoden, Qualitätssicherung, expert Verlag (1993), Ehringen bei Böblingen, Kontakt & Studium, Bd. 406 - Jordan, M.: Die galvanische Abscheidung von Zinn und Zinnlegierungen, Eugen G. Leuze Verlag Saulgau/Württ. (1993) - Junge, H.-D., Müller, G.: Lexikon Elektrotechnik, VCH Verlagsgesellschaft mbH Weinheim×New×York×Basel×Cambridge×Tokyo, 1. Auflage (1994) -Kanani, N.: Galvanotechnik, Grundlagen, Verfahren, Praxis; Carl Hanser Verlag München Wien, 1. Auflage (2000) - Kuchling, H.: Taschenbuch der Physik, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 16. Auflage (1999) - Merkel, M., Thomas, K.-H.: Taschenbuch der Werkstoffe, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 5. Auflage (2000) - Michalowsky u.a.: Magnet-Technik - Grundlagen und Anwendung, Fachbuchverlag Leipzig, Köln (1993) - Nitzsche, K.: Schichtmeßtechnik, Vogel-Fachbuchverlag Würzburg, 1.Auflage (1997) - Nohse, W.: Untersuchung galvanischer Bäder in der Hullzelle, Eugen G. Leuze Verlag, Saulgau/Württ., 4. Auflage - Schwister, K., u.a.: Taschenbuch der Chemie, Fachbuch Verlag Leipzig im Carl Hanser Verlag, 2. Auflage (1999) - Seidel, W.: Werkstofftechnik, Carl Hanser Verlag München Wien, 4. Auflage (2000) - Simon, H., Thoma, M.: Angewandte Oberflächentechnik für metallische Werkstoffe, Carl Hanser Verlag München Wien, 2. Auflage (1989) - Sotirova- Chakarova, G. u.a.: Innere Spannungen in galvanischen Überzügen Teil 1 und 2, Zeitschrift Galvanotechnik, Eugen G. Leuze Verlag 81(1990)6, S. 2004-2013 und 81(1990)7, S. 2358-2366 - Vetter, K.-J.: Elektrochemische Kinetik, Springer Verlag Heidelberg (1961) S. 180 – 184

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 2

Galvanotechnische Verfahren

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6705 Prüfungsnummer:2100269

Fachverantwortlich: Prof. Dr. Andreas Bund

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ι	und Informationstechnik				Fachgebiet:	2175

	1	I.FS	3	2	2.FS	3	,	3.FS	3		I.FS	3	į	5.FS	3	6	6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

- Die Studierenden sind in der Lage, Beschichtungsmetalle für funktionelle Eigenschaften der Werkstoffe auszuwählen. - Die Studierenden können Technologien zur Beschichtung entwickeln und die Zielfunktionen prüfen. - Die Studierenden kennen die Qualitätsstandards der Schichten und die Arbeitsschutzvorschriften. - Sie kennen den umweltschonenden Umgang mit den Behandlungslösungen und geeignete Entsorgungsverfahren.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

- Stromdichteverteilung, Streufähigkeit, Einebnung, Glanz; - Überspannungen, j- -Kurven, Polarisation; Stromdichte-Potential-Kurven - Passivität, Diffusionsgrenzstrom, Faradaysche Gesetze der Metalle - Abscheidungsverfahren Sn, Zn, Ag, Cu, Au, Fe, Ni, Rh, Pd, Pt; - Chromabscheidung, - Legierungsabscheidung; - Stromlose Kunststoffbeschichtung-Pulse-Verfahren, pulse-planting-Verfahren

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Nasser, Kanani; "Galvanotechnik"; Carl Hanser Verlag, München; Wien 2000; ISBN 3-446-21024-5 - Herrmann A. Jehn; "Galvanische Schichten"; expert Verlag 1999; ISBN 3-8169-1783-6 - A.F. Bogenschütz, U. George; "Galvanische Legierungsabscheidung und Analytik"; Leuze Verlag, 1982 - Dettner/Elze; "Handbuch der Galvanotechnik" Band I - III; Carl Hanser Verlag München, 1963 - Klaus J. Vetter; "Elektrochemische Kinetik" Springer Verlag Berlin-Göttingen-Heidelberg, 1961

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 2

Glas und Keramik in der Mikro- und Nanotechnik

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: deutsch Pflichtkennz.:Wahlpflichtfach Turnus:Wintersemester

Fachnummer: 6692 Prüfungsnummer:2300316

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte: 3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschinenba	u					Fachgebiet:	2351

	1	1.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	V	S	Р	٧	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

Ziel der Lehrveranstaltung ist das Erwerben von Kenntnissen zur Bewertung:

- von Gläsern und Keramiken hinsichtlich Mikro- und Nanostrukturierbarkeit sowie die technischen Prozessen der MNT
- · wichtiger Eigenschaften von Gläsern und Keramiken für Mikro- und Nanosysteme
- der Unterschied zwischen Oberflächen- und Volumeneigenschaften
- Grundlegender Mikro- und Nanostrukturierungstechniken für Gläser und Keramiken
- spezieller Eigenschaften mikro-und nanostrukturierten Bauteilen auf Basis ausgewählter Applikationsbeispielen

Vorkenntnisse

Grundlagen der WSW, Physik, Chemie, Fertigungstechnik

Inhalt

Aufbau und Verbindungstechnik

- Technische und stoffliche Voraussetzungen (Struktur-Eigenschaftsbeziehungen in Gläsern und Keramiken, Übersicht über Strukturierungstechniken, Methoden zur Beeinflussung von Eigenschaftsprofilen)
 - Substratmaterialien (Dünnglas, HTCC, LTCC: Werkstoffe, Eigenschaften und Herstellung)
 - Kieselglas für thermische und optische Anwendungen (Struktur, Herstellung über Schmelzprozess,

Gasphasenabscheidung, SolGel-Technik)

- Lithographiebasierte Strukturierungstechniken für Glas (Beschichtungen, Fotolithographie, nasschemische und Trockenätzprozesse)
 - Fotostrukturierbare Gläser (Werkstoffe, Eigenschaften, Herstellung und Prozessierung, Anwendungen)
 - Mechanische Verfahren zur geordneten Mikrostrukturierung von Glas (Schleifen, Polieren, US-Bohren, Sandstrahlen)
- Ausgewählte Techniken der Laserbearbeitung von Glas (Wechselwirkung Material-Strahlung, Techniken zur Markierung, zum Materialabtrag)

Medienformen

Tafelbild, Anschauungsmuster, PowerPoint, Versuchsstände Labor

Literatur

• Gerlach; G., Dötzel: Grundlagen der Mikrosystemtechnik. Carl Hanser-Verlag 1997

- Menz, W.; Bley, P.: Mikrosystemtechnik für Ingenieure. VHC 1993
- Petzold, A.: Anorganisch nichtmetallische Werkstoffe. Deutscher Verlag für Grundstoffindustrie, Leipzig, 1986
- Scholze, H.: Glas. 3. neu bearb. Auflage, Springer-Verlag 1988
- Mitschke, F.: Glasfasern, Elsevier, 2005
- Hülsenberg, D. e.a: Microstructuring of Glasses. Springer 2008

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Master Werkstoffwissenschaft 2013

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 2

Oxidische magnetische Werkstoffe

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Wahlpflichtfach Turnus:Wintersemester

Fachnummer: 6694 Prüfungsnummer:2300317

Fachverantwortlich: Dr. Bernd Halbedel

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Maschin	enbau						Fachgebiet:	2351

	1	I.FS	;	2	2.FS	3	;	3.FS	3	4	1.FS)	į	5.FS	3		3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden lernen die Sturktur- und Eigenschaftsbeziehungen für den Magnetismus kennen, spezielle oxidische magnetische Werkstoffe herzustellen und die magnetischen Kennwerte messtechnisch zu charakterisieren. Damit können sie die Magnetismusarten systematisieren sowie Struktur (Feinstruktur und Gefüge) und magnetische Eigenschaften zuordnen und sind in der Lage, magnetische Werkstoffe zu modifizieren und anwendungsgerecht einzusetzen.

Vorkenntnisse

Physik, Chemie, Mathematik, Werkstoffwissenschaft I und II, Werkstofftechnik I, Messtechnik

Inhalt

+ Kontinuumstheoretische und atomistische Deutung des Magnetismus, + Klassifizierung magnetischer Werkstoffe + Oxidische magnetische Werkstoffe + Struktur- und Eigenschaftsbeziehungen + Herstellung von Hart- und Weichferriten (Pulver und Volumenmaterialien) + Messtechnische Erfassung magnetischer Kennwerte + Innovative Applikationen in Elektrotechnik und Maschinenbau

Medienformen

PowerPoint-Präsentation/ Tafel/ PC-Demos Handouts

Literatur

C. Heck: Magnetische Werkstoffe und ihre technische Anwendung. Alfred Hüthig Verlag Heidelberg 1975 L. Michalowsky: Magnettechnik: Grundlagen und Anwendungen. Fachbuchverlag Leipzig - Köln 1993 L. Michalowsky: Neue Keramische Werkstoffe. Deutscher Verlag für Grundstoffindustrie 1994

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstofftechnik 2

Schichtmesstechnik und physikalische Verfahren

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 6701 Prüfungsnummer:2100274

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Elektroted	chnik	und Informationstechnik				Fachgebiet:	2172

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)	Ę	5.FS	3	(6.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, Schichtdickenmessverfahren und Verfahren für Zustandsparamter zu erklären und für neue Anwendungen zu synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

Vorkenntnisse

Module Werkstoffwissenschaft 1-2

Inhalt

1. Schichtdickenmessverfahren 1.1. Begriffsbestimmungen "Schicht" und "Schichtdicke" 1.2. Massebestimmung 1.3. Optische Verfahren 1.4. Elektrische Verfahren 1.5. Magnetische Verfahren 1.6. Pneumatische Verfahren 1.7. Radiometrische Verfahren 1.8. Thermische Verfahren 2. Messverfahren für innere mechanische Spannungen 2.1. Mechanische Verfahren 2.2. Akustische Verfahren 2.3. Optische Prüfverfahren 2.4. Röntgen- und Elektronenbeugungsverfahren 2.5. Dehnmessstreifen 3. Rauheitsmessungen 3.1. Optische Verfahren 3.2. Mechanische Verfahren 3.3. Pneumatische Verfahren 4. Haftfestigkeitsprüfverfahren 4.1. Technologische Prüfverfahren 4.2. Mechanische Messverfahren 4.3. Zerstörungsfreie Prüfverfahren 5. Glanzbestimmung 6. Härtemessung an Schichten 6.1. Eindringkörpermethoden 6.2. Ritzhärteprüfmethoden 6.3. Zerstörungsfreie Härteprüfverfahren 7. Porositätsbestimmung 7.1. Chemische und elektrochemische Verfahren 7.2. Physikalische Verfahren 8. Dichtebestimmung 8.1. Begriffsbestimmung 8.2. Messverfahren 9. Temperaturmessung 9.1 Temperaturskalen 9.2. Berührungsthermometer 9.3. Strahlungsthermometer 9.4. Probleme der Temperaturbestimmung 10. Druckmessung

Medienformen

Vorlesungsskript Tafel / Whiteboard Computer Demo

Literatur

- Nitzsche, H.: Schichtmeßtechnik, Würzburg: Vogel, 1997 - Herrmann, D.: Schichtdickenmessung, München, Wien: Oldenbourg, 1993 - Moderne Beschichtungsverfahren .- 2. neubearb. Aufl. (Herausg. H.-D. Steffens, J. Wilden). Oberursel: DGM Informationsgesellschaft, 1996 - Werkstoffprüfung (Herausg.: H. Blumenauer), 6. Aufl. Stuttgart: Deutscher Verlag für Grundstoffindustrie, 1994

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Modul: Werkstofftechnik 2

Technologie des thermischen Plasmas

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6706 Prüfungsnummer:2100270

Fachverantwortlich: Dr. Birger Dzur

Leistungspunkte:	3	Workload (h): 90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echn	ik und Informationstechnik				Fachgebiet:	2173

	1	I.FS	;	2	2.FS	3	;	3.FS	3		I.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

Die Studierenden kennen die physikalischen Grundlagen der Plasmagenerierung und die Eigenschaften thermischer Plasmen. Sie sind mit den Grundlagen und den beeinflussenden Parametern des thermischen Spritzprozesses sowie mit der Technologie ausgewählter Spritzverfahren vertraut. Sie sind in der Lage Werkstoffe und thermische Spritzverfahren für gegebene Aufgabenstellungen auszuwählen.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

Grundlagen des Plasmas: Erzeugung, Eigenschaften technische Plasmaerzeuger - Aufbau und Wirkungsweise: DC-Plasmaerzeuger, IC-Plasmaerzeuger Grundlagen des Plasmaspritzens: Grundlagen der Wärmeübertragung, thermische Wechselwirkungen des Plasmastrahls mit Partikeln und Oberflächen, Vorgänge bei der Schichtbildung Plasmaspritzverfahren (Technologie und Anwendungsbeispiele): Pulversynthese und -modifikation, metallische Schichten, keramische Schichten, Cermets andere Anwendungen thermischer Plasmen: Erzeugung von Nanopartikeln und Schichten, Diamantsynthese, Beleuchtungstechnik, Plasmachemie und Umwelttechnik

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- M. I. Boulos, P. Fauchais, E. Pfender: Thermal Plasmas - Fundamentals and Applications, Vol. 1; Plenum Press, New York/London, 1994 - O. P. Solonenko, M. F. Zhukov: Thermal Plasmas and New Materials Technology, Vol. 1 and 2; Cambridge Interscience Publishing 1995

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstofftechnik 2

Vakuum-Plasmatechnik

Fachabschluss: Studienleistung alternativ 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6707 Prüfungsnummer:2100271

Fachverantwortlich: Dr. Birger Dzur

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Elektrot	echni	k und Informationstechnik				Fachgebiet:	2173

	1	I.FS	;	2	2.FS	3	;	3.FS	3		I.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden kennen die Besonderheiten von nichtthermischen Gasentladungen im Vakuum, Möglichkeiten der Generierung derartiger Plasmen und ausgewählte Verfahren der Nierdertemperatur-Plasmatechnik, insbesondere der Dünnschichttechnik. Sie sind in der Lage, die Anwendbarkeit dieser Verfahren auf eine gegebene Aufgabenstellung zu beurteilen bzw. geeignete technologische Konzepte auszuwählen.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

Vakuumerzeugung und Messung Besonderheiten von Gasentladungen im Niederdruck Niederdruckentladungen Glimmentladung kapazitiv/induktiv gekoppelte HF-Entladungen Mikrowellenentladungen Anwendungen der Glimmentladung Plasmadiffusionsverfahren PA-PVD und -CVD Beleuchtungstechnik Anwendungen von HF- und W-Plasmen Sputtern, Ätzen, Beschichten Dielektrisch behinderte Entladungen (Barriereentladungen) Oberflächenmodifikation Ozonerzeugung Kopierer und Laserdrucker Plasma-TV-Technologie Ionenstrahlverfahren Erzeugung und Wirkung auf Oberflächen Aktivieren, Sputtern, Beschichten, Implantieren Satellitentriebwerke

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Hippler et al: Low Temperature Plasma Physics-Fundamental Aspects and Applications; Wiley VCH Verlag, 2001 - Frey: Dünnschichttechnologie; VDI-Verlag Düsseldorf, 1987 - Dresvin et al: Physics and Technology of Low-Temperature Plasmas; lowa State University Press/AMES, 1977

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Modul: Werkstofftechnik 2

Verbundwerkstoffe

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Wahlpflichtfach Turnus: Wintersemester

Fachnummer: 6708 Prüfungsnummer:2300318

Fachverantwortlich: Dr. Günther Lange

Leistungspunkte: 3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Maschinenbau						Fachgebiet:	2352

	1	I.FS	5	2	2.FS	3	,	3.FS	3	4	l.FS	;	į	5.FS	3	6	3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	А	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage die Eigenschaften und Anwendungen der behandelten Verbundwerkstoffe sowie ihre Verarbeitung zu verstehen und dadurch auch zu beschreiben. Dadurch werden die Studierenden in die Lage versetzt ingenieurwissenschaftlich relevante Anwendungen auf Basis der behandelten Verbundwerkstoffe und Bauweisen grundlegend zu analysieren, um dann passende Lösungsmöglichkeiten aufzuzeigen und zu erarbeiten.

Vorkenntnisse

Bachelor in MB, FZT oder Werkstoffwissenschaften

Inhalt

- Werkstoffe und Bauweisen
- Leichtbauweisen und -Arten
- Metal Matrix Composites (MMC), Herstellung, Eigenschaften, Anwendung
- MMC mit Magnesium
- CMC, Herstellung, Eigenschaften, Anwendung (z. B. Bremsscheiben)
- Metallpulver, Herstellung, Eigenschaften, Verarbeitung, Anwendung

Medienformen

Power Point, Tafel

Vorlesungsbegleitende Unterlagen werden zum Download bereit gestellt.

Literatur

- Pulvermetallurgie: Technologien und Werkstoffe; W. Schatt, K.-P. Wieters, B. Kieback
- 2. Auflage, ISBN 10-3-540-23652-X, Springer Verlag Berlin Heidelberg New York, 2007
- Leichtbau: Elemente und Konstruktion; J. Wiedemann, 3. Auflage, ISBN 13-978-3-540-33656-7 Berlin Heidelberg New York; 2007
- Leichtbau-Konstruktion: Berechnung und Gestaltung; B. Klein, 8. Auflage, ISBN 978-3-8348-0701-4 Vieweg+Teubner, GWV Fachverlage Gmbh, Wiesbaden, 2009
- Repetitorium Leichtbau; F. G. Rammerstorfer, ISBN 3-486-22398-4, R. Oldenbourg Verlag Wien München, 1992
- Werkstoffe Aufbau und Eigenschaften; E. Hornbogen, G. Eggeler, E. Wernder, 9. Auflage, Springer, 2008
- Werkstoffwissenschaft; W. Schatt, H. Worch; 9. Auflage, Wiley-VCH, 2003
- Neuere Literatur wird in der Vorlesung bekannt gegeben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstofftechnik 2

Werkstoffe der Mikro- und Nanotechnologie

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6956 Prüfungsnummer:2100180

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h):	90	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik u	und Informationsted	hnik				Fachgebiet:	2172

	1	I.FS	;	2	2.FS	3		3.FS	3	4	I.FS	3	!	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	1						

Lernergebnisse / Kompetenzen

Students are able to explain the mechanical and functional properties of materials in micro- and nanotechnology starting from the microscopic and submicroscopic structure. The can analyze changes in the properties and judge them for their applicability in new applications and can develop strategies for their implementation.

Students know the various materials in micro- and nanotechnology and in sensorics. They gain knowledge about the basic materials properties, their application and the fabrication of such materials.

The students know the basics of fabrication of highly integrated circuits, the preparation of microsystems and sensors and how the materials have to be selected.

Various methods and steps, materials and their control and analysis are treated for selected applications.

In the seminar, the students gain deeper knowledge for selected examples, and they learn how to search information and how to present this in a talk and to discuss the problems.

Die Studierenden sind in der Lage, mechanische und funktionale Eigenschaften der Werkstoffe im Mikro- und Nanometerbereich aus ihren mikroskopischen und submikroskopischen Aufbauprinzipien zu erklären und Eigenschaftsveränderungen gezielt zu analysieren, zu bewerten und für neue Anwendungen zu synthetisieren. Das Fach

Vorkenntnisse

Knowledge in materials, physics, and chemistry on bachelor level.

vermittelt Fach-, Methoden- und Systemkompetenz.

Gute Grundkennte in Werkstoffe, Physik, Chemie, Elektrotechnik, Mechanik auf Bachelorniveau

Inhalt

Materials for micro- and nanotechnology

- 1. Introduction
- 2. Thin films, deposition, transport mechanisms in thin films
- 2.1. basic processes during deposition
- 2.2. Epitaxy / Superlattices
- 2.3. Diffusion
- 2.4. Electromigration
- 2.5. functional properties of thin films
- 3. Mesoscopic Materials
- 3.1. Definition
- 3.2. Quantum interference
- 3.3. Applications
- 4. liquid crystals

- 5. carbon materials
- 6. Gradient materials
- 7. Properties and treatment of materials in basic technologies of micro- and nanotechnology
- 7.1. Lithography
- 7.2. Anisotropic etching
- 7.3. coating
- 7.4. LIGA-method
- 7.5. materials for packaging technology
- 8. materials for sensorics
- 9. materials for plasmonics
- 10. materials for energy conversion and storage

Werkstoffe der Mikro- und Nanotechnologie

- 1. Einführung
- 2. Dünnschichtzustand, Schichtbildung und Transportvorgänge in dünnen Schichten
- 2.1. Elementarprozesse beim Schichtaufbau
- 2.2. Epitaxie / Supergitter
- 2.3. Diffusion
- 2.4. Elektromigration
- 2.5. Spezielle funktionale Eigenschaften dünner Schichten
- 3. Werkstoffe im mesoskopischen Zustand
- 3.1. Definition
- 3.2. Quanteninterferenz
- 3.3. Anwendungen
- 4. Flüssigkristalle
- 4.1. Definition
- 4.2. Strukturen thermotroper Flüssigkristalle
- 4.3. Dynamische Streuung und Anwendungen
- 5. Kohlenstoff-Werkstoffe
- 5.1. Modifikationen des Kohlenstoff
- 5.2. Interkalation des Graphit
- 5.3. Fullerene
- 5.4. Nanotubes
- 6. Gradientenwerkstoffe
- 6.1. Gradierung durch Diffusion
- 6.2. Gradierung durch Ionenimplantation
- 7. Verhalten und Behandlung der Werkstoffe in den Basistechnologien der Mikro- und Nanotechnik
- 7.1. Lithografie
- 7.2. Anisotropes Ätzen
- 7.3. Beschichten
- 7.4. LIGA-Technik
- 7.5. Aufbau- und Verbindungstechnik
- Die Vorlesung wird durch ein Praktikum begleitet.

Medienformen

Scriptum, powerpoint, computer demos, animations, specialized literature

Literatur

Specialized literature will be given in the course.

- 1. Introduction to nanoscience and nanomaterials. Agrawal. World Scientific.
- 2. Materials for microelectronics. Elsevier.
- 3. Werkstoffwissenschaft / W. Schatt; H. Worch / Wiley- VCH Verlag, 2003
- 4. Menz, W.; Mohr, J.; Paul, O.: Mikrosystemtechnik für Ingenieure. Wiley-VCH, 2005
- 5. Grundlagen der Mikrosystemtechnik: Lehr- und Fachbuch / G. Gerlach; W. Dötzel / Hanser, 1997
- 6. Sensorik: Handbuch für Praxis und Wissenschaft / H.- R. Tränkler; E. Obermeier / Springer, 1998
- 7. Mikrosytemtechnik / W.-J. Fischer / Würzburg: Vogel, 2000
- 8. Schaumburg, H.: Sensoren / H. Schaumburg / Teubner, 1992
- 9. Frühauf, J.: Werkstoffe der Mikrotechnik; Hanser Verlag 2005

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Master Micro- and Nanotechnologies 2016

Bachelor Werkstoffwissenschaft 2009

Master Mikro- und Nanotechnologien 2016

Master Werkstoffwissenschaft 2011

Master Werkstoffwissenschaft 2010

Master Miniaturisierte Biotechnologie 2009

Master Biotechnische Chemie 2016

Master Werkstoffwissenschaft 2013

Modul: Werkstofftechnik 2

Werkstoffe und Verfahren für die Sensorik

Fachabschluss: Studienleistung mündlich 30 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Wintersemester

Fachnummer: 6711 Prüfungsnummer:2100272

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	3	Workload (h): 90)	Anteil Selbststudium (h):	56	SWS:	3.0	
Fakultät für Elektrot	echnik ι	und Informationstechni	ik				Fachgebiet:	2172

	1	I.FS	3	2	2.FS	3		3.FS	3	4	1.FS	3	į	5.FS	3	- (3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р	V	S	Р
Fachsemester													2	1	0						

Lernergebnisse / Kompetenzen

Die Studierenden lernen die Anwendung der verschiedenen werkstofftechnischen Effekte in Anwendung als Sensoren kennen. Sie sollen danach die Auswahl geeigneter Sensoren für eine bestimmte Aufgabe selbständig durchführen können.

Vorkenntnisse

Module Werksoffwissenschaft 1-2 Physik 1-2 Mathematik 1-3

Inhalt

Einleitung - Aufgaben der Sensorik - Welche Größen können/sollen gemessen werden - Grundlegende Wechselwirkung Werkstoffe für Sensoren - Mechanisch-elektrische Wandlung - Thermisch-elektrische Wandlung - Magnetisch-elektrische Wandlung - Optisch-elektrische Wandlung - Akusto-elektrische Wandlung - Chemo-elektrische Wandlung Ausgewählte Herstellungsverfahren - Strukturübertragungsverfahren - Strukturierungsverfahren - Mikromechanische Systemintegration Verfahren der Sensorik für - Erfassung von Strecken, Flächen, Volumina - Erfassung von Massen - Erfassung von Druck - Erfassung von Temperatur - Gaszusammensetzung - Flüssigkeitszusammensetzung - Festkörperzusammensetzung Umfeld beim Einsatz - Querempfindlichkeit - Systemintegration - Intelligente Sensoren

Medienformen

Vorlesungsskript Tafel / Whiteboard Folien Computer Demo

Literatur

- Hesse, S; Schnell, G.: Sensoren für die Prozess- und Fabrikautomation. Funktion Ausführung Anwendung, Vieweg 2004
- Schanz, W.: Sensoren Fühler der Messtechnik. Ein Handbuch der Messwertaufnahme für den Praktiker, Hütig 2004 Cassing, W.: Elektromagnetische Wandler und Sensoren, Expert Verlag 2002

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Werkstofftechnik 3

Modulnummer6654

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden sind in der Lage, eine fachlich anspruchsvolle Aufgabe im Team bzw. selbstständig zu bearbeiten, die zur Bearbeitung erforderlichen Ressourcen zu definieren, Lösungswege und -alternativen darzustellen, Einschränkungen und Unwägbarkeiten aufzuzeigen und die Ergebnisse vor Publikum zu präsentieren.

Vorraussetzungen für die Teilnahme

Grundlagen der Werkstoffwissenschaft

Detailangaben zum Abschluss

Schriftliche Projektarbeit und mündliche Präsentation.

Modul: Werkstofftechnik 3

Projekt mit Seminar

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 6652 Prüfungsnummer:2100266

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 4 Workload (h): 120 Anteil Selbststudium (h): 98 SWS: 2.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 217

	1	I.FS	3	2	2.FS	<u>} </u>		3.FS	3		I.FS	3		5.FS	3	(3.FS	<u>`</u>	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	>	S	Р	>	S	Р	>	S	Р	V	S	Р
Fachsemester																0	2	0			

Lernergebnisse / Kompetenzen

Die Studierenden können eine Thematik fachübergreifend bearbeiten. Sie sind in der Lage, ein Team zu organisieren, die Arbeit in einer vorgegebenen Zeit zu einem Ergebnis zu bringen und vor Publikum zu präsentieren.

Vorkenntnisse

erfolgreicher Abschluss der vorangehenden Lehrveranstaltungen

Inhalt

In der Projektarbeit werden den Studierenden die grundlagenorientierten Einblicke in die Konzipierung, Leitung und Bearbeitung eines Projektes gegeben, die nachfolgend in der interdisziplinären Projektarbeit angewendet werden sollen. Die Themen für die Projekte kommen aus aktuellen Forschungsthemen der an der Ausbildung beteiligten Fachgebiete. Die Ergebnisse der Projektarbeit sind in einem Bericht zu dokumentieren und in einem Kolloquium zu präsentieren.

Medienformen

• Folien • Computer Demo

Literatur

Schrifttum wird entsprechend der Thematik von den betreuenden Fachgebieten gestellt. Die Literaturrecherche gehört zu den Projektaufgaben.

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Recht

Modulnummer5330

Modulverantwortlich: Prof. Dr. Frank Fechner

Modulabschluss:

Lernergebnisse

Die Studierenden verstehen die Grundlagen des Rechts, dessen Aufgaben, Wirkungsweise und Grenzen. Sie sind in der Lage, die verschiedenen Rechtsgebiete voneinander abzugrenzen sowie das Recht der obersten Staatsorgane und die Staatsprinzipien sowie die Methodik des deutschen Rechts anzuwenden. Die Studierenden wenden grundlegende Begriffe des Privatrechts/Zivilrechts sicher an. Sie kennen die Rechtsgrundlagen des privaten Rechts. Sie können die rechtlichen Problemschwerpunkte strukturieren und mit Hilfe juristischer Auslegungsmethoden lösen.

Vorraussetzungen für die Teilnahme

keine Voraussetzung

Detailangaben zum Abschluss

Modul: Recht

Einführung in das Recht

Fachabschluss: Studienleistung schriftlich 90 min Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 551 Prüfungsnummer:2500009

Fachverantwortlich: Prof. Dr. Frank Fechner

Leistungspunkte:	2	Workload (h): 60	Anteil Selbststudium (h):	26	SWS:	2.0	
Fakultät für Wirtsch	aftswi	ssenschaften und Medien				Fachgebiet:	2562

	1	I.FS)	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3	-	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	٧	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester				2	0	0															

Lernergebnisse / Kompetenzen

Die Studierenden werden befähigt, die Grundlagen des Rechts, dessen Aufgaben, Wirkungsweise und Grenzen (begriffliches Wissen) zu verstehen. Sie sollen nach dem Besuch der Veranstaltung in der Lage sein, die verschiedenen Rechtsgebiete voneinander abzugrenzen sowie das Recht der obersten Staatsorgane und die Staatsprinzipien (begriffliches Wissen) sowie die Methodik des deutschen Rechts (verfahrensorientiertes Wissen) anzuwenden. Letztlich lernen sie Teilbereiche des Zivilrechts, Verwaltungsrechts und Europarechts kennen (Faktenwissen). Hierdurch werden sie in die Lage versetzt, Erfolgsaussichten von Rechtsstreitigkeiten grob einzuschätzen und sich mit Juristen auf fachlicher Ebene austauschen zu können.

Vorkenntnisse

keine

Inhalt

- A. Hinweise zu Unterlagen und Rechtstexten
- B. Einführung
- I. Zur Bedeutung rechtlicher Grundlagenkenntnisse
- II. Hilfsmittel
- III. Grundlagen und Methoden wissenschaftlichen Arbeitens
- IV. Aufgaben, Wirkungsweise und Grenzen des Rechts
- V. Methoden des Rechts
- C. Staatsprinzipien
- I. Überblick
- II. Die Staatsprinzipien im Einzelnen
- D. Gesetzgebungskompetenzen
- E. Oberste Staatsorgane
- I. Bundestag
- II. Budesrat
- III. Bundesregierung
- IV. Bundespräsident
- F. Grundrechte
- I. Bedeutung und Arten von Grundrechten
- II. Anwendungsbereich der Grundrechte
- III. Grundrechtsadressaten
- IV. Drittwirkung von Grundrechten

- G. Überblick: Verwaltungsrecht
- H. Überblick: Recht der Europäischen Union
- I. Grundlagen
- II. Primär- und Sekundärrecht
- III. Die EU-Organe im Überblick
- J. Grundlagen des BGB
- I. Überblick über die "Bücher" des BGB
- II. Grundlagen des Vertragsschlusses/ Allgemeiner Teil des BGB
- III. Hinweise zum Schuldrecht Allgemeiner Teil
- IV. Hinweise zum Schuldrecht Besonderer Teil
- V. Hinweise zum Sachrecht/ Familienrecht/ Erbrecht

Medienformen

vorlesungsbegleitende Skripte

Literatur

Degenhart, Christoph: Staatsrecht 1. Staatsorganisationsrecht, 32. Aufl. 2016

Detterbeck, Steffen: Öffentliches Recht: Staatsrecht, Verwaltungsrecht, Europarecht mit Übungsfällen, 10. Aufl. 2015

Haug, Volker: Staats- und Verwaltungsrecht: Fallbearbeitung, Übersichten, Schemata, 8. Aufl. 2013

Jung, Jost: BGB Allgemeiner Teil. Der Allgemeine Teil des BGB, 5. Aufl. 2016

Katz, Alfred: Grundkurs im Öffentlichen Recht, 18. Aufl. 2010

Maurer, Hartmut: Staatsrecht I: Grundlagen, Verfassungsorgane, Staatsfunktionen, 7. Aufl. 2016 Sodan, Helge/ Ziekow, Jan: Grundkurs Öffentliches Recht: Staats- und Verwaltungsrecht, 7. Aufl. 2016

Zippelius, Reinhold: Einführung in das Recht, 6. Aufl. 2011

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2014

Bachelor Wirtschaftsinformatik 2010

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013 Vertiefung WL

Bachelor Wirtschaftsinformatik 2011

Master Allgemeine Betriebswirtschaftslehre 2009

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Angewandte Medienwissenschaft 2011

Bachelor Medientechnologie 2008

Bachelor Wirtschaftsinformatik 2015

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Medienwirtschaft 2009

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Medienwirtschaft 2015

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013 Vertiefung WL

Bachelor Medienwirtschaft 2013

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung MB

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008 Vertiefung WL

Master Allgemeine Betriebswirtschaftslehre 2011

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2012

Bachelor Angewandte Medien- und Kommunikationswissenschaft 2013

Master Allgemeine Betriebswirtschaftslehre 2013

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Angewandte Medienwissenschaft 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Master Allgemeine Betriebswirtschaftslehre 2010

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Wirtschaftsingenieurwesen 2013 Vertiefung ET

Master Biotechnische Chemie 2016

Master Technische Physik 2013

Bachelor Angewandte Medienwissenschaft 2008

Bachelor Medienwirtschaft 2011

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008 Vertiefung WL

Bachelor Informatik 2010

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2015 Vertiefung ET

Bachelor Wirtschaftsinformatik 2013

Modul: Wirtschaft

Modulnummer7585

Modulverantwortlich: Prof. Dr. Katrin Haußmann

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Studierenden lernen die grundsätzlichen betriebswirtschaftlichen Sachverhalte und Zusammenhänge kennen und sind in der Lage daraus Konsequenzen für das unternehmerische Handeln abzuleiten. Die Studierenden kennen die grundsätzliche Aufbaustruktur eines Unternehmens und deren organisatorische Abläufe. Die Studierenden haben sich Wissen über die gängigen Gesellschaftsformen und den damit verbundenen wichtigen Konsequenzen wie Haftung und Kapitalstammeinlagen für die Unternehmensgründung angeeignet. Die Studierenden beherrschen Kalkulationsmodelle (Deckungsbeitrag, Breakeven-Point, ...) und kennen die Grundzüge des Marketings. In der Vorlesung wird hauptsächlich Fach- und Methodenkompetenz vermittelt.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Modul: Wirtschaft

Grundlagen der BWL 1

Fachabschluss: Prüfungsleistung schriftlich 60 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: Wintersemester

Fachnummer: 488 Prüfungsnummer:2500002

Fachverantwortlich: Prof. Dr. Rainer Souren

Leistungspunkte:	2	Workload (h): 60)	Anteil Selbststudium (h):	38	SWS:	2.0	
Fakultät für Wirtsch	aftswis	ssenschaften und Medie	en				Fachgebiet:	2529

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS)		5.FS	3	(3.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	V	S	Р	>	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden erhalten im Rahmen der Veranstaltung einen Überblick über grundsätzliche betriebswirtschaftliche Zusammenhänge und sind in der Lage, daraus Konsequenzen für das unternehmerische Handeln abzuleiten. Den Studierenden sind die grundsätzlichen Sachverhalte hinsichtlich privatrechtlicher Rechtsformen und der für Unternehmen relevanten Steuern bekannt. Sie verstehen die betriebswirtschaftliche Abbildung des Unternehmens im handelsrechtlichen Jahresabschluss und können aus einem solchen Abschluss sachgerechte Schlüsse bezüglich der wirtschaftlichen Lage des Unternehmens ableiten. Sie wissen um die grundsätzlichen Möglichkeiten der betrieblichen Kapitalbeschaffung und die zentralen Aspekte des betrieblichen Finanzmanagements. Mittels Anwendung der einschlägigen etablierten Rechenverfahren sind sie in der Lage, Investitionsvorhaben einer fundierten Bewertung zu unterziehen. Außerdem kennen sie die wesentlichen Zusammenhänge und Verfahren der Kosten- und Erlösrechnung und sind dadurch in die Lage versetzt, interne Wertschöpfungsprozesse zu bewerten. Darauf aufbauend können sie wesentliche Entscheidungen im Rahmen der Produktionswirtschaft und Logistik sowie der Vermarktung der Produkte treffen. Bzgl. der strategischen Ausrichtung des Unternehmens kennen sie wesentliche Markt- und Wettbewerbsstrategien sowie Organisationsprinzipien und Grundzüge personalwirtschaftlicher Sachverhalte.

Vorkenntnisse

keine

Inhalt

- 1. Einführung
- 2. Unternehmensverfassung
- 3. Betriebliche Steuern
- 4. Externes Rechnungswesen: Der Jahresabschluss
- 5. Betriebliche Finanzwirtschaft
- 6. Internes Rechnungswesen (Kosten- und Erlösrechnung)
- 7. Produktionswirtschaft und Logistik
- 8. Marketing (Marktstrategische Ausrichtung und Marketinginstrumente)
- 9. Organisation und Personalwirtschaft

Medienformen

begleitendes Skript, ergänzendes Material (zum Download auf Moodle eingestellt) PowerPoint-Präsentationen per Beamer, ergänzt um Tafel- bzw. Presenteranschriebe

Literatur

- Müller, D.: Betriebswirtschaftslehre für Ingenieure, 2. Auflage, Heidelberg 2013
- Wöhe, G./Döring, U./Brösel, G.: Einführung in die Allgemeine Betriebswirtschaftslehre, 26. Auflage, München 2016
- Wöhe, G./Döring, U./Brösel, G.: Übungsbuch zur Allgemeinen Betriebswirtschaftslehre, 15. Auflage, München 2016
- Schmalen, H./Pechtl, H.: Grundlagen und Probleme der Betriebswirtschaft, 15. Auflage, Stuttgart 2013
- Schierenbeck, H./C.B. Wöhle, Grundzüge der Betriebswirtschaftslehre, 19. Auflage, Stuttgart, 2016

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Technische Physik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2008

Bachelor Elektrotechnik und Informationstechnik 2013

Bachelor Mathematik 2013

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Technische Physik 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Medientechnologie 2008

Bachelor Informatik 2013

Bachelor Maschinenbau 2008

Bachelor Mechatronik 2013

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2013

Bachelor Optische Systemtechnik/Optronik 2013

Bachelor Biomedizinische Technik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Metalltechnik 2008

Bachelor Polyvalenter Bachelor mit Lehramtsoption für berufsbildende Schulen - Elektrotechnik 2013

Bachelor Technische Kybernetik und Systemtheorie 2013

Bachelor Technische Physik 2011

Master Mathematik und Wirtschaftsmathematik 2008

Bachelor Werkstoffwissenschaft 2011

Bachelor Biomedizinische Technik 2013

Bachelor Medientechnologie 2013

Bachelor Mathematik 2009

Bachelor Ingenieurinformatik 2013

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Biomedizinische Technik 2014

Bachelor Maschinenbau 2013

Bachelor Fahrzeugtechnik 2013

Bachelor Werkstoffwissenschaft 2013

Bachelor Biotechnische Chemie 2013

Modul: Fremdsprache und studium generale

Modulnummer 1646

Modulverantwortlich: Dr. Andreas Vogel

Modulabschluss:

Lernergebnisse

Die Studierenden können über fachspezifische technische Problemstellungen in der englischen Sprache kommunizieren. Die Studierenden sind zudem in der Lage soziale, philosophische, politische, wirtschaftliche und kulturelle Fragen zu erörtern, die sich unmittelbar aus der Entwicklung der Technik und Naturwissenschaften ergeben.

Vorraussetzungen für die Teilnahme

keine

Detailangaben zum Abschluss

Die Abschlüsse zu den einzelnen Fächern werden in der Fachbeschreibung ausgewiesen.

Modul: Fremdsprache und studium generale

Fachsprache der Technik (Fremdsprache)

Fachabschluss: Studienleistung schriftlich Art der Notengebung: Testat / Generierte Noten

Sprache: keine Angabe Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 1556 Prüfungsnummer:2000004

Fachverantwortlich: Dr. Kerstin Steinberg-Rahal

Leistungspunkte: 2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Zentralinstitut für Bildung						Fachgebiet:	673

	1	I.FS)		2.FS	3	,	3.FS	3		1.FS	<u> </u>		5.FS	3	(3.FS	3	7	7.FS	<u> </u>
SWS nach	V	S	Р	>	S	Р	V	S	Р	V	S	Р	٧	S	Р	٧	S	Р	V	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

GK: Stufe B2 des Europäischen Referenzrahmens Die Studierenden sind in der Lage, die Hauptinhalte komplexer Texte zu konkreten und abstrakten technischen Themen sowie Fachdiskussionen im eigenen Spezialgebiet zu verstehen. Sie können sich spontan und fließend zu Themen ihres Fachgebietes in Diskussionen verständigen. Die Studierenden können sich zu einem breiten Themenspektrum der Technik klar und detailliert ausdrücken, einen Standpunkt zu einer aktuellen technischen Frage erläutern und Vor- und Nachteile technischer Geräte und Prozesse angeben. **AK:** Stufe C1 des Europäischen Referenzrahmens Die Studierenden sind in der Lage, ein breites Spektrum anspruchsvoller, längerer Texte zu konkreten und abstrakten technischen Themen sowie Fachdiskussionen im eigenen Spezialgebiet zu verstehen, auch wenn diese nicht klar strukturiert sind. Sie können spontan und fleißend zu Themen ihres Fachgebietes in Diskussionen verständigen, ohne öfter deutlich erkennbar nach Worten suchen zu müssen. Die Studierenden können sich im mündlichen und schriftlichen Bereich zu komplexen technischen Sachverhalten klar, strukturiert und detailliert ausdrücken, einen Standpunkt zu einer aktuellen technischen Frage erläutern und Vor- und Nachteile technischer Geräte und Prozesse angeben und dabei verschiedene Mittel zur Textverknüpfung angemessen verwenden.

Vorkenntnisse

GK: Abiturniveau, Stufe B1 des Europäischen Referenzrahmens **AK:** Erfolgreicher Abschluss des GK bzw. Stufe B2 des Europäischen Referenzrahmens

Inhalt

Fachsprache der Technik - GK: Fachübergreifende Themen aus an der TU Ilmenau vertretenen Wissenschaftsbereichen der Technik; Vermittlung relevanter, themenspezifischer Lexik und Grammatik; Training von typischen Sprachhandlungen in relevanten Situationen unter Einbeziehung entsprechender Textsorten und Kommunikationsverfahren Fachsprache der Technik - AK: Fachübergreifende Themen aus den an der TU Ilmenau vertretenen Wissenschaftsbereichen der Technik mit Schwerpunkt IT; Vermittlung relevanter, themenspezifischer Lexik und Grammatik; Training von typischen Sprachhandlungen in relevanten Situationen unter Einbeziehung entsprechender Textsorten und Kommunikationsverfahren einschließlich des Training der wissenschaftlichen Fachdiskussion, Präsentation von technischen Produkten, Verfahren Erfindungen und Weiterentwicklungen

Medienformen

DVD, CD, Audio- und Videokassetten, Overhead

Literatur

selbsterarbeitete Skripte mit Auszügen aus kopierbaren Lehrmaterialien, Originalliteratur und relevanten Internetmaterialien sowie Mitschnitte von Fernsehsendungen zur entsprechenden Thematik

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Ingenieurinformatik 2008

Bachelor Technische Physik 2008

Bachelor Biomedizinische Technik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Informatik 2010

Bachelor Technische Physik 2011

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mechatronik 2008

Bachelor Medientechnologie 2008

Bachelor Optronik 2008

Bachelor Maschinenbau 2008

Modul: Fremdsprache und studium generale

Studium generale

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: ganzjährig

Fachnummer: 1609 Prüfungsnummer:2000002

Fachverantwortlich: Dr. Andreas Vogel

Leistungspunkte:	2	Workload (h):	60	Anteil Selbststudium (h):	38	SWS:	2.0	
Zentralinstitut für Bildu	ung						Fachgebiet:	672

	1	I.FS	;	2	2.FS	3	,	3.FS	3	4	1.FS)	į	5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р	٧	S	Р
Fachsemester													2	0	0						

Lernergebnisse / Kompetenzen

Die Studierenden können die Entwicklungen in den Technik- und Naturwissenschaften, insbesondere in den Disziplinen ihres Studienfaches in aktuelle und historische Entwicklungen in der Gesellschaft in politischer, kultureller und philosophischer Hinsicht einordnen und interpretieren. Sie erwerben zudem Sozialkompetenzen sowie allgemeine Methodenkompetenzen wissenschaftlichen Arbeitens.

Das Themenspektrum umfasst die Kompetenz- und Wissensbereiche:

Basiskompetenz: Vermittlung notwendiger Kompetenzen für ein erfolgreiches Studium und die spätere Berufstätigkeit auf den.

Orientierungswissen: Vermittlung fachübergreifender Studieninhalte, die Bezüge zwischen verschiedenen Wissenschaftsdisziplinen herstellen und vertiefen sowie weitergehende geistige Orientierung geben.

Vorkenntnisse

keine

Inhalt

Beim Studium generale der TU Ilmenau handelt es sich um ein geistes- und sozialwissenschaftliches Begleitstudium, in dem den Studierenden Inhalte anderer Disziplinen vermittelt werden. Mit den wahlobligatorischen Lehrveranstaltungen des Studium generale wird ein breites Spektrum an aktuellen und historischen Themen abgedeckt, wobei sowohl Problemfelder behandelt werden, die sich unmittelbar aus der Entwicklung der Technik- und Naturwissenschaften ergeben, als auch solche, die sich mit allgemeineren sozialen, wirtschaftlichen, politischen, philosophischen und kulturellen Fragen beschäftigen. Die Studierenden wählen dabei aus einem Katalog angebotener Lehrveranstaltungen des Studiums generale Kurse entsprechend der Anforderugnen ihrer Studienordnungen.

Medienformen

Skript, Power-Point, Overhead, Tafel, Audio- und Video-Material (in Abhängigkeit vom jeweiligen Kurs)

Literatur

keine Angabe möglich, da jedes Semester verschiedenen Angebote an Themen; Literatur wird zu Beginn des jeweiligen Faches bekannt gegeben

Detailangaben zum Abschluss

In Abhängigkeit vom jeweiligen Kurs werden Klausuren oder Hausarbeiten geschrieben bzw. Seminarvorträge gehalten.

verwendet in folgenden Studiengängen

Bachelor Medienwirtschaft 2011

Bachelor Ingenieurinformatik 2008

Bachelor Technische Kybernetik und Systemtheorie 2010

Bachelor Wirtschaftsinformatik 2010

Bachelor Wirtschaftsinformatik 2011

Bachelor Informatik 2010

Bachelor Medientechnologie 2013

Bachelor Werkstoffwissenschaft 2009

Bachelor Wirtschaftsinformatik 2009

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung MB

Bachelor Elektrotechnik und Informationstechnik 2008

Bachelor Fahrzeugtechnik 2008

Bachelor Mathematik 2009

Bachelor Medienwirtschaft 2010

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung ET

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung ET

Bachelor Mechatronik 2008

Bachelor Optronik 2008

Bachelor Wirtschaftsingenieurwesen 2010 Vertiefung ET

Bachelor Maschinenbau 2008

Bachelor Wirtschaftsingenieurwesen 2008 Vertiefung MB

Bachelor Medienwirtschaft 2009

Bachelor Biomedizinische Technik 2008

Bachelor Wirtschaftsingenieurwesen 2011 Vertiefung MB

Modul: Internes Praktikum 1

Modulnummer6627

Modulverantwortlich: Prof. Dr. Edda Rädlein

Modulabschluss:

Lernergebnisse

Die Studierenden sind in der Lage, das experimentelle Vorgehen zur Ermittlung des Werkstoffzustandes, der Zustandsänderungen, der mechanischen und physikalischen Eigenschaften unter Einbeziehung naturwissenschaftlicher und ingenieurwissenschaftlicher Grundlagen zu verstehen und auf technische Anwendungen zu übertragen. Das Modul vermittelt Fach-, Methoden- und Systemkompetenz.

Vorraussetzungen für die Teilnahme

Detailangaben zum Abschluss

ACHTUNG: Fach wird nicht mehr angeboten!

Bachelor Werkstoffwissenschaft 2009

Modul: Internes Praktikum 1

Grundlagenpraktikum 1

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:ganzjährig

Fachnummer: 7979 Prüfungsnummer:2300321

Fachverantwortlich: Prof. Dr. Edda Rädlein

Leistungspunkte: 6 Workload (h): 180 Anteil Selbststudium (h): 112 SWS: 6.0 Fakultät für Maschinenbau Fachgebiet: 2351

2.FS 5.FS 1.FS 3.FS 4.FS 6.FS 7.FS S P S P S S P SP SP S SWS nach Fachsemester 0 0

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, das Gefüge und die mechanischen Eigenschaften der Werkstoffe unter Einbeziehung naturwissenschaftlicher Kenntnisse zu erklären und für neue Anwendungen zu synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaft 1-4

Inhalt

Das Praktikum umfasst Versuche mit folgender interdisziplinärer Aufteilung: Physik Werkstoffwissenschaft Chemie Die werkstoffwissenschaftlichen Versuche orientieren sich an den Schwerpunkten Gefüge, Struktur und mechanische Eigenschaften.

Medienformen

Praktikumsanleitungen

Literatur

Praktikumsanleitungen

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Internes Praktikum 2

Modulnummer7980

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss:

Lernergebnisse

Die Studierenden sind in der Lage, Werkstoffzustände und Zustandsänderungen unter Einbeziehung naturwissenschaftlicher Kenntnisse zu erklären und für neue Anwendungen zu synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

Vorraussetzungen für die Teilnahme

werkstofftechnische Kenntnisse

Detailangaben zum Abschluss

keine

Modul: Internes Praktikum 2

Grundlagenpraktikum 2

Fachabschluss: Studienleistung alternativ Art der Notengebung: Testat / Generierte Noten

Sprache: Deutsch Pflichtkennz.:Pflichtfach Turnus:Sommersemester

Fachnummer: 7981 Prüfungsnummer:2100275

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 9 Workload (h): 270 Anteil Selbststudium (h): 191 SWS: 7.0
Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

5.FS 1.FS 2.FS 3.FS 4.FS 6.FS 7.FS SP SP SP S P S Р SP S SWS nach Fachsemester 0 0

Lernergebnisse / Kompetenzen

Die Studierenden sind in der Lage, physikalische Eigenschaften der Werkstoffe unter Einbeziehung naturwissenschaftlicher und elektrotechnischer Kenntnisse zu erklären und für neue Anwendungen zu synthetisieren. Das Fach vermittelt Fach-, Methoden- und Systemkompetenz.

Vorkenntnisse

Grundlagen der Werkstoffwissenschaften 1-4

Inhalt

Das Praktikum umfasst interdisziplinär Versuche aus den Fächern: Werkstoffwissenschaft Physik Chemie Elektrotechnik Die werkstoffwissenschaftlichen Versuche orientieren sich an dem Schwerpunkt physikalische Eigenschaften.

Medienformen

Praktikumsanleitungen

Literatur

Praktikumsanleitungen

Detailangaben zum Abschluss

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Externes Praktikum

Modulnummer6613

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss:

Lernergebnisse

In dem externen Praktikum sollen die Studierenden in einem industriellen Betrieb mit F-&E-Abteilung an aktuellen Themen der Materialforschung und -entwicklung mitarbeiten. Hierbei lernen sie werkstofftechnische Tätigkeitsfelder in industrieller Forschung und Entwicklung kennen und erhalten einen Einblick in aktuelle Themen der Materialforschung. Das Modul vermittelt Fach-, Methoden-, System- und Sozialkompetenz.

Vorraussetzungen für die Teilnahme

Werkstofftechnische Kenntnisse

Detailangaben zum Abschluss

Schriftlicher Praktikumsbericht

Modul: Externes Praktikum

Betriebspraktikum

Fachabschluss: Studienleistung alternativ

Art der Notengebung: Generierte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6614 Prüfungsnummer:92401

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 12 Workload (h): 360 Anteil Selbststudium (h): 360 SWS: 0.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 217

	1	I.FS	3	2	2.FS	3		3.FS	3		1.FS	<u> </u>		5.FS	3	(6.FS	3		7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	>	S	Р	٧	S	Р
Fachsemester																1	0 W	٥.			

Lernergebnisse / Kompetenzen

In dem externen Praktikum sollen die Studierenden in einem industriellen Betrieb mit F-&E-Abteilung an aktuellen Themen der Materialforschung und -entwicklung mitarbeiten. Hierbei lernen sie werkstofftechnische Tätigkeitsfelder in industrieller Forschung und Entwicklung kennen und erhalten einen Einblick in aktuelle Themen der Materialforschung. Das Modul vermittelt Fach-, Methoden-, System- und Sozialkompetenz.

Vorkenntnisse

- Grundlagen der Werkstoffwissenschaft 1-4 und werkstofftechnische Kenntnisse

Inhalt

Die Inhalte des Betriebspraktikums hängen von der gastgebenden Einrichtung ab und werden mit dem betreuenden Hochschullehrer und dem Betreuer im Betrieb vor Ort abgesprochen.

Medienformen

- berufspraktische Tätigkeit
- Material nach Art und Inhalt des Praktikums

Literatur

Die Literatur hängt von der Tätigkeit im Betriebspraktikum ab. Die Literaturrecherche ist Teil des Praktikums.

Detailangaben zum Abschluss

- schriftlicher Praktikumsbericht

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Modul: Bachelor-Arbeit mit Kolloquium

Modulnummer6612

Modulverantwortlich: Prof. Dr. Peter Schaaf

Modulabschluss: Fachprüfung/Modulprüfung generiert

Lernergebnisse

Die Lösung von komplexen technischen Fragestellungen innerhalb einer begrenzten Zeitraums gehört zu den beruflichen Fähigkeiten von Ingenieuren. Die systematische Durchführung von Versuchen, Experimenten oder Erprobungen sowie die damit zusammenhängende Erstellung von technischen Berichten und Publikationen dient der Kommunikation zwischen Fachleuten und stellt sicher, dass erworbenes Wissen und Erfahrungen erhalten bleiben. Mit der Bachelorarbeit zeigen Studierende, dass sie in der Lage sind, eine komplexe technische Fragestellung mit wissenschaftlichen Methoden innerhalb eines begrenzten Zeitraums zu lösen und das dabei erworbene theoretische und praktische Wissen nachvollziehbar zu dokumentieren. Im Rahmen des Kolloquiums weisen die Studierenden nach, dass sie die Ergebnisse ihrer Arbeit verbal kommunizieren können.

Vorraussetzungen für die Teilnahme

Zulassung zur Bachelorarbeit

Detailangaben zum Abschluss

Schriftliche Arbeit (Bachelorarbeit) und mündliches Kolloquium

Bachelor Werkstoffwissenschaft 2009 Modul: Bachelor-Arbeit mit Kolloquium

Abschlusskolloquium zur Bachelorarbeit

Fachabschluss: Prüfungsleistung mündlich 30 min Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6611 Prüfungsnummer:99002

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte: 2 Workload (h): 60 Anteil Selbststudium (h): 60 SWS: 0.0 Fakultät für Elektrotechnik und Informationstechnik Fachgebiet: 2172

	1	I.FS	3	2	2.FS	<u> </u>		3.FS	3		I.FS	<u> </u>		5.FS	3	(6.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	V	S	Р	>	S	Р	>	S	Р	٧	S	Р	>	S	Р
Fachsemester																	60 h				

Lernergebnisse / Kompetenzen

Das bearbeitete wissenschaftliche Thema muss vor einem Fachpublikum in einem Vortrag vorgestellt werden. Die Studierenden werden befähigt, ihre Arbeitsweise und erreichten Ergebnisse zu präsentieren und die gewonnen Erkenntnisse sowohl darzustellen als auch in der Diskussion zu verteidigen.

Vorkenntnisse

angefertigte schriftliche Bachelorarbeit

Inhalt

Vorbereitung und Durchführung des Abschlusskolloquiums

Medienformen

mündliche Präsentation (z. B. unterstützt durch Powerpoint)

Literatur

selbständige Recherche bzw. Bekanntgabe durch betreuenden Hochschullehrer

Detailangaben zum Abschluss

mPL 30

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Bachelor Werkstoffwissenschaft 2009 Modul: Bachelor-Arbeit mit Kolloquium

Bachelorarbeit

Fachabschluss: Bachelorarbeit schriftlich 6 Monate Art der Notengebung: Gestufte Noten

Sprache: Deutsch Pflichtkennz.: Pflichtfach Turnus: unbekannt

Fachnummer: 6610 Prüfungsnummer:99001

Fachverantwortlich: Prof. Dr. Peter Schaaf

Leistungspunkte:	12	Workload (h): 360	Anteil Selbststudium (h):	360	SWS:	0.0	
Fakultät für Elektrot	echnik	und Informationstechnik				Fachgebiet:	21

	1	I.FS	3	2	2.FS	3	,	3.FS	3		1.FS	5		5.FS	3	(3.FS	3	7	7.FS	3
SWS nach	>	S	Р	>	S	Р	٧	S	Р	V	S	Р	٧	S	Р	>	S	Р	>	S	Р
Fachsemester																3	360 h	1			

Lernergebnisse / Kompetenzen

Die Studierenden vertiefen in einem speziellen fachlichen Thema ihre bisher erworbenen Kompetenzen. Die Studierenden sollen befähigt werden, eine komplexe und konkrete Problemstellung zu beurteilen und unter Anwendung der bisher erworbenen Theorie- und Methodenkompetenzen selbstständig zu bearbeiten. Das Thema ist gemäß wissenschaftlicher Standards zu dokumentieren und die Studierenden werden befähigt, entsprechende wissenschaftlich fundierte Texte zu verfassen. Die Studierenden erwerben Problemlösungskompetenz und lernen es, die eigene Arbeit zu bewerten und einzuordnen.

Vorkenntnisse

erfolgreicher Abschluss aller Module aus den Semestern 1-6

Inhalt

Selbständige Bearbeitung eines fachspezifischen Themas unter Anleitung, Dokumentation der Arbeit: Konzeption eines Arbeitsplanes. Einarbeitung in die Literatur, Erarbeitung der notwendigen wissenschaftlichen Methoden (z. B. Mess- und Auswertemethoden), Durchführung und Auswertung, Disskussion der Ergebnisse, Erstellung der Bachelorarbeit

Medienformen

Bücher, Computerprogramme, Literatur, Datenbanken, Spezialliteratur entsprechende der konkreten Aufgabenstellung

Literatur

selbstständige Recherche bzw. Bekanntgabe durch betreuenden Hochschullehrer

Detailangaben zum Abschluss

schriftliche Arbeit und mPL

verwendet in folgenden Studiengängen

Bachelor Werkstoffwissenschaft 2011

Bachelor Werkstoffwissenschaft 2009

Glossar und Abkürzungsverzeichnis:

LP Leistungspunkte

SWS Semesterwochenstunden

FS Fachsemester

V S P Angabe verteilt auf Vorlesungen, Seminare, Praktika

N.N. Nomen nominandum, Nomen nescio, Platzhalter für eine noch unbekannte Person (wikipedia)

Objekttypen It.

K=Kompetenzfeld; M=Modul; P,L,U= Fach (Prüfung,Lehrveranstaltung,Unit)

Inhaltsverzeichnis