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Abstract

An application of modulating function (MF) technique to the direct closed-loop identification for the estimation of

a continuous-time model of multi-input-multi-output magnetic bearing system from sampled data are presented in

this paper. The plant description given as a differential matrix polynomial is transformed into a matrix of difference

equations using the modulating function approach, which allows to avoid numerical problems by aproximating

time derivatives. Additionally, the initial conditions can be neglected as a characteristic of the MF technique. The

system parameter estimation represents a solution of a least-squares problem derived from the difference system

model with experimental data from an industrial magentic bearing system.
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1. Introduction

Active magnetic bearings (AMB) for industrial applications are especially beneficial when a high rotational speed,

an operation under special conditions (e.g. vacuum, gas, fluid) and the absence of lubrication are required. Moreover, the

characteristics of the system (e.g. stiffness, damping) can be changed during its operation by a suitable control scheme.

These advantages contribute to an application of magnetic bearings to such industrial products as high speed turbines,

compressors, vacuum pumps, cryogenic circulators but also artificial hearts. However, instability and complex plant

dynamics require thorough research and development, thus, increasing costs. This fact by others limits a wide industrial

distribution of magnetic bearing systems to date.

The feedback control essential for a stable operation mode of an AMB is based on a sufficient knowledge of the

system dynamics. This information can be available in form of an analytical model, extracted, for example, from finite

element analysis or parametrized by an identification process. Magnetic bearing plants are unstable, complex, multi-input-

multi-output (MIMO) mechatronic systems the accurate modelling of which is a demanding task. System identification

provides a rewarding alternative solution in this case. Due to the open loop instabilities of the AMB, a closed-loop

identification system identification is required.

Conventional methods to closed-loop identification can be classified into direct, indirect as well as joint input-output

approaches and mainly use discrete-time (DT) system models (Isermann and Münchhof 2011), (Forssell 1999), (Ljung

1999), also with identification of rotor systems (Gähler and Herzog 1995), (Tiwari and Chougale 2014). Sun et al.

(2002) suggested a two-stage algorithm for direct closed-loop identification of a magnetic suspension system by an inter-

sampled model structure based on subspace methods. An initial SISO stucture of the identified system is transformed

into a SIMO model due to intersampling. That proves the condition of an identification problem, but in the same time

the computational effort increases. Besides, some authors focus on closed-loop identification concepts for continuous-

time (CT) system models from sampled data (Garnier 2008). Identification of CT models was sidelined in the last years

because of a rapid development of digital technologies and at the same time of DT identification. The control engineers

still prefer to work with CT models by dynamical analysis of systems and control design because of their transparency

(Rao and Unbehauen 2005). CT identification methods with application to AMB systems are proposed, for example, by

Mohd-Mokhtar et al. (2004) and Aziz and Mohd-Mokhtar (2011). Both papers focus on the state-space model parameter

estimation of an unstable MIMO plant. Mohd-Mokhtar used a Laguerre network and subspace methodology and Aziz and

The 15th International Symposium on Magnetic Bearings, August 3-6, 2016, Mojiko Hotel, Kitakyushu, Japan

ISMB15

634





Transformation of modal coordinates q(t) in the displacement coordinates w(t) is given through

C =





Cx 0

0 Cy



 . (6)

Force-displacement factors and force-current factors of actuators are considered as follows

Ksa = diag[Ksax,Ksay] = diag[ksx1, ksx2, ksy1, ksy2], (7)

Kia = diag[Kiax,Kiay] = diag[kix1, kix2, kiy1, kiy2] (8)

It is assumed that the rotor is not spinning and the gyroscopic effects are omitted from the mathematical model

(1). Thus, the x− and y− directions are decoupled (3). Furthermore the considered system is constructed rotationally

symmetric. These assumptions and system properties allow an analysis and identification of one part of the AMB system,

which describes the shaft motion, for example, in the x − z-plane, and a transfer of the obtained results to the y − z-plane.

The equation of the rotor motion in x − z-plane can be extracted from Eq. (1) and transformed into a matrix polynomial

model with two inputs ix(t) =
[

ix1(t) ix2(t)
]T

and two outputs wx(t) =
[

wx(l1, t) wx(l2, t)
]T

(p2
+ A1 p1

+ A2 p0)
︸�������������������︷︷�������������������︸

Pden

wx(t) = B2 p0

︸︷︷︸

Pnum

ix(t) (9)

wherein

A1 = CxM−1
x DxC−1

x , A2 = CxM−1
x (KxC−1

x +Ksax), B2 = CxM−1Kiax (10)

are the parameter matrices with Ai = ai jk, Bi = bi jl, i, j, k, l = 1, · · · , 2 to be identified.

The electric behavior of the actuators is described by the following relations

v(t) = Lp1ix(t) + Rix(t), (11)

where L = diag[L1, L2] are the inductivities and R = diag[R1,R2] are the resistances of the coils.

The most intuitive control approach to stabilize an AMB is the decentralized control scheme, where each bearing

axis has an individual controller (Schweitzer and Maslen 2009). The identical cascade controllers consisting of an inner

current as well as an outer displacement control loop are implemented for every degree of freedom of magnetic bearing

system. The outer control circuit is a PID control scheme

ixre f = Kpex +Ki

∫

exdt +Kd ėx, (12)

ex = r − wx(t), r =
[

r1(t) r2(t)
]T
, Kp = diag[kp, kp], Ki = diag[ki, ki], Kd = diag[kd, kd] (13)

The voltage for the actuators v is generated from the difference between the measured currents ix and the reference

currents ixre f in Eq. (12) by the control rule

v = Kpstei, ei = ix − ixre f , Kpst = diag[kpst, kpst] (14)

The resulting transfer functions from the displacement control deviation Ex(s) to the actuator currents Ix(s) is denoted

with GC(s) in Fig. 1.

3. Identification method

The modulating function technique was developed by Shinbrot (1957) for an analysis of linear and nonlinear SISO

systems and allows to convert a differential equation into a set of parametrized algebraic equations on a finite time interval.

The initial concept was refined by Pearson and Lee (1985), who proposed the trigonometric Fourier type modulating

functions and a modification of the derivative calculation due to the implementation of the fast Fourier transform (FFT).

An extension of this method for MIMO systems is proposed in (Shen 1993) and (Co and Ydstie 1990). The main idea of

the modified closed-loop identification method used in this work is based on the concept of Co and Ydstie (1990).

Consider the polynomial description of the MIMO magnetic bearing system presented in Eq. (9)

Pdenwx(t) = Pnumix(t) (15)

636



with

Pden = p2
A0 + p1

A1 + p0
A2, Pnum = p0

B2, A0 = I , pi
= di/dti , i = 0, · · · , 2 (16)

Pden and Pnum are the denominator and numerator polynomials with unknown system parameters A1, A2, B2.

The used algorithm operates with measured inputs and outputs of the analysed system. The approximation of the

derivatives is based on the calculation of a convolution of the measured signal with a modulation function. There are many

types of modulating functions implemented for system identification in the last years (Cieza Aguirre, Tafur, and Reger

2014). The following complex Fourier type of modulating function set (Pearson and Shen 1993) is used in this paper.

φm,n(t) = 1/Te(− jmω0t)(e(− jω0t)
− 1)n

= 1/T
n+m
∑

k=m

ck−me− jkω0t
= 1/T

n
∑

k=0

cke− j(k+m)ω0t (17)

where

ω0 = 2π/T , m = 0, 1, 2, . . . ,M (18)

and n is the system order, ω0 is a resolving frequency for the fixed time interval [0, T ] and m is the modulating frequency

index, which defines the frequency range for the identification. The derivative of φm,n(t) is determined as follows

piφm,n(t) =
1

T

n
∑

k=0

ck(− j(k + m)ω0)ie− j(k+m)ω0t . (19)

Furthermore, the coefficients ck are choosed so that the modulating function φm,n(t) satisfys

piφm(0) = piφm(T ) = 0. (20)

For example, factors ck sind equal the binomial coefficients (−1)n−k
(

n

k

)

. The use of Eq. (20) ensures that the initial

conditions of the experiment are irrelevant to the identification process. The derivatives of the modulating function φm,n(t)

are shown in Fig. 2
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Fig. 2 An example of the modulating function derivatives p0φ(t) (black solid line), p1φ(t) (black dashed line) and

p2φ(t) (gray line) with T = 10 s, w0 = 0.1 Hz, m = 10.

Multiplying both sides of Eq. (15) with φ(m,n)(t) and integrating with respect to time t over the interval [0, T ] leads to

the complex-valued vector regression form

Y = ΓΘ (21)

with a parameter matrix Θ =
[

A1 A2 B2

]T
and matrices of the modulated input and output signals

Y =







































γ
wx

21
(0) γ

wx

22
(0)

γ
wx

21
(1) γ

wx

22
(1)

...
...

γ
wx

21
(M) γ

wx

22
(M)







































, Γ =







































−γ
wx

01
(0) −γ

wx

02
(0) −γ

wx

11
(0) −γ

wx

12
(0) γ

ix

01
(0) γ

ix

02
(0)

−γ
wx

01
(1) −γ

wx

02
(1) −γ

wx

11
(1) −γ

wx

12
(1) γ

ix

01
(1) γ

ix

02
(1)

...
...

...
...

...
...

−γ
wx

01
(M) −γ

wx

02
(M) −γ

wx

11
(M) −γ

wx

12
(M) γ

ix

01
(M) γ

ix

02
(M)
































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



. (22)
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Every matrix entry is a convolution of the signal with the derivative of the modulating function of corresponding order

γ
wx

i j
(m) = (−1)i

∫ T

0
wx j(t)piφ(m,n)(t)dt, i = 1, 2, (23)

γ
ix

k j
(m) = (−1)k

∫ T

0
ix j(t)pkφ(m,n)(t)dt, k = 2, j = 1, 2. (24)

The regression in Eq. (21) can be devided into real and complex parts

Y = YR + jYI, Γ = ΓR + jΓI, ǫ = ǫR + jǫI . (25)

The parameter matrices can than be estimated by using the maximum likelihood method

Θ̂LS = (ΓT
RΓR + Γ

T
I ΓI)

−1(ΓRYT
R + ΓIY

T
I ) . (26)

The direct closed-loop identification can be applied without any information regarding the controller and works with

the inputs and outputs of the plant. Thus, the method can be applied without any alterations of the equations. The actuator

currents are taken as system inputs and the displacements of a shaft as outputs for the identification. The open loop

state-space model of the AMB is obtained by applying the described algorithm to the experimental data.

4. Experimental results

The magnetic bearing test bench consists of a flexilble rotor levitated by two radial and one axial magnetic bearings

(as illustrated in Fig. 1). The reference signals are generated by an ADWin-Gold II system. The processor cycle frequency

of this real-time platform is 300 MHz, with a closed-loop sample time is 50 µs. Displacement measurements are done

using eddy current sensors, where the currents are measured with shunts. Information from sensors is provided to ADWin-

Gold II, where the control input for the actuators is produced according to the cascade control scheme. Parameters of the

displacement und current controllers are listed in Table 1.

Table 1 Parameters of the position und the current controller

Symbol Value Units

kp 1 × 104 A/m

ki 8 × 104 A/ms

kd 15 As/m

kpst 15 V/A

The rotor system is excited simultaneously at both reference channels r1 and r2. The characteristics of the different

excitation signals such as a chirp, white noise and a Schroeder-phased multisine (Pintelon and Schoukens 2012) are

investigated. The multisine signals have been recognized to be the best suited excitation for the MIMO AMB system and

the proposed identification algorithm. A Schroeder-phased multisine is obtained according to following formula (Pintelon

and Schoukens 2012)

ri(t) =
F∑

k=1

A cos(2π fkt + φk), φk = −k(k − 1)π/F, fk = lk f0, lk ∈ N. (27)

All identification results are obtained based on the application of multisine reference signals and the measurements

of currents ix1(t), ix2(t) and displacements wx(l1, t), wx(l2, t). The time interval of every single measurement is 10 s and

consequentially the resolving frequency ω0 = 0, 1 Hz. Collected data is processed by an identification algorithm proposed

in Section 3. The rigid body eigenfrequencies and flexible eigenfrequencies are identified separately. Increasing the

model order in Eq. (9) allows a modeling of all four frequencies. Eigenfrequencies of the resulted model are shown in

Fig. 3, which show a typical distribution for a AMB system (Schweitzer and Maslen 2009). Eigenfrequencies of rigid

body modes cannot be obtained from a modal analysis of a shaft themselves and strongly depend on stiffness of magnetic

bearings, unlike the eigenfrequencies of flexible modes. Parameters of actuators such as force-displacement-factors Ksax

and force-current-factors Kiax vary during operation. Therefore, a quantitative comparison of identified and theoretical

obtained eigenfrequencies is not reliable.

There is also no way to measure a frequency response of an open loop AMB plant directly because of the unstable

system behaviour in a frequency range of rigid body modes. Thus, a validation of the identified model consist of the

comparison of measured and simulated responses of the closed-loop system, see Fig. 4. The experimental curve is

obtained with Newtons4th Frequency Response Analyzer by exciting the plant with a sine chirp signal. The input is a
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Fig. 3 The first four estimated eigenfrequencies of the magnetic bearing system
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Fig. 4 Measured (solid lines) and identified (dashed lines) amplitude responses of the magnetic bearing system

in closed-loop.

desired position generated by the measurement device and the output is an actual position of the rotor. The identified

response is designed based on the identified open loop model by implementing a controller in MATLAB.

Figures 3 and 4 show that the proposed identification algorithm copes with a problem of estimation both unstable

poles of rigid body modes and slightly-damped poles of flexible modes. Resonance and antiresonance frequencies match

in diagonal and off-diagonal transfer functions. Small differencies in estimated and measured values of the second flexible

mode could be explained by high signal-to-noise ratio in this frequency range.

5. Conclusions

An application of the identification algorithm based on MF technique for direct closed-loop identification of an

AMB plant is proposed in this work. The methodology processes a raw input and output data and needs no information

about the control scheme used to stabilize the system. To the best of the authors knowledge, this approach has not been

applied to such an AMB system. The separation of the complete MIMO model into SISO or SIMO subsystems is not

neccessery. Thus, reducing the computational effort and allows an estimation of the parameter matrix in a single step.

An identified continuous-time polynomial model can be directly transformed into state space, which is more universal for

control design. The efficiency of the algorithm is demonstrated on the real magnetic bearing system. Presented results of

identification show good performance and can be successfully used for control design. Future work will concentrate on
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the expansion of the developed identification methodology to AMB systems with spinning flexible rotor.
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