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Abstract

In this thesis we use high-throughput techniques and global structure prediction algorithms
to predict the crystal structure of different materials under different conditions. We start
by investigating the modifications on the structure of carbon nanotubes under hydrostatic
pressure. Afterwards, we explore a subset of ternary silicon clathrates searching for new
thermodynamically stable phases. Then, we screen the periodic table for new p−type
transparent oxides of the form (Cu, Ag, Au, Ni)XO2 and CuXOS. Finally, we present a new
approach for materials design in a pure ab initio way.

First, we investigate the radial collapse of CNTs, bundled and individualized in a water
environment, using the density functional tight-binding method. For CNTs bundles, we
obtain collapse pressures considerably larger than previous estimates based on classical
potentials. Furthermore, we show that the effect of chirality on the collapse pressure is small,
and that previous reports of large chiral effects are probably due to the use of too small unit
cells. For individualized tubes surrounded by water, we observe behaviours that strongly
depend on the water filling ratio of the CNT. For empty CNTs, the collapse pressures are
higher than for the equivalent calculations of bundles. For filled tubes, low filling ratios
destabilize slightly the CNTs, leading to modifications on the CNT cross section at lower
pressures than for empty tubes. For higher concentrations of water, we see a consistent
increase in the collapse pressure with the increasing filling ratio. Finally, we observe that
unusual states of water can be found in the collapsing / collapsed nanotubes. These can range
from nanotube-like to 2D sheet-like planes of water, depending on the diameter of the CNT
and on the pressure.

In a second step, using ab initio high-throughput computational techniques we investigate
the stability of ternary clathrate phases based on a Si framework. Our results explain
the vast majority of experimental results and predict the existence of a wealth of new
thermodynamically stable clathrate phases. Based on this prediction, a new Be-doped
clathrate, namely Ba8Be3.7Si42.3, was successfully synthesized by our co-workers. We note
that this clathrate phase would probably be missed experimentally since it can not be expected
based on the simple Zintl-Klemm rule.
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Using the minima hopping method combined with high-throughput calculations, we also
explore the periodic table in search of novel oxide phases. In total, we study 304 different
compositions of the form (Cu, Ag, Au, Ni)XO2 and CuXOS, where X is an element of
the periodic table. The choice of this specific set is motivated by the fact that it includes
Cu delafossite compounds, which are the best-known p-type transparent conductive oxides.
Our calculations identify 93 stable compositions, out of which only 41 are already included
in materials databases. We then prescreen these new phases for applications as p-type
transparent conductors by calculating their electronic band gap and hole effective masses,
finding a few potentially good candidates.

With the lessons learnt from the previous tasks, we propose a novel approach to design
new materials with tailored properties using only the laws of quantum mechanics and the
knowledge of the periodic table. This is done by combining state-of-the-art methods of global
structure prediction with an evolutionary algorithm that optimizes the chemical composition
for the desired property. As a first showcase demonstration of our method, we perform an
unbiased search for superhard materials and for transparent conductors. The approach used
is extremely successful, with several interesting, unknown materials stemming from the
simulations.



Abstrakt

In dieser Arbeit setzen wir Hochdurchsatz-Techniken und globale Strukturvorhersage-Algo-
rithmen ein, um die Kristallstruktur verschiedender Materialien unter verschiedenen Bedin-
gungen vorherzusagen. Wir beginnen mit einer Untersuchung der Struktur-Modifikationen
von Kohlenstoff-Nanoröhren (CNT) unter hydrostatischem Druck. Anschließend durch-
suchen wir eine Untergruppe der ternären Silizium-Clathrate nach neuen thermodynamisch
stabilen Phasen. Danach durchforsten wir das Periodensystem der Elemente nach neuen
p−dotierten transparenten Oxiden von der Form (Cu, Ag, Au, Ni)XO2 und CuXOS. Schluss-
endlich präsentieren wir einen neuen Ansatz für ein reines ab initio Material-Design.

Zunächst untersuchen wir den radialen Kollaps von gebündelten CNT und von einzelnen
CNT in einer Wasser-Umgebung mit der Dichte-Funktional-Tight-Binding-Methode. Für
gebündelte CNT erhalten wir deutlich höhere Kollaps-Drücke, als frühere Abschätzungen
mittels klassischer Potentiale ergeben hatten. Darüberhinaus zeigen wir, dass die Chiralität
nur einen geringen Einfluss auf den Kollaps-Druck hat, und dass frühere Berichte über einen
starken chiralen Einfluss vermutlich auf die Verwendung zu kleiner Einheitszellen zurück-
zuführen sind. Im Fall von einzelnen, von Wasser umgebenen Nanoröhren beobachten wir,
dass ihr Verhalten stark vom Wasser-Füllungsgrad der CNT abhängt. Bei leeren Nanoröhren
ist der Kollaps-Druck höher als in denäquivalenten Rechnungen für Bündel. In dem Fall, dass
die Röhren teilweise mit Wasser gefüllt sind, führt ein geringer Füllgrad zu einer leichten
Destabilisierung der CNT, was eine Modifikation des Röhren-Querschnitts bereits bei gerin-
geren Drücken als bei leeren Röhren zur Folge hat. Bei höheren Wasserkonzentrationen sehen
wir einen konsistenten Anstieg im Kollaps-Druck mit zunehmendem Füllgrad. Schließlich
beobachten wir ungewöhnliche Konfigurationen für das Wasser in den kollabierten Röhren.
Diese können, abhängig von Röhrendurchmesser und Druck, von nanoröhrenartig bis zu
zweidimensionalen planaren Schichten variieren.

In einem zweiten Schritt untersuchen wir mittels Hochdurchsatz-ab initio- Rechnungen
die Stabilität ternärer Clathrate auf Si-Basis. Unsere Ergebisse erklären den Großteil der
experimentellen Ergebnisse hierzu und sagen eine Fülle von neuen, thermodynamisch stabilen
Clathrat-Phasen voraus. Aufgrund unserer Vorhersage wurde von unseren Kollegen mit
Ba8Be3.7Si42.3 ein neuer Be-dotierter Clathrat erfolgreich synthetisiert. Wir bemerken, dass
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diese Clathrat-Phase experimentell vermutlich übersehen worden wäre, weil sie die einfache
Zintl-Klemm-Regel nicht erfüllt und daher eine unerwartete Zusammensetzung darstellt.

Mittels einer Kombination der Minima-Hopping-Methode und Hochdurchsatz-Rechnungen
durchkämmen wir außerdem das Periodensystem der Elemente auf der Suche nach neuen
Oxid-Phasen. Insgesamt untersuchen wir 304 verschiedene Zusammensetzungen der Form
(Cu, Ag, Au, Ni)XO2 und CuXOS, wobei X ein Element des Periodensystems ist. Die
Motivation für die Wahl dieses spezifischen Systems liegt darin, dass es mit den Delafossiten
die besten bekannten p-dotierten leitfähigen Oxide beinhaltet. Unsere Rechnungen identi-
fizieren 93 stabile Zusammensetzungen, von denen erst 41 bereits in Material-Datenbanken
aufgeführt sind. Diese neuen Phasen untersuchen wir im Hinblick auf eine Anwendung
als p-dotierte transparente Leiter, indem wir ihre elektronischen Bandlücken und effektiven
Massen berechnen, und finden einige potenziell gute Kandidaten.

Auf der Grundlage des bis hier Gelernten schlagen wir einen neuen Ansatz vor, um
neue Materialien mit maßgeschneiderten Eigenschaften einzig aus den Gesetzen der Quan-
tenmechanik und der Kenntnis des Periodensystems heraus zu entwickeln. Dies erfolgt
durch eine Kombination von State-of-the-Art-Methoden der globalen Strukturvorhersage
mit einem evolutionären Algorithmus, welcher die chemische Zusammensetzung für die
gewünschte Eigenschaft optimiert. Als Vorzeigeanwendung unserer Methode betreiben wir
eine unvoreingenommene Suche nach superharten Materialien und transparenten Leitern.
Der Ansatz ist äußerst erfolgreich, liefert er doch einige interessante, bisher unbekannte
Materialien.
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Chapter 1

Introduction

For centuries, materials’ discovery was only possible by experimental synthesis. Most of this
knowledge concerning the crystal structure of (inorganic) materials is nowadays gathered
in generally available databases. The most used of these, the Inorganic Crystal Structure
Database (ICSD) [1] contains around 170,000 entries. This number can be compared, e.g.,
to the number of chemical substances in the CAS registry (more than 103 million), to the
number of macromolecules in the RCSB Protein Data Bank [2] (more than 100,000), or even
the number of crystals (organic and inorganic) in the Crystallography Open Database [3]
(around 300,000).

However, these 170,000 entries in the ICSD include duplicated structures, insufficiently
characterized phases (e.g., missing the positions of H atoms), and several alloys. If we
restrict ourselves to well-defined crystal structures we find around 50,000 entries. It is this
amount of 50,000 entries that has been studied theoretically, in a systematic manner, over
the last few years using high throughput techniques. The results of these large-scale studies
can be found in excellent publicly available databases, such as the Materials Project [4],
the Open Quantum Materials Database [5], or the Ab-initio Electronic Structure Library
AFLOWLIB [6].

But let us go a step back and, and look at the 50,000 materials we know nowadays.
The first question that comes to our mind is if this set is representative of the number
of (thermodynamically stable) materials that we can create in a lab. The answer to this
question is probably no. It is true that elementary substances and binary compounds are
relatively well studied, but present knowledge of ternary and multinary materials is likely less
complete. Of course, a systematic experimental endeavor of synthesis and characterization
of all possible phases is extremely expensive and time-consuming. It is for this task that
numerical simulations appear as the most cost-effective way to explore the gigantic search
space of compositions at our disposal. One way to do this is by using these databases as the
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starting point for sophisticated machine learning techniques that try to design new materials
with tailored properties. These techniques have been touted as the most cost effective path to
the discovery of new materials in a diverse range of applications, such as Li batteries [7, 8],
thermoelectricity [9–11], or photovoltaics [12–15].

An alternative approach to computational materials discovery that does not rely on
databases is crystal structural prediction (CSP). This is a relatively new field, that gained some
momentum by the beginning of the 21th century. However, we still had to wait another 10
years before seeing any large scale application. There are several reasons why CSP remained,
in practice, unaccessible for so long. First of all, CSP is one of the computationally more
demanding problems in materials science. Secondly, universal access to high performance
computing (HPC) infrastructures is also recent. To give an example, the first European HPC
initiative (HPCEUR) only appeared in 2004. Third, accurate ab initio methods that allow for
proper simulations of (sizeable) quantum systems were also under development. Finally, and
perhaps due to the previous points, efficient algorithms for CSP were also only developed
around this time. Nevertheless, most of these limitations are by now overcome, and a new
era of computationally-guided materials discovery has already begun.

The main goal of this thesis is to extend the knowledge of new materials using state-of-the-
art ab initio structural predictions methods. There is a huge demand for new, revolutionary
materials. These are expected to leverage ground breaking developments in critical tech-
nological areas like thermoelectricity, high temperature superconductors, batteries, solar
cells, transparent electronics, etc. In some of these fields the solutions that exist are simply
not good enough for large scale applications, while in others, cheaper and more sustainable
alternatives are desired. To this end, besides using already well established technics, we
will also need develop novel approaches to tackle some limitations of the standard methods.
Two key ingredients are needed: first, we need a crystall structure prediction algorithm, that
allows us to explore efficiently the potential energy surface. To this end we chose the minima
hopping method (MHM) [16, 17]. Second, we need a method able to calculate accuratly
energies, forces and stresses. Here, the obvious choice is density functional theory [18, 19].
This choice is well motivated by the fact that density functional theory is by now the only
theory that is able to provide a convenient accuracy for a relatively moderate computational
effort. This thesis is organized as follows:

Chapter 2 is an introduction to the theoretical framework. I will start by an brief introduc-
tion to Density Functional Theory (DFT), followed by an overview of the Density Functional
Tight-Binding method (DFTB). Finally, we discuss structural prediction methods, including
the important topic of structural stability.
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Chapter 3 is about the radial collapse of carbon nanotubes (CNT). This work was done in
collaboration with the experimental group of Prof. A. San-Miguel in Lyon. I will present
results for quasi-static DFTB calculations of bundled, and individualized CNTs in water,
using the DFTB method, as these systems are too large for systematic DFT calculations. In
this case, we are not interested in finding the lowest energy structure, but rather we want to
follow the evolution of the CNT structures with pressure.

In Chapter 4 I deal with the subject of type-I Silicon Clathrates. Si clathrates are widely
studied compounds that gained a renewed attention in the recent years as they have been
investigated for thermoelectric applications. Their band gap can be easily tuned by doping the
framework structure and the center of the cages. At the same time, the unit cell complexity
and the host-guest interaction lead to a very low lattice thermal conductivity. Due the large
number of combinations of doping elements, a variety of different clathrate phases has been
synthesized. However, we think that many more are still due to be discovered. Therefore,
we used computational high-throughput techniques in order to search for potentially new
thermodynamic stable clathrate phases. Here, we are only interested in compounds with the
type-I clathrate structure (space group 223), hence no global structure prediction is needed.

In Chapter 5 we use ab initio global structural prediction combined with high-throughput
calculations to explore the periodic table in search of novel oxide phases. The goal is to find
unknown compounds within the stoichiometries (Cu,Ag,Au,Ni)XO2 and CuXOS where X is
an element of the periodic table. The choice of this specific set is motivated by the fact that it
includes Cu delafossite compounds, which are the best known p-type transparent conductive
oxides, critical for potential applications in transparent electronics.

Chapter 6 present our work done on materials design, i.e., the so-called inverse problem:
given a certain desired property (or properties), discover (design) the material that possesses
this property under a given set of constrains. We propose a novel approach to design
new materials with tailored properties using only the laws of quantum mechanics and the
knowledge of periodic table. This is done by combining an evolutionary algorithm that
optimizes the chemical composition for the desired property, and the minima hopping
method that searches for the ground state structure of each chemical composition. On top of
this, we developed software to automatize most of the workflow, which turns these complex
calculations feasible.

Finally, in Chapter 7 we present a summary and relevant conclusions of this thesis.
With the exception of Chapter 4, most of the results presented in this thesis have been

published in Refs [20–22]





Chapter 2

Theoretical background

Kohn-Sham Density Functional Theory (DFT) is by now the default choice for condensed
matter ab initio simulations. Backed by the exponential growth of the computational power,
we are no longer limited to simple systems like small molecules or periodic systems with a
few atoms per unit-cell. In fact, calculations with several thousands of atoms have already
been possible for some time, being the known record at the moment over 2 million atoms [23].

Long gone are the days where a computer simulation would serve merely as a complement
for an experiment. We live in the era where ab initio calculations are accurate enough not
only to reproduce experimental data, but also to estimate properties of materials inaccessible
experimentally. More recently, even the prediction of new materials has become possible,
allowing the exploration of a large variety of systems in a fast and relatively inexpensive way.

In this chapter, I introduce the framework used throughout this thesis. DFT is one of the
key ingredients, therefore I start with a brief introduction to this theory. In the following,
I give a description of the density functional tight-binding method, an approximation to
DFT that allows the study of large systems, too large for systematic studies with ab initio
methods. Then, a description of the several algorithms which make structural prediction
possible. Finally, a discussion on structural stability.

2.1 Density Functional Theory

Let us consider a system of N non-relativistic electrons described by the time-independent
Schrödinger equation, in the Born-Oppenheimer approximation [24], written as

ĤΨ(x1,x2, . . . ,xN) = EΨ(x1,x2, . . . ,xN) , (2.1)
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where xi comprehends the spatial and spin coordinates of electron i (ri,σi). The hamiltonian
operator can be written as,

Ĥ = T̂ +V̂ext +V̂ee , (2.2)

where the kinetic energy, the external potential, and the electron-electron repulsion operators
are respectively:

T̂ =−
N

∑
i=1

1
2

∇
2
i , V̂ext =

N

∑
i=1

vext(ri) , and V̂ee =
N

∑
i< j

1
ri j

, (2.3)

with

vext(ri) =−∑
I

ZI

riI
and ri j = |ri − r j| . (2.4)

Here, capital indices stand for the nuclear coordinates and ZI is the atomic number of the
nuclei I. Hartree atomic units are used throughout. To obtain the total energy of the system
we have also to add the nuclei-nuclei repulsive energy contribution,

Vnn = ∑
I<J

ZIZJ

rIJ
. (2.5)

In principle, by solving equation (2.1), we can calculate all the physical quantities we
want. However, there are several reasons why this is simply not possible. In the first place, Ψ

is a function of 3N variables. Just storing the wave-function in memory is an impossible task,
even for small atomic systems. Secondly, due to the last term of (2.2), we can not solve the
equation independently for each of the N particles.

In DFT we replace as the basic physical quantity the complicated multi-dimensional
wave-function Ψ by a much simpler quantity - the electronic density of the system n(r), which
is a function of just 3 variables. The first step was done in 1927 by Llewellyn Thomas [25]
and Enrico Fermi [26] which, independently, idealized a model were the full many-body
Schrödinger equation was replaced by one equation depending only on the electronic density
of the system. This approach was later developed by Hohenberg and Kohn in 1964 [27],
who paved the mathematical ground for density function theory with two fundamental
theorems. Considering a N−electron system with a non-degenerate ground-state ruled by the
Hamiltonian (2.2), the first theorem states that the external potential vext(r) is determined,
within an additive constant, by the electronic ground state density n0(r) of the system. That
is, there is a one-to-one correspondence between the electronic density of the system and the
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external potential. Besides that, they proved that any observable of the system can be written
as a unique functional of the density,

⟨Ψ| Ô |Ψ⟩= O[n] . (2.6)

For instance, we can write the total energy of the system under an external potential vext as a
functional of the density:

Evext[n] = ⟨Ψ| T̂ +V̂ext +V̂ee |Ψ⟩+Enn

= FHK[n]+
∫

drn(r)vext(r)+Enn ,
(2.7)

where

FHK[n] = T [n]+Vee[n] (2.8)

is an universal functional, independent of the external potential, that is the same for any
N-electron system. The second theorem states that, for a non-negative trial density, ñ, and∫

ñdr = N:

E0 ≤ Evext [ñ] . (2.9)

The exact ground-state density is then the one that minimizes the energy functional (2.7)

E0 = min
{n}

Evext[n] . (2.10)

which can also be written as

δ

δn(r)

[
Evext [n]−µ

∫
n(r)dr

]
=

δFHK[n]
δn(r)

+ vext(r)−µ = 0 , (2.11)

where µ is a Lagrange multiplier that ensures the normalization of the density to the total
number of electrons. So, solving Eq. (2.11) would give us the exact ground-state of any
electronic system. However, the explicit form of FHK is unknown.
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2.2 Kohn-Sham Equations

Let us consider a non-interacting system of electrons (V̂ee = 0 in equation (2.2)). In this case,
the many-body ground-state wave-function can be written as a Slater determinant of single
particle wavefunctions ψi,

Ψs(x1,x2, . . . ,xN) =
1√
N!

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
ψ1(r1) ψ2(r1) · · · ψN(r1)

ψ1(r2) ψ2(r2) · · · ψN(r2)
...

... . . . ...
ψ1(rN) ψ2(rN) · · · ψN(rN)

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
, (2.12)

satisfying: [
−1

2
∇

2 + vs(r)
]

ψi(r) = εiψi(r) . (2.13)

Here, vs is a fictitious external potential. The ground-state density is obtained from the N
lowest occupied orbitals,

n(r) =
N

∑
i=1

|ψi(r)|2 . (2.14)

The variational principle for this non-interacting system yields:

δ

δn(r)

[
Es[n]−µs

∫
n(r)dr

]
=

δTs[n]
δn(r)

+ vs(r)−µs = 0 . (2.15)

This is formally equivalent to equation (2.13). Now, let us consider again the interacting
system. We can rewrite the functional (2.8) as

FHK[n] = Ts[n]+EH[n]+Exc[n] , (2.16)

where EH[n] is the classic Coulomb energy, also known as the Hartree energy

EH[n] =
1
2

∫
dr
∫

dr′
n(r)n(r′)
|r− r′|

, (2.17)

and the non-classical part, the exchange and correlation energy

Exc[n] = T [n]+Vee[n]−Ts[n]−EH[n] . (2.18)
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With these modifications the Euler equation (2.11) reads:

δTs[n]
δn(r)

+ vext(r)+
1
2

∫
dr′

n(r′)
|r− r′|

+
δExc[n]
δn(r)

−µ = 0 . (2.19)

Finally, we can rewrite this Euler equation as:

δTs[n]
δn(r)

+ vKS[n](r)−µ = 0 , (2.20)

where

vKS[n](r) = vext(r)+ vH[n](r)+ vxc[n](r) , (2.21)

with

vH[n](r) =
1
2

∫
dr′

n(r′)
|r− r′|

and vxc[n](r) =
δExc[n]
δn(r)

. (2.22)

If we now compare equation (2.20) with (2.15), we see that the two are identical and therefore,
solving (2.20) has to be the same as solving the single-particle Schrödinger equation:[

−1
2

∇
2 + vKS[n](r)

]
ψi(r) = εiψi(r) , (2.23)

where the ground-state density is given by:

n(r) =
N

∑
i=1

|ψi(r)|2 . (2.24)

Equations (2.20) and (2.23) are known as the Kohn-Sham equations [28]. They allow us
to treat a system of interacting electrons using a non-interacting one, that yields the same
ground-state density. This would be exact if we knew the exact form of Exc, but we do
not. Nevertheless, the major part of the electron-electron interaction (the Hartree energy) is
treated exactly and so does the non-interacting kinetic energy. The remaining exchange and
correlation energy is by far the one that has the smallest contribution to the total energy. It is
however, the main responsible for the binding energy of matter, being a good approximation
to this term the key to obtain accurate results.

2.3 Density Functional Tight-Binding Method

DFT is certainly the best compromise between accuracy and speed for most of the systems
studied in the field of condensed matter. However, when systems at study are too large for
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extensive ab initio calculations other approaches are required. Force field methods allow
for simulations with millions of atoms with limited computer resources. These methods
are usually parametric models fitted to experimental data: for a given system and a given
model, some parameters are fitted to reproduce experimental data (geometries, energies, etc).
These can be very precise for systems close to the ones they were fitted to, but they are
not always transferable to other problems. For instance, a model parameterized to graphite
will in principle work well for other systems with sp2 hybridized carbon, but it will fail for
diamond-like systems were carbon adopts a sp3 hybridization. Somehow in between force
fields and ab initio we have semi-empirical methods. These are derived from ab initio, where
the traditionally heavy computational terms are simplified and approximated. To compensate
for the lost physics, parameters are then fitted to experimental data. Therefore, although they
are not as accurate as ab initio, they are a few orders of magnitude faster, while transferable
to a larger range of systems than force field methods.

Density functional tight binding [29, 30], unlike other semi-empirical methods, is fitted
to DFT calculations. The energy functional is derived directly from the expectation value of
the Kohn-Sham hamiltonian (Eq. (2.23)):

E =
N

∑
i
⟨ψi|−

∇2

2
+ vext(r)+ vH[n](r)+ vxc[n](r) |ψi⟩+Vnn, (2.25)

where Vnn is the energy due to the ions. The first step is to approximate the charge density
n(r) as a sum of a reference charge n0(r) plus a small charge fluctuation δn(r). With this
substitution, and expanding E around n0 to second order fluctuation δn (with n(r)→ n and∫

dr →
∫

):

E =
N

∑
i
⟨ψi|−

∇2

2
+ vext(r)+

1
2

∫ ′ n′0
|r− r′|

+ vxc[n0] |ψi⟩

− 1
2

∫ ∫ ′ n′0n0

|r− r′|
+Exc[n0]−

∫
vxc[n0]n0 +Vnn

+
1
2

∫ ∫ ′
(

1
|r− r′|

+
δ 2Exc

δnδn′

⏐⏐⏐⏐
n0

)
δnδn′ .

(2.26)

The first line of Eq. (2.26) is known as the band-structure energy, EBS. It is usually
written in a compact form as

EBS =
N

∑
i
⟨ψi| Ĥ0 |ψi⟩ . (2.27)
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The second line is called the repulsive term, Erep, mainly due to Vnn, even if it also contains
exchange and correlation contributions. In fact, this term works like the Exc (Eq. (2.18)) in
plain DFT – all the complicated physics are put here and approximated. In DFTB this term is
written as a sum over atom pairs, IJ, where each one is a simple repulsive function depending
only on the atomic species and interatomic distance,

Erep = ∑
I<J

V IJ
rep(RIJ) . (2.28)

These repulsive functions have to be fitted to reference DFT calculations and constitute the
major difficulty for good DFTB parameterizations.

Finally, the last term in Eq. (2.26) contains Coulomb and exchange-correlation inter-
actions due to charge fluctuations. It is commonly referenced as Ecoul. When performing
non self consistent-charge calculations (nonSCC) [31], charge fluctuations are ignored and
Ecoul is simply disregarded. However, for most hetero-nuclear systems this term has to be
included. In order to include this effects without a significant computational burden, charge
fluctuations δn are decomposed in a sum over normalized atomic contributions δnI [32]:

δn = ∑
I

∆qIδnI , (2.29)

with

∆qI ≈
∫

VI

δn . (2.30)

The charge fluctuation term in then simply written as:

Ecoul =
1
2 ∑

IJ
γIJ(RIJ)∆qI∆qJ , (2.31)

where γIJ is a term that depends only on the distance RIJ and on the Hubbard parameters
UI and UJ , in a way that reproduces the original behavior of the Coulomb and exchange-
correlation interactions when I = J and I ̸= J.

Now, following the traditional tight-binding approach, the single-particle wave-functions
ψi, are expanded using a minimal local basis (one radial function for each angular momentum
state):

ψi(r) = ∑
µ

ci
µφµ(r) . (2.32)
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Applying Eq. (2.32) to Eq. (2.26) and applying all the previous approximations, we end up
with the final DFTB energy expression:

E = ∑
i

∑
µυ

ci∗
µ ci

υH0
µυ +

1
2 ∑

IJ
γIJ(RIJ)∆qI∆qJ + ∑

I<J
V IJ

rep(RIJ) . (2.33)

Using now the variational principle, we obtain the general eigenvalue problem:

M

∑
µ

ci
µ(Hµυ − ε

iSµυ) = 0, ∀ υ , i (2.34)

with

Hµυ = H0
µυ +

1
2

Sµυ ∑
K
(γIK + γJK)∆qK,

= H0
µυ +H1

µυ , Sµυ =
⟨
φµ

⏐⏐ φυ

⟩
, ∀ µ ∈ I, υ ∈ J .

(2.35)

Matrix elements of H0
µυ and Sµυ are not calculated at runtime. Rather, they are previously

calculated and tabulated for efficiency. Localized atomic orbitals φi are obtained from DFT
calculations of free atoms. In order to simulate confined orbitals as one has on multi-atomic
systems, an extra confinement term is added to the traditional Kohn-Sham potential. Having
φi, the matrix elements H0

µυ and Sµυ are calculated and stored, for fixed values of RIJ and
for each pair of orbitals. These matrix elements, the Hubbard parameters and V IJ

rep(RIJ) are
the parameters actually used in a DFTB calculation.

In a non-SCC calculation, the solution of Eq. (2.34) is obtained immediately. On the
other hand, in SCC calculations Eq. (2.34) has to be solved self-consistently, akin to the
Kohn-Sham equations. For a starting guess set of ∆qi, we calculate H1

µυ and solve Eq. (2.34)
to obtain the expansion coefficients ci

υ . With these coefficients, updated ∆qi are obtained and
used again to calculate H1

µυ . This process is repeated until the new and previous ∆qi are the
same within some tolerance value.

2.4 Structural Prediction Algorithms

Crystal structure prediction is one of the hardest problems in materials science. This is in
part due to the fact that the number of local minima of the potential energy surface (PES)
increases exponential with the number of atoms in the system. Another problem is that
there is no quantity that can unequivocally tell if one has arrived to the global minimum.
Local optimizers are only capable of optimizing a structure to the closest local minimum.
Therefore, either one knows approximately the ground state structure of a compound, and in
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this case a local optimizer will do the job, or one needs an algorithm that allows to search
the whole PES. The first case suggests a strategy used in materials science as a valuable
method for materials discovery. Following the principle that Nature often chooses similar
answers to similar problems, if one knows the crystal structure characteristic of a family
of compounds (delafossites, perovskites, clathrates, Heuslers, etc), one can find a different
compound by replacing one atom with a different one. In this case, a local optimization is
enough to relax the new structure that hopefully, will also be the ground state structure for
the new compound. Higher success rates can be achieved by using sophisticated machine
learning algorithms, which can help to choose the most likely substitutions. This approach is
currently widely used with very good results, and applications to several areas have already
been published [7, 33–35]. However, as it relies heavily on experimental data, it will fail to
find compounds that are very different from what is already known.

Structural prediction algorithms are then designed to explore large regions of the PES,
aiming to find its global minimum. Several methods to tackle this problem were proposed
with demonstrated success [36–38]. Incidentally, these methods also allow the discovery of
low energy metastable structures, not always accessible experimentally in normal conditions,
at no extra cost. In the next paragraphs an overview of the most used methods is given, with
special a emphasis on our method of choice: the minima hopping method (MHM). All these
methods are fairly general and can be used with several ab initio / semi-empirical codes,
as long as they can provide energies, forces and stresses. In our case, all the MHM runs
in this thesis used energies and forces calculated using DFT as implemented in the code
VASP [39, 40].

2.4.1 Random Search

Random search is perhaps the simplest of all the methods for structure prediction. It tries to
find the global minimum by spawning several random structures across the PES (solid circles
in Fig. 2.1a), which are then (locally) optimised (empty circles). By repeating this several
times one expects to eventually find the global minimum - each colored circle represents a
different candidate structure. Several constrains (space group, cell volume, distance between
different atoms, etc) are applied to limit the otherwise too large search space and speed up
the process. Available experimental data can also help biasing the initial structures for the
problem at hand.
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2.4.2 Simulated Annealing

Simulated annealing [41] can be seen as the computer realization of metallurgy. Here, metals
are melt at high temperatures and subsequently cooled in a controlled way. In simulated
annealing, the energy of a candidate structure is evaluated at a certain (high) temperature.
Afterwards, atomic positions and cell vectors are perturbed using molecular dynamics or
Monte-Carlo and the energy of this new structure is calculated. This new structure is then
accepted or rejected based on the Metropolis criterion. This process is repeated while the
simulation temperature is gradually decreased. Initial structures have a higher probability
of being accepted since the temperature is high, which leads to disordered (amorphous)
structures. As the temperature decreases, lower energy structures will have higher accepting
rates. When the temperature reaches 0 K, only lower energy structures are accepted.

2.4.3 Genetic Algorithms

Genetic algorithms [42] inherited their name from genetics, due to their printciple of “survival
of the fittest”, which makes them similar to the Darwinian evolution.

For a given stoichiometry, several different candidates are created (population) – filled
green and red circles in Fig. 2.1b. These initial structures can either be random structures
or educated guesses for this particular problem. After a local optimization (empty circles),
the target property (or properties) is calculated – the thermodynamic stability in most cases.
The best candidates are chosen, and a new set of structures (generation) is created containing
part of these candidates, and new structures obtained from crossover operations between the
best candidates (blue circle). There are also other possible operations like mutations, where
an atom is replaced by another one, or permutations, where two atoms of the crystal are
permuted. These operations are also applied to the cell vectors to create new cell parameters
that are not copies of the ones of the parents, but instead a mixture of both. Genetic algorithms
are perhaps, the most widely used algorithms nowadays for crystal structure prediction.

2.4.4 Particle Swarm

Particle swarm optimization [43] is inspired by the swarm behavior found in Nature (insects
and birds for instance). The main idea is to have several walkers exploring different points
of the PES at the same time, as one has in a parallel random search algorithm. In this case,
however, each walker shares its position in the PES with the others and they move across the
PES as a group. At each instant, the position of each walker, xi(t ′), depends on its previous
position, xi(t), and its velocity, vi(t ′), as xi(t ′) = xi(t)+ vi(t ′). Its velocity depends not only
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(a) (b)

Figure 2.1 Hypothetical PES and schematic algorithm for (a) random search and (b) genetic
algorithm. The x axis represents some internal degree of freedom, while y is the energy for a
given configuration.

on its previous velocity, vi(t), but also on the history of all the walkers, namely the position
of the best known minimum, gbest(t), and its optimized position, pbest(t), as

vi(t ′) = ωvi(t)+ ci1ri1(pbest(t)− xi(t))+ ci2ri2(gbest(t)− xi(t)). (2.36)

Here, ω is an inertia weight, ri1,ri2 are random numbers and ci1,ci2 control how much
each walker trusts its position compared to the best known minimum. An hypothetical path
for a single walker can be seen in Fig. 2.2a (green circles).

2.4.5 Minima Hopping Method

The Minima Hopping Method, developed by S. Gödecker and M. Amsler [16, 17], is a
structural prediction algorithm that tries to find the global minimum of a PES by jumping
between local minima using short molecular dynamics (MD) runs (solid arrows in Fig. 2.2b),
followed by local geometry optimizations at each minima (dashed arrows). An energy based
acceptance criteria assures that each new minimum has a 50% chance of being accepted (δE
in the figure). This means that every time a new minimum is found, the acceptance criterion
is adjusted to guarantee that, on average, only half of the local minima are accepted. In order
to avoid revisiting already explored minima, the temperature of the MD runs is adjusted
dynamically during the search. This is done to allow escaping local minima surrounded by
high energy barriers. A softening process is used to accelerate the minimization problem
as it is expected that (on average) crossing low energy barriers will lead to lower energy
minima [44]. Hence, the MD velocities should be aligned along directions of low curvatures
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(a) (b)

Figure 2.2 Hypothetical PES and schematic algorithm for (a) particle swarm optimization
and (b) minima hopping. The x axis represents some internal degree of freedom, while y is
the energy for a given configuration.

– soft modes. In practice, as a perfect alignment would eliminate the random character of the
escape step, these directions are chosen only to avoid hard mode directions.

This method is able to optimize both cell vectors and atomic positions, being the only
constraints the stoichiometry and the number of unit cells. In our runs, we start always from
a random structure, assuring only that the minimum distance between atoms is at least equal
to the sum of their covalent radii.

The minima hopping method has been used for structural prediction in a wide range of
materials [45–48], including the dependence on pressure [49] and the exploration of binary
phase diagram [50–52] with remarkable results.

2.5 Structural Stability

Now that we have described how to get an optimised (new) structure of a given composition,
we ask ourselves how we we know if this is the ground-state structure, and more importantly,
how we know if this structure is accessible experimentally. Even for small systems there are
a lot of possible combinations of arrangements of atoms / crystal structures, most of them
not favorable thermodynamically. Also, independently of the algorithm used, there is no
guarantee that the lowest energy found is the ground-state. In fact, it can happen that the true
ground sate is not accessible (too large unit cells, temperature, pressure, etc). The question is
then how to estimate the thermodynamic stability of a compound.

Let us consider a system at zero pressure and zero temperature. The relevant thermody-
namic quantity in this case is simply the total energy E. The simplest way one can think of to
estimate the stability is to compare the energy of the compound with the energy of its individ-
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ual constituents. For instance, we consider a binary compound AnBm with energy E. AnBm is
thermodynamically stable if E − (nEA +mEB)< 0. This quantity is known as the formation
energy. However, this only tells us that AnBm is stabler than the sum of its constituents. We
are not considering the case were another compound, for example AnBn, could be even more
stable. Therefore, when calculating the thermodynamic stability of a structure we should
compare its energy with all the possible decomposition channels. This leads to the concept
of convex hull of stability. We define the convex hull of thermodynamic stability as the
hypersurface in composition space that passes by all materials that are thermodynamically
stable. Unstable materials will be above the hull, and the distance will be a measure of
the energy released by decomposing into the stable phases. In this context, a compound is
thermodynamically stable if its distance to the convex hull is zero. Therefore, one needs to
search for the experimentally and theoretical known decomposition channels, calculate them
using e.g. DFT, and compare them with our new candidate structure. Fortunately, nowadays
there are several public available databases of DFT calculations where one can extract easily
this information [4–6], provided they were obtained in the same simulation conditions (same
code, pseudo-potentials, number of k-points, cut off energy, etc).

Another important aspect to take in account is the dynamic stability. Local optimizations
result in stationary points on the PES – i.e. the first derivatives of the energy are close to
zero. However, this does not assure that we are in a minimum. For that, we need to calculate
second derivatives of the energy, which are related to phonon frequencies. Imaginary phonon
frequencies are then signs of dynamic instability. That said, a thermodynamically stable
structure (Ehull = 0) can still be dynamically unstable, meaning that we did not find its ground
state.





Chapter 3

Radial collapse of Carbon Nanotubes

Since the outstanding paper by Iijima in 1991 [53] carbon nanotubes remain an intense
field of research. Their unique electronic and mechanical properties make them ideal
candidates for novel electronics and new superhard materials. Despite their very high
resilience and Young modules, it was observed that nanotubes can undergo ovalization and
collapse, sometimes even at atmospheric pressure [54, 55]. The impact of these geometrical
changes on the electronic properties is still subject to debate [56–58]. Moreover, the collapse
process itself is still not completely understood, as only indirect observation is reported. It
is expected that the radial collapse pressure of a carbon nanotube is mainly determined by
its diameter [59–64], but other factors, like the nanotube chirality, the presence of defects,
the choice of the pressure transmitting medium [65] (PTM), and the nanotube filling (e.g.
argon [65], water [66], fullerenes [67, 68] or other nanotubes [68, 69]) are also known to be
relevant [70, 71].

Experimentally, Raman spectroscopy is the main technique used to study the collapse of
nanotubes. However there is not yet a clear consensus on the best spectroscopic signature
of the collapse. Several footprints have been proposed: (i) the disappearance of the radial
breathing mode signal, which has been used in literature either to identify the polygoniza-
tion [72] or the ovalization [73] of the cross-section, or directly the tube collapse [74] ;
(ii) the change of slope [73, 75, 76], the presence of a plateau [74], or even the change of
sign [67] of the curve representing the dependence of the G-band frequency with respect to
pressure. However, the use of the progressive attenuation of the Raman modes intensity was
questioned, due to the resonant character of the Raman signal [77], and the modifications
of the resonance conditions induced by pressure [78, 79]. Many factors, in fact, contribute
to make experimental results difficult to interpret: the inhomogeneity of the geometrical
characteristics of the tubes in the samples, impurities and defects resulting from the growth
processes, or the use of different pressure transmitting media [65, 80–82], which could
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eventually become solid before the observation of the collapse or even penetrate the tubes
if these are open [65]. In fact, for tubes of similar diameters, the experimental values of
the collapse pressure of single-wall bundles can differ of more than one order of magnitude.
These values have been shown to be extremely sensitive to the nature of the pressure trans-
mitting media [67]. Other experimental methods have been used to observe the pressure
induced modification of the cross-section, such as neutron diffraction [83] (indicating a
progressive polygonization), X-ray diffraction [84] (with no indication of collapse transitions
up to 10 GPa in arc-discharge carbon nanotubes) or optical spectroscopy [85].

There are many theoretical papers dealing with the collapse of carbon nanotubes [59, 63,
64, 70, 71, 86–95]. Unfortunately, theoretical works using different methods and setups are
known to give dissimilar and sometimes even contradictory results. In particular, calculations
performed with classical potentials usually yield collapse pressures around 50% smaller
than the ones obtained with ab initio methods [63]. However, even when calculations
are performed with comparable approaches, the output values of the collapse pressure
are very scattered and difficult to reconcile. The reasons are easy to understand if we
consider that calculations are usually performed using either classical potentials or density-
functional theory. While the latter is certainly the most precise method, density-functional
simulations are numerically very heavy for these systems, and therefore calculations are
usually performed for very small unit cells containing only one (zigzag or armchair) nanotube.
Classical potentials are certainly numerically much more efficient, and allow for simulations
of unit-cells containing several nanotubes of diverse diameters and chiralities. However,
they suffer from an intrinsic problem of precision: while designing classical potentials for
either sp2 or sp3 carbon is relatively easy, nanotubes contain a combination of both bonds, a
situation much more complicated to describe classically.

Here we aim at clarifying the existing controversies by performing accurate simulations
of a large number of single-wall nanotubes with a variety of diameters and chiralities, in
several setups. In view of the problem of precision of classical potentials in this context,
we chose to stick to a quantum-mechanical description. As the use of density-functional
theory would limit considerably the size of the systems that we could study, we chose
therefore a more efficient alternative, namely the density-functional based tight-binding
method (DFTB) [29, 30] explained in Chapter 2. This method is particularly good for carbon
compounds as demonstrated in previous works [29, 96–98].

In the rest of this Chapter, we will first study the collapse of CNTs in a bundled configu-
ration, using the bundle matrix as the pressure transmitting medium. Afterwards, in order to
examine the effect of the PTM and the filling on the collapse, we will turn our attention to
isolated, empty and water filled, carbon nanotubes in a water environment.
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Figure 3.1 Collapsed bundle of (10,10) nanotubes in the case of 1 tube per cell (left), 2 tubes
per cell (center) and 4 tubes per cell (right).

3.1 Carbon nanotubes bundles

We started performing quasi-static DFTB calculations on 69 single-wall carbon nanotubes
bundles using the DFTB+ software package [99] (with the matsci-0-3 parameters set [100]).
Since carbon nanotubes are relatively inert structures where no significant charge transfer
is expected [96], we decided to adopt the non-self-consistent charge scheme of DFTB. It
is true that there is a small charge transfer after the collapse as a result of the modified
curvature [101], but this is not expected to affect the pressure at which the collapse takes
place. Even if this form of tight-biding has already been extensively tested, we performed a
simple validation test of our setup, by comparing the lattice constant of the (10,10) nanotube
at ambient pressure (1.69 nm) with the experimental [102] 1.70 nm and DFT values [89]
(1.65−1.69 nm, depending on the exchange and correlation functional and pseudo-potential
used). The DFTB value is in very good agreement with both.

The set of systems under study includes basically all nanotubes with less than 300 atoms
in the unit cell and with diameters up to 1.9 nm. Our simulations were performed using
hexagonal unit cells containing 1, 2 and 4 nanotubes with periodic boundary conditions in
the three directions. (For unit cells containing 4 tubes we included only nanotubes with less
than 150 atoms due to the increased computation requirements.) A minimum tube length
of 1.98 nm was assured in all cases, which corresponds to four primitive unit cells for the
armchair nanotubes. The initial distance between the nanotubes in the bundle was set to
0.335 nm.

For each value of pressure, a random displacement of 0.002 nm was applied on each atom.
After that, geometry and cell vectors were optimized until all the forces became smaller than
10−4 Ha/Bohr. The applied pressure was increased in steps of 0.2 GPa up to 30 GPa or until
collapse. The collapse of the tubes is abrupt in the large majority of the cases and it was
identified by a discontinuity in the Gibbs energy, that corresponds to the transformation to a
peanut-like geometry. In some rare cases this discontinuity was not found and the collapse
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Figure 3.2 Collapse pressure as a function of the nanotube diameter for 1 (circles), 2 (triangles)
and 4 (squares) nanotubes in the unit cell. The lines are fits obtained using Eq. (3.1).
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Figure 3.3 Collapse pressure as a function of the nanotube diameter for zig-zag, armchair
and chiral nanotubes, using 2 CNTs per unit cell. The black line is the fit obtained using
Eq. (3.1).

pressure was determined by inspection, i.e., we assigned the collapse to the first peanut-like
geometry found.

We start by analyzing how the number of tubes in the unit cell influences the collapse
pressures. It is evident that having only one tube per unit cell is a large constraint, allowing
only symmetric collapses, while having more tubes opens up other possible collapse channels
(see Fig 3.1). To estimate how this influences the collapse pressure, we performed simulations
using 1, 2, and 4 nanotubes per unit cell and maintaining equal all other parameters of the
simulation. These results are summarized in Fig. 3.2. The two lines represent fits of the data
for tubes larger than 0.6 nm diameter with the function

Pcollapse = α/(β +D)3 , (3.1)

where D is the diameter. Fig. 3.2 shows that using 2 or 4 tubes per cell yields similar results,
but having only one tube per cell leads to a much larger dispersion of the collapse pressures.
This clearly proves that one tube per cell is not enough to describe correctly the bundle
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interactions. A recent theoretical work [71] concluded that, for a comparable diameter of
about 1.35 nm, the collapse pressure of an armchair single-wall carbon nanotube is several
(13.75) times higher than the one of a zigzag nanotube. Our accurate calculations suggest
that that result is likely to be an artifact of using only one tube in the unit cell. In particular,
for (10,10) and (17,0) CNTs, our simulations yield collapse pressures of 3.4 and 3.6 GPa,
to compare with the values reported in Ref. [71] of ∼ 5.5 and ∼ 0.4 GPa, respectively.
The choice of using one tube per unit cell might be one of the reasons for the observed
discrepancies in the results published in the literature.

As we proved that the differences between having 2 and 4 tubes are not significant, we
will focus the rest of the discussion on the case of 2 tubes per unit cell for which we have
results for more chiralities (see Fig. 3.3). The solid black line in Fig. 3.3 is again a fit using
Eq. (3.1) (yielding α = 24.6 GPa nm3 and β = 0.4 nm, while the dashed line reproduces
the results of Ref. [59]). If we consider tubes with diameters above 0.6 nm, we find an
overall good agreement with the well known D−3 behavior. However, below this value, the
collapse pressures start to decrease with decreasing diameter. This may be related to the
increased curvature of the graphene sheet that causes higher load on the C–C bonds. For
small tubes, we even see for some chiralities the formation of interlinked sp3 structures
connecting adjacent nanotubes after collapse. For really small nanotubes, such as the (5,0)
and (7,0), these interlinked structures are already present at ambient pressure. The existence
of these structures has been reported experimentally [103] and theoretically [89, 104, 105].

Quantitatively, we obtained collapse pressures that are roughly the double of the majority
of other theoretical works based on classical potentials [59] (see Fig. 3.3). For nanotube
diameters in the range of 1.2 to 1.5 nm, which typically correspond to arc-discharge carbon
nanotube bundles, our calculated collapse pressures range from 3 to 7 GPa. As already
explained, the experimental values for the collapse pressure are highly spread. We consider
the case of arc-discharge bundles and only studies using either 4:1 methanol:ethanol or
argon as pressure transmitting medium, which exhibit good hydrostatic conditions up to
10 GPa. Phase transformations towards collapsed forms were reported at 10 GPa using Raman
spectroscopy [65, 75] or X-ray diffraction [84]. Other works [103] reported the collapse of
arc-discharge bundles at pressures of 5 GPa. Our calculated values in the 3–7 GPa interval
compare very well with the experimental values ranging from 5 to 10 GPa for arc-discharge
carbon nanotube bundles.

In order to study the effects of chirality on the collapse, we plotted the collapsed pressure
as a function of the chiral angle in Fig. 3.4 in the case of two tubes per unit cell. The diameter
is represented by the color scale on the right. For the smallest nanotubes, chirality has a
large influence in the collapse pressure, which can be understood as a consequence of the
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Figure 3.4 Collapse pressure as a function of the chiral angle calculated with two tubes per
unit cell. The nanotube diameter is indicated by the color scale.
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I II III

Figure 3.5 Collapse modes observed. From the top: Mode I, from ovalized to peanut
geometry; Mode II, from polygonised to peanut; Mode III, from polygonised to star.

lower number of carbon atoms forming the nanotube wall, resulting in less cylindrical (more
polygonised) nanotubes. For larger nanotubes no correlation between the chirality and the
collapse pressure is noticeable.

Finally, we inspected the different possible collapse channels. We found three possibilities,
as it is shown in Fig. 3.5. Mode I represents the transformation from ovalized to peanut,
mode II the transformation from hexagonal to peanut and mode III from hexagonal to a
star-like geometry. Figure 3.6 displays the collapse mode as function of the chiral angle
and the nanotube diameter for unit cells containing 1, 2 and 4 tubes. The collapse mode
depends slightly on the number of tubes in the unit cell used, and it depends strongly on the
diameter and the chirality. As it was already noted by other authors [89], armchair nanotubes
with chiral vectors (3n+3,3n+3) adopt a polygonised structure before collapse, whereas
the remaining nanotubes collapse going through an ovalized structure. Interestingly, zigzag
nanotubes with chiral vectors (3n+3,0) seem to collapse also going through a polygonal
geometry. For other nanotubes, the collapse mode seems to be controlled by the diameter:
small nanotubes ovalize and large ones polygonise. Evidences of polygonalised CNTs where
also reported experimentally [106] for nanotubes with diameters around 1.7 nm.

With only one nanotube per unit cell, we observed in some cases the collapse to an
unusual star-like structure. This structure was predicted to be a possible collapse mode [107],
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Figure 3.6 Collapse mode as a function of the diameter and the chiral angle of the nanotube.
Top panel is for 1 tube per unit cell, the center for 2 tubes per cell, and the bottom panel for 4
tubes per cell.
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although with a higher binding energy than the peanut geometry. We also noticed that the
pressure range of polygonization is smaller than the one of ovalization.

It was shown in classical simulations [70, 86, 87] that the energetically most favorable
arrangement of collapsed nanotubes is the one with parallel nanotubes. This was also seen
in high-resolution transmission electron microscopy (HRTEM) experiments on collapsed
double-wall bundles with large diameters [108]. Indeed, it is plausible that for very large
diameters the most stable collapsed structure consists in parallel nanotubes, as this geometry
maximizes the van der Waals interaction between the walls. However, for smaller tubes, it is
also clear [70, 88] that other factors, such as the number of tubes in the simulation cell, the
filling factor of the collapsed tubes, the environment, etc., may have a big influence on the
collapsed geometry. In our simulations, the parallel geometry appeared for several bundles,
while there were other cases where the herringbone geometry was found instead. We note,
however, that the DFTB method does not describe accurately van der Walls interactions.
Even if this contribution is small, it is of the order of the energy difference between the
herringbone and the parallel arrangements (≈ 10 meV per atom), and it can therefore change
the energetic ordering of the structures.

3.2 Individualized Carbon nanotubes in water

In this section, we investigate using the DFTB method, the effect of water on the pressure
stability of empty and water-filled individualized SWCNT. In order to account for possible
charge transfer processes we used the self-consistent charge density functional tight-binding
scheme (SCC-DFTB) [31]. For the C–C interaction, we used the same parameters as for the
CNT bundles. For the H–O–C, we chose to use parameters fitted to organic systems [31].
Our simulations were performed using hexagonal unit cells containing a four-unit-cell-long
nanotube with periodic boundary conditions in the three directions. All the nanotubes were
surrounded by water molecules, in enough number to assure that the distance between the
nanotube and its periodic neighbor was larger than 10 Å to avoid interactions between the
tubes. Water molecules were put randomly around / inside the tube and a molecular dynamic
thermalization was done at 370K followed by a rapid cooling to 10K. After that, geometry
and cell vectors were optimized until all the forces became smaller than 10−4 Ha/Bohr. The
applied pressure was increased in steps of 0.2 GPa up to 30 GPa or until noticeable collapse.
With this setup it was not possible to simulate all the tubes we used for the bundles. For the
empty CNTs in water, we used only armchair and zigzag nanotubes with diameters in the
range 0.7−1.4 nm. For the filled case, we chose only the (8,8) and (10,10) nanotubes and
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Figure 3.7 Comparison of the collapse pressure as a function of the diameter of bundles
(blue) and individualized CNT in water (red). Squares are armchair and circles are zigzag
nanotubes. The lines are fits obtained using Eq. (3.1).

pressures up to 15 GPa. We chose these nanotubes because their diameters are representative
of the samples used in experiments.

Using the setup described above, we simulated the evolution with pressure of 12 empty
CNTs in water. The results can be seen in Fig. 3.7. We fitted the values using the same
Eq. (3.1) that we used for bundles. Here the parameters obtained are α = 21.7 GPa nm3

and β = 0.3 nm. For comparison, we also include the values and fit for the same tubes in
the bundle configuration. We see that the overall behavior is the same as for the bundles,
confirming again that the collapse pressure of single wall CNTs is determined mainly by its
diameter. The collapse pressures are however slightly higher. For the largest diameters we
have differences of around 5% whereas for the smaller we have around 15%. In the latter
case, differences between bundles and individualized tubes are of the order of our pressure
step. A snapshot of the initial structure at 0 GPa and the final geometry at 5.5 GPa for the
(10,10) nanotube can be seen in Fig 3.8.
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(a) (b)

Figure 3.8 Snapshots for the (a) initial and (b) collapsed structures of empty CNTs.

From Fig 3.7 we can also see that effects due to nanotube chirality are not present. This
is consistent with the previous observations for bundles. In fact, the values obtained in this
case seem to fit even better the expected d−3 behavior. This is not surprising since now we
have a much more uniform PTM than with bundles, where geometric constrains were present.
Also, we can now see that all the tubes ovalize, regardless of the chirality.

It is experimentally known that water loses hydrostatic conditions (crystallizes) at around
2 GPa. In order to check if our modeled water molecules are mimicking this effect, we plotted
the O-O radial distribution function (RDF) as a function of pressure for the (8,8) and (10,10)
tubes, as shown in Fig. 3.9. We can distinguish 2 groups in the RDF: one for the 0−2 GPa
range, and another for the 3+ GPa pressure range. This suggests a transition between
2− 3 GPa, in agreement with the observed crystallization of water at 2 GPa. Of course,
we are not reproducing exactly the experimental conditions, but this gives us confidence to
compare directly our simulations with experimental data. Experimental works estimated
the collapse pressure of individualized CNTs with diameters in the range 0.8− 0.9 nm,
1.2− 1.3 nm and 1.24− 1.4 nm to be of 10 GPa [109], 4 GPa [109] and 3.85 GPa [66],
respectively. Taking these average diameters and using our fit, we obtain collapse pressures
of 16.3− 12.6 GPa, 6.4− 5.3 GPa and 5.9− 4.4 GPa. Differences can arise either from
differences of the nanotube environment in experiments (surfactants and impurities) and
calculations, from approximations needed in the calculations or from differences in the
criteria of determination of full collapse in experiments and calculations.

We turn now our attention to the effect of water-filling on the pressure stability of
individualized (8,8) and (10,10) SWCNT. The filling of arc-type SWCNT (comparable to the
(10,10)) was experimentally estimated to be between 11% to 29% of total weight fraction
of fully filled nanotubes (Ref. 110 and references therein). We studied the evolution with
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Figure 3.9 O-O radial distribution function for the (8,8) (upper panel) and (10,10) (lower
panel) empty CNTs in water as a function of pressure, with a zoom in the region 3–8 Å.
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Figure 3.10 Binding energy per atom for the (8,8) (a) and (10,10) (b) nanotubes as a function
of the water concentration. Red crosses are filled tubes in vaccum, green circles mark the
cases where we also calculated the tube in water.

pressure for filling concentrations of water of 6.2%, 11.3%, 16.3% and 20.0% for the (8,8)
CNTs and 3.8%, 13.1%, 21.6%, 30% and 39.4% for the (10,10) CNT. The optimum filling
ratio for the (8,8) and (10,10) with our model was estimated to be between 15% to 23%
and 17% to 35%, respectively. These values were estimated looking at the binding energy
(Eb) per atom of the system composed by the nanotube plus water molecules (see Fig 3.10),
calculated as:

Eb = E f illed − (Eempty +EH2O ×NH2O) (3.2)

where E f illed is the energy of the tube filled with NH2O water molecules, Eempty is the energy
of the empty, isolated tube and EH2O is the energy of one water molecule. It is noticeable from
Fig. 3.10, specially for the (8,8) CNT, the presence of effects due to the finite length of the
nanotube. Therefore, for a more precise estimation of the optima filling ratios, calculations
using longer nanotubes are need.

In Figs. 3.11 and 3.12 we show the pressure dependence of the nanotube volume as a
function of different water-filling ratios. The collapse of the tubes is abrupt in the case of
empty tubes and in that case, the collapse pressure was identified by a discontinuity in the
Gibbs energy, that corresponds to the transformation to a peanut like shape. In the case of
filled tube where we have a smooth collapse process, the collapse pressure was determined
by inspection, i.e., we assigned the collapse to the first peanut-like shape found. As these are
continuous processes it is hard to identify precisely the collapse point. Rather, the values
suggested should be regarded as the starting of the collapse process, where the tube is not
anymore ovalized. Another important note is that we observe several kinds of collapses. In
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Table 3.1 Number of water molecules (NH2O), water-to-carbon mass percentage (w/w) and
collapse pressure (Pc) of the water filled: (left) (8,8) with d = 1.09 and (right) (10,10) with
d = 1.36 CNTs.

NH2O w/w [%] Pc [GPa]

0 0.0 8.4
5 5.9 7.4
9 10.5 8.6
12 14.1 10.2
15 17.6 12.6

NH2O w/w [%] Pc [GPa]

0 0.0 4.8
4 3.7 4.8

14 13.1 5.8
23 21.6 5.8
32 30.0 6.2
42 39.4 —

most of the cases, we see a first transition marked by a large drop in volume followed by
second at higher pressures. The first is mainly related to the transformation of the nanotube
shape, whereas the second is related to a reorganization of the water molecules inside the
nanotube. Depending on the percentage of water filling and on the nanotube diameter, this
can lead to 2D water structures like water sheets (Figs. 3.11d, 3.11f, 3.11h and 3.12d) or 3D
structures like water-nanotubes (Fig. 3.12h). A plethora of different confined water structures
has already been reported either experimentally or by the means of molecular dynamic
simulations [111–119]. The structures we obtained are not fundamentally different to the
ones already reported. Nevertheless, our results prove that CNTs can be used as nano-anvils,
in order to obtain in a controlled way confined structures with varying dimensionality just by
changing the pressure applied into the system, and by varying the diameter of the nanotube.

Let us now turn to the water-filling effect on collapse. Table 3.1 lists the obtained collapse
pressures for several filling ratios, including also the value for the correspondent empty
tube for comparison. For the lowest calculated water filling ratios, we observe a slight
reduction of the collapse pressure which is followed by a steady increase of its value with
increasing water content. This lower collapse pressure is not surprising if we consider that
our calculation show a tendency of water molecules to cluster, which would then lead to a
meniscus surface tension effect and act equivalently to an additional pressure. In fact, if we
look at Figs. 3.11 and 3.12 we see that at low filling, the first volume modifications appear at
pressures close to the collapse pressure of the empty tube, for both tubes. This is in agreement
with observations on both RBM and G-band of filled CNTs [66]. At higher water content, the
collapse pressure increases with respect to the empty tube case. In the case of a (10,10) tube,
the collapse pressure of the filled tubes lies between 5.8 and 6.2 GPa. This pressure domain
does not agree well with experimental observations in Ref. 66, where collapse pressures
of 14−17 GPa were mesured. However, in experiments it is not possible to prevent water
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filling to increase under the effect of increased pressure, up to the PTM solidification which,
for water, takes place at ≈ 2 GPa. At 2 GPa, liquid water increases its density by 33% and
if we consider that this is fully translated in an increase of the water-filling ratio, we would
reach a filling value above 42%. In our simulations, for a similar water-filling ratio, we could
not see any collapse up to 15 GP.

3.3 Summary and Conclusions

The collapse of carbon nanotubes has been subject to several theoretical and experimental
studies over the years. However, contradictory results can be found in the literature between
theory and experiments. Even considering only theoretical studies, divergent results can be
found. By using a large set of nanotubes of different diameters and different chiralities in
combination with a higher level of theory than what is commonly applied, we found several
key factors that can justify these apparent contradictions.

For CNTs bundles, concerning the calculated collapse pressures, we showed that the
discrepancies found in the literature can be explained by the different number of carbon
nanotubes in the unit cell and by the theoretical framework employed. Furthermore, using
a quantum-mechanical approach, we obtained collapse pressures that are about twice as
large as the ones obtained with classical potentials. The chirality of the nanotube does not
show a strong influence on the collapse pressure for nanotubes bundles with diameters above
1 nm but it can be significant for smaller diameters. From our results, we estimate that
carbon nanotubes bundles with diameters of around 0.6 nm are the ones with the highest
collapse pressures. Regarding the collapse modes, armchair and zigzag nanotubes polygonise
before collapsing to a peanut geometry if their chirality equals (3n+3,3n+3) or (3n+3,0),
whereas in the other cases the nanotubes adopt oval cross sections before collapsing. For
chiral nanotubes, the collapse mode seems to be independent of the chiral angle, being the
diameter the underlying factor. From these results, we can conclude that there are two key
ingredients that are mandatory to perform quantitative simulations of the collapse process of
carbon nanotubes under pressure: (i) a quantum mechanical description and (ii) large unit
cells containing several tubes. In our opinion all previous literature on the subject should be
critically reviewed based on this consideration.

For individualized CNTs in water, we see an increase of the collapse pressures compared
to the case of bundled CNTs, even for empty nanotubes. On the other hand, and similarly
to the case of bundles, we do not notice any systematic chirality influence on the collapse
pressure. Furthermore, we see that all tubes ovalize, regardless of the chirality. For water filled
CNTs we see different behaviors, depending on the filling ratio. We estimated optimum filling
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ratios for (8,8) and (10,10) CNTs to be around 15%− 23% and 17%− 35%, respectively,
which compares well with available experimental data. We observe that low filling ratios tend
to destabilize slightly the CNTs, leading to modifications on the CNT cross section at lower
pressures than for empty tubes. For (10,10) tubes, this effect precipitates the collapse at lower
pressures, but it does not seem to affect the collapse pressure of the (8,8) tube. However, as
there is an underlying error in the calculations (and a pressure step of 0.2 GPa), we can not
rule out that a reduction can also happen in this case. In fact, all evidences seem to indicate
a little or to no dependence at all on the chirality, at least in a predictable and systematic
way. For higher concentrations of water, we see a consistent increase in the collapse pressure
with the increased filling ratio, in accordance with experimental data, even if the calculated
collapse pressures do not match perfectly experimental data. However, we think this can be
justified by the increase of the water filling (the tube ends are open) during the pressure cycle.
Regardless of the filling ratio, we notice a dramatic change in the collapse process of filled
CNTs. While we had abrupt transformations of the nanotube cross section for empty tubes
(and also for the majority of the bundles), we see a continuous collapse process for filled
CNTs. We can identify two different steps - the first, related to the regular transformation of
the CNT shape, followed by a reorganization of the CNT filling molecules that allows for a
further modification of the CNT shape at higher pressures. Finally, we observe that unusual
states of water can be found in the collapsing / collapsed nanotubes. These can range from
nanotube-like to 2D sheet-like planes of water, depending on the diameter of the CNT and
on the pressure. We can also speculate that, likewise, other pressure transmitting mediums
may adopt exotic arrangements when confined, and that CNTs under pressure may be used
to study novel molecular structures.





Chapter 4

Type-I Silicon Clathrates

Clathrates form a class of fairly special materials based on a host-guest structure which
consists in a regular lattice of cages in which guest atoms or molecules are encapsulated.
Strictly speaking, clathrates are the duals of the intermetallic phases known as Frank-Kasper
structures which contain only tetrahedral interstices, and that are closely related to a family
of quasicrystals [120, 121].

Since the seminal work of Cros et al. [122, 123], who synthesized the first Si clathrates
in 1965, many inorganic, group-IV, clathrate phases are by now known [124]. These are
commonly described in a first approach as cubic solids with a unit cell composed of large
cages of silicon, germanium, or tin. Their stability and their electrical properties (metal
or semiconductor character) are, in a first approximation, fully understood in terms of the
so-called Zintl-Klemm (ZK) rule (or charge balance rule) [125–129]: assuming that every
guest atom in the cages completely donates its electrons, the structure maximizes its stability
when each framework atom realizes an electron-octet. This can be achieved by doping the
framework with acceptor/donor atoms. Typical examples of Zintl phases are compounds of
the form AaXx = (An+)a(Xan/x−1

)x, where A is an active metal, X a noble (electronegative)
metal or semimetal, and n is the number of electrons transferred from the active metal to the
acceptor atoms.

The superconductivity found in silicon clathrates is based on a strong covalent sp3 net-
work and has attracted much attention for the past decades [130]. More recently, inorganic
clathrates have been widely investigated in the field of thermoelectricity: the electronic con-
duction is insured by the cage-framework and the band gap can be easily tuned thanks to the
many possible substitutions of framework elements, giving raise to metallic or semiconduct-
ing behavior [131]; On the other hand, the unit cell complexity and the host-guest interaction
are responsible for the depression of the heat carrying acoustic phonons resulting in a very
low lattice thermal conductivity [132–134], without affecting the electronic conductivity.
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Thus, although they are crystals, clathrates are very poor heat conductors, while offering a
wide range of electronic properties. They are therefore a perfect example of Slack’s concept
of a phonon-glass and electron-crystal [135–137].

It is not surprising that an important experimental and theoretical research effort has been
devoted to find and optimize the functional properties of clathrates. In this quest, the ZK-rule
serves as an important guide to select among all the possible combinations of substitutions
in the different crystallographic sites of guest and host atoms. However, although most
clathrates are Zintl-phases from the point of view of their formal electronic structures, some
of their properties cannot be explained in terms of the Zintl concept and violations of this
rule were observed, notably in clathrates containing transition metal elements [136, 138].

Here, we go beyond the ZK-rule, and use density-functional theory to screen the stability
of a very large number of silicon clathrate phases. Our methodology is based on high-
throughput calculations [34] and involves trying out all possible combinations of guest and
framework atoms. We consider the case of the very popular and heavily documented ternary
type-I Si clathrates [124], whose general chemical formula is A8XxSi46−x. To study this
ternary composition, we do not make any a priori assumption on which dopants could lead
to stable clathrate phases. Instead we use all elements of the periodic table up to Bi, with
the exception of the rare-gases, the lanthanides, and the actinides. It is worth noting that
a few silicon clathrate systems containing lanthanides exist, namely Ba7LaAu6Si40 and
Ba7CeAu6Si40 (see Refs. 139, 140). However, all the know phases have more complex
doping ratios than the ones studied here. This can be something worth studying in future
works.

4.1 Details of Calculations

To estimate the stability of a given composition we use as criterion the distance to the convex
hull of thermodynamic stability (for a description, see Section 2.5). It is worth underlying
here that for ternary and multinary systems this criterion is much more relevant than the
commonly used formation energies, which only measure the decomposition in elementary
phases. Indeed, we found several cases where, despite the low formation energy, the distance
to the convex hull was large due to the possible decomposition into other binary or ternary
phases, thus destabilizing the structure.

For each system we perform a full geometry optimization, including both the ion positions
and the lattice, with the code VASP [39, 40]. The pseudopotentials are taken from version
5.2 of VASP to guarantee compatibility with the Materials Project database [4], and we use
the Perdew-Burke-Ernzerhof approximation [141] to the exchange-correlation potential. For
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Figure 4.1 The type-I clathrate structure with different atoms indicating the relevant Wickoff
positions of the cubic space group #223: 16i and 24k (blue), 6c (green), 2a (red), and 6d
(orange).
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Figure 4.2 Distance to the convex hull (in meV per atom) for the clathrate X6cSi40.

the final calculation of the energy we use a cutoff of 520 eV and a 5x5x5 k-point grid. This
ensures convergence of the total energy to better than 2 meV/atom. The distance to the
convex hull is calculated by comparing the energy of the system under investigation to all
possible decomposition channels to materials present in the Materials Project database [4].

The type-I clathrate structure is depicted in Fig. 4.1. In the pure Si46 clathrate all the
Wyckoff positions 16i, 24k, and 6c are occupied by Si atoms, and the 2a (center of small
cages) and 6d positions (center of large cages) are empty. This is our reference structure
that turns out to be 63 meV/atom above the convex hull, on which lies the standard diamond
structure of Si. Endohedral doping can be achieved by filling either the 2a positions, the 6d
positions, or both. Further (co-)doping can be achieved by substitution of the 16i, 24k, and 6c
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Figure 4.3 Distance to the convex hull (in meV per atom) for the clathrate X2aSi46 (a),
X6dSi46 (b), and X2a+6dSi46 (c). The circles denote phases with similar stoichiometries that
were synthesized experimentally: X8Si46 (X=Na, K, Rb, Cs, I) [142–145]
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Figure 4.4 Distance to the convex hull (in meV per atom) for the clathrate Z6d+2aX6cSi40
where Z is (a) Li, (b) Na, (c) K. The circles denote phases with similar stoichiometries that
were synthesized experimentally [146]: Na8X6cSi40 (X=Al) [147], K8X6cSi40 (X=B, Al,
Ga) [148–150]
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Figure 4.5 Distance to the convex hull (in meV per atom) for the clathrate Z6d+2aX6cSi40
where Z is (a) Rb and (b) Cs. The circles denote phases with similar stoichiometries that were
synthesized experimentally [146]: Rb8X6cSi40 (X=Al, Ga) [150, 151], Cs8X6cSi40 (X=Al,
Ga) [150, 152].
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positions. This latter is experimentally known to be the most favorable, and our calculations
corroborate this fact. In the following we will therefore focus on the substitution of 6c Si
atoms.

4.2 Results and Analysis

We started studying the stability of the empty cages by replacing the 6c Si atoms, as shown in
Fig. 4.2. The color scale denotes the distance to the convex hull, where green means less than
around 50 meV/atom from the hull. Furthermore, circles mean that a similar stoichiometry
was synthesized experimentally. All elements (with the unsurprising exception of Ge)
occupying the 6c position destabilize considerably the Si clathrate framework. Then, we
filled the 2a, 6d, and the 6d+2a positions individually, while preserving the Si cage (Fig 4.3).
As can be seen, several guest elements in the 2a position lead to a slight stabilization, but the
largest effect was obtained occupying the 6d or the 6d +2a positions. Results are in good
agreement with published experiments, as the elements Na (7 meV/atom above the convex
hull if all cages (2a+6d) are filled, 20 meV above the convex hull if 6d sites only are filled),
K (4 meV/atom in 2a+6d and 3 meV in 6d), Rb (26 meV/atom in 2a+6d and 11 meV in
6d), Cs (65 meV/atom in 2a+6d and 31 meV in 6d) yield already nearly thermodynamically
stable phases. Indeed, these clathrates were already reported experimentally [142–144].
The only exception is the iodine compound that has been reported experimentally [145],
but that in our calculations is more than 130 meV above the hull. We note, however, that
this iodine structure was synthesized at high pressures and high temperatures, and that the
experimental stoichiometry Si44.5I9.5 suggests that this cationic clathrate is likely to have a
more complicated structure than the one investigated here.

From our results, we then selected the guest elements that were within 110 meV/atom
from the convex hull for further studies. This included Li, Na, K, Rb, Cs, Ca, Sr, Ba, Hg, In,
Tl, He, and Ne. For all these systems we performed calculations of simultaneous co-doping
of the 6c and the 6d +2a Wyckoff positions. In total, more than 1300 different compositions
were investigated.

In Figs. 4.4, 4.5 and 4.6 we present a summary of our results, including all relevant
phases that are close to stability. Our results are in excellent agreement with experiments,
as all experimentally realized phases are green-colored in the figures. We can see that, to
some extent, the simple ZK-rule emerges from the figure: when an alkali is at the center
of the cages, we find the maximum of stability for co-doping with elements close to the
IIIA group of the periodic table, while for Sr and Ba, the maximum stability is around
the IIB group. What the ZK-rule can not explain, however, is the large number of stable
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Figure 4.6 Distance to the convex hull (in meV per atom) for the clathrate Z6d+2aX6cSi40
where Z is (a) Ca, (b) Sr, and (c) Ba. The circles denote phases with similar stoichiometries
that were synthesized experimentally: Sr8X6cSi40 (X=Al, Ga) [153, 154] and Ba8X6cSi40
(X=Al, Ga, Ni, Cu, Zn, Rh, Pd, Ag, Cd, Ir, Pt, Au) [155–165]
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Figure 4.7 Distance to the convex hull (in meV per atom) for the clathrate Z6d+2aX6cSi40
where Z is (a) Hg, (b) In and (c) Tl.
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Figure 4.8 Distance to the convex hull (in meV per atom) for the clathrate Z6d+2aX6cSi40
where Z is (a) He, and (b) Ne.
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Table 4.1 Bader charges in units of |e| for Ba8Al6Si40, Ba8Zn6Si40, and Ba8Be6Si40

Wyckoff Ba8Al6Si40 Ba8Zn6Si40 Ba8Be6Si40

Ba (2a) 1.216 1.190 1.199
Ba (6d) 1.263 1.326 1.304
X (6c) 1.545 0.019 1.256
Si (16i) -0.167 -0.171 -0.134
Si (16i) -0.229 -0.227 -0.193
Si (24k) -0.610 -0.240 -0.689
Si (24k) -0.733 -0.365 -0.573

compounds with co-dopants from groups IB and VIIIB. Moreover, compounds with Be (such
as Sr8Be6Si40 and Ba8Be6Si40) are completely unexpected, as Be could give further electrons
to the clathrate framework.

To assess the quality of our predictions, our experimental co-workers at the University
of Lyon tried and successfully synthesized a new clathrate in the Ba–Be–Si ternary system,
the most surprising stable composition stemming from our search. The new compound,
Ba8Be3.7Si42.3, has a unit cell parameter of 10.216 Å, which is considerably lower than the
value for the parent material, recently measured in a single crystal of Ba8Si46 and found
to be a = 10.328 Å [132]. The reduced cell parameter is perfectly in agreement with our
simulation which predicts a value of a = 10.297 Å for the high-symmetry configuration
Ba8Be6Si40 instead of 10.392 Å for Ba8Si46. This new clathrate phase turns out to be a
superconductor with a critical temperature of 4 K, a value lower than in the undoped material
(Tc ∼ 8 K for Ba8Si46).

In Fig. 4.9, we plot the density of states of Ba8Al6Si40 compared to Ba8Zn6Si40 and
Ba8Be6Si40. All three materials turn out to be remarkably similar, which is compatible to the
interpretation that Be, Al, and Zn main role is to compensate the charge of the endohedral
atom. The Fermi energy of the Be and Zn compounds are in a similar position, while for Al
it is further displaced into the valence band due to the extra electron of Al with respect to Be
and Zn. Bader charges are shown in Table 4.1. Again, the situation for the three dopants, Al,
Zn, and Be is very similar, which shows that Be just assumes the role that the noble metal or
semimetal would have according to the usual Zintl-Klemm rule.

Even if these results are consistent, it is important to underly that our theoretical pre-
dictions involve several approximations: (i) First there is the Perdew-Burke-Ernzerhof
approximation to the exchange-correlation potential, which can give errors for formation
energies as large as 0.1–0.2 eV/atom. We believe that our error is considerably smaller
than this range, as our ternary clathrates usually decompose to binary silicides that have
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Figure 4.9 Density of states in states/eV of Ba8Al6Si40, Ba8Zn6Si40, and Ba8Be6Si40
separated by atomic species (left), by angular momentum channel (center), and total (right).
The Fermi energy is at zero.
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a chemical arrangement similar to the clathrates. This should lead to systematic errors in
the calculation of total energies, that mostly cancel when evaluating the distance to the
convex hull. (ii) Pseudopotentials are another source of unavoidable systematic errors in our
methodology, but again most of this error should cancel when calculating energy differences.
(iii) All calculations were performed at zero temperature, and they did not include the cor-
rection coming from the zero-point energy. This is however expected to lead to only small
corrections for the systems studied here. (iv) More importantly, we did not take into account
disorder, and we always substituted all equivalent atoms of the original clathrate structure
(i.e., for example we substituted all 6c atoms of Si by another element, and we did not try all
other possibilities with 1, 2, 3, 4, 5, etc. dopant atoms). Of course, this reduces dramatically
the number of possible systems to study, at the price of getting only an upper bound for the
distance to the convex hull.

With all this in mind, we believe that all systems that are within ≈50 meV from the convex
hull (the green cases in our periodic tables) have a high probability of existing. In fact, several
of these green cases have already been reported experimentally. However, there are many
more that have not been produced experimentally yet. Our results therefore indicate that there
is a large number of Si-clathrate phases still to be synthesized. If one limits the distance to the
convex hull to be lower than 30 meV per atom, 20 new phases in the clathrate of type I could
likely be produced experimentally : Na8X6cSi40 (X=Ga, Pt), K8X6cSi40 (X=Al, Zn, In, Pt,
Au), Rb8X6cSi40 (X=Zn, In, Au), Cs8X6cSi40 (X=Al, Ga, In, Zn), Sr8X6cSi40 (X=Pt, Au, Zn,
Cu, Pd). Moreover, all the phases with a distance to the convex hull ranging from 30 meV to
60 meV might be synthesized by means of non-equilibrium synthesis process (high pressure,
thin films). Our theoretical results therefore provide a starting point for further experimental
studies, establishing a novel methodology of a theoretically assisted, accelerated materials
discovery, as proved here in the case of the Ba–Be–Si clathrate.

4.3 Summary and Conclusions

Using high-throughput computational techniques we investigated the stability of ternary
clathrate phases based on a Si framework. We started by doping the cages of the pure-silicon
clathrate, from where we selected the most promising cases (within 110 mev/atom from
the convex hull): Li, Na, K, Rb, Cs, Ca, Sr, Ba, Hg, In, Tl, He, and Ne. We then tried do
further stabilized these clathrates by replacing the atoms at the 6c position on the silicon
framework by other elements. With the exception of He and Ne, that seem to be only
providing mechanical stability to the undoped clathrates, we were able to further stabilize
a variety of clathrate phases. Our results explain the vast majority of experimental results
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and predict the existence of a wealth of new thermodynamically stable clathrate phases.
Based on this prediction, a new Be-doped clathrate, namely Ba8Be3.7Si42.3, was successfully
synthesized. We note that this clathrate phase would probably be missed experimentally
since it can not be expected based on the simple Zintl-Klemm-rule. Likewise, as we are
not bounded by the price, availability, toxicity, etc, of the elements, we were able to predict
unusual doping combinations that are traditionally not viable in the laboratory. This shows
the efficiency of our approach, and indicates that experiment coupled to high-throughput
computational approaches is the most cost-effective approach at our disposal for accelerated
material discovery.



Chapter 5

New p-type transparent conducting
oxides by global structure prediction

Transparent conductive oxides possess the uncommon property of being at the same time
transparent to the visible spectrum and good electric conductors. The design of better-
performing hole-doped transparent conductive oxides is of essential importance for techno-
logical advances in many domains, ranging from transparent electronics to thin-film solar
cells. In this context, theoretical materials design based on density functional theory can
play a key role by allowing us to explore in an efficient and reliable way the periodic table to
test the potential of still unknown materials. Most theoretical studies follow a very simple
recipe, namely the prototype search discussed in Section 2.4. A recent example of this
approach is the work of Carrete and coworkers [11], who computed all possible compositions
of half-Heusler compounds in the cubic structure (around 80,000 possibilities) and the work
by Hautier and coworkers [166] who investigated Nature’s missing oxides, i.e., which oxides
were thermodynamically stable, but still unknown to mankind. It is evident that the major
drawback of this approach is the impossibility to discover any material with different crystal
structure than those of the compounds already contained in available databases.

Here, we address this problem and go a step further, by discussing an example of
combination of global crystal structure prediction, that is usually applied in literature to
study one or few related chemical compositions, with high-throughput methods to explore
the periodic table of chemical elements. Our aim is to identify the lowest-energy crystal
structures of materials with unreported chemical compositions, and verify if these lowest-
energy structures are thermodynamically stable. In possession of these structures, we can
then evaluate a number of spectroscopic properties using standard methods based on density
functional theory and beyond.
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In this case, we are interested in a subset of oxides, namely those having a composition of
the type (Cu,Ag,Au,Ni)XO2, which includes the “famous” delafossites Cu(Al,In,Ga)O2 [167–
170]. The compounds of this family are still the most promising p−type transparent conduc-
tive oxides (TCO) known to mankind. Additionally, promising p−type character was also
identified in oxysulfides and oxyselenides [171–174]. Therefore, we will also study one of
these systems, namely the CuXOS family. TCOs are indispensable for many high-technology
devices which require transparent contacts, such as flat panel displays, touch screens, thin-
film and stacked solar cells, functional windows, etc. Good electron (n-)doped TCOs, namely
those based on SnO2, In2O3, and ZnO, are already widely used in commercial applications.
However, potential p−type TCOs identified up to date have conductivities at least one or two
orders of magnitude lower than their n-type counterparts and carrier mobilities too small for
large-scale exploitation. The best p−type TCO until now is CuCr(1−x)MgxO2 [175], which
displays a conductivity of 220 Ω−1cm−1 and a hole mobility of about 1 cm2/Vs, while also
suffering from poor transparency, with transmission in the visible smaller than 30%.

The origin of the relatively higher hole mobility of Cu delafossites relies on the fact that
the highest valence bands are obtained through the strong hybridization of almost-degenerate
oxygen 2p and copper 3d states. This hybridization reduces the localization of the top valence
states on oxygen atoms, leading to more dispersive p-d anti-bonding bands with smaller hole
effective masses [176]. A tetrahedral coordination of oxide ions (as in delafossite crystals)
is particularly advantageous as it allows strong hybridization. Cu1+ (or equivalently Ag1+

and Au1+) appear ideal elements for creating a p-d dispersive top valence while preserving
transparency, as their closed d shell will prevent from absorbing light in the visible. Even if
it is believed that a Cu+1 configuration is the best to obtain TCOs, we decided nevertheless
to explore blindly also compositions that favor Cu2+ or even Cu3+, as we do not want to
preclude the possible formation of crystalline structures different from delafossite that would
let emerge interesting electronic properties in different environments.

We can extract from the analysis above some expected good rules for the design of
improved p−type TCOs: (i) cations should have d shells proximate in energy to oxygen
2p states; (ii) cation d shells should be closed to avoid optical absorption in the visible
range; (iii) strong hybridization of oxygen p and cation d states is required to increase the
band dispersion[176]. Following these simple ideas, few other Cu oxides were already suc-
cessfully tested in experiments after Cu(Al,In,Ga)O2 [167–170], such as CuCrMgO2 [177],
SrCu2O2 [178] or LaCuOS [171] and (Cu,Ag)ScO2 [175]. Our aim is now to extend and
make more systematic this investigation by pre-screening in silico possible Cu, Ag, Au and Ni
based ternary oxides, in order to offer to experimentalists a reliable guide on the stability and
electronic properties of the still unknown compositions. Note that the set under consideration
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here is also a subset of the systems studied using high-throughput and data-mining techniques
in the above-mentioned work of Hautier and coworkers [166]. As a consequence, we will be
able to provide a direct comparison of the success rate of our mixed approach, that combines
high-throughput with structural prediction, in comparison with a high-throughput study based
on prototype crystal structures. For reference, we should keep in mind that four materials of
the type (Cu,Ag,Au,Ni)XO2 unreported in experimental databases were obtained in Ref. 166,
namely (i) a trigonal phase of AgCoO2 (50 meV above the convex hull of thermodynamic
stability) based on the prototype experimental structure of AgInO2, (ii) a tetragonal phase of
AgCsO2 based on the prototype CuCsO2, (iii) an hexagonal phase of AgLaO2 based on the
prototype AgAlO2 (4 meV above the hull), and (iv) an hexagonal phase of NiPtO2 based on
the prototype AgNiO2 (1 meV above the hull).

5.1 Details of Calculations

We performed minima hopping simulations for all stoichiometries of the type (Cu, Ag,
Au, Ni)XO2 and CuXOS, where X is any element of the periodic table up to Bi with the
exclusion of the rare gases and the lanthanides. Forces and energies were calculated at zero
temperature within density functional theory [27, 28] in the projector augmented wave (PAW)
formalism [179] as implemented in VASP [39, 40]. For a given stoichiometry, the initial
geometries were obtained randomly, ensuring only that the minimal distance between the
atoms was at least equal to the sum of the covalent radii. The MHM searches were performed
using the Perdew-Burke-Erzernhof (PBE) [141] approximation to the exchange-correlation
functional. We used default “high” accuracy energy cutoffs. Each minima hopping run was
repeated at least twice, using both one and two formula units (4 or 8 atoms). This may seem a
relatively small number of atoms in the unit cell, but if we look at the experimentally known
structures of the this family, we realize that almost all of them have a ground-state with less
than 8 atoms (exceptions are some metastable phases of AgCO2 with 16 atoms per unit cell
and a stable phase of AgBO2 with 128 atoms per unit cell). Therefore, we assume that this is
not a major limitation. The CPU time required to perform structural prediction is about 3500
hours per composition.

We then compared the structures obtained in our runs with the ones present in available
experimental and theoretical databases [4, 5]. Almost all experimental structures appeared
at the early stages of our minima hopping runs, which certainly proves the efficiency of the
method for this kind of task. Finally, we took the experimental structures and other relevant
theoretical phases that we discovered during our minima hopping runs, and used them as
prototypes for modified stoichiometries. We believe that this procedure, which effectively
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mixes high-throughput techniques with structural prediction is essential in such large scale
applications as each method can be used to provide a check on the other.

In total we investigated 304 stoichiometries, and we obtained ∼30,000 minima, of
which ∼10,000 were further analyzed. In this last step we followed the same protocol as in
the Materials Project database: spin-polarized calculation using the PBE [141] exchange-
correlation functional, with the exception of the oxides of Co, Cr, Fe, Mn, Mo, Ni, V, W
where an on-site Coulomb repulsive interaction U [180] with a value of 3.32, 3.7, 5.3, 3.9,
4,38, 6.2, 3.25, and 6.2 eV, respectively, was added to correct the d-states. Note that spin-
polarized calculations are essential for this class of materials. We are of course aware that
the PBE (+U) functional is not always able to determine the correct electronic and spin
ground state. Nevertheless, the optimized crystal structure is very often qualitatively and
quantitatively good within PBE, even in many cases in which the electronic states are not
correctly described. As an example, we can use the well studied case of Cu-O binaries [181].
Calculations using PBE give crystal structures in excellent agreement with experiments
for Cu4O3 and Cu2O, and a reasonable crystal structure for CuO, even if the error on the
lattice constants and angles is larger than usual. On the other hand, electronic states are
poorly described in PBE: Cu4O3 and CuO are metals, and the band gap of Cu2O is strongly
underestimated. Hybrid functionals can improve on both electronic and structural properties.
However, this improvement comes at the price of a much higher computational cost, which
makes them unsuitable for high-throughput calculations.

PAW setups were taken from the version 5.2 of VASP. At this stage the energy cutoff was
set to 520 eV (irrespective of the elements considered) and k-point grids were automatically
chosen to ensure convergence to better than 2 meV per atom. For all low-lying minima
we studied the thermodynamic phase equilibria of the ternary system, considering the
energy balance with respect to all possible decompositions in ternary, binary and elementary
compounds that respect the overall stoichiometry: i.e, we measured the thermodynamic
stability by calculating the energy distance from the convex hull of stability, which is the
set of lines that connects the lowest energy ordered phases. This step was performed using
PYMATGEN [182] and considering all ternary, binary and elementary phases included in
the Materials Project database. According to this definition, a compound is stable if its
total energy distance to the convex hull is zero. Finally, the crystallographic analysis of the
structures was performed using FINDSYM [183].
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Figure 5.1 Distance to the convex hull (in meV per atom) for CuXO2, AgXO2, and AuXO2.
The colors indicate the distance to the convex hull of stability, light green meaning that the
composition is thermodynamically stable. For each element we show the symbol (center),
atomic number (top left), space group of the lowest energy structure (top right), and the space
groups of the phases found in experimental databases (bottom, in parenthesis).
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Figure 5.2 Distance to the convex hull (in meV per atom) for NiXO2 and CuXOS. The colors
indicate the distance to the convex hull of stability, light green meaning that the composition
is thermodynamically stable. For each element we show the symbol (center), atomic number
(top left), space group of the lowest energy structure (top right), and the space groups of the
phases found in experimental databases (bottom, in parenthesis).



5.2 Results and Analysis 59

5.2 Results and Analysis

Our results are summarized in Fig. 5.1 and 5.2. In these periodic tables the color scale
indicates the distance of the calculated energy of the ground-state structure to the convex
hull of stability. Light green cases indicate stable structures (i.e., that correspond to a crystal
structure on the hull). We further indicate the atomic number (upper left), the space group
we predict for the lowest energy phase (upper right), and the space groups of the lowest-
energy experimental structure that we found in available databases (in parenthesis below the
chemical symbol). This means that all squares without a number below the chemical symbol
represent crystal structures predicted theoretically.

As we can see from Figs. 5.1 and 5.2, many compositions are thermodynamically stable,
and many others are quite close to the convex hull. Note that our calculations are performed
at zero temperature and pressure for perfect periodic crystals. However it is well known that
unstable phases can be stabilized by temperature, pressure, defects, dopants, etc. Moreover,
due to the theoretical error associated to the calculation of the total energy, an inversion of
the ordering of the phases very close in energy is always possible. In view of the above, we
believe it is relevant to discuss all compositions that are either thermodynamically stable or
quasi-stable (within 20 meV from the convex hull). This choice of 20 meV as a threshold
of stability comes from the observation that well studied experimental compounds such as
CuInO2 and AgNiO2 are above the hull by 10-20 meV in our calculations performed for
perfect stoichiometric bulk crystals. The set of structures that we select within this threshold
contains therefore phases that have a large chance of being synthesized experimentally.
We find that this stability condition is fulfilled by 93 compositions (30 containing Cu, 29
containing Ag, 25 containing Au, 11 containing Ni and 3 containing CuXOS), of which only
41 (19 containing Cu, 11 containing Ag, 8 containing Au, 4 containing Ni and 1 CuXOS) are
present in experimental databases.

We are now in the position to compare our predictions with the previous theoretical work
of Ref. 166 and few theoretical structures contained in the Materials Project database. There
are four phases (AgCoO2, AgLaO2, AgCsO2 and NiPtO2) that were previously predicted
in Ref. 166, while theoretical crystal structures for CuBaO2, CuAuO2, CuHgO2, AgLiO2,
AgNaO2, NiHgO2 and NiLiO2 can be found in the Materials Project database. Three
cases do occur. We find the same structure for AgLaO2, AgNaO2, AgCsO2, NiPtO2, and
(Cu,Ni)HgO2, a slightly distorted structure for CuAuO2 and NiLiO2, and very different
structures for CuBaO2 and AgLiO2. In the last two cases, our structures are lower in energy
by 73 meV/atom and 167 meV/atom, respectively. We should also observe that there might
exist even lower energy structures that were not detected in the MHM runs (because their
unit cell contains more than 8 atoms, for example). However, the compounds we predict
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Figure 5.3 Ternary phase diagram of CuAgO2 generated using PYMATGEN [182]. White
circles: stable structures, squares: unstable structures. The color of the squares indicates the
distance to the convex hull according to the color legend shown on the right of the diagram.

to be thermodynamically stable have a high chance of being experimentally synthesizable,
even if the actual atomic arrangement may eventually differ from the one that we have
determined. In this sense, the periodic tables shown in Fig. 5.1 and 5.2 offer a simple guide
to experimentalists by indicating which compositions are expected to be easy and which are
expected to be hard to synthesize, based on thermodynamic considerations.

As an example we discuss here the ternary phase diagram of CuAgO2. We considered
only ordered crystalline phases. In Fig. 5.3 we indicate stable structures with white circles,
while squares correspond to unstable compositions. A square inside a circle indicates two
structures close in energy. The color of the squares (changing gradually from white to dark
green) represent the distance to the convex hull in the range from 0 (white) to 50 meV (dark
green). On the sides of the triangle we find the possible binary phases. Our lowest energy
phase of CuAgO2 is indicated by the circle inside the triangle. It is a layered orthorhombic
structure (space group 47). Another low-energy structure of CuAgO2 is indicated by a light
green square (20 meV per atom above the hull). This is the experimental monoclinic phase
with space group 12, which can be seen as a distorted delafossite structure.
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Before entering in a detailed discussion on the electronic properties of the new stable
phases found in our simulations, a few general remarks are in order. (i) There are some
basic atomic arrangements that are energetically favorable (with some exceptions) for many
compounds of this family. The most common ones are the delafossite structure of, e.g.,
CuFeO2 (space groups 166 and 194) and the tetragonal structure of CuCaO2 (space group
123), together with some slightly distorted, and therefore less symmetric, variants. We
stress, however, that some recurrent crystal structures that we identified do not have any
representative compound in databases. (ii) A majority of the structures are layered, but there
is a substantial variety in the geometry of the layers. We could not find a strong correlation
between layered structures and size mismatch of the two cations, at variance with the study on
the smaller family of LiMO2 (M = Sc-Cu) ternaries in Ref. [184] (iii) We observe a mixture
of semiconducting and metallic structures, and for some compositions we can even find
semiconducting and metallic phases separated by only a few meV/atom. It is important to
observe that our calculations of total energies have an accuracy of few meV/atom, therefore
we cannot discriminate between metastable crystal structures that are very close in energy, and
for which different energetic ordering can be obtained using different exchange-correlation
functionals. This is in particular true for compounds containing transition metal oxides,
where magnetic ordering may be misrepresented.

Having the crystal structures of new stable and metastable compounds opens the way
for a series of further theoretical studies. In fact, we can now calculate a wealth of physical
properties using the numerous methods and codes available for theoretical spectroscopy. Our
main motivation for the choice of this class of systems is the p−type conductivity measured
in Cu delafossites. Therefore, we obtained the average hole effective mass and the electronic
band-gap for the ground-state of all the stoichiometries studied. All calculations were
perform with using PYMATGEN [182] and BOLTZTRAP [185] software packages. Following
the same approach as Ref. 14 we calculated the averaged hole effective mass tensor for a
carrier concentration of 1018 cm−3 and a temperature of 300 K. We then used the higher limit
estimation for m∗

h (see Supporting Information of Ref. 14). The results are summarized in
Fig. 5.4. In the figure, the color of the points indicates thermodynamical stability, respecting
the same color scale as in Fig. 5.1. We observe that the numbers we indicate for the energy
gap should be taken with care as they are Kohn-Sham gaps obtained with the PBE(+U)
exchange-correlation functional, and are systematically underestimated [186, 187]. The
true gaps are substantially larger (usually at least twice as large) than the ones we indicate.
Moreover, systems that are metallic within PBE(+U) can sometimes be semiconducting in
experiment, however the inverse never happens. Note that band dispersions, and therefore
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Figure 5.4 Effective hole masses as a function of the PBE(+U) band gap for all compounds
that are within 50 meV/atom from the convex hull. The color of the dots gives the distance to
the hull and follows the same scale as in Fig. 5.1.

effective masses, are generally less sensitive to the choice of the approximation used for the
calculation of band structures.

For p−type transparent conductive materials we desire low-hole effective masses (to
improve conductivity), and high energy gaps (to ensure transparency). Approximately in the
center of Fig. 5.4 we find CuAlO2, the compound where p−type electrical conductivity in
transparent thin-films was discovered for the first time [167]. Its gap is sufficiently large (note
that the PBE gap of 1.8 eV is substantially lower than the experimental gap of around 3.5 eV;
see, e.g., Refs.186, 187 and references therein), but the hole effective mass is relatively high.
Indeed, the p−type conductivity in CuAlO2 is still too low for technological applications.
From Fig. 5.4 we can see that several materials have the potential to outperform CuAlO2,
such as AgScO2, AuScO2, AuYO2, AgAlO2, AgBiO2, NiMgO2, etc. Due to the presence
of (expensive) noble metals (Ag and Au), it is unlikely that most of these materials can
directly find large scale applications in technology, nevertheless an experimental study of
conductivity in new interesting phases could give valuable ideas on if (and eventually how)
hole mobilities can be increased beyond present limits. NiMgO2 on the other hand does not
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Figure 5.5 The delafossite structure (space group 166).

have expensive elements, it has a large gap, but its conductivity may still be not high enough.
In Tables 5.1 and 5.2 we summarize the information concerning the energy distances from
the convex hull, the band gaps and the hole effective masses. We also include in Appendix A
a table with Bader charges, oxidation states, and coordination numbers for all structures
within 50 meV to the convex hull of stability.

These results call for more detailed experimental studies of this restricted set of com-
pounds, that should be accompanied by more accurate calculations of the electronic band
gaps (i.e. using GW approaches beyond standard density functional theory [186, 187]) and
of possible defects/impurities for p−type dopability. From a purely theoretical point of view,
the results of Fig. 5.4 demonstrate that, with our approach, we are now able to go all the way
from a simple stoichiometry to the estimate of relevant material properties for a vast class of
materials.

We will now analyze more in detail the structural and electronic properties of the different
subclasses of compounds that we identified. We will extend this discussion to phases that are
closer than 50 meV to the convex hull.

5.2.1 Delafossites

The trigonal (space group 166) or hexagonal (space group 194) delafossite structures (de-
pending on the stacking sequence) are the crystal structure assumed by all stable compounds
(Cu,Ag,Au)XO2 with X belonging to group IIIA (Al, Ga, In), IIIB (Sc, Y, La), or X=Cr, Fe,
Co, Ni, and Rh. Also NiBrO2, NiPtO2, AgTlO2 and AuTlO2 (but not CuTlO2) present a
low-energy delafossite structure. This phase is characterized by XO2 planes separated by flat
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Table 5.1 Space groups (Spg), distance to the convex hull (Ehull), gaps (Gap) and average
hole effective mass (m∗

h) for semiconducting structures of the form CuXO2 and AgXO2 lying
below 50 meV/atom from the convex hull.

Structure Ehull Spg Gap m∗
h

CuHO2 8 31 0.5 2.23
CuLiO2 0 2 0.5 17.9
CuFO2 0 4 0.8 11.8

CuNaO2 0 63 0.4 3.04
CuMgO2 43 67 0.0 –
CuAlO2 0 166 1.8 2.66
CuClO2 0 1 0.8 48.9
CuKO2 0 63 0.8 13.7

CuCaO2 3 123 0.0 –
CuScO2 0 194 2.4 4.50
CuVO2 11 12 1.0 3.42

CuCrO2 0 166 1.6 5.52
CuMnO2 0 12 0.1 0.06
CuFeO2 1 166 0.9 2.02
CuCoO2 0 166 1.1 5.63
CuGaO2 0 166 0.8 2.23
CuBrO2 0 1 0.9 9.67
CuRbO2 0 63 0.8 8.98
CuSrO2 0 63 0.0 –
CuYO2 0 194 2.6 4.01

CuRhO2 0 166 0.7 2.75
CuPdO2 0 53 0.0 –
CuAgO2 0 47 0.0 –
CuInO2 7 166 0.3 0.57
CuCsO2 0 63 0.9 5.24
CuBaO2 0 63 0.0 –
CuLaO2 2 166 2.7 4.03
CuYbO2 0 123 0.0 –
CuPtO2 6 53 0.0 –

CuAuO2 0 12 0.0 –
CuHgO2 43 12 0.0 –
CuTlO2 31 11 0.4 2.36
CuPbO2 43 74 0.0 –
CuBiO2 8 11 1.0 2.29

Structure Ehull Spg Gap m∗
h

AgHO2 0 8 0.0 –
AgLiO2 0 53 0.5 1.85
AgBO2 33 9 1.4 1.61
AgNO2 37 5 1.4 2.57
AgFO2 0 4 0.6 7.61

AgNaO2 0 12 0.6 4.79
AgAlO2 0 166 1.4 1.49
AgClO2 0 1 0.6 2902
AgKO2 0 63 0.9 5.80

AgCaO2 0 12 0.0 –
AgScO2 0 194 2.1 2.58
AgCrO2 0 166 1.7 2.48

AgMnO2 0 12 0.4 1.33
AgFeO2 0 166 1.1 0.90
AgCoO2 0 194 1.2 3.68
AgNiO2 20 166 0.0 –
AgGaO2 0 166 0.6 1.09
AgAsO2 38 5 2.4 3.25
AgBrO2 0 1 0.7 450
AgRbO2 0 63 1.0 8.80
AgSrO2 0 12 0.6 1.27
AgYO2 0 194 2.4 3.82

AgRhO2 38 166 0.5 2.14
AgPdO2 0 10 0.1 0.03
AgCdO2 23 12 0.0 –
AgInO2 0 166 0.2 0.43
AgCsO2 0 63 1.1 4.54
AgBaO2 0 123 0.0 –
AgLaO2 0 194 2.8 3.85
AgPtO2 19 10 0.3 3.30

AgAuO2 0 14 0.6 1.80
AgHgO2 27 2 0.0 –
AgTlO2 0 166 0.0 –
AgPbO2 34 12 0.3 0.03
AgBiO2 3 11 1.4 2.38
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Table 5.2 Space groups (Spg), distance to the convex hull (Ehull), gaps (Gap) and average
hole effective mass (m∗

h) for semiconducting structures of the form AuXO2, NiXO2 and
CuXOS lying below 50 meV/atom from the convex hull.

Structure Ehull Spg Gap m∗
h

AuHO2 12 2 0.7 1.68
AuLiO2 0 53 1.1 3.78
AuFO2 0 4 1.1 3.97

AuNaO2 0 12 1.1 7.72
AuMgO2 37 65 0.0 –
AuAlO2 12 166 0.6 0.71
AuClO2 0 15 0.3 0.96
AuKO2 0 63 1.4 9.20

AuScO2 14 166 1.8 0.63
AuCrO2 0 166 1.2 1.65

AuMnO2 0 12 0.0 –
AuFeO2 0 166 0.6 0.59
AuCoO2 0 194 0.5 1.03
AuNiO2 0 194 0.0 –
AuGaO2 6 166 0.0 –
AuBrO2 0 15 0.0 –
AuRbO2 0 63 1.4 8.45
AuSrO2 33 12 1.3 1.80
AuYO2 3 194 2.7 2.49

AuPdO2 2 12 0.0 –
AuCdO2 0 2 0.9 1.76
AuInO2 18 166 0.0 –
AuCsO2 0 63 1.5 6.59
AuBaO2 31 12 1.2 1.44
AuLaO2 21 194 2.7 4.45
AuTlO2 13 166 0.0 –
AuPbO2 15 2 0.4 1.14
AuBiO2 40 11 1.3 1.54

Structure Ehull Spg Gap m∗
h

NiHO2 24 8 0.03 0.02
NiLiO2 0 14 0.4 1.70
NiFO2 0 2 0.0 –

NiNaO2 0 12 0.4 4.45
NiMgO2 0 166 3.4 2.13

NiKO2 11 12 1.0 9.42
NiBrO2 14 166 0.0 –
NiRbO2 0 12 1.9 7.08
NiCsO2 0 12 1.9 3.55
NiPtO2 17 166 0.0 –

NiHgO2 20 166 0.8 1.44

Structure Ehull Spg Gap m∗
h

CuScOS 18 59 1.4 10.4
CuYOS 40 129 1.4 1.61
CuInOS 46 4 0.0 –
CuSbOS 37 8 0.8 5.58

CuIOS 27 1 0.0 –
CuLaOS 0 129 1.7 1.47
CuBiOS 0 129 0.5 1.32



66 New p-type transparent conducting oxides by global structure prediction

(a) (b)

(c)

Figure 5.6 The structures of (a) CuHO2 (space group 31), (b) AgHO2 (space group 8), and
(c) AuHO2 (space group 2).

hexagonal (Cu,Ag,Au) planes. The energy differences between the trigonal and hexagonal
phases is always very small (of the order of few meV/atom), sometimes smaller than the
precision in our calculations. Thermodynamically stable delafossite structures not present
in databases are AgTlO2, AuCrO2, AuFeO2, AuCoO2, AuNiO2, AuTlO2, AuLaO2 and
NiMgO2.

5.2.2 Group IA

Hydrogen We found a series of distinct structures for (Cu,Ag,Au,Ni)HO2 (see Fig. 5.6).
The Cu compound crystallizes in a layered structure (space group 31) composed of zigzag
layers of CuHO2. It is just above the convex hull at 8 meV/atom, and is an indirect-gap
semiconductor with a PBE gap of 0.5 eV. The Ag compound shows flat layers of Ag (in
a square lattice) separated by zigzag lines of OH and O2 dimers. This is a monoclinic
(space group 8), metallic, thermodynamically stable phase. AuHO2 is a low-symmetry
structure (space group 2), composed by flat Au layers separated by aligned HO2 units. It
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(a) (b)

Figure 5.7 The structures of (a) CuLiO2 (space group 2) and (b) (Ag,Au)LiO2 (space group
53).

is 11 meV/atom above the convex hull and it is an indirect gap semiconductor with a PBE
gap of 0.7 eV. Finally, NiHO2 is metastable at 24 meV/atom, with a monoclinic phase (space
group 8) that resembles AuNiO2.

Lithium The structures of (Cu,Ag,Au)LiO2 are composed of lines of alternating (Cu,Ag,Au)
and Li bonded by O in a three-dimensional arrangement (see Fig. 5.7). The Ag and Au
compounds crystallize in an orthorhombic structure (space group 53). A distortion of this
structure leads to the monoclinic phase (space group 12) found in the databases for CuLiO2,
and a large distortion of this structure reduces the symmetry to the space group 2 that we
find as the ground-state of CuLiO2. All compounds are indirect band-gap semiconductors,
with PBE gaps of 0.5 eV (Cu), 0.5 eV (Ag), and 1.1 eV (Au). For NiLiO2 we found a
thermodynamically stable structure (space group 14), 13 meV/atom lower than the lowest
structure found in the databases. It is formed by hexagonal layers of Lithium, intercalated by
units of NiO2, similar to the structure of CuTlO2 (Fig. 5.13).

Sodium The compounds containing Na result in two structures very close in energy and
competing for the ground-state: the orthorhombic structure (see Fig. 5.8a) that is the structure
of the ternary oxides containing K, Rb, and Cs, and the monoclinic phase that is a slightly
distorted version of the structure of (Ag, Au)LiO2. For CuNaO2 we find that the former
is the ground state (a mere 7 meV per atom below the monoclinic structure present in
databases), while for Ag and Au the latter is more stable. These compounds are all indirect-
gap semiconductors with PBE gaps of 0.4 eV (Cu), 0.6 eV (Ag), and 1.1 eV (Au).
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(a) (b)

Figure 5.8 The structure of (a) (Cu,Ag,Au)(K,Rb,Cs)O2 (space group 63) and (b) NiKO2
(space group 12).

Potassium, Rubidium, Cesium The compounds of the form (Cu,Ag,Au)(K,Rb,Cs)O2

crystallize in an orthorhombic structure (space group 63), characterized by corrugated square
planes of (K,Rb,Cs) intercalated with flat stripes of CuO2 where each Cu atom shares four
O atoms with two neighboring Cu (see Fig. 5.8a). All these materials are semiconducting
with an indirect PBE gap between 0.8 and 1.5 eV that increases with the size of the atoms
from Cu to Au and from K to Cs. Note that this is also the lowest energy structure we
found for CuNaO2. Ni(K,Rb,Cs)O2 crystallizes in a monoclinic structure (space group 12),
although with different arrangements: Rb and Cs compounds have a structure that looks
like a distortion of Fig. 5.8a. NiKO2 is 11 mev/atom above the convex hull and also has
a structure similar to the other (Rb,Cs) compounds, but is this case the NiO chains have
a different orientation (Fig. 5.8b). These are all semiconducting, with electronic gaps of,
respectively, 1.0 eV, 1.9 eV and 1.9 eV.

5.2.3 Group IIA

Magnesium The element Mg is contained in two ternary oxides with Cu (43 meV/atom
from the convex hull) and with Au (36 meV/atom). They are both orthorhombic, but quite
dissimilar: the structure CuMgO2 (space group 67) is a distorted variation of the tetragonal
unit-cell (space group 123, see Fig. 5.10) of, e.g., CuCaO2. AuMgO2 is more complicated:
its crystal structure (space group 65) is similar to the one of (Ag,Au)LiO2 (see right panel of
Fig. 5.7). Both structures are metallic.
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(a) (b)

Figure 5.9 The structures of (a) CuMgO2 (space group 67) and (b) AuMgO2 (space group
65)

Calcium, Strontium, Barium Most of the (Cu,Ag,Au)(Ca,Sr,Ba)O2 ternaries crystallize
in a tetragonal lattice with space group 123 (CuCaO2, AgBaO2) or in a distorted version
with a monoclinic space group 12 (AgCaO2, AgSrO2, AuSrO2, AuBaO2). These two lattices
are represented in the top panels of Fig. 5.10. On the other hand, CuSrO2 and CuBaO2

have an orthorhombic structure (space group 63) that resembles to some to extent the one
of AuMgO2. Most of these materials are metallic, with the exception of the ones that
crystallize in the monoclinic phase: AgSrO2 has a PBE gap of 0.6 eV, AuSrO2 of 1.4 eV
and AuBaO2 of 1.2 eV. AgCaO2 has zero PBE gap, but the small density of states at the
Fermi surface and the results for the other compounds suggest that this may just be due to
the well known gap underestimation of the PBE, and that a quasiparticle gap may open up
when more sophisticated methods are used. Concerning the thermodynamical stability of
these compounds, CuCaO2 is at 3 meV/atom above the hull, while AuSrO2 is at 33 meV and
AuBaO2 at 31 meV.

5.2.4 Transition metals

Vanadium The monoclinic structure (space group 12) of CuVO2 is very similar to the one
of AgPbO2 (see Fig. 5.14). This compound is has a gap of 1.0 eV and is 11 meV/atom above
the convex hull.

Manganese The oxide phases containing Mn (space group 12) can be seen as distorted de-
lafossites, where the O atoms are slightly displaced from their symmetry positions (CuMnO2,
AuMnO2), or with a different stacking (AgMnO2). The Au compound is metallic whereas
the Ag and Cu have a PBE gap of 0.4 and 0.1 eV.
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(a) (b)

(c)

Figure 5.10 The structures of (a) CuCaO2 (space group 123), (b) AgCaO2 (space group 12),
and (c) CuSrO2 (space group 63).

Palladium, Platinum The two Cu compounds with Pd and Pt crystallize in the orthorhom-
bic structure of (Ag,Au)LiO2 (see right panel of Fig. 5.7). While the Pd compound is
thermodynamically stable, CuPtO2 is 6 meV/atom above the convex hull. Both are metallic.
On the other hand, the two Ag phases have a monoclinic structure (space group 10) similar to
AuPbO2 (see Fig. 5.14), but where the Ag planes are not distorted (increasing the symmetry
of the system). AgPdO2 is stable with a small PBE gap of 0.1 eV. AgPtO2 has an indirect gap
of 0.3 eV, lying 19 meV above the hull. Finally, AuPdO2 it is a metallic distorted delafossite
structure (space group 12) similar to the one of (Cu,Ag,Au)BiO2 (see Fig. 5.15a).

Copper, Silver, Gold CuAgO2 has a orthorhombic lattice characterized by square flat
layers of Ag intercalated with ribbons of CuO2. The main difference to the structure of
CuPbO2 (see Fig. 5.14) is that the four O atoms are shared in this case with two Cu neighbors
and not with four. On the other hand, CuAuO2 crystallizes in a monoclinic structure (space
group 12) very similar to the Au delafossite structure, with Au hexagonal flat planes separated
by CuO2 layers, but where the O atoms are slightly displaced thereby reducing the symmetry
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Figure 5.11 Structure of CuAgO2 (space group 47).

(a) (b)

Figure 5.12 Structure of (a) AgCdO2 (space group 12) and (b) AgHgO2 (space group 2).

from trigonal to monoclinic. This is, in fact, the structure that can be found in the databases
for CuAgO2. Finally, AgAuO2 can again be seen as a distorted Au delafossite, leading to a
monoclinic phase with space group 14. While CuAgO2 and CuAuO2 are metallic, AgAuO2

is an indirect gap semiconductor with a PBE gap of 0.6 eV.

Cadmium, Mercury CuHgO2 has the same monoclinic structure as CuAuO2, and so it can
be seen as a deformed Hg delafossite. It is a metal and it lies 43 meV/atom above the convex
hull of thermodynamic stability. On the other hand, AgCdO2 crystallizes in a deformed
version (see Fig. 5.12) of the tetragonal structure of, e.g., CuCaO2 (see Fig. 5.10). This is
a metal, 23 meV/atom above the hull. The next compound, AgHgO2 has as ground state a
low symmetry structure (space group 2, see right panel of Fig. 5.12) that can be seen as a
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Figure 5.13 The structure of CuTlO2 (space group 11).

small distortion of the orthorhombic phase of (Ag,Au)LiO2 (see right panel of 5.7). This is a
metal, 27 meV above the hull. Finally, AuCdO2 has a similar crystal structure as AgHgO2,
also with space group 2, but with the metal atoms forming lines of Au and of Cd (i.e., they
are not alternating). This is a quasi-direct gap semiconductor with a PBE gap of 0.9 eV.

Thallium The ground-state of CuTlO2, in contrast to the Ag and Au compounds that
crystallize in the delafossite structure, is a monoclinic lattice (space group 11), characterized
by hexagonal channels made of Tl filled with flat stripes of CuO2. This phase is an indirect
band-gap semiconductor with a PBE gap of 0.4 eV. A (metallic) delafossite structure is also
present as a meta-stable phase, around 14 meV/atom higher than the ground-state.

Lead (Cu,Ag,Au)PbO2 oxides are characterized by Pb planes separated by (Cu,Ag,Au)O2

layers (see Fig. 5.14). For CuPbO2, Pb forms a square lattice while each Cu shares four O
atoms with four Cu neighbors, while for the Ag compound, Pb forms a hexagonal lattice with
isolated AgO2 units in between. Finally, the AuPbO2 structure is somewhat intermediate
between the Cu and Ag compounds: the Pb layers form a distorted hexagonal lattice and each
Au has two O atoms and shares an extra two. The Cu phase (space group 74) is metallic and
43 meV above the convex hull, the Ag compound (space group 12) is a 0.3 eV semiconductor
and 32 meV above the hull, and finally Au forms a semiconducting phase (space group 2)
with an indirect PBE gap of 0.4 eV and it is 15 meV above the convex hull.

Bismuth The ternary oxides with Bi are indirect-gap semiconducting phases with PBE gaps
of 1.0 eV (Cu), 1.4 eV (Ag), and 1.3 eV (Au). Their monoclinic space group 11 corresponds
to an atomic arrangement that can be seen as a distorted delafossite, with a dimerization of
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(a) (b)

(c)

Figure 5.14 Structures of (a) CuPbO2 (space group 74), (b) AgPbO2 (space group 12), and
(c) AuPbO2 (space group 2).
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(a) (b)

Figure 5.15 Distorted delafossite structure of (Cu,Ag,Au)BiO2 (compare with Fig. 5.5) (a)
and tetragonal structure of CuBiOS (space group 129).

the chains of Ag and BiO2 (see Fig. 5.15a). The delafossite structure remains, however, a
meta-stable phase of this composition, around 40 meV/atom higher than the ground-state.
Although not strictly stable thermodynamically, these structures are remarkably close to the
convex hull at 8 meV/atom (Cu), 3 meV/atom (Ag), and 40 meV/atom (Au). Finally, for
CuBiOS we found a thermodynamically stable tetragonal structure with space group 129
(see Fig. 5.15b).

Scandium CuScOS crystallizes in metastable orthorhombic structure (space group 59, see
Fig. 5.16a), 18 meV/atom above the convex hull. It has a PBE gap of 1.4 eV.

Yttrium For CuYOS we found a tetragonal structure (space group 129), similar to the
one of CuBiOS (Fig. 5.15b). It is semiconducting, with a PBE gap of 0.5 eV and it lays
40 meV/atom above the convex hull of stability.

5.2.5 Halogens

Fluorine (Cu,Ag,Au)FO2 compounds crystallize in a monoclinic lattice (space group 4)
characterized by (Cu,Ag,Au)FO2 layers (see Fig. 5.16b). These are all semiconducting struc-
tures, with PBE electronic gaps of 0.8 eV (CuFO2), 0.6 eV (AgFO2), and 1.1 eV (AuFO2).
For NiFO2 we found a stable, low symmetry structure (space group 2). It is characterized by
planar units of (Ni,K,O) intercalated by lines of oxygen molecules (see Fig. 5.16c).
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(a) (b)

(c)

Figure 5.16 The structure of (a) CuScOS (space group 59), (b) (Cu,Ag,Au)FO2 (space group
4) and (c) NiFO2 (space group 2).

Chlorine, Bromine Cu(Cl,Br)O2 compounds crystallize in a low symmetry triclinic (space
group 1) lattice (see panel c of Fig. 5.17). This has some similarities to the monoclinic
structure of (Cu,Ag,Au)FO2 (see Fig. 5.16b), in the sense that they share the same CuO2

subunits. However, in the latter structure each Cu shares four F with four neighboring Cu
atoms, while in the former each Cu only shares two (Cl,Br) with two other Cu. These are
thermodynamically stable structures, that are indirect gap semiconductors with PBE gap of
0.8 (CuClO2) and 0.9 (CuBrO2).

Ag(Cl,Br)O2 structures are fundamentally different from all other we found in our study.
It is composed of flat hexagonal layers of Ag(Cl,Br), separated by a layer of O2 molecules
(see panel a of Fig. 5.17), forming a low-symmetry triclinic lattice (space group 1). These
turn out to be semiconductors with PBE gaps of 0.6 eV (AgClO2) and 0.7 eV (AgBrO2).
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(a) (b)

(c)

Figure 5.17 The structure of (a) Ag(Cl,Br)O2 (space group 1), (b) Au(Cl,Br)O2 (space group
15), and (c) Cu(Cl,Br)O2 (space group 1).

Au(Cl,Br)O2 compounds crystallize in a lattice that is composed of Au(Cl,Br) layers
intercalated with O2 molecules (see panel b of Fig. 5.17). However, in this case the Au(Cl,Br)
are not flat, but form zigzag stripes with each Au bonded to two (Cl,Br) and vice-versa,
leading to a monoclinic lattice (space group 15). AuClO2 is a semiconductor with an indirect
gap of 0.3 eV, while AuBrO2 turns out to be a metal with the PBE.

Iodine CuIOS crystallizes in a metalic low symmetry structure (space group 1). It is
formed by (Cu,S,O) units intercalated by SO2 molecules (Fig. 5.18a).

5.2.6 Others

Boron AgBO2 has a monoclinic structure (space group 9) composed by slightly buckled
Ag layers, separated by BO2 chains, where each B is connected to three O, two of which are
shared with two adjacent B atoms (see Fig. 5.18b). Note that this is the same structure we
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(a) (b)

Figure 5.18 The structure of (a) CuIOS (space group 1) and (b) AgBO2 (space group 9).

(a) (b)

Figure 5.19 Two phases of AgNO2, (a) the ground-state monoclinic (space group 5) and an
orthorhombic (space group 44) structures.

had previously found for CuBO2 [48]. AgBO2 is 33 meV/atom above the hull, and it is a
semiconductor with a PBE quasi-direct gap of 1.4 eV.

Nitrogen The lowest energy phase of AgNO2 that we found is a monoclinic structure
(space group 5), lying 37 meV/atom above the hull. It is composed of lines of alternating Ag
and NO2. This is a deformation of the orthorhombic structure (space group 44, see Fig. 5.19)
that can be found in the databases, and that we found to be 5 meV/atom above the ground
state. Both structures are indirect gap semiconductors, with PBE gaps of 1.4 eV (monoclinic)
and 1.8 eV (orthorhombic).

Arsenic Also for AgAsO2 we found a monoclinic structure (space group 5, see Fig. 5.20),
composed of corrugated planes of AgAsO2. This phase is 38 meV/atom above the hull, with
a PBE indirect gap of 2.4 eV.
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Figure 5.20 The structure of AgAsO2 (space group 5).

Antimony CuSbOS crystallizes in a monoclinic structure (space group 8) and lays 37 mev/atom
above the convex hull of stability, with a gap of 0.8 eV.

Indium For CuInOS we found a low symmetry monoclinic structure (space group 4),
metalic, and 46 mev/atom above the convex hull. It resembles a distorted structure of
CuBiOS and CuYOS (Fig.5.15b).

5.3 Summary and Conclusions

In this Chapter we summarized the results of structural prediction runs for 304 oxide phases
of the families (Cu,Ag,Au,Ni)XO2 and CuXOS. From our runs we predict that there are
93 thermodynamically stable or quasi-stable (within 20 meV) compositions, out of which
only 41 are included in available databases. These numbers should be compared to the 3
systems that were found in a previous study using high-throughput techniques combined
with machine learning. Nevertheless, we believe that structural prediction should not be
seen as a competitor of more traditional high-throughput techniques. In fact, both methods
complement each other, and both should be used in synergy to speed up the experimental
process of materials discovery. We tried to do the first steps in this direction, by combining
structural prediction and a search based on prototype structures.

The subset of oxides that we explored include delafossite CuAlO2, the first delafossite
p−type transparent conductive oxide. By calculating the band gaps and hole effective masses
of the new stable compounds that we identified, we could reveal some potential candidates
to outperform CuAlO2 as p−type transparent conductor. These few compounds deserve in
our mind further consideration, both from an experimental point of view (e.g., synthesis,
structural and electronic characterization) and a theoretical point of view (e.g., study of
dopability, more accurate band structure and transport calculations).
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This section proves that, even if structural prediction is complex and numerically ex-
pensive, we can use modern supercomputers to investigate the stability a large number of
chemical compositions. However, we still made an assumption on the stoichiometries chosen
– in this case (Cu,Ag,Au)XO2 and CuXOS. In other words, we are inputing a chemical com-
position and we are getting its ground state structure in return. Having the crystal structure,
we can then calculate a variety of properties to access its applicability for a target problem.
In the next section we will give a step further: we will present a method where we will input
a target property (properties) and get in return a material optimized for this specific purpose.





Chapter 6

Materials Design and Inverse Problem

One of the most exciting developments in condensed matter over the past years is, without
doubt, materials design [7, 34, 188, 189]. This new discipline aims at solving the so-called
inverse problem: given a certain desired property (or properties), discover (design) the
material that possesses this property under a given set of constrains. These constrains can be
related to the mechanical or chemical stability of the compounds, their price, their availability,
etc. Several groups are actively working on this topic, with many projects related to energy
materials including lithium batteries [7], photovoltaics [190, 191], etc.

Typically, these methods rely on the databases of ab initio results described before. These,
can be simply filtered to yield the best material according to some objective function [14, 35]
or used as a training set for some machine learning algorithm that will extrapolate the
information to obtain new crystal structures with improved properties [33, 192].

Even if this framework is extremely powerful and has led to a number of significant
discoveries, in our opinion it suffers from few drawbacks. First of all, it requires an enormous
amount of experimental input, and in fact more than 50,000 complex synthesis and X-
ray diffraction experiments had to be realized in order to obtain the current databases.
Although 50,000 may seem a large number, it is certainly a very small fraction of all possible
(thermodynamically) stable compounds. Of course each new experimental entry that is added
to the database encompasses substantial costs in personnel, equipment and consumables.
Second, any prediction based on this set will be biased by the subset of systems studied
experimentally. If the solution for a given materials design problem lies in a region that has
been unpopular among chemists and crystallographers, it is very unlikely that it will ever be
found by any algorithm. Third, experimentally we know mostly stable stoichiometries. This
means that large regions of (the unstable) phase space are completely unrepresented in the
databases, which makes bridging these regions during an optimization procedure extremely
difficult.
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Figure 6.1 Schematic view of the on-the-fly materials design algorithm proposed.

There are other approaches to the design of new materials that do not require databases.
For example, the concept of energy gradients in chemical compound space [193–198] (the so-
called alchemical derivatives), transforming discrete optimization into a continuum one, has
been proposed as a way to optimize molecular properties. Evolutionary approaches have also
been used, although always with rather severe constrains. For example, Refs. 190 and 191
optimized optical absorption by changing the ratio and the order of Si and Ge monolayers,
while in Ref. 199 the ground-state for Au1−xPdx (with variable x) alloys was found but for
a fixed Bravais lattice. On the other hand, variable composition genetic algorithms were
proposed to study binary phase diagrams, with application, e.g., to the Mn–B system [200].

Finally, the dream of any theoretician is to be able to provide predictions with as little
experimental information as possible (ideally none). In the following we will show that
this is possible, and that one can nowadays perform the inverse problem in an efficient way
without resorting to databases or to any experimental input besides the periodic table of the
elements and the laws of quantum mechanics.

6.1 Details of Calculations

Our approach is composed of three parts, as schematized in Fig. 6.1. In the first, we use
a multi-objective genetic algorithm (GA) to vary the composition of the unit cell in order
to maximize a set of properties. Then, for each individual (i.e., for each composition that
stemmed from the GA) we did structural prediction to obtain its ground-state crystal structure.
Finally, the property (or properties) that we want to optimize are calculated for the ground-
state and possibly for the lowest-lying meta-stable structures. These are finally fed back into
the GA in order to determine the better-fit parents that will generate the offspring for the
following generation.
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In the structure prediction step we used the minima hopping method described in Sec-
tion 2.4.5 and already used in the previous Chapter. Forces and energies were obtained within
density functional theory. For a given stoichiometry, the initial geometries were obtained
randomly, ensuring only that the minimal distance between the atoms was at least equal to
the sum of the covalent radii. At the end of the simulation, all structures higher than 200 meV
per atom from the ground-state were disregarded. The remaining were reoptimized, and their
properties were calculated as explained below. Details on the DFT runs are described below
(Section 6.1.2).

6.1.1 Genetic algorithms

The genetic algorithm used here is slightly different from the one described in Section 2.4.3.
In the latter, the GA is used to obtain the ground state crystal structure directly. Therefore,
the gene is the crystal structure itself. Here, we use the genetic algorithm to, based on the
best candidates, select the compositions to use in the minima hopping runs. To perform the
multi-objective optimization we used the non-dominated sorting genetic algorithm–II [201].
The gene describing each individual is given by a sequence of 6 integer numbers, each one
indicating a different chemical element. In order to accommodate unit cells with less than 6
atoms we introduced an empty “atom” (symbol “X”, atomic number 0). The ordering of the
sequences was taken into account, such that, e.g., ABC is equivalent to BCA. The mating
operator simply mixes the chemical composition of both parents, while mutations transmute
randomly one element in the gene. The mutation rate was set to 10%. As an example, Fig. 6.2
shows a possible repesentation of the gene, the crossover and the mutation operators. In our
current implementation we did not make use of a Lamarckian-type evolution as described in
Ref. 199. However, we expect that such ideas could be applied to obtain a speed up of the
convergence of our method.

6.1.2 Ab initio calculations

We used density functional theory as implemented in the code VASP [39, 40]. We used again
the PAW datasets of version 5.2 (for compatibility with materials project [4] and OQMD [5]).
We used a cutoff of 520 eV and we selected our k-point grids to ensure an accuracy of
0.002 eV/atom in the total energy. All forces were converged to better than 0.005 eV/Å.
To approximate the exchange-correlation functional of DFT we used the Perdew-Burke-
Ernzerhof [141] generalized gradient approximation (PBE).
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Figure 6.2 Genetic algorithm

6.1.3 Hardness evaluations

We used the model by Zhang et al [202] that allows for a universal calculation of the Vickers
hardness for the predicted structures. This model extends the work of Šimůnek and J.
Vackář [203, 204], and improves the earlier hardness models [205] based on bond strength
by applying the Laplacian matrix [206] to account for the highly anisotropic and molecular
systems. In order to benchmark this model, we calculated the hardness for all materials
contained in the open quantum materials database [5] (around 300,000 entries). It turns out
that laminar systems are correctly described as having low hardness, but the model still fails
for some molecular crystals that are incorrectly assigned large values for the hardness. This
is however, not a large problem, as these false positives can be easily identified by visual
inspection and quickly discarded.

6.1.4 Calculation of the gaps and hole effective masses

Gaps and hole effective masses (m∗
h) were calculated using the PYMATGEN [182] and BOLTZ-

TRAP [185] software packages, applying the recipe already used in the previous Chapter. We
then used the higher limit estimation of m∗

h as the input value for the GA. We note that only
one structure for composition was used to evaluate m∗

h, which was not always the ground-state
structure. Rather, we chosed the structure with largest (PBE) gap within 50 meV to the
GS. Additionaly, for the most promising candidates, we also calculated the gaps using the
Heid-Scuseria-Ernzerhof hybrid functional (HSE06) [207]. We note that this latter functional
is a screened hybrid that gives very good values for the electronic gap of small and medium
gap semiconductors. In particular, the HSE06 estimate is much better than the PBE one, that
has the tendency to underestimate substantially the electronic gaps.
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6.2 Results and Analysis

As a first showcase demonstration of our method, we decided to search for superhard
materials. The hardness is a technologically important property that has been the subject
of numerous studies over the past decades. We performed two independent GA runs with
15 generations each. We used a population of 100 individuals, with a maximum of six
atoms in the unit cell. We allowed all elements up to bismuth, but excluding the rare gases
(which do not form hard compounds) and the lanthanides. We note that these choices were
arbitrary, and ultimately decided by efficiency reasons. The initial generation was chosen
such that each individual contained four random atoms in the unit cell. We made sure that
each element appeared a minimum number of times in the initial generation (see bottom
line of Fig. 6.4). Finally, the mating operations mixed the elements of both parents, while
the mutations operated the alchemical transmutation of the elements. In total the structural
prediction visited 121,000 minima for 1,500 compositions, of which 33,000 unique structures
were further analyzed. All calculations were performed in around 1 million computer hours, a
number relatively modest in comparison to the supercomputing resources currently available.

The evolution of the hardness during our GA simulations is shown in Fig. 6.3 for our two
independent runs. The lines are a guide to the eye and represent the maximum (top line),
average (middle line), and minimum (bottom line) hardness in a given generation. Some of
the most relevant compounds that appeared during the evolution are also indicated in the
figure. The average hardness increases almost monotonically, as the GA narrows the search
space. Moreover, diamond (labeled “C” in the plot”) appears already in the 9th generation
in run I, and in the 5th generation in run II. This is somewhat surprising as, up to that point,
only a few hundred materials had been tested, which should be compared to the size of the
search space that contains more than 61 million possible compositions. We finally note that
the path from the random initial materials to diamond goes through very unstable structures,
obviously not present in any experimental database. This is certainly a key for the efficiency
of the method.

To understand how the method works we plot, in Fig. 6.4, an histogram measuring the
frequency with which each element appears in a given generation. For the initial generation
(the bottom line) there is an essentially uniform distribution (the zeros correspond to the
elements explicitly excluded). This simply reflects our random choice of compositions for
the starting generation. However, rather quickly several elements are excluded from our
population, while others increase substantially their frequency. Among these latter there are
H, B, C, N, Si, P, etc., elements known to yield hard materials due to their short covalent
bonds [208–211], and several transition metals like Ru, Rh, Os, Ir, etc. that form hard nitrides,
borides, carbides, etc. [212, 213] In a way, the GA rediscovering, in a fully automatic and ab
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Figure 6.3 Evolution of the maximum (red line), minimum (orange line), and average (yellow
line) hardness as a function of the generation for the two GA runs described in the text.
Each point corresponds to the maximum hardness of a specific composition. Some relevant
compounds are also indicated.
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Figure 6.4 Frequency of the elements present in each generation of the hardness for the two
GA runs described in the text. The bottom (red) line corresponds to generation 0, and the top
(blue) line to generation 14.
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initio way, some of the basic intuition concerning hardness that physicists and metallurgists
developed over the centuries.

Let us now take a better look at the superhard materials (with hardness greater than
40 GPa) that came out from our simulations. They are summarized in Table 6.1. For the sake
of comparison, we also include the distance to the convex hull of thermodynamic stability,
the spacegroup of the structure in question, the bulk and shear moduli.1

Without great surprises, the hardest materials on this list are composed of B, C, and N.
The only structure harder than diamond is a metastable low symmetry structure of BC. In
second place comes diamond, that also exhibits the highest bulk and shear moduli of all
materials we looked at. For curiosity, we also found a carbon allotrope with a hardness
higher than diamond, but too high in energy to enter our list. Then comes CN2 followed
by a meta-stable allotrope of boron (that has a larger hardness than any other known boron
structure present in the open quantum materials database [5]) and by several boron carbides.
All these materials are characterized by short and strong covalent bonds. Further down on
the list we can also find a few transition metal nitrides (MnN, OsN), and several materials
containing hydrogen.

We also obtained a few false positives, such as HCCo, H3NO, or C2P, as can be seen by
their low bulk and shear moduli. This is due to the current limitations of the model used
to estimate the hardness, but these cases are usually simple to spot and to filter out. For
example, H3NO turns out to be a molecular crystal that the model failed to recognize as such.
We should also note that most of the materials present in the table are not thermodynamically
stable, as can be seen by the finite value of Ehull, i.e., they can a priori decompose to other
compounds or to more stable phases of the same compound. However, superhard materials
are usually quite compact, and therefore are normally stabilized by pressure. It is therefore
not unthinkable that some of these phases can be produced by a high pressure synthesis
procedure, analogously to diamond (the second entry of the list).

As a more complicated test we decided to look at transparent conductors. These materials
where already the subject of the previous Chapter, where details on their properties and
literature can be found. Just a recall to put the problem in perpective here: the two key
properties we are interested in are the electronic band gap, that has to be sufficiently large to
ensure transparency, and the hole effective mass, that needs to be small to allow for mobile
carriers. Such requirements can therefore be easily accommodated in our framework using a
multi-objective optimization algorithm.

We performed 20 generations with a setup similar to the hardness runs. In total we
investigated 1,100 compositions, leading to 72,000 minima, of which 19,000 were further

1bulk and shear moduli were calculated by R. Sarmiento-Pérez [22]
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Table 6.1 Superhard materials found during our GA simulations. We show the space group
of the structure (spg), the distance to the convex hull of stability (Ehull in meV), the Vickers’
hardness (in GPa), and the bulk and shear modulii (in GPa).

system spg Ehull hardness bulk shear

BC 5 413 123 304 270
C 227 136 97 444 526
CN2 119 722 91 423 300
B 166 177 72 215 202
BC3 25 308 71 359 321
BC2 1 612 68 261 141
B3C2 1 452 63 162 82
C2Si 166 497 54 268 273
HFe 216 164 52 226 95
HB 12 660 50 205 183
NMn 216 0 50 283 26
HCCo 8 625 50 92 23
HNi2 123 40 49 220 85
HC2 2 457 47 275 184
HBNi 1 401 46 123 12
H3NO 8 314 45 38 10
HNi 44 14 45 191 23
CFe 216 479 44 260 55
C2P 8 554 44 90 96
B2C 8 383 43 208 62
B2C3Si 1 345 42 204 162
NOs 119 410 42 300 86
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Figure 6.5 Average hole effective mass versus electronic band gap for all structures found in
our run. The lines indicate the Pareto front for generations 0 (magenta), 9 (dark blue) and 19
(light blue).



6.3 Summary and Conclusions 91

analyzed. Our results are summarized in Fig. 6.5 where we plot the average hole effective
mass (in units of the electron mass) versus the electronic band gap (in eV). Note that this
latter quantity was calculated using standard DFT, so its value is consistently underestimated.
Again, our GA method works perfectly. The Pareto front, i.e., the line connecting the
structures with best gap for each effective mass (or vice-versa), is improved gradually
from generation to generation. Several materials appear with large gaps and small hole
effective masses that are good candidates for transparent conduction. Table 6.2 summarizes
all structures with gap larger than 1.0 eV and average hole effective mass smaller than 1.5
electron masses. We list the crystallographic space group, the distance to the convex hull of
thermodynamic stability (Ehull), the distance of the calculated structure to the lower energy
structure found (∆GS), the electronic gap calculated with the PBE and the HSE06 functionals,
and the average hole effective mass.

The evolution of the composition as a function of the generation, for the simultaneous
optimization of the band gap and the hole effective mass, can be found in Fig. 6.6. In this
case, the interpretation of the plot is more complicated than for the optimization of the
hardness, as most of the successful structures are combinations of metallic elements with
non-metallic elements, and therefore it is less likely that an element disappears from the
population during the evolution process.

It is again interesting to understand how the GA worked. Taking random compositions, the
probability of finding semiconducting systems is fairly low. For example, our 0th generation
contained only 13 semiconductors out of 100 individuals. The first step in the optimization
is therefore to find semiconductors. This is can be achieved, e.g., by making molecular
crystals formed mainly by non-metals or by combining metallic and non-metallic elements
in the same structure. As the first possibility will yield very low effective masses, the final
generation contains almost exclusively compounds of the latter kind. This again shows how
the GA algorithms can rediscover basic chemical rules without any human intervention.

6.3 Summary and Conclusions

In conclusion, we propose a new method to design on-the-fly new materials with tailored
properties. Our first test, maximizing the hardness or at the same time maximizing the
electronic gap and the hole effective mass were extremely successful, with several interesting,
unknown materials stemming from the simulations. This shows that our method is not only
perfectly feasible, but also efficient with current computer resources. Of course any other
property that can be calculated in a computer can be optimized, including the band gap, the
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Table 6.2 Best transparent conductive materials found during our simulations. We show the
distance to the convex hull of stability (Ehull in meV), the distance to the GS structure found
(∆GS in meV), the space group, the gap in the PBE and the HSE06 approximations (in eV),
and the average hole effective mass (m∗

h in electron masses). These latter two were calculated
with the Perdew-Burke-Ernzerhof approximation [141] to the exchange-correlation potential.

system spg Ehull ∆GS gap (PBE) gap (HSE06) m∗
h

PZnGeSeCs 1 57 11 1.06 1.41 1.29
ClKBrCdIn 8 79 38 1.25 1.69 1.28
HSSbTe 1 63 20 1.18 1.80 1.21
HSeCdTl 160 89 17 1.03 1.80 0.54
HSSb 8 173 22 1.01 1.80 1.04
HCaZnSb 8 0 1 1.01 1.91 0.41
HPCdTe 1 143 49 1.09 2.01 0.92
HSNbTe 1 0 0 1.27 2.03 0.72
OPTeTl 1 197 10 1.26 2.06 1.21
BeSZnTe 160 151 0 1.23 2.16 0.67
CaSeCdTe 156 124 3 1.41 2.24 0.78
SCa2Te 166 50 0 1.38 2.37 0.69
FSiCaSeTeTl 1 225 48 1.15 2.37 0.92
BePSCs 1 272 0 1.41 2.41 1.50
SCaZn 156 496 1 1.30 2.45 0.73
H2SbCs 1 42 0 1.56 2.46 0.98
HLiBrSbTe 8 119 6 1.53 2.46 1.26
OP 8 284 0 1.33 2.50 0.59
LiFCaSeTe 1 233 10 1.32 2.54 1.58
H2STe 1 194 4 1.00 2.64 1.43
HSeCdAu 1 154 2 1.29 2.67 1.28
H2CaSbCs 8 134 0 1.92 2.71 1.32
HSRh 1 148 0 1.36 2.79 1.55
CPTeCs 8 573 12 1.64 2.89 1.38
OZnGeSe 8 169 42 1.39 2.89 1.07
H2NAu 1 233 0 1.12 2.97 0.74
MgTe 216 1 1 2.31 3.13 0.94
HLiCaTe 6 103 34 2.14 3.18 1.14
HRbTe 1 0 0 2.36 3.23 1.24
HSZnAu 1 163 0 1.88 3.27 1.19
HTeCs 8 0 0 2.46 3.33 1.49
HFCaTe 1 133 0 2.51 3.48 1.55
BrTl 6 1 29 2.26 3.71 0.51
H3LiCa 221 28 0 1.25 3.95 0.30
HLiSCa 38 84 0 2.20 4.23 0.89
HCs 4 0 32 2.60 4.26 0.94
HRb 225 0 0 2.89 4.74 1.02
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Figure 6.6 Frequency of the elements present in each generation of the gap/hole effective
mass GA runs. The bottom line corresponds to generation 0, and the top line to generation
19.
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Seebeck coefficient, the superconducting transition temperature, or even the price of the
constituents.



Chapter 7

Summary and Conclusions

In this thesis, we used a combination of high-throughput and ab initio global structure
prediction methods to study a wide range of different systems. In the following, a summary
of the most notable results is presented.

Radial collapse of Carbon Nanotubes We studied the collapse of carbon nanotubes
(CNTs), in a bundle and individualized in water, using the density functional tight-binding
method method. For bundles, We showed that several discrepancies found in the literature
can be explained by the different number of carbon nanotubes in the unit cell and by the
theoretical framework employed. Moreover, we obtained collapse pressures compatible with
the ones in experimentals works. For individualized CNTs, we observed different behavious,
depending on the water filling ratios: low filling ratios tend to destabilize slightly the CNTs,
leading to modifications on the CNT cross section at pressures lower than for empty tubes.
For higher concentrations of water, we see a consistent increase in the collapse pressure
with the increased filling ratio, in accordance with experimental data, even if the calculated
collapse pressures do not match perfectly experimental data. Finally, we observe that unusual
states of water can be found in the collapsing / collapsed nanotubes. These can range from
nanotube-like to 2D sheet-like planes of water, depending on the diameter of the CNT and
on the pressure.

Type-I Silicon Clathrates Using high-throughput computational techniques we investi-
gated the stability of type-I Si clathrates. We found several potentially stable new clathrate
phases, and we reproduced the vast majority of experimental results. Based on these predic-
tions, a new Be-doped clathrate, namely Ba8Be3.7Si42.3, was successfully synthesized. This
clathrate phase would probably be missed experimentally since it can not be expected based
on the simple Zintl-Klemm-rule. Likewise, as we are not bounded by the price, availability,
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toxicity, etc, of the elements, we were able to predict unusual doping combinations that are
traditionally hard to access in the laboratory.

New p-type transparent conducting oxides by global structure prediction Combining
structural prediction and a search based on prototype structures, we studied 304 oxide
phases of the families (Cu,Ag,Au,Ni)XO2 and CuXOS. We found 93 thermodynamically
stable or quasi-stable (within 20 meV) compositions, out of which only 40 are included
in available databases. By calculating the band gaps and hole effective masses of the
new stable compounds that we identified, we could reveal some potential candidates to
outperform CuAlO2 as p−type transparent conductor. These few compounds deserve further
consideration, both from an experimental and a theoretical point of view.

Materials Design and Inverse Problem We proposed a new method to design new mate-
rials with tailored properties on-the-fly, based on a combination of genetic algorithms and
global crystal structure prediction methods. To demonstrate the feasibility of our method,
starting from a random starting point, we tried to i) maximize the hardness and ii) maximize
at the same time the electronic gap and the hole effective mass. Both cases were extremely
successful, with several interesting, unknown materials stemming from the simulations.

Putting everything in perspective, at the time this thesis was written, we used global crystal
structure prediction methods for more than 6000 different compounds, which (including
metastable structures) sums up to more than 50,000 crystal structures. From these, more
than 400 are thermodynamically stable structures (Ehull = 0), not yet present in any database.
This was done in three years, using around 10 million computer hours. An important part of
the work done covers also the developement of the software to automatize several steps of
the workflow. Without this, setting up and running these complex calculations in the also
complex supercomputer’s environments would not be feasible. Even if 10 million hours
seems a large number, it is perfectly compatible with today’s computer resources. We think
this shows how powerful and efficient our approach is, and how relevant this work is for the
materials science community.

Finally, we would like to stress that any pragmatic search for technologically relevant
materials should also take into consideration the large databases of materials already existing.
Conversely, the novel crystal structures encountered by our global prediction methods can
also be incorporated into these databases. We believe that the results presented in this thesis
are, above all, a proof of the incredible advances of ab initio calculations in the past decades,
and a prelude to what this field has to offer in the next ones.
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Appendix A

Bader charges, oxidation states, and
coordination numbers (Chapter 5)

In Tables A.1 and A.2 we summarize values of Bader charges, oxidation states and coordina-
tion numbers for the crystal structures with a total energy within 50 meV from the convex
hull of stability. These data were calculated using the PYMATGEN package [182]. For Bader
charges PYMATGEN uses the algorithm developed by Henkelman et al. [214], coordination
numbers are extracted from the Voronoi analysis [215], while oxidation states are obtained
using a maximum a posteriori estimation method with the element-based parameters of M.
O’Keefe et al. [216]. Oxidation states for some structures are unfortunately missing due to
the lack of adequate parameters for some elements and related problems with the software.
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