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Abstract

The classification of material deficiencies is a key feature in quality assurance. In this

framework, laminated composite materials are of special interest, because they increasingly

replace monolithic materials. The Lorentz force evaluation (LFE) is an evaluation technique

to reconstruct the geometry of flaws in electrically conducting composites using inverse cal-

culations. These calculations are based on perturbations that occur in the measured Lorentz

force signals and are caused by the flaws. The force signals are obtained using the nonde-

structive testing method Lorentz force eddy current testing (LET). In this electromagnetic

technique, a permanent magnet and the material under investigation move relative to each

other. As a consequence eddy currents are induced in the conductor. The eddy currents

in turn interact with the magnetic field and cause a Lorentz force. Inverse calculations in

LFE require a forward solution of the measured force signals, which incorporates a model

of the LET setup.

The objective of this thesis is the development and evaluation of forward and inverse

calculation methods for LFE. The proposed methods are assessed using Lorentz force data

obtained from laminated composites.

In order to model the permanent magnet in the forward solution for LFE the magnetic

dipoles model (MDM) is introduced. In the MDM, a permanent magnet is represented by

an assembly of magnetic dipoles. An optimization procedure is used to determine optimal

dipole positions. Contrary to analytic models the MDM can be applied to permanent

magnets of arbitrary geometry, and forward calculations can be performed with analytic

mathematics.

For defect reconstruction three inverse methods are introduced in this thesis. In the

first method, conductivity reconstructions are performed using a stochastic optimization

algorithm, the Differential Evolution (DE). Prior to inverse calculations, the intrinsic con-

trol parameters of the DE are determined based on parameter studies. As the second

inverse strategy, current density reconstructions (CDR) calculated with minimum norm

estimates (MNE) are employed. This approach is based on interpreting a defect in the for-

ward solution for LFE as a distributed current source. In the third method, a goal function

scan is performed to reconstruct the geometry parameters of the defect. All three inverse

methods are suitable for reconstructing defects, whereas the first and third method provide

more accurate results than the second.

Further, measured Lorentz force signals obtained from glass laminate aluminum rein-

forced epoxy (GLARE) composite are investigated. GLARE is widely used in the aircraft

industry. The flaw detectability of LET and LFE for GLARE is proved.
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Zusammenfassung

Die Klassifizierung von Materialdefekten ist ein wesentliches Merkmal der Qualitäts-

sicherung. Dabei sind geschichtete Verbundwerkstoffe von besonderem Interesse, weil sie

zunehmend monolithische Werkstoffe ersetzen. Lorentz force evaluation (LFE) ist eine

Methode zur Rekonstruktion der Geometrie von Fehlstellen in elektrisch leitfähigen Ver-

bundwerkstoffen mittels inverser Berechnungen. Die Grundlage der inversen Berechnungen

sind Störungen, die aufgrund der Fehlstellen in den gemessenen Lorentzkraft-Signalen auf-

treten. Die Signale werden mittels der zerstörungsfreien Prüfmethode, der Lorentzkraft-

Wirbelstromprüfung (LET) gemessen. Bei diesem elektromagnetischen Testverfahren be-

wegen sich ein Permanentmagnet und das zu untersuchende Material relativ zu einander.

Dadurch werden Wirbelströme im Material induziert. Die Interaktion dieser mit dem Ma-

gnetfeld hat eine Lorentzkraft zur Folge. Für inverse Verfahren ist eine Vorwärtslösung zur

Berechnung der Lorentzkraft notwendig, der ein Modell des LET-Aufbaus zugrunde liegt.

Das Ziel der vorliegenden Dissertation ist die Entwicklung und Evaluierung von Vor-

wärtslösungen und inversen Berechnungsmethoden für LFE. Zur Bewertung der Methoden

werden Lorentzkraftsignale verwendet, die aus Messungen von geschichteten Verbundmate-

rialien stammen.

Zur Modellierung des Permanentmagneten in der Vorwärtslösung für LFE wird das

Magnetische-Dipole-Modell (MDM) entwickelt. In diesem Modell wird ein Permanent-

magnet durch eine Verteilung magnetischer Dipole repräsentiert. Die Positionen der magne-

tischen Dipole werden optimiert. Im Vergleich zu analytischen Modellen kann das MDM zur

Modellierung beliebig geformter Permanentmagneten verwendet werden. Die Lorentzkraft-

Signale können analytisch berechnet werden.

In dieser Dissertation werden drei inverse Berechnungsmethoden für LFE erarbeitet.

In der ersten Methode wird ein stochastischer Optimierungsalgorithmus, der Differential

Evolution, zur Rekonstruktion von Leitfähigkeiten im Material verwendet. Die intrinsi-

schen Kontrollparameter des Differential Evolution (DE) werden anhand von Parameter-

studien festgelegt. Als zweite inverse Methode werden Stromdichterekonstruktionen mittels

Minimum-Norm-Schätzungen durchgeführt. Grundlegend für diesen Ansatz ist die Inter-

pretation eines Defektes in der Vorwärtslösung als verteilte Stromquelle. Als dritte inverse

Methode wird eine Abtastung der Zielfunktion zur Rekonstruktion der Defektparameter

vorgenommen. Alle inverse Verfahren sind zur Defektrekonstruktion geeignet, wobei sich

die Ergebnisse der erste und dritten Methode genauer darstellen als die der zweiten.

Des Weiteren werden Messdaten eines aus glasfaserverstärktem Aluminium (GLARE)

bestehenden Prüfkörpers ausgewertet. GLARE wird insbesondere im Flugzeugbau einge-

setzt. Es wird gezeigt, dass mit LET and LFE Materialfehler in GLARE nachgewiesen

werden können.
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1 Introduction

1.1 Motivation

In the course of increasing globalization, ongoing developments in transport systems strive

for larger and more complex systems that can operate at high loads. The need for more

efficient systems should coincide with a minimum weight and low costs. Especially affected

by this trend are the aircraft, railway and naval industry. However, the outlined needs

can not be fulfilled by solely using homogeneous materials. As a consequence, composite

materials that are composed of two or more constituents increasingly replace monolithic

materials. Especially laminated composites that consist of an assembly of layers of different

materials are of special interest.

Because material failures can give rise to technology breakdowns that cause in turn

human casualties, it is inevitable for the manufacturer to ensure the health of the materials

used and thus of the product. In particular, possible flaws should be detected at an early

stage. During manufacturing regular controls are necessary to obtain a qualified product.

Further, in-service inspections are performed in order to detect fatigue fractures. This is

essential for the product maintenance and to prevent premature wear.

For these purposes quality assurance methods, which are capable of investigating the

material without affecting the serviceability of the product, are of great interest. It is

important that the material examination is noninvasive and does not impair any material

properties. Methods that incorporate these characteristics are referred to as nondestructive

testing (NDT) techniques. Their working principle is to detect and localize inhomogenities

based on information in measured signals.

Then, a subsequent evaluation procedure is necessary to classify the influence of flaws on

the stability and contingency risk of the product. In the evaluation procedure, an inverse

problem is solved, i.e., the defect characteristics such as dimension, shape, and structure are

reconstructed based on the measured NDT signals. The results can be used to determine

whether a product should be rejected. The combination of the testing and evaluation

procedure is referred to as nondestructive testing and evaluation (NDT&E).

Inverse calculations usually require to solve a forward problem, i.e., to simulate the

measured signals using a mathematical model of the processes underlying the NDT method.

This forward model has to incorporate information about the defect. The accuracy of the

forward model can be evaluated by comparing the simulated Lorentz forces to the measured

data. The connection of forward and inverse problem is illustrated in Figure 1.1.

For NDT&E of electrically conducting materials, the techniques Lorentz force eddy

1
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Model of
NDT problem Simulated data

Forward problem

Evaluation procedure

Parameters of hidden defect are given

Solving inverse problem to estimate defect geometry

Measured data

Figure 1.1: Illustration of the forward and the inverse problem for the reconstruction of
material defects in NDT&E.

current testing (LET) and Lorentz force evaluation (LFE) have been introduced [10, 81].

LET is a contactless electromagnetic NDT method. The key principle is based on the

interaction between a permanent magnet and a test object, which move relatively to each

other. Due to this movement eddy currents are induced in the conductor. The interaction

of the magnetic field and the eddy currents yield Lorentz forces which are measured. If the

material contains defects the force signals are perturbed. LFE is an evaluation procedure

to reconstruct flaws based on measured LET signals.

The objective of this thesis is to introduce new inverse calculation methods for the defect

reconstruction in LFE. Inverse reconstruction approaches that have been applied in other

field of application such as biomedical engineering and electromagnetic design optimization

serve as a basis for this. Moreover, it is the aim to develop advanced solutions for forward

modeling of LET measurement data. Thereby, the emphasis is on modeling the permanent

magnet providing the magnetic field. Further, it is intended to demonstrate the efficiency

of LET and LFE on laminated composite materials. For this purpose measurement data

obtained from laminates that are widely used in industrial applications are applied.

1.2 Structure and Contributions of the Thesis

Chapter 2 introduces the reader to the field of NDT&E with special focus on LET and LFE.

In this context an overview on laminated composites is given. Further, fundamental basics

of forward and inverse calculations for LFE are described.

In Chapter 3, models of the permanent magnet for the forward solution in LFE are dis-

cussed. The main contribution of this chapter is the development of the magnetic dipoles

model (MDM) [69,72]. This model allows precise modeling of arbitrary shaped permanent

magnets. The MDM is compared to existing analytic models. Further, the MDM is embed-

ded in an existing forward solution for LFE. The magnetic field and corresponding Lorentz

forces of the model are evaluated.

In Chapter 4, an inverse calculation strategy for LFE is introduced, in which the geome-

try of the defect is estimated by reconstructing the conductivity distribution in the material.

This approach is motivated by the fact that anomalies are characterized by changes in con-

ductivity. For inverse calculations a stochastic optimization algorithm is used [71]. In the

following Chapter 5, current density reconstructions are introduced to LFE. In this inverse

2
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method, defect estimation is based on reconstructing the induced eddy current distribution

that changes depending on the defect [70]. The performance of both methods is evaluated

based on measured data of a three-layered composite that has the trade name Alucobond.

Afterwards, in Chapter 6 the potential applicability of LET and LFE for industrial NDT

is demonstrated by assessing measured data obtained from the glass laminate aluminum

reinforced epoxy (GLARE) material. This multi-layered composite is of rapidly growing

interest for public aircrafts and is mainly responsible for the technology progress in this area.

A GLARE test object containing an artificial defect has been specifically manufactured for

this purpose by a leading aircraft supplier. Within this framework, the performance of an

advanced permanent magnet system for LET is evaluated. Further, a third inverse method,

namely the goal function scanning method, is applied to estimate the defect parameters in

LFE.

Finally, in Chapter 7 the results of this thesis are summarized. The performance and

efficiency of the different inverse calculation methods are compared. Also, open issues are

outlined.

3





2 Fundamentals of Lorentz Force Evaluation

2.1 Overview

A wide variety of methods exist for nondestructive testing (NDT) of electrically conducting

non-ferromagnetic objects. These include ultrasonics [6,77], radiography [2], thermography

[22,73], tomography [62], magnetic flux leakage (MFL) [64], and eddy current testing (ECT)

[45,46,100,105]. Lorentz force eddy current testing (LET) has been introduced in 2008 [10]

and belongs similar to ECT to the class of electromagnetic testing methods.

The origins of LET and of electromagnetics in general date back to the work of Faraday

in 1832, Lenz in 1834, and Lorentz in 1892. Faraday’s law of induction states that an

electromotive force is generated in a conductor, if the conductor is moving in a magnetic

field or exposed to a time-varying magnetic field [28]. This electromotive force gives rise

to eddy currents flowing in the conductor. According to Lenz’ law, the eddy currents are

directed in such a way that the magnetic field induced by them opposes the magnetic field

that produced them [58]. This justifies the law of energy conservation, which would not be

fulfilled if both magnetic fields have equal direction. The electromagnetic force exerted on

the conductor, i.e., the Lorentz force that acts on a point charge in the conductor, has been

derived in [61].

In the 1970s studies of forces exerted on moving coils and magnets above an electrically

conducting non-ferromagnetic slab have been extensively performed in the framework of

the development of magnetic levitated transport systems [7, 19, 55, 57, 93, 94]. The studies

investigated linear moving planer objects and rotating cylinders. Later on, the author in [99]

provided a comprehensive analysis of the Maxwell’s theory for electromagnetic suspension

with special focus on motion induced eddy currents and forces. Recent theoretical studies

of the force acting on a magnetic dipole positioned above a slowly moving conductor have

been performed in [117].

LET is a modification of ECT. Both methods are based on the principle of inducing eddy

currents in the conductor, whereas the fundamental difference consists in the excitation of

the primary magnetic field (Figure 2.1).

In conventional ECT, an excitation coil, which carries alternating current and has to be

actively operated, provides the primary magnetic field. Moreover, the material under test

is usually stationary. The signals measured are changes in the impedance in a pick-up coil.

A limitation of ECT is the frequency-dependent skin depth which restricts the method to

defects lying close to the surface.

Contrary to ECT, the primary magnetic field in LET, is generated by the permanent

5
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excitation coil

pick-up coil

conductor

defect

Bp

Bs

j

(a) Eddy current testing (ECT)

conductor

defect

permanent
magnet

Bp

Bs

j

(b) Lorentz force eddy current testing (LET)

Figure 2.1: Comparison of ECT and LET working principles. The primary and induced
magnetic field are denoted by Bp and Bs, respectively. The induced eddy currents j
are marked with blue color. In ECT the conductor is at rest, whereas in LET it moves
with the velocity v“vex.

magnet, i.e., does not require any external operation.The impedance measurements are

replaced by measuring Lorentz forces on the permanent magnet. Since eddy currents in-

duced in the conductor are resulting from the relative motion, LET is especially suitable

for investigating moving objects. Further, it has been observed that the relative motion

yields a skin effect like behavior [16]. However, this effect is much less limiting than the

frequency-depending skin-depth in ECT .

Another electromagnetic NDT method, which is relatively closely related to LET is

motion induced ECT. This technique has been introduced to overcome the frequency de-

pendent skin depth in classical ECT [109]. In this modification a stationary magnetic field

is provided by a coil carrying a direct current and the conductor is in motion. Another mod-

ification of LET called velocity induced eddy current testing has been proposed [96]. This

method incorporates motion induced eddy currents in a conductor underneath a permanent

magnet, but instead of force signals, changes in the secondary magnetic field generated by

the induced eddy currents are measured using Hall sensors.

A popular academic approach to explain the physics underlying LET is the creeping

magnet problem [21, 40, 113], where the motion of a small spherical permanent magnet

traveling in an electrically conducting pipe is investigated. Due to the movement eddy

currents are induced in the pipe. The resulting Lorentz forces exerted on the permanent

magnet reduce the velocity of the falling magnet. This example is extended to ring magnets

in [122], where a falling permanent magnet ring surrounds the conductor.

Further, the Lorentz force principle is used in the Lorentz force velocimetry (LFV) to

measure the velocity in an electrically conducting fluid. In this contactless method, a fluid

moves across the magnetic field provided by a permanent magnet [110,111]. Even more, in

6



2.2 Laminated Composites

Lorentz force sigmometry the electrical conductivity of metals or fluids is determined by

exploiting the dependence between the conductivity and the magnitude of the measured

Lorentz force [114].

The evaluation technique Lorentz force evaluation (LFE), which has been introduced

for inverse calculations of LET signals in [81], encompasses only one forward and one

reconstruction method. The authors have indicated that LET and LFE have great potential

for investigating defects in laminated composites.

The remainder of this chapter is structured as follows. First, in Section 2.2 the structure

and potential flaws of laminates composites are explained, because in this thesis LET and

LFE focus thereon. In the following Section 2.3, the underlying physical principles and

the experimental realization of LET are described. Then, in Section 2.4 procedures for

solving the forward problem in LFE are explained. This includes the theory of electric and

magnetic field calculations. In particular, the existing semi-analytic forward calculations

are explained and a brief outline on numerical methods is given. In the last part of this

chapter, Section 2.5, an overview on inverse calculation methods is given. The fundamental

basics and differences of various methods are outlined. Thereby, the focus lies on the

reconstruction methods applied in this thesis.

2.2 Laminated Composites

A composite is a material that is composed of two or more constituent materials. One

subgroup of composite materials are fiber-reinforced composites that consist of fibers em-

bedded in a polymer or metal matrix. A second class are laminates that consist of a set of

thin sheets of different materials bounded together. These can be metal alloys, polymers,

or composites themselves. A special type, the fiber metal laminates, are hybrid composite

structures made of alternating layers of a metal, mostly an aluminum alloy, and an adhesive

fiber-reinforced epoxy resin.

All materials in a composite remain separate and distinct, and retain their physical and

mechanical characteristics. However, their combination has superior properties including

higher bearing and tensile strength, better damage and fatigue tolerance, larger corrosion

resistance, and less weight [63]. Due to these outstanding features composite materials

are increasingly used in weight-critical components, where high stiffness is required. Fields

of application comprise naval architecture, aerospace, railway supply, automotive industry,

paneling of buildings, and sporting goods. Nowadays, the airframes of commercial airplanes

comprise by more than half of advanced composites. Widely applied are carbon fiber-

reinforced plastics. Moreover, the use of the glass laminate aluminum reinforced epoxy

(GLARE), a fiber metal laminate, in the fuselage panels of the Airbus A380 is especially

popular [124]. Furthermore, sandwich-structured laminates namely Hylite and Alucobond,

which have metal cover layers and a plastic core layer, are used for inner and outer panelling

of trucks, ships and trailers.

7



2 Fundamentals of Lorentz Force Evaluation

During the manufacturing process, material abnormalities such as porosities and debond-

ing of sheets can arise. Further, defects can occur during life cycle, because materials are

exposed to high stress. External impacts such as lightning strokes, bird strikes, and stone

chipping can give rise to surface damages. Moreover, with increasing operating time com-

posites wear out and the strength and durability are reduced. Fatigue cracks are the

consequence. Early fatigue damages usually occur in the subsurface microstructure of the

material. Most likely cracks occur in the area close to welding seams and riveted joints.

Modes of failures include fiber breaking and matrix cracking in the fiber-reinforced matrix,

and cracks in metal layers. Ongoing in-service load yields propagation of the defects.

In transport systems material failure during operation can have significant safety impli-

cations. Therefore, quality standards are very high and regular in-service inspections and

maintenance are required to comply them. Large impact damages on the surface can be

visually identified. In order to detect small and subsurface defects high-resolution NDT

methods are required. Ultrasonics is most widely applied to check composites after man-

ufacturing and during in-service controls of airplanes. Another common method for these

purposes is ECT [105].

Further, LET and LFE are suitable to detect and reconstruct defects occurring in electri-

cally conducting parts of composites, because the working principle of LET is based on eddy

currents induced in electrically conducting materials. Thus, LET can be applied to fiber-

reinforced composites with a metal matrix and those with electrically conducting fibers in

a polymer matrix such as carbon fiber-reinforced plastics. However, due to the fibers and

their directed orientation the material is highly anisotropic. This impedes significantly the

modeling of the material, which is inevitable for fundamental research. Further, LET has

great potential to inspect abnormalities in the metal layers of laminates. The single metal

layers are made of monolithic material and have isotropic electrical conductivities. Based

on the outlined aspects, the focus of this thesis lies on applying LET and LFE to identify

and classify fatigue fractures in the metal layers of laminated composites.

In order to model a laminated composite in the laboratory setup, a set of stacked metal

sheets is used. The sheets are not bonded together and thus they are interchangeable [9].

Due to oxidation during the manufacturing process, the sheets are covered by a low con-

ductive oxide layer. This oxide layer provides an electrical isolation between the sheets and

thus simulates the intermediate layers in a laminate. In order to prove this, experimental

results have been compared with additional measurements, where insulation paper with a

thickness of 6 µm was placed between the metal sheets. Defects in the metal layers can

be realized by drilling holes of desired size and shape in the layer. The stacking of sheets

further allows to easily vary the depth of a defect by exchanging the order of layers with

and without a defect.
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2.3 Lorentz Force Eddy Current Testing

2.3 Lorentz Force Eddy Current Testing

The schematic setup of a LET benchmark problem is shown in Figure 2.2(a). In LET,

a electrically conducting non-ferromagnetic test specimen moves relative to a permanent

magnet. The permanent magnet has the magnetization M and is positioned at the liftoff

distance δz. The specimen is composed of a set of stacked aluminum alloy sheets with the

dimensions Lc ˆWc ˆHc and the conductivity σ0. The height of a single sheet is denoted by

∆z. The global coordinate system is positioned on the top surface of the conductor with the

z-axis being perpendicular thereto. Within this coordinate system the permanent magnet

is fixed and the specimen moves in x-direction with the velocity v“vex. One subsurface

layer contains a defect of height ∆z, i.e., a defect is a hole in an aluminum sheet. The

depth of the flaw is denoted by d and refers to the z-coordinate of the top surface of the

defective layer.

Permanent
magnet

Defect

Metal sheets,

(a) Principle setup

-150 1 00500-50- 01 0 150

0

2

1

-1

(b) Scanning area and examples of force sig-
nals

Figure 2.2: Schematic of LET measurements.

If the conductor is in motion within the magnetic field, Faraday’s law of induction applies

and eddy currents are induced in the conductor. The eddy currents flow in closed paths

perpendicular to the magnetic field. The interaction between the eddy currents j and the

resulting magnetic field B, which is the sum of the primary magnetic field provided by the

permanent magnet and the secondary field induced by the eddy currents, results into a

Lorentz force

F“

ż

V

j ˆ BdV, (2.1)

with V being the volume of the conductor. This force acts on the conductor and brakes

down its motion. Taking into account Newton’s third law, the force of equal magnitude

but opposite direction acts on the source of the applied magnetic field, i.e., the permanent

magnet system: Fp “´F.
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2 Fundamentals of Lorentz Force Evaluation

Force signals are measured at the permanent magnet in all three directions of the Carte-

sian coordinate system. In all applications discussed in this thesis Lorentz forces are mea-

sured along lines distributed in a xy-plane constituting the scanning area (Figure 2.2(b)).

Scanning lines are specified by a fixed y-coordinate and varying x-coordinate. The coor-

dinates refer to the xy-position of the center of gravity of the moving conductor in the

global coordinate system. It has to be noted that the same scanning points can be ob-

tained by moving the permanent magnet instead of the conductor. The exemplary force

signals shown in Figure 2.2(b) are obtained at the symmetry line (y “0) from a conduc-

tor that has the length Lc “250 mm and contains a cuboidal defect of the dimensions

dx ˆ dy ˆ ∆z “12 mm ˆ 2 mm ˆ 2 mm in the second metal layer. Please note that Fy van-

ishes at the symmetry line. It is clearly visible that the slopes in the force signals correspond

to the edges of the specimen.

The information content of the force perturbations about the defect properties is de-

termined by the sampling frequency, the velocity, and the shape and size of the applied

permanent magnet. The choice of the permanent magnet is especially crucial [127]. In the

first stage of complexity, one single permanent magnet as shown in Figure 2.2(a) is applied.

The permanent magnet can be of cylindrical or cuboidal shape and has a magnetization

in z-direction M“Mez. Currently applied permanent magnets in the experimental setup

are neodym iron boron (NdFeB) magnets of grades N35 and N38. The grade number corre-

sponds to the maximum energy product BHmax expressed in the centimeter gram second

(CGS) unit Mega Gauss Oerstedt (MGOe). In a second stage of complexity, a permanent

magnet system that is a combined structure of single permanent magnets is used. Within

the working time of this thesis a cylindrical Halbach structure has been developed [120,123].

This structure consist of a circular array of radially magnetized arc-shaped permanent mag-

nets, and an inner cylindrical magnet supported by a soft magnetic material.

The profile of the Lorentz force components depends on the investigated conducting

object. If the conductor is free of defects and the permanent magnet is very far away

from the edges of the conductor, the Lorentz force components remain constant throughout

the measurement. A defect in the metal layers of the conductor yields a change of the

eddy currents. Due to Ampere’s law this current perturbation yields a perturbation in the

magnetic field and thus in the Lorentz force. Since defects are characterized by material

loss or reduced conductivity, the Lorentz force experiences a short breakdown. Measuring

these perturbations is the fundamental principle of LET.

The experimental realization of the LET method, used to measure signals for LFE,

is shown in Figure 2.3. The relative movement in x-direction is realized by moving the

investigated specimen and not the permanent magnet. This approach is chosen, because

an acceleration of the permanent magnet would result into additional forces excerted on

it. If the acceleration is high, these forces are likely to interfere with the actual Lorentz

force signal. The test object is positioned on a belt-driven linear drive that has a maximum

velocity of 3.75 m{s and a maximum acceleration of 20 m{s2. The repetition accuracy of the

position of the conductor is lower than ˘0.2 mm.
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2.3 Lorentz Force Eddy Current Testing

(a) Complete setup (b) Package of metal sheets positioned underneath
the force sensor and permanent magnet. The perma-
nent magnet is wrapped by a coil, which is switched
off during measurements.

Figure 2.3: Experimental setup of LET.

The three-component force sensor is based on strain gauge technology. According to the

data sheet [67], it has a nominal measurement range of 3 N in x- and y-direction, and 10 N

in z-direction. The nominal accuracy equals 15 mN in x- and y-direction, and 50 mN in z-

direction. The sensor is positioned on top of the permanent magnet. During measurements,

a relative displacement of the permanent magnet in y- and z-direction (liftoff distance δz)

has to be enabled. Positioning in both directions is realized by mounting the permanent

magnet on a two-dimensional positioning stage that is controlled by two stepper drives. The

adjustment range is 45 mm with an achievable accuracy of ˘0.05 mm in either direction.

The control of all devices and the data acquisition are effected electronically. The maximum

sampling frequency of the embedded signal acquisition module equals 102.4 kHz. Since the

permanent magnet and the linear drive are freely movable parts, an alignment procedure to

determine the correct relative x- and y-position of the permanent magnet and the specimen

has to be performed. For aligning the correlation between the slopes in the force signals

and the edges of the conductor are exploited (Figure 2.2(b)). Further information on the

experimental realization of LET and the alignment procedure are provided in [15,115] and

the references therein.

Limitations of LET measurements are the motion-induced skin depth, the measurement

range of the applied force sensor, and the dynamic behavior of the experimental setup.

The influence of these aspects on the measured force signals scales with the velocity. With

increasing velocity, the skin depth decreases. Previous studies have shown that for v “

0.5 m{s defects are detectable at least up to a depth of 9 mm [14]. For higher velocities the

influence of deep defects on the measurements is reduced. Further, the higher the velocity,

the larger is the measured Lorentz force. Thus, for high velocities, the force sensor might

run into saturation. Moreover, the dynamic behavior limits the detectability of defects at

high velocities. Due to the limited bandwidth of the experimental setup, the reduced rise
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2 Fundamentals of Lorentz Force Evaluation

time results in an increase of unwanted oscillation, which interfere with the Lorentz force

signals.

During measurements interfering signals and noise are likely to occur and might influ-

ence the force signals. Interfering signals can result from inaccuracies in the y-alignment

of the permanent magnet and the positioning of the specimen on the linear drive. Fluctua-

tions in the liftoff distance (z-alignment of permanent magnet) and velocity can also occur.

Moreover, the oscillations of the force sensor interfere with the signal. Further, signals

are affected by 50-Hz and high-frequency noise that is generated by the electronic devices.

The authors in [121] address uncertainties in input parameters including liftoff distance

and velocity. The results presented there can be used to improve the measurement setup.

However, this is not within the scope of this thesis. This thesis focuses on the appropriate

signal processing of the measured force signals. The aim is to identify and reduce interfering

signals and noise as much as necessary for accurate inverse calculations.

2.4 Forward Solutions for Lorentz Force Evaluation

2.4.1 Semi-Analytic Approach

The calculation of the force signals for LFE incorporates a model of the permanent magnet,

the electric field induced in the conductive specimen, and the relative movement. Principal

approaches for computations of the electric and magnetic fields and Lorentz forces are

of analytical or numerical nature. Analytical computations have a higher accuracy than

numerical simulations and require in the majority of cases significantly less computation

time. However, analytic approaches are often based on simplified models. Since inverse

calculations are often performed using iterative optimizations, forward calculations with

fast computing times are favorable for LFE. However, eddy currents induced in a three-

dimensional conductor that contains a defect can only be calculated in a semi-analytic way.

Thus, solutions for the force signals of LET systems can only be approximated.

A first approximation of the Lorentz forces has been developed in 2013 [81]. This forward

solution was expanded in 2015 using the so-called extended area approach (EAA) yielding

a more accurate approximation of the force signals [128]. Both forward solutions have

been derived under the consideration of additional conditions and simplifications, which

are outlined later in this section.

For forward calculations only modeling of the perturbations in the force signals is of

interest, because all available information about the defect is incorporated in these signals.

Therefore, the so-called defect response signal (DRS) ∆F is considered. The DRS is the

difference between the force signals measured for a specimen with a defect and without a

defect, i.e., ∆F“F ´ F0. Similarly, a defect response eddy current distribution (DRCD)

can be defined, i.e., ∆j“ j ´ j0, with j and j0 denoting the eddy currents in a conductor

with and without a defect [70]. A similar approach has been used for modeling of eddy

currents in ECT [75,86].

In the proposed forward approximations only permanent magnets of simple geometries
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2.4 Forward Solutions for Lorentz Force Evaluation

and no permanent magnet systems combining several permanent magnets are considered.

Using the simplest possible approximation, the permanent magnet is represented by a single

magnetic dipole positioned at rp “rxp, yp, zpsT (Figure 2.4(a)). The magnetic dipole has

the magnetic moment m“mez “MVpez, with Vp denoting the volume of the permanent

magnet. The magnetic dipole produces at any point r“rx, y, zsT the magnetic flux density

B“
µ0

4π

«

3
m ¨ pr ´ rpq

|r ´ rp|5
pr ´ rpq ´

m

|r ´ rp|3

ff

. (2.2)

The development and application of more complex models for the permanent magnet is one

of the subjects of this thesis and discussed in Chapter 3.

Magnetic
dipole

Elementary
voxel

Current dipoles in
source space

(a) First approximation: voxels in the defect region

Extended region composed of elementary voxels

Conductor

Defect
region

Grid of current dipoles

(b) Extended area approach: additional voxels outside the defect region

Figure 2.4: Forward models for LFE.

In the proposed semi-analytic forward solutions, it is assumed that the magnetic

Reynolds number Rm “µ0σ0|v|L, with L being the characteristic length, is much less than

one. The magnetic Reynolds number is a dimensionless quantity that is a measure of the

relation between the primary and secondary magnetic field. Previous investigations have

13



2 Fundamentals of Lorentz Force Evaluation

shown that the condition outlined above is fulfilled for specimens, that have a characteris-

tic length of L“Hc ď50 mm and are composed of aluminum alloys, as long as the relative

velocity is not larger than 0.5 m{s [127]. As a consequence, the influence of the secondary

magnetic field resulting from the induced eddy currents on the total magnetic field can be

neglected (weak reaction approach (WRA)). Thus, the magnetic field in the conductor can

be reduced to the primary magnetic field of the permanent magnet. A validation of the

WRA for low velocities is presented in Appendix B using the finite element method as a

reference solution. In this thesis LFE studies are considered only for low velocities, since

otherwise the limitations of the LET measurements as outlined in Section 2.3 are likely to

have noticeable effects.

Moreover, defects are assumed to be ideal, i.e., the conductivity of the defect equals

zero and no eddy currents flow in the defect region. Further, the forward solutions do not

take into account the boundary conditions at the edges of the conductor, i.e., the conductor

is considered to have infinitively large x- and y-extension. This simplification holds if the

defect is much smaller than the conductor, tdx, dyu!tLc, Wcu. Taking into account the

WRA and the fact that with respect to the global coordinate system the conductor is

in motion (Figure 2.2(a)), eddy currents can be calculated using Ohm’s law for moving

conductors

j“σ p´∇ϕ ` v ˆ Bq , (2.3)

where ϕ is the electric scalar potential.

With V and Vd denoting the volume of the conductor without defect and the volume of

the defect, the forces F and F0 exerted on the conductor can be calculated as

F“

ż

V ´Vd

j ˆ BdV, F0 “

ż

V

j0 ˆ BdV. (2.4)

Using the superposition principle and rearranging the resulting equation, the DRS can be

calculated by splitting the terms into defect region and the surrounding region as

∆F“´

ż

Vd

j0 ˆ BdV `

ż

V ´Vd

pj ´ j0q ˆ BdV “

ż

V

∆j ˆ BdV. (2.5)

Omitting the second term in equation (2.5) and using Ohm’s law, the remaining term

provides a first approximation of the DRS [81]

∆Fp1q “´

ż

Vd

j0 ˆ BdV “σ0

ż

Vd

p∇ϕ ´ v ˆ Bq ˆ BdV. (2.6)

For this first approximation the real defect region of conductivity σd “0 is substituted with

the electric conductivity σ0 and forms a fictitious conducting region. The eddy currents are

only considered in the defect region and flow in exact opposite direction as for a conductor

without a defect, i.e., ∆j“´j0.
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2.4 Forward Solutions for Lorentz Force Evaluation

In order to calculate ∆Fp1q, a finite volume discretization of the fictitious conducting

defect region is applied. The defect region is substituted with a regular grid of volume

elements, i.e. voxels, where voxel = VOlume
Ś

ELement. The voxels have the elementary

volume VE “∆x∆y∆z and conductivity σ0 (Figure 2.4(a)). In each voxel, a current dipole

pk is placed at the center of gravity described by rk “rxk, yk, zksT with k “1 . . . K, where K

denotes the number of voxels. The entirety of all current dipoles is a discrete approximation

of the continuous eddy current distribution in the defect region. The moment of the k-th

current dipole equals pk “∆jkVE . The eddy current density ∆jk can be calculated with

the help of Ohm’s law for moving conductors in equation (2.3) as

∆jk “σ p∇ϕk ´ v ˆ Bkq , (2.7)

where Bk is the magnetic flux density at the position of the k-th current dipole calculated

using equation (2.2). Although more layers of voxels as shown in Figure 2.4(a) are possible

to use, throughout the whole thesis only one layer of voxels is applied to represent a single

metal sheet in the laminate. Thus, the height of the voxels equals the height of the metal

sheet. This is justified by the fact that a defect is considered as a hole in the sheet.

In order to find an analytic expression for ϕk calculated in equation (2.7), it is exploited

that the interfaces between the metal layers are electrically isolating and ∆z !tLc, Wcu.

The conductor is assumed to be anisotropic, i.e., the diagonal conductivity tensor rσs“

diag pσxx, σyy, σzzq has the entries σxx “σyy “σ0 and σzz “0. Thus, the eddy currents flow

only in the xy´planes and the z-component vanishes, i.e., jz “0. Under the condition that

the permanent magnet is modeled with one magnetic dipole, the potential ϕk at the point

rk “rxk, yk, zksT can be determined from Bϕ{Bz “vBy as

ϕk “v

z
ż

´8

Bk,ydz “´vm
µ0

4π

yk ´ yp

|rk ´ rp|3
. (2.8)

Then, the DRS profile can be approximated with the help of the electric current dipoles

as

∆Fp1q “

ż

Vd

∆j ˆ BdV «VE

K
ÿ

k“1

∆jk ˆ Bk

“σ0VE

K
ÿ

k“1

p∇ϕk ´ v ˆ Bkq ˆ Bk. (2.9)

In the first approximation of the DRS ∆Fp1q the continuity equation ∇ ¨ j“0 at the

boundaries of the defective regions is not fulfilled. The influence of a defect on the eddy

current distribution in the region surrounding the defect is not taken into account. Due to

this simplification, deviations in the Lorentz forces from measured signals occur. However,

the first approximation can be easily applied if more than one defect is present in the

conductor, because the DRCD in the defect regions do not influence each other. The eddy
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2 Fundamentals of Lorentz Force Evaluation

current distribution outside a defect is influenced by all defects present in the material.

In order to improve the forward solution the extended area approach (EAA) has been

introduced [128]. For the extended approximation of the DRS, both terms in equation (2.5)

are considered. The DRCD ∆j“ j ´ j0 in the second term represent the eddy currents in

the area outside the defect produced by current dipoles in the defect region.

Figure 2.4(b) shows the regular grid of voxels approximating the defect region. It has

the dimensions Ex ˆEy ˆ∆z. Current dipoles in the K voxels covering the defect region are

calculated as described beforehand. The distortion current density ∆je of the e-th current

dipole in the extended region outside the defect can be approximated by

∆je »ξD
VE

2π∆z

K
ÿ

k“1

„

2
∆jk ¨ pre ´ rkq

|re ´ rk|4
pre ´ rkq ´

∆jk

|re ´ rk|2



, (2.10)

with e“1 . . . E, and E denoting the number of dipoles outside the defect. The scalar

coefficient ξD is the dipolar correction factor. Based on an analysis of several cuboidal and

elliptic cylinder shaped defects it has been found that ξD can be approximated by

ξD »

$

&

%

1 ` π
4

dx

dy
for a cuboidal defect

1 ` dx

dy
for an elliptic cylinder defect

, (2.11)

where dx and dy denote the x- and y-extension of the defect in case of a cuboidal flaw, and

the length of the main axes in case of an elliptic cylinder defect [128].

Finally, the DRS can be approximated with respect to equation (2.9) as

∆Fp2q “

ż

V

∆j ˆ BdV

«
K
ÿ

k“1

∆jk ˆ BkdV

looooooooomooooooooon

defect region

`
E
ÿ

e“1

∆je ˆ BedV

looooooooomooooooooon

region outside defect

. (2.12)

Generally, equation (2.12) is restricted to conductors that contain only one defect or

several defects, which are far away from each other. Derivations for eddy currents outside

the defect region for multiple defects lying close together are challenging and have not been

done yet.

The DRS for different measurement points within the scanning area is calculated by

changing the position of the permanent magnet with respect to the global coordinate system

(Figure 2.2(b)). Despite this aspect forward calculations are performed as outlined for

moving conductors.

The improvement due to the EAA is quantified by analyzing the LET benchmark

problem for two different defects [9]: a cuboidal one with dimensions dx ˆ dy ˆ ∆z “

6 mm ˆ 2 mm ˆ 2 mm and a cylindrical one with radius rd “2.5 mm and height ∆z “2 mm.

Both defects are positioned at a depth of 2 mm. The equivalent magnetic dipole has the
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2.4 Forward Solutions for Lorentz Force Evaluation

moment m“µ0M “1.17 T and is positioned at the liftoff δz “8.5 mm above the conductor.

The velocity of the specimen is set to 0.5 m{s and its conductivity equals σ0 “30.61 MS.

The voxel dimensions are ∆x“∆y “0.5 mm and the extended region was spanned in the

range ´Ex{2ďxďEx{2 and ´Ey{2 ďy ďEy{2 with Ex “Ey “30 mm.

Figure 2.5 shows the distribution of distortion eddy currents ∆j in the defect region (light

gray) and in the extended region outside the defect (dark gray) for both defect geometries.

The distributions are calculated in the xy-plane for the center of the defect (d“´3 mm) at

the time where the magnetic dipole is positioned just above the center of the defect (xp “

yp “0). For better visualization the axes are limited to the range ´5 mmďpx, yqď5 mm. It

can be observed that the continuity equation ∇ ¨ j“0 is not fulfilled, if only eddy currents

in the region covering the defect are taken into account for forward simulations (light gray).
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Figure 2.5: Defect response eddy current distribution (DRCD) ∆j in the defect region (light
gray) and extended region (dark gray).

In Figure 2.6, the DRS profiles of ∆Fx and ∆Fz at the symmetry line of the defect

(y “0) are compared with results of numerical simulations. Please note that ∆Fy equals

zero at the symmetry line and is not shown. Comparing (a) and (b) with (c) and (d), it

can be observed that the forward calculations with EAA provide a significantly improved

solution for the force signals.

In order to quantify the errors of the used approximations a normalized root mean square

error (NRMSE) is introduced as

NRMSE“

d

1
3M

3
ř

i“1

M
ř

m“1

´

∆F
p1,2q
i,m ´ ∆F

pSq
i,m

¯2

max
m“1...3M

´

∆FpSq
¯

´ min
m“1...3M

´

∆FpSq
¯ , (2.13)

with M denoting the number of observation points. The superscripts "(1,2)" and "S" denote

the forward calculated signals using the approximate solutions (equations (2.6) and (2.12))
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∆
F

in
m

N

x in mm

0.1

-0.1

0.05

-0.05

-0.2

-0.15

-0.25

-20 10

0

0 10 20

∆F S
x

∆F S
z

∆F
p1q
x

∆F
p1q
z

(b) Cylindrical defect without EAA

∆
F

in
m

N

x in mm

0.1

-0.1

0.05

-0.05

-0.2

-0.15

-0.25

-20 10

0

0 10 20

∆F S
x

∆F S
z

∆F
p2q
x

∆F
p2q
z

(c) Cuboidal defect with EAA
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(d) Cylindrical defect with EAA

Figure 2.6: Comparison of forward computed DRSs for a cuboidal and a cylindrical defect.
The superscripts "(1)" and "(2)" denote the DRSs calculated with the analytic forward
solution using the first approximation and the EAA, respectively. The reference DRS
obtained with FEM is denoted by the superscript "(S)".

and signals simulated using a finite element model (FEM), respectively. The results sum-

marized in Table 2.1 show that the errors for the cuboidal defect are significantly higher

than for the cylindrical defect. Moreover, the further away the boundaries of the extended

region are located from the defect, i.e., the larger the extended region, the smaller the error.

Table 2.1: NRMSE in % between the approximate solutions and numerical simulations.

∆Fp1q ∆Fp2q

Cuboidal defect 9.52 1.57

Cylindrical defect 5.13 0.96
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2.4.2 Numerical Simulations

In this thesis, numerical simulations of Lorentz force signals serve as reference solutions

to quantify the approximation error of the semi-analytic approaches and as benchmark

problems for the evaluation of inverse calculation methods. All numerical simulations are

obtained using FEM. For FEM calculations the software COMSOL Multiphysicsr is ap-

plied (COMSOL Inc., Burlington, USA).

For the implementation of the relative movement in the FEM, two methods are used: the

moving magnet approach and the moving defect approach [126, 129]. In the moving mag-

net approach, the permanent magnet moves with respect to the global coordinate system

(Figure 2.2), whereas in the moving defect approach the defect in the specimen moves.

The spatial coordinates of the moving component are modeled using the logical expres-

sions approach [126]. This method allows fast simulations on fixed computational grids

and no time-consuming re-meshing of the entire domain is necessary. The finite elements

connected with the moving component for each time step are selected by evaluating the

logical expressions in a predefined region in which the movement takes place.

Similarly to the semi-analytic forward solution described in the previous section, FEM

calculations can be performed using the WRA [127]. In the limits of low magnetic Reynolds

numbers, this approach allows a considerable reduction in the computing time without

changing the accuracy of the results.

The FEM used for simulation in this thesis consists of tetrahedral elements. The maxi-

mum element size depends on the dimensions of the used components. The Galerkin method

is used for numerical computations [80].

2.5 Inverse Calculation Methods

2.5.1 Classification of Inverse Problems

Inverse problems are solved in order to obtain insight into the underlying system param-

eters based only on the observed output data. This is extremely useful in a wide range

of engineering issues. For instance, in geological prospecting the properties of the interior

structure of the earth such as density and conductivity are determined based on measure-

ments performed on the surface. In medical imaging, computer tomography is used to

examine the interior structure of the human body. The attenuation of x-rays by the human

body are evaluated. Another example in the framework of medical diagnostics is the re-

construction of activated cortex regions in the human brain using Electroencephalography

(EEG) data measured at the surface of the human head. In the inverse scattering method,

the shape of an object is determined based on the waves scattered by it. In this framework

acoustic and electromagnetic scattering are most widely applied [17,52].

Inverse problems can be classified into non-linear and linear problems. Their distinction
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can be well explained by considering the corresponding formulation of the forward problem

y“G pxq , (2.14)

where the vector yPRMˆ1 denotes the measured signals and M is the number of mea-

surement points. The vector xPRNˆ1 contains the N model parameters. The operator G

represents a projection of the model parameters on the measured signals. It comprises in-

formation about the sensor and source positions and configuration. In the forward problem

y is calculated using the known model parameters. In the associated inverse problem the

model parameters are unknowns to be estimated.

If the problem is linear, equation (2.14) can be reformulated as

y“Kx, (2.15)

with the gain matrix K PRMˆN describing a linear mapping between model parameters

and output data. In case of a non-linear problem, the relation between model and data

values is more complex and G in equation (2.14) is a non-linear operator.

The properties of forward and inverse problems differ in the sense that forward problems

are usually classified as well-posed, whereas inverse problems are mostly ill-posed. The

definition of a well-posed and ill-posed problem dates back to Hadamard [39]. A problem is

well-posed if it has the following three properties. First, the problem can be solved (existence

of a solution). Second, the number of existing solutions does not exceed one (uniqueness

of the solution). Third, a continuous change in the input data yields a continuous change

in the solution (stability of the solution). If at least one of these criteria is not fulfilled the

problem is said to be ill-posed.

Even if the stability condition is fulfilled, the inverse problem can be sensitive to noise

in the data. A small change in the input data may have a significant impact on the solution.

If this is the case the problem is said to be ill-conditioned [5]. The degree of ill-conditioning

of the inverse problem can be determined by calculating a condition number of the gain

matrix. Several condition numbers have been introduced in literature [27, 82]. The most

widely used ones include the condition number with respect to the L2-norm and the Skeel

condition number. The condition of the inverse problem depends on the sensor space

(the applied grid of measurement points) and the source space (the region containing the

unknown parameters).

Additionally, inverse problems can be subdivided into overdetermined and underdeter-

mined problems. An overdetermined problem has more sensor data points than unknown

sources to be determined and vice versa for an underdetermined problem. Moreover, con-

straints can be imposed on the inverse problem. In real-world applications boundary and

parameter constraints often have to be considered.
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2.5 Inverse Calculation Methods

2.5.2 Solving Inverse Problems

In the inverse problem of LFE, it is the aim to characterize the geometry of the underlying

defects. A straightforward approach is to solve directly for the defect parameters. Thus,

defect geometry parameters such as the center of gravity, depth, and extension can be de-

fined as the unknown variables in x. Other approaches are to determine the eddy current

distribution and the conductivity distribution in the conductor. In these reconstruction ap-

proaches, the vector x in equation (2.14) composes the unknown moments of the equivalent

current dipoles or the unknown voxel conductivities.

Solving an inverse problem implies to minimize the error between measured ym and

forward calculated data yf with respect to the unknown parameters composed in x

min
x

pym ´ yf q“min
x

pym ´ Gpxqq. (2.16)

For this purpose several inverse calculation methods can be applied. Figure 2.7 gives an

overview of existing inverse methods and highlights methods used in this thesis. In order

to obtain a stable solution of the inverse problem, regularization methods are applied.

Regularization exploits a priori information of the solution and is usually performed by

adding additional information in the form of weighting parameters or function terms to

the error function in equation (2.16). Additional function terms are penalty terms that

introduce constraints to the solution space, e.g., specific error bounds.

One class of inverse methods are scanning methods. The simplest scanning method is

the goal function scanning. The value of the goal function, e.g., the error function ym´Gpxq,

is computed for different combinations of the parameters to be determined. The inverse

solution is set to the parameter combination with the smallest goal function value. The

method has the advantage that the course of the goal function can be scrutinized. However,

the major drawback is that the method requires a large number of forward calculations,

which results into a high computational cost. Thus, the goal function scanning is only feasi-

ble if the number of unknown parameters is small, i.e., only one source is to be determined.

The method has already been applied to reconstruct sources in the human brain from elec-

troencephalography and magnetoencephalography measurements [32]. In this thesis, the

goal function scanning is applied to determine the depth and extensions of a defect in the

GLARE material (Chapter 6). An enhancement of the goal function scanning is the mul-

tiple signal classification (MUSIC) method, which originates from information theory [76].

In this method, multiple sources are determined by scanning subspaces of the goal function

with single sources. Another scanning method is beamforming, which has been developed

in the field of radio communication where multiple antennas are used. The working prin-

ciple of beamforming algorithms is to reduce the interference between signals coming from

multiple source with a spatial filter [8].

Another approach to solve the inverse problem are minimum norm estimates (MNE).

They are commonly applied to reconstruct current density distributions and especially

distributed current sources. A regular grid of elementary current dipoles with fixed positions
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Figure 2.7: Overview of existing inverse calculation methods. Parameters that can be
solved for are shown in rhombuses. Inverse methods applied in this thesis to determine
these parameters are marked with light gray color and dashed lines. References to the
particular chapters are given next to the arrows.

but unknown moments is defined in the region of the distributed current source. Optimal

dipole moments are obtained by minimizing the norm of the vector difference between

the measured data and the forward solution given in equation (2.15). Regularization is

performed by constraining the solution with a norm showing the desired properties. If

the L2 norm is applied, the inverse solution tends to be smeared. Common methods to

calculate the solution are the truncated singular value decomposition (TSVD) [43] and

the Tikhonov-Phillips regularization [84, 112]. In the TSVD, small singular values are
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omitted in order to obtain a stable solution. This approach was also used to reconstruct

conductivities in the first application of LFE [81]. In Tikhonov-Phillips regularization, an

additional penalty term is introduced to equation (2.16). The regularization incorporates

appropriate weighting of this term with respect to the error function. If another norm

than the L2 norm is applied, the inverse solution tends to be sparse. The resulting inverse

problem is nonlinear and can be solved using weighted least squares algorithms.

MNE are widely applied in biomedical engineering to localize current sources in the

human brain and heart [31, 41, 56, 118]. Further, MNE have been applied in magnetic

nanoparticle imaging [4] and to detect buried ferromagnetic objects based on measured

magnetic fields [26]. In the framework of NDT this approach has been used to reconstruct

pipeline defects from MFL measurement data [44]. Moreover, the authors in [62] applied

the Minimum-L2-norm approach to magnetic tomographic data. Further, ECT signals have

been inverted with MNE to estimate flaws in metals [85]. In this thesis, MNE are applied

to reconstruct the eddy current distribution ∆j, which is responsible for the DRS (equation

(2.12) and Figure 2.5).

Another approach to minimize the error function is to use optimization techniques.

They can be divided into deterministic and stochastic methods. Widely applied deter-

ministic methods are the simplex method [78], the Newton method [87], and the Levenberg-

Marquardt algorithm [59, 65]. Results of deterministic methods are reproducible provided

that the search area, the starting point, and the termination criterion remain unchanged.

However, they often impose constraints such as differentiability, continuousness, and con-

vexity of the goal function. Further, they perform a local search, i.e., they are likely to

be trapped by local minima if the initial values are not chosen precisely enough. In this

thesis deterministic methods are used to optimize the magnetic dipoles models (MDMs) in

Chapter 3.

Stochastic optimization algorithms overcome the starting point problem by defining

multiple starting points on the goal function landscape. Most stochastic optimizers are

zero-order algorithms, i.e., they do not depend on the derivative of the goal function. Even

more, the goal function does not have to fulfill the constraints of continuity and convexity.

The probability that they are trapped by local minima is smaller than for deterministic

algorithms. Due to the stochastic nature results of multiple trials scatter with a small

variance around the global minimum. One drawback of stochastic optimization algorithms

compared to deterministic methods is that more goal function evaluations are required

and thus the computational cost is higher. Further, stochastic algorithms implicate the

challenge of adjusting at least one intrinsic control parameter, e.g., weighting parameters

that influence the step size of the algorithm. These parameters can have a significant impact

on the result.

Stochastic optimization algorithms can be classified into physical algorithms, swarm

intelligence algorithms, and evolutionary algorithms (EAs). Physical algorithms adapt

physical processes, e.g., the basic concept of the simulated annealing algorithm is to simulate

a cooling process in metallurgy [51]. Swarm intelligence algorithms imitate natural evolution
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and selection and exploit the natural collective and social behavior of swarms reaching for

some target, e.g., animals searching for food. Among them, the particle swarm optimization

is the most prominent member [50].

The EAs are also biologically inspired. They are based on Darwin’s evolutionary theory.

The theory states that a population evolves by random genetic mutation and recombination.

Mutation generates innovation in the population and recombination intermingles informa-

tion. Selection is determined by the survival-of-the-fittest principle. EAs can be divided

into the three main branches: evolutionary strategies (ESs) [102], evolutionary program-

ming (EP) [30], and genetic algorithms (GAs) [36,48]. In evolutionary strategys (ESs) and

EP, the objective variables are real-valued and continuous, whereas in GA they are binary.

Hence, mathematical operations for evolving the population are arithmetic in EP and ESs,

but logical in GAs.

In EP, only mutation is applied for offspring generation. The ESs combine mutation and

recombination, and in GA recombination has priority over mutation. Traditional mutation

is based on probability density functions. In EP and ESs, a survivor selection is applied,

e.g., after offspring generation it is decided which population members from the combined

parent and offspring population will survive to the next generation. The selection procedure

in EP and GAs is based on probability functions. Contrary, in ESs selection is performed

deterministically, i.e., for selecting the next generation, ranking of the individuals or a

tournament selection can be applied. In traditional GAs, parent selection is performed.

Prior to mutation and recombination, parents that will produce offsprings are selected

based on a probabilistic approach.

Survivor selection as in EP and ESs ensures that the best-so-far solution is retained,

i.e., elitism is included. In the parent selection used in traditional GAs this requirement

of elitism is violated, because parents that will produce offsprings are selected before the

evolution process. Since researches have evaluated that elitism has significant positive

influence on the performance of an algorithm, this principle has also been incorporated in

GAs [131].

Due to their advantages, stochastic algorithms are applied in the framework of non-

destructive testing and evaluation (NDT&E) for inverse calculations of material defects,

where the characteristics of the goal function are inherently unknown. The particle swarm

optimization has been applied for defect reconstruction using ECT signals [13,25]. For the

same purpose the authors in [54] and in [60] have applied a GA and EP, respectively. In

all applications conductivity reconstructions were applied to identify the defect. Moreover,

ESs have been of interest in electromagnetic inverse scattering problems [66, 95] and for

the analysis of composite materials [89]. In this thesis an ES, the Differential Evolution, is

applied for conductivity reconstructions (Chapter 4).
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3.1 Introduction

In this chapter, different modeling approaches for permanent magnets are investigated and

compared. Existing models are evaluated and new models especially suitable for Lorentz

force evaluation (LFE) are developed. The focus lies on developing permanent magnet

models that can be applied to magnets of arbitrary shape. This is motivated by the fact

that the resolution of LFE depends on the permanent magnet and future investigations aim

to apply complex shaped magnets and magnet systems. This chapter contains methods and

principles that have been published in [69,72].

Fully analytic forward calculations ensuring low computational costs are intended to be

maintained. Hence, it is required that the model can be embedded into the approximate

forward solution for the force calculations described in Section 2.4.1. Furthermore, due

to the proximity of the magnet and the specimen in LFE the near magnetic field of the

permanent magnet has to be considered.

The representation of a complex-shaped magnet with one magnetic dipole as in the

proposed forward solution described in Section 2.4.1 has the disadvantage that it provides

an accurate solution of the magnetic field only at large distances [83]. In order to overcome

this drawback analytic solutions that provide an exact description of the magnetic field

can be applied [3, 20, 34, 90, 92]. Unfortunately, such solutions are challenging to derive

especially for complex shaped magnets. Even if an analytic solution exist, it might not

be applicable to inverse LFE calculations, because the solution cannot be embedded into

the approximate forward solution. In order to overcome these limitations the magnetic

dipoles model (MDM) is introduced, in which the permanent magnet is represented with

an assembly of magnetic dipoles. This approach allows to model permanent magnets of

arbitrary shape by appropriate placing of magnetic dipoles in the volume of the magnet.

The integral of the magnetic flux density for force calculations provided by the MDM is

the linear sum of the integrals of the magnetic flux density of the single magnetic dipoles

in equation (2.2). Corresponding to the current experimental setup of Lorentz force eddy

current testing (LET), permanent magnets of cuboidal and cylindrical shape are evaluated.

In the near field the accuracy of the approximation with one magnetic dipole depends

on the form of the modeled magnet [83]. Based on this aspect, the position of the dipoles

is expected to have an impact as well. Therefore, an optimization procedure to determine

optimal dipole positions is developed, instead of defining the positions of the magnetic

dipoles arbitrarily. The accuracy of the MDM is evaluated in comparison to a reference
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solution. The MDM, that shows the minimum error among all MDMs using equal number

of dipoles, has optimal dipole positions. Moreover, the influence of the number of dipoles

on the accuracy of the MDM is evaluated.

Existing analytic solutions of the magnetic field are applied as reference solutions. The

charge model, also referred to as the Coulombian model, provides an analytic solution of

the magnetic field of the cuboidal magnet in terms of elementary functions [33,125]. Alter-

natively to the charge model, a surface current model, also referred to as Amperian model,

is applied for the cylindrically shaped permanent magnet. Using this model, the magnetic

flux density of an axially magnetized cylindrical permanent magnet can be described with

the help of generalized complete elliptic integrals [20]. In this context, a semi-analytic

model of the cylindrical permanent magnet based on substituting the permanent magnet

with a set of current loops is proposed.

Further, it is demonstrated how the accuracy of the model of the permanent magnet

influences the exactness of the forward solution. Therefore, selected MDMs of the cuboidal

permanent magnet with optimal dipole positions are embedded into the existing first ap-

proximation for forward calculated Lorentz forces for LFE and the resulting signals are

evaluated. Additionally, the computational demand required by the MDMs is addressed.

This is a significant factor, because it determines considerably the practicability of the

permanent magnet model.

In the remainder of this chapter, the applied methods are outlined first. These include

the developed MDMs, the analytic models, and the optimization procedure. Moreover,

the MDM is embedded into the approximate forward solution for LFE. In Section 3.3,

the results are shown, i.e., the optimized MDMs of the cuboidal and cylindrical magnet.

Further, the performance of the optimization procedure and the accuracy of the forward

computed Lorentz forces are evaluated. Further, the analytic and semi-analytic model of

the cylindrical permanent magnet are compared and the computational demand is assessed.

Finally, in Section 3.4 the results are discussed.

3.2 Methodology

3.2.1 Magnetic Dipoles Models

The idea of MDMs consists in splitting the permanent magnet into a regular grid of ND

voxels of identical volume. The shape of the voxels depends on the shape of the permanent

magnet. For cuboidal magnets the voxels are cuboids, whereas for cylindrical magnets

the central voxels are cylinders and the others are hollow cylinder sectors. One magnetic

dipole is positioned in each voxel. The voxels have the same volume. Consequently, the

magnetic moments of the inserted magnetic dipoles are equal. The dipole positions in the

MDM of the cuboidal magnet depend on one parameter and, thus, the model is referred

to as α-MDM. In case of the cylindrical magnet the MDM depends on two parameters

((α,β)-MDM).
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α-MDM of the Cuboidal Permanent Magnet The α-MDM applied to approximate

the cuboidal permanent magnet is depicted in Figure 3.1. The permanent magnet has the

edge length a“15 mm, the height Hp “25 mm, the volume Vp “a2Hp, and is magnetized in

z-direction with the remanence µ0M “1.17 T. Further, the permanent magnet is located

at the point P0 “rx0, y0, z0sT “r0, 0, δzs corresponding to the center of gravity of the lower

face of the magnet, with the liftoff distance δz “1 mm. The edges of the magnet are parallel

to the axes of the global Cartesian coordinate system.

Voxel

Figure 3.1: Magnetic dipoles model of a cuboidal permanent magnet.

According to the idea of the MDM, the permanent magnet is represented by a set of

ND “N2
a Nh voxels, with Na being the number of voxels along the base edges and Nh the

number of voxels along the height edge. The volume of each voxel equals VE “∆a2∆h“

pa{Naq2ph{Nhq“Vp{ND with Vp denoting the volume of the permanent magnet. The magnetic

dipoles positioned in the voxels have the same magnetic moment m“mez “MVp{ND “MVE .

The magnetic flux density B“rBx, By, BzsT at any point P“rx, y, zsT outside the perma-

nent magnet can be calculated as the linear superposition of the magnetic flux densities of

all magnetic dipoles of the α-MDM

Bpx, y, zq“
ND
ÿ

m“1

bmpP, Qmq, (3.1)

with bm being the magnetic flux density of the m-th dipole located at Qm “rxm, ym, zmsT

bm “VE
µ0

4π

„

3
m ¨ pP ´ Qmq

|P ´ Qm|5
pP ´ Qmq ´

m

|P ´ Qm|3



. (3.2)

Due to the symmetry of the cuboidal permanent magnet and the identity of all voxels it

is not expected that any (xm, ym) position of the magnetic dipoles other than the center

of gravity of the bottom and top face of the elementary voxels result in an improvement

of the α-MDM. Thus, the coordinates (xm, ym) are fixed to this position. However, the

z-coordinate of the magnetic dipoles is expected to have an impact on the model accu-

racy in the near magnetic field below the permanent magnet. Exploiting this aspect the
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z-coordinate of the magnetic dipoles depends on a parameter zα “α∆h, which defines a lo-

cal z-position of the magnetic dipole in the corresponding voxel. The magnetic flux density

of the α-MDM depends on a proper selection of the parameter α. Then, the position Qm

of the m-th magnetic dipole is defined as

Qm “P0 ` qijk ` qm “

»

—

—

—

–

xm

ym

zm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

x0 ´ a
2

` pi ´ 1
2
q∆a

y0 ´ a
2

` pj ´ 1
2
q∆a

z0 ` pk ´ 1q∆h ` zα

fi

ffi

ffi

ffi

fl

,

$

’

’

&

’

’

%

i“1, . . . , Na

j “1, . . . , Na

k “1, . . . , Nh

(3.3)

with m“ i ` pj ´ 1qNa ` pk ´ 1qN2
a . The variable qijk denotes the position (center of

gravity) of the corresponding voxel with respect to the center of gravity of the permanent

magnet. Moreover, qm describes the position of the magnetic dipole with respect to a local

coordinate system having its origin at the center of the lower face of the corresponding

voxel. The parameter α is constraint on the interval [0,1] with 0 and 1 corresponding to

the bottom and top face of the voxels. All magnetic dipoles in the α-MDM have an equal

local position inside their respective voxel, i.e., α is equal for all voxels. In this study

different α-MDM of the cuboidal permanent magnet are evaluated. They are specified by

combinations of Na “t2:2:14u and Nh “t1:1:25u.

(α,β)-MDM of the Cylindrical Permanent Magnet The axially magnetized cylin-

drical permanent magnet has the radius Rp, the height Hp and the volume Vp “πR2Hp. It

is positioned at the center of the cylinder bottom face (P0 “rx0, y0, z0sT “r0, 0, δzsT) and

the cylinder axis is parallel to the z-axis. The voxels in the (α,β)-MDM are of two types.

The central voxels are cylinders and their main axis coincides with the main axis of the

permanent magnet. The voxels off the z-axis are hollow cylinder sectors (Fig. 3.2).

Central voxel
(cylinder)

m

Ring voxel
(hollow cylinder segment)

Figure 3.2: Magnetic dipoles model of a cylindrical permanent magnet.

The (α,β)-MDM is composed of Nh layers of voxels. Each layer contains one central voxel

of radius r0 and height ∆h, and NR concentric rings consisting of a number of cylinder sector

voxels. These are described by the inner radius ri, the outer radius ri`1 with i indexing the

i-th ring of voxels, the segment angle ϕ, and the height ∆h. The total number of magnetic
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dipoles ND is calculated as

ND “Nh

˜

1 `
NR
ÿ

i“1

N i
S

¸

. (3.4)

The variable N i
S denotes the number of voxels in the i-th concentric ring and is defined as

N i
S “Nse

Z

π

2

ˆ

i ´
1

2

˙^

ěNse, i“1, ¨ ¨ ¨ , NR, (3.5)

with Nse denoting the number of segments in the MDM. For a cylinder magnet Nse “4

is chosen. Thus, N i
S is always a multiple of 4 to ensure the symmetry of the (α,β)-MDM.

The operator t¨u denotes the greatest integer function. The magnetic dipoles in the central

voxels are positioned on the cylinder main axis. Further, the radius r0 of the central voxels

is defined as

r0 “

c

VE

π∆h
, (3.6)

with VE “Vp{ND denoting the volume of one voxel. The magnetic dipoles in the ring voxels

are located on the symmetry plane of the corresponding voxel. Thus they are positioned at

half of the segment angle spanning the ring voxel ϕ{2. The inner radius ri and outer radius

ri`1 of the voxels in the concentric rings are calculated by the following recurrence

ri`1 “

c

VEN i
S

π∆h
` r2

i , r1 “r0. (3.7)

Radial and axial positions of the dipoles in the ring voxels depend on the parameters α

and β, respectively. The parameters α and β are equal for all voxels and are constraint

to the interval [0, 1] ensuring that the dipoles are located inside the corresponding voxels.

With respect to a local coordinate system placed at the center of the bottom face of the

respective layer of voxels (on the z-axis), the positions of the dipoles can be summarized as

riβ “

#

0, i“0 (axial voxel)

p1 ´ βqri ` βri`1, i“1, . . . , NR (ring voxels)
,

zα “ α∆h.

(3.8)

Then, the position Qm “rxm, ym, zmsT of the m-th magnetic dipole in the global Cartesian

coordinate system is calculated as

Qm “P0 ` qijk “

»

—

—

—

–

xm

ym

zm

fi

ffi

ffi

ffi

fl

“

»

—

—

—

–

x0 ` riβ cos θj

y0 ` riβ sin θj

z0 ` pk ´ 1q∆h ` zα

fi

ffi

ffi

ffi

fl

, θj “2π
j ´ 1

2

N i
s

, (3.9)

with i“1, . . . , NR, k “1, . . . , NH , and j “1, . . . , N i
S . Further, qijk denotes the position of

the dipole with respect to a local coordinate system placed at the center of the bottom

face of the cylindrical magnet. The magnetic flux density B“rBx, By, BzsT at any point
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P“rx, y, zsT outside the permanent magnet is calculated according to equation (3.1).

Figure 3.3 shows examplarily distributions of magnetic dipoles in a single layer of two

(α,β)-MDMs. Dipole positions are shown for NR “2, ND “13 and NR “6, ND “105, with

ND denoting the number of dipoles in one layer.
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Figure 3.3: Distributions of magnetic dipoles in one layer of two (α,β)-MDMs with NR “
2, ND “13 (left) and NR “6, ND “105 (right). The number of dipoles in the layer is
denoted by ND.

The permanent magnet under investigation has the dimensions Rp “7.5 mm and Hp “

25 mm. The liftoff distance δz equals 1 mm. The (α,β)-MDM is assessed for different

numbers of magnetic dipoles defined by all possible combinations of NR “t1:1:7u and

Nh “t1:1:25u.

3.2.2 Analytic Models

Charge Model of the Cuboidal Permanent Magnet The charge model provides a

fully analytic calculation of the magnetic flux density of the cuboidal permanent magnet at

any point in space. Applying the charge model the magnet is represented by a distribution

of equivalent magnetic surface charges (Figure 3.4) [33, 125]. The surface charge density

is calculated as σm “M ¨ n with n denoting the surface normals. Evaluating the surface

normals for a cuboidal magnet with the magnetization along the z-axis M“M ¨ ez, the

surface charge density equals σm “M ¨ ez “M for the top face located at z “δz ` Hp, and

σm “M ¨ p´ezq“´M for the bottom face positioned at z “δz. The charge densities of the

side faces vanish.

The magnetic charges are used as a source term in magnetostatic field equations. Gener-

ally, the magnetic flux density B“rBx, By, BzsT at any point P“rx, y, zsT resulting from

a magnetic surface charge is calculated as

BpPq“
µ0

4π

¿

S

σm

`

P1
˘ `

P ´ P1
˘

ˇ

ˇP ´ P1
ˇ

ˇ

3
ds1 (3.10)
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Figure 3.4: Analytic charge model of the cuboidal permanent magnet.

with P1 “rx1, y1, z1sT denoting the source point. For the cuboidal permanent magnet the

integral in equation (3.10) is evaluated over the rectangular top and bottom face

BpPq“
µ0M

4π

»

—

–

a{2
ż

´a{2

a{2
ż

´a{2

`

P ´ P1
˘

ˇ

ˇP ´ P1
ˇ

ˇ

3
dx1dy1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

z“δz`h

´

a{2
ż

´a{2

a{2
ż

´a{2

`

P ´ P1
˘

ˇ

ˇP ´ P1
ˇ

ˇ

3
dx1dy1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

z“δz

fi

ffi

fl
.

(3.11)

The magnetic flux density components Bx, By and Bz at the point P“rx, y, zsT are calcu-

lated as [33,125]

Bxpx, y, zq“
µ0M

4π

2
ÿ

k“1

2
ÿ

m“1

p´1qk`m log rF px, y, z, xm, y1, y2, zkqs , (3.12)

with

F px, y, z, xm, y1, y2, zkq“
py ´ y1q ` rpx ´ xmq2 ` py ´ y1q2 ` pz ´ zkq2s1{2

py ´ y2q ` rpx ´ xmq2 ` py ´ y2q2 ` pz ´ zkq2s1{2
,

Bypx, y, zq“
µ0M

4π

2
ÿ

k“1

2
ÿ

m“1

p´1qk`m log rHpx, y, z, x1, x2, ym, zkqs , (3.13)

with

Hpx, y, z, x1, x2, ym, zkq“
px ´ x1q ` rpx ´ x1q2 ` py ´ ymq2 ` pz ´ zkq2s1{2

px ´ x2q ` rpx ´ x2q2 ` py ´ ymq2 ` pz ´ zkq2s1{2
,
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and

Bzpx, y, zq“
µ0M

4π

2
ÿ

k“1

2
ÿ

m“1

2
ÿ

n“1

p´1qk`m`n

¨ tan´1

„

px ´ xnqpy ´ ymq

z ´ zk
Gpx, y, z, xn, ym, zkq



, (3.14)

with

Gpx, y, z, xn, ym, zkq“
1

rpx ´ xnq2 ` py ´ ymq2 ` pz ´ zkq2s1{2
.

The indices n, m, k P1, 2 denote the edge coordinates of the charged planes (bottom and

top face of the permanent magnet). Thus, it holds in equations (3.12)-(3.14) x1 “y1 “a{2,

x2 “y2 “´a{2, z1 “δz and z2 “δz ` h.

Analytic Current Model of the Cylindrical Permanent Magnet The existing sur-

face current model is depicted in Figure 3.5(a). The model is represented by an equivalent

infinite thin solenoid of radius Rp and height Hp [20]. Thus, the axially magnetized cylin-

drical permanent magnet is replaced by an equivalent surface current flowing in azimuthal

direction on the lateral cylinder surface.

R

(a) Surface Current Model (b) Semi-Analytic Model

Figure 3.5: Models of cylindrical permanent magnet.

Evaluating the unit surface normals the equivalent surface current density is defined as

JS “Mˆn“Mˆer “M¨eφ. Using cylindrical coordinates the magnetic flux density B pPq

at the point P“rr, zsT is calculated as

BpPq“
µ0

4π

¿

S

JSpPqpP ´ P
1
q

ˇ

ˇ

ˇ
P ´ P

1
ˇ

ˇ

ˇ

3
ds. (3.15)

An analytic solution of the integral in equation (3.15) in terms of a generalized complete
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elliptic integral is derived in [20]. With the assumption that the center of gravity of the

solenoid is located at the origin of the coordinate system, the field components Br in radial

direction and Bz aligned with the coil axis at the point P“rr, zsT outside the magnet are

calculated as

Brpr, zq“
µ0M

π
rα`C pk`, 1, 1, ´1q ´ α´C pk´, 1, 1, ´1qs (3.16)

and

Bzpr, zq“
µ0M

π

Rp

Rp ` r

“

β`C
`

k`, γ2, 1, γ
˘

´ β´C
`

k´, γ2, 1, γ
˘‰

, (3.17)

with

k˘ “

d

z2
˘ ` pRp ´ rq2

z2
˘ ` pRp ` rq2

, z˘ “z ˘
Hp

2
, γ “

Rp ´ r

Rp ` r
,

α˘ “
Rp

b

z2
˘ ` pRp ` rq2

, β˘ “
z˘

b

z2
˘ ` pRp ` rq2

.

The function Cp¨q denotes the generalized complete elliptic integral and is defined as

Cpkc, p, c, sq“

π{2
ż

0

c cos2 φ ` s sin2 φ

pcos2 φ ` p sin2 φq
a

cos2 φ ` kc sin2 φ
dφ. (3.18)

Semi-Analytic Model of the Cylindrical Permanent Magnet Exploiting the equiv-

alence between a cylindrical permanent magnet and a solenoid, the magnetic flux density

of a semi-analytic model described in [20] is derived. The cylindrical permanent magnet is

substituted with a set of Nh elementary circular current loops located at the lateral surface

of the magnet (Fig. 3.5(b)) [20,91]. Each elementary current loop has the height ∆z “Hp{Nh

and carries the current ∆i“M∆z. The magnetic flux density at the point P“rr, zsT out-

side the permanent magnet is the linear superposition of the magnetic flux densities of the

single current loops and is calculated as

BpPq“
Nh
ÿ

j“1

∆Bj pPq . (3.19)

The magnetic flux density ∆Bj pPq produced by the j-th current loop at the position

zj is obtained by applying the Biot-Savart-Law integrated over the current loop. Using

cylindrical coordinates the flux density components ∆Bj
r and ∆Bj

z are calculated as

∆Bj
rpr, zq“µ0M

∆z

2πRp

γ
a

Qj

«

Epkjq
1 ` α2 ` β2

j

Qj ´ 4α
´ Kpkjq

ff

, (3.20)

and

∆Bj
zpr, zq“µ0M

∆z

2πRp

1
a

Qj

«

Epkjq
1 ´ α2 ` β2

j

Qj ´ 4α
` Kpkjq

ff

, (3.21)
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with

α“
p

Rp
, βj “

z ´ zj

Rp
, γj “

z ´ zj

p
, Qj “p1 ` αq2 ` β2

j , kj “

d

4α

Qj
, (3.22)

and p“
ˇ

ˇ

ˇ
P ´ P

1
ˇ

ˇ

ˇ
denoting the distance from the center of the current loop P

1
to the field

measurement point. Further, Epkjq and Kpkjq are the complete elliptic integrals of the first

and second kind, respectively. They are denoted by

Kpkjq“

π{2
ż

0

dφ
b

1 ´ k2
j sin2 φ

, (3.23)

and

Epkjq“

π{2
ż

0

b

1 ´ k2
j sin2 φdφ. (3.24)

3.2.3 Optimization Procedure

The aim of the following optimization procedure is to determine optimal parameters αo

for the α-MDMs (equation 3.3) as well as optimal parameters αo and βo for the (α,β)-

MDMs (equation (3.9)) with the given predefined numbers of dipoles. A test region G

in the specimen is defined, which is positioned in the region below the permanent mag-

net (Figure 3.6). Motivated by the laminated structure of the specimen explained in Sec-

tion 2.2, the test region consists of Nz “5 XY -layers: G“tGk, k “1, ¨ ¨ ¨ , Nzu. The XY -

layers are equidistantly distributed along the z-axis tzk “´d0 ´ pk ´ 1q∆z, k “1, . . . , Nzu,

with d0 “´1 mm indexing the z-coordinate of the uppermost layer and ∆z “1 mm the

distance between adjacent layers. Considering the liftoff distance of the permanent

magnet, the closest layer is located at a distance of 2 mm below the permanent mag-

net. Due to the permanent magnets, the test region in the specimen is restricted to

the first quadrant pxě0, y ě0q. Each layer in the test region is composed of a regular

grid of Nx ˆ Ny “31 ˆ 31 points equidistantly distributed in the XY -plane. Thus, it

holds Gk :txi “pi ´ 1q∆x, yj “pj ´ 1q∆y, i“1, ¨ ¨ ¨ , Nx, j “1, ¨ ¨ ¨ , Nyu, with ∆x“1 mm and

∆y “1 mm denoting the distance between the grid points.

In the test region the global normalized root mean square error NRMSEG between the

magnetic flux density obtained from the α- or (α,β)-MDMs and the flux density provided

by the corresponding reference solution is evaluated. The reference solutions, which are

explained in the Section 3.2.2, are the charge model for the cuboidal and the current model

for the cylindrical permanent magnet.

The goal function to be minimized is defined as

NRMSEG “

g

f

f

e

1

Nz

Nz
ÿ

k“1

“

NRMSEk
Gp¨q

‰2
. (3.25)
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Permanent
magnet

Test region

Figure 3.6: Test region in the optimization procedure to obtain optimal dipole positions in
the MDM.

The NRMSEG in the k-th XY -layer NRMSEk
Gp¨q is calculated in % as

NRMSEk
Gp¨q“

d

1

NxNy

3
ř

n“1

Nx
ř

i“1

Ny
ř

j“1

rBD
n pxi, yj, zkq ´ BA

n pxi, yj , zkqs2

max

˜
d

3
ř

n“1

pBA
n q

2

¸

´ min

˜
d

3
ř

n“1

pBA
n q

2

¸ˇ

ˇ

ˇ

ˇ

ˇ

z“zk

¨ 100, (3.26)

with BD
n being the n-th component of the magnetic flux density obtained from the α- or

(α,β)-MDM, and BA
n being the n-th component of the reference solution. Further, the index

nPt1, 2, 3u corresponds to the tx, y, zu-components of B.

In order to minimize equation (3.25) for the α-MDMs and (α,β)-MDMs the golden section

search algorithm [87] and the simplex search method [78] are applied, respectively. The

parameters are bounded to the interval pα, βqPr0, 1s. Further, the initial values for the

simplex algorithm are set to α0 “β0 “0.5

3.2.4 Lorentz Force Evaluation using Magnetic Dipoles Model of

Cuboidal Permanent Magnet

The aim is to investigate how the dipole optimization influences the error in the forward

calculated Lorentz forces. Therefore, the α-MDMs with optimized positions of the cuboidal

permanent magnet are embedded into the existing first approximation of the defect response

signal (DRS) in LFE (Section 2.4.1). Moreover, the DRS is calculated using the α-MDMs

with straightforward dipole positions, e.g., α“0.5. According to equation (3.1), force signals

using the α-MDMs can be easily calculated as the sum of the force signals for the single

dipoles.

Further, the DRS is computed using the charge model explained in Section 3.2.2. These

35



3 Modeling of Permanent Magnets

force signals serve as a reference solution for the data calculated with the α-MDMs with

optimized and straightforward dipole positions. In contrast to the results of numerical

simulations, this approach ensures that we only investigate signal errors of the α-MDMs

and not the total error of the approximate forward solution.

The analysis is restricted to the cuboidal permanent magnet, because it is possible to find

analytical expressions for the electric potential and eddy currents induced in the plate only

for the magnet model in the form of a cuboid but not in the form of a cylinder. Using the

analytic expression for the By-component of the magnetic flux density of the charge model

in equation (3.13), the equation for the electric potential ϕ in an anisotropic defect-free

conductor is derived to

ϕ“

ż z

´8
v ¨ ByBz

“
vµ0M

4π

«

2
ÿ

k“1

2
ÿ

m“1

p´1qk`m

«

2
ÿ

n“1

p´1qn ¨ ỹm ¨ tan´1p
x̃n ¨ z̃k

ỹm ¨ rkmn

q

ff

` z̃k ¨ ln
x̃1 ¨ rkm1

x̃2 ¨ rkm2

ff

` x̃1 ¨ ln

ˆ

pz̃1 ` r111qpz̃2 ` r221q

pz̃1 ` r121qpz̃2 ` r211q

˙

` x̃2 ¨ ln

ˆ

pz̃1 ` r122qpz̃2 ` r212q

pz̃1 ` r112qpz̃2 ` r212q

˙

, (3.27)

with x̃n “x ´ xn, ỹm “y ´ ym and z̃k “z ´ zk. The distance between the evaluated field

point and the edge of the permanent magnet is denoted by rkmn “
b

x̃2
n ` ỹ2

m ` z̃2
k. The

indices n, m, k P1, 2 correspond to the edge coordinates of the bottom and top face of the

permanent magnet, i.e., the charged planes as shown in Figure 3.4.

Then, the components of the defect response eddy current distribution (DRCD) ∆j“

r∆jx, ∆jy, 0sT, which are responsible for the DRS, are calculated according to Ohm’s law

in equation (2.7) as ∆jx “ Bϕ{Bx and ∆jy “ Bϕ{By ´ vBz with

Bϕ

Bx
“

vµ0M

4π

«

2
ÿ

k“1

2
ÿ

m“1

2
ÿ

n“1

p´1qk`m`n ¨

„

´ỹ2
m ¨ z̃k

x̃2
n ` ỹ2

m

¨ rkmn `
z̃k ` x̃2

n

rkmn

¨ prkmn ` z̃kq



ff

` ln

ˆ

pz̃1 ` r111qpz̃1 ` r221q

pz̃2 ` r121qpz̃2 ` r211q

˙

` ln

ˆ

pz̃1 ` r122qpz̃1 ` r212q

pz̃2 ` r112qpz̃2 ` r222q

˙

, (3.28)

Bϕ

By
“

vµ0M

4π

2
ÿ

k“1

2
ÿ

m“1

2
ÿ

n“1

p´1qk`m`n ¨

« x̃nz̃k

ˆ

1
ỹm¨rkmn

` ỹm

r
2{3
kmn

˙

x̃2
nz̃2

k

ỹ2
mrkmn

` 1
´ tan´1

ˆ

x̃nz̃k

ỹmrkmn

˙

` tan´1

ˆ

z̃k

ỹm

˙

`

ˆ

ỹmz̃k

x̃n ` rkmn
`

x̃nỹm

rkmn

˙

¨ prkmn ` z̃kq

ff

, (3.29)

and Bz given in equation (3.14).

For forward calculations a benchmark problem for LFE with an anisotropic specimen

containing a quadratic defect with the dimensions 6 mmˆ6 mmˆ2 mm and depth d“2 mm

is applied (Figure 2.2). Similar to the permanent magnet, the center of gravity of the defect
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is located at x“y “0. Thus, the defect and the permanent magnet have the same symmetry

lines. The Lorentz forces in the vicinity of the defect are examined. The observation points

are equidistantly distributed in the range of 0ďxď20 mm, 0ďy ď10 mm at z “1 mm. Due

to the symmetry of the problem setup the investigated region is restricted to the first

quadrant of the coordinate system. The distance between adjacent observation points

in x- and y-direction equals 1 mm. For comparison, the NRMSE∆F between the three-

component Lorentz force perturbations obtained by the α-MDMs and the charge model is

calculated.

3.2.5 Computational Resources

In practical application of the MDMs, special focus is on the computational complexity

of the applied optimization procedure, i.e., of the optimization algorithm and the MDMs.

Further, the computational cost required to compute the MDMs is of interest. These factors

are evaluated, because they determine the efficiency of the optimization procedure.

In order to monitor the computational demand the optimizations are performed on a

computer system equipped with an Intel® Xeon® E5472 processor (dual core CPU with

2x3 GHz), 12 MB of L2 cache and 64 GB of RAM. The operating system is a 64-bit

Linux Gentoo Base System (release 2.2). Computations are performed using the software

MATLAB® R2013b (release 8.2). In order to minimize the overall computation time multi-

threaded computing is enabled. However, an even distribution of the work load on multiple

CPUs is not ensured. The CPU time and additionally the number of function evaluations

is measured, which is necessary for the optimization algorithms to converge. Both factors

are expected to vary among MDMs with different numbers of dipoles.

Since the applied golden section search algorithm and the simplex method are determin-

istic optimization algorithms and the initial values are set, deviations in the optimization

results for multiple trials are unlikely to be expected. Even more, differences in the CPU

time among multiple trials, which can occur due to the background operating system ac-

tivity, can be neglected. Thus, one trial for each preset MDM is performed.

3.3 Results

3.3.1 Magnetic Dipoles Models

α-MDM of the Cuboidal Permanent Magnet The results of the optimization of the

α-MDM of the cuboidal permanent magnet are shown in Figure 3.7 using semi-logarithmic

scaling. In the following, the MDMs with optimized dipole positions are denoted by αo-

MDM, whereas α-MDM remains a general denotation for the MDM of the cuboidal per-

manent magnet. The accuracy of the magnetic flux density obtained from the αo-MDM

is evaluated by assessing their NRMSEG in groups with the group parameter Na and the

function argument Nh. Thus, an increase of the total number of magnetic dipoles ND is

caused by an increase of Nh (Figure 3.7(a)). The results show that for each group indexed
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by Na an optimal number of layers No
h,min “t2, 5, 9, 13, 16, 20, 23u with corresponding min-

imum errors NRMSEo
G,min “t1.52, 0.32, 0.07, 0.017, 0.006, 0.003, 0.001u % exists. Further,

an increase of Na yields an increase of No
h,min. Using the results of a least squares fit, the

optimal number of layers depends on Na as No
h,min “r1.79Na ´ 1.71s with r¨s denoting the

nearest integer function. Further, with increasing Na the edge-to-height ratio of the voxels

converges to one. Thus, for high numbers of dipoles the optimal number of layers can be

estimated by No
h,min “ t∆h{∆au.
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Figure 3.7: Results of the optimization of the α-MDM of the cuboidal permanent magnet.

The optimized parameter αo of the αo-MDMs corresponding to the minimum error in

each group is depicted in Figure 3.7(b) as a function of ND. For small ND the optimized

position of the magnetic dipoles is lower than the standard choice, i.e., the center of gravity

of the voxels indicated by the dashed line. With increasing number of magnetic dipoles αo

converges to 0.5.

Figure 3.8 compares the magnetic flux density components Bx and Bz of the MDMs

with ND “22 ¨ 2“8 and ND “82 ¨ 13“832 dipoles and the charge model. The flux densities

are evaluated in x-direction at y “0 and z “1 mm. This yields a total distance of 2 mm to

the permanent magnet. Please note that due to the symmetry of the permanent magnet the

By-component equals zero at y “0. If the αo-MDM consists of eight magnetic dipoles, the

normalized root mean square error (NRMSE) of the Bx- and Bz-component equals 1.753 %

and 1.651 %, respectively. This αo-MDM provides a good approximation of the magnetic

flux density at far distances. However, remarkable discrepancies are observed in the region

below the permanent magnet p´7.5 mmďxď7.5 mmq. In the region of the extremal values

the magnitude of the Bx-component is smaller than the charge model. Moreover, the slopes

are less steeper. Further, Bz drops to a local minimum. If the cuboidal permanent magnet

is represented with 832 dipoles, the NRMSE of both components equals 0.027 %. The

irregularities observed in the αo-MDM with eight dipoles vanish.

38



3.3 Results

−300

−200

−100

0

100

200

300

B
x i

n
 m

T

N
D

 = 8

−30 −20 −10 0 10 20 30
−100

0

100

200

300

400

500

x in mm

B
z i

n
 m

T

N
D

 = 832

−30 −20 −10 0 10 20 30
x in mm

B
D

B
A

Figure 3.8: Comparison of magnetic flux densities obtained from two αo-MDMs (BD) and
the charge model (BA) of the cuboidal permanent magnet. The flux densities are
calculated at the symmetry line of the permanent magnet (y “0) and z “1 mm. The αo-
MDMs are calculated for ND “22 ¨2“8 with αo “0.4384 (left column) and ND “82 ¨13“
832 with αo “0.4992 (right column). The upper and lower row depict the magnetic flux
density components Bx and Bz, respectively.
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(α, β)-MDM of the Cylindrical Permanent Magnet Similar to the cuboidal perma-

nent magnet, the NRMSEG between the (αo,βo)-MDMs with optimized parameters and

the analytic current model are depicted in groups using Nh as the group parameter and

NR as the function parameter (Figure 3.9(a)). A minimum for each NR indicates the op-

timal number of dipole layers No
h,min “t2, 5, 8, 12, 15, 18, 23u for the (αo,βo)-MDMs. The

corresponding errors equal NRMSEo
G,min “t2.19, 0.89, 0.36, 0.12, 0.05, 0.02, 0.01u %.

Figure 3.9(b) shows the optimized parameters αo and βo for the (αo,βo)-MDMs corre-

sponding to the minimum error in Figure 3.9(a) as a function of ND. For intermediate

ND the MDMs tend to smaller z-coordinate (αo), but slightly larger radial coordinate (βo)

compared to (α,β)=(0.5,0.5). With enlarging ND the parameters converge to 0.5.
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Figure 3.9: Results of the optimization of the (α,β)-MDM of the cylindrical permanent
magnet.

Instances of the magnetic flux densities obtained from two (αo,βo)-MDMs and the cur-

rent model are compared in Figure 3.10. The flux densities are calculated at y “0 mm

and z “1 mm yielding a total distance of 2 mm to the permanent magnet. If ND “10

pNR “2, No
h,min “2q holds, the NRMSE equals 2.78 % and 2.56 % for the Bx- and Bz-

component, respectively. Similar to the cuboidal magnet, differences are observed in the

region of 7.5 mmďxď7.5 mm. The Bx-component of the MDM is too small, whereas the

Bz-component overshoots the current model. If the (αo,βo)-MDM consists of 1890 magnetic

dipoles pNR “6, No
h,min “18q, the NRMSE of the Bx- and Bz-component result into 0.034 %

and 0.039 %, respectively.
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Figure 3.10: Comparison of magnetic flux densities obtained from two (αo,βo)-MDMs (BD)
and the current model (BA) of the cylindrical permanent magnet. The flux densities are
calculated at the symmetry line of the permanent magnet (y “0 mm) and z “´1 mm.
The (αo,βo)-MDMs are calculated for ND “10 with αo “0.44, βo “0.3892 (left column)
and ND “1890 with αo “0.4992, βo “0.5078 (right column). The upper and lower row
depict the magnetic flux density components Bx and Bz, respectively.
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3 Modeling of Permanent Magnets

3.3.2 Influence of the Optimization Procedure

In order to evaluate the efficiency of the optimization procedure the NRMSEG of the opti-

mized MDMs (αo ´MDM) is compared to the NRMSEG of the MDMs with the same dipole

configurations but straightforward dipole positions (αs-MDM). Straightforward dipole posi-

tions are indicated by αs “0.5 as well as pαs, βsq“p0.5, 0.5q ((αs,βs)-MDM) for the cuboidal

and cylindrical magnet, respectively. In case of the cuboidal magnet the straightforward

dipole positions correspond to the center of gravity of the voxels. The comparison is made

for both permanent magnets. The results are shown in Figure 3.11 using semi-logarithmic

scaling. The improvement is similar for all MDMs. The optimized MDMs have approxi-

mately half the error than the MDMs with not optimized dipole positions.
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Figure 3.11: Comparison between MDMs with not optimized and optimized dipole positions
(αo ´ MDM and αs ´ MDM) using semi-logarithmic scaling. The MDMs have the same
dipole configurations. The evaluated dipole configurations correspond to the minimum
NRMSEG among the groups in Figures 3.7(a) and 3.9(a).

3.3.3 Comparison of the Semi-Analytic and the Analytic Model of the

Cylindrical Permanent Magnet

In order to evaluate the accuracy of the semi-analytic model for the cylindrical permanent

magnet the magnetic flux density is compared to that of the analytic current model (Section

3.2.2). We vary the number of elementary current loops in a logarithmic scheme from 10

to 1000 and calculate the NRMSE. The results are depicted in Figure 3.12 using double-

logarithmic scaling.

The NRMSE decreases exponentially with increasing number of current loops. If 10

current loops are considered, the NRMSE equals 2.18 %. It decreases to 0.021 % for NH “

100 and 2.42¨10´4 % for NH “1000.
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Figure 3.12: NRMSE between the semi-analytic and analytic current model of the cylindrical
permanent magnet.

3.3.4 Lorentz Force Evaluation Using Magnetic Dipoles Model of

Cuboidal Permanent Magnet

Figure 3.13 shows the NRMSE∆F using semi-logarithmic scaling as a function of the total

number of dipoles ND in the αo- and αs-MDMs. As described in Section 3.2.4, the error is

calculated between the DRS using MDMs of the cuboidal permanent magnet with optimized

and straightforward dipole positions (αo-MDMs and αs-MDMs) and the DRS using the

analytic charge model.
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Figure 3.13: Comparison of forward computed Lorentz forces for the cuboidal permanent
magnet. The force signals calculated with the αo-MDM and the αs-MDM are compared
to force signals calculated with the charge model.

The perturbation in the force signals calculated with the αo-MDM have a smaller error

than the signals calculated with the αs-MDMs. NRMSE∆F errors introduced by αo-MDMs

equal 0.8 % and 0.002 % for ND “8 and ND “832, respectively. For the αs-MDMs with

the same number of magnetic dipoles, the error equals 8.2 % and 0.019 %, respectively. For

large ND the errors are similar.

A comparison of the errors of the magnetic flux density of the αo-MDMs for the cuboidal

permanent magnet (Figure 3.7(a), Section 3.3.1) shows that the errors in the force signals

are smaller than the errors in the magnetic flux density. For ND “8 the errors in the force

signals of the αo-MDMs are smaller by half the value than the errors in the magnetic flux
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3 Modeling of Permanent Magnets

density. For ND “10 the difference is approximately one decimal position. However, if the

αs-MDM are used the errors of the force signals are significantly higher for both ND “8

and for ND “832 than the NRMSE of the corresponding magnetic flux density.

A comparison of the DRS using the αo-MDM and αs-MDM with eight magnetic dipoles

as well as the DRS using the charge model is shown in Figure 3.14. Forward calculations

are performed using the first approximation of the forward solution for LFE. The force

signals are depicted at y “2 mm, since the ∆Fy-component vanishes at the symmetry line

(y “0).
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Figure 3.14: Comparison of DRS components ∆Fx, ∆Fy, and ∆Fz for the cuboidal perma-
nent magnet. The signals are computed by applying the approximate forward solution
including the αo- and αs-MDM with eight dipoles and the charge model (CM). The
DRSs are depicted at the scanning line y “2 mm.

In case of the αo-MDM, the NRMSE of the ∆Fx-, ∆Fy- and ∆Fz-component equals

0.47 %, 1.54 %, and 1.68 %, respectively. In case of the αs-MDM, the NRMSE of the

components equals 7.42 %, 10.11 %, and 6.88 %.

3.3.5 Computational Resources

The worst case computational complexity of the golden section search algorithm used to

optimize the α-MDM of the cuboidal permanent magnet equals Oplog nq [12], whereas

the simplex method used for the pα, βq-MDM of the cylindrical permanent magnet has a

complexity of Op2nq [104]. Based on a source code evaluation is was observed that the MDM

itself has a complexity of Opnq. Thus, the optimization procedures for the cuboidal and

cylindrical permanent magnet have complexities of Opn ¨ log nq and Opn ¨ 2nq, respectively.

The measured CPU time and the number of function evaluations until convergence are

shown in Figure 3.15. The evaluation is restricted to the MDMs that have the minimum

NRMSE among the groups indicated by an equal Na and varying Nh (Figures 3.7(a) and

3.9(a)).

The CPU time is depicted as a function of the number of magnetic dipoles ND in Figure

3.15(a). It can be observed that the CPU time for all permanent magnets can be described

by a linear function. This proves that the computational complexity of the MDMs is Opnq.

Optimizing the MDM of the cuboidal permanent magnet with ND “8 and ND “832 lasts

with respect to the used computer system 2 s and 21 s, respectively. The optimization of
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Figure 3.15: Computational resources required to optimize the MDMs of the cuboidal and
cylindrical permanent magnet. The parameters are shown for MDMs having the optimal
number of layers.

the pα, βq-MDM of the cylindrical magnet requires due to the two optimization variables in

average over all evaluated MDMs ten times more CPU time than the α-MDM. For ND “10

and ND “1890 the CPU time equals 43 s and 305 s, respectively.

The number of function evaluations are shown in Figure 3.15(b). Optimization of the

pα, βq-MDM requires in average eight times more function evaluations than optimization

of the α-MDM. The number of function evaluations of the golden section search algorithm

applied to optimize the αo-MDM is slightly larger for high numbers of dipoles. Contrary,

the pα, βq-MDM executes more function evaluations for a low number of dipoles.

3.4 Discussion

In this chapter newly developed and existing models for the permanent magnets in Lorentz

force evaluation (LFE) were evaluated. This study was motivated by the necessity to pro-

vide an accurate model of the permanent magnet for the forward solution of LFE, which

is the basis for successful inverse calculations of defect parameters. The main contribution

is the introduction of the magnetic dipoles model (MDM), which can be applied to arbi-

trary shaped permanent magnets with a homogeneous magnetization. In the MDM, the

permanent magnet is represented with an assembly of magnetic dipoles. The model can

be embedded into an analytic forward solution for LFE and the advantage to calculate

the flux density and the eddy currents induced in the conductor with elementary analytic

mathematics is maintained. In order to obtain optimal positions of the magnetic dipoles an

optimization procedure was proposed, that is based on a comparison to existing analytic

models.

The results in Figures 3.7(a) and 3.9(a), Section 3.3.1 show that 832 dipoles are necessary

for the cuboidal permanent magnet, and 1890 dipoles for the cylindrical permanent magnet

45



3 Modeling of Permanent Magnets

to minimize the normalized root mean square error (NRMSE) to 0.02 % in the near field

of the permanent magnet. Thus, for complex shaped magnets more dipoles have to be

considered to achieve a similar accuracy. The higher number of dipoles compensates the fact

that the dipole approximation is less accurate for cylindrical and hollow cylinder segments

than for cuboidal voxels [83].

The comparison of the magnetic flux density (Section 3.3.1) and the forward calculated

Lorentz forces (Section 3.3.4) obtained from the αo-MDM and αs-MDM shows, that the

use of optimized dipole positions yields a significant improvement for MDMs with a small

number of dipoles. With increasing number of dipoles the influence of the optimization is

reduced. Thus, an optimized MDM requires less dipole layers to achieve the same NRMSE

than the MDM with straightforward dipole positions, if the number of dipoles is small. This

is especially valid for inverse calculations, since the computational costs can be reduced by

using optimized instead of a larger number of dipoles, whereas both approaches yield a

reduction of the modeling error. The use of the optimization procedure reduces the number

of magnetic dipoles that are necessary to achieve a certain accuracy. The optimization is

performed only once before any forward and inverse calculation and thus the computational

demand is comparatively low.

Further, the comparison of the error differences of the magnetic flux density and the

Lorentz force signals (Figures 3.7(a) and 3.13) show that for the αo-MDMs the error in the

magnetic flux density is partly compensated by the analytic forward calculations. However,

this is not the case for the αs-MDMs. For ND “8 a large error in the amplitude of the

Lorentz forces can be observed. This is likely to be explained by the large differences in the

α-parameter (αo “0.41) determining a difference of 0.8 mm in the z-position of the dipoles

for the used permanent magnet. This aspect strongly supports the use of the αo-MDMs.

Apart from the cuboidal and cylindrical permanent magnet, a cubic permanent magnet

with the dimensions a“Hp “15 mm was investigated. The same α-MDM-configurations as

for the cuboidal magnet were optimized. The results detailed in Appendix A show that for

Na “t2, 4, 6u the optimal number of layers equals No
h,min “Na ´ 1, whereas for larger Na

it equals Na. Compared with the cuboidal permanent magnet the minimum NRMSE for

each group indexed by Na are similar, but the optimal number of layers is smaller for the

cubic permanent magnet. This is reasoned by the smaller height of the cubic permanent

magnet.

Evaluating the results, an approximate linear dependence between the number of dipoles

in one layer and the optimal number of layers for the αo- and αs-MDM of the cubic and

cuboidal and the (αs, βs)-MDM of the cylindrical magnet was observed. No similar relation-

ship could be found for the (αo, βo)-MDM. These results can be explained by the structure

of the MDMs. In our study the dipole distributions in the MDMs are symmetric. Since

the definition of the MDMs implies that the dipoles for MDMs with varying number of

dipoles are positioned using the same principle, the symmetry lines are equal for all eval-

uated MDMs. Further, the dipoles represent an equal volume of the permanent magnet

and have the same moment. Merely the (αo, βo)-MDM depends on two parameters. These
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show a greater and non-monotonous variation in its values than the one parameter of the

cubic and cuboidal permanent magnet (Figures A.1(b), 3.7(b) and 3.9(b)). Apart from

symmetric dipole distributions non-symmetric distributions can be applied. The author

in [108] presents a variety of non-symmetric distributions for the dipoles in the layers with

the required weighting coefficients, which are different for the individual dipole moments.

In Figure 3.8 the Bz-component of the magnetic flux density of the αo-MDM of the

cuboidal magnet with ND “8 shows a drop at x“0. In Figure 3.10 the Bz-component of

the MDM of the cylindrical magnet shows a higher maximum than the reference solution

for a low number of dipoles. Further, the extremal values of the Bx-components of both

magnets are closer to the origin of the coordinate system and the slopes are steeper. These

effects can be attributed to the close distance of the respective dipoles in the lower plane of

the MDMs and the test region (near field of the dipoles). In the near field the inter-dipole

distances have a stronger influence on the resulting magnetic flux density, if a small number

of dipoles is considered. In the (αo, βo)-MDM with ND “10 the distance between the ring

dipoles and the central dipole is reduced, because the parameter βo is smaller than 0.5

(Figures 3.2 and 3.9(b)). Since the dipoles in the αo-MDMs are fixed to the center of gravity

of the bottom and top face, the dipoles in the (αo, βo)-MDM are closer to the symmetry

axis (y “0 mm), at which the magnetic flux density is evaluated. A further comparison

shows that the drop in the Bz-component for a small numbers of dipoles is smaller for

the cubic than for the cylindrical permanent magnet (A.2). This can be explained by the

number of layers in the respective MDMs. The cubic magnet is represented with one layer

of dipoles, whereas the cuboidal magnet consists of 2 layers. Thus, the large drop yields

from the superposition of the drops of the single dipole layers.

The results of the comparison between the semi-analytic and current model of the cylin-

drical magnet in Section 3.3.3 depict that 100 current loops are necessary to achieve a

NRMSE of 0.02 %. The main advantage of the semi-analytic model is the mathematically

less complicate derivation. It is recommended to use the semi-analytic model especially for

educational purposes, since it may provide a better physical insight into the approach of

modeling a cylindrical magnet with a wire-wound solenoid.

Figure 3.15(a) in Section 3.3.5 shows a linear dependence between the complexity of

the MDMs (number of dipoles) and the CPU time required for the optimization procedure.

Thus, the actual complexities of the optimization procedures are their best-case complexities

(Opnq). This is reasonable, since the number, the boundaries and the initial values of the

optimization variables remain constant. Further, the number of function evaluations for

the cylindrical magnet is significantly higher than for the cuboidal magnet. This can be

explained by the fact that the MDM of the cylindrical magnet consists of two optimization

variables. Moreover, with increasing numbers of dipoles the number of function evaluations

of the golden section search method increases. This shows that for high numbers of dipoles

the goal function is more flat in the region around the extracted minimum. Contrary, in

case of the pαo, βoq-MDM the necessary function evaluations decrease. This results from

the fact that for a high number of dipoles the initial values of the simplex method are close

to the optimal values (Figure 3.9(b)).
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In summary, the proposed MDM allows an efficient and accurate modeling of the per-

manent magnet in the forward solution for LFE.
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4 Lorentz Force Evaluation using Differential

Evolution

4.1 Introduction

Motivated by the advantages of stochastic optimization algorithms outlined in Section 2.5.2,

an inverse calculation strategy for Lorentz force evaluation (LFE) based on the Differential

Evolution (DE), an evolutionary strategy (ES), is introduced. The DE employs for mutation

differences in the population member itself instead of probability density functions as in

typical ES. Since its introduction in [107], the DE has become increasingly popular in

a wide variety of applications. These include the system design in engineering and the

determination of earthquake hypocenters in geophysics [88]. Recently, the DE has been

applied for fluorescence lifetime imaging microscopy in ophthalmology [53]. Within these

fields of application the DE has been used in different problem domains such as functions

with equality and inequality constraints, quantized functions, multiobjective optimization,

and combinatorial problems [88].

The DE has three intrinsic control parameters that determine the evolution process. In

the first step parameter studies are performed to evaluate the dependence of the reconstruc-

tion results on these control parameters. Additionally, the voxel size in the reconstruction

grid is assessed, because this factor is likely to have an impact on the resolution of LFE. For

these purposes numerically simulated data is employed. Based on the results optimal opti-

mization settings are selected. Then, the inverse strategy is applied to reconstruct defects

in simulated and measured Lorentz force data obtained from laminated composites.

In the remaining chapter, the methods are explained in Section 4.2. This includes the

DE algorithm, the proposed inverse scheme, the assessed data sets, and an outline on the

performed evaluation. Then in Section 4.3, the results of the parameter studies followed by

the reconstruction findings are presented. Finally, the results are discussed in Section 4.4.

This chapter contains methods and results that have been accepted for publication in [71].

4.2 Material and Methods

4.2.1 Differential Evolution

The basic DE algorithm described in [107] is applied. A flow chart illustrating the main

stages is shown in Figure 4.1. The DE starts with a randomly initiated population of

Np NS-dimensional individuals xn PRNSˆ1. The elements of the individuals xn,k are the
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Figure 4.1: Flow chart of the Differential Evolution (DE). The variable g denotes the
current generation.

conductivities bounded by the interval r0, σ0s. Each of the Np individuals provides a possible

solution to the LFE optimization problem.

The population evolves by differential mutation, crossover, and selection. Mutation de-

scribes the change (perturbation) in successive populations using random elements. For

each population member x in the target generation, a corresponding mutant x
pmq is calcu-

lated using three population members, x
p1q, x

p2q, and x
p3q, as

x
pmq “x

p1q ` F ¨
´

x
p2q ´ x

p3q
¯

, (4.1)

where F is the mutation scaling factor. The indices (1), (2), and (3) denote mutually

exclusive members, which also differ from the target, and they are selected randomly from

the population. For the sake of simplicity, please note that the index n“1, . . . , Np is

not used in the notations for the individuals. Due to the use of the scaled difference of

two individuals, the DE differs from other evolutionary strategies that employ predefined

probability density functions during mutation [18].

During the crossover operation, the target and mutant exchange elements to form the

trial vector x
ptq. The elements of the trial vector x

ptq
k are determined by using the crossover

rate Cr Pr0, 1s as

x
ptq
k “

$

&

%

x
pmq
k if rk ďCr _ k “kr

xk otherwise
, (4.2)

where rk Pr0, 1s and kr Pr1, NSs X Z are randomly generated numbers. Hence, the intrinsic

control parameters of the DE are Np, F , and Cr.

The individuals in the next generation x̃ are selected by a one-to-one competition be-

tween the target and its corresponding trial vector

x̃“

$

&

%

x
ptq if fpxpt,bqqďfpxpbqq

x otherwise
, (4.3)

where fp¨q denotes the goal function. The superscript pbq denotes a binary vector, which is

calculated prior to selection by binarizing the continuous parameters into the couple t0, σ0u.

The elements of x
pbq are obtained with respect to the threshold ϑ as
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x
pbq
k “

$

&

%

0 if xk ďϑ ¨ σ0

σ0 otherwise
. (4.4)

The optimal value of ϑ is determined heuristically based on parameter studies in a later

section of this study (Section 4.3.1).

Thresholding is motivated by the conductivity distribution used in the forward solution

of LFE where only two conductivity values occur, i.e., σ “σ0 or σ “0 for the defect or

non-defect regions, respectively (Section 2.4.1). Binary conductivity distributions are only

used during the selection process. In DE, the individuals remain continuous during evolu-

tion. The binarization of population members for the selection operation accelerates the

convergence of DE because the number of possible solutions is reduced and the DE is less

likely to be trapped by local minima. Finally, the optimization is terminated if the goal

function value of the overall best solution does not change within 500 iterations.

4.2.2 Inverse Calculation Strategy

The aim of the inverse calculation scheme is to reconstruct the conductivity distribution in

the laminated specimen. The first approximation of the defect response signal (DRS) as

outlined in Section 2.4.1 is applied for forward calculations. Since the defect is represented

with a fictitious conducting region, regions with high conductivity in the inverse solution

are interpreted as defect regions.

The applied defect reconstruction strategy consists of four steps (Figure 4.2). First,

a one-layered regular grid of voxels with unknown conductivities, i.e., a source space, is

defined for each of the NL metal layers of the composite, where the defect is assumed to be

located in. Voxels are defined with sizes of ∆xˆ∆yˆ∆z and they are distributed equally in

quadratic source spaces, which are positioned in the xy´planes of the metal layers and have

the dimensions ´ls ďpx, yqď ls. The depth of the source spaces and the height of the voxels

are equal to the depth and thickness of the metal sheets, respectively. The number of voxels

NS in the source space is defined as NS “ t2ls{∆xut2ls{∆yu. The unknown conductivity

distribution for each metal sheet is summarized in a vector σ “rσ1, σ2, ¨ ¨ ¨ , σNS
s.

Using the DRS profile ∆F“r∆F 1
x , ∆F 1

y , ∆F 1
z , . . . , ∆F M

x , ∆F M
y , ∆F M

z sT measured at M

points, i.e., ∆FPR3Mˆ1, (2.9) can be reformulated into the following linear system of

equations

∆F“Kσ, (4.5)

where K PR3MˆNS is the gain matrix between the NS unknown conductivities of voxels

from the source space and the DRS at M measurement points.

The goal function fpσq that needs to be minimized in the LFE is assigned to the normal-

ized root mean square error (NRMSE) between the forward calculated Lorentz force profiles

∆FpAq and the observed ∆Fpobsq, which has already been defined in equation (2.13),
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Figure 4.2: Inverse calculation strategy applied in LFE. Top: processing pipeline, bottom:
illustration of the evaluation steps. Due to the conductivity substitutions in the forward
solution for LFE, the voxels with σ “σ0 (black) represent the defect region (see Section
2.4.1).

fpσq“NRMSEpσq“

d

1
3M

3
ř

i“1

M
ř

m“1

´

∆F
pAq
i,m pσq ´ ∆F

pobsq
i,m pσq

¯2

max
m“1...3M

´

∆Fpobsq
m pσq

¯

´ min
m“1...3M

´

∆Fpobsq
m pσq

¯ . (4.6)

In this study, ∆FpAq profiles are calculated by the first approximation of the analytic

forward procedure described in Section 2.4.1, whereas ∆Fpobsq profiles are either simulated

numerically or measured.

Next, NL successive optimizations are performed using DE, i.e., one separate optimiza-

tion for each metal sheet. The conductivity distributions σ obtained after finishing the

NL optimizations are binarized distributions, as calculated in the last selection step of the

corresponding optimization. The unknown defect depth d is assigned to the depth of the

layer for which the minimum goal function value fminpσq is found.

Figure 4.2 shows that the binarized reconstructed conductivity distributions are not

likely to comprise only one connected region of voxels that represent the defect, but instead

isolated voxels with σ “σ0 may be spread throughout the source space. In most cases,

the isolated voxels can be treated as artifacts, i.e., non-physical solutions. In order to

reduce these artifacts in the DE solution, the area opening approach is applied. This filter

operation is derived from image processing, where it is applied to remove connected pixel

concentrations from binary images with areas smaller than a predefined parameter [24].

Similar to the binarization of continuous-valued individuals, artifacts removal improves the

convergence speed of the DE solution.

Finally, the location of the defect center is estimated as the mean of the x- and y-

coordinates of the centers of gravity of the remaining voxels, i.e., the voxels that remain after

removing the artifacts. The location error is calculated as the Euclidean distance between

the estimated and the real position of the defect center. The size of the reconstructed defect

is set to the total area of the top walls of the voxels representing the defect.
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4.2.3 Investigated Data Sets

The proposed inverse calculation scheme is assessed based on two sets of numerically simu-

lated data for an LFE problem setup and one data set of measured force signals. Simulated

data are obtained using a finite element model (FEM) of the laminated specimen moving

under the permanent magnet. The conductor comprised 50 aluminum sheets and the elec-

trical conductivity of the specimen is assumed to be anisotropic, i.e., σzz “0. In the first

and second simulated data sets, a cylindrically shaped defect is positioned at the second

and third aluminum sheet, respectively. A spherical permanent magnet is applied. The

detailed parameter values for the conductor, defect, and permanent magnet are given in

Table 4.1.

Table 4.1: Parameters of the LFE setup for simulated and measured force signals.

Simulated Data
(LFE benchmark problem)

Measured Data (Alucobond
composite)

Conductor

Dimension L ˆ W ˆ H in
mm ˆ mm ˆ mm

400 ˆ 400 ˆ 100 250 ˆ 50 ˆ 4

Thickness of metal sheets
in mm

2 0.5

Conductivity of metal
sheets σ0 in MS{m

30.61 30.1

Velocity v in m{s2 0.01 0.5

Defect

Shape Cylinder Cylinder

Radius Rd in mm 2.5 2.5

Height Hd in mm 2 0.5

Depth d in mm t2, 4u 3.5

Permanent Magnet

Shape Sphere Cylinder

Radius Rp in mm 7.5 7.5

Height Hp in mm - 25

Remanence in T 1.17 1.17

Liftoff δz in mm 1 1

The simulated force signal profiles are computed along x´scan lines at discrete points

of density 1 mm in the range of ´lx ďxď lx with lx “25 mm. These scanning lines are

uniformly distributed in the y-direction between ´ly ďy ď ly with ly “15 mm. The scanning

lines have a distance of 1 mm. The area in which the measurement points are distributed

is called the source space.

The measured Lorentz force profiles are obtained using a three-layered composite called

Alucobond. The Alucobond specimen shown in Figure 4.3 comprised two cover sheets made
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4 Lorentz Force Evaluation using Differential Evolution

of aluminum alloy with a thickness of 0.5 mm. The interface layer with a thickness of 3 mm

is made of an electrically isolating polyethylene (σ “0). The bottom cover sheet contains

Aluminum alloy

Polyethylen

Aluminum alloy

y

x

250 mm
5
0

m
m

3 mm

0.5 mm

0.5 mm

5 mm

Figure 4.3: Three-layered Alucobond composite specimen used in the experimental setup:
bottom view (top), side view (left), and view of the artificial defect in the lower cover
sheet (right).

an artificial cylindrical hole at the center of the specimen. As in the experimental setup

described by [9], the test specimen moves under the fixed cylindrical permanent magnet.

The detailed parameter values for the experimental setup are summarized in Table 4.1.

The force signal profiles are recorded with 25 repetitions for 21 uniformly distributed

y´positions of the permanent magnet (´10 mmďy ď10 mm) along the x´scan lines in the

range of ´30 mmďxď30 mm, where x is relative to the center of the defect. The sampling

frequency of the force signals is equal to fs “10 kHz.

The recorded force data are preprocessed by averaging ensembles of 25 repetitions for

each x´scan line. Then, the preprocessing procedure shown in Figure 4.4 is applied. First,

a Butterworth low-pass filter with a cut-off frequency of less than 100 Hz is applied to

suppress the eigenfrequencies of the force sensor and high-frequency noise. The exact value

depends on the frequency of the defect perturbations, i.e., the used permanent magnet and

specimen containing a defect in the measurement setup. To determine the cutoff frequency,

it is ascertain, based on spectral estimates of data obtained from numerical simulations,

that the frequency of the defect perturbations is lower. Second, the DRS is calculated by

subtracting the average force measured at points in the region that was not affected by the

defect perturbations. This values represents the force coming from a defect-free specimen.

Then, linear drifts are eliminated by subtracting a best fit line calculated from the same

points outside the defect region. In order to reduce the complexity the data is downsampled

to fs “500 Hz.

Low-pass filter
in  -direction

Elimination of
linear drift

Calculation of
defect response

signal

Figure 4.4: Preprocessing procedure for measured Lorentz force signals.
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4.2 Material and Methods

Figure 4.5 shows the defect response profiles ∆F “r∆Fx, ∆Fy, ∆FzsT caused by the

defect in the vicinity of x“0. Residual disturbances resulting from parameter deviations

and inaccuracies that occurred during measurements can be seen outside the defect region.

Figure 4.5: Profiles of the DRSs ∆F“r∆Fx, ∆Fy, ∆FzsT (top to bottom) obtained from
preprocessed measured data for the Alucobond composite with a defect at the bottom
cover sheet.
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4 Lorentz Force Evaluation using Differential Evolution

4.2.4 Evaluation Setup

In the first step of the evaluation, parameter studies are performed to determine the optimal

values for the intrinsic DE control parameters, i.e., Np, F , and Cr, for the threshold ϑ, as

well as for the voxel extensions ∆x“∆y. The choice of the intrinsic control parameters is

especially important because they significantly affect the search for a global optimum and

the speed of convergence [18]. The first set of simulated data is used and it is assumed that

the defect depth is determined correctly as d“2 mm. In all of these studies, the source space

is quadratic and has the parameters ls “15 mm, d“2 mm, ∆x“∆y “1 mm, and ∆z “2 mm

is applied. The spherical permanent magnet is represented with one equivalent magnetic

dipole positioned at the center of gravity of the permanent magnet, i.e., at z “8.5 mm. The

reconstruction scheme is applied to all combinations of Np “t20, 40, 60u, F “t0, 0.1, . . . , 1u,

Cr “t0, 0.1, . . . , 1u, ϑ“t0.1, 0.2, . . . , 0.9u, and ∆x“∆y “t0.25, 0.5, . . . , 2u mm.

In the next step, defects are reconstructed for both the simulated and measured data

using DE with the determined optimal parameter settings. For the simulated data, five

source spaces positioned at depths of d“t0, 2, 4, 6, 8u mm are used. For the measured data,

two source spaces at the depths of d“t0, 3.5u mm with lx “ ly “10 mm are applied. The

other parameters for the source spaces are set as described previously. Furthermore, the

cylindrical permanent magnet is modeled with one magnetic dipole. The x- and y-position

of the magnetic dipole correspond to the center of gravity of the permanent magnet. The

local z-position is set to zα “αHp. The parameter α is determined using the optimization

procedure, which has been introduced for the magnetic dipoles model (MDM) in Section

3.2.3. The optimized α equals 0.36. The MDM with more than one magnetic dipole is not

applied, because it does not allows to formulate the inverse problem into a linear system of

equation as in (4.5). This would result into a significant increase in the computing time.

In all of the reconstructions, the area opening procedure is applied to the binary conduc-

tivity distribution after convergence. A 4-connected neighborhood is used and voxel con-

centrations that comprise less than 4 connected voxels are removed. Due to the stochastic

nature of the DE, the optimization process is repeated 50 times. Since the Kolmogorov-

Smirnov test [29] cannot reject the hypothesis, that the results are normally distributed,

the mean value and the standard deviation are calculated for the 50 defect reconstructions.

4.3 Results

4.3.1 Parameter Studies

The average results obtained in the studies of variations in the parameters F and Cr using

ϑ“0.5 and ∆x“∆y “1 mm are shown in Figures 4.6, 4.7, and 4.8 for Np “20, Np “40,

and Np “60, respectively. In the Figures 4.6(a), 4.7(a), 4.8(a) it can be observed that for

any Cr a corresponding F with minimum NRMSE of approximately 2.5 % exist. If Np “40,

all minima lie at F “0.5. In addition, for each Cr, the location error has a minimum

with an intermediate F around 0.5. The maximum surface area can be observed for a
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Figure 4.6: Results of parameter studies for combinations of F and Cr with Np “20,
ϑ“0.5, and ∆x“∆y “1 mm. (a) NRMSE after termination of the DE, (b) location
error, (c) estimated defect surface area. For visualization purposes Cr is restricted to
t0.1, 0.2, . . . , 0.7u. Other values did not yield better results. The results were averaged
over 50 optimization runs. The bold horizontal dashed line in (c) indicates the correct
surface area of the defect pSD “πR2

d “19.635 mm2q. Parameter combinations without
values were outside the selected y-axis range.

minimum location error. For a constant F , the reconstruction results are approximately

improved by decreasing Cr. Overall, Cr should be small and F should have intermediate

values. Some of the best combinations of tCr, F u are t0.1, 0.5u and t0.2, 0.5u. For any NP

the first parameter combination has a smaller error for the location but a higher one for

the surface area, and vice versa. A comparison across the Np shows that with increasing
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Figure 4.7: Results of parameter studies for combinations of F and Cr with Np “40, ϑ“0.5,
and ∆x“∆y “1 mm. (a) NRMSE after termination of the DE, (b) location error,
(c) estimated defect surface area. The bold vertical dashed lines indicate the optimal
F “0.5. The optimal Cr “0.1 is shown by the solid black curves. Further information
concerning the visualized values are given in the caption of Figure 4.6.

Np the NRMSE curves flatten. However, deviations in the results for optimal parameter

combinations are negligible. If Np “40 and Np “60 results are more stable across varying

parameters than for Np “20.

The threshold variation results are shown in Figure 4.9. The intrinsic control parameters

are set to Np “40, F “0.5, and Cr “0.1, as well as ∆x“∆y “1 mm. The NRMSE obtained
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Figure 4.8: Results of parameter studies for combinations of F and Cr with Np “60, ϑ“0.5,
and ∆x“∆y “1 mm. (a) NRMSE after termination of the DE, (b) location error, (c)
estimated defect surface area. Further information concerning the visualized values are
given in the caption of Figure 4.6.

at termination of the DE increases slightly as the threshold increases (Figure 4.9(a)). How-

ever, this behavior is not observed for the location error and surface area (Figures 4.9(b)

and 4.9(c)). The mean values fluctuate around 0.25 mm and 20 mm2, respectively. It should

be noted that the location errors are marginal compared with the defect size. Moreover,

the standard deviations are in the range of 0.1 mm to 0.2 mm and 1 mm to 2 mm for the

location error and estimated surface area, respectively. Thus, they are similar for all of

the evaluated values of ϑ. Without showing detailed results, similar relations are obtained
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4 Lorentz Force Evaluation using Differential Evolution

for the other parameter combinations. Thus, the DE appears to be sufficiently versatile

to adapt to any threshold and no explicit recommendations can be made for setting the

threshold.
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Figure 4.9: Results of the threshold variation studies: (a) NRMSE, (b) location error, (c)
estimated defect surface area. The parameters are set to Np “40, F “0.5, Cr “0.1, and
∆x“∆y “1 mm. Black crosses and gray error bars represent the mean and standard
deviation over 50 optimization runs, respectively. The dashed line in (c) indicates the
correct surface area of the defect.

Figure 4.10 shows the results for variation of the voxel size. Results are shown for

Np “40, F “0.5, Cr “0.1, and ϑ“0.5. The results for ∆x“∆y “0.25 mm are not shown,

because the NRMSE exceeds 15 %. A minimum NRMSE of 2.17 % can be observed at

∆x“∆y “1 mm. The corresponding errors in the location and surface area equal 0.24 mm

and 0.55 mm2, respectively. These values provide a better defect estimation than the values

obtained for ∆x“∆y Pt0.75, 1.25u mm.
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Figure 4.10: Results of the voxel size variation study: (a) NRMSE, (b) location error, (c)
estimated defect surface area. The DE parameters were set to Np “40, F “0.5, Cr “0.1,
and ϑ“0.5. The dashed line in (c) marks the correct surface area.

In summary, the DE parameters are set to Np “40, F “0.5, Cr “0.1, and ϑ“0.5 for

further inverse calculations. Np “40 is preferred to Np “60, because the less populations

members are considered the less computational cost the algorithm requires. The voxel

extensions are selected as ∆x“∆y “1 mm. For these settings, the average number of

generations required to converge is approximately 3000 and the averaged standard deviation
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4.3 Results

is 700. Figure 4.11 shows an example of the convergence graph obtained using a double-

logarithmic scale for a single DE optimization, which indicates that the goal function value

decreases monotonically. This is a property of the DE [88]. Furthermore, the CPU time

required for a single DE optimization using the optimized control parameters was in the

range of 15 s to 25 s (Dual CPU Intel® Xeon® E5-2687Wv3, 3.1 GHz, 128 GB RAM, 64-bit

Gentoo Linux, MATLAB® R2015a).
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Figure 4.11: Convergence graph for one DE optimization using the optimal parameter set-
tings: tNp, F, Cr, ϑu“t40, 0.5, 0.1, 0.5u.

4.3.2 Inverse Solutions

Simulated Data Using the optimization parameters determined in Section 4.3.1, the

depth of the defect is localized correctly for both data sets (Figure 4.12). The minimum

NRMSE for d“2 mm is obtained with a value of 2.17 %, which is smaller than that for

d“4 mm (2.51 %).
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Figure 4.12: NRMSE for source spaces with different defect depths. The DE parameters are
set to Np “40, F “0.5, Cr “0.1, and ϑ“0.5. Ensemble averages over 50 optimization
runs are depicted. The horizontal lines indicate the minimum NRMSEs for the evaluated
depths.
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4 Lorentz Force Evaluation using Differential Evolution

Table 4.2 shows the location error and reconstructed defect surface area for both data

sets. The position errors are marginal compared with the defect size. The surface area is

reconstructed with errors of 2 % and 4 % compared with the correct value. It can be observed

that the inverse calculations are more accurate for the defect located in the second metal

layer compared with that in the third layer.

Table 4.2: Reconstructed defect geometry parameters for the simulated data sets. The
values are averaged over 50 optimization runs.

Data set index
(Defect depth in mm)

1(2) 2(4)

Location error in mm 0.25 0.33

Defect area in mm2 20.025 18.878

Figure 4.13 shows an example of a reconstructed conductivity distribution. The few

artifacts visible in (a) and (b) are removed using the area opening procedure (c).
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Figure 4.13: Reconstructed conductivity distribution: (a) continuous DE solution, (b)
thresholded binary distribution, and (c) solution after applying the area opening proce-
dure. The circle in (c) indicates the real defect. Black denotes σ “σ0 and white denotes
σ “0.

Measured Data The results obtained for the measured data are summarized in Table 4.3.

The NRMSE is smaller for the bottom cover plate, which corresponds to the correct depth.

However, the differences in the NRMSE are small between the top and bottom cover plate.

To confirm the depth estimation, the inverse solutions prior to the area opening are also

compared (fourth row of Table 4.3). A connected area that could be interpreted as a defect

is observed only for the bottom cover plate, but not the top cover plate. The similar

NRMSE for the top cover plate is due to the ill-posed nature of the problem.

For the bottom cover plate, the location error is much smaller than the defect radius.

Moreover, the estimated defect surface area equals 19.93 mm2, i.e. it has an error of 1.6 %

relative to the real value. The mean number of generations until termination is approxi-

mately 2000 and the averaged CPU time required is 15 s.
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Table 4.3: Reconstruction results for the measured data. The values are averaged over 50
optimization runs. The real defect is located at d“3.5 mm and it has a surface area of
πR2

d “19.635 mm2. Examples of the conductivity distributions before applying the area
opening procedure are shown.

Depth of source space
in mm

0 (top cover plate) 3.5 (bottom cover plate)

NRMSE in % 8.96 8.85

Location error in mm - 0.33

Defect area in mm2 - 19.93

Thresholded
inverse solution
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4.4 Discussion

In this chapter, an inverse calculation strategy based on a stochastic optimization algorithm

called DE was proposed. The findings show that the reconstruction scheme yielded correct

depth estimates. The geometry estimates had errors less than 4 % relative to the size of the

defect. Other reconstruction approaches for LFE have obtained comparable errors [81].

In the inverse strategy, the binarization of continuous-valued population members and

area opening to obtain the DE solution is employed. These processing steps accelerate

the convergence of the DE. Without these steps, it is likely that the DE would be able

to converge to a similar final solution if the termination criterion is changed, i.e., more

function evaluations would be required without changing the overall best solution.

Differential mutation and one-to-one selection are reported to be the strengths of the

DE compared with other evolutionary strategies [18]. Differential mutation ensures a high

population diversity and improves the convergence. Individuals adapt to the search space

because the scaled difference vectors gradually conform to the space. It is not necessary to

use a predefined probability density function to define the step size, which is also the case

for other stochastic optimization algorithms. One-to-one selection ensures that the overall

best solution is retained. These aspects have contributed to selecting the DE algorithm.

Furthermore, the continuous-valued DE individuals allow us to drop the assumption

that the defect has zero conductivity in future studies. By omitting the binarization for

selection operation, other defects can be analyzed in addition to metal fractures, such as

corrosion. This extension would be more difficult to achieve with a binary-valued algorithm,
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4 Lorentz Force Evaluation using Differential Evolution

e.g., a genetic algorithm.

Based on parameter studies, the intrinsic control parameters of the DE were determined.

The control parameters have been varied in discrete steps. This was preferred to an auto-

matic determination of the parameters by, e.g., self-adapting techniques [18]. The approach

allows to visualize and evaluate the performance over a wide range of parameter combina-

tions. Further, it can be assessed how not only the final goal function value but also the

location error and surface area of the defect depend on the control parameters. Such a

distinct analysis is challenging with an automatic procedure, because the goal function has

to be a function of all three parameters.

The results of the parameter studies show that the optimal DE control parameters for

LFE are Np “40, F “0.5, and Cr “0.1. Similar values were recommended in previous

studies based on problems with only a few optimization variables [18, 35, 88, 107]. It has

been reported that Np should lie between 5NS and 10NS , where NS is the dimensionality

of the problem. However, Np should not exceed 40. Furthermore, if Cr is small, the

number of exchanged elements is small and each direction of the search space is explored

more or less independently. This is effective if the goal function is separable, as found in

LFE, i.e., fpσq“
řNS

k“1 fkpσkq (equations (2.9) and (4.6)). Moreover, it has been proposed

that F should be set between 0.4 and 0.9 to ensure that the trial and mutant vectors are

significantly different, while maintaining the high diversity of the population .

The reconstruction results are more accurate when the defect was located closer to the

surface of the conductor (Table 4.2). The reason might be that the influence of the metal

layers between the permanent magnet and the layer containing the defect on the force

signals were not considered in the approximate forward solution. Further, Figure 4.13 and

Table 4.3 show that the reconstructed defect has a slightly smaller x-extension but slightly

larger y-extension than the real defect. This phenomenon is likely to be explained by two

aspects. First, the resolution of Lorentz force eddy current testing (LET), is poorer in the

y- than in the x-direction. Because the eddy currents below the permanent magnet flow in

the y-direction, the magnitude decay is slower in the y- than in the x-direction (Figure 2.5).

Second, the y-extension of the sensor space is too small to provide sufficient information

about the y-extension of the defect. However, the current experimental setup does not

allow to increase the y-extension of the sensor space. A possible solution to overcome

this drawback is to measure the specimen twice, whereas in the second measurement the

specimen in rotated by 90 degress in the xy-plane.

In this study, the permanent magnet was modeled with one magnetic dipole having an

optimized position, although an MDM with more than one magnetic dipole would provide

a more accurate solution of the magnetic field. The reason was that the use of the MDM

does not allow to formulate the inverse problem into a linear system of equations. This

would yield a significantly increased computing time.

Furthermore, the optimization problem considered in this study has 900 unknowns
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(voxels in the source space) if ∆x“∆y “1 mm. Therefore, it can be treated as a high-

dimensional nonlinear problem. The complexity increases with the dimension of the prob-

lem, so the performance of the DE is often expected to be degraded for problems with a

large number of optimization variables [18]. This explains the less accurate results if the

voxel size is below 1 mm (Figure 4.10). In the present study, it was showed that the basic

DE provides robust and satisfying inverse solutions within a reasonable computational time

when applied to the LFE problem with appropriate voxel size.

Two aspects can be addressed as limitations of the proposed method. These are on the

one hand the errors in the approximate forward solution. Only the first approximation of

forward calculated signals was considered, because the determination of the eddy currents

for multiple defect regions with arbitrary shape, that are likely to occur during the opti-

mization, is challenging (Section 2.4.1). For simulation data these errors are in the range of

a few percent (Section 2.4.1). However, a comparison between the measured and forward

calculated DRSs in Figure 4.14 shows that the presence of interfering signals yield signifi-

cantly larger deviations for the measured Lorentz forces. This explains the larger NRMSEs

obtained after DE convergence and impedes the depth reconstruction. On the other hand

the resolution of the system might be not good enough to obtain more accurate depth

reconstruction for measured data. The resolution can be improved by applying complex

magnet systems.
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Figure 4.14: Comparison of measured (superscript "M") and forward calculated (superscript
"F") DRS components ∆Fx and ∆Fz. The data is shown in the symmetry line of the
LET setup. Please note that the ∆Fy-component is not shown, because it vanishes
theoretically at the symmetry line.
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5 Current Density Reconstructions for Lorentz

Force Evaluation

5.1 Introduction

In this chapter, current density reconstructions (CDR) are performed for inverse calcula-

tions of defects in Lorentz force evaluation (LFE). It is proposed to estimate the defect

geometry based on a reconstructed mean eddy current distribution. This approach is mo-

tivated by the interpretation of the defect response eddy current distribution (DRCD) in

the defect region as an extended current source.

As outlined in Section 2.5.2 minimum norm estimates (MNE) are applied to calculate

the solutions. In this context, the question arises which norm is most suitable for LFE,

because the applied norm has significant influence on the solution. The L2-norm tends

to yield smeared solutions [31]. Contrary, the L1-norm promotes both focused and sparse

solutions [118]. In order to balance these constraints, the general Lp norm with 1ďpď2 is

used and the inverse solutions are compared.

For comparison purposes, the inverse solutions for different norms are analyzed statisti-

cally. An equivalent ellipsoid approach is used, which has been introduced for postprocessing

of distributed current sources in biomagnetic inverse problems. This approach enables a

parametrization and easy visualization of the dominant components of the reconstructed

current density distributions [106,130].

In general, the MNE approach results in an ill-posed inverse problem. Since the condition

of the inverse problem depends on the used sensor and source spaces [27], the condition

number of the gain matrix is calculated for different setups prior to inverse calculations.

Based on the results, appropriate sensor and source spaces are selected.

The CDR are applied to the measured Lorentz force data obtained from the Alucobond

composite described in Section 4.2.3. The data preprocessing is the same as outlined in

Section 4.2.3.

The remainder of this chapter is structured as follows. In Section 5.2 the methods used

are outlined. The interpretation of the defect as an extended current source is justified

and inverse solutions for the CDR are described. The applied matrix condition measure

is explained, followed by the postprocessing operations. In Section 5.3 the results are

presented, i.e., the evaluation of the gain matrices and the statistical comparison of the

CDR. Finally, the results are discussed in Section 5.4. The main methods and results of

this study are published in [68,70].
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Figure 5.1: Two-dimensional eddy current distributions (ECDs) j0, j, and ∆j shown for two
measurement points with a time difference of 0.4 s. They are calculated using methods
and parameters given in Section 2.4.1. The circle indicates the defect. The magnetic
field is directed out of the page. The position of the magnetic dipole is marked with d.

5.2 Methodology

5.2.1 Current Density Reconstruction Methods

Basic Concepts Figure 5.1 shows the eddy current distribution without a defect j0, with

a defect j, and the DRCD ∆j for a laminated specimen in the mid-plane of the defect, i.e.,

the xy-plane. Eddy current distributions are calculated for the Lorentz force eddy current

testing (LET) benchmark problem outlined in Section 2.4.1 using the forward solution with

the extended area approach (EAA). Note that j is calculated as ∆j ` j0. Eddy current

distributions are depicted for two measurement points with a time difference of 0.4 s. For

the upper and lower rows, the magnetic dipoles are positioned at the points r0 “r0, 0, 8.5sT

and r0 “r´4, 0, 8.5sT mm above the conducting plate respectively.

Due to the relative movement and the inhomogeneous magnetic field, the eddy current

distribution varies during measurements. The eddy currents j0 are strongest below the

location of the magnetic dipole and form two counterrotating eddies [86,117]. In the defect

region the DRCD ∆j must counterbalance j0, so that ∆j“´j0. Since the current dipoles

in the defect region serve as eddy current sources, the DRCDs are characterized by large

magnitudes concentrated in the defect region. Outside the defect region, the magnitudes of
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the eddy currents decay. Therefore, the defect can be interpreted as a distributed current

source. It is the most dominant region in the DRCD. Despite the time-varying nature of

the system, this holds for all measurement points.

Because of ∇ ¨ j“0, averaging the current density in the source space over all force

measurement points would yield a vanishing eddy current distribution if the sensor and

source spaces had the same xy-dimensions as the conductor. However, in LFE, the sensor

and source spaces have significantly smaller extents than the test specimen. They are

constrained to the vicinity of the defect because only the perturbations in the force signals

are of interest (Figure 5.2). Note that due to the influence of the dimensional differences,

the boundary conditions at the edges of the source space can be neglected.

Conductor

Source space

Sensor
space

2lx

2ls

2ls
2ly vx

Figure 5.2: Schematic setup of the the dimensional differences between the conductor, the
sensor space, and the source space. The streamlines indicate the DRCD calculated for
the benchmark problem and the forward solution in Section 2.4.1. The magnetic dipole
is positioned above the center of the source and sensor spaces (d). The edges of the
conductor are not shown. The extents of the sensor space in the x- and y-direction are
denoted by lx and ly respectively. The size of the quadratic source space is denoted
by ls.

If the eddy current density is averaged using the constraint source and sensor spaces, it

does not vanish. Figure 5.3 shows j0, j and ∆j from Figure 5.1 averaged over 357 measured

points uniformly distributed in the region ´25 mmďxď25 mm, ´6 mmďy ď6 mm, z0 “

8.5 mm. The corresponding LFE parameters are given in Section 2.4.1. Compared to the

eddy current distributions for one measured point (Figure 5.1), differences in j0 and j are

visible. The decrease in the magnitude of the eddy currents j0 and j in the negative and

positive x-directions is reduced. However, a dominant region with highest magnitudes in

the defect region is visible. Therefore, the interpretation of the defect as an extended

current source also holds for the average DRCD. Note that the magnitude of the DRCD

in Figure 5.3 is smaller than in Figure 5.1. This line of argument justifies to reconstruct a

mean current density distribution, which provides a sufficient representation of the correct

DRCD.
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Figure 5.3: Eddy current distributions (ECDs) j0, j, and ∆j averaged over 357 measured
points, which are uniformly distributed in the region ´25 mmďxď25 mm, ´6 mmď
y ď6 mm, z0 “8.5 mm.

Inverse Solution Based on the preceding analysis the linear inverse problem for the

CDR is formulated as

∆F“K ¨ p ` e. (5.1)

The vector pPR2NSˆ1 contains the moments of the NS two-dimensional dipoles representing

the average DRCD. The matrix K PR3Mˆ2NS is the gain matrix between the NS unknown

conductivities of voxels from the source space and the defect response signal (DRS) at M

measurement points. The gain matrix comprises information about the relation between

sensor and source space. The inverse problem is formulated using one magnetic dipole as

the magnetic field source. If more than one magnetic dipoles are used, the formulation of

the inverse problem into a linear system of equations would not be possible.

The dipoles have two dimensions (px and py), because the thickness of the cover plates

of the composite are much smaller than its extent. Thus, the z-component of the eddy

currents is set to zero (Section 2.4.1). The vector e compensates for the error resulting

from averaging the DRCDs over all measured points. Furthermore, e contains additional

information about noise and disturbances in the data.

For reconstruction the Lp-norm approach is used. The squared deviation ∆2 between the

forward calculated Lorentz forces ∆F in equation (5.1) and the DRS [31,119] is minimized

arg min
pPR2NS ˆ1

∆2ppq“‖Kp ´ ∆F‖2. (5.2)

Introducing a regularization term in equation (5.2) yields

arg min
pPR2NS ˆ1

∆2ppq“‖Kp ´ ∆F‖2 ` λ‖Wp‖2 “Dppq ` λMppq, (5.3)

where λ denotes the regularization parameter and W PR3Mˆ2NS the weighting matrix. The
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5.2 Methodology

data and the model term are defined as

Dppq“‖Kp ´ ∆F‖pd
and Mppq“‖W p‖pm , (5.4)

respectively. The applied norm is denoted by 1ďpd, pm ď2. Regularization is of special

interest in CDR for LFE because an optimal inverse solution reflects an average best fit for

all measured points. Therefore, the inverse solution can have a residual error even if the

problem is well-posed.

To address the issue of a suitable norm, the applied norm p“pd “pm “

t1, 1.25, 1.5, 1.75, 2u was varied. A component-wise depth weighting of the current com-

ponents compensates for the bias towards superficial and nearby sources. The diagonal

elements of the weighting matrix W i,i are calculated from the columns ki of the gain

matrix K with i“1 . . . 2NS as

W i,i “
1

a

‖ki‖2

. (5.5)

Furthermore, the regularization parameter was varied according to a logarithmic scheme λ“

t0.1, 0.316, 1, 3.16, 10, 31.6, 100, 316, 103 , 3.16 ¨ 103, 104u. This approach was chosen because

well-known methods to determine λ, e.g., L-curve [42] or generalized cross-validation [37],

did not yield satisfactory results. To minimize equation (5.3), an iteratively reweighted

least-squares optimization algorithm [79] incorporated in the CURRY Neuroimaging Suite

(Version 7.0, Compumedics Neuroscan Inc., Charlotte, USA) software was used.

The CDR are applied to the measured data obtained from the Alucobond composite

(Section 4.2.3). The cylindrical permanent magnet used in the experimental setup is mod-

eled with one magnetic dipole positioned at P0 ` zαez “P0 ` αHpez, where P0 “r0, 0, δzs

denotes the position of the permanent magnet and zα the local position of the magnetic

dipole in the permanent magnet. The local position depends on the parameter α“0.36 that

is determined using the optimization procedure for the magnetic dipoles model described

in Section 3.2.3.

5.2.2 Condition of the Gain Matrices

To determine the degree of ill-conditioning of the gain matrix K the measure of condition

ρ is calculated [27]

ρpKq“
σ1pKq

1
N

N
ř

i“1

σipKq

. (5.6)

Thus, ρ represents the ratio between the largest and the mean singular value of K . Unlike

the well-known condition number with respect to the L2-norm κ [98], ρ is more robust to

compute and does not depend heavily on the smallest singular value. Numerical errors

are less likely to occur during computation. A larger value of ρ indicates a more ill-posed

problem.

Sixteen sensor space setups are investigated. They differ in four parameters: the extent
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in x-direction lx with ´lx ďxď lx, the extent in y-direction ly with ´ly ďy ď ly, the distance

between observation points in the x-direction dx, and the distance between the scanning

lines dy (Figure 5.2). All combinations of lx “t25, 35u mm, ly “t6, 10u mm, dx “t1, 2u mm,

and dy “t1, 2u mm are assessed. For the measured data, the dx values correspond to a

downsampling of the data to fs,x “t250, 500u sps. The sensor spaces are positioned at the

z-positions of the magnetic dipoles representing the corresponding cylindrical magnet, i.e.,

at z “δz ` HP{2“1 mm ` 12.5 mm“13.5 mm.

The number of assessed source spaces equals 35. The source spaces consist of a

two-dimensional quadratic plane located in the middle of the bottom cover plane at

z “´3.75 mm. The dipoles are regularly distributed in the range of ´ls ďpx, yqď ls. The

distance between adjacent dipoles is equal in the x- and y-directions and denoted by ds. All

combinations are considered of ls “t10, 12.5, 15, 17.5, 20u mm and ds “t0.5, . . . , 2u mm with

∆ds “0.25 mm. This yields dipole numbers in the range of 128 pls “10 mm, ds “2 mmq to

12 800 pls “20 mm, ds “0.5 mmq.

5.2.3 Postprocessing of the Estimated Current Densities

First, the edge artifacts, which are likely to occur in the CDR [44], are eliminated. Edge

artifacts are dipoles positioned at the edges of the source space and having a moment which

is twice higher than the mean dipole moment. Secondly, an equivalent ellipsoid is fitted to

that region of the current density distribution in which the magnitude was above a certain

threshold. Applied to CDR for LFE, it enables extraction of the defect region because this

region is defined by the most dominant component of the current distribution (Figure 5.1).

The threshold to extract the most dominant region was defined as

tmpp̄q“1 ´
σp̄

max p̄
. (5.7)

The vector p̄PR2NSˆ1 contains the magnitudes of the dipoles. It holds that p̄n “‖pn‖2 “
b

p2
nx ` p2

ny with n“1 ¨ ¨ ¨ NS . Furthermore, σp̄ denotes the standard deviation of p̄. It

was possible that more than one connected region would remain after thresholding. In this

case, the artifact was eliminated by clustering. The most dominant region is the connected

region which contains the most dipoles, i.e., has the largest volume.

Thereafter, the location of the defect is estimated by the center of gravity of the ellipsoid

rc “rxc, ycsT, which is calculated as the mean position of the dipoles in the dominant region.

The direction and lengths (ex, ey) of the semi-axis give an estimate of the defect extent and

are determined using the weighted dipole distances. The weighting parameters are the

respective dipole moments [130].

Then, the root mean square error for location RMSEc and extent RMSEsa is calculated

by comparing the estimated values with the real center of gravity and real radius of the

defect. Finally, the reconstruction error is calculated as

eR “

d

RMSE2
c ` RMSE2

sa

2
. (5.8)
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5.3 Results

5.3.1 Condition Number ρ of the Gain Matrices

Figure 5.4 shows the condition number ρ of the gain matrix for four sensor spaces. These

are called A1, A2, B1, and B2 and have 175, 275, 343, and 539 measured points, respectively.

All four sensor spaces have the parameters lx “25 mm and ∆y “2 mm. The letters "A" and

"B" represent fs,x “250 sps and fs,x “500 sps respectively. Furthermore, the sensor spaces

indexed by "1" and "2" are specified by ly “6 mm and ly “10 mm respectively. The results

are shown in groups with ls being the group parameter. In the double-logarithmic scaled

figure, the abscissa represents the number of dipoles in the source space K. Therefore,

within each group, the distance between adjacent dipoles ds decreases with increasing K.

The vertical dashed lines indicate that value of NS above which the inverse problem is

underdetermined. At this point, it holds 2NS “3M with respect to the two-component

current dipoles and the three-component force signals.
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Figure 5.4: Condition number ρ of the gain matrix for the two-dimensional inverse calcu-
lations. The subplots depict ρ for four different sensor spaces. The dotted lines in the
lower left subplot indicate a comparison among different ls. The dashed line indicates
2NS “3M .

For an overdetermined inverse problem, ρ increases with increasing K, i.e., with decreas-

ing ds. If the inverse problem is underdetermined, ρ is approximately constant. If source

space B1 is used and the sensor space is defined by ls “15 mm and ds “1 mm, i.e., NS “900,

ρ is equal to 159.

Moreover, the condition numbers are compared for a fixed sensor space and fixed ds, but
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varying ls, which determines the number of sources. This evaluation is performed across the

groups, as indicated by the dotted lines in the lower left subplot. To evaluate the relationship

between ρ and ls, nth-degree polynomials with n“t1, 2, 3u are fitted separately to the data

for over- and underdetermined problems, and evaluate the residual fitting errors. It is

observed that for an overdetermined problem, ρ increases exponentially with increasing ls.

However, the results show an exponential decrease if the inverse problem is underdetermined.

For ls “t10, 15, 20u and ds “0.75 mm (dashed line), the condition number is equal to ρ“

t223, 158, 125u.

Furthermore, a comparison of the source spaces indexed by "A" and "B" (rows of subplots)

shows that an increase in fs,x has a marginal influence for an overdetermined problem.

However, it results in an increase in ρ if the inverse problem is underdetermined. A doubled

sampling frequency results in an approximately doubled condition number. Additionally,

an increase in the number of y-lines used, i.e., ∆y “1 mm, has an impact similar to an

increase in fs,x.

A comparison between the source spaces indexed by "1" and "2" (columns of subplots)

shows that for an underdetermined problem, a larger y-extent yields an increase in ρ. How-

ever, for an overdetermined problem, an increase in ly leads to a slight decrease in ρ.

Moreover, if is found without showing detailed results that an enlargement of the x-extent

of the source space to lx “35 mm has no significant influence on the condition number.

5.3.2 Inverse Solutions

The sensor and source spaces for inverse calculations are selected based on the results in

Section 5.3.1. A small number of measured points, as in A1, leads to a small condition

number because it introduces a relatively small amount of redundancy in the measurement

values. However, the amount of information covered is smaller than in a larger sensor space,

i.e., B2. With respect to these factors, the sensor spaces A2 and B1 are a good compromise.

Moreover, the LFE resolution is higher in the x-direction than in the y-direction. This

means that a variation of the defect size in the x-direction can be more accurately detected

than a variation in the y-direction [127]. Since sensor space B1 is more in compliance with

this aspect than sensor space A2, B1 is applied.

A small sized source space yields a large ρ, and edge artifacts are likely to occur. On

the other hand, a larger source space has a smaller ρ, but long computing times as long

as ds is constant. If ds is small, the computing time is long. Because of the application-

oriented nature of this work, all inverse calculations should be able to be carried out on a

standard personal computer. Furthermore, the resolution of the source space depends on

the desired resolution of the reconstruction. Based on these aspects, a source space specified

by ls “15 mm, ds “1 mm, and NS “900 two-component dipoles is used. This source space

exceeded the diameter of the defect by six times. This selection is in good agreement with

the recommendations in [11,27].

In a first evaluation, all inverse solutions are assessed based on two criteria. If both

criteria are fulfilled, the inverse solution is rejected.
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First criterion: The reconstruction error eR in equation (5.8) exceeds 5 mm.

Second criterion: A visual inspection of the estimated current density distribution does

not show any dominant region.

The results for the measured data for the composite are shown in Figure 5.5. An eval-

uation of the reconstruction error eR from equation (5.8) for the investigated Lp-norms

and the regularization parameter λ is shown in Figure 5.5(a). The L1-norm is not shown

because all results for this norm met the two rejection criteria. For each Lp-norm with

p“t1.25, 1.5, 1.75, 2u, an optimal λ“
"

103, 3.16, 10, 31.6
(

with corresponding minimum re-

construction errors eR “t0.88, 0.96, 1.1, 1.1u mm can be observed. Therefore, the L1.25 norm

has the smallest error and the L1.5 norm the second smallest error. The L1.5 norm has the
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Figure 5.5: Results of the inverse calculations and the equivalent ellipsoid fitting procedure.
The inverse calculations were performed in a two-dimensional source space.
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lowest optimal λ. The differences between the norms using optimal λ is marginal com-

pared to the deviations for different λ within each norm. If p“t1.5, 1.75, 2u, eR increases

significantly towards the edges of the evaluated interval compared to the optimal values.

However, for p“1.25, deviations in eR between optimal and non-optimal λ are smaller.

Considering the correct position of the defect at xc “yc “0, the location errors of the

inverse solutions (centers of gravity of the equivalent ellipsoids) corresponding to the min-

imum eR for optimal λ have values less than 1.5 mm (Figure 5.5(b)). The differences in

the location errors among the various norms are marginal. For L1.25, the error is equal to

´1.3 mm in the x- and ´0.4 mm in the y-direction. For the L1.5 norm, it is equal to 0 in

the x- and ´1.3 mm in the y-direction.

The reconstructed extents of the defect were estimated using twice the length of the

semi-axes of the equivalent ellipsoids, 2 ¨ ex and 2 ¨ ey (Figure 5.5(c)). For all Lp norms,

the estimated extent is too small in the x-direction, but too large in the y-direction. The

errors for the L1.25 and L1.5 norms were similar and in the range of 1 mm. Considering

the x-extent, they were smaller than for the other two norms. For the L1.5 norm, both

directions had an error of 1 mm.

Figure 5.6 depicts the estimated and postprocessed current density distributions for

p“1.5 and λ“3.16. In the unprocessed current density distribution shown at the left-hand

side of the figure, the dominant region representing the defect is clearly visible. The edge

artifacts have been removed (white spaces). Due to the simplifications in the forward and

inverse calculations (Section 5.2.1), the estimated current density distribution is physically

not exact, i.e., ∇ ¨ j‰0. The right-hand side of the figure shows the equivalent ellipsoid

fitted to the thresholded and clustered region. The small errors in the location and extent

are clearly visible.

Further, the unexplained variance is calculated for all inverse solutions (Figure 5.7). The

unexplained variance is a measure for the goodness of fit of the inverse solutions. The lower

the unexplained variance is, the better the solution explains the measured data. Again,

the results for combinations of p and λ with eR ą5 are not shown. With increasing λ

the unexplained variance increases approximately linear for all Lp norms and a wide range

of the evaluated λ. However, at the lower and upper edges of the investigated interval

the gradient decreases. Moreover, with increasing p the unexplained variance decreases.

The additional squares mark the unexplained variances that correspond to the minimum

reconstruction errors. For p“t1.25, 1.5, 1.75, 2u these values equal t97.3, 56.6, 71.2, 56.4u %.

Thus, the solutions obtained from the L1.5 and L2 norm explain the data more reasonably

than the solutions obtained from the L1.25 and L1.75 norm.

The computations of the CDR using the Lp norm are performed on a desktop computer

that has the following specifications: Quad-Core CPU Intel® CoreTM i7-3770, 3.4 GHz,

16 GB RAM, 64-bit Microsoft Windows 8, Curry 7, MATLAB® R2013a. The CPU time

necessary to perform a single inverse calculation is less than 30 s.
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Figure 5.6: Reconstructed current distribution with p“1.5 and λ“3.16. Due to the sim-
plifications in the forward solution the unprocessed current density distribution shown
at the left hand side is physically not exact, i.e., ∇ ¨ j‰0. Edge artifacts have been
removed (white spaces). The right-hand side shows the equivalent ellipsoid fitted to the
thresholded distribution. Artifacts remaining after thresholding have been removed by
clustering. The circle marks the real defect.
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5.4 Discussion

In this chapter, a novel approach for reconstructing defects based on measured data from

LET was presented. CDR calculated using MNE with varying Lp norm are used. Measured

data obtained from a laminated metal composite, named Alucobond, were investigated. The

results show that the reconstruction quality is best for the L1.5 norm. The estimate of the

lateral position of the defect has an error of 1 mm, i.e., 20 % relative to the defect diameter.

The defect extensions are determined with the same error. However, the error in the total
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defect size, i.e., in the surface area of the equivalent ellipsoid π ¨ex ¨ey, equals 1.04 % relative

to the real surface area. The large extension errors result from the fact that the x-extension

is estimated too small, but the y-extension too large. This has already been observed in

the results of the inverse calculation strategy with the Differential Evolution (Figure 4.13

and Table 4.3).

Figure 5.5(a) shows that the reconstruction errors of the L1.25 and L1.5 norms for the

measured data are the lowest among all norms. The optimal regularization parameter is

smallest for the L1.5 norm. The optimal λ for p“1.25 is comparatively large. Furthermore,

it is approximately constant for λě3.16 ¨ 102. These two observations indicate that the

data term might be underfitted. The inverse solution would show very little adaptation to

the measured data and contain only little information about it. Therefore, the L1.25 norm

seems not to provide an equally good approach to the L1.5 norm.

The study was motivated by the interpretation of the defect as an extended current

source (Figures 5.1 and 5.3). As a simplification a current density distribution averaged

over all measured points was assessed. This modeling approach lacks physical exactness,

i.e., ∇ ¨ j‰0, because the extents of the sensor and source spaces are significantly smaller

than the conductor. The validity of the assumptions is supported by the reconstruction

errors which are in an acceptable range (Figure 5.5).

However, the large unexplained variances in Figure 5.7 show that the inverse solutions

explain less than 50 % of the measured data for any Lp norm. This value is larger compared

to CDR in the fields of biomedical engineering, where the residual variances are usually less

than 30 % [38]. This indicates that CDR are a more promising method for biomedical

engineering than for LFE.

In contrast to MNE solutions in other applications where the regularization parameter

is selected so that no over- or underfitting of the data occurs [31], larger regularization

parameters were used for LFE. One source of error could be the simplified model approach,

i.e., the averaging over the measured points. Another aspect is that the regularization

parameter can be expected to be large if the inverse problem has a large number of obser-

vation points as in LFE [38]. For conductivity reconstructions in LFE regularization was

also high [81].

Further, it was assumed that the depth has been determined correctly beforehand. This

simplification is based on results obtained from previous depth reconstructions with CDR,

which have not been successful. Geometry reconstructions for numerically simulated data

have a similar accuracy than the presented findings for the measured data under the as-

sumption of correct depth estimation (results not shown). In the numerical simulations a

spherical permanent magnet has been applied, which can be accurately represented by one

magnetic dipole. Thus, the reconstruction errors are unlikely to result from the error due

to modeling the cylindrical permanent magnet applied in the experimental setup with one

magnetic dipole.

Inverse calculations using the other source and sensor spaces defined in Section 5.3.1

were performed for further evaluation. Enlargement of the source space in x-direction up

78



5.4 Discussion

to lx “25 mm, enlargement of the sensor space in the x- and y-directions, as well as increased

resolutions did not yield improved results. However, reductions caused impairment of the

inverse solutions. This confirms that appropriate sensor and source spaces were selected.

Their parameters and dimensions are not likely to be a reason for any inaccurate inverse

solution. The results for ρ in Section 5.3.1 are in good agreement with the results of the

condition assessment in [27].

In summary, the reconstruction results indicate that CDR provide a good approximation

of the geometry of material defects in LFE. However, a comparison to the results in Chapter

4 and [81] shows that CDR are not the most appropriate method for LFE.

As an extension of the present model, an eddy current density depending on the relative

position between conductor and the permanent magnet should be considered. Further,

other norms, e.g., the Sobolev norm, can be applied for regularization [1]. Even more, an

elastic net regularization, which is a linear combination of the L1 and L2 norms, can be

employed [132].
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6 LET and LFE of Glass Laminate Aluminum

Reinforced Epoxy (GLARE)

6.1 Introduction

Glass laminate aluminum reinforced epoxy (GLARE) is of rapidly growing interest in

the transport industry, especially in aerospace. This composite has been developed at the

Delft University of Technology starting in the 1980s [116]. It consists of alternating thin

aluminum alloy sheets bonded together with glass-fiber reinforced epoxy resin [124]. This

material, which forms the intermediate layers and is a composite itself, is called prepreg.

The name originates from the pre-impregnated fibers in an epoxy resin matrix. GLARE can

be classified according to the fiber orientation in the prepreg as unidirectional or cross-ply.

In order to manufacture cross-ply prepreg, two or more prepreg sheets with unidirectional

orientated fibers are arranged and bonded twisted towards each other. GLARE components

differ in the lay-up, i.e., in the number of metal and prepreg sheets. Typical are 3/2, 4/3,

and 5/4 lay-ups. Nominal thicknesses for the aluminum alloy and prepregs vary in the

range of 0.2 mm to 0.5 mm. The thicker the material, the higher is its strength.

It is the objective of this chapter to demonstrate the flaw detectability of Lorentz force

eddy current testing (LET) and Lorentz force evaluation (LFE) (LET&LFE) for the alu-

minum alloy layers in the GLARE material. One GLARE test object that contains an

artificial predefined defect is applied for this purpose. The test object is manufactured by

the company Premium Aerotec in Nordenham, Germany, a supplier of the leading aircraft

manufacturer Airbus.

On the basis of experimental LET studies of the GLARE specimens, a further aim is to

evaluate the performance of an advanced permanent magnet system, the cylindrical Halbach

structure [123]. Based on numerical simulations it has been shown that the cylindrical Hal-

bach structure has compared to a cylindrical permanent magnet a superior performance in

detecting small subsurface defects. For assessing the performance of the cylindrical Halbach

structure based on measured data, Lorentz force signals measured with the cylindrical Hal-

bach magnet are compared to Lorentz force signals measured with a cylindrical permanent

magnet.

Moreover, a goal function scan is performed in order to reconstruct the defect. Similar

to the approach in Chapter 4, the goal function value is the normalized root mean square

error (NRMSE) between the forward calculated and measured Lorentz force signals. The

goal function scan is performed for Lorentz force signals measured with the cylindrical

Halbach structure. The forward solution including the extended area approach (EAA)
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6 LET and LFE of Glass Laminate Aluminum Reinforced Epoxy (GLARE)

described in Section 2.4.1 is used for the force calculations. A finite element model (FEM)

is used to calculate the magnetic flux density because of two reasons. First, no analytic

solution exists. Second, the cylindrical Halbach structure contains components with a

nonlinear BpHq curve, that cannot be modeled with the magnetic dipoles model.

For comparison purposes, further nondestructive testing (NDT) of the GLARE test ob-

ject is performed by applying two imaging techniques. These are radiographic and through-

transmission ultrasonic testing.

In the following Section 6.2, the experimental setup for GLARE measurements is out-

lined. Evaluation methods for the measured data are addressed. Also, the forward calcu-

lations including the FEM of the cylindrical Halbach structure are explained. Thereafter,

the setup for the goal function scan is outlined. Moreover, the applied imaging techniques

are explained. Thereafter, the results are outlined in Section 6.3. The Lorentz force data

measured with the cylindrical Halbach structure and the cylindrical permanent magnet are

compared. Further, the results of the goal function scan are evaluated and compared to the

results of the imaging testing techniques. Finally, the findings are discussed in Section 6.4.

6.2 Methodology

6.2.1 Measurements

Figure 6.1 depicts the setup for LET measurements of the GLARE test object. GLARE

with 5/4 lay-up is used, i.e., the composite is composed of five layers of aluminum alloy and

four intermediate layers of prepreg. The thickness of the metal and the prepreg layers equals

∆z “0.4 mm and ∆z “0.25 mm, respectively. The electrical conductivity of the aluminum

alloy 3.1354 used for GLARE equals σ0 “17 MS [74].

The test specimen contains one long defect with the nominal dimensions dx ˆ dy ˆ ∆z “

10 mm ˆ 1 mm ˆ 0.4 mm. The defect is positioned in the second aluminum alloy layer, i.e.,

at the depth d“0.65 mm.

The applied magnet systems are a cylindrical Halbach structure and a cylindrical per-

manent magnet, both positioned at the liftoff distance δz “1 mm. The cylindrical Halbach

structure is composed of 12 outer segments, one inner cylindrical magnet and one cylinder

of iron-cobalt alloy, which is a soft magnetic material with a high saturation magnetiza-

tion. (Figure 6.1(c)). The Halbach structure is characterized by the inner and outer radius,

Rp,i “2.7 mm and Rp,o “12.4 mm, the total height Hp “14.5 mm, as well as the height of

the iron-cobalt alloy cylinder HIC “7.9 mm. The outer segments have a subtendend angle

of 30° and are radially magnetized with a nominal magnetic remanence of Br “1.44 T. The

inner cylindrical magnet, which is axially magnetized with the same nominal remanence,

is situated above the iron-cobalt cylinder. The cylindrical permanent magnet has the pa-

rameters Rp “11.3 mm and Hp “17.6 mm. It is magnetized in z-direction with a nominal

magnetic remanence of Br “1.44 T. The dimensions of both magnet systems are the re-

sult of an optimization procedure performed by the authors in [123]. The objective of this

study was to determine optimal magnet geometries for LET that maximize the absolute
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5 layers aluminum alloy,

4 layers glass-fiber
reinforced epoxy, Defect               in metal layer

Cylindrical
Halbach structure

+

Cylindrical
permanent magnet

(a) Schematic of complete setup

(b) Photo of GLARE specimen positioned
on linear drive

Iron-cobalt
NdFeB

(c) Cross-section (xz-plane) of the cylindri-
cal Halbach structure

Figure 6.1: Experimental setup of LET for the GLARE test specimen. The specimen has
a 5/4 lay-up and contains a single defect with dimensions 10 mm ˆ 1 mm ˆ 0.4 mm po-
sitioned in the second aluminum alloy layer. Two different magnet systems are applied:
a cylindrical Halbach structure (Rp,i “2.7 mm, Rp,o “12.4 mm, Hp “14.5 mm, HIC “
7.9 mm) and a cylindrical permanent magnet (Rp “11.3 mm, Hp “17.6 mm).

amplitude of the defect response signal (DRS).

Figure 6.2 compares the magnetic flux densities of the applied magnet systems using filled

contour plots. The magnetic flux density of the Halbach structure is calculated using FEM,

whereas the analytic current model explained in Section 3.2.2 is applied for the cylindrical

permanent magnet. The flux densities are shown in the xy-plane at z “´0.85 mm. This
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6 LET and LFE of Glass Laminate Aluminum Reinforced Epoxy (GLARE)

corresponds to the mid-plane of the second aluminum alloy sheet of the GLARE specimen, in

which the defect is positioned. The contour lines for the Halbach structure are significantly

denser than for the cylindrical permanent magnet. Thus, the magnetic flux density provided

by the cylindrical Halbach structure is more focused and concentrated compared to those

of the cylindrical permanent magnet. Further, the maximum absolute amplitude is larger,

if the Halbach structure is applied. The values for the Bx-component are approximately

0.5 T and 0.35 T for the Halbach structure and cylindrical permanent magnet, respectively.

For the Bz-component, the values are approximately 1 T and 0.45 T.
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y 
in

 m
m

B
x
 i

n
 T

−20

−10

0

10

20

x in mm

y 
in

 m
m

B
z i

n
 T

−20 −10 0 10 20
−20

−10

0

10

20

Cylindrical permanent magnet

−0.4

−0.2

0

0.2

0.4

x in mm
−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

1

Figure 6.2: Magnetic flux densities produced by the cylindrical Halbach structure (left
column) and the cylindrical permanent magnet (right column). The components of the
magnetic flux density Bx- and Bz are shown in the upper and lower row, respectively.
They are constant along each contour line. The contour lines are drawn at increments
of 0.1 T. The gray shaded circles indicate the dimensions of the magnet system.

Two sets of Lorentz force data are measured. The data range consist of 17 y-lines that

are equidistantly distributed in the region ´8 mmďy ď8 mm and span the range ´30 mmď

xď30 mm. The sampling frequency is set to 500 sps. The procedure explained in Section

4.2.3 is applied for data preprocessing. The cutoff frequency of the low pass filter is set to

100 Hz for all data sets, because defect perturbations resulting from the cylindrical Halbach

system have an increased frequency range than those resulting from the cylindrical magnet.
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The performance of the cylindrical Halbach structure and of the cylindrical permanent

magnet is compared based on two values. In accordance with [123] the first measure is the

percentage increase of the maximum of the absolute ∆Fx-component, max |∆Fx|, for the

Halbach structure compared to the cylindrical magnet.

The signal-plus-noise-and-distortion-to-noise ratio (SINAD) of the measured and prepro-

cessed data is used as the second measure. The SINAD is an extension of the well-known

signal-to-noise ratio (SNR). It is used in practical applications such as LET where the signal

component without noise cannot be measured and the signal is influenced by uncorrelated

noise and deterministic disturbances [97]. The SINAD is defined as

SINAD“10 ¨ log10

Psnd

Pnd
, (6.1)

where Psnd denotes the power of the signal of interest, i.e., the DRS, together with noise

and distortions, and Pnd is the power of the noise and distortions. If Pnd is much smaller

than Psnd, then the SINAD converges to the SNR. In order to determine the range in

which the DRS occurs, the x-coordinates at which the maximum and minimum in the Fz-

component at the symmetry line y “0 are located are calculated. Then, the starting point

of the range containing the DRS is defined by subtracting half of the difference between the

x-coordinates at which the extreme values are located from the x-coordinate assigned with

the maximum value. Similarly, the sum of the x-coordinates assigned with the minimum

and half of the difference range determines the end point.

6.2.2 Forward and Inverse Calculations

In the first part of this section, the forward solution including the FEM for the cylindrical

Halbach structure are explained. Thereafter, the setup of the goal function scanning method

for defect reconstructions is outlined.

The approximate forward solution including the EAA is used for forward calculations,

because the first approximation of the forward solution has a large error for cuboidal shaped

defects as present in the GLARE specimen (Section 2.4.1). In the extended forward solution

the defect response eddy current distribution (DRCD) flowing in the region composed of

the defect region and the region surrounding the defect is represented by a set of regularly

distributed current dipoles, the source space. The moments of the current dipoles in the

defect region are calculated using the first forward approximation, whereas outside the

defect the dipole moments are calculated by using the current dipoles in the defect region

as current sources.

The use of a FEM to calculate the magnetic field implies a numerical calculation of the

electric potential ϕ in the conductor. For this purpose, the definite integral to calculate ϕ

at the position p“rxk, yk, zsT in the source space, with k “1 . . . NS denoting the number

of grid points (current dipoles in the source space), is approximated using the Simpson’s
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rule [101] as

ϕ pxk, yk, zq“

z
ż

´8

Bypxk, yk, zqdz

«v
zN8 ´ z0

6N8

«

Bypxk, yk, z0q ` 2
N8´1
ÿ

n“1

Bypxk, yk, z2nq

`4
N8´1
ÿ

n“0

Bypxk, yk, z2n`1q ` Bypxk, yk, zN8 q

ff

` O
`

∆z4
˘

.

(6.2)

The last term O
`

∆z4
˘

is the truncation error. The scalar N8 is an even number of grid

points in the integration domain Lk “trxk, yk, zns zn “pn ´ 1q∆z, n“0 . . . N8u, with ∆z

denoting the distance between two integration points (Figure 6.3). The values N8 and

∆z should be selected in such a way that their product is large enough to ensure a low

approximation error.

Figure 6.3: Integration domain to calculate the electric potential ϕ in the conductor.

In order to obtain the components of the current dipoles in the DRCD in the source space

(equation (2.3)), the gradient of ϕ is approximated by the difference quotient calculated on

the regular dipole grid. For interior points the central difference quotient is applied, whereas

for edge dipoles the single-sided difference quotient is used.

In this study, the DRCD for both magnet systems is modeled with a regular grid of

NS “6400 current dipoles equidistantly distributed in the range ´10 mmďxď10 mm and

´10 mmďxď10 mm with ∆x“∆y “0.25 mm.

The parameters for the numerical integration are set to N8 “150 and ∆z “0.5 mm.

Lorentz force signals are calculated for a grid of measurement points having the same

86



6.3 Results

positions as the measured Lorentz force signals.

For inverse calculations, the goal function scanning method is applied. In this method,

the landscape of the goal function is investigated for a set of grid points uniformly dis-

tributed in the search space. Similar as in the previous chapters, the goal function is de-

fined as the NRMSE between forward calculated and measured data (equation (4.6)). The

forward procedure described beforehand is applied for forward calculations. Since the goal

function scanning method is limited to one defect, it is evident to use the geometry parame-

ters of the defect as design variables. The location of the defect, i.e., the x- and y-coordinate

of the center of gravity, can be determined straightforwardly. The defect location is assigned

to the position at which the ∆Fx-component of the DRS has the largest absolute amplitude.

Thus, the depth and the x- and y-extension of the defect remain to be determined. The

goal function is evaluated for all combinations of the x-extension dx “t5:0.5:15u mm, the

y-extension dy “t0.5:0.5:5u mm, and the defect depth d“´ t0, 0.65, 1.3, 1.95, 2.6u mm.

6.2.3 Nondestructive Testing of GLARE using Imaging Techniques

For comparison purposes, the NDT techniques radiographic and through-transmission ultra-

sonic testing are applied to detect the defect in the GLARE specimen. In the radiographic

testing, the used X-ray generator is operating with 15 kV and a current flow of 35 µA. The

ultrasonic testing is performed by the company Premium Aerotec, which has manufactured

the GLARE test object. An automatic scanning system using water-coupling of the ul-

trasonic waves with the squirter technique is applied [49]. The used probes work with a

frequency of 5 MHz. The resolution of the method equals 1 mm in either direction. Both

methods scan the GLARE specimen in z-direction, i.e., perform projections on its xy-plane.

A scanning in x- and y-direction is due to the setup and specifications of the NDT testing

systems not possible. The x- and y-extension of the GLARE specimen are too large in order

to position the specimen accordingly. Further, neither the used X-rays nor the ultrasonic

waves are able to penetrate the specimen in x- and y-direction.

6.3 Results

6.3.1 Experimental Verification

Figure 6.4 shows the DRS measured from the GLARE specimen containing a defect in the

second aluminum alloy layer. The DRS obtained with the cylindrical Halbach structure is

compared to the DRS obtained with the cylindrical permanent magnet. The DRS of the

Halbach structure has a significantly larger absolute amplitude than that of the cylindrical

permanent magnet. In particular, defect perturbations in the ∆Fy-component are hardly

to be distinguished from noise and interfering signals, if the cylindrical permanent magnet

is used. Contrary, they are distinctly visible if the cylindrical Halbach structure is applied.

Further, the slopes in the DRS are steeper if the Halbach structure is applied. Thus, the

area spanned by the DRS is in either coordinate direction smaller than for the cylindrical

permanent magnet.
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(a) Cylindrical Halbach structure
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Figure 6.4: Measured and preprocessed DRS obtained from the GLARE specimen. LET
experiments are performed twice using different magnet systems: the cylindrical Halbach
structure and a cylindrical permanent magnet. The defect is positioned in the second
aluminum alloy layer, i.e., at d“0.65 mm.

The percentage increase of the maximum of the absolute ∆Fx-component for Halbach

structure compared to the cylindrical magnet equals 116 %. The calculated SINAD values

for both magnet systems are shown in Table 6.1. The SINAD values of the ∆Fx- and

∆Fz-component are similar. However, the values of the ∆Fy-component are significantly

higher, if the cylindrical Halbach structure is applied.

Table 6.1: SINAD values in dB of measured DRSs obtained from the GLARE composite.
The defect is positioned in the second aluminum alloy layer.

Applied PM Halbach PM Cylindrical PM

DRS component ∆Fx ∆Fy ∆Fz ∆Fx ∆Fy ∆Fz

SINAD in dB 13.9 5.5 7 13.5 0.9 7.6
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6.3.2 Forward Calculations and Goal Function Scan

Figure 6.5 compares the ∆Fx- and ∆Fz-component of the forward calculated DRS to the

measured data at the symmetry line y “0. Note that the ∆Fy-component vanishes theoret-

ically at the symmetry line. The forward calculated DRS has a smaller absolute amplitude

than the measured data. The corresponding NRMSE of the ∆Fx- and ∆Fz-component

equals 8.94 % and 8.18 %, respectively.
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Figure 6.5: Comparison of DRSs obtained from measured data (∆F M ) and forward cal-
culated Lorentz force signals using the EAA (∆F A). The defect is positioned in the
second aluminum alloy layer. The cylindrical Halbach structure is applied.

Figure 6.6 shows the landscape of the goal function using contour plots. The results

are shown in groups, where each group refers to one of the five aluminum alloy layers of

the GLARE specimen. The global minimum of the goal function is in the third metal

layer and has a value of 5.26 %. This does not correspond to the correct defect depth,

i.e., the second metal layer. The defect extensions assigned with the global minimum

are tdx, dyu“t10.5, 5u mm. Thus, the y-extension is significantly higher. Considering the

course of the contour lines it cannot be excluded that the global minimum lies at other

parameter combinations, if the assessed parameter range is extended.

Moreover, the results show that one local minimum exists in each single aluminum alloy

layer. Thus, if the optimization function is considered separately for each layer, it is convex.

The minimum NRMSE in the layer corresponding to the correct defective second layer

equals 5.34 %. The corresponding defect extensions are tdx, dyu“t9.5, 2.5u mm. It can be

observed that with increasing depth of the metal layer the defect extensions corresponding

to the local minima in the single layers increase. Further, the goal function is relatively

flat and the minima are not distinct. All minima, global and local, differ from each other

by less than 1.4 %. Additionally, the CPU time required for the goal function scan is

approximately two days (Dual CPU Intel® Xeon® E5-2687Wv3, 3.1 GHz, 128 GB RAM,

64-bit Gentoo Linux, MATLAB® R2015a). The significant increase in comparison to the

inverse calculations in Chapters 4 and 5 results from the use of the EAA for forward

calculations.
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Figure 6.6: Landscape of the goal func-
tion for the GLARE specimen. The
goal function value is the NRMSE be-
tween measured and forward calculated
Lorentz force signals. Error values are
shown using contour plots separately
for each aluminum alloy layer. The
bold "L" indicates the number of the
layer counted from the top of the spec-
imen. The numbers associated with
the contour lines show the NRMSE in
%. The black cross and the correspond-
ing value in bold face marks the min-
imum NRMSE of the respective layer.
The gray dashed lines show the nom-
inal defect extensions, dy “1 mm and
dx “10 mm.

5.5

5.71

6.59

5.26

5.34

90
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6.3.3 Comparison of the Imaging Techniques and LFE

Figure 6.7 shows the resulting images obtained from radiographic and through-transmission

ultrasonic testing. It can be observed that the resolution of the radiography is superior than

the resolution of the ultrasonic testing. In the radiographic image, the cutting edge in x-

direction is clearly visible. The boundary of the defect in y-direction is blurred. This might

result from the fact that it is challenging to manufacture clean cuts with a length of 1 mm.

In the ultrasonic results, the yellow colored region represents the defect.

(a) Radiographic testing (b) Through-transmission ultrasonic
testing (figure provided by the com-
pany Premium Aerotec)

Figure 6.7: Results of radiographic and ultrasonic testing of the GLARE specimen. Projec-
tions are performed on the xy-plane of the specimen.

Table 6.2 depicts the defect parameters estimated from the images in Figure 6.7, and

compares them to the results of LFE, i.e., the defect parameters assigned to the global

minimum in the goal function (Section 6.3.2). Considering, the x-extension the radiography

provides a slightly larger estimate than the nominal value. Contrary, with ultrasonic testing

the x-extension is estimated smaller. The results of the goal function scan in LFE are

comparable to those of the radiographic testing. In case of the y-extension, the imaging

techniques provide accurate results and outperform the LFE method. However, a depth

estimation is not possible with either imaging technique. Only LFE allows to perform a

Table 6.2: Comparison of the results obtained from the radiographic testing, the ultrasonic
testing, and the goal function scan in LFE. The NDT methods are applied to estimate
the parameters of the defect in the GLARE material. The nominal defect parameters
equal dx “10 mm (x-extension), dy “1 mm (y-extension), and d“0.65 mm (depth).

Radiography Ultrasonics LET&LFE

dx in mm 10.6 8.3 10.5

dy in mm 0.9 1 5

d in mm - - 1.3
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depth estimation.

6.4 Discussion

In this chapter, LET was applied to detect defects in an aluminum alloy layer of GLARE

material. GLARE is nowadays the leading composite material in the aircraft industry. The

artificial defect in the object under test can be clearly identified in the measured Lorentz

force signals shown in Figure 6.4. Thus, the defect detectability of LET for GLARE was

proved. The high SINAD values in Table 6.1 indicate that LET is likely to be able to

identify even smaller internal defects than the one evaluated.

The performance of a cylindrical Halbach structure was compared to that of a cylindri-

cal permanent magnet. Figure 6.4 shows that the area spanned by the DRS is smaller if

the cylindrical Halbach structure is applied instead of the cylindrical permanent magnet.

Further, the absolute amplitude of the DRS is larger. The improvement in the absolute

amplitude of the ∆Fx-component of the DRS signal equals 116 % (Section 6.3.1). This

is in very good agreement with the findings in [123]. Both aspects are the consequence

of the magnetic flux density distributions shown in Figure 6.2. The magnetic flux distri-

bution of the Halbach structure is more concentrated underneath the magnet and has a

larger amplitude than the flux distribution of the cylindrical permanent magnet. The dis-

cussed findings prove that the cylindrical Halbach structure has compared to the cylindrical

permanent magnet a superior performance in detecting small subsurface defects.

Further, a comparison between the SINAD values for the Halbach and the cylindrical

magnet in Table 6.1 shows that the SINAD values for the ∆Fx- and ∆Fz-component are

similar. The ∆Fy-component has a significant higher value if the cylindrical Halbach struc-

ture is applied. This indicates that the absolute amplitude of the distortions and noise in

the ∆Fx- and ∆Fz-component is higher if the Halbach structure is applied. In consideration

of the SINAD values the superior performance of the cylindrical Halbach structure can be

confirmed only for the ∆Fy-component.

The evaluation of the goal function in Figure 6.6 shows that the reconstruction of the

x-extension of the defect has a very small error. However, the reconstruction error in

y-direction is large. In the previous Chapters 4 and 5 the y-extension of the defect has

also been reconstructed too large. The reasons might be that the resolution of LET in

y-direction is worse than in x-direction, and that the y-extension of the sensor space is not

large enough.

The aluminum alloy layer assigned to the global minimum of the goal function is po-

sitioned directly below the layer in which the defect is positioned. Thus, the error in the

depth reconstruction equals 0.65 mm. However, this error can be considered as very small,

because the aluminum alloy layers of GLARE are really thin compared to the layers of

the composites evaluated in the Chapters 4 and 5. This aspect also explains why the local

minima of the goal function (one local minimum in each layer) lie in the range of only 1.4 %.
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Instead of the goal function scanning method, the Differential Evolution (DE) optimiza-

tion algorithm introduced in Chapter 4 can be applied to minimize the goal function. It

is to be expected that the DE optimization converges to the global minimum of the goal

function. Thus, similar as the DE strategy the goal function scanning method outperforms

the current density reconstructions, which are applied in Chapter 5.

In future studies, it is the aim to enhance the experimental setup in such a way as

to reduce the interfering signals and noise in the measured data (Figure 6.4(a)). As a

consequence, it can be expected that the reconstruction results of the goal function scanning

method will be improved.
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7 Concluding Remarks

7.1 Summary and Discussion

The objective of this thesis was the development and evaluation of forward and inverse

calculation methods in Lorentz force evaluation (LFE). The evaluation technique LFE

was applied to reconstruct conductivity anomalies, which occur in the metal layers of lam-

inated composites. The inverse calculations in LFE are based on Lorentz force signals

that are measured using the nondestructive testing method Lorentz force eddy current test-

ing (LET). Inverse calculations require a forward solution for the Lorentz force signals,

which incorporates a model of the components used in the LET setup.

The working principle of LET is based on a relative movement between a permanent

magnet and an electrically conducting material under test. Due to the relative movement

eddy currents are induced in the conductor. The eddy currents interact in turn with the

magnetic field. This interaction results into a Lorentz force exerted on the conductor

and in opposite direction also on the permanent magnet, where it is measured. Material

deficiencies cause perturbations in the Lorentz force signals. Inverse calculations evaluate

the information that are present in the perturbations.

In this thesis, the magnetic dipoles model (MDM) was developed in order to represent

the permanent magnet in the forward solution for LFE. In the MDM, the permanent mag-

net is replaced by a regular distributed assembly of magnetic dipoles. Compared to analytic

solutions the MDM has the advantage that it can be applied to permanent magnets of ar-

bitrary geometry. Moreover, it allows to calculate the magnetic field in the near field of

the permanent magnet with high accuracy. This is not possible by using a single magnetic

dipole except for spherical permanent magnets. Further, the use of the MDM maintains

the advantage to calculate the Lorentz force signals solely with elementary analytic mathe-

matics.

An optimization procedure was developed to obtain optimal magnetic dipole positions in

the MDM. It was shown that the optimization procedure provides a significant improvement

especially if a low number of magnetic dipoles is used. In this thesis, the MDM was applied

to a cuboidal and a cylindrical permanent magnet. Analytic solutions of the magnetic field

served as a reference solution to evaluate the accuracy of the MDM. The results showed

that the investigated cuboidal permanent magnet can be accurately modeled with a MDM

consisting of 832 magnetic dipoles. The remaining error equals 0.02 %. The same accuracy

can be achieved for the cylindrical permanent magnet, if 1890 magnetic dipoles are used in

the MDM. Apart from forward and inverse calculations in LFE, the MDM can be used in
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other applications, in which precise simulations of permanent magnets are required. These

include eddy current brakes, electrical machines, and electromagnetic damping.

In this thesis, three inverse calculation methods were introduced for defect reconstruction

in LFE. First, a stochastic optimization algorithm, the Differential Evolution (DE), was

applied to perform conductivity reconstructions. Thereby, a region in the conductor, in

which the defect was assumed to be present, was discretized by a regular grid of elementary

volume elements with unknown conductivities. The aim of the optimization procedure was

to determine the conductivities. The intrinsic control parameters of the DE were selected

prior to inverse calculations. Parameter studies were performed for this purpose. In each

iteration the continuous-valued optimization variables employed in the DE were binarized.

Further, an area opening procedure was applied to the inverse solutions. Both operations

accelerate the convergence of the optimization.

Second, current density reconstructions (CDR) using minimum norm estimates (MNE)

were applied for flaw reconstructions. This approach is based on the fact that the defect can

be interpreted as an extended current source in the forward solution for LFE. For CDR a

regular grid of current dipoles was defined in the conductor. The current dipoles represent

the eddy current distribution in the conductor. In the inverse method, the moments of the

current dipoles were determined. Thereby, a current density averaged over all measurement

points was assessed.

These two inverse calculation strategies were validated based on measured Lorentz force

signals. A sandwich-structured composite named Alucobond was investigated. The results

showed that the geometry of the defect, i.e., the location and size, can be well reconstructed

with either approach. Thereby, the findings of the DE optimization strategy had a slightly

higher accuracy for the defect location than the CDR. Contrary, the defect size was slightly

better approximated with the CDR. Further, the depth of the defect was correctly deter-

mined by the Differential Evolution reconstruction scheme. Contrary, the CDR did not

yield correct depth reconstruction.

Another aspect to verify the reconstruction quality is to compare the final objective

function value, i.e., the normalized root mean square error (NRMSE), of the Differential

Evolution strategy (Figure 4.7), to the unexplained variance of the CDR (Figure 5.7). Both

parameters are a measure for the goodness of fit of the inverse solution. The NRMSEs

of values less than 10 % indicate a more accurate inverse calculation than unexplained

variances of approximately 50 %. In summary, the Differential Evolution strategy provides

more accurate defect approximations than the CDR. Therefore, we suggest the application

of the Differential Evolution reconstruction strategy to other electromagnetic nondestructive

testing and evaluation (NDT&E) techniques.

The third inverse method applied in this thesis was the goal function scan. This method

was applied to Lorentz force signals that were measured using a glass laminate aluminum

reinforced epoxy (GLARE) specimen. GLARE is nowadays increasingly used in the aircraft

industry, because it has outstanding fatigue characteristics. The geometry parameters

extension and depth were defined as the unknown variables. The differences of the defect
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parameters assigned with the global minimum in the goal function and the correct defect

parameters are in an acceptable range. Similar to the DE strategy, the goal function

scanning method outperforms the CDR.

All in all, the application and evaluation of LET and LFE for the Alucobond and the

GLARE material contribute to the ongoing development of reliable NDT&E methods to

enhance the quality assurance for laminated composite materials in industrial applications.

7.2 Outlook

Apart from the inverse methods introduced in this thesis, there are still a variety of meth-

ods that can be analyzed. In the framework of topology optimization, level-set methods

can be employed. These methods allow to model curved surfaces that propagate in time.

The idea is to represent the surface of interest at any time in terms of a level-set function.

By changing the level-set function and thus the surface using a speed function, the surface

can be optimized. Level-set methods allow the surface in question to split and merge dur-

ing evolution. This is not possible with methods that parametrize the surface boundaries.

Level-set methods have already been applied in a wide variety of fields such as fluid me-

chanics, computer-aided design, and image segmentation [103]. Further, they have been

used for shape optimization of electromagnetic devices [47] and for material reconstruction

in nondestructive testing [23].

Furthermore, a deconvolution approach can be applied. This method is based on the

aspect that the LET system meets the requirements of a linear time-invariant system, as

long as only one defect is present in the material. Then, the measured Lorentz force in each

scanning line can be modeled as the convolution of a function describing the conductivity

of the material of the conductor along the scanning line and the impulse response of the

system. The impulse response can be easily obtained as the derivative of the step function

of the system, i.e., the measured Lorentz force at the edge of the conductor. The aim is to

solve for the unknown conductivity distribution.

In the framework of introducing new inverse methods it is the objective to investigate

material deficiencies of arbitrary shape, e.g., curvilinear anomalies. This includes corrosion

or shallow cracks. Further, composites with multiple inhomogenities are of interest.
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A α-MDM of the Cubic Permanent Magnet

In addition to the cuboidal and cylindrical permanent magnet described in Section 3.3.1,

the magnetic dipoles model (MDM) is applied to a magnet of cubic shape. Since the cubic

magnet is a special case of a cuboidal magnet, the α-MDM was used. The cubic magnet

under investigation has the dimensions a“Hp “15 mm, the magnetic remanence µ0M “

1.17 T, and the liftoff δz “1 mm. We optimized the α-MDMs specified by all combinations

of Na “t2:2:14u and Nh “t1:1:25u.

Similar to the results of the cuboidal and cylindrical permanent magnet, a minimum

NRMSEo
G,min “t2.165, 0.341, 0.094, 0.022, 0.006, 0.003, 0.001u % can be observed for each

Na-group (Figure A.1(a)). The minimum error occurs at the optimal number of layers

No
h,min “t1, 3, 5, 8, 10, 12, 14u in the optimized MDMs. Thus, an increase of Na yields an

increase of No
h,min. A least squares fit shows that the optimal number of layers depends on

Na as No
h,min “r1.11 ¨ Na ´ 1.28s. Further, for Na ě8 it is Na “Nh. Thus, the voxels are

elementary cubes. This can be reasoned by the fact that the cube shows the smallest error

among all cuboid voxels modeled with a single magnetic dipoles [83].

Figure A.1(b) shows that for small numbers of dipoles, αo is smaller than 0.5. With

increasing ND it increases to a maximum value of 0.5002 for ND “64 (Na “Nh “8). For

larger ND, the dipole positions converge to the center of gravity of the voxels.
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Figure A.1: Results of the optimization of the α-MDM of the cubic permanent magnet.
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A α-MDM of the Cubic Permanent Magnet

In Figure A.2 the magnetic flux density components Bx and Bz of two αo-MDMs and

the charge model are compared. The αo-MDMs are calculated with ND “22 ¨ 1“4 and

ND “82 ¨ 8“512 dipoles. The flux densities are observed at y “0 (symmetry line of the

permanent magnet), and z “´1 mm. If ND “4, the normalized root mean square error

(NRMSE) of the Bx- and Bz-component equals 2.17 % and 2.05 %, respectively. Differences

can be observed in the region below the permanent magnet p´7.5 mmďxď7.5 mmq. If

ND “512, the NRMSE decreases to 0.032 % (Bx) and 0.033 % (Bz) and no irregularities

can be observed.
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Figure A.2: Comparison of magnetic flux densities obtained from two αo-MDMs (BD) and
the charge model (BA) of the cubic permanent magnet. The αo-MDMs are calculated
for ND “22 ¨ 1“4 with αo “0.412 (left column) and ND “82 ¨ 8“512 with αo “0.5002
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B Validation of the Weak Reaction Approach

In order to justify the applicability of the weak reaction approach for low velocities, the

Lorentz force signals calculated by the weak reaction approach are compared to the Lorentz

force signals computed by the transient approach. The transient approach considers the

electromagnetic field diffusion-convection equation including parts in relative motion, which

has to be solved in LET studies, in its full form [129]. Contrary, the weak reaction approach

neglects the secondary magnetic field. Since it is not possible to calculate the Lorentz

force signals with the transient approach analytically, the finite element method is applied

for numerical computations. For comparison purposes the finite element method is also

used for the weak reaction approach. In the simulations, the aluminum alloy block has

the dimensions Lc ˆ Wc ˆ Hc “250 mm ˆ 50 mm ˆ 50 mm. The metal sheets have the

height ∆z “2 mm and the conductivity σ0 “30.61 MS. The second metal sheets contains

an artificial cylindrical defect with the radius Rd “2.5 mm and height Hd “2 mm. The

applied permanent magnet is of spherical shape with the radius Rp “7.5 mm and the liftoff

δz “1 mm. We compare finite element model (FEM) simulations for two velocities: v “

0.5 m{s and v “7.5 m{s. For these configurations the magnetic Reynolds number equals

Rm “µ0σ0|v|L“0.96 and Rm “14.42, respectively. Thereby, µ0 “4π ¨ 10´7 is the magnetic

permeability in the vacuum and L“Hc is the characteristic length scale.

Figure B.1 compares the resulting Lorentz force components ∆Fx and ∆Fz at the sym-

metry line (y “0). It can be observed that for v “0.5 m{s the deviations of the transient

approach and the weak reaction approach are small. The normalized root mean square

error (NRMSE) calculated according to Equation (2.13) is 2.09 %, which can be considered

as sufficiently small. If v “7.5 m{s, the NRMSE increases to 40.1 %, indicating that the

weak reaction approach should not be applied for high velocities.
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Figure B.1: DRS components ∆Fx and ∆Fz for low and high velocities calculated with FEM
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Glossary of Acronyms and Symbols

Acronyms

CDR current density reconstructions
CPU central processing unit
DE Differential Evolution
DRCD defect response eddy current distribution
DRS defect response signal
EA evolutionary algorithm
EAA extended area approach
ECD eddy current distribution
ECT eddy current testing
EP evolutionary programming
ES evolutionary strategy
FEM finite element model
GA genetic algorithm
GLARE glass laminate aluminum reinforced epoxy
LET Lorentz force eddy current testing
LFE Lorentz force evaluation
LFV Lorentz force velocimetry
MDM magnetic dipoles model
MFL magnetic flux leakage
MNE minimum norm estimates
NDT nondestructive testing
NDT&E nondestructive testing and evaluation
NRMSE normalized root mean square error
SINAD signal-plus-noise-and-distortion-to-noise ratio
SNR signal-to-noise ratio
TRA transient approach
TSVD truncated singular value decomposition
WRA weak reaction approach

Symbols

α parameter to define the z-position of the magnetic dipoles in a magnetic

dipoles model
αo optimized α

αs straightforward dipole positioning, αs “0.5
β parameter to define the radial position of the magnetic dipoles in a

magnetic dipoles model
βo optimized β

βs straightforward dipole positioning, βs “0.5
B magnetic flux density
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Glossary of Acronyms and Symbols

Br magnetic remanence
d depth of defect, depth of metal layer
pdx, dyq px, yq-extension of defect
δz liftoff distance
∆F defect response signal
∆j defect response eddy current distribution
∆z height of the defect (metal layer)
E number of voxels (current dipoles) in extended region
εi normalized root mean square error of the i-th Lorentz force component
pex, eyq semi-axes of an ellipse
pEx, Eyq px, yq-extension of the extended region
F, F0 Lorentz force coming from a specimen with and without a defect
Hc height of specimen
Hp height of permanent magnet
j eddy current density in a defective conductor
j0 eddy current density in a defect-free conductor
K number of voxels (current dipoles) in defect region
K gain matrix
Lc length of specimen
plx, lyq half of px, yq-extension of sensor space
ls half of px, yq-extension of quadratic source space
m moment of magnetic dipole
M number of measurement points
M magnetization of permanent magnet
µ0 magnetic permeability of vacuum
ND number of dipoles in magnetic dipoles model
Nh number of dipole layers in magnetic dipoles model
NH number of current loops
NL number of metal sheets in laminated composite
NS number of voxels (current dipoles) in the source space
N i

S number of voxels in the i-th ring in the magnetic dipoles model of the

cylindrical permanent magnet
p moment of current dipole
ϕ electric potential
Rm magnetic Reynolds number
Rp radius of permanent magnet
σ conductivity
σ0 conductivity of metal sheets in laminated composite
σd conductivity of defect
σ vector containing voxel conductivities
ϑ threshold for conductivity reconstruction
v velocity vector
V volume of conductor without defect
Vd volume of defect
VE volume of elementary voxel
Vp volume of permanent magnet
Wc width of specimen
ξD dipolar correction factor
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