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Abbreviations 

ABL                      v-abl Abelson murine leukemia viral oncogene 
ALL                       acute lymphoblastic leukemia 
Array-CGH            array comparative genomic hybridization 
B-ALL                   B - cell acute lymphoblastic leukemia 
BAC                       bacterial artificial chromosome 
BCR                       breakpoint cluster region 
BM                           bone marrow 
bp                           base pairs 
CEP                        centromere probe 
CDKs                     cyclin dependent kinases 
CGH                       comparative genomic hybridization 
CLL                        chronic lymphocytic leukemia 
CML                       chronic myelogenous leukemia 
CNAs                     copy number alterations 
CNVs                      copy number variations 
COBRA-FISH        COmbined Binary Ratio labelling-FISH 
del                           deletion 
DNA                       deoxyribonucleic acid 
FISH                       fluorescence in situ hybridization 
GTG                       Giemsa banding, G-bands by trypsin using Giemsa 
HSCs                       haematopoietic stem cells 
HSCT                      hematopoietic stem cell transplantation 
IGHV                      immunoglobulin heavy chain variable 
ISCN                       international system for human cytogenetic nomenclature 
Kb                           kilobasepairs 
LSP                         locus-specific probe 
Mb                          megabasepaires 
MCB                       multicolor banding 
MCL                       mantle cell lymphoma 
m-FISH                   multicolor FISH 
M-FISH                  multiplex FISH 
MLPA                     multiplex ligation dependent probe amplification 
NCI                         National Cancer Institute 
NGS                        next generation sequencing 
NF-κB                    nuclear factor kappa-light-chain-enhancer of activated B cells 
No.                          number 
NK                          natural killer 
PAC                        P1-derived artificial chromosome 
PB                             peripheral blood 
PCR                        polymerase chain 
PCP                         partial chromosome paint 
PFS                         progression-free survival 
PNA                        purine nucleoside analogue 
RB                           retinoblastoma 
SKY                        spectral karyotyping 
SNP                         single nucleotide polymorphism   
WBCs                     white blood cells 
WHG                      whole human genome 
t                               translocation 
TGF-β                     transforming growth factor beta 
T-PLL                     T-cell prolymphocytic leukemia 
TTFT                      time to first treatment 
UPD                        uniparental disomy 
ZAP-70                   Zeta-chain-associated protein kinase 70 
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 Summary: 
Chronic lymphocytic leukemia (CLL) is the most frequent leukemia of adults in Western 

countries; also it is considered as a heterogeneous disease, as the overall survival of CLL patients 

is different according to the detected acquired genetic, especially chromosomal aberrations. 

Particularly important are the genes TP53, ATM, and BIRC3, which are associated with poor 

prognosis. Many techniques have been used for the detection of disease associated chromosomal 

abnormalities, such as banding cytogenetic (GTG-banding) or molecular cytogenetic analyses. 

However, especially GTG-banding is hampered in diagnostics of CLL due to the low mitotic index 

of the aberrant cells. Even after using a suitable mitogen such as 12-O-tetradecanoylphorbol-13-

acetate (TPA), the detection rate reaches only approximately 48%. Interphase fluorescence in situ 

hybridization (iFISH) was introduced to overcome this limitation; however this leads to 

underestimation of the complexity in chromosomal rearrangements. Multiplex ligation dependent 

probe amplification (MLPA) can be a way out here, and it was introduced recently for the 

diagnosis of CLL giving the opportunity to detect multiple chromosomal aberrations 

simultaneously. The present work aimed to analyze and detect cryptic chromosomal aberrations in 

150 CLL patients, by studying them comparatively for aberration detection rates using different 

approaches such as GTG-banding, iFISH and/or MLPA, in addition to array-based comparative 

genomic hybridization (array-CGH) in selected cases. 

Overall 163 acquired aberrations in 67 of 85 samples (~79%) were identified; iFISH was superior 

to MLPA in the cases with low percentage of aberrant cells, but on the other hand MLPA revealed 

additional chromosomal abnormalities in 22 cases. Based on that data a cost efficient scheme was 

suggested combining the different techniques for better diagnosis and characterization of cryptic 

chromosomal aberrations in CLL. Additionally an assessment of BIRC3 alterations, a gene 

recently found to play an important role in lymphatic leukemia, was performed on 117 CLL, and 

45 B-ALL cases. BIRC3 aberrations were detected in 23/117 (~20%) of CLL and 2/45 (~4%) of B-

ALL cases. Based on these results ATM deletions may, but must not always be associated with 

BIRC3 abnormalities. Thus BIRC3 screening should be considered as independent diagnostic 

parameter of CLL in future. Finally, 150 CLL patients have been tested for their status of TP53 

deletion. Obviously cases with isochromosome 17q and deletion of TP53 were associated with 

more complex karyotypic changes than such with deletion of TP53 due to other chromosomal 

changes. This suggests that i(17q) presents an adverse prognostic marker, which should be 

considered more in future CLL-diagnostics.   
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Zusammenfassung: 

Chronische lymphatische Leukämie (CLL) ist die am häufigsten auftretende Leukämieform des 
Erwachsenenalters in den sog. „westlichen Ländern“. Die CLL wird es als eine heterogene 
Erkrankung angesehen, da Überlebensrate und -zeit (overall survival = OS) von CLL-Patienten 
durchaus unterschiedlich ist. Die OS hängt stark von den vorliegenden und entsprechend erfassten, 
erworbenen genetischen, insbesondere Chromosomenveränderungen ab. Von besonderer 
Bedeutung sind hierbei die Gene TP53, ATM und BIRC3, die allgemein mit einer schlechten 
Prognose der Krankheit assoziiert werden. Eine Vielzahl an Techniken wurden und werden zum 
Nachweis von CLL-assoziierten Chromosomenanomalien eingesetzt wie Bänderungs-Zytogenetik 
(GTG-Färbung) oder molekulare Zytogenetik. Hierbei ist anzumerken, dass insbesondere eine 
Karyotypanalyse durch den niedrigen mitotischen Index der aberranten CLL-Zellen nur 
eingeschränkt möglich ist. Dies gilt auch dann noch, nachdem geeignete Mitogene angewendet 
wurden, wie 12-O-Tetradecanoylphorbol-13-Acetate (TPA); hier sind Mitosen in nur etwa 48% 
der Fälle zu erwarten. Um solche Einschränkungen der Analyse zu umgehen wurde die Interphase 
Fluoreszenz in situ Hybridisierung (iFISH) eingeführt; jedoch kann der Einsatz dieser Methode zu 
einer Unterschätzung der vorliegenden Komplexität an Chromosomenaberrationen führen. Hier ist 
die Multiplex ligation dependent probe amplification (MLPA) als weiterer Fortschritt in der CLL-
Diagnostik anzuführen, da diese Methode die Möglichkeit eröffnet gleichzeitig viele / viel mehr 
Chromosomenaberrationen zu erkennen. Die vorliegende Arbeit wurde mit dem Ziel durchgeführt 
zuvor kryptische chromosomale Aberrationen in 150 CLL Fällen nachzuweisen, und zwar durch 
den vergleichenden Einsatz von GTG-Bänderung, iFISH und MLPA, sowie in einzelnen Fällen 
ergänzt durch Mikro-array-Analyse (array-CGH). Insgesamt wurden 163 erworbene Aberrationen 
in 67 von 85 Fällen (~ 79%) nachgewiesen; iFISH hatte in solchen Fällen bessere Nachweisraten 
als die MLPA, welche nur einen geringen Anteil an anomalen Zellen hatten; im Gegensatz hierzu 
konnte die MLPA-Technik zusätzliche nicht mittels FISH erfassbare Chromosomenanomalien in 
22/85 Fälle erfassen. Auf diesen Ergebnissen beruhend konnte hier ein kosteneffizientes 
Analyseschema entwickelt werden bei dem GTG-Bänderung, MLPA und iFISH so kombiniert, 
abgestimmt und gezielt eingesetzt werden, dass eine optimale Charakterisierung von kryptischen 
Chromosomenaberrationen bei CLL-Patienten möglich wird. Weiterhin wurden 117 CLL und 45 
B-ALL Fälle auf das Vorliegen von BIRC3 Veränderungen untersucht. Letztere wurden in 23/117 
(~ 20%) der CLL und 2/45 (~ 4%) der B-ALL-Fälle nachgewiesen. Hieraus, und aus der 
gleichzeitigen Feststellung des ATM-Deletionsstatus der entsprechenden Patienten konnte erstmals 
gezeigt werden, dass ATM Deletionen zusammen mit BIRC3 Genveränderung vorkommen 
können, aber nicht müssen. Ein Screening auf BIRC3 für eine verbesserte Diagnosestellung bei der 
CLL wird vorgeschlagen. Abschließend wurden 150 CLL-Patienten auf ihren Isochromosom-17q-
Status hin getestet. Offensichtlich waren Fälle mit Isochromosom-17q und Deletion von TP53 mit 
komplexeren karyotypischen Veränderungen assoziiert als solche Fälle in denen Deletion von 
TP53 aufgrund anderer chromosomaler Veränderungen vorlag. Das deutet darauf hin, dass 
Isochromosom-17q einen negativen prognostischen Marker darstellt, der künftig mehr Beachtung 
bei der CLL-Diagnostik finden sollte. 
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1. Introduction 

1.1. Cytogenetic and molecular (cyto)genetics 

The beginning of diagnostic cytogenetics arose in the mid of 19th century. Then the normal 

number of chromosomes in the human somatic cell was finally accurately identified in 1956 by 

Tjio and Levan (Tjio and Levan 1956), which was independently confirmed in the same year by 

Ford and Hamerton (Ford and Hamerton 1956). 

The continued technical improvements in the cytogenetic field enabled the researchers to identify 

chromosomal abnormalities, which are correlated with specific disorders, such as, in 1959 

Lejeune and colleagues found the trisomy for chromosome 21 in fibroblast cultures from patients 

with Down syndrome (Lejeune et al. 1959). 

In 1960, Peter Nowell and David Hungerford identified a minute chromosome in the white blood 

cells (WBCs) of patients with chronic myelogenous leukemia (CML), which was called 

Philadelphia chromosome (Nowell and Hungerford 1960). 

Thirteen years later, it was discovered that, this chromosome is a product of balanced 

translocation between the long arms of chromosomes 9 and chromosome 22; specifically a 

t(9;22)(q34;q11) (Rowley 1973). 

The development of chromosome preparations and banding techniques in the end of the 1960s 

allowed the more precise identification and characterization of inherited and acquired alterations 

in human malignancies (Caspersson et al. 1968). 

RB1 (retinoblastoma) gene, which is located in 13q14, was the first identified tumor suppressor 

gene. As in 1983 Cavenee et al. introduced the proof of Knudson ś "two-hit" hypothesis. They 

reported that cancer may originate from the (functional) loss of both alleles of the RB1 gene, 

when a germline mutation is present on one allele and a subsequent mutation of the other allele 

takes place (Cavenee et al.1983, Knudson et al. 1971). 

 

1.1.1. Chromosome banding 

The development of banding and staining protocols between 1968 and 1980s facilitated the 

identification of many recurrent numerical and structural chromosomal abnormalities. Also 

chromosome analysis has been used widely in diagnosis of leukemia and lymphoma (Lawler 

1977). 
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Giemsa (G-) banding was introduced after the development of Q-banding. Giemsa stain is used 

in G-banding after proteolytic enzyme treatment of the chromosome preparations. This type of 

staining produced highly reproducible dark and light bands along each chromosome, which 

could be seen by standard light microscopy. G-banding technique is still considered as gold 

standard for the detection of both numerical (gain or loss of a chromosome) and structural 

aberrations (e.g. translocation, deletion, inversion, fragile sites, etc.), as it provides a whole-

genome perspective. In spite of that the resolution of G-banding is limited (approximately 400-

550 bands per haploid tumor cytogenetic genome), thus chromosomal aberrations can be missed 

and complex aberrations are too difficult to be resolved even by skilled cytogeneticists (Wang 

and Fedoroff 1972, Yunis 1976, Othman et al. 2014). 

Based on the banding patterns for each chromosome a system of nomenclature was introduced, 

and this international system for human cytogenetic nomenclature (ISCN) is still in place and 

actualized regularly (Shaffer et al. 2013). 

 

1.1.2. Molecular cytogenetics 

Molecular cytogenetics involves the combination of both molecular and cellular levels in 

microscopic analyses (Speicher and Carter 2005). The identification of particular chromosomal 

rearrangements such as too small or too complex aberrations could be achieved through the 

application of more sensitive and sophisticated techniques than G-banding (Li and Pinkel 2006). 

Thus, fluorescence in situ hybridization (FISH) has been introduced as a suitable method for the 

characterization of both constitutional and acquired chromosomal abnormalities by application of 

chromosome-specific probes and probe sets (Pinkel et al. 1986). 

For further identification of new biomarkers and potential therapeutic targets in leukemia and/or 

cancer, other techniques were developed such as comparative genomic hybridization (CGH), 

array-based CGH (array-CGH) and single nucleotide polymorphism (SNP array-CGH), and 

multiplex ligation dependent probe amplification (MLPA) (Glassman and Hayes 2005, Le 

Scouarnec and Gribble 2012, Hömig-Hölzel and Savola 2012). 
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1.1.2.2. Probes used for FISH 

The accuracy and reliability of FISH analysis depend particularly on the specificity and 

sensitivity of the applied probes and the hybridization detection efficiency (Divane et al. 1994). 

There are many different types of DNA probes that can be used in FISH, which have been 

grouped as outlined below. 

 

1.1.2.2.1. Locus-specific probes (LSP) 

LSP bind to a particular region of a chromosome or locus of 0.1 to several megabase pairs (Mb) 

in size. 

They can detect amplified oncogenes, deletion of tumor suppressor genes, fusion and/or 

translocations of genetic regions involved in cancer; they are applied in (leukemia) diagnostics 

and research (Liehr et al. 2015). 

 

1.1.2.2.2. Chromosome painting probes 

Whole chromosome painting (WCP) probes, which are generated by flow sorting or whole 

chromosome microdissection, hybridize the entire length of the chromosome. In addition to that 

partial chromosome painting (PCP) probes, which are generateable only by microdissection, 

could be used to label the short and long arm of a particular chromosome or chromosomal 

subregions. PCPs and WCPs are particularly useful for examining both structural and numerical 

chromosomal abnormalities in leukemia (Cremer et al. 1988, Pinkel et al. 1988, Guan et al. 

1994). 

 

1.1.2.2.3. Centromeric probes 

Chromosome-specific centromeric probes (CEP) are generated from repetitive sequences found 

in the centromeric regions of the human chromosomes, and commercially available CEP probes 

are used to determine whether an individual has the correct number of chromosomes in both 

interphase and metaphase, such as in Down syndrome cases (Liehr et al. 2015). 

 

1.1.2.2.4. Multicolor FISH probe (mFISH) 

Multicolor FISH (mFISH) has been reported for the first time in 1989 by Nederlof and 

coworkers (Nederlof et al. 1989). Several approaches have been developed, that permit the 

simultaneous painting of all 24 human chromosomes in specific color combinations: spectral 
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karyotyping (SKY) (Schröck et al. 1996), multiplex FISH (M-FISH) (Speicher et al. 1996), m-

FISH (Senger et al. 1998), COmbined Binary Ratio labelling-FISH (COBRA-FISH) (Tanke et al. 

1999) and 24-color-FISH (Azofeifa et al. 2000). In all of these techniques a series of four to 

seven different fluorochromes in a combinatorial labeling and/or ratio-labeling is used (Riegel 

2014, Liehr et al. 2004, Liehr 2009). Nowadays, SKY and M-FISH are the most commonly 

applied WCP-based FISH approaches. Each of these techniques provides a precisely tool for 

characterization of complex chromosomal abnormalities in a single hybridization, and in one 

metaphase spread (Liehr 2015). 

 

1.1.2.2.5. FISH-banding approaches 

Although multiple FISH-banding approaches were reported, the only routinely used one is 

multicolor chromosome banding (MCB). It is available as a chromosome-specific and a whole 

genomic variant; the latter is called multitude multicolor banding (mMCB). MCB and mMCB is 

widely applied to describe marker and/or derivative chromosomes in clinical and tumor 

cytogenetics (Weise et al. 2003, Liehr et al. 2002a, 2002b, Liehr 2009). 

 

1.1.2.3. Array comparative genomic hybridization (array-CGH) 

Comparative genomic hybridization (CGH) has been introduced in 1992 for the comprehensive 

analysis of the entire genome and characterization of genetic imbalances in tumors, which could 

not be karyotyped (Kallioniemi et al. 1992). 

Subsequently array-based CGH (array-CGH) technique was established, which has much higher 

resolution than CGH [i.e. ~50-100 kilobases (kb)]. In this approach large numbers of mapped 

genomic clones, initially BAC or PAC (bacterial/P1-derived artificial chromosomes), which are 

spotted onto a standard glass slide (Fig.1.2) have been used as hybridization targets instead of the 

metaphase chromosomes (Solinas-Toldo et al. 1997, Pinkel et al. 1998). 

Array-CGH is suited to identify chromosomal imbalances particularly in leukemia and 

lymphoma, but balanced aberrations such as recurrent balanced translocations, inversions or 

insertions cannot be detected by this approach (Riegel 2014, Le Scouarnec and Gribble 2012).  

In contrast with array-CGH, SNP-array-CGH based approaches have the additional advantage of 

detecting copy number neutral loss of heterozygosity, which may be hints on deletions or 
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During the past decade, there has been tremendous progress in molecular genetics approaches 

(Murphy and Bustin 2009, Kohlmann et al. 2013). 

In the following emphases is given only to a few selected developments that are of special 

interest for this work. 

 

1.1.3.1. Multiplex ligation-dependant probe amplification (MLPA) 

MLPA is one of the variations of polymerase chain (PCR) reaction based techniques.  

MLPA can detect simultaneously the copy number changes, DNA methylation, and point 

mutations of up to 50 genomic DNA sequences in one single experiment (Fig 1.3), as it depends 

on specifically bound probes which are amplified by universal primers.  

MLPA was first described for the detection of exon alterations in the human BRCA1, MSH2 and 

MLH1 genes, and the detection of trisomies such as present in Down syndrome (Hömig-Hölzel 

and Savola 2012, Schouten et al. 2002). 

Lately, MLPA has been applied in both molecular diagnosis of tumors and in cancer research 

such as glioma, uveal melanoma, acute lymphoblastic leukemia (ALL), and breast cancer 

(Hömig-Hölzel and Savola 2012).  

Despite the advantages of MLPA as a fast, reliable, cost-effective technique, and e.g. method of 

choice for routine diagnostic of chronic lymphocytic leukemia (CLL), there are many limitations 

connected with this technique. MLPA is not suitable for the detection of balanced translocations, 

inversions, and unknown point mutations. Also in tumor cases which have low percentage of 

aberrant cells alterations may be missed by MLPA. Still in these situations sensitivity of MLPA 

could be increased by multiple target probes for the same chromosomal region or gene. 

Heterozygous deletions and/or duplications can be detected reliably by MLPA only if the sample 

contains at least 20% to 30% of the tumor cells in the case of deletion, and 40% of aberrant cells 

in duplication (Hömig-Hölzel and Savola 2012, Alhourani et al. 2014). 

In spite of the limitation of MLPA technique, it is a powerful tool for diagnosis and progression 

of cancer, considering all possible shortcuts adequately (Hömig-Hölzel and Savola 2012). 
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1.2. The biology of leukemia 

The emergence of blood cells is a complex and precise process, which is controlled by a number 

of humeral and cellular factors. It takes place primarily in the bone marrow, where all cellular 

blood components are derived from a pool of self-renewing haematopoietic stem cell (HSC) 

resides, which have the ability to differentiate into two main lineages: myeloid and lymphoid 

stem cells (Longo 2013). 

Subsequently lymphoid progenitors can differentiate into B- , T-, or natural killer (NK) cell lines. 

The differentiation of B-lymphocytes (or B-cells) occurs in the bone marrow, whereas T-

lymphocytes (or T-cells) progenitors migrate to the thymus. In Thymus they undergo several 

steps of proliferation and differentiation, and after that mature B- and T-cells migrate to 

peripheral lymphoid organs through the bloodstream (Hardy and Hayakawa 2001, Rothenberg et 

al. 2008). 

The development of myeloid progenitors leads to the production of granulocytes, monocytes, 

erythrocytes, or platelets, which have different roles in the innate immunity, the adaptive 

immunity, and blood clotting (Kondo et al.2010). 

The mechanisms which are involved in normal blood cells proliferation and differentiation are 

regulated very strictly; many factors have been identified in this process such as growth factors, 

interleukins, and transforming growth factor beta (TGF-β). The alterations in these regulation 

mechanisms can lead to uncontrolled cell proliferation and/ or failure in differentiation of 

progenitor cells to mature cells (Hardy and Hayakawa 2001). 

Leukemia is a neoplastic proliferation of hematopoietic stem cells. It is classified according to 

the length of survival of the patients and the predominant cell lineage which is represented by the 

leukemic clone into four broad subtypes: acute lymphoblastic, acute myelogenous, chronic 

lymphocytic, and chronic myelogenous (Davis et al. 2014) 

Whereas acute lymphoblastic leukemia appears more frequently in children, the other subtypes 

occur more often in adults. In addition to that acute leukemia is characterized by a rapid increase 

in the number of immature lymphoid or myeloid precursors in the bone marrow and the 

peripheral blood, i.e. immediate treatment is required (Mullighan et al. 2013, Dighiero et al. 

2008). The development of chronic leukemia tends to be slower than acute leukemia, as the 

malignant cells in chronic forms are capable of relatively maturation despite the uncontrolled 

proliferating (Rodríguez-Vicente et al. 2013). 
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1.3. Chronic lymphoblastic leukemia (CLL) 

Chronic lymphocytic leukemia (CLL) is the most frequent hematological malignancy in adults in 

Western countries, and it appears mainly in individuals >50 years of age (Chiorazzi et al. 2005). 

CLL is characterized by the accumulation of small B lymphocytes with a mature appearance in 

blood, bone marrow or other lymphoid tissues. Also it is considered as a heterogeneous disease, 

as the CLL patients show different and distinct clinical course and response to treatment 

according to the detected cell morphology, immunophenotype, as well as cytogenetic molecular 

genetic characteristics (Dighiero et al. 2008, Rodríguez-Vicente et al. 2013). 

Whereas approximately one-third of CLL patients survive for long time without requirement of 

treatment and have no or minimal signs and symptoms during their entire disease course, others 

can develop an aggressive clinical outcome of the disease including enlarged lymph nodes, 

enlarged spleen, and severe immunoglobulin deficiencies. The diagnosis of CLL is, according to 

the National Cancer Institute (NCI) guidelines, based on a clonal expansion of at least 5,000 B 

lymphocytes per μl in the peripheral blood for the duration of at least 3 months, and a 

characteristic immunophenotype combining the presence of CD19, the T-cell antigen CD5, and 

CD23 (Dighiero et al 2000, Matutes et al. 1994, Cheson BD et al. 1996). 

For the classification of CLL two staging systems are used: The Rai system which is applied 

more often in the United States, beside the Binet staging system which is the more prevailed in 

Europe. Both systems are suited for the assessment of disease progression and treatment 

planning, but they are not very effective for predicting early disease progression (Döhner et al. 

2000, Zwiebel et al. 1998). 

Along with the stage, additional prognostic markers are available to predict a patient's chances, 

in particular at early stages. The adverse prognostic factors such as advanced age, male gender, 

not-mutated IGHV (immunoglobulin heavy chain variable) gene, and high proportion of CLL 

cells containing ZAP-70 (more than 20%) or CD38 (more than 30%) are associated with shorter 

survival time. Favorable prognostic factors are low proportion of CLL cells containing ZAP-70 

(20% or less) or CD38 (30% or less) and CLL cells with a mutated IGHV (Cramer et al. 2011, 

Rodríguez-Vicente et al. 2013). 
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1.3.1. Cytogenetic abnormalities in CLL 

CLL is characterized by a high diversity in chromosomal aberrations. Several studies showed 

that detection and exact characterization of these abnormalities is essential in CLL prognosis and 

treatment. The International Workshop on Chronic Lymphocytic Leukemia guidelines consider 

the assessment of chromosomal abnormalities by FISH mandatory in clinical trials and desirable 

in general practice as a pre-treatment evaluation (Hallek et al. 2008). In the following the most 

important good, intermediate and adverse prognostic (cyto)genetic markers in CLL are 

presented. 

 

1.3.1.1. 13q14 Deletion 

Deletion within the 13q14 region is the most frequent aberration in CLL, with a prevalence of 

40-60%, and it is associated with good prognosis; such CLL patients are also denominated being 

of “13q-“type. But during the last years, several studies indicated that the situation may be more 

complex, suggesting that the percentage of cells with deletion, as well as the size of the deletion 

itself could influence the prognosis. Deletion in this region can vary substantially in size, ranging 

from only 300 kbp up to >70 Mbp. Thereby, other (tumor suppressor) genes located in 13q14.2 

(RB1 gene) or 13q14.3 as microRNAs (miR-15a and miR16-1) and DLEU7 gene can be deleted 

as well (Döhner et al. 2000, Dal Bo et al. 2011). 

Thus, two types of 13q14 deletions are proposed: del(13q) type I (short), which includes only 

13q14.3; and del(13q) type II (larger), which includes the RB1 locus with significantly shorter 

time to first treatment (TTFT) and overall survival (OS). Also the CLL patients who are carrying 

a high percentage (≥70 %) of 13q- cells have a shorter overall survival (OS) than patients with 

<70% 13q- cells, as well as a shorter TTFT (Dal Bo et al. 2011). 

In contrast to other recurrent abnormalities in CLL, 13q14 deletions could be heterozygous 

(monoallelic) or homozygous (biallelic). Biallelic losses in 13q14 are characteristically small and 

do not involve RB1. Also biallelic loss has been described in nearly 24% of 13q-type CLL 

patients (Garg et al. 2012). 

Several studies suggested that 13q14 heterozygous deletion is an early event in CLL, whereas 

deletion of the second copy of this region occurs at a later stage. Nevertheless the clinical impact 

of the presence of biallelic losses in 13q has been discussed controversially. Some authors 

hypothesized that the biallelic status is associated with a more aggressive clinical course as it 
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results from a karyotypic evolution, while others suggested that homozygosity does not affect 

TTFT or OS (Chena et al. 2008, Van Dyke, et al. 2009, Garg et al. 2011, Puiggros et al 2013). 

Still it is noteworthy that CLL patients with a monoallelic del(13q) show lower lymphocyte 

growth kinetics than patients with biallelic deletions (Rodriguez-Vicente et al. 2013). 

 

1.3.1.2. Trisomy 12 

Trisomy 12 is the third most common chromosomal abnormality in CLL, occurring in 10-20% of 

cases. It can be associated with other chromosomal rearrangements such as trisomy of 

chromosomes 18 and 19, as well as IGH rearrangement (Rodriguez-Vicente et al. 2013). 

Trisomy 12 is associated with an intermediate prognosis and an atypical morphology or 

immunophenotype. Nevertheless, this category still is controversial, as recent analysis of 

prospective trials suggested that although progression-free survival (PFS) may be shorter in CLL 

patients with trisomy 12, the overall survival is favorable. In concordance with this, trisomy 12 

in CLL is only rarely accompanied by TP53 mutations, but it is highly associated with mutated 

NOTCH1, as well as CD38 expression. The latter which could explain to some extent the bad 

prognosis of these subgroups of patients, and thus the different survival rates for this trisomy 12 

patients (Hallek et al. 2010, Matutes et al. 1996). 

Although trisomy 12 appears early in CLL evolution and thus could be a trigger for secondary 

chromosomal aberrations or mutations such as NOTCH1 and FBXW7, until now the critical 

genes which are involved in formation of this aberration remain unknown (Puiggros et al. 2014). 

 

1.3.1.3. 11q23 deletion 

Deletions in 11q23 are detected in 5 to 20% of CLL patients, and they appear generally in 

younger patients. Also they are associated with a more rapid progression of the disease and a 

shorter overall survival (Marasca et al 2013, Puiggros et al. 2014). 

11q23 deletions are highly variable in size, therefore these CLL-cases can be classified according 

to the size into “classical or large deletion” (more common and the deletion is normally >20 

Mbp) and “atypical or small deletion” (uncommon and more frequently associated with ATM 

mutations) (Gunn et al. 2009). 

The minimal affected region includes the chromosomal bands 11q22.3-q23.1, which harbor the 

ATM gene in almost all cases, as well as other genes such as BIRC3 (Puiggros et al. 2014). 
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ATM gene activates cell cycle checkpoints, and it has a central role in the DNA damage pathway 

as it can induce apoptosis in response to DNA breaks. ATM mutations have been reported in only 

8–30% of patients with del (11q), which indicates that other genes could contribute in the 

pathobiology of 11q deletions in CLL. One of these genes is BIRC3, which is located ~6Mb 

centromeric to the ATM gene locus, at 11q22 and it is considered to be a negative regulator of the 

MAP3K14 serin-treonine kinase, which is the central activator of non-canonical NF-κB signaling 

pathway (Rossi et al 2014, Rodriguez-Vicente et al. 2013). 

BIRC3 disruption, mutations and/or deletions are rarely detected in CLL at diagnosis (4% of 

patients). However BIRC3 involvement has been reported in 24% of fludarabine-refractory CLL 

patients. Thus BIRC3 disruption has been suggested to be specifically associated with a chemo-

refractory CLL subtype (Rossi et al. 2014). 

 

1.3.1.4. 17p13 deletion 

While deletions in 17p have been reported in 3-8% of CLL patients at diagnosis, the detection 

rate of this chromosomal abnormality increases up to 30% in CLL patients with advanced and/or 

relapsed disease. Thus, it is one of the most frequently acquired aberrations triggered after 

treatment, and most cases with del (17p) show loss of one copy and mutation of the remaining 

copy of TP53 gene (Delgado et al. 2012, Döhner et al 1995). 

17p-deletion is usually associated with a very aggressive clinical course and the shortest overall 

survival besides lack of response to therapy. Nonetheless, the percentage of aberrant cells has a 

clinical relevance, as the cut-off value for the percentage of 17p-deleted nuclei that predicted 

adverse outcome has been identified to be 20% (Puiggros et al. 2014, Greipp et al. 2013). 

The critical tumor suppressor gene in this region is TP53. This gene plays an essential role in 

inducing apoptosis or cell cycle arrest after DNA damage so that the patients harboring 17p 

deletion and/or TP53 mutations do not respond to standard initial therapy (fludarabine and 

alkylating agents), because the mechanism of these drugs is TP53-dependent. However, 

fludarabine refractoriness is caused by TP53 disruption in approximately 40% of CLL patients 

who did not respond to treatment, i.e. here other treatment approaches should be considered 

(Zenz et al. 2009, Rodriguez-Vicente et al. 2013). 17p-deletion often encompasses most of 

chromosome 17 short arm, and also it can be associated with the formation of an isochromosome 

i(17q) (Scheurlen et al. 1999). 



1.Introduction                                                                                                                                                               16 

Generally the formation of isochromosomes can occur during mitosis and meiosis, either by a 

misdivision of the centromere or by chromatid exchange involving two homologous 

chromosomes. Recently i(17q) in CLL has been reported to be associated with more complex 

karyotype, which could be a hint for more aggressive course of the disease than deletion of TP53 

alone (Mertens et al. 1994, Thompson et al. 2015, Alhourani et al. in press). 

 

1.3.1.5. 14q32.33 rearrangements  

CLL-associated chromosomal rearrangements in 14q32.33 could be either deletions (in 12-15% 

and includes IGH locus) being associated with a good prognosis, or translocations which were 

initially associated with a poor prognosis. Overall, recurrent balanced translocations involving 

14q32.33 are rare in CLL.  

However, the chromosomal partners involved have influence on the prognosis. While 

translocation t(14;19)(q32;q13) (IGH/BCL3) involving, trisomy 12, complex cytogenetics and 

unmutated IGHV has an inferior prognosis, the translocation t(14;18)(q32;q21) (IGH/BCL2) is 

not accompanied with complex karyotype or aggressive course of disease.  

On the contrary, translocations involving IGH and MYC gene in 8q24.2, identify a subgroup of 

CLL with higher incidence of poor prognostic features (Quintero-Rivera et al. 2009, Cavazzini et 

al.2008, Mayr et al 2006, Huh et al. 2008). 

 

1.3.1.6. Other abnormalities 

Several other recurrent chromosomal abnormalities have been described in CLL, such as deletion 

of the long arm of chromosome 6 which appears in approximately 6% of CLL patients and is 

associated with intermediate prognosis, atypical morphology, splenomegaly, and higher 

detectable rates of CD38. Also Schwaenen et al. (2004) described 2p gains, including MYCN 

gene in a low proportion of CLL cases. Also abnormalities like 8p losses and 8q gains, total or 

partial trisomy 3, trisomy 8 and /or trisomy 18 have been reported in CLL (Cuneo et al. 2004, 

Fabris et al. 2013, Puiggros et al. 2014, Rodriguez-Vicente et al. 2013, Stilgenbauer et al. 1999, 

Schwaenen et al. 2004). 
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1.3.1.7. Complex karyotype 

The presence of three or more chromosomal aberrations per patient is considered as a complex 

karyotype. The incidence of complex karyotypes in CLL is 20% (Puiggros et al. 2014). 

The genomic complexity is associated with progressive and aggressive disease, short survival, 

and decreased therapeutic efficacy. Also there is highly significant association between complex 

karyotypes and 11q or 17p deletions. Ouillette et al. (2010) demonstrated, that genomic 

complexity in CLL was a consequence of an impaired DNA double-strand break response due to 

multiple gene defects, including not only TP53, but also ATM and other genes located in 11q or 

RB1 gene located in 13q14 (Kujawski et al.2008, Ouillette et al. 2010). 

 

1.3.1.8. Somatic mutations in CLL.  

The mutational status of immunoglobulin heavy chain variable (IGHV) gene in CLL has a strong 

and independent prognostic value. Accordingly CLL patients with unmutated IGHV genes have 

higher risks of relapse after stem cell transplantation and they reveal more frequently poor 

prognosis aberrations (11q-, 17p-); in addition to that they have shorter OS. Favorable 

aberrations (13q as a single abnormality) are more frequent in such CLL patients with mutated 

IGHV gene who have better OS (Oscier et al. 2002, Hamblin et al. 1999, Ritgen et al. 2003). 

The IGHV mutation status is strongly associated with ZAP-70 expression levels: CLL patients 

with mutated IGHV genes are ZAP-70-positive, whereas ZAP-70-negative ones present more 

frequently the unmutated IGHV status. Thus, the ZAP-70 expression levels have been suggested 

as a surrogate marker for the investigation of IGHV mutation status (Wiestner et al. 2003, 

Orchard et al. 2004). 

Also, next-generation sequencing (NGS) techniques provided better insights into genomic 

complexity and heterogeneity of CLL. Novel gene mutations have been identified in CLL, such 

as in NOTCH1 and SF3B1. The detection rate of such abnormalities is 5% to 20%, and they are 

associated with advanced disease and poor prognosis (Quesada et al. 2012, Rodriguez-Vicente et 

al. 2013). 

NOTCH1 encodes a transmembrane protein that acts as a ligand-activated transcription factor. 

NOTCH1 signaling plays a critical role in CLL cell survival and apoptosis resistance. The 

mutation of NOTCH1 leads to oncogenic pathway activation and it is more frequently associated 

with trisomy 12, unmutated IGHV, and poor prognosis. In addition to that the presence of 
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NOTCH1 mutation is considered as an independent predictor of shorter overall survival in CLL 

(Balatti et al. 2012, Campregher et al. 2014). 

Finally, SF3B1 gene is to mention as a core component of the spliceosome, which is involved in 

the splicing of precursor messenger RNA and in the formation of mature mRNA. Mutations in 

this gene appear in ~10% of CLL patients at diagnosis, and are associated with poor prognosis 

markers such as del (11q) and unmutated IGHV status. Interestingly, recurrent mutations of 

SF3B1 have been reported in 17% of CLL patients who showed refractory to fludarabine 

treatment (Rossi et al. 2011, Quesada et al. 2012). 

 

1.3.2. Treatment of CLL 

Many factors play a role in the determination of the treatment of CLL such as the prognosis 

based on afore mentioned markers, patients’  age, and the ability of the patient to tolerate side 

effects of treatments (Smolewski et al. 2013). The main used treatments are: 

 

1.3.2.1. Standard chemotherapy and immunochemotherapy 

Chemotherapy is recommended only for the CLL patients with advanced or progressive disease, 

as some CLL patients show a stable clinical course of the disease and they could survive for 

many years without any treatment (Dighiero et al. 2000). 

Previously, chlorambucil was the drug of choice for the treatment of CLL patients with 

progressive or advanced disease. Currently, purine-nucleoside-analogue- (PNA-) based regimens 

such as fludarabine are considered the first line treatment for CLL. They could be used as a 

monotherapy or in a combination with cyclophosphamide, as the combination therapy appeared 

to be more effective than monotherapy with respect to overall response, and complete remission 

(Dighiero et al. 1998, Rai et al. 2000, Eichhorst et al. 2006). Addition of monoclonal antibodies 

such as rituximab to the combination of fludarabine and cyclophosphamide can increase the 

overall survival and complete remission of the CLL patients, and it is proved to be especially 

effective in refractory/relapsed CLL patients to the dual treatment (Hallek et al. 2010, Robak et 

al. 2010). 

Rituximab is considered as anti-CD20, which is primarily found on the surface of B cells, 

therefore rituximab is used to treat diseases which are characterized by over-proliferation of B 

cells. Whereas this combination of drugs is acceptable for younger, physically fit patients, it has 
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limitations in the less fit group, mainly due to the risk of myelosuppression (Smolewski et al. 

2013). 

Recent clinical trial suggested bendamustine, which is a bifunctional agent composed of an 

alkylating nitrogen mustard group and a purine-like benzimidazole ring to be included in CLL 

treatment regimens (Knauf et al. 2009). On the other hand, alemtuzumab, which is a 

recombinant, humanized anti-CD52 monoclonal antibody, is recommended as a first line 

treatment in the CLL patients with 17p deletion and as a second- or third line treatment alone or 

in combination with other antineoplastic drugs in the CLL patients without 17p deletion, 

especially for those with hyperleukocytosis and no bulky nodal disease (Badoux et al. 2011, 

Hillmen et al. 2007, Gritti et al. 2012) 

 

1.3.2.2. Stem cell transplantation 

Although allogeneic hematopoietic stem cell transplantation (allo HSCT) introduces the only 

potentially curative treatment option for CLL patients, this approach is suitable for only a 

minority of CLL patients, because fully ablative regimens are associated with significant 

morbidity and mortality. Thus it has been considered as the treatment of choice for physically fit 

CLL patients who carry poor-risk features, such as refractory to purine analogs, short response 

time (<24 months) to intensive treatments, and/or presence of 17p/TP53 abnormalities 

(Jaglowski et al. 2012). Recently, reduced-intensity conditioning was introduced for allo HSCT 

(mini allo HSCT), which is better tolerated than the myeloablative one (Smolewski et al. 2013). 

 

1.3.2.3. New anticancer agents in CLL 

A number of novel therapies and antibodies are available now for the treatment of CLL, such as 

Obinutuzumab (GA101) which is the first humanized anti-CD20 monoclonal antibody. It has 

been reported in preclinical studies to be more effective than rituximab in depleting B cells, 

including CLL cells (Illidge et al. 2012).  

Also Oblimersen, which is an antisense oligodeoxyribonucleotide blocking transcription of 

proapoptotic Bcl-2 protein can make cancer cells more sensitive to chemotherapy. Other agents, 

like flavopiridol is a synthetic flavone, which is considered as a potent inhibitor of cyclin 

dependent kinases (CDKs). Also it triggers tumor cell TP53-independent apoptosis, making it 

applicable for such CLL patients with deletion in 17p. It has to be considered also toxicity of 
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flavopiridol being significant, including tumor lysis, infections, or diarrhea (Smolewski et al. 

2013). 

Finally, the immunomodulatory agent lenalidomide, which is one of the novel drug agents used 

to treat multiple myeloma, shows also activity in CLL. Lenalidomide is an effective and well-

tolerated treatment alternative for elderly, symptomatic patients with CLL (Chen et al. 2011). 
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1.6. Aim of study/Questions worked on 

Presence of cytogenetic abnormalities is a hallmark in CLL, according to which different 

prognosis and treatment regimens should be considered. Thus the detection of theses aberrations 

is of extreme importance, and it can be performed by various techniques. GTG-banding has a 

detection rate of ~48%, even after using a suitable mitogen such as TPA. Alternative and/or 

complementary approaches are iFISH, MLPA and/or aCGH techniques. 

The aims of the present work were to: 

1. How many cryptic chromosomal aberrations in the 85 studied CLL cases could be 

detected by MLPA, in comparison with routine iFISH and GTG-banding? 

2. Could the underlying chromosomal abnormalities in CLL be precisely identified, to avoid 

misinterpretation of the prognosis so subsequently incorrect treatment regimens? 

3. What is the percentage of BIRC3 disruption in the studied 117 CLL cases, and its 

correlation with ATM deletion? 

4. Is BIRC3 disruption specific only for CLL? 

5. Is presence or absence of i(17q) in CLL able  to identify a new subgroup with more 

aggressive clinical course of the disease, and what is the best way for its detection? 
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Cytogenetics and molecular cytogenetics are and will continue to be indispensable tools in 

cancer diagnostics. Leukemia and lymphoma diagnostics are still emphases of routine 

(molecular) cytogenetics and corresponding studies of solid tumors gain more and more 

prominence. Here, first a historical perspective of molecular tumor cytogenetics is 

provided, which is followed by the basic principles of the fluorescence in situ hybridization 

(FISH) approach. Finally the current state of molecular cytogenetics in cancer diagnostics 

is discussed. Nowadays routine diagnostics includes basic FISH approaches rather than 

multicolor-FISH. The latter together with modern high-throughput methods have their 

impact on research to identify new tumor-associated genomic regions.
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Even though they have been called outdated for 

decades [1], cytogenetics and molecular 

cytogenetics still are and will stay in future 

indispensable tools in diagnostics. This state-

ment is true for clinical aspects of prenatal and 

postnatal patient care but also for patients suf-

fering from neoplasia, in particular leukemia, 

lymphoma and solid tumors, as well. In this 

review, the development of cytogenetics and 

molecular cytogenetics is summarized, the basic 

technique of molecular cytogenetics is outlined 

together with an overview on the dif-ferent 

kinds of probes available for fluores-cence in 

situ hybridization (FISH) and the current state 

of molecular cytogenetics in can-cer diagnostics 

is given. This includes espe-cially the 

commercially available probe sets applied in 

routine neoplasia diagnostics and those 

multicolor FISH (mFISH) tools used in research 

to identify new tumor-associated criti-cal 

genomic regions.

Cytogenetic & molecular cytogenetics

The history of human cytogenetics started not 

before the year 1879. At this time, micro-scopes 

of a certain quality were available, which were 

prerequisite to localize and identify 

chromosomes in a cell. All chromosomal studies 

between 1879 until approximately

1970 were retrospectively summarized as hav-

ing been performed in the ‘pre-banding era’. 

Only so-called ‘classical cytogenetic studies’

were possible in that time, that is, chromo-

somes could exclusively be distinguished by 

size and centromere index [2]; nowadays classi-

cal cytogenetics is still essential in animal [3]

and plant cytogenetics [4]. However, the 

determination of the correct modal human 

chromosome number in 1956, the first charac-

terization of inborn numerical chromosome 

aberrations (like Down syndrome) as well as the 

detection of first tumor-associated aberra-tions 

were all achieved during the early days of 

classical cytogenetics [2]. As summarized by E 

Gebhart (1989) [5], tumor-associated chro-

mosomal anomalies were indeed already recog-

nized by the first observer of human 

chromosomes, J Arnold in 1879. In 1890, it was 

D von Hansemann who highlighted that 

unusual, asymmetric mitosis can be observed 

only in cancer cells. Partially based on this, T. 

Boveri established in 1914 a ‘chromosome 

theory of cancer development’ [5], which turned 

out to be basically true many years later [6]. 

Between 1927 and 1956, there were multiple 

attempts to characterize chromosome content 

and numbers of tumor cells, which were 

basically hampered by the fact that the
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Figure 1. Schematic drawing depicting the four different kinds of 

fluorescence in situ hybridization-probes as differentiated in this 

review. (A) Locus-specific, single-copy probes, including 

subtelomeric probes. (B) Probes specific for repetitive sequences 

like telomeric (probe 1) and centromeric regions (probe 2). (C) A 

whole chromosome painting probe and

(D) partial chromosome painting probes.

constitutional chromosome number in human was not deter-

mined (correctly) at that time. It is noteworthy that the chro-

mosomal aberration being typical for chronic myelogenous 

leukemia, so-called Philadelphia chromosome, was already 

detected in the ‘pre-banding era’ (in 1960). The same holds 

true for characterization of monosomy 22 as being typically 

observed in meningioma (in 1967), and double minutes (in 

1962) later being identified as one of the cytogenetic equiva-

lents of oncogene amplification [5]. Interestingly, even G 

Mendel, the ‘father of modern genetics’ postulated the exis-

tence of linkage groups (in German ‘Kopplungsgruppe’) for 

the features he studied in peas [7]; and these linkage groups 

were nothing else than chromosomes.

Logically, after ‘pre-banding era’ came the ‘pure banding era’, 

starting with the invention of the Q-banding method by Lore 

Zech (Uppsala) in 1968 [8]. Based on this, the GTG-banding 

approach (G-bands by trypsin using Giemsa) was established in 

1971, which remained the gold standard of all cytogenetic tech-

niques until now [2,5]. Using banding cytogenetics, more chro-

mosomal abnormalities, like translocations, inversions, deletions 

and insertions, could be detected and precisely characterized, 

which was impossible before. Many tumor-specific aberrations 

were clearly identified since then, like the aforementioned Phila-

delphia chromosome which was characterized to be the result of 

a reciprocal translocation t(9;22)(q34;q11) in 1973. Also the 

acquired translocation t(8;14)(q24;q32) detected in Burkitt’s 

lymphoma in 1976 and the characterization of homogeneously

staining regions in 1978 were important findings enabled due 
to banding cytogenetics [5].

As black and white banding pattern together with chromo-

some morphology are the only two parameters that can be evalu-

ated in GTG-banding, origin of additional material in a derivative 

chromosome often remains unclear. In order to over-come this 

kind of limitations, molecular cytogenetic approaches were and 

are necessary. In situ hybridization allows for examina-tion of 

nucleic acid sequences inside cells or on chromosomes and was 

first described in 1969 as a radioactive approach. As 

nonradioactive probe labeling was not invented before 1981, 

non-radioactive FISH was needed until 1986, until it was ready 

to be used in human cytogenetics. Apart from avoidance of 

health-threatening radioactivity, FISH speeds up analysis time 

and comprises the possibility to detect several targets simulta-

neously (see below in section “FISH-techniques”) [2].

Thus, ‘pure banding era’ finished in 1986 with the first suc-

cessful molecular cytogenetic experiment on human chromo-

somes by D Pinkel and colleagues. The period since then may 

be denominated ‘banding and molecular cytogenetic era’ as 

banding cytogenetics and molecular cytogenetics 

complemented each other and became important tools on an 

equal footing in many fields of human diagnostics, including 

the care of cancer patients. Initially, there were two basic 

approaches in molecular cytogenetics: FISH and primed in 

situ hybridization (PRINS). However, the latter never 

acquired the importance of FISH, as it is much less robust and 

was never developed in a multicolor variant [2,9].

Especially important for tumor cytogenetics was inventing a 

molecular cytogenetic approach called comparative genomic 

hybridization (CGH). In CGH, two genomes are analyzed for 

gains and losses of genomic material at a low resolution of 5–10 

Mb. Even though a main feature of many solid tumors is their 

abnormal rapid in vivo growth, corresponding tumor cells often 

refrain from growing in cell culture. Thus, originally CGH gave 

first insights into chromosomal imbalances of many previously 

not cytogenetically analyzed solid tumor types. Indeed, CGH was 

applied more in research rather than as a diagnostic tool [10]. An 

advancement of this chromosome-based CGH approach is the so-

called array-CGH, providing much higher resolution of 

approximately 50 kb or even less, and being used routinely in 

clinical rather than cancer diagnostics, however, applied in 

cancer research [2,11,12].

Before discussing molecular cytogenetic applications in 
can-cer diagnostics, some aspects about how the FISH 
technique itself is performed need to be stressed.

FISH – technical aspects

DNA probes applied in FISH can be grouped in different 
ways; here we suggest doing it as follows:

.  locus-specific, single-copy probes;

.  probes specific for repetitive sequences;

.  whole chromosome painting probes (wcp);

.  partial chromosome painting probes (pcp) (FIGURE 1).

Expert Rev. Mol. Diagn. 15(4), (2015)
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All four kinds of probes may be used in diagnostics and 

should be applied at least in two-color FISH experiments: one 

probe as specific for the region of interest, the second one as 

a control. Most commercially available probes are locus-

and/or centromere-specific ones (see TABLES 1–3) [2].

Besides, mFISH probe sets can be of importance in molecu-lar 

tumor-cytogenetic diagnostics, and they are even more con-

siderable in research. mFISH is defined as the simultaneous use 

of at least three different ligands or fluorochromes for the spe-

cific labeling of DNA, excluding the counterstain. The first 

commercially available and still diagnostically relevant mFISH 

probe sets were put together in 1996 by M Speicher and col-

leagues and E Schro c̈k and coworkers, respectively, enabling 

the staining of each of the 24 human chromosomes in different 

colors using wcp probes. This kind of probe set was developed in 

parallel, with slight modifications and described under dif-ferent 

names as mFISH (=multiplex FISH), SKY (=spectral 

karyotyping), multicolor FISH, COBRA-FISH (=COmbined 

Binary RAtio labeling FISH) or 24-color FISH [2]. A summary 

on possible applications besides cancer diagnostics can be found 

elsewhere [13].

As mFISH methods applying wcp probes are not suited for 

exact chromosomal breakpoint characterization, different 

approaches summarized as ‘FISH banding methods’ were 

developed. The latter ‘are any kind of FISH technique, which 

provide the possibility to characterize simultaneously several 

chromosomal subregions smaller than a chromosome arm with 

resolution down to 5 Mb (excluding the short arms of the 

acrocentric chromosomes). FISH banding methods fitting that 

definition may have quite different characteristics, but share the 

ability to produce a DNA-specific chromosomal banding’ [14]. 

The most often applied FISH-banding approach is the 

microdissection-based multicolor banding (MCB or m-band). 

Other mFISH probe sets such as for all subtelomeric regions (M-

Tel-FISH) or variants of centromere-specific multicolor FISH 

(=cenM-FISH) are commonly not applied in cancer diagnostics 

[2]. Array-CGH and next-generation sequencing (NGS) methods 

are not considered as ‘molecular cytogenetic’ approaches, even 

though some authors surprisingly do this [15]. The latter may be 

warranted by the recent description of chro-mothripsis based on 

NGS [16]. However, it has to be empha-sized that complex 

chromosomal rearrangements and even conditions like 

‘chromosome-pulverization’, which may be one step of 

chromothripsis, are known for decades already from pre-banding 

era of cytogenetics [5].

Molecular cytogenetics in cancer diagnosis

It goes without saying that in neoplasia the identification of 

cytogenetic markers
1

is of high clinical significance for diag-
nostics, follow-up studies and prognosis [5,17,18]. In the first 
years after introduction of molecular cytogenetics into cancer

1
A ‘cytogenetic marker’ is a set phrase in tumor cytogenetics. It can be, 

for example, a trisomy 8 as well as a translocation leading to onco-gene 

activation or a deletion leading to tumor-suppressor gene loss.

Table 1. List of most important commercially available 
fluorescence in situ hybridization-probes for leukemia.

Leukemia subtype Target region Gene

Myelodysplastic 3q26 EVI1

syndrome 4q24 TET2
5q31.2 EGR1

6p22 and 9q34 DEK/NUP214

7q22 and 7q31 RELN/TES

11q21 MAML2

16p13 and 16q22 MYH11/CBFB

20q12 and 20q13.12 PTPRT/MYBL2

Chronic myeloid 4q12 FIP1L1/CHIC2/PDGFRa

leukemia 5q32~33 PDGFRB
9p24 JAK2

9q34 and 22q11 BCR/ABL

11q22 ATM

17p13 P53

Acute myeloid 3q26 EVI1

leukemia (AML) 4q12 KIT

5q31.2 EGR1

5q32 CSF1R

5q35 NPM1

6p22 and 9q34 DEK/NUP214

6q23 MYB

6q27 MLLT4

7q22 and 7q31 RELN/TES

9p24 JAK2

9p21.3 MLLT3

11p15 NUP98

11q23 MLL

15q24 and 17q21.2 PML/RARa

16p13 and 16q22 MYH11/CBFB

20q12 and 20q13.12 PTPRT/MYBL2

21q22 ERG

22q22 and 8q21 RUNX1/RUNX1T1

Chronic lymphocytic 3q26 TERC

leukemia 5q32 CD74

6q21 SEC63

6q23 MYB

11q22 ATM

11q13 Cyclin D1

11q22 and 18q21 BIRC3/MALT1

12q13 GLI

13q14.3 DLEU2 or D13S25

14q32 and 11q13 IGH/CCND1

17p13 P53

19q13 BCL3

Acute lymphocytic Xp22.3 CRFL2

leukemia Xp22.3 P2RY8

1p32 SIL/TAL1

1q23 and 19p13.3 PBX1/TCF3

4q21 and 11q23 MLL/AFF1

5q35 TLX3

6q23 MYB

7q34 TCRB

8q24 C-MYC

9p21 P16 or CDKN2A

9p13 PAX5

9q34 and 22q11 BCR/ABL

10q23 PTEN

10q24.3 TLX1

11q23 MLL

12p13 and 22q22 TEL/AML1

14q11 TCR A/D

14q32.13 TCL1

14q32.3 IGH

19p13 E2A

22q22 and 8q21 RUNX1/RUNX1T1
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Table 2. List of most important commercially 
available fluorescence in situ hybridization-probes for 
lymphoma.

Lymphoma subtype Target region Gene

Anaplastic large-cell l 2p23 ALK

5q35 NPM1

Burkitt l 2p11 IGK

8q24 C-MYC

14q32.3 IGH

17p13 P53

21q11 IGL

Diffuse large B-cell l 2p16 REL

2p11 IGK

3q27 BCL6

8q24 C-MYC

9p21 P16 or CDKN2A

14q32 and 18q21.33 IGH/BCL2

17p13 P53

19q13 BCL3

21q11 IGL

Follicular l 3q27 BCL6

6q23 MYB

9p21 P16 or CDKN2A

14q32 and 18q21.33 IGH/BCL2

17p13 P53

Mantel cell l 5q32 CD74

9p21 P16 or CDKN2A

11q22 and 18q21 BIRC3/MALT1

13q14.3 DLEU2

14q32 and 11q13 IGH/CCND1

17p13 P53

19q13 BCL3

Multiple myeloma 1q21 and 1p36 c-MAF/SRD

1q21 and 8p21 c-MAF/n.a.

4p16.3 FGFR3

5q32 CD74

6q23 MYB

11q22 ATM

13q14 DLEU2

14q32 and 4p16 IGH/FGFR3

14q32 and 11q13 IGH/CCND1

14q32 and 16q23 IGH/MAF

14q32 and 20q12 IGH/MAFB

15q22 and 9q34 n.a. ! detection
of hyperdiploidy

17p13 P53

Others 2p23 ALK

3q12 TFG

3q27 BCL6

5q35 NPM1

6q23 MYB

10p11.2 KIF5B

11q21 and 18q21 API/MALT1

11q22 ATM

13q14.3 DLEU2

14q32 and 18q21.33 IGH/BCL2

17p13 P53

l: Lymphoma; n.a.: Not available.

diagnostics, FISH was most often considered as a tool to con-

tinue and refine previous cytogenetic studies. This way to 

choose and apply corresponding FISH-probes represents still 

a major part of molecular cytogenetic diagnostics [19– 21]. 

Besides, molecular cytogenetics is more and more performed 

indepen-dently from banding cytogenetic analyses in all kinds 

of tumors, too [22]. This development was, among others, sup-

ported by the fact that every cytogenetic analysis is in need of 

dividing cells to produce metaphase spreads. In other words, 

time-consuming cell culture is necessary. Thus, interphase-

directed FISH (iFISH) analyses on tumor cell smear, touch 

preparations or tissue sections are more and more in use with 

the goal to achieve a quick result [23– 25].

FISH approaches are especially suited to characterize chro-

mosomal and subchromosomal copy number changes and gene 

fusions due to translocations or other rearrangements. All these 

features are characteristically found acquired aberrations in

cancer [5,18,19].

In the following, different FISH-probe types and possible 

applications in cancer diagnostics are summarized to the best 

of our knowledge. Various FISH probes may be applied in a 

specific case due to a finding in banding cytogenetics, indica-

tion specific and/or in follow-up studies.

Application of centromeric probes

Exclusive probes directed against the centromeric regions of one 

specific human chromosome, each, are available for all human 

gonosomes and most autosomes except for #5, #13, #14, #19, 

#21 and #22 [26]. As centromeric probes provide dot-like signals 

after FISH, they can be evaluated in metaphase and interphase 

easily. They are commercially available and highly suited to 

determine and/or confirm mono-, tri- or tetrasomies of single 

chromosomes in tumor cells. Due to often low banding resolu-

tion of tumor chromosome, preparations such a metaphase-

directed FISH test may even be necessary in routine diagnostics, 

for example, to determine or confirm the origin of a trisomic 

chromosome derived from C-group. Numerical aberrations may 

be observed for practically all human chromosomes in cancer. So 

just three examples where these probes may be of importance are 

given here as monosomy 7, trisomy 8 or tetrasomy 8, which may 

all be present in acute leukemia [27,28]. Another important field 

where especially gonosomal centromere-directed probes are 

regularly applied is follow-up of sex-mismatched bone marrow 

transplantation [29,30].

For application of all centromeric probes, one possible pitfall 

has to be highlighted here: centromeric regions may be subject to 

so-called chromosomal heteromorphisms. There are reports on 

false-positive and false-negative results after pure iFISH 

diagnostics using this kind of FISH-probes [26]. Thus, centro-

meric probes should only be applied if metaphase FISH was 

done at least once with the corresponding probes. Nowadays, 

locus-specific probes (see below) suited for iFISH are available 

for all human chromosomes, which should preferably be applied 

in all neoplastic samples of patients where no informa-tion is 

available on potential centromeric heteromorphisms.
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Table 3. List of most important commercially 
available fluorescence in situ hybridization-probes for 
solid tumors.

Tissue type probe Target region Gene

to cancer

Bladder 9p21 P16 or CDKN2A

17p13 P53

Bone and soft tissue 1p36.2 and 3q25 CAMTA1/WWTR1

1p36 PAX7

2q33 CREB1

2q36 PAX3

3q12 TFG

6p21 PHF1

7p21 ETV1

9q22 NR4A3

11p15.5 CARS

11p13 WT1

11q24 and 22q12 FLI1/EWSR1

12q13 DDIT3

12q13~q14 CDK4
12q14 HMGA2

12q15 MDM2

13q14 FOXO1

16p11 FUS

17q21 and 22q13 COL1A1/PDGFB

18q11.2 SS18

21q22 ERG

22q12 EWSR1

Breast 1q32 MDM4

1q41 CENPF

3q26 SOX2

5q31.2 EGR1

6q23 MYB

6q25 ESR1

7p12 EGFR

8p11.2 FGFR1

8q24 C-MYC

10q23 PTEN

10q26 FGFR2

11q13 CCND1

11q22.3 ATM

12p12 KRAS

12q14 HMGA2

15q25 NTRK3

17p13.1 P53

17q11.2~12 HER2/NEU1/ERBB2

17q21~22 TOP2A
20q13 ZNF217

CNS 1p36.2 and 3q25 CAMTA1/WWTR1

1p36 MEGF6

1q25 ABL2

1q41 CENPF

2p24 NMYC

3p25 VHL

3q26 SOX2

6q22 ROS1

7p11.2 EGFR

9p21 CDNK2A

10q23 PTEN

Table 3. List of most important commercially 
available fluorescence in situ hybridization-probes for 
solid tumors (cont.).

Tissue type probe Target region Gene

to cancer

12q13~q14 CDK4
15q25 NTRK3

17p13 P53

19p13 ZNF44/ZNF

19q13 CRX

Colorectal 3q26 SOX2

6q23 MYB

6q24.3 RREB1

7q34 BRAF

10q23 PTEN

12p12 KRAS

17p13.1 P53

18p11.32 TYMS

Esophagus 8q24 C-MYC

9p21 P16 or CDKN2A

17p13.1 P53

17q11.2~12 HER2/NEU1/ERBB2
18p11.32 TYMS

20q13 ZNF217

Eye 1q32 MDM4

13q14 RB1

Head and neck 1q41 CENPF

3p25 VHL

5q32 CD74

11q21 MAML2

12p13.3 FOXM1

19p13.2 BRD4

Kidney Xp11.23 TFE3

3p25 VHL

3p14 FHIT

6p21 TFEB

7q31 MET

10q23 PTEN

17p13 YWHAE

Liver 4q12 KIT

8q24 CMYC

9p21 P16

11q13.3 FGF3,4,19

12p12 KRAS

17p13.1 P53

18q21 BCL2

Lung 1q32 MDM4

2p23 and 2p21 ALK/EML4

3p14 FHIT

3q12 TFG

3q26 SOX2

4q12 PDGFRA

5q32 CD74

6q22 ROS1

7p12 EGFR

7q34 BRAF

10p11.2 KIF5B

10q26 FGFR2
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Table 3. List of most important commercially 
available fluorescence in situ hybridization-probes for 
solid tumors (cont.).

Tissue type probe Target region Gene

to cancer

Skin (melanoma) 6q23 MYB

6p25 RREB1

7p21 ETV1

7q34 BRAF

9p21 P16

10q23 PTEN

11q13 CCND1

22q12 EWSR1

Stomach 3q26 SOX2

4q12 KIT

4q12 PDGFRA

7q31 MET

8q24 CMYC

10q23 PTEN

10q26 FGFR2

11q22 and 18q21 BIRC3/MALT1

17p13.1 TP53

17q21 ERBB2

18p11.32 TYMS

Ovary 3q26 PIK3CA

8q24 CMYC

9p21 P16

10q26 FGFR2

11q13 CCND1

12p12 KRAS

17p13.1 P53

19q13 CRX

20q13 NCOA3(AIB1)

Pancreas 5q32 CD74

6q24.3 RREB1

7q34 BRAF

9p21 P16

10q23 PTEN

11q22.3 ATM

12p12 KRAS

17q13 P53

Prostate Xq12 AR

3p14 FHIT

3q27 ETV5

7p21 ETV1

8q24 C-MYC

9p21 P16

10q23 PTEN

12p13.3 FOXM1

12q13q14 CDK4

17p13.1 P53

21q22 ERG

Thyroid gland 1q22~q23 NTRK1
2q13 PAX8

3q12 TFG

7q34 BRAF

10q11.2 RET

10q23 PTEN

Table 3. List of most important commercially 
available fluorescence in situ hybridization-probes for 
solid tumors (cont.).

Tissue type probe Target region Gene

to cancer

Uterus 3q26 PIK3CA

5q32 CSF1R

6p21.3 PHF1

7p15 JAZF1

8q24 CMYC

9p21 P16

10q23 PTEN

10q26 FGFR2

12p12 KRAS

17p13 YWHAE

17p13.1 P53

17q12 HER2/NEU1/ERBB2

Others 1p36 SRD

1p32 and 1q21 CKS1B/CDKN2C

3p14 FHIT

3q26 TERC

5p15 TERT

6q22 MET

7q31 ROS1

12p13.3 FOXM1

Application of locus-specific probes

In TABLES 1–3 major parts of the presently commercially 

available locus-specific probes for metaphase FISH and 

iFISH applica-tions in human cancer diagnostics are listed 

[31– 37]. According to tumor type, application of one or more of 

these probes may be indicated.

The sheer amount of available locus-specific probes 

hampers a detailed discussion of each of them in this review. 

Use of locus-specific probes in neoplasia was reviewed before 

for leuke-mia [29,38– 44], lymphoma [44– 46] and solid tumors 

[44,47], like skin [44,47– 49], lung [50] or breast cancer [51,52].

However, the commercially available probes can be 
catego-rized as follows (FIGURE 2):

. dual-color break-apart probes, detecting oncogene activa-
tion [5] by disruption of the corresponding tested gene;

. dual-color (dual) fusion probes, which normally are separated 

from each other in the human genome, but can come into close 

proximity due to different kinds of rearrangements, leading in 

the end also to oncogene activation [5];

. dual-color probes meant to detect deletion of tumor-
suppressor genes [5];

. dual-color probes for detection of copy number alterations of 
parts of the genome – especially oncogene amplification [5];

. dual-color probes just for detection of copy number altera-
tions of major parts of or the entire genome (hypo- or 
hyper-diploidy [5]) localized at different chromosomes.

The same probe may be suited to detect oncogene disruption,

translocation and amplification or hyper-/hypodiploidy.

Expert Rev. Mol. Diagn. 15(4), (2015)



2. Results 29

Cancer molecular cytogenetics   Review
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Figure 2. Schematic depiction of how locus-specific probes are normally combined in commercially available probe sets; the signal 
distribution as observed in an normal interphase cell is shown in the upper, the abnormal situation in the lower row.

(A) Dual-color break-apart probe; (B) dual-color dual fusion probe; (C) dual-color probe-set for detection of a tumor-suppressor 
gene deletion; (D) dual-color probe-set for detection of an oncogene-amplification – in D1 a gene amplification due to double 
minutes and in D2 a corresponding amplicon due to a homogeneously staining region is shown; and (E) dual-color probe-set for 
detection hypo- or hyperdiploidy – here a triploidy is detected.

Here it must especially be stressed that molecular cytogenetic 

methods (except for CGH) are single-cell-directed tests. Thus, 

low-level mosaics can be detected that may be missed by 

molecular genetic approaches [53]. On the other hand, molecu-lar 

approaches have the advantage of being inexpensive and able to 

cover more targets at once. An approach that could the-oretically 

have the potential to partially replace (molecular) cytogenetics in 

tumor diagnostics is multiplex ligation-dependent probe 

amplification. This PCR-based technique can be used to screen 

for fusion genes, point mutations and copy number variations 

[54]. However, it has to be checked carefully when information on 

low-level mosaics can be renounced, and it is necessary for 

accurate patient care. This statement is true for all molecular 

approaches testing millions of cells at a time. Best may be to 

combine the available approaches in a tumor-specific scheme 

such as, for example, recently suggested for chronic lymphocytic 

leukemia [39].

Application of whole chromosome painting probes

Metaphase-directed two- or three-color FISH using wcp

probes may be necessary in cancer diagnostics regularly, 

especially after derivative chromosomes were detected during 

banding cyto-genetic analyses [55]. Still banding cytogenetics 

and/or the tumor-subtype need to provide clear hints that 

correct wcp probes are chosen for further characterization of 

an acquired derivative chromosome; otherwise, if available, 

mFISH using all wcp probes in different fluorochrome 

combinations may be indicated [56,57]. Of course, wcp probes 

may also be combined with other probes like pcp-, locus-

specific or centromeric ones. Finally, it is a truism that wcp-

and pcp-probes are not suited for routine iFISH studies [58].

Application of mFISH probe sets

In neoplasia, characterization of complex rearrangements (CCR) 

may also be necessary in routine diagnostics [57]. However, as 

CCR are considered to implicate an adverse diagnostics, often no

further analyses are performed [5,17,18]. Besides, it is a matter of 

financial issues and of the technical possibilities available in the 

laboratory executing the diagnostics if expensive mFISH studies 

can be applied in a specific case. In a worldwide perspective, the 

majority of laboratories and oncologists will not be able to per-

form mFISH studies on a routine bases. Some countries in West-

ern Europe, Northern America and some other more wealthy 

places around the world may be able to apply them on a routine 

base at present; these may be the same which can offer array-

CGH and NGS as a routine setting [59– 62].

In majority of cases, mFISH approaches (as well as array-

CGH and NGS) will be applied only in individual cancer 

cases in research-associated settings [63– 67]. Besides mFISH 

using wcp probes, also FISH-banding approaches and other 

probes will be used to resolve the individual case [68].

Clinical genetic aspects of molecular cytogenetics 
diagnostic performed in cancer diagnosis

Any kind of FISH study performed in a case with diagnosis can-

cer needs to be done according to the results of tumor cytogenet-

ics and/or the input of the referring clinician. Genetic counseling 

will not be necessary in most of neoplastic cases. However, 

excep-tions are the hereditary cancers, like breast cancer [69– 71].

Moreover, one has to consider that during cytogenetic and 

molecular cytogenetic analysis incidental findings are possible. 

Mosaic Turner or Klinefelter syndrome or carriers of small super-

numerary marker chromosomes may be detected [71,72]. Such 

findings, even though being rare, also should be expected by the 

clinician when a tumor-cytogenetic analysis has been requested.

Expert commentary

Molecular cytogenetics, together with cytogenetics provided, pro-

vides and will provide in future major input into the characteriza-

tion of molecular defects in neoplasia. Morphological and clinical 

data, together with (molecular) cytogenetics and, as far as available, 

data from more sophisticated molecular approaches,
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should all be considered to obtain correct diagnoses of studied 

malignancies. However, as in majority of the world, banding 

cytogenetics supplemented by the use of locus-specific probes is 

that what routine malignancy diagnostics consists of we clearly 

disagree with the statement of others [44] that FISH and mFISH 

approaches are ‘early methods’ for routine cancer diagnostics and 

‘recent high throughput genomic methods’, that is, array-CGH

and NGS are the new routine ‘molecular cytogenetic’ methods. 

Array-CGH and NGS are wonderful research tools. They will for 

sure lead in future to more insights into altered genome structure 

of malignancies. And maybe in some wealthy ‘Western’ countries 

these approaches, together with expensive mFISH techniques, 

may reach routine diagnostic status. The main importance of 

these sophisticated approaches in terms of implementation, and 

especially interpretation, will be the identification of new tumor-

relevant genetic markers. The latter will be accessible by targeted 

and simpler tests, later.

Five-year view

In future, cytogenetics and molecular cytogenetics still will be 
a standard approach in cancer diagnostics. Specifically, the

impact of metaphase as well as interphase-directed locus-specific 

FISH-probes will increase, especially as it can also be combined 

with immunohistochemistry [73]. This is among others 

highlighted by the fact that more and more companies enter the 

market offering increasing portfolios of tumor-related FISH-

probes [31– 37]. Thus, we expect molecular cytogenetics to remain 

a stable field in terms of necessity and application in cancer 

diagnostics. Thus, we suggest that not only for the next 5 years 

but for definitely longer, molecular cytogenetics would be a key 

diagnostic, prognostic and follow-up tool in routine.
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Key issues

.
Molecular cytogenetics evolved in 1986 from cytogenetics.

. Cytogenetics started to gain major relevance in cancer diagnostics after identification of the first tumor-associated chromosomal 

aberration in 1960.

. Molecular cytogenetics uses different kinds of probes, such as locus-specific ones, whole and partial chromosome painting probes 

and probes specific for repetitive sequences.

. Two-color fluorescence in situ hybridization (FISH) is applied in routine cancer diagnostics, while multicolor FISH (mFISH) methods 

are applied more in research-associated settings.

. Locus-specific probes are routinely applied for the detection of tumor-suppressor gene deletion, oncogene amplification and/or 

gene fusions, as well as hypo- and hyperdiploidies.

.  Molecular cytogenetics routine applications are used in leukemia, lymphoma and solid tumor diagnostics.

.
Cytogenetics and molecular cytogenetics is single cell directed and thus able to detect even acquired low-level mosaics.

.
One has to be prepared to meet also in cancer diagnostics from time to time hereditary cases, which need special attention.

. mFISH as well as array-comparative genomic hybridization and next-generation sequencing are highly suited for research settings, 

able to identify new tumor-relevant genetic markers.

. mFISH, array-comparative genomic hybridization and next-generation sequencing are and will in the near future be too expensive 

to become routine cancer diagnostic tools from a worldwide perspective.

.  Cytogenetics and molecular cytogenetics are and will stay in the future indispensable tools in cancer diagnostics.
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Abstract  
Background: Banding-karyotyping and metaphase-directed-fluorescence-in-situhybridization (FISH) may be hampered by 
low mitotic index in leukemia. Interphase FISH (iFISH) is a way out here, however, testing many probes at the  
same time is protracted and expensive. Here multiplex-ligation-dependent-probe-amplification 
(MLPA) was used retrospectively in chronic lymphocytic leukemia (CLL) samples initially studied by 
banding cytogenetics and iFISH. Detection rates of iFISH and MLPA were compared and thus a 
cost-efficient scheme for routine diagnostics is proposed.  
Results: Banding cytogenetics was done successfully in 67/85 samples. DNA was extracted from all 85 
CLL samples. A commercially available MLPA probe set directed against 37 loci prone to be affected in 
hematological malignancies was applied. Besides, routine iFISH was done by commercially available 
probes for following regions: 11q22.3, 12p11.2-q11.1, 13q14.3, 13q34, 14q32.33 and 17p13.1. MLPA 
results were substantiated by iFISH using corresponding locus-specific probes.  
Aberrations were detected in 67 of 85 samples (~79%) applying banding cytogenetics, iFISH and MLPA. A maximum 
of 8 aberrations was detected per sample; however, one aberration per sample was found most frequently. Overall 
163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding cytogenetics, 95 were found 
by MLPA (~58%) and 100 (~61%) by routine iFISH. MLPA was not able to distinguish reliably between mono- and 
biallelic del(13)(q14.3q14.3), which could be easily identified as well as quantified  
by routine iFISH. Also iFISH was superior to MLPA in samples with low tumor cell load. On the other hand MLPA 
detected additional aberrations in 22 samples, two of them being without any findings after routine iFISH.  
Conclusions: Both MLPA and routine iFISH have comparable detection rates for aberrations being typically present 
in CLL. As MLPA can detect also rare chromosomal aberrations it should be used as an initial test if routine 
cytogenetics is not possible or non-informative. Still iFISH should be used additionally to distinguish mono- from 
biallelic deletions and also to determine rate of mosaicism for 13q14.2 to 13q14.3. In case MLPA is negative the 
corresponding CLL samples should be tested at least by iFISH using the standard probe set to.  
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B ackground 
Chronic lymphocytic leukemia (CLL) is considered as the 
most common adult leukemia in Western countries with 
an estimated incidence of 5.8 in men and of 3.0 in women 
per 100,000 individuals and per year. It predominantly af-
fects persons with more than 50 years of age  [1,2]. A 
hall-mark of CLL is the presence of cytogenetic 
abnormalities; the latter help to estimate a patient’s 
prognosis more ac-curately and also may provide insights 
into disease patho-genesis  [3]. However, banding 
cytogenetics can only detect aberrations in ~30% of CLL 
samples  [4]. Still, according to molecular (cyto)genetic 
data the major recurrent aberra-tions are: 
 

(i) Deletions in 13q14 (50-60% of the samples) 
associated with a good prognosis, as are deletions in 
14q32.33 (12-15% of the samples);   

(ii) Trisomy 12 (15-25%) associated with 
intermediate prognosis; and   

(iii) Deletions in 11q22 (ATM) (10-20%) or 17p13 
(TP53) (5-10%) and/or recurrent balanced 
translocations go together with adverse 
prognosis  [4- 9];   

(iv) Less frequently observed aberrations in CLL are 
deletions in 6q associated with intermediate 
prognosis, 9p21 and 10q23, total or partial 
trisomies of chromosomes 3, 8, 18, or 19, and 
duplications in 2p24, the prognostic significance for 
these aberrations is unknown  [1,10,11].  

 
These aberrations were either detected applying cytogen-

etics and/or interphase fluorescence in situ hybridization 
(iFISH)  [3] or more recently multiplex ligation-dependent 
probe amplification (MLPA)  [7]. While iFISH provides in-
formation only for a limited number of genomic targets at the 
same time  [1,5,7] MLPA can detect copy number al-
terations, methylation pattern changes and/or even point 
mutations simultaneously in multiple target regions  [7,12]. 
Still iFISH can more reliably detect low level mosaics and 

osaics of mono- and biallelic deletions m  [13]. 
In this study the efficiency of MLPA was compared 

with yet in our lab routinely performed cytogenetic and 
iFISH diagnostics of CLL. Based on the obtained results a 
new diagnostic scheme is proposed combining MLPA and 
iFISH leading to a more comprehensive characterization 
of each individual sample. 
 
R esults 
85 samples of patients suffering from CLL (Additional file  
1: Table S1 and Additional file  2: Table S2) were stud-ied 
here. Overall, including results from all here applied tests, 
chromosomal aberrations were detected in 70/85 (~85%) of 
the studied CLL-samples (Additional file  1: Table S1 and 
Additional file  2: Table S2). As summarized 

 
 
 
 
in Figure  1 between 0 and 8 aberrations were detectable 
per case. One chromosomal rearrangement per sample 
could be found most often (40%), followed by no aberra-
tion at all and three aberrations per sample. Four or more 
aberrations per sample were found in less then 10% of the 
ases. c 
Overall, 163 aberrations were detected in the 85 studied 

samples (Table  1, Additional file  2: Table S2). Cytogenet-
ics revealed aberrant karyotypes in 15 (~22%) of the 67 
samples where corresponding analyses was successful 
(Additional file  1: Table S1). In parts the cytogenetic find-
ings could be substantiated by iFISH and or MLPA. As no 
corresponding probes were included neither in routine iFISH 
nor in MLPA, 15 (~9%) of the 163 detected ab-errations 
were found additionally by cytogenetics (Table  2). 
Interestingly, in sample 57 which presented with 5 
chromosomal aberrations after banding cytogenetics no 
aberrations could be detected at all by iFISH or by MLPA. 
Other samples gave either no, a normal cytogenetic result or 
a result which also was confirmed by MLPA and/or iFISH 
Additional file (  1: Table S1). 
Concerning the detection rates, the applied MLPA test 

found ~58% and routine iFISH ~61% of the 163 
aberrations (Table  1, Additional file  2: Table S2). 
del(13)(q14.3q14.3) was most frequently found, i.e. in 
~28% of the samples), followed by del(11)(q22.3q22.3) in 
~9%, del(14)(q32q32) in ~8%, and del(13)(q14.2q14.2) 
nd del(17)(p13.1p13.1) in ~6% of the samples, each. a 
Discordant results of MLPA and routine iFISH were in 

parts due to the different target regions covered by the 
tests; thus e.g. del(14)(q32q32) were only detectable by 
routine iFISH. On the other hand, MLPA detected add-
itional aberrations in 22 samples, three of the patients 
being without any aberrant findings according to routine 
FISH (Additional file i  2: Table S2, cases 68–70). 

In Table  3 thirteen samples are listed, which had low 
level mosaic aberrations based on routine iFISH and were 
not picked up by MLPA. In contrary in Table  4 twelve 
other samples with similar low level mosaics are listed, 
which were picked up by MLPA. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Number of aberrations present per sample as found in 
this study after application of all mentioned methods (banding 
cytogenetics, iFISH and MLPA) – values given in percent. 
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Table 1 Summary of 99 aberrations as detected by MLPA 
and 146 ones as detected or confirmed by iFISH; samples 
contributing to the discordant results of MLPA and iFISH are 

arked with asterisk *, ** or ‘plus-sign’ + m 
Affected regions Genes Detected Detected
  in MLPA in iFISH
    

amp(2)(p24.3p24.3) MYCN 3 3

amp(2)(p23.2 ~ 23.1p23.2 ~ 23.1) ALK 3 3

del(6)(q21q21) FYN 1 1

del(6)(q23.3q23.3) MYB 2 2

del(6)(q25.1q25.1) ESR1 1 1

del(6)(q27q27) SMOC2 1 1

amp(6)(q27q27) SMOC2 1+ 0
amp(8)(q24.21q24.21) MYC 1 1

t(9;22)(q34;q11) BCR and ABL n.a. 1

del(11)(q22.3q22.3) ATM 12 14*

+12 ETV6, CCND2, 4 6*
 MDM2   
del(13)(q14.2q14.2) RB1 10 11**

del(13)(q14.2q14.2)x2 RB1 1 10**

del(13)(q14.3q14.3) DLEU1, DLEU2, 35 46*/**
 MIR15A   
del(13)(q14.3q14.3)x2 DLEU1, DLEU2, 7 14**
 MIR15A   
del(14)(q32q32) IGH n.a. 13

rea(14)(q32.33) - > t(14;?) IGH n.a. 2

rea(14)(q32.33) - > ? + 14 IGH n.a. 1

del(17)(p13.1p13.1) TP53 9 10*

amp(17)(q25.1q25.2) UNC13D 2 2

amp(18)(p11.21q11.21) DCC 2+ 1
amp(18)(q21.2q21.2) RNMT 2+ 1
a mp(21)(q22.12q22.12) RUNX1 2 2

Those with * are detailed in Table  2, those with ** in Table  4. Those with + 
could either not be tested in iFISH due to lack of corresponding probe or, in the 
two of the tested samples MLPA could not be confirmed by iFISH (routine and 
confirmatory together), most likely due to too large FISH-probe size. 
 

Table  5 highlights 19 samples which were detected as 
carrying deletions in 13q14.2 and/or 13q14.3 according to 
MLPA and iFISH. Still iFISH revealed that there was a 
mix of monoallelic and biallelic deletion or only biallelic 
deletion, which could not always be detected by MLPA 
(Additional file  2: Table S2). Only such cases which had 
100% biallelic deletions could be identified undoubtedly 
(e.g. sample 30); others showed biallelic deletions in 

LPA but were indeed a mix of mono- and biallelic ones. M 
Finally, three copy number alterations found by MLPA 

could not be substantiated by additional iFISH studies 
samples 65–67; Additional file (  2: Table S2). 

In Figure  2 a flow is suggested how a CLL-characterization could 
be performed most comprehensively and straight 

 
 
 
 
Table 2 Aberrations only detected by banding 

ytogenetics in 9 samples of the present study c 
Sample number Aberration only visible in GTG-banding [%]

  

1 del(5)(p1?3)[33] 
32 -Y[44]

34 -Y[50]

38 t(3;?)(p21;?)[43] 
41 -Y[80]

57 der(1)t(1;4)(q1?2;q?31)[90]
 der(4)t(4;?10)(q?31;q24)[90]
 ?der(10)t(10;16)(q24;p?11.2)[90]
 der(15)t(1;15)(q1?2;q1?2)[90]
 der(16)t(15;16)(q1?2;p?11.2)[90]

58 der(2)t(2;13)(q?37;q?14)[21]
 ?del(6)(p?23)[21] 
61 t(3;?)(q2?9;?)[22] 
 −7[22]

70 ?add(1q)(q4)[50] 
  

 
forward. Figure  3 shows how cases would have been 
grouped if only cytogenetics, only MLPA or only iFISH 
would have been done. Tables  6, 7 and  8 highlights how 
a step by step characterization and corresponding new re-
sults of would change the prognosis of the 95 studied 
cases. 
 
D iscussion 
When diagnostic screening for acquired genetic alter-
ation in hematological malignancies is to be done, band-
ing cytogenetics is still the gold standard, as it enables 
 
Table 3 Detailed results in samples contributing to the 
discordant results of MLPA and iFISH marked with 
sterisk * in Table a  1 

Affected regions Genes Sample iFISH
  number mosaic [%]

 

del(11)(q22.3q22.3) ATM 1 30

del(11)(q22.3q22.3) ATM 2 33

+12 ETV6, CCND2, MDM2 3 15

+12 ETV6, CCND2, MDM2 4 31

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 5 18

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 6 10

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 7 10.5

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 8 12

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 9 18.5

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 10 25

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 11 34

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 12 34

del(17)(p13.1p13.1) TP53 13 11.5
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Table 4 Detailed results in samples with concordance of 
MLPA and routine iFISH results but mosaic rates below 
0% according to iFISH 4 

Affected regions Genes Sample iFISH
  number mosaic [%]
  

del(11)(q22.3q22.3) 
  

ATM 14 23.5

del(11)(q22.3q22.3) ATM 15 24

del(11)(q22.3q22.3) ATM 16 11

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 1 30

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 2 18

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 4 20

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 14 34

del(13)(q14.3q14.3) DLEU1, DLEU2, MIR15A 17 20

del(17)(p13.1p13.1) TP53 1 16

del(17)(p13.1p13.1) TP53 12 21

del(17)(p13.1p13.1) TP53 18 19

del(17)(p13.1p13.1) TP53 19 36
    

 
 
 
 
 
 
 
Table 5 Combination of biallelic and/or monoallelic 
deletion del(13)(q14.2q14.2) and del(13)(q14.3q14.3) – 

hich is not clearly resolved by MLPA w 
Sample iFISH mosaic [%]  iFISH mosaic [%]
number del(13)(q14.2q14.2) 

 

 del(13)(q14.3q14.3)
    

Biallelic 
 

 Monoallelic 

 
 
 
 
the untargeted search for gross chromosomal aberrations  
[14]. Malignant CLL cells derived from bone marrow are 
known to have a low mitotic index and in many cases only 
cytogenetically normal cells can be analyzed  [4]. Thus, 
iFISH and MLPA are routinely applied additionally to or 
ven as a replacement in tumorcytogenetics of CLL e  [7,15]. 
In this study, after directed diagnostics for 37 genetic 

loci (MLPA and routine iFISH together), still ~18% of the 
samples remained without an identified tumor marker. As 
highlighted by samples 32, 34, 41, 36 (see as well  [16]) 
38, 57, 58, 61 and 70 this can be due to unusual, not by 
tar-geted routine tests covered chromosomal aberrations; 
be-sides submicroscopic aberrations like point mutations  
[2] could be present in those ‘normal’ samples. 
Interestingly, in over 40% of the studied cases more than 
only one chromosomal aberration was identified (Figure  
1). This may reflect in parts the slow progress of CLL. I.e. 
the ma-lignancy is detected after acquiring multiple 
aberrations and not as early as e.g. chronic myelogeneous 
leukemia (CML), which is already connected with severe 
clinical signs when only a t(9;22) is found, which is the 

nly aber-ration in majority of the CML-cases o  [17]. 
As mentioned above, MLPA and routine iFISH are tar-

geted tests, both. As they cover in parts different loci it 
was not unexpected that they have different detection 
rates. However, one would expect that iFISH technique 
underestimates the genomic complexity in CLL  [1]. Still 
it is striking that the routine iFISH test found 61% of the 
163 aberrations while MLPA only detected 58%, even 
though routine iFISH applied only 5 probes and MLPA 

ad more than 7 times more, i.e. 37 target regions. 
 Monoallelic Biallelic

 
 

deletion 
 

deletion
 

  deletion 
 

deletion
 

2 0 0 18 14

4 45 0 20 0

12 52 38 34 0

13 0 0 0 98.5

20 0 0 0 94

21 50 30 0 91

22 0 0 5 75

23 0 0 5 81

24 36 41 16 71

25 66 21 18 77

26 0 0 25 65

27 34 27 36.5 24

28 0 0 81 7

29 58 24 86 9

30 0 0 0 100

54 41 39 97 0

55 73 5 85 0

56 22 58 12 66

63 51 38 90 0
      

h 
Concerning detection of low level mosaics (10% up to 

36% of the cells being aberrant) this study showed that 
there are about alike amounts of cases being detectable 
and being missed by MLPA (Tables  3 and  4). There 
were cases detectable by MLPA with aberrant cell clone 
sizes down to ~10% according to iFISH (sample 16) and 
such being not detectable (samples 6, 7, and 8). To the 
best of our knowledge there are only few previous  [18- 
20] and no systematic studies for the detection rates of 
low level mosaic in MLPA. Véronèse et al.  [7] suggested 
that all false-negative cases occur in samples with only 
12-21% of aberrant cells; thus they considered MLPA 
detection to be reliable when the fraction of aberrant cells 
is 25-30%, which is definitely less sensitive than iFISH 
detection. Overall, this problem has to be kept in mind 

hen doing MLPA exclusively in routine diagnostics. w 
Still, the findings of this study are in concordance with 

Stevens-Kroef et al.  [21] who claimed an almost perfect 
correlation between MLPA and iFISH, as long as identical 
genetic regions are tested in MLPA and iFISH. However, bi- 
and monoallelic deletions coming together in one sam-ple 
are not considered in this kind of comparison. Still, all apart 
from three MLPA findings not detectable in the 
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Figure 2 Suggestion how to proceed when doing MLPA as a primary test after GTG-banding: in case MLPA finds a tumor marker 
with adverse prognosis no further iFISH analyses is necessary. In case of an MLPA result suggesting intermediate, unclear or good 
iFISH for 3 to 6 target regions should be done. A probe for 6q may be also used; however, as case with a del(6q) are rare we would 
not recommend it at present as really indicated to be applied. According to the obtained results cases need to be regrouped. Finally, 
iFISH can be used to subclassify cases with good prognosis into such with favorable and unfavorable good prognosis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 Detection rates of cytogenetics, MLPA and iFISH as standalone approaches are depicted and compared with overall 
result combining all three tests as suggested in Figure  2; the corresponding results obtained in the 85 cases were aligned with 
and are expressed as the resulting prognostic relevance of the identified chromosomal aberrations. 
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T able 6 Samples from Additional file  2: Table S2 are listed according to the groups suggested in Figure  2 
Results according to Adverse prognosis Intermediate or Good prognosis including groups No aberrations
MLPA  unclear prognosis “favorable” and “unfavorable”  

     

2*, 4*, 13*, 20*, 21*, 22*, 23*, 25*, 26*, Samples 1, 10, 12, 14, 15, 16, 17, 18, 19, 5, 37, 62, 68 3, 6, 7, 8, 9, 11, 31, 32, 33, 36,
 24, 34, 35, 38, 39, 54, 58, 61,  27*, 28*, 29*, 30*, 40, 41, 42, 43, 44, 57, 59, 60, 70, 71, 72, 73, 74,
 63, 64, 65,  45, 46, 47, 48, 49, 50, 51, 52, 53, 55*, 75, 76, 77, 8, 79, 80, 81, 82,7

83, 84, 85    56*, 66, 67, 69

Number of samples 20 4 32 29 
per group (absolute)     

Number of samples 23.5 5 37.5 34 
p er group (percent)     

Samples marked with * have biallelic deletion in 13q14 as substantiated by iFISH or deletion of 13q14.2 and 13q14.3, thus going from favorable to 
unfavorable subgroup within good prognosis group after iFISH (see Table  7). Figures printed not bold and not in italics are case numbers; figures 
printed bold and in italics are absolute numbers of samples or same numbers in percent. 
 
applied routine iFISH setting could be verified by subse-
quent targeted iFISH. In the not verified cases this can be 
due to too small size of the detected copy number alter-
tion, not resolvable by iFISH. a 
It is well known that there are different clinical prog-

noses if a del(13)(q14.3q14.3) comes mono- or biallelic 
and alone or together with a del(13)(q14.2q14.2): larger 
deletions like del(13)(q14.2q14.3) and biallelic deletions 
have shorter time to first treatment  [1,22,23]. To get re-
liable information for this question a combination of 

LPA and FISH is necessary. M 
According to Campregher and Hamerschlak  [2] the de-

tected aberrations can be grouped in such with adverse, 
intermediate, good prognosis. Those cases with good prog-
noses are further subdivided in such cases with favorable and 
such with less favorable outcome. Especially cases with 
adverse prognosis have influence on the therapeutic deci-
sions. Taken together with the results of this study we sug-
est a diagnostic flow as shown in Figure g  2. 
As both MLPA and routine iFISH have in principle 

comparable detection rates in CLL, MLPA is more cost 
ef-ficient than iFISH and it covers a more broad spectrum 
of target genes  [12], we recommend MLPA to be the 
initial diagnostic test. The impact for the patient car-rying 
rare mutations can be evident: Fabris et al.  [11] reported 
that 2p gain can be present already in early 

 
stages of the disease, particularly in those cases character-
ized by other poor prognostic markers (samples 5, 16 and 
63); del(6q) is generally considered as an intermediate-
risk factor  [1,10] (samples 5 and 68); finally, López et 
al.  [24] reported more rapid disease progression if 
trisomy 12 is accompanied by additional aberrations 
rather than if it is the only genetic abnormality (sample 
62). Also new data may be acquired, as e.g. the impact of 
gain of MYC  [1] (sample 16) or RUNX1 gene  [25] 
(samples 5 and 69) are still unclear in CLL. If the 
diagnostic scheme suggested in Figure  2 would have 
been applied in the 85 patients pre-sented here in 20 of 
them (23.5%) no iFISH would have been necessary. In 
those 20 patients (Tables  6, 7 and  8) MLPA would have 
already identified one or more ad-verse chromosomal 
berrations leading to a therapeutic consequence. a 
Four patients (Tables  6, 7 and  8) would have been 

grouped into ‘intermediate prognosis’ after MLPA, one of 
them just having a trisomy 12 (sample 37). So in this 
group of pa-tients, only three probes for the adverse 

rognosis regions should be applied in iFISH testing. p 
Normal MLPA result as found in 29 samples (= ~34%) 

all six (or seven, see legend of Figure  2) FISH probes as 
listed in Figure  2 should be applied to rule out low level 
mosaics of del(11)(q22.3q22.3), +12, del(13)(q14), 
del(17)(p13.1p13.1) or del(14)(q32q32). In the present 

 
T able 7 Regrouping of samples from Table  6 after doing additional i-FISH as suggested in Figure  2 
Results according to MLPA Adverse prognosis Intermediate Good prognosis Good prognosis No aberrations
  prognosis “unfavorable” “favorable”  
      

Samples 1+, 2, 3+, 10, 12, 13, 14, 15, 16, 4, 5, 37, 62, 68 20, 21, 22, 23, 25, 26, 27, 6, 7, 8, 9, 11, 31, 36, 57, 70, 71, 72,
 17, 18, 19, 4, 34, 35, 38, 39, 2

54, 58, 60
 28, 29, 30, 43, 44, 45, 46, 32, 33, 40, 41, 73, 74, 75, 76, 77,

 +, 61, 63, 64, 65,  47, 48, 49, 50, 51, 52, 53, 42, 59, 69 78, 79, 80, 81, 82,
   55, 56, 66, 67  83, 84, 85

Number of samples 24 5 25 13 18
per group (absolute)      

Number of samples 28 6 30 15 21
p er group (percent)      

Samples marked with + have rea(14)(q32.33), thus they have to go to the adverse prognosis group. Samples with deletion of 13q14.2 and 13q14.3 
detected by MLPA and/or deletion of 13q14.3 in ≥70% of the nuclei detected by iFISH go to unfavorable subgroup within good prognosis group. Figures 
printed not bold and not in italics are case numbers; figures printed bold and in italics are absolute numbers of samples or same numbers in percent. 
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T able 8 Final result after including result of GTG-banding based on from Tables  6 and  7 
Results according to Adverse prognosis Intermediate or Good prognosis Good prog osis n

“favorable” 
No aberrations

MLPA  unclear prognosis “unfavorable”  
   

6, 7, 8, 9, 11, 3  Samples 1, 2, 3, 10, 12, 13, 14, 15, 16, 4, 5, 36*, 37, 62, 68 20, 21, 22, 23, 25, 26, 27, 28, 1, 71, 72, 73, 74, 75, 76,
 17, 18, 19, 24, 34, 35, 38, 39,  29, 30, 43, 44, 45, 46, 47, 48, 32, 33, 40, 41, 77, 78, 79, 80, 81, 82,
 54, 57*, 58, 60, 61, 63, 64, 65, 70*  49, 50, 51, 52, 53, 55, 56, 66, 67 42, 59, 69 83, 84, 85
Number of samples 26 6 25 13 15 
per group (absolute)      

Number of samples 
er group (percent) 

31 7 30 15 17 
p      

Samples marked with * have additional aberration not detectable by MLPA or routine iFISH. Figures printed not bold and not in italics are case numbers; 
figures printed bold and in italics are absolute numbers of samples or same numbers in percent. 
 
cohort e.g. samples 2 and 13 go to “good prognosis”, 
samples 3 and 60 to “adverse prognosis” and sample 4 to 
intermediate prognosis” group (Tables “  6, 7 and  8). 
Finally, 32 patients (Tables  6, 7 and  8) have been classi-

fied as ‘good prognosis’ after MLPA. Here, the same FISH 
probes as for normal MLPA result should be used for further 
subclassification (Figure  2). Again patients then may have to 
be moved to other prognostic groups if additional or low 
level mosaics are identified. Also it is known that CLL cases 
with del(13)(q14.2q14.2) go into unfavorable subgroup, as 
do such cases with biallelic dele-tions in 13q14. Finally, 
del(13)(q14.3q14.3) detected in ≥70% of the cells are also an 
indication to group a patient in unfavorable subgroup of 
‘good prognosis’ group  [1,22]. Thus, further I-FISH studies 
are necessary also for patients with del(13)(q14.2q14.2) 
nd/or del(13)(q14.3q14.3) in MLPA. a 
In case only MLPA and iFISH would have been done in 

the presently studied 85 patient still 3 samples would have 
been misclassified. Thus we suggest in Figure  2 still 
GTG-banding as the initial test for CLL diagnostics. 
Compared to a flow just applying banding cytogenetics 
and routine iFISH for diagnostics of CLL the introduction 
of the flow from Figure  2 would apply only 344 instead 
of 425 FISH-probes, i.e. 20% less. 
 
C onclusion 
The present study shows the importance of combining 
cytogenetics, molecular genetics and molecular cyto-
genetics to achieve a comprehensive characterization of 
acquired genetic alterations being present in CLL. 
 
M ethods 
P atients and sample preparation 
The present study included 85 samples of patients suffer-
ing from CLL (Additional file  1: Table S1 and Additional 
file  2: Table S2) diagnosed according to standard criteria  
[26]. The samples were obtained under informed consent 
of the corresponding patients and according to institu-
tional ethical committee guidelines (Ethical commitee of 
he Friedrich Schiller University Jena). t 

DNA from lymphocytes was extracted by a commer-
cial kit (Qiagen, Hilden, Germany) and was derived from 

 
different sources: 2 samples from heparinized bone mar-
row, 8 samples from heparinized blood, and 75 samples 
from cytogenetically prepared cells fixed in methanol/ 
acetic acid (3:1) – 48 of them derived from bone marrow 
and 27 from blood (Additional file  1: Table S1). 
 
G TG-banding and FISH analysis 
The blood or bone marrow samples were stimulated with 
phorbol ester, i.e. 12-O-tetradecanoylphorbol-13-acetate 
(TPA) and cultivated for 96 hours, and a standard cyto-
genetic cell preparation following air drying method was 
done  [27]. GTG-banding and iFISH analyses were rou-
tinely done in each sample following standard procedures  
[27,28]. In 67 samples chromosomes could be obtained 
rom the material prepared. f 
For routine iFISH the following commercially available 

probe sets (Abbott/Vysis, Wiesbaden, Germany) were used: 
LSI p53/LSI ATM (in 17p13.1 and 11q22.3), LSI D13S319/ 
LSI 13q34/CEP 12 (in 13q14.3, 13q34 and 12p11.1-q11.1), 
nd LSI IGH dual color, break-apart probe (in 14q32.33). a 
Additionally, the following probes were used to validate 

and possibly confirm the results of MLPA: 
 

– from Abbott/Vysis (Wiesbaden, Germany): LSI 13 
(RB1 in 13q14.2), CEP 6 (D6Z1 in 6p11.1-
q11,1), CEP 17 (D17Z1 in 17p11.1-q11.1) and 
CEP 18 (D18Z1 in 18p11.1-q11.1);   

– from Zytovision (Bremerhaven, Germany): 
ZytoLight ®SPEC ALK Dual Color Break Apart   
(in 2p22.32 ~ 22.31), ZytoLight ®SPEC NMYC/2q11 
Dual Color (in 2q24.3 and 2q11), ZytoLight ®SPEC 
MYB Dual Color Break Apart (in 6q23.3), ZytoLight 
®SPEC ESR1/CEN 6 Dual Color (in 6q25.1 and 
6p11.1-q11.1), ZytoLight ®SPEC CMYC/CEN 8 Dual 
Color (8q24.21 and 8p11.1-q11.1), ZytoLight ®SPEC 
ETV6/RUNX1 Dual Color Dual Fusion (in 12p13.2 
and 21q22.12); and   

– BACPAC Resources Center (Oakland, USA): RP1-
142 L7 in 6q21 (gene FYN), RP11-318A15 in 
17q25.1 (gene UNC13D), RP11-346H17 in 18q21.2 
(gene DCC), RP11-37D8 in 6q27 (gene SMOC2) 
and RP11-411B in 18p11.22 (gene RNMT).  
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Table 9 Loci addressed in the commercially available 

LPA kit used in this study M 
Targets Loci Number of probes included in kit

   

MYCN 2p24.3 2 
ALK 2p23.2 ~ 23.1 1 
MIR145 5q33.1 1 
EBF1 5q33.3 2 
MIR146A 5q33.3 1 
FYN 6q21 1 
MYB 6q23.3 1 
ESR1 6q25.1 1 
SMOC2 6q27 1 
IKZF1 7p12.2 3 
CDK6 7q21.2 1 
RELN 7q22.1 1 
MET 7q31.2 1 
DPP6 7q36.2 1 
MYC 8q24.21 2 
MTAP 9p21.3 1 
CDKN2A 9p21.3 1 
CDKN2B 9p21.3 1 
PAX5 9p13.2 2 
PTEN 9p13.1 1 
PTEN 10q23.31 1 
ATM 11q22.3 4 
ETV6 12p13.2 2 
MDM2 12q15 1 
CCND2 12p13.32 1 
RB1 13q14.2 2 
MIR15A 13q14.3 1 
DLEU1 13q14.3 1 
DLEU2 13q14.3 1 
TP53 17p13.1 4 
UNC13D 17q25.1 1 
IKZF3 17q12 1 
DCC 18q21.2 1 
RNMT 18q21.2 1 
CACNA1A 19p13.13 1 
CHMP2A 19q13.43 1 
RUNX1 21q22.12 2 

   

 
For each iFISH analysis, at least 100–200 interphase 

nuclei were examined per sample and FISH-probe. 
 
M LPA analysis 
MLPA was performed using SALSA MLPA probemix P377-
A1 for Hematological Malignancies Kit from (MRC-
Holland, Amsterdam, The Netherlands). The P377-A1 
probemix kit contains probes for 37 genes covered by overall 
52 probes, which have diagnostic or prognostic significant 
role in hematologic malignancies (see Table  9). 

 
 
 
 
MLPA was performed according to the manufacturer’s 
protocol, which includes three reaction phases: hybridization, 
ligation, and PCR. Finally, a capillary electrophoresis was 
used to separate and analyze MLPA PCR products. 
Genemarker software was used to analyze the peak areas of 
the MLPA PCR products, and the ratio was normalized to a 
healthy control. Threshold of detection was set at 0.65-1.35, 
to minimize the false positive cases. 
 
Additional files 
 

 Additional file 1: Table S1. Gender, age and cytogenetic results 
of the studied cases/samples.  
 Additional file 2: Table S2. Aberrations detected in 85 CLL samples 
and by which method the corresponding aberrations could be detected. 
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The translocation t(8; 21)(q22;q22)/RUNX1/RUNX1T1

is one of the most common translocations in pediatric 

acute myeloid leukemia (AML), accounting for 10–20% of 

all cases [1]. At the molecular genetic level, the rearrange-

ment is defined by involvement of the RUNX1 (AML1)

gene on chromosome 21q22 and the RUNX1T1 (ETO)

gene on chromosome 8q22, resulting in the RUNX1/

RUNX1T1 (AML1/ETO) fusion gene product [2]. The fu-

sion protein disrupts the core binding factor transcription 

complex, leading to abnormalities in cell differentiation, 

proliferation and apoptosis. It is also thought that the fu-

sion product is a driver of myeloid leukemogenesis in this 

AML subtype [3].

Approximately 3–4% of cases of AML with the t(8; 21) 

(q22;q22) occur in the context of complex rearrange-

ments. Although t(8; 21) is associated with a good prog-

nosis, the impact of the complex t(8; 21) variants is con-

troversial. Some researchers have reported a favorable 

outcome for AML patients with complex t(8; 21) variants, 

while others have not confirmed these observations [4];

in these series, almost all of the patients were adults [2, 

4, 5]. The clinical relevance and implications of t(8; 21) 

variants in pediatric patients are yet to be determined. 

These translocations are rare, so there is limited 

informa-tion on their prognostic impact. Thus, to make a 

contri-bution to the registry of t(8; 21) with complex 

variants, we present a case that belongs to this rare 

subgroup. We report on a child with AML harboring a 

novel three-way cryptic variant t(8; 13; 21), as revealed 

by detailed molecu-lar studies.

From May 2007 to March 2014, we analyzed samples 

from 114 children and adolescents (aged 0–18 years) with 

AML, 13 (11.4%) of whom harbored the t(8; 21) (q22;q22) 

and were examined by means of GTG band-ing, 

fluorescence in situ hybridization (FISH) and RT-PCR. Of 

these 13 RUNX1/RUNX1T1-positive patients, 3 (2.6%) did 

not have classic t(8; 21) by conventional karyo-typing. 

When FISH assay was performed, it was possible to 

observe that there was a third chromosome involved, with 

a RUNX1/RUNX1T1 split signal, thus characterizing
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Fig. 1. a Partial G-banding karyotype. The red 

arrow shows a missing portion in chro-

mosome 8, and the green arrow shows a 

gain of chromosomal material on chromo-

some 13. b FISH with the AML1/ETO dual-

color, dual-fusion probe, showing the 

RUNX1/RUNX1T1 fusion on derivative

chromosome 8 and a RUNX1T1 split sig-nal 

to chromosome 13. c Complementary FISH, 

with a subtelomeric probe for the 13qter 

region, revealing that a portion of this region 

was translocated to chromo-some 21. d FISH 

with whole-chromosome painting (wcp) 

probes and MCB for chro-mosomes 8, 13 

and 21, showing the origin and the 

breakpoints of each rearrange-ment. e RT-

PCR confirmed the presence of the 

RUNX1/RUNX1T1 fusion and revealed a 

PCR product of 260 base pairs (bp).
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e

a masked variant of t(8; 21). These 3 cases were 
then se-lected to be studied by means of 
multicolor chromosome banding (MCB). We 
describe a novel t(8; 13; 21) variant in detail.

A 13-year-old girl was admitted with a 5-month his-tory 

of pallor and upper-airway symptoms associated with 

persistent fever, otalgia and dysacousia. At admis-sion, 

she had a white blood cell count of 22 × 10
9
/l, a plate-let

count of 96 × 10
9
/l and hemoglobin of 6.2 g/dl. A chest X-

ray showed consolidation in the lower/upper/left/right 

lobes, consistent with bacterial pneumonia. Physical ex-

amination revealed lymphadenopathy in the cervical and 

inguinal regions, hepatomegaly (4 cm) and splenomegaly 

(7 cm). The bone marrow was hypercellular with 64% 

myeloid blast cells positive for CD45, CD34, CD117, MPO, 

CD33, CD13, HLA-DR, CD123, CD15 and CD19, i.e. 

compatible with AML.

GTG banding analysis defined the karyotype as 45,X,-

X,del(8)(q22),der(13q3?) in 23 metaphases (fig. 1a). FISH 

analysis confirmed a cryptic fusion RUNX1/ RUNX1T1 on 

derivative chromosome 8, with the pres-ence of a 

RUNX1T1 split signal on derivative chromo-some 13 (fig. 

1b). Complementary FISH analysis using a subtelomeric 

probe for the 13q region, showed a 13qter minor signal on 

chromosome 21 characterizing a cryptic translocation (fig. 

1c). The application of whole-chro-mosome painting 

probes for chromosomes 8, 13 and 21 revealed a three-

way translocation. To characterize the

breakpoints of this complex rearrangement, MCB 
stud-ies were applied revealing the karyotype: 
45,X,-X,t(8; 13; 21)(q22;q33;q22) (fig. 1d). RT-
PCR for the RUNX1/ RUNX1T1 fusion revealed a 
product of 260 base pairs (fig.1e).

The patient was stratified as being at standard risk, 

and was treated according to the AML-BFM-2004 

protocol [6]. She achieved complete remission, but after 

receiving an intensification block, she developed febrile 

neutrope-nia and sepsis. She died of cardiac and 

respiratory failure 5 months after the initial diagnosis.

There are at least two steps for the formation 
mech-anism of the complex t(8; 21), following the 
formation of standard t(8; 21)(q22;q22) and the 
RUNX1/RUNX1T1 fusion gene [7]. Material from the 
distal long arm of chromosome 21q22 translocates to 
the long arm of chromosome 8, but the end of 
chromosome 8 translo-cates to a third chromosome. 
The remainder of the third chromosome translocates 
to chromosome 21. The same behavior may have 
occurred in the transloca-tion in our patient and in 2 
others previously reported [7, 8].

The involvement of chromosome 13 in a complex t(8; 

21) variant has, so far, been reported in 3 patients [7, 8]

including ours. In contrast to the other cases, the variant 

t(8; 13; 21)(q22;q33;q22) described here presented as a 

masked karyotype on GTG banding, and additional ma-

terial was cryptically translocated on derivative chromo-
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some 21, thus adding a novel t(8; 13; 21) variant to the lit-

erature.

Although the t(8; 21) complex variant accounts for only 

0.05–1.1% of cases of childhood AML [2, 4, 5, 9], its 

frequency was higher (approx. 2.6%) in our cohort, sug-

gesting that, in pediatric AML, a detailed characterization 

of RUNX1T1 split signal via a combination of FISH, MCB 

and RT-PCR approaches may be necessary to uncover 

such complex variants. In our cohort as well as in the pre-

viously described cases [7, 8], the RUNX1T1 gene (8q22) 

often splits to the third chromosome involved in the 

translocation. Thus, the observation that a similar forma-

tion mechanism of the complex t(8; 21) variant that pref-

erentially involves the same chromosome regions, along 

with the higher frequency of complex t(8; 21) variants (that 

we observed in our cohort), reinforces the impor-tance of 

the clarification of such complex cases in order to 

investigate if the genes in these regions are involved in 

leukemogenesis.

Furthermore, it is important that cases with complex 

conventional karyotypes and a RUNX1/RUNX1T1 split 

signal involving ≥3 chromosomes are analyzed by a com-
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bination of molecular assays. This approach can provide 

further knowledge about the heterogeneity of the RUNX1/

RUNX1T1 fusion gene and a possible association with

prognosis. Finally, future studies involving bacterial arti-

ficial chromosome probes and next-generation sequenc-

ing are required to further pinpoint the breakpoint re-gions 

and describe the genes involved in all of the fusions that 

result from these complex rearrangements [10, 11].
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Abstract. Deletions within chromosome 11q22-23, are consid- 
ered among the most common chromosomal aberrations in 
chronic lymphocytic leukemia (CLL), and are associated 
with a poor outcome. In addition to the ataxia telangiectasia 
mutated (ATM) gene, the baculoviral IAP repeat-containing 3 
(BIRC3) gene is also located in the region. BIRC3 encodes 
a negative regulator of the non-canonical nuclear factor 
κ-light-chain-enhancer of activated B cells (NF-κB) protein. 
Disruption of BIRC3 is known to be restricted to CLL luda- 
rabine-refractory patients. The aim of the present study was 
to determine the frequency of copy number changes of BIRC3 
and to assess its association with two known predictors of nega- 
tive CLL outcome, ATM and tumor protein 53 (TP53) deletions. 
To evaluate the speciicity of BIRC3 alterations to CLL, BIRC3 
copy numbers were assessed in 117 CLL patients in addition 
to 45 B-cell acute lymphocytic leukemia (B-ALL) patients. 
A commercially available multiplex ligation dependent probe 
ampliication kit, which includes four probes for the detection 
of TP53 and four probes for ATM gene region, was applied. 
Interphase฀directed luorescence in situ hybridization was used 
to apply commercially available probes for BIRC3, ATM and 
TP53. High resolution array-comparative genomic hybridiza- 
tion was conducted in selected cases. Genetic abnormalities of 
BIRC3 were detected in 23/117 (~20%) of CLL and 2/45 (~4%) 
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of B-ALL cases. Overall, 20 patients with CLL and 1 with  
B-ALL possessed a BIRC3 deletion, whilst 3 patients with CLL  
and 1 with B-ALL harbored a BIRC3 duplication. All patients  
with an ATM deletion also possessed a BIRC3 deletion. Only     
CLL cases possessed deletions in BIRC3, ATM and TP53  
simultaneously. Evidently, the deletion or duplication of BIRC3  
may be observed rarely in B-ALL patients. BIRC3 duplication  
may occur in CLL patients, for which the prognosis requires  
additional studies in the future. The likelihood that TP53  
deletions occur simultaneously with BIRC3 and/or ATM aber-  
rations is low. However, as ATM deletions may, but not always,  
associate with BIRC3 deletions, each region should be consid-  
ered in the future diagnostics of CLL in order to aid treatment  
decisions, notably whether to treat with or without ludarabine.     

 
Introduction  

 
Chronic lymphocytic leukemia (CLL) is the most common type     
of leukemia observed in people aged >50 years in Western coun-     
tries. CLL is characterized by a heterogeneous clinical course,     
with a time to progression ranging from months to decades (1).     
The presence of cytogenetic abnormalities is a hallmark of     
CLL. The most common recurrent aberrations in CLL affect    
chromosomes 11q, 13q, 14q, 17p and the whole of chromo-   
some 12. Certain abnormalities, including deletions in 11q22.3,   
the ataxia telangiectasia mutated (ATM) gene (10-20%), and   
17p13.1, the tumor protein 53 (TP53) gene (5-10%), are associ-     
ated with a poor clinical outcome. Therefore, the detection of     
these aberrations is important for identifying high-risk patients,     
who suffer from rapid disease progression and a decreased     
overall survival time (2). Other frequent chromosomal aberra-     
tions in CLL are associated with a good (deletions in 13q14 or     
14q32.33) or intermediate (trisomy 12) prognosis (1,3-5).  

CLL is considered to be an insidious disease. Certain  
CLL patients, particularly patients with a good prognosis,     
survive for several years without requiring treatment; however,  
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 another subgroup of patients experience an aggressive disease inhibitor or and alemtuzumab/corticosteroids (8,13). BIRC3  
 course and have a short life expectancy, despite aggressive abnormalities provide a molecular rationale for using NF-κB  
 treatment (6). The latter group tends to exhibit a particular lack inhibitors, which remain under development (7).  
 of response to ludarabine฀based regimens, which are gener-  
 ally considered to be the irst line of treatment for CLL (6). Materials and methods  
 In a large fraction of these patients, the molecular basis of the  
 aggressive clinical course remains unclear; however, in ~40% Patients and sample preparation. The present study included  
 of patients, the molecular basis is hypothesized to be due to 117 CLL patients, and 45 B-cell acute lymphocytic leukemia  
 TP53 disruption. In addition, the activation of the nuclear (B-ALL) patients that were diagnosed according to standard  

 factor κ-light-chain-enhancer of activated B cells (NF-κB) criteria (14). The samples were obtained with the informed  
 pathway is considered to be a mechanism of resistance to consent from the corresponding patients and according to the  
 disease eradication (7). institutional Ethical Committee guidelines. For CLL cases,  
 From a clinical perspective, CLL cases may be divided DNA was extracted from lymphocytes using a commercial kit  
 into three major clinical phases: i) Newly diagnosed CLL; (Qiagen, Hilden, Germany), according to the manufacturer's  
 ii) progressive CLL; and iii) relapsed or ludarabine฀refractory protocol. For B-ALL cases, DNA was derived from cytoge-  
 CLL. TP53 abnormalities are observed in 40-50% of relapsed netically prepared cells, which were ixed in methanol/acetic  
 and fludarabine-refractory CLL cases and the deletion of acid (dilution, 3:1) (Table I).  
 11q22-23 occurs in 25-30% of relapsed or ludarabine฀refractory  
 CLL patients (8). In a large previous study, 637 patients were Interphase luorescence in situ hybridization (iFISH) analysis.  
 classified into four risk groups according to a multivariate iFISH analyses were performed as previously described (2),  
 analysis of overall survival, which was based on genomic using the following commercially available probes: LSI  
 abnormalities and the mutational status of TP53, baculoviral p53/LSI ATM (in 17p13.1 and 11q22.3), CEP 3 (D3Z1 in  
 IAP repeat-containing 3 (BIRC3), translocation-associated 3p11.1-q11.1), CEP 4 (D4Z1 in 4p11-q11), CEP 7 (D7Z1 in  
 notch homolog 1 and splicing factor 3B subunit 1. Notably, 7p11.1-q11.1), CEP 11 (D11Z1 in 11p11.11-q11), CEP 16 (D16Z2  
 the high-risk group was composed of patients that exhibited in 16p11.1-q11.1), CEP 17 (D17Z1 in 17p11.1-q11.1) and CEP 18  
 disruption to TP53 and/or BIRC3 (9). (D18Z1 in 18p11.1-q11.1), all from Vysis (Abbott GmbH &  
 The  BIRC3  gene  is  located  on  11q22.2, is ~6 Mb Company, KG, Wiesbaden, Germany); and ZytoLight® SPEC  
 centromeric to the ATM gene locus and is considered to be BIRC3/MALT1 DualColor Dual Fusion probe (in 11q22.2 and  
 a negative regulator of the non-canonical NF-κB signaling 18q21.32) from ZytoVision GmbH (Bremerhafen, Germany).  
 pathway (10,11). BIRC3 cooperates with tumor necrosis For each iFISH analysis, 100-200 interphase nuclei were  
 factor receptor-associated factors 2 and 3, in the same protein examined per patient and probe.  
 complex that negatively regulates the mitogen-activated  
 protein kinase 14, a serine-threonine kinase and central Multiplex ligation�dependent probe ampliication (MLPA)  
 activator of non-canonical NF-κB signaling (7). In addi- analysis. MLPA was performed using the SALSA MLPA  
 tion, a frequent aberration associated with BIRC3 is the probemix P377-A1 for Hematological Malignancies kit  
 recurrent t(11;18)(q21;q21) translocation, which involves the (MRC-Holland, Amsterdam, Netherlands). The P377-A1  
 mucosa-associated lymphoid tissue lymphoma translocation probemix kit contains 52 probes for 37 genes. The TP53  
 gene 1 (MALT1), located on 18q21.32. This type of altera- and ATM genes were assessed by four probes each; however,  
 tion appears in mucosa-associated lymphoid tissue (MALT) probes for the BIRC3 gene were not included in the kit (2).  
 lymphoma (12). MLPA was successfully performed on 85/117 CLL samples  
 In CLL, deletions within the long arm of chromosome 11 and 32/45 B-ALL samples. MLPA was not successful for the  
 may be highly variable in size. The deletion may be distin- remaining samples due to fragmentation of DNA.  
 guished as the more common ‘classical or large deletion’ or  
 an ‘atypical or small deletion’, which are uncommon and Array-comparative genomic hybridization (aCGH). aCGH  
 more frequently associated with ATM mutations. This varia- was performed using the Agilent SurePrint G3 Human  
 tion indicates that other genes may possibly contribute to the Genome Microarray 180 K (Agilent Technologies, Santa  
 pathobiology of 11q deletions in CLL, and one of the genes Clara, CA, USA), as previously described (15). aCGH was  
 that is hypothesized to be involved is BIRC3 (13). BIRC3 applied in 3 CLL patients that possessed a BIRC3 duplication  
 disruption, mutations or deletions are rarely detected in and in 1 B-ALL patient that possessed a BIRC3 deletion.  
 CLL at diagnosis (4% of patients), but are detected in 24%  
 of ludarabine฀refractory CLL patients. In a previous study, Results  
 ludarabine฀sensitive patients did not exhibit BIRC3 mutations  
 initially, which suggests that BIRC3 disruption may be specii- Gene copy numbers. BIRC3 gene copy number variations  
 cally associated with a chemo-refractory CLL subtype (7). were detected in 23/117 (~20%) of CLL and 2/45 (~4%) of  
 Therefore, BIRC3 disruption may be added to the panel of B-ALL cases, as summarized and detailed in Fig. 1. BIRC3  
 cytogenetic abnormalities, as the abnormality may be helpful in deletions were identiied in 20 cases of CLL (cases C฀1 to  
 the early identiication of relapsed and ludarabine฀refractory C-20) and in 1 case of B-ALL (case A-1). ATM deletion  
 CLL patients. Affected patients should be considered for other was detected in the identical 20 CLL and 1 B-ALL cases.  
 treatment regimens, including cyclin-dependent kinase inhib- Therefore, all patients with a BIRC3 deletion also possessed  
 itor, Bruton's tyrosine-kinase inhibitor, B-cell lymphoma 2 an ATM deletion. However, in cases C-1, C-8, C-10, C-13 and  
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 Table I. Gender, age and cytogenetic results of the B-ALL and CLL cases used in the present study. 
 
 Case no. Gender Age, years DNA extracted from Cytogenetic results 

 
  

 A-1 Male 84 BM 46,XY,-9,t(9;22)(q34;q11),del(11)(q),+mar[cp3]/46,XY[5] 
       A-2 Male 23 BM Hyperdiploid/46,XY 
       A-3 Male 34 BM 46,XY 
       A-4 Male 19 BM 46,XY 
 A-5 Female 76 BM 45,X,-X[14]/46,XX[2] 

 C-1 Male 73 BM 46-47,XY,del(11)(q22q2?3),add(17)t(17;?)(p11.2;?)[cp5]/ 
 45-46,XY,del(11)(q22q2?3),del(17)(p11.2)[cp4]/ 
 43-46,XY,del(11)(q22q2?3)[cp2]/ 
 46,XY[7] 
 C-2 Female 50 B n.a. 
 C-3 Female 39 BM 43-46,XY,del(11)(q2?2q2?4)[cp5]/ 
 45-46,XY,del(11)(q2?2q2?4),del(15)(q1?1q2?3)[cp11]/ 
 46,XY[1] 
        C-4 Male 64 BM 46,XY 
        C-5 Male 43 BM 46,XY 
 

 C-6 Male 67 BM 46,XY 
 C-7 Male 77 BM 46,XY,del(11)(q?21),add(20)(p13)[7]/ 
 45,X,-Y[10]/ 46,XY[3] 
        C-8 Male 53 BM 46,XY 
        C-9 Male 59 BM n.a. 
 C-10 Male 73 BM 45,XY,der(2)t(2;13)(q?37;q?14),?del(6)(p?23), 
 del(11)(q?21)der(12)t(12;13)(q?24;q?22),-13[cp4]/ 
 46,XY[19] 
 C-11 Male 72 B n.a. 
 C-12 Female 73 BM 46,XX,add(11)(q?22)[3]/ 46,XX[12] 
        C-13 Male 54 B 46,XY 
        C-14 Male 68 BM 46,XY 
        C-15 Male 53 BM 46,XY 
        C-16 Male 75 BM n.a. 
 

 C-17 Female 67 BM 46,XX[18] 

 45,X,-X[1] 
        C-18 Male 74 BM n.a. 
        C-19 Male 65 BM 46,XY 
 C-20 Male 77 B 45-46,XY,del(11)(q?22q?23)[cp14] 
 46,XY[5] 
 C-21 Male 83 BM 47,XY,-11,+12,+mar[cp3]/ 
 47,XY,del(5)(p1?3),-11,+12,-17,+mar1,+mar2[cp6]/ 
 46,XY[9] 
        C-22 Male 72 BM 46,XY 
        C-23 Male 59 B 46,XY 
        C-24 Female 66 B n.a. 
        C-25 Female 71 B 46,XX 
 C-26 Male 65 BM 46,XY,?t(3;?)(p21;?),add(17)(p?12)ort(17;?),-8,+mar[cp7] 
 46,XY[9] 
 C-27 Female 74 B 46,XX 
 C-28 Female 74 BM 46,XX,i(17)(q10)[1]/ 46,XX,+12,i(17)(q10),-21[9]/ 
 46,XX,t(3;?)(q2?9;?)[4],-7[4],+12[4],i(17)(q10)[4][cp4]/ 
 46,XX[4] 
 
        C-29 Female 90 B n.a. 
        C-30 Male 56 BM n.a. 
        C-31 Female 65 BM 46,XX 

 
  

 A-, B-ALL case; C-, CLL case; BM, cell pellet in Carnoys fixative from bone marrow; n.a., data not available.  
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 Table II. Summary of MLPA and iFISH results of TP53, ATM, BIRC3 and MALT1 in all studied cases. 
 
 TP53 (%) ATM (%) BIRC3 (%) MALT1 (%) 
 ------------------------------------------------- -------------------------------------------------- 

 Case no. MLPA iFISH MLPA iFISH iFISH iFISH 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        C-32 to C-91 N N N N N N 
        C-92 to C-117 n.a. N n.a. N N N 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

           Data are expressed as type of change to copy number (% of cells with aberration). TP53, tumor protein 53; ATM, ataxia telangiectasia mutated;  
BIRC3, baculoviral IAP repeat-containing 3; MALT1, mucosa-associated lymphoid tissue lymphoma translocation gene 1; MLPA, multiplex 

          ligation-dependent probe ampliication; iFISH, interphase luorescence in situ hybridization; A-, B-ALL case; C-, CLL case; N, no aberration;  
         D, deletion; A, ampliication; n.a., data not available.  
   
 
 
        C-20 the detected clone sizes with deletions in BIRC3 and 
        ATM were extremely varied from one another. In case C-1, 
        the clone with the ATM deletion was 8x smaller compared 

 
 

C-10, C-13 and C-20, the clone with the BIRC3 deletion  
was 2-3x smaller than that with the ATM deletion. A BIRC3  
duplication was identiied in 1 case of B-ALL (case A-2) and  

        with that with the BIRC3 deletion, whereas in cases C-8, in 3 CLL patients (cases C21 to C23) (Table II).  

A-1 N N D D (76.5) D (75.0) N 
A-2 n.a. A (100.0) n.a. A (100.0) A (100.0) A (100.0)
A-3 D D (8.5) N N N N
A-4 D D (10.0) N N N N
A-5 D D (10.0) N N N N
A-6 to A-33 N N N N N N
A-34 to A-45 n.a. N n.a. N N N
C-1 D D (86.0) D D (11.0) D (80.0) N
C-2 D D (21.0) N D (23.0) D (22.0) N
C-3 N N D D (98.0) D (90.0) N
C-4 N N D D (23.5) D (30.0) N
C-5 N N D D (24.0) D (25.0) N
C-6 N N D D (88.0) D (85.0) N
C-7 N N D D (90.0) D (80.0) N
C-8 N N D D (77.0) D (50.0) N
C-9 N N D D (98.0) D (75.0) N
C-10 N N D D (87.0) D (60.0) N
C-11 N N D D (95.0) D (90.0) N
C-12 N N D D (83.0) D (80.0) N
C-13 N N D D (93.0) D (25.0) N
C-14 N N N D (33.0) D (15.0) N
C-15 N N N D (12.0) D (13.0) N
C-16 n.a. N n.a. D (80.0) D (78.0) N
C-17 n.a. N n.a. D (10.0) D (9.0) N
C-18 n.a. N n.a. D (73.0) D (64.0) N
C-19 n.a. N n.a. D (9.0) D (10.0) N
C-20 n.a. N n.a. D (96.0) D (42.0) N
C-21 D D (16.0) N A (50.0) A (50.0) A (50.0)
C-22 D D (40.0) N A (40.0) A (40.0) A (40.0)
C-23 N N N N A (36.0) N
C-24 D D (19.0) N N N N
C-25 D D (36.0) N N N N
C-26 D D (89.0) N N N N
C-27 D D (77.0) N N N N
C-28 D D (95.0) N N N N
C-29 N D (11.5) N N N N
C-30 n.a. D (86.5) n.a. N N N
C-31 N N N N N A (75.0)
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Figure 1. The distribution and of BIRC3, ATM and TP53 aberrations in CLL and B-ALL patients are summarized. (A) In CLL and B-ALL, the majority of 
           patients did not show alterations in the three genes. Distribution of the loss and gain of copy numbers in the two patient groups is depicted. (B) Combinations of  
          loss and gain of the three genes were identiied in the patients with CLL and B฀ALL, with alterations from part (A). BIRC3, baculoviral IAP repeat-containing 3;  
          ATM, ataxia telangiectasia mutated; TP53, tumor protein 53; CLL, chronic lymphocytic leukemia; B-ALL, B-cell acute lymphocytic leukemia.  
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           Figure 2. (A) Array comparative genomic hybridization conirmed the deletion in TP53, which was detected initially using iFISH and multiplex ligation dependent   
           probe ampliication for CLL cases C-21 and C-22. The whole short arm was deleted and the long arm was possibly duplicated due to an isochromosome 17a  
           formation, at least in case C-21. (B) Examples for gain of copy numbers for BIRC3 and MALT1 in the 2 cases by iFISH: i) C-21, an example of 3 copies and ii) C-22,   

an example of 4 copies. (C) iFISH results of the CLL case C-23. BIRC3 had 3 copies in certain cells; however ATM, MALT1 and TP53 exhibited only 2 copies 
           each, in all cells. TP53, tumor protein 53; CLL, chronic lymphocytic leukemia; iFISH, interphase fluorescence in situ hybridization; BIRC3, baculoviral IAP   
           repeat-containing 3; MALT1, mucosa-associated lymphoid tissue lymphoma translocation gene 1; ATM, ataxia telangiectasia mutated. 
 
 

 
 
 

        With regard to TP53 abnormalities, 3 patients with B-ALL 
        possessed a TP53 deletion in the absence of any aberrations 
        in BIRC3. TP53 deletions were present in 11 CLL patients, 
        7 of which possessed no associated BIRC3 aberrations and, 
         notably, 2 of which were accompanied by BIRC3 and ATM 

in addition to TP53 deletion. To study these cases in greater  
depth, iFISH was performed using the centromeres of chro-  
mosomes (CEP) 3, 4, 7, 11, 16 and 18. For these chromosomes,  
3 signals were detected in 11% (case C-21) and 25% (case  
C-22) of the cells, and 4 signals were detected in 29% (case  

 ampliication. C-21) and 25% (C-22) of the cells, respectively (Fig. 2).  
 
        BIRC3 duplication. In total, 3 CLL patients harbored a 
        BIRC3 duplication (cases C-21 to C-23), 2 of which (C-21 and 

The third CLL case (C-23) with BIRC3 duplication was  
associated with normal copy numbers of TP53 and ATM; the  
centromeric probes for chromosomes 11 and 17 only revealed  

        C-22) were accompanied by ATM and MALT1 duplications 2 signals each (Fig. 2).  
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          Figure 3. Results obtained for B-ALL case A-1 by array comparative genomic hybridization and iFISH are summarized. (A) Deletion in 11q22-q23, initially  
          detected by iFISH, resulted in loss of the whole long arm of a chromosome 11. (B) Examples for heterozygote deletions of ATM and BIRC3 detected by iFISH  
         are depicted. iFISH, interphase luorescence in situ hybridization; ATM, ataxia telangiectasia mutated; BIRC3, baculoviral IAP repeat-containing 3; MALT1,  
          mucosa-associated lymphoid tissue lymphoma translocation gene 1; D11Z1, CEP 11 probe.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Discussion 
 
       The present study regarding BIRC3 copy number variations 
       in 117 CLL and 45 B-ALL patients has revealed several 
       major findings that, to the best of our knowledge, have not 
       been previously reported. Firstly, BIRC3 duplications were 
       detected in 3 cases of CLL, and 2 of these were associated 
       with ATM and MALT1 duplications, in addition to TP53 
       deletions; BIRC3 amplification was not more than a hint 
        on a hyperdiploid cell clone as reported in CLL earlier, but 
        not as a frequent event (16,17). In addition, 1 B-ALL patient 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The disruption of BIRC3 is specifically restricted to  
chemo-refractory cases in progressive CLL patients, and may  
selectively associate with fludarabine-refractory patients  
with normal TP53 (7). Therefore, another notable inding of  
the present study is that BIRC3 abnormalities were associ-  
ated with TP53 deletion in only 4/117 CLL cases. According   
to previous studies, the frequency of BIRC3 disruption is low   
at diagnosis; however, BIRC3 disruptions tend to accumu-  
late among refractory CLL and emerge over time. Patients  
harboring a BIRC3 disruption typically experience an  
aggressive disease course, even compared with other clini-  
cally aggressive groups (11,24). This aspect of the disease  

  
    
 Based on the aCGH results for cases C-21, C-22 and C-23, possessed a duplication of BIRC3 due to partial hyperdiploidy,  
 the TP53 deletion in C฀21 and C฀22 was conirmed; however, which is more common in B-ALL compared with CLL, and  
 BIRC3 was normal in all 3 patients (Fig. 2). Therefore, is associated with good prognosis in pediatric patients (18). A  
 cases C-21 and C-22 had a mixture of a malignant triploid CLL-case with a BIRC3 duplication possessed normal ATM  
 and tetraploid cell clones and a deletion in TP53. Case C-23 and TP53 copy numbers; however, the duplication was not  
 demonstrated the selective gain of copy numbers for BIRC3, detected by aCGH, most likely due to the low sensitivity of  
 without ATM involvement, in 36% of the cells; however, this aCGH for mosaic detection, despite being present in 36% of  
 inding was not detectable using aCGH. the cells. Previous studies on the interaction of BIRC3 with  
   the NF-κB pathway indicate that BIRC3 duplication may lead  
 MALT1 duplication. The patient with a MALT1 duplication to the inactivation of tumor suppressor activity (19-21).  
 (case C-31) possessed a trisomy of chromosome 18, which As the predominant morphological feature of CLL  
 was confirmed using MLPA and iFISH. The probes for is the accumulation of small B lymphocytes (1), B-ALL  
 the deleted in colorectal cancer gene on 18q21.2 and RNA patients were chosen to be the second group to be tested for  
 (guanine-7-)methyltransferase gene on 18p11.22 revealed a BIRC3-alterations in the present study. Therefore the second  
 duplication by MLPA, which was conirmed by iFISH in 75% important inding of the present study is the detection of  
 of the cells. a BIRC3 deletion in 1 of the 45 studied B-ALL cases. The  
   aCGH for case A-1 revealed the deletion of almost all of the  
 B�ALL patients. Regarding B-ALL patients, 1 case revealed long arm of chromosome 11, and the most frequent aberra-  
 a deletion in BIRC3 along with ATM (case A-1), and another tions associated with chromosome 11 in B-ALL patients are  
 case was identified as possessing a triploid/hyperdiploid structural abnormalities in band 11q23, which harbors the  
 karyotype in the iFISH analysis using CEP 11, 17 and 18 myeloid/lymphoid leukemia gene (22).  
 (case A-2, result not shown), as was observed in the cases Chromosomal deletions involving 11q have been reported  
 C-21 and C-22. in certain subtypes of hematological malignancies, including  
 The BIRC3 deletion in B฀ALL case A฀1 was conirmed B-cell CLL, and are associated with a poor prognosis in mantle  
 by aCGH, which reveled that the deletion in the long arm cell lymphomas or T-cell prolymphocytic leukemia (23).  
 of chromosome 11 covered between chr11:67,773,863 and Therefore, the prognosis for the B-ALL patient in the present  
 134,945,165 (GRCh37/hg19) (Fig. 3). The ATM and BIRC3 study may be poor or extremely poor. Additional studies are  
 genes  are  located  between  positions  102,188,181 and required to determine the role of BIRC3 in the prognosis of  
 108,239,826. B-ALL patients.  
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In chronic lymphocytic leukemia (CLL), presence of acquired cytogenetic abnormalities may help to estimate prognosis. However,
deletion of TP53 gene, which is associated with an aggressive course of the disease and poor prognosis along with a lack of response
to treatment, is one of the alterations which may escape cytogenetic diagnoses in CLL. hus, other techniques have emerged such
as interphase luorescence in situ hybridization (iFISH). Deletion of TP53 may but must not go together with the formation of
an isochromosome i(17q); surprisingly this subgroup of patients was not in the focus of CLL studies yet. his study was about if
presence of i(17q) could be indicative for a new subgroup in CLL with more adverse prognosis. As a result, TP53 deletion was
detected in 18 out of 150 (12%) here studied CLL cases. Six of those cases (∼33%) had the TP53 deletion accompanied by an i(17q).
Interestingly, the cases with i(17q) showed a tendency towards more associated chromosomal aberrations. hese indings may be
the bases for follow-up studies in CLL patients with TP53 deletion with and without i(17q); it may be suggested that the i(17q)
presents an even more adverse prognostic marker than TP53 deletion alone.

1. Introduction

Chronic lymphocytic leukemia (CLL) is a relatively fre-
quently observable acquired disease in men and women of
>50 years of age [1]. Also CLL is a heterogeneousmalignancy,
as the survival of CLL patients can be in the range of months
to decades according to the underlying genetic abnormalities
[2]. he most frequent cytogenetic aberrations in CLL are
involving chromosomal subbands 13q14 (50–60%), 14q32
(12–15%), 11q22 (10–20%), and 17p13 (5–10%) as well as
trisomy 12 (15–25%); each group has diferent prognoses and
survival rates [1, 3]. Deletion of TP53 gene, which is located
in the short arm of chromosome 17 towards the telomeric
region in 17p13.1, is associated with poor prognosis and lack
of response to ludarabine-based regimens.

TP53 deletion in CLL can be associated with isochro-
mosome formation of the long arm of one chromosome

17 leading at the same time to partial monosomy 17p and
partial trisomy 17q. In general, isochromosome i(17q) is the
most frequently observed isochromosome in hematological
malignancies and it can be present as primary or secondary
aberration; that is, it may play roles during development as
well as progression of the malignancy. Presence of i(17q) as a
sole abnormality is associated with a high risk of progression
and an aggressive clinical course, but i(17q) can also be found
as part of a complex karyotype [4–6]. In solid tumors, i(17q) is
reported predominantly in medulloblastoma [7], there oten
associated with c-myc ampliication [8].

Overall, detection of acquired chromosomal abnormali-
ties such as i(17q) just based on GTG-bandingmay be limited
due to low mitotic potential of CLL bone marrow cells. hus,
nowadays other techniques are applied to overcome this prob-
lem, by name interphase luorescence in situ hybridization
(iFISH), multiplex ligation dependent probe ampliication

Hindawi Publishing Corporation
Leukemia Research and Treatment
Volume 2015, Article ID 489592, 6 pages
http://dx.doi.org/10.1155/2015/489592

2.Results
52



Leukemia Research and Treatment

(MLPA), and array-comparative genomic hybridization
(aCGH) [2, 9, 10]. Here we studied 150 CLL samples and
concentrated on the questions (i) if i(17q) can be detected
reliably by MLPA and (ii) if i(17q) presence in patients with
TP53 deletion is associated with more complex cytogenetic
aberrations. An association with the clinical outcome would
have been favorable as well; unfortunately this was not
possible due to lack of necessary clinical data.

2. Material and Methods

2.1. Patients and Sample Preparation. he present study
included 150 CLL patients, which were diagnosed according
to standard criteria [11]. he samples were obtained under
informed consent of the corresponding patients and accord-
ing to institutional ethical committee guidelines (Ethical
Committee of the Friedrich Schiller University Jena).

DNA was extracted from lymphocytes of 85 CLL cases
by a commercial kit (Qiagen) according to manufacturer’s
instructions. DNA was derived from diferent sources: 2
samples from heparinized bonemarrow, 8 samples from hep-
arinized blood, and 75 samples from cytogenetically prepared
cells ixed in methanol/acetic acid (3 : 1)—48 of them derived
from bonemarrow and 27 from blood. Details on the studied
patients can be found in the paper by Alhourani et al. (2014):
the 10 here in more detail studied patients with TP53 deletion
(Table 1) were cases 61 (now 1), 1 (now 2), 17 (now 3), 19
(now 4), 12 (now 5), 38 (now 6), 18 (now 7), 16 (now 8), 39
(now 9), and 13 (now 10) from Alhourani et al. (2014) [1].
In the previous study, no special attention was given to the
here treated i(17q) problem, and additional studies, esp. FISH
experiments, and reinterpretation of MLPA and aCGH data
were performed here.

For further investigation of i(17q) status, additional 65
CLL patients were included in this study with special focus
on 8 cases (86 to 93) with TP53 (Table 1).

2.2. GTG-Banding and Interphase-Directed Fluorescence In
Situ Hybridization (iFISH) Analysis. GTG-banding and
iFISH analyses were done as previously reported [1].

For iFISH, the following probes were used:

(i) Abbott/Vysis (Wiesbaden, Germany): LSI p53/LSI
ATM (in 17p13.1 and 11q22.3), LSI D13S319/LSI 13q34/
CEP 12 (in 13q14.3, 13q34, and 12p11.1-q11.1), LSI IGH
dual color, break-apart probe (in 14q32.33), LSI SMS
Region SpectrumOrange/LSI RARA SpectrumGreen
(in 17p11.2 and 17q12-21), CEP 17 (D17Z1 in 17p11.1-
q11.1), TelVysion 17p (282M16/SP6), and TelVysion
17q (D17S928).

(ii) From Zytovision (Bremerhaven, Germany): Zyto-
Light SPEC CMYC/CEN 8 Dual Color (8q24.21 and
8p11.1-q11.1).

(iii) BACPAC Resources Center (Oakland, USA): RP11-
318A15 in 17q25.1 (gene UNC13D) and RP11-94L15 in
17q12 (gene IKZF3).

For each iFISH analysis, 100–200 interphase nuclei were
examined per case and probe.

2.3. Multiplex Ligation Dependent Probe Amplification (MLPA)
Analysis. Multiplex ligation dependent probe ampliication
(MLPA) was performed on 85 CLL cases using SALSAMLPA
probemix P377-A1 for Hematological Malignancies Kit from
(MRC-Holland, Amsterdam, Netherlands).

he P377-A1 probemix kit contains 52 probes for overall
37 genes; TP53 which is located on the short arm of chromo-
some 17 is covered by 4 probes; likewise UNC13D and IKZF3
on q arm were covered by one probe for each of them [1].

2.4. High Resolution Array-Comparative Genomic Hybridiza-
tion (aCGH). High resolution array-comparative genomic
hybridization (aCGH) was performed using Agilent Sure-
Print G3 Human Genome microarray 180K (Agilent Tech-
nologies, Santa Clara, CA, USA) as previously reported [12].

3. Results

Deletion of TP53 has been detected in 9/85 cases by MLPA.
Besides a screening for TP53 deletion was done by iFISH
in all of the studied 85 CLL cases to detect mosaic cases
with low percentage of aberrant cells as well. Accordingly,
TP53 deletion was detected in one additional CLL case, being
present there in only 11.5% of the studied cells (case 10).

he overall detected 10 cases with TP53 deletion (Table 2)
were further studied by iFISH using probes IKZF3 in 17q12,
UNC13D in 17q25.1, and subtelomeric probes (17pter and
17qter; Figure 1(a)); furthermore iFISH-probes for the most
frequent aberrations in CLL and, in part, aCGH (case 3;
Figure 1(b)) have been applied in those cases, as speciied
by Alhourani et al. (2014). So, overall 3/85 (∼3.5%) of here
studied CLL cases had the loss of TP53 due to formation of
an i(17q) which is equal to 30% of these patients.

Further 8 cases with TP53 deletion were found in
additional 65 studied CLL patients by iFISH-probe. Here,
subtelomeric (17pter and 17qter) probes were applied to
identify the three among them cases with i(17q). A probe
for 17p11.2 and 17q12 conirmed the isochromosome status in
those cases (Table 3).

In the here studied cases with i(17q), this alteration
was accompanied by additional chromosomal aberrations
(Table 4). For all of them, ampliication of c-myc was
excluded. While in the irst 85 CLL patients, cases 1 and 2
were accompanied by ive additional acquired chromosomal
rearrangements and case 3 had only one additional change.
In cases 1 and 2, at least one of these additional changes was
correlated with an adverse prognosis; in case 3 the del(13) is
considered to be a favorable prognostic factor. Cases 4–10,
which showed just deletion of TP53 without isochromosome
formation, had either no further aberrations (cases 4 and
9) or just one additional chromosomal alteration associated
with good prognosis (cases 5, 7, and 10). Only case 8 showed
two additional chromosomal alterations with known adverse
prognostic meaning.

Among the 8 cases with TP53 deletion studied only by
iFISH, three cases revealed i(17q). While case 88 showed 8
additional chromosomal rearrangements (two of them were
associated with good prognosis), the other two cases, 86
and 87, had only one additional chromosomal alteration.
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Table 1: Gender, age, and cytogenetic results of the 18 studied CLL cases which showed deletion of TP53 gene.

Case number Gender Age [y]
DNA extracted

from
Banding cytogenetics

1 F 74 bm

46,XX,i(17)(q10)[1]/
46,XX,+12,i(17)(q10),-21[9]/
46,XX,t(3;?)(q2?9;?)[4],-7[4],+12[4],i(17)(q10)[4][cp4]/
46,XX[4]

2 M 83 bm
47,XY,-11,+12,+mar[cp3]/
47,XY,del(5)(p1?3),-11,+12,-17,+mar1,+mar2[cp6]/
46,XY[9]

3 M 72 bm 46,XY

4 F 71 b 46,XX

5 F 50 b n.a.

6 M 65 bm
46,XY,?t(3;?)(p21;?),der(17)t(17;?),-18,+mar[cp7]/
46,XY[9]

7 F 66 b n.a.

8 M 73 bm

46∼47,XY,del(11)(q22q2?3),der(17)t(17;?)(p11.2;?)[cp5]/
45∼46,XY,del(11)(q22q2?3),del(17)(p11.2)[cp4]/
43∼46,XY,del(11)(q22q2?3)[cp2]/
46,XY[7]

9 F 74 B 46,XX

10 F 90 b n.a.

86 M 74 n.a.
45∼46,XY,i(17)(q10)[cp4]/
45,X,-Y[2]/
46,XY[14]

87 F 76 n.a.
46,XX,?t(6;19)(p22;p13),del(17)(p?11.2)[1]
46,XX[16]

88 M 65 n.a.

46,XY,t(10;13)(q2?2;q1?3)[10]
46,XY,i(18)(q10)[1]
45,XY,?del(6)(?q21),-17[1]
46,XY,-17,+mar[1]
44,XY,-11,-17[1]
46,XY,-4,-21,+2mar[1]
46,XY[5]

89 F 68 n.a. n.a.

90 F 63 n.a. n.a.

91 F 79 n.a. n.a.

92 M 61 n.a. n.a.

93 F 75 n.a. n.a.

b = cell pellet in Carnoy’s ixative from blood; bm = cell pellet in Carnoy’s ixative from bone marrow; F = female; M = male; n.a. = not available; B = native
peripheral blood.

he remaining 5 cases with TP53 deletion and no i(17q)
were associated with one additional chromosomal aberration
with good prognosis (cases 89 and 90), or no additional
chromosomal changes (cases 91, 92, and 93) (Table 1).

4. Discussion

Generally, isochromosome formation is characterized by the
loss of the entire short armwith subsequent duplication of the
entire long arm, resulting in two homologous arms attached
to a single centromere as mirror images [4, 7, 13]. here
are two hypotheses to explain the formation of isochromo-
some, either by transverse instead of longitudinal division
of the centromere or by chromatid exchange involving two

homologous chromosomes. he rate of the appearance of
isochromosomes is diferent among the various types of
tumors, with the highest occurrence in germ cell neoplasms
(60%) and the lowest in chronic myeloproliferative disorders
(2.3%) [14].

Surprisingly, although i(17q) appeared in 6/150 (4%) here
studied CLL patients, that is, and 6/18 (∼33%) of CLL patients
with a deletion of TP53, this chromosomal aberration has
not been studied in detail yet in this patient group. Still,
there is one study including 2 CLL patients with i(17q) which
showed that such isochromosome most likely forms due to
clustered breakpoints in 17q11 and is not associated with TP53
mutations of the intact chromosome 17 [4]. In 2006, i(17q)
was found to be present in 4/16 (25%) CLL patients withTP53
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Table 2: Summary of MLPA and iFISH results of IKZF3- and UNC13D-gene speciic probes and subtelomeric probes for chromosome 17 in
10 CLL cases with TP53 deletion in the irst group.

Case number
TP53 [%] UNC13D [%] IKZF3 [%] iFISH [%]

MLPA iFISH MLPA iFISH MLPA iFISH Subtel. pter Subtel. qter

1 d d [95] a a [90] a a [90] d [90] a [90]
2 d d [40] a a [40] a a [40] d [40] a [40]
3 d d [40] n a [25] n a [25] d [25] a [25]
4 d d [36] n n n n n n

5 d d [21] n n n n n n

6 d d [89] n n n n n n

7 d d [19] n n n n n n

8 d d [86] n n n n n n

9 d d [77] n n n n n n

10 n d [11,5] n n n n n n

11 to 85 n n n n.a. n n.a. n.a. n.a.

n = no aberration, d = deletion, a = ampliication, n.a. = not tested, and [] = percentage of cells with aberration.

Table 3: Summary of iFISH results using SMS and RARA gene
speciic probes and subtelomeric probes for chromosome 17 in 8CLL
cases with TP53 deletion in CLL cases only studied by iFISH and not
by MLPA.

Case number
iFISH [%] iFISH [%] iFISH [%]

TP53 Subtel. pter Subtel. qter SMS RARA

86 d [77] d [77] a [77] d [77] a [77]
87 d [77] d [77] a [77] d [77] a [77]
88 d [80] d [80] a [80] d [80] a [80]
89 d [69] n n n.a n.a

90 d [28] n n n.a n.a

91 d [75] n n n.a n.a

92 d [89] n n n.a n.a

93 d [95.5] n n n.a n.a

94 to 150 n n.a n.a n.a n.a

n = no aberration, d = deletion, a = ampliication, n.a. = not tested, and [] =
percentage of cells with aberration.

gene loss [15]; that is, the here reported frequency is within
the same range. However, the initial inding of an i(17q) in
2/21 (9.5%) CLL cases seems to be overestimated due to small
sample size [16].

Even though here only 6 cases with i(17q) could be
studied, the results summarized in Table 4 show a clear ten-
dency: cases with i(17q) are associated with more aberrations
compared to those which have just deletion of TP53. Cases 3
and 8 do not exactly it into this suggestion. However, case 3
had only 25% of the cells with an i(17q) indicating an early
phase of the disease; in case 8 cytogenetics provided a hint on
an ongoing karyotypic evolution and already advanced stage
of the disease.

Whereas both Baliakas et al. and Rigolin et al. reported
that complex karyotype predicts a worse overall survival,
also Baliakas et al. demonstrated that complex karyotype is
identiied as an independent prognostic factor for shorter
time-to-irst-treatment [17, 18].

UNC13D ATM

TP53D17Z1
Subtel. 17pter
Subtel.17qter

(a)

−4 −3 −2 −1 0 1 2 3 4

q25.2

q25.1
q24.3

q23.3
q23.1

q22

q21.32

q21.1

q12

q11.2

p11.2

p12

p13.2

(b)

Figure 1: (a) Isochromosome 17q was detected initially by iFISH
in this case; representative examples for heterozygote deletions of
TP53 and #17 subtelomeric region 17p (subtel. 17pter) besides three
signals forUNC13D and subtel. 17qter. Only 2 signals for centromere
of chromosome 17 (D17Z1) and ATM gene on chromosome 11 were
detected. (b) aCGH showed deletion of short arm and gain of long
arm of chromosome 17 in case 3.

Furthermore, hompson et al. showed that relapsed/
refractory CLL patients who reveal del(17p) and complex
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Del(TP53)
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Del(TP53)
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Figure 2: Here a scheme for the suggested procedures how to delineate an i(17q), if cytogenetics, MLPA, and iFISH are available.

Table 4: All 18 CLL cases which revealed TP53 deletion are listed
showing the additionally detected chromosomal aberrations and
their clinical impact (1).

Case number
Additional aberrations
not listing #17 aberrations [%]

Prognosis

1

t(3;?)(q2?9;?)[22] n.a.

-7[22] Adverse

+12[78] Intermediate

del(14)(q32q32)[94] Good

-21[50] n.a.

2

del(5)(p1?3)[33] n.a.

del(11)(q22.3q22.3)[30] Adverse

+12[70] Intermediate

del(13)(q14.3q14.3)[30] Good

rea(14)(q32.33)[28] -> ?+14 Adverse

3 del(13)(q14.3q14.3)[20] Good

4 None detected Intermediate

5
del(13)(q14.2q14.2)[52]

Gooddel(13)(q14.2q14.2)x2[38]
del(13)(q14.3q14.3)[34]

6
t(3;?)(p21;?)[44] n.a.

-18,+mar[44] n.a.

7 del(13)(q14.3q14.3)[90.5] Good

8
amp(8)(q24.21q24.21)[21] Adverse

del(11)(q22.3q22.3)[11] Adverse

9 None detected Intermediate

10 del(13)(q14.3q14.3)x2[98.5] Good

86 -Y n.a.

87 ?t(6;19)(p22;p13),del(17)(p?11.2) Adverse

88

t(10;13)(q2?2;q1?3) Advesrse

i(18)(q10) n.a.

?del(6)(?q21),-17 n.a.

-17,+mar n.a.

-11,-17 n.a.

-4,-21,+2mar n.a.

del(13)(q14.3q14.3)[57] Good

del(14)(q32q32)[75] Good

89
del(13)(q14.2q14.2)[50]

Good
del(13)(q14.2q14.2)x2[7]

90 del(14)(q32q32)[36] Good

91 None detected Intermediate

92 None detected Intermediate

93 None detected Intermediate

n.a. = not available.

karyotype have shorter overall survival than those with only
del(17p) [19].

Due to lack of clinical data, the clinical impact of i(17q)
could not be followed up, but in spite of that the present study
gives irst hints that i(17q) presence may be an indicator for
more aggressive course ofCLLdisease than justTP53deletion
without i(17q) formation. Similar indings were reported
for other hematological neoplasia, like acute lymphocytic
leukemia [20], acute promyelocytic leukemia [21], chronic
myeloid leukemia [5], or other myeloid leukemia [22–24].

As previously outlined by us and others, MLPA is a
quick and inexpensive screening tool for CLL diagnostics
[1, 25]. However, its inability to detect low level mosaics needs
to be considered and thus a diagnostic scheme combining
cytogenetics, iFISH, and MLPA needs to be considered for
reliable testing of CLL cases in diagnostics [1]. hus, in
Figure 2 we suggest a scheme of how to detect i(17q) reliably.

In conclusion, i(17q) presence in CLL cases with TP53
deletion should be considered as a potentially adversemarker
for more aggressive course of the disease than monosomy of
17p13.1 alone; it needs to be kept in mind that MLPA alone
may be not suicient to pick up all corresponding cases and
a combination with iFISH may be considered additionally.

Conflict of Interests

he authors declare that they have no competing interests.

Acknowledgment

his paper was supported in part by the KAAD.

References

[1] E. Alhourani, M. Rincic, M. A. Othman et al., “Comprehen-
sive chronic lymphocytic leukemia diagnostics by combined
multiplex ligation dependent probe ampliication (MLPA) and
interphase luorescence in situ hybridization (iFISH),”Molecu-
lar Cytogenetics, vol. 7, no. 1, article 79, 2014.

[2] A. E. Rodŕıguez-Vicente, M. G. Dı́az, and J. M. Hernández-
Rivas, “Chronic lymphocytic leukemia: a clinical andmolecular
heterogenous disease,” Cancer Genetics, vol. 206, no. 3, pp. 49–
62, 2013.
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3. Discussion. 

Diagnosis and prognosis of CLL depend on presence or absence of chromosomal abnormalities, 

which can be detected by different molecular and cytogenetic techniques (Döhner et al. 2000, 

Rodriguez-Vicente et al. 2013). Thus, the first phase of the present work was dedicated to 

identify all possible chromosomal aberrations in 85 CLL cases by using GTG-banding, iFISH, 

MLPA and aCGH in selected cases as discussed in 3.1. As outlined in 3.1.1.-3.1.2., concordance 

and discordance between MPLA and iFISH and the potential clinical relevance for the additional 

detected cases by MLPA are discussed. In 3.1.3. a diagnostic cost efficient scheme combining 

the different techniques is suggested. 

Furthermore, in this thesis the disruption of BIRC3 gene was studied in 117 CLL-, and 45 B-

ALL cases and the association between BIRC3 disruption and deletion of ATM gene was 

analyzed (3.2.). Finally i(17q) status was examined in 150 CLL, and potential i(17q)-association 

with complex karyotypes. 

 

3.1. Cytogenetic analysis for CLL diagnostics 

Prognosis and hence treatment decisions for CLL patients vary according to the detected 

chromosomal abnormalities. The identification of such aberrations by conventional karyotyping 

and metaphase-directed FISH is obstructed by a low in vitro mitotic activity of malignant cells, 

which leads to the lack of the metaphase spreads in the analyzable sample (article 1, Döhner et 

al. 2000). Accordingly, iFISH has been introduced as a powerful tool for the detection of 

genomic aberrations in CLL, as it can be performed in both dividing and non-dividing cells, by 

that overcoming the limitation of low mitotic index. Still it is restricted to specific chromosomal 

regions according to the used probes panel (e.g. 13q14.3, 12p11.1-q11.1, 14q32.33, 17p13.1 and 

11q22.3 in CLL (Rodriguez-Vicente et al. 2013, Haferlach et al. 2007). MLPA technique may be 

applied in CLL diagnostics to detect copy number variations in multiple chromosomal regions at 

the same time. Thus one of the objectives of this study was the evaluation of MLPA efficacy in 

identification of unbalanced genomic aberrations in CLL in comparison with GTG-banding and 

iFISH (article 2, Véronèse et al. 2013). 
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3.1.1. Concordances of MLPA and iFISH results  

MLPA has been performed retrospectively on 85 CLL samples, which were initially studied by 

GTG-banding and routine iFISH. Overall MLPA and iFISH were in concordance in 70% of 

cases. However, 33 additional chromosomal aberrations were detected by MLPA, 30 of them 

confirmed later by iFISH (article 2). 

The additional detected aberrations had an impact on the prognosis of individual CLL cases. 12 

cases with known deletion in 13q14.3 revealed additional loss of 13q14.2; this implied a 

regrouping from favorable into unfavorable group (article 2, Dal Bo et al. 2011, Rodriguez-

Vicente et al. 2013). 

Also according to MLPA results previously unrecognizable deletions in the long arm of 

chromosome 6 were identified in 2 cases, being considered as an intermediate-risk factor, 

leading to short TTFT and OS (article 2, Cuneo et al. 2004). 

In addition to that 3 cases had 2p amplification; they were associated with deletion in ATM in 

two cases and deletion in 6q in the third one. Fabris et al. (2013) reported that 2p gain which 

include MYCN gene can be present since the early stages of the disease, particularly in those 

cases characterized by other poor prognosis markers, i.e. del(11)(q23) and del(17)(p13). A more 

aggressive course of the disease was associated to those patients. Thus 2p amplification can be 

an indicator for poor prognosis with short OS (article 2, Fabris et al. 2013). 

Only one case of this study showed trisomy 18 accompanied with trisomy 12; this changed the 

prognosis of this patients to be more adverse compared to such with only trisomy 12. Another 

case revealed duplication in 8q24 (MYC) accompanied with deletion in TP53 and ATM genes. 

This aberration (Dup MYC) is considered as a rare one in CLL, and to be associated with shorter 

OS (article 2, López et al. 2012, Puiggros et al. 2014). 

Duplication of RUNX1 gene (21q22.12), also called AML1-gene, showed up in two cases of this 

study; in one of them as a sole abnormality, and in the second one it was accompanied by 

deletions in 6q ,13q14.3, and gains in 2p. Normally, amplification in RUNX1 (AML1) gene 

appears in acute lymphoblastic leukemia and not in CLL, and is associated with a poor outcome. 

In addition to that translocation of this gene has been reported to be involved in a novel three-

way variant t(8;13;21)(q22;q33;q22) in a child with acute myeloid leukemia (articles 2, 3, 

Robinson et al. 2003). 
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3.1.2. Discordances of MLPA and iFISH results 

The results of array-CGH and iFISH showed no alterations in the chromosomal regions for the 

three aberrations (Dup in RNMT, DCC, SMOC2) being identified by MLPA, as well; thus, they 

have been considered as false positive results. This leads to the conclusion that genetic 

aberrations, which are detected by MLPA technique, especially those chromosomal regions 

which are covered by a single probe in the MLPA kit, should be confirmed or falsified by 

another molecular genetic technique such as iFISH (article 2, Hömig-Hölzel et al. 2012). 

Although the used MLPA kit (SALSA MLPA probemix P377-A1 for Hematological 

Malignancies) has the ability to detect 37 target regions simultaneously, the overall by MLPA 

detected alteration was only 58% of the 163 aberrations, while routine iFISH test, which applied 

only 5 probes, revealed 61% of the overall present aberrations (article 2). 

These unexpected results could be explained partly by the absence of probes targeted against 

chromosomal region 14q32 (IGH locus) in the MLPA kit, as this region is considered among the 

most frequent chromosomal regions being altered in CLL. IGH aberration were detected in this 

study by routine iFISH in 16 cases (article 2, Quintero-Rivera et al. 2009). 

Also the cases with low percentage of aberrant cells (10% up to 34% of the cells being aberrant) 

could be missed by MLPA. Surprisingly in this study there cases were also detectable by MLPA 

with percentage of aberrant cells down to ~10% according to iFISH, and other cases with 34% of 

aberrant cells after iFISH could not be picked up by MLPA (article 2, Hömig-Hölzel et al. 2012). 

Few previous studies reported the MLPA detection rates of low level mosaic CLL cases. 

Whereas, Coll-Mulet et al. (2008) and Abdool et al. (2010) demonstrated that false-negative 

MLPA results appeared in samples with less than 25% and 20% of aberrant cells, respectively, 

Véronèse et al. (2013) suggested that all false-negative cases occur in cases with 12-21% of 

aberrant cells. Thus it was estimated that 25-30% aberrant cells are sufficient for reliable 

detection by MLPA, which is definitely less sensitive than iFISH detection (Véronèse et al. 

2013). On the other hand Al Zaabi et al. (2010) demonstrated that MLPA can reliably detect the 

13q14 deletion in samples containing at least 36% of aberrant cells. 

Still, the findings of this study are in concordance with Stevens-Kroef et al. (2009) who reported 

that the detection limit of MLPA could be down to 10% of abnormal cells, and they found an 

almost perfect correlation between MLPA and iFISH, as long as identical genetic regions were 
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tested. Finally, false negative MLPA results can be also due to the technical impossibility of 

MLPA in detection of balanced translocations (Hömig-Hölzel et al. 2012). 

 

3.1.3. The combination of the different techniques in a CLL leads to a cost efficient 

diagnostic scheme.  

In spite of the application of iFISH and other molecular techniques for the detection of 

chromosomal abnormalities in CLL, GTG-banding is still considered as the golden standard 

method, as it enables the untargeted search for gross chromosomal aberrations. In the present 

study this general statement (Keen-Kim et al. 2008, Wan et al. 2012) was confirmed, as 15 

(~9%) of the 163 detected aberrations were identified exclusively by banding-cytogenetics 

(articles 1, 2). 

For a better assessment of the prognosis and the diagnosis of CLL, a cost efficient diagnostic 

scheme is needed and has been suggested, which combines three techniques together in a 

systematic way based on the detected chromosomal aberrations (article 2). According to the 

revealed chromosomal abnormalities by GTG-banding, the next test which has been suggested to 

be done is MLPA. As shown MLPA and routine iFISH have in principle comparable detection 

rates in CLL, but MLPA covers a more broad spectrum of target genes and also it is more cost 

efficient than iFISH (article 2, Hömig-Hölzel et al. 2012). 

The detection of an adverse diagnostic aberration by any of the applied methods in the 

recommended order is considered the end point of the tests to be done for an individual case. 

Thus for example it would be adequate if such an adverse acquired chromosomal aberration 

would be detected already by GTG-banding, no further procedures should be applied. 

If the suggested diagnostic scheme would have been applied in the studied 85 CLL patients, 

iFISH would have been not necessary to be performed in 20 of them, as MLPA would have 

already identified one or more adverse chromosomal abnormalities. 

Also four patients would have been classified in intermediate prognosis group after the 

application of MLPA, and then only three probes for the adverse prognosis aberrations would 

have been enough for iFISH test. 

For the 29 cases which were normal according to MLPA results, all routine iFISH probes should 

be applied for the detection of the low level mosaics cases. So based on iFISH results 4, 1, and 6 

cases went to adverse, intermediate, and good prognosis, respectively. 
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The CLL patients with good prognosis aberrations could be classified into favorable or 

unfavorable subgroups according to the size and /or percentage of the aberrant cells, also 

biallelic deletions in 13q14 which could be recognized by iFISH has been considered to be in the 

unfavorable subgroup. Thus, for 32 patients who revealed good prognosis aberrations according 

to MLPA, the same iFISH probes as for normal MLPA results should be applied (Garg et al. 

2012, Puiggros et al. 2014). 

If only MLPA and iFISH methods would have been applied for the studied 85 patient, in this 

situation still 3 cases would have been misclassified, as GTG-banding revealed poor prognostic 

aberrations in two of the cases, and intermediate-type aberration in the third one. Thus GTG-

banding has been suggested to be the initial test for CLL diagnostics. Irrespective of that also 

two cases were normal by GTG-banding and iFISH but after the application of MLPA one of 

them showed del 6q and the other one revealed Dup RUNX, which showed the importance of 

additional MLPA test performance for a better prognosis of CLL disease.  

The application of the suggested scheme would minimize the number of the applied iFISH 

probes, as 344 instead of 425 iFISH-probes, i.e. 20% less would be used (article 2). 

 

3.2. BIRC3 disruption in CLL and B-ALL 

Attempts for a precise prognosis are undertaken to lead later to effective treatment regimens for 

CLL patients. Unfortunately the molecular basis for a subgroup of patients who experience an 

aggressive clinical course of the disease is still unclear, as they tend to have refractory and/or 

relapsed towards fludarabine-based regimens, which are generally considered as the first line 

treatment for CLL. However, ~40% of those CLL-patients are associated with TP53 

abnormalities and thus the activation of the nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-κB) pathway could play a role in the mechanism of this therapy resistance. 

BIRC3 gene is considered as a negative regulator of the non-canonical pathway of NF-κB. 

Disruption of BIRC3 in CLL leads to the proliferation of cells and resistance to apoptosis due to 

activation of NF-κB which regulates anti-apoptotic genes especially the TRAF1 and TRAF2 

(Rossi et al. 2013, Sun SC et al.  2011). 

The previously reported aberrations which are related to BIRC3 were either disruption in CLL or 

recurrent translocation t(11;18)(q21;q21) in mucosa associated lymphoid tissue (MALT) 
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lymphoma (Dierlamm et al., 1999, Rose-Zerilli et al., 2014, Morgan et al., 1999, Rosebeck et al., 

2011). 

Based on the results of a previous study, which included 637 CLL patients, the disruption of 

TP53 and/or BIRC3 has been considered as high risk prognostic factors. As BIRC3 disruption did 

not appear in the fludarabine sensitive patients, an association with chemo-refractory CLL 

subtype was suggested (Rossi et al. 2013.) 

As the BIRC3 gene is located in 11q22.2 next to the ATM gene locus, the objective of this study 

was the evaluation if there is an association between BIRC3 and ATM abnormalities in CLL (117 

cases) – especially to answer the question if BIRC3 and ATM deletion appear simultaneously. 

Furthermore, 45 B-ALL patients having the same original subtype of affected cells (B 

lymphocytes) were studied for presence of BIRC3 alterations were (article 4, Puiggros et al. 

2014). 

BIRC3 duplication was detected in 3 CLL cases; two of them were due to a hyperdiploid status, 

which has been reported in CLL earlier, but not as a frequent event. Interestingly, the third CLL 

case had the BIRC3 duplication as a sole abnormality, and the clinical impact of this is not 

known yet. Still, the duplication of BIRC3 in that case was not detected by array-CGH, most 

likely due to the limitation of array-CGH in detection cases with low percentage of aberrant 

cells, despite being present in 36% of the cells, here (article 4, Shao et al. 2010, Specchia et al. 

2002). 

The unexpected result of BIRC3 amplification could be explained by the tumor suppressive role 

of NF-κB via its non-canonical pathway which has been reported by Keller et al. (2010). Also 

several studies found that NF-κB mediates apoptosis in a variety of cell types, as the activation 

of NF-κB promotes the ability of TP53 to induce apoptosis, and by this NF-kB plays an essential 

in p53-mediated apoptosis. It is notable that the studied case with sole BIRC3 duplication is 

associated with normal TP53 status. Taking together what is known about the interaction 

between BIRC3 and NF-κB pathway, it has been proposed that BIRC3 duplication could lead to 

inactivation of tumor suppressor activity ( article 4, Ryan et al., 2000,  Liu et al., 2012, Jing et al. 

2014).  

Also one of the B-ALL cases showed BIRC3 duplication as a part of hyperdiploidy. A 

hyperdiploid status appears more frequently in B-ALL compared to CLL, and it has a good 

prognosis in pediatric patients (Kebriaei et al. 2002). 



3.Discussion                                                                                                                                                                  64  

Previously it was reported that BIRC3 mutations are selectively restricted to CLL, while they are 

absent in other lymphoid tumors which are representative of the main categories of mature B-cell 

neoplasms (diffuse large B-cell lymphoma, Burkitt lymphoma, follicular lymphoma, extranodal 

marginal zone lymphoma, hairy-cell leukemia, and multiple myeloma). Therefore the second 

important finding of this study is the detection of a BIRC3 deletion in one of the 45 studied B-

ALL cases. Based on array-CGH result, the deletion included almost the whole long arm of 

chromosome 11. The most frequent aberration in B-ALL related to chromosome 11 is the 

structural abnormality of the 11q23 band harboring the MLL (myeloid/lymphoid leukemia) gene 

translocation in 3% to 7%, and being associated with an extremely poor prognosis (article 4, 

Rossi et al. 2012, Cox et al. 2004). 

Chromosomal deletions involving 11q have been reported also in other subtypes of 

hematological malignancies, such as B-cell chronic lymphocytic leukemia (B-CLL), which is 

associated with a poor prognosis, and also in mantle cell lymphomas (MCL) and T-cell 

prolymphocytic leukemia (T-PLL) (Monni et al. 2001). 

Based on that, the prognosis for the B-ALL case with BIRC3 deletion could be poor or extremely 

poor. But it remains to be determined if in such cases BIRC3 may also play a role for prognosis 

in B-ALL, as it does in CLL (Cox et al., 2004). 

Although the frequency of BIRC3 disruption is low at diagnosis, it tends to accumulate among 

refractory CLL patients, as it has been reported selectively in fludarabine-refractory patients with 

normal TP53. In this study BIRC3 abnormalities were associated with TP53 deletion in only 

4/117 CLL cases (article 4, Rossi et al. 2012). 

Overall, based on the results of this study, ATM deletions may, but not always must be, associate 

with BIRC3 abnormalities, as one of the CLL cases also showed BIRC3 duplication with normal 

ATM gene status acc. to MLPA. Therefore, the screening of BIRC3 in CLL patients is 

recommended particularly for correct treatment decisions and especially to decide whether to 

treat with or without fludarabine regime (article 4). 

 

3.3. Isochromosome 17q in CLL. 

As previously mentioned, among CLL patients with TP53 deletion there is a subgroup suffering 

from relapsed and/or refractory disease towards the used treatment regimens. It was previously 

suggested that deletion of TP53 in CLL patients could be associated with the formation of 
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isochromosome 17q [i(17q)], which is described as a duplication of the whole long arm with a 

simultaneous deletion of the whole short arm. In addition to that, the appearance of a complex 

karyotype in CLL has been considered as a poor prognostic feature. Here overall 150 CLL 

patients were studied for possible correlation of i(17q) presence and complex karyotype (article 

5, Puiggros et al. 2014, Scheurlen et al. 2004). 

 

3.3.1. The detection rate of i(17q) by MLPA 

In addition to that the assessment of MLPA in the detection of i(17q) in the first studied 85 CLL 

cases (article 2) 65 more cases were studied by iFISH experiments, and array-CGH in selected 

cases (article 5). 

The used MLPA kit (SALSA MLPA probemix P377-A1) includes 4 probes for TP53 gene, 

which is located on the short arm of chromosome 17, and one probe each for UNC13D and 

IKZF3 genes, which are located on the long arm of chromosome 17. The presence of an i(17q) 

appears as deletion of TP53 with concomitant duplication of UNC13D and IKZF3 genes (article 

5). 

Based on the results, a diagnostic scheme combining GTG-banding, MLPA, and iFISH has been 

suggested for special detection of i(17q) cases (article 5). GTG- banding is proposed to be the 

first test to be done, later MLPA should be performed, and if an i(17q) has not identified by 

banding cytogenetics and MLPA further iFISH tests should be performed by using subtelomeric 

probes for chromosome 17, to detect the cases with low percentage of the aberrant cells (article 

5). 

Among 85 cases which have been studied by GTG-banding, MLPA, and iFISH. The presence of 

i(17q) has been identified in 2 out of 3 cases by MLPA, and the third case was detected by 

iFISH, only, and later confirmed by array-CGH. Also an i(17q) was identified already by GTG-

banding in one case among them. 

 

3.3.2. Association between i(17q) and complex karyotype 

Overall among 150 CLL patients, deletion of TP53 was detected in 18 (12%) cases; among those 

i(17q) has been identified in 6 (∼33%) cases (article 5). Previously one study demonstrated that 

the formation of i(17q) is most likely due to clustered breakpoints in 17q11 and is not associated 

with TP53 mutations of the intact chromosome 17 (Fioretos et al. 1999). 
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Whereas the detection rate of i(17q) in the present study is almost in concordance with the 

previously reported in 2006, which was 25%; the initial finding of an i(17q) in 2/21 (9.5%) CLL 

cases by Vahdati et al. (1989) seems to be overestimated due to small sample size (Fink et al. 

2006). 

According to the results presented here, it was obviously that complex karyotypes are more 

frequently in cases with i(17q) compared to the cases with just deletion of TP53. In addition to 

that, all here studied the cases with i(17q) showed associated aberrations, four of them were 

considered as poor prognosis, while among 12 cases with only TP53 deletion, just one case 

showed concomitant poor prognosis aberrations, and 5 cases did not show any other 

chromosomal aberrations (article 5). 

Several studies reported complex karyotypes as an indicator for a short OS and shorter TTFT 

(Rigolin et al. 2015, Baliakas et al. 2014). 

Moreover, it was also demonstrated that the association between del(17p) and complex 

karyotype in the relapsed/ refractory CLL patients decreases the overall survival in comparison 

to those patients with only del(17p) (Thompson et al. 2015). 

Due to lack of clinical data in the present study, the impact of i(17q) on the clinical course of the 

disease could not be followed up. Still this study suggested the association of i(17q) and complex 

karyotype, that presence of i(17q) could be an indicator for more aggressive course of CLL 

disease than just TP53 deletion without the presence of i(17q). 

Furthermore, the presence of i(17q) was reported as an adverse cytogenetic feature in other 

hematological neoplasia, like acute lymphocytic leukemia, acute promyelocytic leukemia, 

chronic myeloid leukemia, or other myeloid leukemia (Pui et al. 1988, Duan et al. 2013, 

McClure et al. 1998, Becher et al. 1990, Sousa et al. 2012). 
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4. Conclusions and outlook 
The identification of, after GTG-banding cryptic chromosomal / genetic aberrations in CLL is 

necessary for a precise prognosis and thus correct determination of treatment protocols. 

Although cytogenetics and molecular cytogenetics are and will continue to be indispensable tools 

in leukemia diagnostics, each technique has its own limitations and advantages. The present 

work highlights that only the combination between cytogenetics, molecular genetics and 

molecular cytogenetics can lead to most comprehensive insights into the (cyto)genetic 

abnormalities in CLL. Thus, all the three techniques should be used for accurate diagnosis and 

therapeutic decisions for CLL patients according to the cost efficient suggested scheme: 

MLPA should be applied as an initial test if routine cytogenetics is not possible or non-

informative as it has the ability to detect rare chromosomal aberrations in CLL, according to the 

obtained MLPA-results iFISH should be performed when it is needed to distinguish mono- from 

biallelic deletions and also to avoid missing of aberrations being present only at low percentages 

of the studied cells. 

Furthermore, according to the results of the present study BIRC3 abnormalities are not always 

going together with ATM deletions. Thus screening of BIRC3 may be considered as necessary in 

future, particularly to help taking the accurate treatment decisions. 

As deletion of TP53 can be associated with the formation of an i(17q) and the latter is associated 

with more aggressive disease course this aberration should be specifically checked in TP53-

deletion cases. However, MLPA alone is not sufficient to pick up all corresponding cases and a 

combination with iFISH should be considered additionally.  

Overall the questions studied in this thesis could be answered as follows: 

1. How many cryptic chromosomal aberrations in the 85 studied CLL cases could be detected 

by MLPA, in comparison with routine iFISH and GTG-banding? 

Overall 163 aberrations were identified. 15 of those (~9%) were exclusively detected by banding 

cytogenetics, 95 were found by MLPA (~58%) and 100 (~61%) by routine iFISH. 

2. Could the underlying chromosomal abnormalities in CLL be precisely identified, to avoid 

misinterpretation of the prognosis so subsequently incorrect treatment regimens? 

Based on the obtained results a cost efficient diagnostic scheme is proposed combining GTG-

banding, MLPA, and iFISH for a better diagnosis and thus treatment for CLL patients. 
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3. What is the percentage of BIRC3 disruption in the studied 117 CLL cases, and its 

correlation with ATM deletion? 

Genetic abnormalities of BIRC3 were detected in 23/117 (~20%) of CLL, and one of the CLL 

cases showed duplication of BIRC3 without any alteration in ATM. 

4. Is BIRC3 disruption specific only for CLL? 

No, as BIRC3 abnormalities were detected in 2/45 (~4%) studied B-ALL cases.  

5. Is presence or absence of i(17q) in CLL able to identify a new subgroup with more 

aggressive clinical course of the disease, and what is the best way for its detection? 

A scheme has been proposed for the detection of i(17q) combining GTG-banding, MLPA, and 

iFISH, and it was demonstrated that i(17q) is more frequently associated with complex 

karyotypes. Thus i(17q) presence is considered as a hint for identification of a subgroup with 

more aggressive clinical course of the disease. 
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6. Appendix 

6.1. List of tables 

Supplementary Table 1 (Article 2) 

Gender, age and cytogenetic results of the studied cases/ samples.  

Abbreviations: b = cell pellet in Carnoys fixative from blood; B = native blood; bm = cell pellet 

in Carnoys fixative from bone marrow; BM = native bone marrow; F = female; M = male;  

case / 
sample 
number 

gender Age [y] DNA 
extracted 

from 

Cytogenetics 

1 M 83 bm 47,XY,-11,+12,+mar[cp3]/ 
47,XY,del(5)(p1?3),-11,+12,-17,+mar1,+mar2[cp6]/ 
46,XY[9] 

2 M 68 bm 46,XY 

3 F 62 B n.a. 

4 M 72 b 47,XY,?t(2;14),+12[3]/ 
45,X,-Y[4]/46,XY[11] 

5 M 65 b 46,XY 

6 M 71 bm 46,XY 

7 M 50 bm 46,XY 

8 F 64 bm 46,XX 

9 F 55 bm 46,XX 

10 F 39 bm 43~46,XY,del(11)(q2?2q2?4)[cp5]/  
45~46,XY,del(11)(q2?2q2?4),del(15)(q1?1q2?3)[cp11]/ 
46,XY[1] 

11 F 66 B 46,XX 

12 F 50 b n.a. 

13 F 90 b n.a. 

14 M 64 bm 46,XY 

15 M 43 bm 46,XY 

16 M 73 bm 46~47,XY,del(11)(q22q2?3),add(17)t(17;?)(p11.2;?)[cp5]/ 
45~46,XY,del(11)(q22q2?3),del(17)(p11.2)[cp4]/ 
43~46,XY,del(11)(q22q2?3)[cp2]/ 
46,XY[7] 

17 M 72 bm 46,XY 

18 F 66 b n.a. 

19 F 71 b 46,XX 

20 F 74 b 46,XX 

21 M 71 bm 46,XY 

22 F 76 b 46,XX 

23 M 62 b 46,XY 

24 M 67 bm 46,XY 

25 M 83 b n.a. 

26 M 79 B n.a. 

27 F 73 bm 46,XX 

28 F 49 B 46,XX 

29 F 69 b n.a. 

30 M 78 b 46,XY 

31 M 74 bm 46,XY 

32 M 71 b 45,X,-Y[cp8]/ 
46,XY[10] 

33 F 63 bm 46,XX 
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Supplementary Table 1 (Article 2 - continued) 

case / 
sample 
number 

gender age [y] 
 

DNA 
extracted 

from 

Cytogenetics 

34 M 77 bm 46,XY,del(11)(q?21),add(20)(p13)[7]/ 
45,X,-Y[10]/ 
46,XY[3] 

35 M 53 bm 46,XY 

36 M 73 bm 45,X,-Y,t(9;22)(q34;q11) 

37 M 74 bm 45,X,-Y[2]/ 
47,XY,+12[1]/ 
48,XY,-6,-8,+12,+mar,+mar,+mar[1]/ 
46,XY[14] 

38 M 65 bm 46,XY,?t(3;?)(p21;?),add(17)(p?12) or t(17;?),-18,+mar[cp7]/ 
46,XY[9] 

39 F 74 B 46,XX 

40 F 72 b 46,XX 

41 M 72 bm 45,X,-Y[4]/ 
46,XY[16] 

42 M 51 bm 46,XY 

43 F 48 b 46,XX 

44 F 47 b 46,XX 

45 F 79 bm 46,XX 

46 M 67 bm n.a. 

47 M 67 bm n.a. 

48 M 68 bm 46,XY 

49 M 61 b 46,XY 

50 M 73 bm 46,XY 

51 M 75 bm 46,XY 

52 M 77 b n.a. 

53 M 54 b 46,XY 

54 M 59 bm n.a. 

55 M 59 b 46,XY 

56 F 47 B 46,XX 

57 M 71 bm 46,XY,der(1)(t(1;4)(q1?2;q?31),der(4)t(4;?10)(q?31;q24), 
?der(10)t(10;16)(q24;p?11.2),der(15)t(1;15)(q1?2;q1?2), 
der(16)t(15;16)(q1?2;p?11.2)[17]/ 
46,XY[2] 

58 M 73 bm 45,XY,der(2)t(2;13)(q?37;q?14),?del(6)(p?23),del(11)(q?21), 
der(12)t(12;13)(q?24;q?22),-13[cp4]/46,XY[19] 

59 M 72 bm 46,XY 

60 M 54 B n.a. 

61 F 74 bm 46,XX,i(17)(q10)[1]/ 
46,XX,+12,i(17)(q10),-21[9]/ 
46,XX,t(3;?)(q2?9;?)[4],-7[4],+12[4],i(17)(q10)[4][cp4]/ 
46,XX[4] 

62 F 65 bm 46,XX 

63 M 72 b n.a. 

64 F 73 bm 46,XX,add(11)(q?22)[3]/ 
46,XX[12] 

65 M 54 b 46,XY 
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66 F 69 bm 46,XX 

67 M 53 bm 46,XY 

Supplementary Table 1 (Article 2 - continued) 

case / 
sample 
number 

gender age [y] DNA 
extracted 

from 

Cytogenetics 

68 M 53 b 46,XY 

69 M 75 bm 46,XY 

70 M 56 b 46,XY,?add(1q)(q4)[3]/ 
46,XY[3] 

71 F 58 BM n.a. 

72 F 73 B n.a. 

73 M 66 bm 46,XY 

74 M 74 bm 46,XY 

75 F 51 bm 46,XX 

76 M 52 bm 46,XY 

77 M 63 bm n.a. 

78 M 60 b 46,XY 

79 M 72 b n.a. 

80 F 49 bm 46,XX 

81 F 64 bm 46,XX 

82 F 72 bm 46,XX 

83 M 82 b 46,XY 

84 M 74 BM 46,XY 

85 F 72 bm n.a. 
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Supplementary Table 2 (Article 2)  

Aberrations detected in 85 CLL samples and by which method the corresponding aberrations could be 

detected. Abbreviations: + = detected, (+) = detected but not specific as bi- or monoallelic deletion, o = 

not tested, - not detected, n = no aberration. 

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

1 del(5)(p1?3)[33] 

del(11)(q22.3q22.3)[30] 

+12[70] 

del(13)(q14.3q14.3)[30] 

rea(14)(q32.33)[28] -> ?+14 

del(17)(p13.1p13.1)[16] 

amp(17)(q25.1q25.2)[40] 

o 

+ 

+ 

+ 

+ 

+ 

o 

o 

- 

+ 

+ 

o 

+ 

+ 

o 

o 

o 

o 

o 

o 

+ 

2 del(11)(q22.3q22.3)[33] 

del(13)(q14.3q14.3)[18] 

del(13)(q14.3q14.3)x2[14] 

+ 

+ 

+ 

- 

+ 

(+) 

o 

o 

o 

3 +12[15] 

rea(14)(q32.33)[52] -> 

t(14;18)(q32;q21) 

+ 

+ 

- 

o 

o 

o 

4 +12[31] 

del(13)(q14.2q14.2)[45] 

del(13)(q14.3q14.3)[20] 

+ 

o 

+ 

- 

+ 

+ 

o 

+ 

o 

5 amp(2)(p24.3p24.3)[60] 

amp(2)(p23.2~23.1p23.2~23.1)[63] 

del(6)(q23.3q23.3)[68] 

del(6)(q25.1q25.1)[65] 

del(6)(q27q27)[23] 

del(13)(q14.3q14.3)[18] 

del(14)(q32q32)[65]  

amp(21)(q22.12q22.12)[86] 

o 

o 

o 

o 

o 

+ 

+ 

o 

+ 

+ 

+ 

+ 

+ 

- 

o 

+ 

+ 

+ 

+ 

+ 

+ 

o 

o 

+ 

6 del(13)(q14.3q14.3)[10] + - o 

7 del(13)(q14.3q14.3)[10.5] + - o 

8 del(13)(q14.3q14.3)[12] + - o 

9 del(13)(q14.3q14.3)[18.5] + - o 

10 del(11)(q22.3q22.3)[98] 

del(13)(q14.3q14.3)[25] 

+ 

+ 

+ 

- 

o 

o 

11 del(13)(q14.3q14.3)[34] + - o 
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Supplementary Table 2 (Article 2 - continued)  

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

12 del(13)(q14.2q14.2)[52] 

del(13)(q14.2q14.2)x2[38] 

del(13)(q14.3q14.3)[34] 

del(17)(p13.1p13.1)[21] 

o 

o 

+ 

+ 

+ 

(+) 

- 

+ 

+ 

+ 

o 

o 

13 del(13)(q14.3q14.3)x2[98.5] 

del(17)(p13.1p13.1)[11.5] 

+ 

+ 

+ 

- 

o 

o 

14 del(11)(q22.3q22.3)[23.5] 

del(13)(q14.3q14.3)[34] 

+ 

+ 

+ 

+ 

o 

o 

15 del(11)(q22.3q22.3)[24] + + o 

16 amp(8)(q24.21q24.21)[21] 

del(11)(q22.3q22.3)[11] 

del(17)(p13.1p13.1)[86] 

o 

+ 

+ 

+ 

+ 

+ 

+ 

o 

o 

17 del(13)(q14.3q14.3)[20] 

del(17)(p13.1p13.1)[40] 

+ 

+ 

+ 

+ 

o 

o 

18 del(13)(q14.3q14.3)[90.5] 

del(17)(p13.1p13.1)[19] 

+ 

+ 

+ 

+ 

o 

o 

19 del(17)(p13.1p13.1)[36] + + o 

20 del(13)(q14.3q14.3)x2[94] 

del(14)(q32q32)[97] 

+ 

+ 

+ 

o 

o 

o 

21 del(13)(q14.2q14.2)[50] 

del(13)(q14.2q14.2)x2[30] 

del(13)(q14.3q14.3)x2[91] 

o 

o 

+ 

+ 

(+) 

+ 

+ 

+ 

o 

22 del(13)(q14.3q14.3)[5] 

del(13)(q14.3q14.3)x2[75] 

+ 

+ 

(+) 

+ 

o 

o 

23 del(13)(q14.3q14.3)[5] 

del(13)(q14.3q14.3)x2[81] 

+ 

+ 

(+) 

+ 

o 

o 

24 del(11)(q22.3q22.3)[88] 

del(13)(q14.2q14.2)[36] 

del(13)(q14.2q14.2)x2[41] 

del(13)(q14.3q14.3)[16] 

del(13)(q14.3q14.3)x2[71] 

+ 

o 

o 

+ 

+ 

+ 

+ 

(+) 

(+) 

+ 

o 

+ 

+ 

o 

o 

25 del(13)(q14.2q14.2)[66]  

del(13)(q14.2q14.2)x2[21] 

del(13)(q14.3q14.3)[18] 

del(13)(q14.3q14.3)x2[77] 

o 

o 

+ 

+ 

+ 

(+) 

(+) 

+ 

+ 

+ 

o 

o 

26 del(13)(q14.3q14.3)[25] 

del(13)(q14.3q14.3)x2[65] 

+ 

+ 

+ 

(+) 

o 

o 

 



6. Appendix                                                                                                                                                               87   

Supplementary Table 2 (Article 2 - continued)  

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

27 del(13)(q14.2q14.2)[34] 

del(13)(q14.2q14.2)x2[27] 

del(13)(q14.3q14.3)[36.5] 

del(13)(q14.3q14.3)x2[24] 

del(14)(q32q32)[12]  

o 

o 

+ 

+ 

+ 

+ 

(+) 

+ 

(+) 

o 

+ 

+ 

o 

o 

o 

28 del(13)(q14.3q14.3)[81] 

del(13)(q14.3q14.3)x2[7] 

+ 

+ 

+ 

(+) 

o 

o 

29 del(13)(q14.2q14.2)[58] 

del(13)(q14.2q14.2)x2[24] 

del(13)(q14.3q14.3)[86] 

del(13)(q14.3q14.3)x2[9] 

o 

o 

+ 

+ 

+ 

(+) 

+ 

(+) 

+ 

+ 

o 

o 

30 del(13)(q14.3q14.3)x2[100] + + o 

31 del(14)(q32q32)[92] + o o 

32 del(14)(q32q32)[81] 

-Y[44] 

+ 

o 

o 

o 

o 

o 

33 del(14)(q32q32)[58] + o o 

34 del(11)(q22.3q22.3)[90] 

del(14)(q32q32)[90] 

-Y[50] 

+ 

+ 

o 

+ 

o 

o 

o 

o 

o 

35 del(11)(q22.3q22.3)[77] + + o 

36 t(9;22)(q34;q11)[94] + o o 

37 +12[49.5] + + o 

38 t(3;?)(p21;?)[43] 

del(17)(p13.1p13.1)[89] 

o 

+ 

o 

+ 

o 

o 

39 del(17)(p13.1p13.1)[77] + + o 

40 del(13)(q14.3q14.3)[52] + + o 

41 del(13)(q14.3q14.3)[60] 

-Y[80] 

+ 

o 

+ 

o 

o 

o 

42 del(13)(q14.3q14.3)[68] + + o 

43 

 

del(13)(q14.3q14.3)[70.5] + + o 

44 del(13)(q14.3q14.3)[73] + + o 

45 del(13)(q14.3q14.3)[73] + + o 

46 del(13)(q14.3q14.3)[80] + + o 

47 del(13)(q14.3q14.3)[80] + + o 

48 del(13)(q14.3q14.3)[81] + + o 
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Supplementary Table 2 (Article 2 - continued)  

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

49 del(13)(q14.3q14.3)[83] + + o 

50 del(13)(q14.3q14.3)[85] + + o 

51 del(13)(q14.3q14.3)[91] + + o 

52 del(13)(q14.3q14.3)[94] + + o 

53 del(13)(q14.3q14.3)[94.5] + + o 

54 del(11)(q22.3q22.3)[98] 

del(13)(q14.2q14.2)[41] 

del(13)(q14.2q14.2)x2[39] 

del(13)(q14.3q14.3)[97] 

+ 

o 

o 

+ 

+ 

+ 

(+) 

+ 

o 

+ 

+ 

o 

55 del(13)(q14.2q14.2)[73] 

del(13)(q14.2q14.2)x2[5] 

del(13)(q14.3q14.3)[85] 

o 

o 

+ 

+ 

(+) 

+ 

+ 

+ 

o 

56 del(13)(q14.2q14.2)[22] 

del(13)(q14.2q14.2)x2[58] 

del(13)(q14.3q14.3)[12] 

del(13)(q14.3q14.3)x2[66] 

o 

o 

+ 

+ 

+ 

(+) 

+ 

(+) 

+ 

+ 

o 

o 

57 der(1)t(1;4)(q1?2;q?31)[90] 

der(4)t(4;?10)(q?31;q24)[90] 

?der(10)t(10;16)(q24;p?11.2)[90] 

der(15)t(1;15)(q1?2;q1?2)[90] 

der(16)t(15;16)(q1?2;p?11.2)[90] 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

58 der(2)t(2;13)(q?37;q?14)[21] 

?del(6)(p?23)[21] 

del(11)(q22.3q22.3)[87] 

del(13)(q14.3q14.3)[87] 

del(14)(q32q32)[85] 

o 

o 

+ 

+ 

+ 

o 

o 

+ 

+ 

o 

o 

o 

o 

o 

o 

59 del(14)(q32q32)[85]  + o o 

60 rea(14)(q32.33)[96] -> t(14;?)(q32;?) + o o 

61 t(3;?)(q2?9;?)[22] 

-7[22] 

+12[78] 

del(14)(q32q32)[94]  

del(17)(p13.1p13.1)[95] 

amp(17)(q25.1q25.2)[22] 

o 

o 

+ 

+ 

+ 

o 

o 

o 

+ 

o 

+ 

+ 

o 

o 

o 

o 

o 

+ 
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Supplementary Table 2 (Article 2 - continued)  

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

62 +12[80] 

del(13)(q14.3q14.3)[62] 

amp(18)(p11.21q11.21)[75] 

amp(18)(q21.2q21.2)[75] 

+ 

+ 

o 

o 

+ 

+ 

+ 

+ 

o 

o 

+ 

+ 

63 amp(2)(p24.3p24.3)[62.5] 

amp(2)(p23.2~23.1p23.2~23.1)[62.5] 

del(11)(q22.3q22.3)[95] 

del(13)(q14.2q14.2)[51] 

del(13)(q14.2q14.2)x2[38] 

del(13)(q14.3q14.3)[90] 

del(14)(q32q32)[91] 

o 

o 

+ 

o 

o 

+ 

+ 

+ 

+ 

+ 

+ 

(+) 

+ 

o 

+ 

+ 

o 

+ 

+ 

o 

o 

64 amp(2)(p24.3p24.3)[65] 

amp(2)(p23.2~23.1p23.2~23.1)[75] 

del(11)(q22.3q22.3)[83] 

del(13)(q14.3q14.3)[58.5] 

o 

o 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

o 

o 

65 amp(6)(q27q27)[?] 

del(11)(q22.3q22.3)[93] 

del(13)(q14.3q14.3)[96] 

o 

+ 

+ 

+ 

+ 

+ 

- 

o 

o 

66 del(13)(q14.3q14.3)[90] 

del(14)(q32q32)[81] 

amp(18)(q21.2q21.2)[?] 

+ 

+ 

o 

+ 

o 

+ 

o 

o 

- 

67 del(13)(q14.3q14.3)[60] 

del(14)(q32q32)[80] 

amp(18)(p11.21q11.21)[?] 

+ 

+ 

o 

+ 

o 

+ 

o 

o 

- 

68 del(6)(q21q21)[33] 

del(6)(q23.3q23.3)[92] 

o 

o 

+ 

+ 

+ 

+ 

69 amp(21)(q22.12q22.12)[50] o + + 

70 ?add(1q)(q4)[50] o o o 

71 None n n o 

72 None n n o 

73 None n n o 

74 none n n o 

75 none n n o 

76 none n n o 

77 none n n o 
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Supplementary Table 2 (Article 2 - continued)  

sample 

number 

aberrations [%] iFISH 

routine 

MLPA iFISH 

confirmatory for 

MLPA 

78 none n n o 

79 none n n o 

80 None n n o 

81 none n n o 

82 none n n o 

83 none n n o 

84 none n n o 

85 none n n o 
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