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Abstract 

The performance and properties of the ZnO nanostructure-based devices (mainly including 

the wire-like and leaf-like structure) are highly dependent on the sizes, defects and doping of 

ZnO. Therefore, it is necessary to investigate these parameters in the ZnO nanostructure for 

optimizing its properties, hence providing the motivation of this PhD work. In this thesis, 

ultralong ZnO nanowires (NWs), indium (In)-doped leaf-like and needle-like ZnO 

nanostructures, which are fabricated via the chemical vapor deposition (CVD) process and 

hydrothermal method, have been investigated in details for the relationship of the sizes, 

defects and doping with their properties. Firstly, a number of analysis techniques are used to 

understand the correlation between the defects and sizes (diameter and length) of the ZnO 

NWs. The results show that the concentration of oxygen vacancies (Vo) jointly with zinc 

interstitials (Zni) defects is observed to be positively correlated with the increasing sizes of the 

NWs. Importantly, it is found that the variation of the field-enhancement factor (β) of the ZnO 

NWs in field emission is highly dependent on the concentration of Vo with the length of the 

NWs. As compared with the ultralong and needle-like ZnO NWs, In-doped ZnO 

nanostructure has the lowest turn-on and threshold field as well as its relatively high β value. 

The reason is ascribed to the specific leaf-like morphology and In doping. Therefore, 

knowledge of the correlation and inter-relationship between the amount and type of native 

intrinsic defects or doping present in the NWs as their size varies is a crucial step towards 

optimizing and tuning the performances of ZnO nanostructure-based devices. 

 
 
 
 
 
 
 



Abstract 
 

II 

 

Zusammenfassung 

Die Eigenschaften und Leistung von Gerätschaften, welche auf ZnO-Nanostrukturen basieren 

(vornehmlich drahtähnliche und blattähnliche) hängen im Wesentlichen von der Größe der 

Nanostrukturen, denen in ihnen auftretenden strukturellen Defekten sowie der Dotierung des 

ZnO ab. Daher ist es nötig diese Parameter in ZnO zu untersuchen um dessen Eigenschaften 

optimieren zu können, was somit auch die Motivation für diese Dissertationsschrift darstellt. 

In dieser Arbeit wurden Größen, Defekt- und Dotierungseffekte auf die Eigenschaften von 

ultralangen ZnO-Nanodrähten, In-dotierten blattähnlichen ZnO Strukturen sowie 

nadelförmigen ZnO-Nanostrukturen untersucht, welche mittels chemischer 

Gasphasenabscheidung (CVD) und einer hydrothermalen Abscheidungsmethode hergestellt 

wurden. 

Zunächst wurde eine Vielzahl von Analysetechniken angewendet um die Korrelation 

zwischen den auftretenden Defekten und der Größe, respektive dem Durchmesser und der 

Länge, der ZnO-Nanodrähte zu ermitteln. Die entsprechenden Resultate zeigen, dass eine 

steigende Konzentration von Sauerstoffleerstellen (Vo) in Kombination mit einer steigenden 

Konzentration von Zn Zwischengitterdefekten (Zni) für eine ansteigende Größe der 

Nanodrähte verantwortlich ist. Besonders erwähnenswert ist, dass die Variation des 

Feldverstärkungsfaktors (β) der ZnO-Nanodrähte bei Feldemission erheblich von der 

Konzentration der Sauerstoffleerstellen  (Vo) in Kombination mit der Länge der Nanodrähte 

zusammenhängt. 

Im Vergleich mit den ultralangen und nadelförmigen ZnO-Nanodrähten, weisen die In-

dotierten Nanostrukturen das niedrigste Anschalt- und Grenzfeld sowie den relativ höchsten 

Feldverstärkungsfaktor β auf. Der Grund hierfür wird der blattähnlichen Morphologie sowie 

der Dotierung zugesprochen. Daher ist das Wissen um die Korrelation zwischen der Menge 

und  der Art von natürlichen intrinsischen Defektstrukturen sowie der Dotierung in den 
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Nanodrähten mit sich ändernder Größe der Strukturen ein wichtiger Schritt in Richtung einer 

Optimierung und eines allgemeinen Tuningprozesses von Geräten, welche auf ZnO-

Nanostrukturen basieren. 
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1 

1 Introduction 

ZnO is a wide-bandgap semiconductor with a hexagonal wurtzite structure and possesses a 

number of fundamental advantages including the band gap of 3.37 eV, large exciton binding 

energy (60 meV), strong room-temperature luminescence, and high electron mobility.[1, 2] 

Over the years, investigation of the ZnO nanostructures has been considered as one of the 

hottest research area. Among these nanostructures, ZnO nanostructures have many unique 

advantages including controllable morphology, high mechanical strength, and chemical 

stability etc., thereby they have been utilized as an essential candidate for multifunctional 

applications in optical and electrical devices, such as field emission,[3-5] nano-piezotronics,[6, 7] 

sensors,[8-11] and water splitting[12, 13] etc. Importantly, in these applications, the structural 

parameters (sizes, defects, and doping)[14-18] play an important role. Therefore, investigation 

of the structural parameters become more and more imperative for optimizing the 

performance of the ZnO nanostructure-based devices. However, only a few articles have been 

focusing on this field. In this thesis, the correlation between the structural parameters and 

performance of ZnO nanostructures (mainly including the wire-like and leaf-like structure) in 

the optical and electrical applications is studied. Firstly, the combined spectroscopic 

techniques [X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), 

photoluminescence (PL), ultraviolet-visible spectroscopy (UV-Vis), confocal 

photoluminescence (CPL), conductive atomic force microscopy (CAFM), and confocal time-

resolved photoluminescence spectroscopy (CTRPLS)] are performed to investigate the 

important role of the native intrinsic defects in affecting the properties of the ZnO NWs. The 

relationship between the concentration of Vo and Zni defects with the donor concentration and 

the length of the NW are observed to be positively correlated. An analytical model which is 

verified by the Hall measurements is derived which can directly calculate the donor 

concentration of the NWs from the reverse biased current-voltage (I-V) characteristics. 
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Secondly, ZnO nanostructures with different morphologies are fabricated on the silicon 

substrate. For example, well-aligned and ultralong ZnO NW arrays, as well as the leaf-like 

ZnO nanostructures (which consist of modulated and single-phase structures), are fabricated 

by the CVD method without the assistance of catalysts. On the other hand, needle-like ZnO 

NW arrays are fabricated with the CVD process followed by the chemical etching of the NW 

arrays. As compared with the ultralong and needle-like ZnO nanostructures, In-doped leaf-

like ZnO nanostructures possess the best emission performance where the reasons are 

ascribed to the specific morphology and In doping. 

The detail information of this thesis is given as follows: In the chapter 2, the background of 

ZnO nanostructures is introduced including the properties, different synthesis methods and 

applications. The characteristic techniques are introduced to investigate the structural 

parameters of the ZnO nanostructures and performance as well as the correlation between 

them in the chapter 3. This section highlights the role of the structural parameters (sizes, 

defects and doping) in the optical and electrical performance, such as the field emission, 

sensor, water splitting, photocatalysis, and piezoelectric effect. 

Chapter 4 presents a detailed overview of the experimental and instrumental conditions, 

which are used to synthesize and characterize the ZnO nanostructures, respectively. The 

morphologies and chemical compositions of the ZnO nanostructures are investigated by the 

field emission scanning electron microscopy (FESEM), transmission electron microscopy 

(TEM), EDX, XPS, and XRD. On the other hand, the optical properties are characterized by 

the PL, CPL, UV-Vis, and CTRPLS. The electrical properties of the ZnO nanostructures are 

investigated via the CAFM, Hall and field emission system. 

The results and discussions are shown in the chapter 5, which consists of two main parts. The 

first part is that the combined spectroscopic approach is used as a systematic analysis strategy 

to investigate and understand the important role of the native intrinsic defects in influencing 
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the properties of the ZnO NWs. These results show that the correlation between the different 

measurements, the concentration of the Vo jointly with the Zni defects is observed to be 

positively correlated with the increasing NW sizes. Moreover, the CPL emission spectra show 

that at different spatial locations on the ZnO NW surfaces, the spectra near the NW edges is 

observed to have maximum intensity, which subsequently decreases to a minimum near the 

NW center. For the NW arrays, similar intensity distribution of the CPL emission spectra is 

also visually shown. These results are important for understanding the optical response of the 

ZnO NW-based devices. On the other hand, as the donor concentration plays a critical 

function in the properties of the ZnO NWs, an analytical model was derived for the 

calculation of the donor concentration of the NWs directly from its reverse-biased current–

voltage characteristics that are obtained from the CAFM measurements. 

In the second part, the TEM image shows that the In-doped ZnO leaf-like nanostructures 

consist of alternate bright field and darkfield regions where the darkfield parts belongs to pure 

ZnO, and the brightfield parts consist of a modulated structure of the (In2O3(ZnO)7 or 

In2O3(ZnO)8). Owing to the indium doping, the emission peak of the UV-vis spectra 

corresponding to the leaf-like structures was observed to be shifted to lower energy. From the 

field emission properties corresponding to the different nanostructures, the In-doped leaf-like 

nanostructures are more suitable for field emitter in microelectronic devices. 

The section 6 summarizes the results and gives an outlook to this thesis. 

Finally, section 7 provides a short summary of the other research works performed with other 

semiconductor materials for the nanostructure-based applications such as in supercapacitors 

or battery based applications. 
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2 Background 

2.1 Properties of ZnO 

2.1.1 Crystal structures 

The crystal structures of ZnO consist of the wurtzite (Figure 2-1a), zinc blende, and rocksalt 

(or NaCl structure). Wurtzite ZnO has a hexagonal structure where the lattice parameters are a 

= 3.2495 Å and c = 5.2069 Å[19]. In the unit of hexagonal wurtzite, each anion is surrounded 

by four cations at the corners of a tetrahedron, and vice versa in figure 2-1a. This tetrahedral 

coordination is of the typical sp3 covalent bonding nature, but the band of Zn-O also has a 

substantial ionic character, thus ZnO lies on the borderline between being classified as a 

covalent and ionic compound with an ionicity of ƒi = 0.616 on the Phillips ionicity scale. [1, 7, 

20-22] 

 

Figure 2-1. (a) The wurtzite phases of ZnO,[23] (Figure are redrawn from)[23] (b) SEM 

image of the top view of the ZnO NW with different crystal planes. 

The hexagonal wurtzite structure of ZnO is the most common phase with a space group of 

C6v or P63mc, which occurs almost exclusively at ambient conditions.[24-26] The wurtzite 
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structure of ZnO can be simply described as a number of alternating planes which are 

composed of tetrahedrally coordinated O2- and Zn2+ ions, that are alternatively stacking along 

the c-axis. This tetrahedral coordination gives rise to non-central symmetric crystal structure, 

which can influence various properties including its piezoelectricity and spontaneous 

polarization.[20, 27] Another important characteristic of the ZnO is polar/nonpolar surfaces. The 

four most common faces of wurtzite ZnO have polar surface ± (0001) which are either Zn or 

O terminated and the non-polar (112ത0) (a-axis) and the (101ത0) faces which both contain an 

equal number of Zn and O atoms (Figure 2-1b)[25, 28-30]. The oppositely charged ions produce 

the polar surface, resulting in a normal dipole moment and the spontaneous polarization along 

the c-axis as well as a divergence in the surface energy. In addition, these polar/nonpolar 

surfaces have different crystal growth rates at fixed conditions, which result in rich ZnO 

microstructures.[31, 32] Such as, with the presence of Indium atoms, the growth rate of the c-

axes (0001) is hindered, while the side-face (101ത0) grows fast to induce changing of the 

morphology from nanowires to nanobelts.[33] 

2.1.2 Optical Properties 

Photoluminescence (PL) spectra of the ZnO with different nanostructures have been 

extensively reported [34, 35]. Generally speaking, PL emission spectra of the ZnO NWs have 

two components. One is the typical exciton emission or near-band-edge emission, i.e., photo-

generated electron recombination process with holes in the valence band or in traps near the 

valence band in the UV-Vis region, such as the 373[36],  378, [37-39] 380, [40-42] 381, [43] 383, [44, 

45] 384-391, [46] 387, [46]389, [47, 48] and 390 nm.[49] The other component is the visible emission 

(also called deep-level emission, DL) which is related with defects, such as the peaks at 405, 

420, 446, 466, 485, 510, 544, 583, and 640 nm emission in the visible region[50-54]. In defect 

chemistry[22, 55-57], several calculations of the native defect levels in ZnO have been reported 

as shown in figure 2-2b. The different emission spectra are related to the Vo, VZn, OZn, Zni and 
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Oi 
[58-63]. Such as the 3.15 eV peak (DL) in the violet region is due to the band transition from 

the Zni level to the valence band and the position of the Zni level is theoretically located at 

0.22 eV below the conduction band.[58] 

 

Figure 2-2. Two kinds of Photoluminescent processes for ZnO. (a) Typical exciton 

emission;[35] (b) schematic band diagram of DL in ZnO based on the full potential linear 

muffin-tin orbital method and the reported data.[58] (Figures are redrawn from [35, 58]) 

2.1.3 Doping of ZnO 

Doping means intentionally introducing impurities into an extremely pure semiconductor.[64] 

It is well known that the doping of impurities greatly affects the basic physical properties, 

(e.g., electrical, optical, and magnetic properties). As for ZnO, doping can be divided into two 

categories as described below: 

The doping of a cation is known as cationic doping; e.g. Al[65, 66], Sn[67], Ga[68], In[33, 69], Cd,[70] 

Cu,[71, 72] FeCo,[73] Mn,[74, 75] and Ni[76], which are used as cationic dopant. The doping of 

anions to ZnO is known anionic doping; e.g. As,[77] N,[78, 79] and S [80, 81], which are used as 

anionic dopant. On the other hand, there are two main topics according to these dopant 

function: (1) doping with donor and acceptor impurities to achieve high n-type or p-type 

conductivity, respectively; (2) doping with transition metals[71-75] or rare elements[82] to 

achieve the desired semiconductor properties. These effects have been systematically 

investigated for the majority of dopants and some changes in the semiconductor properties 

have been reported.[83-94] For example, incorporation of Al resulted in an increased bandgap 
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from 3.29 eV to 3.34 eV; a blue shift of the absorption peak and UV-Vis emission peak, and 

the ratio of UV-Vis to green emission decreased after doping.[66] In addition, ZnO nanowires 

are evolved into nanobelts after In-doping and so on.[33] Therefore, doping will act as a 

significant route to change the microstructures and practical performance of ZnO. 

2.2 Synthesis methods 

For fabrication of 1D ZnO nanostructures, many methods have been reported such as 

chemical-vapor deposition (CVD),[33, 95, 96] aqueous solution,[97-100] electrochemical 

deposition, [101-104] template,[95, 105, 106], PVD,[107] Molecular-beam epitaxy,[108] and rf 

magnetron sputtering method.[109] 

2.2.1 Chemical vapor deposition (CVD) 

In principle, the CVD method is a simple process where source materials (s) are vaporized 

with increased temperature and then the resultants with the vapor phase (s) react under the 

given conditions (temperature, pressure, atmosphere, substrate etc.) to form the desired 

products (s).[110] The key point for the CVD method is that the thermal evaporation process is 

very sensitive to the local temperature, pressure, the concentration of reaction gas, gas rate, 

and the location of the reactant source. In this thesis, ZnO, In2O3 and Carbon powder act as 

source materials to fabricate the ZnO NWs and In-doped leaf-like ZnO nanostructure using 

the CVD process. The specific details are shown in the experimental section. 

Growth of the 1D ZnO nanostructures usually follows the vapor-liquid-solid (VLS) and 

vapor-solid (VS) principle. The VLS crystal growth mechanism was first proposed by Wagner 

and Ellis in 1964 for the Si whisker with the presence of Au and Sn as the catalysts [96]. In the 

VLS process, a liquid alloy droplet consisting of a pure metal catalyst (such as Au,[33] Sn[96]) 

and the component from the initial reaction of source materials (such as Si, III-V compound, 
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II-V compound, oxide) is first formed under the given reaction conditions. Then, the alloy 

droplets can be used as guidance for the growth of NWs with increasing reaction time.[111] 

 

Figure 2-3 (a) Synthesis of the ZnO nanorods using Au as a catalyst, the inset shows Au 

particles at the tips.[7] (b) Aligned ZnO NWs epitaxial grown on the ZnO substrate using 

Sn as a catalyst.[96] (c) and (d) ZnO NWs grown on the ZnO seed layers (the white 

ellipses) for 10 and 20 mins, respectively. (Figures are taken from [7, 96]) 

Z.L. Wang’s group has reported that the orientation-ordered ZnO nanorods grow on a 

polycrystalline Al2O3 substrate with assistance of the Au or Sn catalyst in figure 2-3a and b. [7, 

96, 111] As for the VS process, without the presence of catalysts, the ZnO NWs can also be 

fabricated using the ZnO seed layers instead of the Au catalyst. In my work, without the 

presence of catalysts, a seed layer of ZnO is grown on the Si substrate by the spin-coating 

method. Well-ordered ZnO NWs length of ~90 μm are fabricated on the seed layers as shown 
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in figure 2-3c and d. The white ellipse positions visibly show the ZnO seed layers. In addition, 

the reason for the vertical ZnO NWs on the seed layers is that the crystal structure of the ZnO 

seed layers perfectly matches with the lattice of the ZnO NWs, which result in the NW 

perpendicular growth on the seed layers. 

2.2.2 Aqueous solution 

 

Figure 2-4. (a) Well-ordered ZnO NW arrays by the aqueous chemical method. (b) ZnO 

nanorods with the tailored dimensions.[99] (Figure is taken from [99])  

Aqueous synthesis can be defined as a synthesis method for crystals that depend on the 

solubility of minerals in hot water under sealed environment.[112] With the increasing reaction 

time, the reaction products are generated on the substrates or with deposition. L. Vayssieres. 

reported the fabrication of highly oriented ZnO NWs via a aqueous solution method at 95 

oC[113]. This method offers a classic strategy to fabricate the ZnO NWs. Figure 2-4a shows the 

well-ordered ZnO NW arrays with the diameter of ~80 nm and length of ~1.5μm. In addition, 

the well-aligned ZnO nanorod arrays are also prepared on substrates by the hydrothermal 

growth under different conditions in figure 2-4b. The growth conditions such as the pre-

treatment of the substrates, growth temperature, deposition time and the concentration of the 

precursors have great influence on the ZnO nanorod morphologies. In terms of application, 
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the uniform ZnO nanostructures with the tailored dimension that are perpendicularly grown 

on the substrate are beneficial for the field emission applications. [99] 

2.2.3 Template 

 

Figure 2-5. (a) Schematic of the fabrication process of the Au nanodots and ZnO NWs; 

(b), (c) and (d) well-aligned ZnO NW grown on the ZnO film/GaN/UTAM with Au 

pattern, respectively. (Figures are taken from [95, 114]) 

From the application views, it is essential to control their location, alignment and packing 

density for the ZnO nanostructures, such as field emission. To realize these goals, some 

patterned technologies (such as template, lithographic and non-lithographic patterning 

techniques) are used to produce the shadow masks for the catalysts (Au, Ag etc.[95]) 
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deposition. Among them, the common templates route include the hard template (anodized 

aluminum oxide, AAO[115]) and soft template, (Polystyrene, PS[116]).[117] Figure 2-5a shows 

the schematic of the fabrication process of the Au nanodots and ZnO NWs. After the CVD 

process, the self-assembled vertically aligned ZnO nanorod arrays are generated on the GaN, 

ZnO and UTAM (ultra-thin alumina membrane)[95, 114, 115] substrates with the gold dots pattern 

in figure2-5b, c, and d, respectively. In addition, these template methods combined with the 

electrochemical deposition or sol-gel method, well-ordered ZnO nanostructures can also be 

prepared. 

2.2.4 Electrochemical deposition 

 

Figure 2-6  SEM images of the branched hierarchical ZnO NWs are synthesized by the 

two-step electrodeposition process, the first (a) and second-step (b).[102] (Figures are 

taken from[102]) 

Electrochemical deposition is a process that metal, oxide, or salt can be deposited onto the 

surface of a conductor substrate by the simple electrolysis of a solution containing the desired 

metal ion or its chemical complex[118]. For example, Ravi Chander has reported the 

electrodeposition of ZnO nanorods from aqueous solution.[104] The nanorods have a well-

defined hexagonal morphology. Moreover, the branched hierarchical ZnO NWs are 

synthesized on the fluorine-doped tin oxide (FTO) substrate via a two-step electrochemical 
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deposition process in figure 2-6a and b. In addition, the NWs (mean diameters from 25 to 80 

nm) with conical shape at the tip are obtained by modifying the ZnCl2 concentration, which 

are very interesting in the area of field emission. But the disadvantage is the short length of 

the NWs.[102] 

2.2.5 Other synthesis methods 

Apart from the above process for the fabrication of the ZnO nanostructures, other methods 

such as the pulsed-laser deposition, sol-gel, molecular-beam epitaxy etc. have also been 

developed in parallel.[107-109] 

2.3 Other morphologies of the ZnO nanostructures 

 

Figure 2-7 Several ZnO nanostructures (Figures are redrawn from [119-121]). 
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Here, the ZnO nanostructures are presented including nanobelts, nanohelixes, NWs, 

nanocombs, branched hierarchical structures, nanotubes and nanorings in figure2-7.[120] Apart 

from these, a rich family with related properties have been reported.[120, 122] The possible 

reasons for the ZnO wurtzite structure (as seen in section 2.2.1) are the noncentral symmetry, 

polar/nonpolar surfaces and the crystal planes with different growth rates. These novelty 

morphologies having its own features are beneficial for applications in the semiconductor 

field. 

2.4 Applications 

2.4.1 Field emission 

Field emission (FE) is a process in which the electrons below or close to the emitter Fermi 

level escape from the emitter surface with the aid of a high electric field depressing the 

surface barrier.[123] Based on this theory, the development of nanomaterials with good field 

emission capability evoked the application of cold cathodes in vacuum devices, such as the 

field emission displays (FED) and field emission lighting. Figure 2-8a shows the development 

of the display technology, which move towards the lightweight, cheap and bright display from 

the cathode ray tube (CRT) to FED.[124] To realize the technology, emitter materials with high 

emitter density and stability have drawn much attention. Currently, those materials with the 

micro-and nano-fabrication technologies have been developed for enhanced FE-based 

devices, such as carbon nanotubes,[125, 126] In2O3,[127] Si NWs,[128] SnO2,[129] WO3
[130] etc. 

Among all the oxide semiconductors, ZnO has been considered as one of the most promising 

materials for field emitters owing to its mechanical strength, thermal stability, high oxidation 

resistivity, low electron affinity and controllable morphologies.[3, 4, 100, 131-134] 

Combined with the various pattern methods (template, electron beam lithography, 

nanolithographic), various ZnO nanostructures with controllable sizes and densities have been 
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investigated to obtain high-performance field emitter arrays, such as nanoneedle arrays,[3, 135] 

nanosheets,[5] NWs,[136, 137] tetrapod [138]and doping structures.[139, 140] For an analysis of the 

field emission properties of the different ZnO nanostructures, the following Fowler-Nordheim 

(F-N) equation would have to be used:[123] 
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exp                                                      2-1 

where J is the current density, E is the applied field strength, A and B are constants with the 

values of 1.56×10-10AV-2 eV and 6.83×103V (eV)-3/2μm-1, respectively,   is the work function 

of the emitter which was taken as 5.4 eV for ZnO from the literature, and β is the so-called 

field-enhancement factor, which reflects the ability of the emitters to enhance the local 

electric field. The field-enhanced factors β can be calculated from the formula β = -B3/2/S, 

where S is the slope of the F-N plot. 

Figure 2-8. (a) Development of display technologies.[124] (b) The typical field emission 

image. (c) The enlarged field emission image from part of the fluorescent screen.[4] 

(Figures are redrawn from [4, 124]) 

As for field emission materials, their structural parameters such as high aspect ratios, small tip 

radius of curvature, defects, and doping, play an important role on the enhancement of the 

properties.[3, 4, 131, 134, 138, 140, 141] Fox example, C. X. Zhao reported that good alignment and 
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dense ZnO NWs could be grown on the silicon or glass substrates with tunable distribution 

density and morphology.[4, 133] Figure 2-8b shows a typical field emission image, which 

reveals that the emission image is extremely uniform, and almost all the parts of the patterns 

can emit electrons.[4]  

2.4.2 Water splitting 

Photoelectrochemical (PEC) water splitting is a highly-efficient and eco-friendly route to 

meet the human demand for directly converting solar energy into chemical energy in the form 

of hydrogen.[142] Nanometer-sized metal oxide semiconductors with higher surface-to-volume 

ratio and shorter transport paths for the carriers are particularly prevalent for water splitting 

applications.[13, 143, 144] Figure 2-9 shows the main mechanisms for explaining the enhanced 

PEC water slitting efficiency of the Au/branched-ZnO NW photoelectrode.[144] 

 

Figure 2-9. (a) Left panel: simplified schematic diagram of the PEC water splitting cell 

consisting of the Au/B-ZnO (branched-ZnO) NWs photoanode. Right panel: Energy 

level diagram for the Surface plasmon resonance (SPR)-mediated electron transfer 

process in the UV-Vis region. (b) Top and (c) cross-section view SEM images of the B-

ZnO NWs with the Au NPs.[144] (Figures are taken from [144]) 
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2.4.3 Piezotronic effect 

Piezotronics is about the devices fabricated using the piezoelectric potential as a “gate” 

voltage to the tube/control charge carrier transport at a contact or junction.[8, 145] For wurtzite 

structure of ZnO NWs, because of their non-central symmetric crystal structure and 

polar/nonpolar surfaces, the piezoelectric effect is generated once the material is strained. If a 

stress is applied at an apex of the tetrahedron, the center of the cations and the center of the 

anions are relatively displaced resulting in a dipole moment in figure 2-10a. A constructive 

dipole moments created by all of the units in the crystal results in a macroscopic potential 

drop along the straining direction in the crystal, which produces the piezoelectric potential.[8, 

145] 

Figure 2-10b, c and d show the nanogenerator schematic that used aligned ZnO NWs for 

converting nanoscale mechanical energy into electric energy.[6] The mechanism of the 

nanogenerator depend on the piezoelectric and semiconducting properties of the ZnO NW. 

The Schottky-contact between the NWs and metal tip (as seen in Figure 2-10c) plays an 

important role on the energy conversion process. Furthermore, the Schottky-contact sensors 

are achieved by tuning the Schottky barrier height at the local metal-semiconductor interface, 

which dominates the carrier transport process through the whole device. Piezoelectric effect is 

a universal effect that provides an effective approach to improve the sensitivity, response time 

and general properties of the Schottky-contact NW sensors, including bio/chemical, gas, 

humidity, temperature sensing and others.[8, 146] 
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Figure 2-10 (a) Schematic diagrams showing the piezoelectric effect in a tetrahedrally 

coordinated cation-anion unit. Numerically calculated distribution of the piezoelectric 

potential along the ZnO NW under axial strain.[8] (b) SEM images of the aligned ZnO 

NWs. (c) Experimental setup for generating electricity through the deformation of a 

semiconducting and piezoelectric NW using a conductive AFM tip. The scanning process 

is in a contact mode. (d) An image of the output voltage (Figures are redrawn from [6, 8, 

146]). 

2.4.4 Other properties 

Due to its low cost, environment friendly and unique optical-electric properties, ZnO is 

considered as an important material for applications, such as for photo-catalysis, gas sensor, 

light emitting diode, solar cells and so on.[8, 146] 
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3 Investigation of the ZnO NWs and properties  

ZnO NWs with high surface area-to-volume ratio, aspect ratio, electron mobility, confinement 

effect, and easy fabrication are considered as important candidates in the electrical and optical 

devices applications. Remarkably, the performance of the ZnO NWs-based devices are 

intimately related to the structural parameters, such as sizes, and the native intrinsic or 

artificially induced defects and doping where these parameters can alter the optical and 

electrical properties. Therefore, it is necessary to insightfully study this area. The following 

section will introduce several characteristic techniques to investigate the structural parameters 

of the ZnO NWs and the performance of their devices as well as the relationship between 

them. 

3.1 Characterization of ZnO NWs 

Characterization techniques play an important role in the field of materials research.[131, 133, 134, 

136, 140] Each of them has some advantages as well as some limitations. To systematically 

investigate the structural parameters of the ZnO NWs, the combined techniques including 

XRD, XPS, SEM, TEM, UV-Vis, PL, CPL, CTRPLS and Hall effect become necessary. For 

example, X-ray diffraction (XRD) technique[147] is extremely important not only to check the 

structural purity but also to identify the point defects, extended defects and dislocation-related 

disorder. Figure 3-1a shows the XRD patterns of the ultralong ZnO nanorod arrays annealed 

in air or a vacuum at various heat-treatment temperatures.[148] The diffraction peak of (002) 

plane of the ZnO nanorod array shifts to lower angles from 34.58o to 34.5o with increasing 

annealing temperature from 200 to 550 ◦C in air. It is attributed to the increase in the 

concentration of the oxygen-related defects in the ZnO nanorods, such as oxygen interstitials 

(Oi).[148] 

Details of the surface chemistry and chemical binding states of the fabricated samples are 

studied by XPS. As shown in figure 3-1b of the XPS spectra, O1s peak shows an asymmetric 
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shape, which can be de-convoluted into three sub-peaks at binding energies of 530.83, 531.43, 

and 532.65 eV corresponding to the O2- of Zn-O, oxygen deficient state, and chemically 

adsorbed oxygen, respectively. Similar results have also been reported by other groups.[149-153] 

 

Figure 3-1. (a) The XRD patterns of the ZnO nanorod arrays at different 

temperatures.[148] (b) XPS spectra of the O 1s peaks ZnO nanoneedle.[153] (c) PL spectra 

of the Sa, Sb and Sc ZnO microrods.[150] (d) Plots of (αhυ)2 against photon energy (hυ) of 

the ZnO nanoparticles (NPs), nanoflowers (NFs) and nanorods (NRs), respectively.[151] 

(Figures are redrawn from[148, 150, 151, 153]) 

In figure 3-1c, the outstanding emission peaks of the Sa and Sb ZnO microrods center are at 

3.22eV and 3.20eV, respectively. Compared with Sa and Sb, the UV emission band of the Sc 

microrods is broadened and weakened, which can be resolved into two peaks centering at 

3.15eV and at 3.26eV, respectively.[150] These results indicate that the UV emission peaks of 
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the ZnO microrods have a redshift tendency with the increasing growth time, which can be 

ascribed to the degeneration of the (002) crystalline planes in the ZnO microrods. In addition, 

figure 3-1d show that the Plots of (αhυ)2 against photon energy (hv) have a linear region and 

the extrapolation of the straight line to zero absorption give the energy gap (Eg) for various 

morphologies of the ZnO nanostructures [nanoparticles (NPs), nano-flowers (NFs) and 

nanorods (NRs)] from 3.40 eV to 3.12 eV.[151] The reason is that the difference of the optical 

Eg with the different morphologies is related to the variation of the stoichiometry of the ZnO 

samples and the concentration of the point defects. 

Optical characterizations of the NWs are performed with the confocal photoluminescence 

(CPL) and confocal time-resolved photo-luminescence spectroscopy (CTRPLS) which is a 

contactless method for understanding the dynamics of the carriers involved in the optical 

processes such as the temporal information on the recombination lifetime as well as the 

optical emissions at specific wavelengths from the intrinsic defects in the ZnO NWs. 

 As shown in figure 3-2a, the PL spectra consisted of a dominant UV-Vis peak at 385 nm and 

a very weak deep level emission (green emission band) with a broad feature in the range of 

500-600 nm.[154] The UV-Vis emission band is related to a near band-edge transition of ZnO 

namely, the recombination of the free excitons. While the deep level (DL) emission band is 

generally attributed to the DL defects[58] such as O vacancies (Vo), Zn vacancies (VZn), 

interstitial O (Oi), interstitial Zn (Zni), and extrinsic impurities such as substitutional Co, Eu, 

N, and C.[83, 87, 91, 93, 94] 

Figure 3-2b[155] shows that the time-resolved PL detected at 383 nm from the ZnO nanorod 

arrays under different excitation fluences. When the excitation fluences (133μJ/cm2) is higher 

than the threshold, the transient PL is dominated by a 30 ps decay process. Below the 

threshold (116 μJ/cm2 excitation fluence), the decay fits well to a biexponential function with 

a fast time constant (τ୤) and a slow time constant (τୱ). By a least-square fitting, τ୤ and τୱ and 
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the amplitude of τୱ  are ~ 80 ps, 360 ps, and 50%, respectively.τ୤ is attributed to the free 

exciton decay, and τୱ is thought to be due to the boundexciton decay. 

Information on the surface recombination is of great importance to many applications, e.g. 

light-emitting diode (LED) and electrochemical sensors etc. Hence, it is important to study the 

surface recombination of the NWs possessing large surface-to-volume (S/V) ratio. The 

surface recombination is characterized by two parameters, i.e. surface recombination velocity 

S and carrier diffusion length. The influence of the surface recombination velocity S on the 

decay time is determined by the diffusion equation with the proper boundary conditions. As 

for the ZnO NWs grown by the chemical bath deposition (CBD) method, the decay curves 

can be fitted by two exponential decays: 

I(t)=AS eି୲ த౩⁄ +AB eି୲ தా⁄                                                  3-1 

where I(t) represents the PL intensity as a function of time, while AS and AB are the relative 

weights of the two exponential decays with time constants τୱ and τ୆, respectively. τ୆ is the 

decay time constant of bulk materials. The deduced value for time constant τୱ and the ratio of 

AS/AB are summarized in figure 3-2c and d. The decay lifetime is influenced by the surface 

recombination velocity when combined with the carrier diffusion length, resulting in a direct 

correlation with the size of the nanorod. The value of τୱ increases and the ratio of AS/AB 

decreases after the thermal treatment. This fact is consistent with an improvement of the 

surface properties after the thermal treatment, since the CBD grown ZnO NWs at low growth 

temperature (93 oC) is expected to have various chemicals attached to the surface. The mild 

thermal treatment will release the chemicals from the NW surfaces without changing the 

defect density inside the NWs. 
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Figure 3-2. (a) PL spectrum of the ZnO NWs with different annealed temperatures.[154] 

(b) Time-resolved PL spectrum detected at 383 nm from the ZnO nanorod arrays at two 

excitation fluencies.[155] (c) The deduced surface recombination time ૌܛ. (d) The deduced 

ratio As /AB versus diameter of the CBD grown ZnO NWs according to Eq.3-1. The 

corresponding data deduced from the annealed NWs (open circles) are also included for 

comparison.[154] (Figures are taken from[154, 155]) 

Another useful technique for studying the defect levels is the deep-level transient 

spectroscopy (DLTS), although the defect identity has not been conclusively established. This 

technique is applicable to not only thin-film but also single crystal samples.  

Hall effect shows information regarding the concentration, mobility and the thermal activation 

energy of the free carriers in the system[156]. The validity of the analytical model and results is 

verified by the Hall measurements in the 5.3 section of this thesis. 



Investigation of ZnO NWs and properties 
 

23 

 

Due to extreme complexity of the ZnO NW defects, it is necessary to use two or more 

techniques. Therefore, the combined analysis technique with the XRD, XPS, TEM, PL, CPL 

and CTRPLS etc. is a useful and comprehensive strategy to study the nanostructures. 

Understanding on the theoretical aspects of the defects in the ZnO NWs, methodology of the 

controlled defect creation in this system and proper choice of the characterization techniques, 

can meet the challenge of purposeful defects management in the ZnO NWs. 

3.2 Investigation of the correlation between the structural parameters and properties of 

ZnO NWs 

ZnO NW with a wide direct bandgap, high carrier mobility and non-central symmetric crystal 

structure is widely utilized in the optoelectronic and light harvesting,[13, 143, 157] piezoelectric, 

[8, 145] photo-catalysts,[158, 159] sensor,[8, 160] and energy storage devices[138, 161]. In these 

applications, defects and doping play an important role. Therefore, investigation of them 

become more and more imperative for optimizing the performance of the ZnO NW-based 

devices. 

3.2.1 The action of defects: the optical and electrical applications of ZnO NWs 

Like any other semiconductors, deep levels can affect the optical and electrical properties of 

the ZnO NWs. For example, the native or artificially induced defects are reported to severely 

degrade the potential barrier height and ideality factor of the metal-ZnO Schottky diodes, 

which acts as a conducting path for the charge carriers. 

Figure 3-3A shows the morphological, optical, and electrical characterization of the individual 

ZnO NWs.[162] The results prove that the green emission and the carrier behaviors are related 

to the oxygen deficiencies. Photoluminescence and photoconductivity measurements of single 

crystal ZnO NWs show defect-related deep electronic states giving rise to green-red 

absorption and emission as reported by Z.Y. Fan et al.[163] Moreover, due to a slower oxygen 
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chemisorption process, the current decay time is significantly prolonged and the 

photoconductivity of the ZnO NWs is strongly polarized which is dependent on the incident 

light. 

 

Figure 3-3. (Aa) SEM image illustrating the preparation of the suspended individual 

NWs. (Ab) SEM and optical (inset) images showing the same chain of the ZnO NWs 

glued to a W tip. (Ac) Micro-PL spectra of an individual ZnO NW (~50 nm) with the as-

grown suspended and processed by the sonication/dispersion procedure, respectively. 

(Ad) A typical two-terminal I-V curve of the individual suspended ZnO NWs.[162] (B) 

Schematic illustration and SEM image of an aligned ZnO NWs array photodetector. 

Time-dependent photocurrent response of a ZnO NWs photodetector (at 365 nm UV-Vis 

with 1 mV bias).[164] (C) UV-Vis absorption spectra of rhodamine B corresponding to the 

irradiation time, respectively. Insets show the degradation value (C/C0) with respect to 
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the irradiation time.[159] (Da) A schematic illustration and (Db) SEM images for the 

network-structured ZnO NW on the Si substrate. (Dc) Gas sensitivity curves of the ZnO 

NW gas sensor under exposure to the different concentrations of the NO2 gas.[165] 

(Figures are redrawn from [159, 162, 164, 165]) 

Figure 3-3B [164] shows that the photo-responsivity measurements between a single ZnO NW 

and ZnO NW array devices. The ultrafast reset time are obtained in the ZnO NW array 

devices with a low bias. Since a very low bias effectively reduce the energy barrier of hole-

trapping leading to easier migration of the hole. Thus, the highly sensitive photodetector with 

a low external electric field is attributed to the lower energy barrier of hole-trapping. These 

results offer an effective method to enhance the sensitivity of the ZnO nanostructure 

photodetector. Ultralong ZnO NWs which perform as effective and recyclable photocatalysts 

exhibit excellent photocatalytic activity under natural sunlight in figure 3-3C [159] where 

similar results were studied by Yu-Cheng Chang[158].  

In the photochemical reaction process, the surface oxygen deficiencies acted as electron 

capture centers may be beneficial to their photocatalytic activity, which can be used to 

enhance the photocatalytic activity of the ZnO NWs by reducing the recombination rate of the 

electrons and holes. 

In addition, owing to the electrons transfer between the ZnO surface and target gas molecules, 

such as O2, H2, CO, NO2, and H2S etc. the gas sensing can be measured by monitoring the 

changes in the surface electrical conductance of ZnO upon exposure to the gases.[8, 84, 165-168] 

Several works have indicated that the electrical response can be significantly improved in the 

ZnO NWs by controlling their structural parameters, such as morphologies, particle sizes, 

doping, and defects.[8, 84, 166] For example, M-W. Ahn[165] has reported that the effect of the 

oxygen-vacancy-related defects on the NO2-sensing properties of the ZnO NWs. It displays 

fast response and recovery behavior with a maximum sensitivity to the NO2 gas at 225 °C. 
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The reason is ascribed to Vo which act as preferential adsorption sites for the NO2 molecules. 

Similar results have been explained by Wei An et al. using the density functional theory.[168] 

The results show that the adsorption energy (Ead) of NO2 on the oxygen-vacancy site is 

significantly increased to Ead = -0.98 eV, which is three times larger than Ead = -0.30 eV on 

the perfect site, This means that charge transfer from the oxygen-vacancy site to the NO2 

adsorbate is much larger than that from the perfect site to the NO2 adsorbate. Meanwhile, Vo 

bind more tightly with the NO2 molecules, thus attracting more charges from the ZnO surface 

as compared with the free oxygen vacancy on the ZnO surface, which is in good agreement 

with the close relationship between the concentration of the oxygen-vacancy-related defects 

and NO2 sensitivity of the ZnO gas sensor.  

3.2.2 The action of doping: the optical and electrical applications of ZnO NWs 

 Introducing impurities into an extremely pure intrinsic semiconductor (doping) is an 

important strategy in optimizing the optical and electrical properties of the ZnO 

nanostructures.[3, 12, 88, 131, 169] Fox example, the presence of copper in ZnO NWs could induce 

red-shift to lower energy[170]  when the copper ions replace the zinc ions in the lattice 

parameters of the wurtzite hexagonal ZnO NW. These results show it is of great importance 

for further studies on the bandgap engineering of ZnO by doping, like color-tunable LED. 

Figure 3-5a, b and c clearly show a shift towards the violet wavelength range of the excitonic 

electroluminescence (EL) spectra from the Cu-doped ZnO device. This point is of interest for 

the efficient extraction of light from the devices. 

Figure 3-4d and e show that the In-doped ZnO NWs (#3) exhibit better photocatalytic 

performance than the undoped NWs (#1).[90]. The reasons are that high concentration of the 

shallow Indium donors results in high concentration of the free electrons, which will 

significantly reduce the width of the surface depletion region. The narrowing of the surface 
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depletion region, would facilitate the electrons to transport to the surface, and enhance the 

photocatalytic performance. 

 

Figure 3-4. (a) SEM image of the Cu-doped n-ZnO NWs (1.2%) grown on p-GaN:Mg; 

(b) LED device structure; (c) electroluminescence spectra of the n-ZnO/p-GaN:Mg and 

n-ZnO:Cu (1.2%)/p-GaN:Mg NWs heterostructured LEDs at room-temperature under 

the forward bias of 6.5 and 7.5V, respectively.[170] UV-Vis absorption spectral variations 

of the RhB solution corresponding to (d) un-doped and (e) In-doped ZnO NWs.[90] 

(Figures are redrawn from[90, 170] ) 

Khalid Mahmood and Seung Bin Park reported[92] that the N doping induced an increase of 

the carrier concentration and a decrease of the mobility, and thus the electrical resistivity is 

decreased. Figure 3-5b show that the current-voltage behavior of the devices with the ZnO 

and NZO nanorods demonstrates that annealing bring about 100-fold intensification in the 

current response for the ZnO and NZO nanorods due to the formation of oxygen vacancies 
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after the thermal treatment. The important point is that the current response of the NZO 

nanorods is still superior to that of the ZnO nanorod before and after the thermal treatment. 

 

Figure 3-5. (a) The design of the ZnO and NZO nanorod arrays device; (b) The current–

voltage curve for the ZnO and the NZO (N/Zn molar ratio of 5%) after annealing. (c) J-

E characteristics of ZnO NWs and Ni-doped ZnO nanotowers. (d) Corresponding F-N 

plots. (Figures are redrawn from [88, 92]) 

In field emission, as shown figure 3-5c and d,[88] the Ni-doped ZnO nanotower arrays exhibit 

lower density and sharper tip, which results in the higher field enhancement factor and lower 

turn-on and threshold field as compared with the NWs (the turn-on and threshold field, and 

field-enhancement factor are 1.53V/μm, 1.88V/μm, and 2852, respectively). 
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3.3 The action of the structural parameters: the properties of ZnO field emission 

Field emitters (ZnO) with nano-sized diameters, such as NWs[4, 137], nanosheets[5] and 

nanotetrapods [138, 141] have demonstrated higher emission efficiency than those with the 

micro-sized diameters or film field emitters. However, it is not enough for the field emitters. 

Deep investigation to dig much more advantages for the properties of field emission is 

urgently required to proceed.   

 

Figure 3-6.[3] Arrays of the ZnO nanotapers with the same height and different 

sharpness degrees (a to d) with corresponding to the TEM images, respectively. (e) JM-

FM curves for the arrays of the ZnO nanotapers with the same height of 2 μm and 

different θ (10o, 15o, 25o and 35o). (f) ϒC-array for the ZnO nanotapers arrays with 

different θ (upper) and height (lower), respectively. Error bars show the deviation of 

experimental accuracy. (Figures are redrawn from[3]) 

Zhuo Zhang et al.[3] has reported that large-area arrays of vertically aligned ZnO nanotapers 

with tailored taper angle. The sharpness (different angles: θ), height of the ZnO nanotapers 

and shielding effect as well as relationships among them are necessary parameters in the 
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properties of field emission. When the height of the nanotaper arrays is about 2 μm, the 

correlation between the sharpness and the shielding effect is as follows. When 0o˂θ˂16o the 

shielding effect is stronger and dominant; when θ≈16o, the shielding effect and the emission 

are nearly balanced; when 16o˂θ˂60o, the shielding effect is relatively weaker and decreases 

faster than that of the emission; whenθ≥60o, the shielding effect almost disappears and the 

emission decreases slowly. The results show that the field emission performance of the 

nanotaper arrays has improved with the increase of the sharpness (15°) at the height of ~2 μm 

in figure 3-6. Therefore, it is clearly demonstrated that how the sharpness to the top of 1D 

ZnO nanostructures can optimize FE properties. 

Moreover, it is well known that the ZnO structural and internal lattice defects can impact on 

the field emission properties. Figure 3-7a, b, and c.[131] show that the lattice defects of the ZnO 

NW (stacking faults “W” and nano-sized fault areas “F” with the oxygen-deficient) using the 

TEM investigation with the aid of simulations. Nano-sized fault areas (region “F” in figure 3-

7a), which are several nanometer, are observed around several stacking faults. The contrast of 

the HRTEM image in the fault areas is distinct from that in the wurtzite structure (region “W” 

in figure 3-7a). Also, the difference between them is clearly shown in their fast-Fourier 

transformed (FFT) diffractograms as indicated by the arrow in figure 3-7ab and ac. Figure 3-

7b also demonstrates different lattice spacing using a line scan across region “F”. The 

corresponding simulation (figure 3-7c) is also in agreement with the experimental HRTEM 

images (region “W”) in figure 3-7a. The observed nano-sized fault area (region “F”) can be 

formed in the oxygen-deficient ZnO NWs (the ratio of O/Zn = 0). In addition, the F-N plots 

consist of two parts linearity as shown in figure 3-7d. The reasons are that the first emission 

from the electrons captured in the defect states is dominant in the lower electric field range; 

the second from the electrons near the Fermi level is the high electric field range. The former 

emission process is easier than the latter and is strongly dependent on the amount of defects. 
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While the latter emission process becomes dominant in the higher electric field ranges, 

resulting in a drop in the F-N plots as indicated by the arrow in the F-N plots of the ZNO2 in 

figure 3-7d. 

 

Figure 3-7. (a) HRTEM image of the stacking faults and nano-sized fault area; FFT 

diffractograms obtained from (ab) prefect area (region “W”) and (ac) faulted area 

(region “F”) in (aa); (b) Histogram of a line scan (X-Y) across region “F”. (c) HRTEM 

simulation of the oxygen-deficient ZnO at a defocus of -400 Å and a thickness of 200 Å 

along [2૚ ഥ ૚ഥ0] direction according to the occupancy (OccO1) of oxygen site O1. (d) F-N 

plots of the ZnO NWs.[131] (e) Ovac-ZnO (0001)[171] (Figures are redrawn from [131, 171]) 

In addition, the presence of oxygen vacancies in the ZnO nanostructures (Ovac-ZnO) can 

improve the FE characteristics via lowering tunneling barrier i.e., reducing the work function 

(from 4.98 eV to 4.91eV) by shifting the Fermi level towards vacuum in figure 3-7e.[171] EF 
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and EV correspond to energy of the Fermi and vacuum level, respectively. Φ denotes the work 

function of the defined surface. Due to the vacancies, metal clusters of the unsaturated Zn 

atoms are trying to keep stable in the place of the point defects, which leads to an increase in 

the electron density around that vacancy sites (interaction increases). Therefore, the ZnO 

NWs with oxygen defects can show better FE characteristics. 

Apart from the morphologies, doping and lattice defects, external conditions are also 

important factors for enhancing the field emission performance, e.g. the effect of x-ray 

irradiation on the optical, structural and field emission properties of ZnO NWs. With increase 

of the irradiation dose, the surface roughness with nano-protrusions is significantly increased, 

which are beneficial for achieving a larger field enhancement factor (β).[136] 

In a word, the structural parameters (sizes, defects, and doping)[3, 91, 131, 140] of the ZnO NWs 

play an important role to alter the optical and electronic properties. Therefore, knowledge of 

the correlation and inter-relationship between the amount and type of the native intrinsic 

defects or doping present in the NWs as their size varies is an important step towards 

optimizing and tuning the performances of ZnO nanostructure-based devices. 
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4 Experiments and instrumentations 

All experiments and methods throughout this thesis were performed and carried out according 

to the procedures described in this section. All the samples are fabricated using the CVD and 

hydrothermal solution. The microstructure and composition of the samples were investigated 

by the field emission scanning electron microscopy (FE-SEM), transmission electron 

microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron 

spectroscopy (XPS). The samples characterization and measurement were conducted with the 

ultraviolet-visible spectroscopy (UV-Vis), photoluminescence (PL), confocal 

photoluminescence (CPL), confocal time-resolved photoluminescence spectroscopy 

(CTRPLS), conductive atomic force microscopy (CAFM), Hall measurement system, and 

field emission system. 

4.1 Synthesis methods of ZnO nanostrcures 

4.1.1 Chemical vapor deposition 

Chemical vapor deposition (CVD) technology is particularly interesting not only because it 

gives rise to high-quality nanostructures, but also because it is applicable to large-scale 

production.[110] This technique is widely used in the fabrication of 1D, 2D and 3D 

nanomaterials, such as wire-like and leaf-like ZnO.  

4.1.2 CVD method for ultralong ZnO NWs 

ZnO NWs were synthesized via a classical CVD process in a single-zone horizontal tube 

furnace. All chemical reagents were analytical grade and used without further purification. 

The n-Si (100) substrate with very low resistivity value of 0.006 to 0.008 Ωcm was first 

washed with absolute alcohol (99.7%) and then with acetone (99.5%) in an ultrasonic bath. 

Then it was etched in a mixed solution of 20 mL of ammonia hydroxide (25%), 20 mL of 

H2O2 (30%), and 100 mL of deionized water at 80 oC. An alcoholic solution of zinc acetate 

dehydrate (0.02 M) was spin-coated 5 to 7 times on the substrate followed by annealing in an 
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oven at 120 oC for half an hour. This simple spin-coating method was used to obtain a film of 

ZnO crystal seed layers instead of the relatively costly deposition coating. The source material 

for the CVD was pure ZnO powder (0.5 g, 99.0%) mixed with graphite (0.5 g, 99.85%). After 

grinding, the mixtures were spread in an alumina boat which was placed at the center of the 

furnace tube. The substrate covered with a film of ZnO seed layers was placed above the 

source material and the distance between them was about 2-5 mm. Subsequently, 70 sccm 

(standard cubic centimeters per minute) of argon gas and 2 sccm of oxygen gas were 

introduced into the reactor and the pressure in the tube was adjusted to 200 mbar. The 

temperature was heated up to 950 oC at a rate of 25 oC/min and this temperature was held 

constant for 5 to 60 mins. After reaction, the furnace was cooled naturally to room 

temperature. 

4.1.3 CVD method for leaf-like In-doped ZnO nanostructures 

Leaf-like structures were prepared by a carbon thermal reduction process without any catalyst. 

After grinding, 0.45 g of ZnO (purity, 99.999%), 0.05 g of In2O3 (purity,> 99%), and 0.5 g of 

fine graphite powder were dispersed in a quartz boat placed in an alumina tube (length is 150 

cm and inner diameter is 58 mm) at the center of the furnace. Silicon substrates (100) were 

washed by alcohol and acetone in an ultrasonic bath for half an hour, respectively, and then 

were located down-stream from the source (3 to 5 mm) in the quartz boat. Argon (80 sccm) 

and 2.5 sccm of oxygen were introduced into the chamber, and the system was pumped to a 

pressure of 400 mbar. Then the furnace temperature was set to ramp up to 950 °C at 25°C/min 

and kept for 5 to 30 mins under the same flow of mixed gas and vacuum condition. Finally, 

the system was naturally cooled to room temperature, and a film of light-yellow products on 

the substrates was prepared. 
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4.1.4 Hydrothermal method for ZnO NWs 

An alcoholic solution of zinc acetate (0.02 M) was spin-coated 5 to 7 times on the cleaned Si 

substrate, followed by annealing in air at 120 oC for 30 minutes. ZnO seed layers are thus 

formed on the substrate for the subsequent growth of the ZnO NWs. 1.85 g of zinc nitrate 

hexahydrate (Zn(NO3)2∙6H2O, 98%) and 0.87 g of hexamethylenetetramine (HMTA, 

C6H12N4, 98%) were dissolved into 250 mL of deionized water. Subsequently, the Si substrate 

with the ZnO seed layers was immersed (with the seed layers facing down) in the aqueous 

solution at 85 oC for 3 h. Finally, the substrate was removed from the aqueous solution, rinsed 

with distilled water for several times, and dried at room temperature. 

4.1.5 Hydrothermal method for needle-like ZnO NWs  

The needle-like ZnO nanostructures were prepared by a modified low-temperature solution 

method. Zinc nitrate hexahydrate (Zn(NO3)2∙6H2O, 98%, 1.85g) and 0.87 g of 

hexamethylenetetramine (C6H12N4, 98%) were dissolved in 250 mL of deionized water under 

vigorous magnetic stirring. After a couple of minutes, ethylenediaminetetraacetic acid 

(EDTA)-2Na (1.16 g) and sodium citrate (0.91 g) were also put into the solution. Finally, the 

Si substrate coated with ZnO NWs (section 4.1.2) was immersed upside-down in the solution 

and heated at 80°C for 3 h. After that, the top part of the ZnO NWs were etched and evolved 

into needle-like structure. 

4.2 Characterization and analysis for ZnO nanostructures 

4.2.1 Analysis for intrinsic defects in size-controlled ZnO NWs 

A combined experimental approach is investigated to understand the important role of the 

native intrinsic defects in influencing the properties of the ZnO NWs. Such as XPS and EDX 

measurements are utilized to study the chemical state and composition of the ZnO NWs and 

understand the important function of certain native defects such as oxygen vacancies (Vo) and 
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zinc interstitials (Zni). On the other hand, the optical characterizations of the NWs are 

performed with confocal photoluminescence (CPL) and confocal time-resolved 

photoluminescence spectroscopy (CTRPLS) which is a contactless method for understanding 

the dynamics of the carriers involved in optical processes. PL intensities and radiative 

lifetimes are investigated the concentration of native intrinsic defects and their spatial location 

on and beneath the surface of the NWs with different S/V ratios and lengths. CAFM is a 

viable method for obtaining the current-voltage (I-V) characteristics of the ZnO NWs. Hence 

by considering the conduction mechanism of the reverse biased I-V characteristics in the 

NWs, an analytical equation (with the use of Pàde approximations) is derived for obtaining 

the donor concentration of the ZnO NWs with different lengths directly from its 

corresponding I-V characteristics. 

4.2.2 Field emission analysis of ZnO nanostructures 

The FE properties of ZnO nanostructures (ultralong NWs, needle-like NWs and In-doped 

leaf-like nanostructure) are studied via field emission system, such as turn-on field, threshold 

field and the field-enhancement factors (β). 

4.3 Analysis instruments 

4.3.1 Field emission scanning electron microscopy (FESEM) 

Field emission (FE) is the emission of electrons from the surface of a conductor caused by a 

strong electric field.[123] An extremely thin and sharp tungsten needle (tip diameter 10-100 

nm) works as a cathode. The FE source reasonably combines with scanning electron 

microscopes (SEMs) whose development has been supported by advances in secondary 

electron detector technology. The acceleration voltage between the cathode and anode is 

common in the order of magnitude of 0.5 to 30 kV, and the apparatus requires an extreme 

vacuum (~10-6 Pa) in the column of the microscope. Because the electron beam produced by 
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the FE source is about 1000 times smaller than that in a standard microscope with a thermal 

electron gun, the image quality will be markedly improved. Therefore, the FE scanning 

electron microscope (FESEM) is a very useful tool for high resolution surface characteristic in 

the fields of nanomaterials.[172] The Nova Nano SEM™ 230 scanning electron microscope has 

a high resolution imaging with up to 30 kV, which delivers best in class imaging and 

analytical performance for this dissertation samples.  

4.3.2 Energy-dispersive X-ray spectroscopy (EDX) 

Energy-dispersive X-ray spectroscopy (EDX) is an analytical technique used for the elemental 

analysis and chemical characterization of a sample.[173] It relies on an interaction of some 

source of X-ray excitation and the sample. The fundamental principle is that each element has 

a unique atomic structure allowing unique set of peaks on its X-ray emission 

spectrum. Therefore, X-ray spectra can be used to collect and analyze, yielding quantitative 

elemental information from the sample. The EDX detector is equipped on the Nova Nano 

SEM™ 230 scanning electron microscope. 

4.3.3 Transmission electron microscopy (TEM) 

TEM is a microscopy technique in which a beam of electrons is transmitted through an ultra-

thin sample, interacting with the specimen. TEM image is formed from the interaction of the 

electrons transmitted through the specimen and then magnified and focused on an imaging 

device.[174] The high-resolution TEM (HRTEM) images are taken with a JEOL JEM-2010 F 

microscope (JEOL, Japan) at an acceleration voltage of 200 kV. The HRTEM specimens are 

prepared by drop casting the sample dispersion onto a carbon-coated 300-mesh copper grid 

and are dried under room temperature. 
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4.3.4 X-ray powder diffraction (XRD) 

X-ray powder diffraction (XRD) is a rapid analytical technique mainly used for phase 

identification of a crystalline material. In this thesis, XRD patterns were obtained using a 

D/MAX-2550 diffractometer (Rigaku, Tokyo, Japan) equipped with a rotating anode and a 

CuK a radiation source (λ= 1.54178 Å). 

4.3.5 X-ray photoelectron spectroscopy (XPS) 

XPS is a surface-sensitive quantitative spectroscopic technique that measures the elemental 

composition, chemical state and electronic state of the elements.[175] The sample is illuminated 

from the surface with x-rays-monochromatic or unfiltered Al Kα or Mg Kα-and 

photoelectrons. XPS spectra are obtained by irradiating a material with a beam of X-rays. The 

position and intensity of the peaks in an energy spectrum provide the desired chemical state 

and quantitative information. The surface chemical compositions of the samples in this thesis 

were analyzed by a PHI-5000C ESCA system with Mg Kα x-ray radiation source (where hυ = 

1253.6 eV). 

4.3.6 Photoluminescence (PL) 

Photoluminescence is light emission from any form of matter after the absorption of photons 

(electromagnetic radiation).[176] It is one of many forms of luminescence (light emission) and 

is initiated by photoexcitation (excitation by photons). PL performance of the samples in this 

thesis was investigated by Hitachi F-7000 Fluorescence Spectrophotometer. 

4.3.7 Ultraviolet-visible spectroscopy (UV-Vis) 

UV-Vis refers to absorption spectroscopy or reflectance spectroscopy in the ultraviolet-

visible spectral region, which means it uses light in the visible and adjacent (near-UV-Vis 

and near-infrared) ranges.[177] This technique is complementary to fluorescence spectroscopy, 
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in which fluorescence deals with transitions from the excited state to the ground state, while 

absorption measures transitions from the ground state to the excited state. 

4.3.8 Confocal photoluminescence (CPL) and confocal time-resolved photoluminescence 

spectroscopy (CTRPLS) 

Confocal microscopy is an optical imaging technique for increasing optical 

resolution and contrast of a micrograph by means of adding a spatial pinhole placed at 

the confocal plane of the lens to eliminate out-of-focus light.[178] This technique is popularly 

applied in life sciences, semiconductor inspection and material science. In this thesis, the CPL 

intensity mapping on the submicrometre scale and temporal decay of CPL were performed 

using a PicoQuant MicroTime 200 confocal microscope. CPL measurements were carried out 

at room temperature and the luminescence of the ZnO NWs samples was excited with a 

pulsed diode laser at 375 nm and at a constant intensity. 

Time-resolved spectroscopy is the study of dynamic processes in materials or chemical 

compounds by means of spectroscopic techniques.[179] Most often, processes are studied after 

the illumination of a material occurs, but in principle, the technique can be applied to any 

process that leads to a change in properties of a material. With the help of pulsed lasers, it is 

possible to study processes that occur on time scales as short as 10-16 seconds. 

4.3.9 Conductive atomic force microscopy (CAFM) 

CAFM is a variation of atomic force microscopy (AFM) and scanning tunneling 

microscopy (STM), which uses electrical current to construct the surface profile of a 

sample.[180] The current is flowing through the metal-coated tip of the microscope and the 

conducting sample. Usual AFM topography, obtained by vibrating the tip, is acquired 

simultaneously with the current. This enables to correlate a spatial feature on the sample with 

its conductivity. CAFM microscope uses conventional silicon tips coated with a metal or 
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metallic alloy, for example, Pt-Ir alloy. In this thesis, the I-V measurements on the ZnO NWs 

were conducted using a Veeco DI 3100 multimode scanning probe system (SPM) with 

conductivity measurement capability. 

4.3.10 Hall measurement system 

The Hall measurements on the ZnO NWs arrays were carried out at room temperature by 

using the Van der Pauw four probe technique with a square configuration utilizing an Accent 

HL5500 system. The process of electrodes fabrication was that a thin aluminum (Al) foil 

(same size as the ZnO NWs arrays sample) with a circular hole (radius is about 0.1 cm) very 

close to each of the four corners was used as a mask, for the subsequent physical vapour 

deposition of a mixture of gold-zinc (Au-Zn) powder for the formation of the Au-Zn 

electrodes on top of the ZnO NWs arrays. After the Au-Zn alloy electrodes were deposited at 

the four corners of the ZnO NWs arrays sample, the Al foil was removed where the sample 

area consisting of the ZnO NWs arrays is about 1 x 1 cm2 and the area of each Au-Zn 

electrode is about 0.03 cm2. Subsequently, annealing of the ZnO NWs arrays sample with the 

four Au-Zn electrodes was performed in nitrogen gas at the temperature of 500 oC for 1 

minute. This annealing step was performed as the Au-Zn contacts would become ohmic with 

a low resistivity value when annealed at 500 oC in nitrogen ambient.[181] Moreover, good 

ohmic contacts between the electrodes and the ZnO NWs were confirmed before the Hall 

measurements. Therefore the carrier concentration obtained from the Hall measurements 

refers to the ensembles of as-synthesized ZnO NWs arrays which is assumed to be the same 

for each individual ZnO NW.  

4.3.11 Field emission system. 

FE measurements of the as-prepared samples were carried out in a conventional parallel-plate 

field emission configuration (self-supported) with an anode-to-sample spacing of 
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approximately 150 μm (using glass fibers as spacers for all tests) under a vacuum of 5×10-5 

Pa. 
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5 Results and discussions 

The properties and performance of the ZnO nanostructures based devices are intimately 

related to the structural parameters (size, defect and doping).[15-17, 182-186] However, there are 

few profound studies about the correlation between the native intrinsic defects distribution 

and the size-dependent ZnO NWs (length and surface-to-volume (S/V) ratio). In addition, due 

to the extreme complex defects in the ZnO NW, it is necessary to simultaneously investigate 

them using two or more techniques, for example, the combined spectroscopic techniques 

including XRD, XPS, UV-Vis, PL, CAFM, CPL, and CTPRLS. This comparative analysis 

and understanding of these aspects would be helpful to understand the function of defects and 

doping in the ZnO NWs. 

In this section, the combined spectroscopic techniques are used to systematically understand 

the important role of the native intrinsic defects for adjusting the properties of the ZnO NWs. 

For example, the applications of the field emission with different ZnO nanostructures 

(ultralong NW, needle-like NW and leaf-like In-doped ZnO) are investigated (the details are 

shown as following). 

In section 5.1, ZnO NWs with different lengths and sizes are synthesized by both the aqueous 

solution method and the CVD process. The length and corresponding surface-to-volume (S/V) 

ratio of the ZnO NW on the concentration and variation of the different types of the native 

intrinsic defects in the ZnO NWs as well as the correlations between them are investigated via 

the combined spectroscopic techniques. XRD, Raman, XPS and EDX measurements show 

that the surfaces of the longest ZnO NWs with a low S/V ratio possess the highest 

concentration of Vo or Zni. 

In section 5.2, the room-temperature CPL are used to investigate the spatial distribution of the 

shallow and deep Vo concentrations on the polar (0001) and non-polar (101ത0) surfaces of ZnO 

NWs. The green emission at different spatial locations on the ZnO NW polar (0001) and non-
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polar (101ത 0) surfaces is found to have maximum intensity near the NW edges, and the 

intensity decreases from the edges to the center of NW. In addition, understanding the 

dynamics of the carriers involved in the optical processes are implemented by the CPL and 

CTRPLS, such as the temporal information on the recombination lifetime as well as the 

optical emissions at specific wavelengths of the intrinsic defects in the different S/V ratios and 

lengths of the ZnO NWs. With the length of the ZnO NWs increasing, the corresponding 

decreasing S/V ratio could lead to a decrease (slowing) of the scattering rate of the excitons 

with the surface of ZnO NWs, and increase the radiative lifetime due to some surface 

recombination processes. 

In section 5.3, the conductive atomic force microscopy (CAFM) is a method to obtain the 

current-voltage (I-V) characteristics of the ZnO NWs. Hence, considering the conduction 

mechanism of the reverse biased I-V characteristics in the NWs, an analytical equation (with 

the use of Padé approximations) is derived for obtaining the donor concentration of the ZnO 

NWs with different lengths directly from their corresponding I-V characteristics. The validity 

of the analytical model is verified by the Hall measurements and the donor concentration is 

positively correlated with the increase in the concentration of Vo and Zni. 

Field emission (FE) properties with different ZnO nanoostructures, including the ultralong 

NW, needle-like NW and In-doped leak-like ZnO are measured in the section 5.4. The 

different enhanced parameters of the FE properties are discussed, such as high aspect ratios, 

defects, and indium incorporation. Finally, the leaf-like In-doped ZnO nanostructures are 

suitable for a field emitter in the microelectronic devices, which can be ascribed to the lowest 

turn-on and threshold field as well as its relatively high β value. 
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5.1 Investigation of assorted analytical techniques for ZnO NWs (defects) 

5.1.1 Background 

The performance of the 1D ZnO NWs arrays based devices are intimately related to 

morphologies and the native intrinsic defects or artificially incorporated defects which can 

optimize the optical and electrical properties of the semiconductor.[15, 17, 18, 182, 187-189] Here, 

ZnO NWs with different lengths and sizes are synthesized via the CVD process and aqueous 

solution method. Due to the extreme complexity of the ZnO defect structures, it is always 

necessary to use two or more techniques simultaneously for investigation, for example, XRD, 

Raman, EDX, and XPS. XPS and EDX measurements are utilized to study the chemical state 

and composition of the ZnO NWs and understand the important function of certain native 

defects. The Vo defects are not only spatially located on the surface of the NW but an 

increasing concentration of the Vo defects ascribed to the green emission is also located in the 

annulus region beneath the surface for the longer NWs as compared to the shorter NWs due to 

the decreasing (surface-to-volume) S/V ratio for the longer NWs. The increase/decrease of the 

various parameters due to the incorporation of the intrinsic defects is related to the 

increase/decrease in the S/V ratio of the synthesized NWs. Corresponding results could 

possibly provide a deeper understanding of the relationships between the defects and size 

changes in the ZnO NWs. 

5.1.2 Morphologies 

As shown in figure 5-1, the SEM images showing the side view of the as-synthesized ZnO 

NWs with different lengths. The length of the vertical ZnO NWs is around 2 μm (Figure5-1a) 

and 150 μm (Figure 5-1d) as prepared by the solution method and CVD process for 20 

minutes, respectively. Figure 1e and f show the typical 45o tilted view of SEM image showing 

the morphology of the as-prepared vertical ZnO NWs by the aqueous solution method and the 
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CVD process, respectively. It was visibly observed that the ZnO NWs grown by the two 

methods are dense and the height of the NWs in the array is rather uniformly long. Moreover, 

these NWs in figure 5-1a to -1d also are uniformly distributed on the surface of the Si 

substrate where most of the NWs are vertically quasi-aligned with an inclination towards the 

Si surface. 

 

Figure 5-1. Side view of the ZnO NWs with different lengths (a) aqueous solution 

method. CVD process for (b) 5 min, (c) 11 min and (d) 20 min. The typical 45o tilted 

view SEM image showing the distribution of the NWs prepared by the (e) aqueous 

solution method and by the (f) CVD process. 

For a better examination of the surface morphology of the ZnO NWs, the close-up, higher 

magnification top view SEM images of the vertical ZnO NWs in the four samples are 

displayed in figure 5-2. From the images, it can be deduced that the shape of the NWs is 

hexagonal and the diameter of the solution prepared NWs is an average value of 100 nm 

while the diameter of the CVD prepared NWs is larger in the range of hundreds of nm or in 

the micrometre range. The average NW diameter of the four samples is around 100 nm, 500 

nm, 1 μm and 1.5 μm named as sample A, B, C and D, respectively. 
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Figure 5-2. Typical top view SEM image of the vertical ZnO NWs in sample (a) A, (b) B, 

(c) C and (d) D. 

Figure 5-2 also shows that the reaction growth time can affect the diameter of the ZnO NWs 

during the CVD process. With increasing reaction time, the ZnO NWs can grow in both the 

vertical (c-axis direction) and radial direction. Hence, this may lead to more NWs in sample D 

having a slightly larger diameter with a small resultant increase in the average diameter of the 

NWs. However, it must be stressed that the length of the NW increased at a much faster rate 

as compared to the small increase of the diameter by comparing Figure 5-1 and 5-2. 

 

Figure 5-3. TEM images of the ZnO NWs in sample (a) B, (b) A and (c) D. 
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In addition, Figure 5-3 shows the TEM images with the diameter of a single NW from sample 

B (Figure 5-3a) is about 350 nm which is in good agreement with the SEM image in figure 5-

2b. The importance information from TEM images show a rough surface morphology which 

suggests the presence of a high density of surface states. 

5.1.3 XRD analysis  

 

Figure 5-4. (a) XRD pattern of the ZnO NWs in the four samples A to D. The inset 

shows the spectra over a wider range of 2θ. (b) Raman spectrum of the ZnO NW arrays 

(Sample D). 

To obtain samples structure information, x-ray diffraction has been investigated the 

crystalline quality of the ZnO NWs. The inset in figure 5-4a shows the XRD pattern for the 

as-prepared ZnO NWs arrays in all the four samples. There are being only two diffraction 

peaks where the peak of the stronger diffraction corresponds to the plane (002) and the 

weaker diffraction peak to the (004) plane. In the XRD pattern, the strongest peak 

corresponding to the (002) plane may indicate a preferential growth orientation of the ZnO 

NWs along the [0001] direction.  

In addition, from the longest ZnO NWs arrays (sample D), the angular position of the ZnO 

(002) peak is located at 2θ =34.29o while it shifts towards 2θ = 34.40o for the shortest ZnO 

NWs (sample A). This implies that there is some relaxation of the residual stress in the crystal 
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lattice of the shortest NWs as the (002) peak for unstressed bulk ZnO is located at 2θ 

=34.44o.[190] The origin of the main component of the residual stress has been attributed to the 

intrinsic stress due to the presence of intrinsic point defects (e.g. Vo, Zni) incorporated in the 

crystal lattice during the growth process and has been shown to be compressive in nature.[191, 

192] The other component of the residual stress is attributed to the thermal stress due to the 

difference in the thermal expansion coefficient of ZnO (4.75ᵡ10-6K-1) and the Si substrate 

(2.60ᵡ10-6K-1), however it is much smaller in magnitude as compared to the intrinsic 

stress.[193] This shift of the ZnO (002) peak towards smaller values of 2θ = 34.30o (away from 

2θ= 34.44o) for the NWs in sample D implies that the longer ZnO NWs contain a higher 

concentration of zinc interstitials or oxygen vacancies. This could be possibly due to a larger 

incorporation of the zinc atoms into the NWs during the longer synthesis time required for the 

NWs using the CVD process hence leading to a higher concentration of Zni and compressive 

stress stemming from them.[192] 

5.1.4 Raman spectra analysis 

Raman spectra have been used to identify the crystal orientation of wurtzite ZnO NWs.[194] 

ZnO belongs to the C6v symmetry group, and from group theory prediction the optical modes 

at the C point of the Brillion zone are given by Γ = A1+B2+ E1+E2.[195] The A1 and E1 modes 

represent the vibration of atoms parallel and perpendicular to the hexagonal c-axis, 

respectively. They are both infrared and Raman-active, which further divided into 

longitudinal optical (LO) and transverse optical (TO) components. The Raman peak at 331 

cm-1 is assigned to the A1 (acoustic overtone). The low and high frequencies of the E2 mode 

(E2 (low), E2 (high)) are exclusively Raman-active and correspond to the vibration of the Zn 

and O sublattice, respectively. The B1 modes, however, are silent and inactive. Importantly, it 

is experimentally observed that the presence of both the A1 (acoustic overtone) and A1 (TO) 
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bands centered at 331 and 380 cm-1, respectively, is associated with the orientation of the ZnO 

nanostructure perpendicular to the c-axis, while the absence of both of these modes is 

associated with the orientation of the ZnO nanostructure parallel to the c-axis.[194] As shown 

in figure 5-4b, observing the Raman spectra of sample D, the negligible signal of both the A1 

(acoustic overtone) and A1 (TO) bands indicates that ZnO NWs are oriented preferentially 

along the c-axis. This is in agreement with XRD spectrum, which confirms the ZnO NW 

growth along the c-axis. Raman spectra are also sensitive to the structural defects in the 

synthesized ZnO NWs, and the presence of the E1 (LO) peak at around 582 cm-1 is associated 

with Vo defects.[196] 

5.1.5 XPS analysis  

 

Figure 5-5 (a) XPS spectra of the Zn 2p peak. (b) XPS spectra of the oxygen 1s peak 

corresponding to the ZnO NWs in the four samples A to D. The fitting of the oxygen 1s 

peak by Gaussian functions corresponding to (c) sample C and (d) sample D, 

respectively.  
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To understand the surface chemical state of the synthesized ZnO NWs, XPS analysis is 

utilized. Figure 5-5a and 5b display the XPS spectra spectrum of the ZnO NWs from sample 

A to D, respectively. In figure 5-5a, the two peaks with Zn spectrum centered at 1022.7 and 

1045.8 eV with a spin energy separation of 23.1 eV can be assigned to Zn 2p3/2 and Zn 2p1/2, 

respectively. To get further information for O 1s, Figure 5-5c and d show more details of the 

XPS high resolution spectra with samples C and D, respectively. The O 1s main peaks in 

sample C and D can be centered at 533.0 eV and a shoulder peaks centered at 531.2 eV after 

using a Gaussian fitting method. The lower binding energy component at around 531.2 eV has 

been attributed to oxygen deficiencies or vacancies within the ZnO matrix[197] whereas the 

higher binding energy component is probably due to some surface hydroxide species on the 

NWs.[150, 151] In addition, it is observed that the intensity of the shoulder peak O1s component 

at 531.2 eV is lower for sample C and the intensity of this component is related to the 

concentration of Vo.[197] On the other hand, Figure 5-5b shows the shift of the O 1s peak to 

higher energy for sample A which implies the increase of oxygen atoms on the surface of the 

NWs (reduction in the concentrations of Vo) prepared by the aqueous solution method.[150-152, 

198] This indicates that the ZnO NWs prepared by the CVD process (samples B to D) contain 

more oxygen-deficient states as compared to sample A. Hence the analysis of the O 1s peak 

suggests that the surfaces of the longest ZnO NWs in sample D possess the highest 

concentration of oxygen vacancies. 

5.1.6 The surface stoichiometry of ZnO NWs 

From figure 5-1, -2, and -3 information, ZnO NWs can approximate as a cylinder and from a 

purely geometric viewpoint the surface to volume ratios of the NWs are given by： 
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Where lNW and rNW is the average length and radius of the NW, respectively. From eqn. (5-1) 

and figure 5-1 and 5-2, it was seen that the S/V ratio of the synthesized NWs decreases from 

sample A to D. [The S/V ratio of the NWs taking into consideration the surface recombination 

layer of a finite thickness is given in ref.] [199] In addition, for a more quantitative analysis of 

the surface stoichiometry of the ZnO NWs to confirm the above observation, the relative ratio 

of Zn/O can be obtained using the XPS peak area of Zn and O and their elemental sensitivity 

factor given by, [200] 

୬(୞୬)

୬(୓)
 = 

୅(୞୬) ୗ(୞୬)⁄

୅(୓) ୗ(୓)⁄
                                   5-2 

where n(Zn)and n(O) are the atomic numbers of the Zn and O elements, A(Zn) and A(O) are 

the areas under the Zn 2p and O 1s peaks and S(Zn) and S(O) are the elemental sensitivity 

factors of Zn and O at 4.8 and 0.66, respectively.[200] 

Since the XPS spectroscopy can only probe up to about 10 nm beneath the surface of the 

NWs, while the X-ray in the energy-dispersive X-ray spectroscopy (EDX) measurements can 

penetrate to a deeper depth of about 1 to 2 μm, the bulk stoichiometry of the ZnO NWs could 

be obtained from the EDX measurements. Quantitative analysis of the results shows that the 

surface and bulk atomic ratios of Zn to O (Zn/O) corresponding to the 4 sets of samples 

(tabulated in Table 5-1) are all greater than unity and are likewise positively correlated with 

the increase in the length (and corresponding decrease of the S/V ratio) of the synthesized 

ZnO NWs. Hence the XPS and EDX analysis implies that there are oxygen deficiencies in the 

ZnO NWs and the native intrinsic defects vary distinctly with the length of the NWs (the 

same results have been previously observed in ref.[201, 202]). Conversely, as there is an easier 

formation of Zni due to dissociation under high temperature conditions,[203] the extended 

growth time for the longer NWs during the CVD process may have led to a surplus 

concentration of Zni incorporated in the NWs. The excess zinc atoms in the ZnO crystal 
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lattice become ionized and preferably diffuse and then accumulate at interstitial positions in 

the ZnO crystal lattice which results in an increase of interstitial Zn atoms and Zni defects as 

well as a decrease in the concentration of zinc vacancies, VZn (the concentration of VZn should 

be reduced in Zn rich conditions).[204] Therefore the concentration of the Vo jointly with Zni 

defects as well as the VZn defects increases and decreases, respectively, on the surface and in 

the bulk for the longer synthesized ZnO NWs. 

 

Figure 5-6. EDX spectra of the ZnO NWs in the sample (a) A, (b) B, (c) C and (d) D. 

Table 5-1 Length, S/V ratio as calculated from eqn. (5-1) and the weight and atomic 

percentages of the zinc and oxygen elements from the analysis by EDX of the samples. 

The surface and bulk atomic ratios of Zn to O from the XPS and EDX measurements, 

respectively, are also included in the table. 



Results and discussions 
 

53 

 

Sample Length 
/μm 

S/V 
ratio
/μm 

-1 

Element 
Zn wt% 

Element 
O wt% 

Element 
Zn 

atomic% 

Element 
O 

atomic% 

Surface 
Zn/O 
ratio 
from 
XPS 

Bulk 
Zn/O 
ratio 
from 
EDX 

A 2 21 81.41 18.59 51.73 48.27 1.06 1.07 
B 20 4.1 82.37 17.63 53.35 46.65 1.12 1.14 
C 68 2.03 83.09 16.91 54.61 45.39 1.19 1.20 
D 150 1.35 83.35 16.65 55.05 44.95 1.24 1.22 

5.2 Investigation of the assorted analytical and spectroscopic techniques for ZnO NWs 

(defects) 

5.2.1 Background 

It is well known that the surface and deep bulk of the ZnO nanostructures contain a large 

amount of intrinsic defects such as oxygen deficiencies or vacancies (Vo), which will 

influence their optical and electrical properties as well as their performance in device 

applications.[205, 206] Therefore, it is essential to investigate the distribution of the defects (such 

as Vo) in the size-dependent NWs to optimize the performance of the devices. Recently, 

though the effects of Vo on the optical and electrical properties of the bulk and nanoscale ZnO 

structures have been extensively investigated,[15, 17, 18, 56, 57, 182, 183, 187-189, 207, 208] the spatial 

distribution of the Vo concentration in size-dependent ZnO NWs surfaces has not yet been 

evaluated. Therefore, the spatial electronic profile of the surface and deep Vo concentrations in 

the size-dependent ZnO NWs are analyzed using the combined spectroscopic techniques in 

this section. In addition, the connection between the PL intensities and radiative lifetimes with 

the concentration of the native intrinsic defects and their spatial distribution on and beneath 

the surface of the NWs with different S/V ratios and lengths is investigated. Qualitative 

understanding of the spatial distribution of the surface defects in size-dependent NW are 

studied, which leads to a more efficient functionalization and integration of the ZnO NW-

based devices for improved performance.    
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5.2.2 CPL and PL emission spectra for ZnO nanoostructures 

 

Figure 5-7 (a) CPL spectra obtained with a pulsed diode laser (λex = 375 nm) and (b) PL 

spectra obtained with a Xe lamp (λex = 270 nm) corresponding to the four samples A to 

D. (c) The redshift of the green band in meV between the PL and CPL spectra 

corresponding to the four samples with the change in the excitation wavelength from 

270 nm to 375 nm. (d) Illustrative diagram which shows the different distribution of Vo 

defects on the surface and in the annulus region beneath the surface of the NW for ZnO 

NWs of different lengths and S/V ratios.  

In Figs. 5-7b and a, PL spectrum show a smoother curve than the CPL spectra. Because the 

PL intensity represents an average value over a larger number of NWs, while the CPL 

intensity shows only individual NW over the excitation laser spot area, which increase the 

signal noise. On the other hand, the disappearance of the CPL band centered at 400 nm and 
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420 nm (figure5-7a) could be due to the cut-off filter used in the CPL measurements to 

remove the laser light where the filter also removes all emission between 400 nm and 420 nm. 

The room temperature CPL spectra of the NWs around the excitation spot for the 4 samples 

consist of a dominant green band centered at around 510 nm and an extremely weak and 

broad UV-Vis emission at 380 nm where the yellow-orange (590-640 nm) PL band usually 

ascribed to excess oxygen (oxygen interstitials)[209, 210] is not observed in the CPL spectrum as 

shown in figure5-7(a). The UV-Vis emission arises due to the band to band transition from 

the direct electron-hole pair recombination between the conduction and valence band.[210] In 

addition, the dominant visible PL band also suggests that there is a high concentration of 

surface defects and this is corroborated by the rough surface morphology observed in the 

TEM image, as shown in figure 5-3.  

As for the CPL measurements, the lowest excitation wavelength λex is 375 nm. By utilizing a 

xenon (Xe) lamp where the wavelength of excitation could be varied, ensembles of NWs in 

samples A to D could be excited at a lower wavelength (λex =270 nm) for additional PL 

measurements. Figure 5-7(b) shows that two new PL bands centered at around 400 nm and 

420 nm could be observed in the PL spectrum for sample A to D where the UV-Vis band at 

380 nm is still very weak. Conversely, the luminescence peak at 400 nm has been suggested 

to be due to the recombination of free excitons through an exciton-exciton collision 

process[211] while the peak at 420 and 510 nm has been attributed to the interstitial Zn ions and 

Vo in the ZnO lattice, respectively.[211, 212] For instance, the increase of the PL intensity at 510 

nm (in figure 5-7b) can be correlated to a higher concentration of Vo defects with the increase 

of the NW length from sample A to D, and this is in agreement with the results from the XPS 

and EDX measurements.  



Results and discussions 
 

56 

 

5.2.3 Redshift of the CPL and PL emission spectra in the size-controlled ZnO NWs 

Under the same excitation wavelength of 375 nm in figure 5-7a, besides the difference in the 

relative intensity, the peak positions of the 4 peaks also exhibit a small red shift of about 23 

nm (from about 499 nm to 522 nm) among themselves. This red-shift of 109 meV as observed 

in figure 5-7a suggests that the energy of the electronic transitions for the green PL emission 

is slightly reduced. Similarly, a redshift of the emission spectra is also observed in figure 5-7b 

for the four samples with excitation wavelength of 270 nm for PL spectrum. Generally, two 

mechanism which could account for the observed red shift are the variation of the oxygen-

vacancy concentration in the NWs[213] or the build-up of generated internal stress due to the 

presence of intrinsic defects in the NWs, where it could lead to a reduction of the bandgap.[214] 

If the ZnO NW is approximated as a solid cylinder then from Lamé’s equations, both the 

circumferential stress (hoop stress) and radial stress are constant throughout the interior of the 

NW.[215] Furthermore, since the amount of internal stress can lead to a narrowing of the 

bandgap,[214] if there is no significant shift of the energy levels of the deep level defects such 

as Vo with respect to the band edge, then the sample will respond optically by emitting at 

lower energy due to the narrowing of the bandgap. Although the amount of intrinsic residual 

stress in the NW is constant in an individual sample (from the above approximation), this 

residual stress level can change between samples. Some evidence in support of this is 

indicated in the XRD result in figure 5-4a which shows that there is some intrinsic residual 

stress present in the synthesized NWs due to the point defects. In addition, the amount of 

intrinsic residual stress is correlated with the concentration of intrinsic defects in the ZnO 

NWs (from figure 5-4a). For example, sample D possesses the largest amount of intrinsic 

residual stress (due to the largest concentration of intrinsic defects, figure 5-4a) displays the 

biggest red-shift in the green band PL as shown in figure5-7b. Hence, the redshift of the PL 

and CPL spectra in Figs. 5-7a and b, respectively, at the same excitation wavelength could be 



Results and discussions 
 

57 

 

probably due to the different constant level of intrinsic residual stress in the different samples. 

From the XRD analysis, the red-shift of the green CPL and PL emission spectra band between 

the different samples could be due to some bandgap narrowing effects as a result of the 

intrinsic stress in the NW from the incorporation of the native intrinsic defects in the NWs or 

could be due to the spatial variation of the Vo defects in the NWs. 

From the above EDX, XPS, CPL and PL measurements, it is observed that sample A 

(synthesis by the hydrothermal method) contains a lower concentration of defects (e.g. Vo and 

Zni) as compared to samples B to D (synthesized by CVD method), resulting in the variation 

of the defect concentration in the ZnO NWs. Likewise, it has been observed that the size and 

corresponding S/V ratio increases and decreases, respectively, from sample A to D. 

Importantly, this is well correlated with the corresponding increase of the concentration of 

defects from sample A to D and hence I propose that a comparison of the subsequent results 

can also be made concurrently between the different samples according to the difference in 

their sizes or morphologies. 

5.2.4 Variation of the concentration of Vo defects in the ZnO NW of different sizes and 

lengths 

Although the nature of the defect responsible for the green emission is still not fully clear and 

many hypotheses have been proposed to explain the emission originating from intrinsic 

defects or impurities,[216] this emission, however, is typically and widely accepted to be 

associated with oxygen vacancies.[210, 217-219] However, there is still some uncertainty on the 

exact recombination model of the green emission involving the oxygen vacancies. In addition, 

density functional calculations have also shown that Vo is a deep donor and is also the 

dominant intrinsic defect under both Zn-rich and O-rich conditions.[220] From figure 5-7a and 

b, a good correlation is observed between the increase of the intensity of the observed green 

PL and CPL band with the increase of the NWs length (samples A to D) and consequently 
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with the increase of the Vo defects concentration from the XPS and EDX measurements. Such 

a trend has also been observed earlier by other researchers in this field.[219] On the other hand, 

the penetration depth of the excitation light (at 270 and 375 nm) used in the PL and CPL 

measurements is in the range of tens to hundreds of nm. For instance, the penetration depth of 

the excitation light at 325 nm for ZnO is about 60 to 120 nm.[221] Therefore, I believe that the 

defects responsible for the green luminescence in the ZnO NW samples might originate from 

the oxygen vacancies that are located not only on the NW surface but also in an annulus 

region in the NW beneath the ZnO NW surface (figure 5-7d). In support of this hypothesis, 

the decrease of the S/V ratio for the longer NWs indicates that there exist lesser surface 

states[218] per volume for the longer NWs. However, the increase of the green PL and CPL 

intensity correlates directly with the increase of the concentration of Vo (figure 5-7a and b) as 

the NWs elongate, which is in agreement with the XPS measurements. To reconcile these two 

observations, besides the Vo defects existing on the surface of the NW, it is also necessary 

that a larger portion of the total concentrations of the oxygen vacancies are located in an 

annulus region which is beneath the ZnO NW surface as the length of the NWs increases. 

This is substantiated by the quantitative analysis of the EDX measurements where the 

increasing bulk atomic Zn/O ratio in Table 5-1 implies that the concentration of the Vo defects 

beneath the surface of the NWs similarly increases as the NWs elongate. 

Furthermore, this viewpoint is supported by the PL measurements in figure 5-7b where a 

shorter excitation wavelength (higher photon energy) is used for the measurements, which 

corresponds to a slightly deeper penetration depth in the samples. It is observed that at spatial 

locations deeper beneath the surface of the NWs, the increase of the green PL intensity 

(between 488 nm and 510 nm) is similarly correlated with the increase of the length of the 

NWs (and corresponding decrease of the S/V ratio). This signifies that Vo defects exist at a 

spatial location deeper in the NW and a higher concentration of Vo exists in the interior of the 
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longer NWs as compared to the shorter NWs (figure 5-7d). Hence from the results, I infer that 

a larger fraction of the oxygen vacancies should exist in an annulus region beneath the surface 

of the synthesized NW as its length and S/V ratio increases and decreases, respectively.  

5.2.5 The concentration of Vo defects spatial distribution at the (0001) surface of ZnO 

NWs 

To investigate the spatial distribution of Vo of ZnO NWs, I choose sample D for an 

investigation with the confocal microscopy. Figure 5-8a shows the scanned images which 

map the CPL emission intensity from the ZnO NWs obtained using a Pico Quant Micro Time 

200 confocal microscope. These images are obtained by scanning an area of 16.8×17.1μm. 

Most of the ZnO NWs are hexagonal-shaped with a diameter of 2-3 μm. This is quite similar 

to the NW shapes and sizes observed in the SEM image of the figure 5-2d. In addition, due to 

the difference in the NW heights, where the NWs with a distinct emission intensity outline in 

the focal plane, the spatially resolved CPL emission intensity of the ZnO NWs is 

inhomogeneously distributed. This could be the case, in confocal microscopy, because light 

emitted above or below the focal plane is not complete efficiently collected. Also, the NWs 

with weaker emission intensity are longer or shorter. The SEM image (figure 5-2d) shows that 

the (0001) surface of the NW is relatively flat. Therefore, it is worth pointing out that for the 

(0001) surface of one NW, the variation of the CPL intensity at the surface is not significantly 

affected by the presence of other NWs in its vicinity.  

To clearly understand the spatial of distribution of Vo, I set different locations on the (0001) 

surface on the top of some of the NWs as shown in the figure 5-8a. This is indicated by the 

slanted blue guide lines on the Zn-terminated (0001) surface on some of the NWs in the figure 

5-8a. The spatial variation of the spectral intensity along each of the blue lines on the top of 

the ZnO NW [i.e. (0001) surface] in figure 5-8a is plotted in figure 5-8b. To visualize the 

various spatial locations along the blue line on the (0001) surface of the ZnO NW, the 
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midpoint between the center of the two innermost spots where the excitation laser beam hits is 

taken as the origin (d=0 μm) and the spatial distances of the center of each of the six lateral 

spots, dx (where x = 1, 2, 3, 4, 5, and 6, in the inset) are calculated from this origin point. For 

example, the distances from the origin of the center of the two innermost locations where the 

excitation laser beam hits are indicated as d3 and d4. It is worth pointing out that there are 

slight variations in the peak values at dx (where x = 1, 2, 3, 4, 5, and 6, in the inset) for each of 

the four different NWs because the origin point for each blue line is located at a different spot 

on the (0001) plane as shown in 4 different ZnO NWs in figure 5-8a. The six spatial locations 

along each of the blue lines represent the confocal volumes of the CPL measurements that are 

taken along the top (0001) cross-section of the NW like the inset.  

In figure 5-8b, each CPL spectrum plotted is obtained at different spatial locations [dx (where 

x = 1, 2, 3, 4, 5, and 6), in the inset] on the top (0001) surface of a ZnO NW. The magnitude 

of the green luminescence peak in each individual CPL spectra at a particular location on the 

(0001) surface of the ZnO NW can be correlated with the concentration of Vo at that 

particular spatial location. Furthermore, the shape and peak position of each green 

luminescence peak at each spatial location remain essentially the same (λ ≈ 519 nm),[219] 

which reinforces the viewpoint that the magnitude of each CPL peak at λ ≈ 519 nm can be 

used as a measure of the amount of oxygen vacancies at that particular spatial location. The 

overall CPL spectra are a function of different spatial locations on the top (0001) surface of 

the ZnO NW and, in other words, are dependent upon the different spatial locations from 

which the emission occurred. However, the magnitude of each individual CPL spectra shown 

in figure 5-8b is a function of the emission from a specific spatial location and, because ZnO 

luminescence is very sensitive to the surface state of ZnO,[219] the green PL peak at λ ≈ 519 

nm can therefore be correlated to the amount of Vo at that spatial location. 
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Therefore, changes in the maxima of the CPL spectra at different spatial locations along the 

blue lines in figure 5-8a are therefore most likely due to variation in the spatial distribution of 

Vo defects. It is visible that the emission intensity of CPL spectra gradually reduce from the 

edge to the center on the top surface of ZnO as shown in the CPL spectrum in figure 5-8b.  

 

 

 

 

 

 

   

Figure. 5-8. (a) Spatially resolved CPL intensity microscope image of the ZnO NWs. The 

blue lines represent locations where the CPL spectra are taken at different spatial 

locations. (b) Plot of several CPL spectra of the green luminescence taken at different 

spatial locations dx (where x = 1, 2, 3, 4, 5, and 6, in the inset) along the blue guide line 

across the top cross sectional surface (0001) of one laterally elongated ZnO NW. 

5.2.6 The concentration of Vo defects spatial distribution at the (10૚ഥ0) surface of the 

ZnO NWs 

 

d 
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Figure 5-9. (a) CPL intensity microscope image of a thin ZnO NW lying on its side along 

the [0001] direction. (b) The CPL spectra at three different spatial locations along the 

[0001] direction, which corresponds to a NW that is lying on its side.  

Figure 5-9a shows the CPL emission intensity of an individual thin ZnO NW lying on a side 

composed of the (101ത 0) surface along the [0001] direction (i.e. the c-axis). The spatial 

location of the center of the three spots where the measurements are taken, Ix (where x= 1, 2, 

3), is calculated in relation to the slanted top edge where the (0001) and (101ത0) surfaces meet 

each other (located near the upper right corner of the NW in the figure 5-9a). The CPL spectra 

taken at these three positions are along a path parallel to the wurtzite c-axis. This corresponds 

to a vertical cross section of the (101ത0) surface along the [0001] growth direction of the NW 

that is lying on its side, as shown in figure 5-9a. Figure 5-9b shows the green CPL spectra 

acquired at the three different spatial locations (I1, I2, and I3), where it can be seen that the 

shape and location of the peaks remain approximately unchanged and only the peak intensity 

of the CPL spectra changes, decreasing in the [0001ത] direction along the vertical cross section 

of the NW. In addition, the different spatial locations, designated as I1, I2, and I3, are taken 

along the vertical [0001] growth direction near the top end of the NW below the ZnO NW 

(101ത0) surface and are referenced with respect to the slanted top edge where the (0001) and 

(101ത 0) surfaces meet each other. Therefore using the spectral intensity variation of the 
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confocal photoluminescence of the green emission at different spatial locations on the surface, 

the Vo concentrations distribution of the NW can be obtained. The green emission at different 

spatial locations on the ZnO NW (0001) and (101ത0) surfaces is found to have maximum 

intensity near the NW edges, decreasing to a minimum near the NW center. 

 

Figure 5-10. (a) Side view of the 6 × 1× 1 SS used for approximating the horizontal cross 

section of the ZnO NW, and the vacuum region used to decouple the interactions 

between the consecutive SSs. The green plane represents the center of the 6× 1 × 1 SS. 

(b) Side view of the 1 × 1× 5 SS used in the approximation of the vertical cross section of 

the ZnO NW. The O, Zn, surface O-vacancy, and deep O-vacancy atoms are 

represented by the large red, small grey, yellow-crossed, and blue-crossed spheres, 

respectively. The 6×1× 1 and 1× 1 ×5 SSs are obtained by stacking the ZnO primitive 

unit cells along the ܠ܍۶ࢇ and ܠ܍۶ࢉ directions, respectively. 

To better understand the spatial profile of the ZnO NW luminescence intensity by the CPL 

measurements, supercell-slab (SS) models are used in the surface simulations as an 

approximation of the ZnO NW cross sections from where the confocal measurements are 
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taken.[222, 223] The SSs used to replicate the polar [(0001)/(0001ത )] and non-polar [(101ത 0) 

/(1ത010)] surfaces has been constructed by stacking the ZnO primitive unit cells along the c-

axis and a-axis of the hexagonal lattice, followed by a vacuum region of several Å along these 

two axes to decouple the interactions between the SSs.[222] Figure 5-10a shows the graphical 

representation of the horizontal 6 ×1 ×1 (24 atoms) SS that is repeated infinitely along the 

hexagonal b- and c-axes to model the [(101ത 0)/(1ത 010)] surfaces. Figure 5-10b shows the 

graphical representation of the vertical 1×1×5 (20 atoms) SS that is repeated infinitely along 

the hexagonal a- and b-axes to model the [(0001)/(0001ത)] surfaces. Subsequently, the first 

principle calculations/simulations using the WIEN2k code is performed solely by Dr. Kin 

Mun Wong[222, 223] (His personal e-mail addresses are : km2002wong@gmail.com, 

km2002wong@yahoo.com.sg, kmwong@kinmunwong.me) to simulate the spatial 

distribution of the oxygen vacancies defect formation energies on the various ZnO NWs 

surfaces with different crystallographic orientations. This first principles calculations together 

with the CPL measurements on the ZnO NWs surfaces that are performed exclusively by Dr. 

Kin Mun Wong[222, 223], consequently lead to a unifying and important theoretical 

understanding of the spatial variation of the concentration of the Vo defects on the different 

[(0001)/(0001ത)] surfaces of the ZnO NWs, which is beyond the scope of this thesis. 

5.2.7 Luminescence lifetimes 
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Figure 5-11. (a) Room temperature normalized TRPL spectra for four samples A to D. 

(b) CPL decay rate versus the length of the ZnO NWs where the linear fitting (dashed 

line) is also plotted in the figure. 

In order to obtain more insight into the luminescence behavior of the ZnO NWs, the CTRPLS 

measurements has been performed on the ZnO NWs. Figure 5-11a shows the temporal decay 

curves of PL intensity where a rapid decrease of the PL intensity for samples A to D is 

observed during the first few ns. The experimental decay curves of the ZnO NWs samples can 

be fitted with a biexponential function, with a fast and slow time constant with a relationship 

given by 

R(t)=A1 eି୲ தଵ⁄  +A2 eି୲ தଶ⁄                                               5-5 

where τ1 and τ2 are the time constants of the fast and slow radiative decay, respectively. 

Similarly, A1and A2 are the constants which determine the contributions of the fast and slow 

decay components, respectively. 

The lifetime parameters upon excitation at 375 nm, obtained by fitting the experimental 

curves of samples A to D to the biexponential function, are summarized in Table 5-2. On the 

other hand, the measured PL decay will be strongly dependent on the interplay and relative 

value of τ1and τ2 as well as their relative contributions (calculated as (A1)/(A1+ A2) and 

(A2)/(A1+ A2)) to the PL intensities. These values are shown in Table 5-2 where the weighted 

average relative contribution of τ1 and τ2 is about 67% and 33%, respectively. Both 

components refer to a radiative decay process which implies that there are two different 

emissive centers or luminescent states. The two different radiative decay pathways for the 

synthesized ZnO NWs could be due to the oxygen vacancies located at the surface or at 

spatial locations deeper in the NW (e.g. Vo in the annulus region in figure 5-7d). According to 

a recombination model proposed for the green PL emission, the rate of the tunneling 

recombination between a surface-trapped hole with an electron in an oxygen vacancy defect 
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decreases for deeper spatial locations beneath the surface.[218] Hence, the fast radiative decay 

could be due to the oxygen vacancies on the surface of the NW. Conversely, the slow 

radiative decay may be due to the Vo defects located in spatial locations deeper in the NW due 

to the decrease of the recombination probability for the Vo defects away from the surface, 

which will lengthen the lifetime of the radiative decay process. 

Table 5-2 Length, S/V ratio as calculated from eqn. (5-1) and the surface and bulk Zn/O 

composition ratios of the ZnO NWs. The fast (τ1) and slow (τ2) time constants from the 

fit to the biexponential function in eqn. (5-5), the average lifetime (ૌ܍܏܉ܚ܍ܞ܉) as well as the 

relative contributions of the fast decay component (WA1) and slow decay component 

(WA2) to the luminescent from the NWs are also included in the table 

Sample Length 
/μm 

S/V 
ratio 
/μm-1 

Surface 
Zn/O 
ratio 
from 
XPS 

Bulk 
Zn/O 
ratio 
from 
EDX 

τ1 
/ns 

W 
A1 
(%) 

τ2 
/ns 

W 
A2 
(%) 

τୟ୴ୣ୰ୟ୥ୣ 
/ns 

A 2 21 1.06 1.07 0.93 70.23 6.15 29.77 2.07 
B 20 4.1 1.12 1.14 1.16 64.43 6.23 35.57 2.48 
C 68 2.03 1.19 1.20 1.01 63.77 6.88 36.23 3.14 
D 150 1.35 1.24 1.22 2.23 69.64 9.58 30.36 4.46 

 

On the other hand, in Table 5-2, both components of the luminescence lifetime decay are 

smaller for the shorter ZnO NWs (i.e. sample A) as compared to the longer. The shorter 

radiative lifetime associated with the shorter ZnO NWs implies that the non-radiative 

processes become more predominant where the photo-generated carriers will have a higher 

probability of following a non-radiative decay pathway instead of radiative recombination. 

The non-radiative processes are solely governed by certain point defects incorporated with 

VZn, forming the VZn-X complexes[224] where they function as dominant non-radiative 

recombination centers (NRCs),[224] as the influence by the single point defects is minimized 

because according to A. F. Kohan et al., a single point defect may not serve as an NRC.[225] 
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This is in agreement with the stoichiometry imbalance in our samples as the surface and bulk 

Zn/O composition ratios (reproduced in Table 5-2) can be used as a measure of the 

concentration of VZn defects. A good correlation is observed between the increasing radiative 

lifetime (fast and slow component) and the increasing surface and bulk Zn/O composition 

ratio which implies that the concentration of VZn defects (see Section 5.1.5) and hence the 

density of the VZn-X-related defect complexes (NRCs) decreases from sample A to D. 

Similarly, this will also lead to a decrease of the non-radiative recombination processes 

(hence an increase of the radiative lifetime) from sample A to D. This shows that the non-

radiative decay process may be related to the carrier trapping at VZn and their complexes in 

the ZnO bandgap. On the other hand, it is also observed that as the length of the synthesized 

ZnO NWs increases, the corresponding decreasing S/V ratio could lead to a decrease 

(slowing) of the scattering rate of the excitons with the surface of the ZnO NWs, which may 

increase the radiative lifetime due to some surface recombination process.[226]  

5.2.8 Influence of the S/V ratio on the radiative lifetime of the ZnO NWs 

It has been observed in experimental studies that the radiative lifetime in ZnO NWs exhibits 

size dependence where the exciton radiative lifetime increases with the size of the ZnO 

nanostructures and is related to the exciton-polariton effects.[227] It is also theorized that the 

quantization of the wave vector in the vertical direction inside a nanostructure would decrease 

the number of possible wave vectors, thus leading to an increase of the radiative 

recombination time.[228]   

Recently, it has been suggested that the radiative lifetime of ZnO nanostructures could be 

related to the radiative lifetime of the free excitons.[229] For as-synthesized ZnO NWs, the top 

view of the SEM images in figure 5-2 show that the average size of the NWs increases when 

its length increases and as calculated from eqn. (5-1), this results in a decreasing S/V ratio 

(Table 5-2). Consequently, for the synthesized ZnO NWs as its length increases, the 



Results and discussions 
 

68 

 

corresponding decreasing S/V ratio could lead to a decrease of the scattering rate of the 

excitons with the surface of the ZnO NWs, which would then increase the radiative life time 

due to some surface recombination process.[226] To exemplify this point, by fitting a straight 

line through the data points in figure 5-11b, a comparison of the slope of the decay rate 

between the synthesized samples and with the NWs (with diameter between 29 nm to 40 nm) 

from Hong et al. (Ref.[227]) can be made. The comparison shows that the slope of the decay 

rate for the synthesized samples is comparatively much smaller (by two orders of magnitude), 

which indicates a slower scattering rate with the surface. Hence the correlation between the 

increases of the radiative lifetime with the increase of the length of our ZnO NWs (Table 5-2) 

could be possibly due to the decrease of the S/V ratio which induces a lower scattering rate 

with the surface. However, the above mentioned mechanism is surface related which is 

different from the quantum confinement effect (QCE) which does not have a pronounced 

effect on the synthesized samples. It is known that QCE also lead to size dependent oscillator 

strength which increases the radiative lifetime of ZnO nanostructures as its size increases.[230] 

However, for the synthesized samples, the QCE is negligible as the range of diameters of our 

synthesized ZnO NWs are much bigger than the Bohr radius of exciton in ZnO (1.8 nm).[231]   

Interestingly, a decrease in the radiative lifetime depending on the observed increase of the 

CPL intensity (due to the increase of the concentrations of the oxygen vacancies), 

corresponding to the longer ZnO NWs was not observed. This could probably be due to the 

trade-off between the higher concentration of the oxygen vacancies and the decrease of the 

scattering rate of the excitons due to the smaller S/V ratio corresponding to the longer ZnO 

NWs, since the former will decrease while the later will increase the radiative lifetime. On the 

other hand, the relatively long radiative lifetime of the as-synthesized ZnO NWs (in the range 

of ns) could be due to the localization of the excitons bound to the surface which could result 

in some elimination of the faster radiative channels.[232]  
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Based on the above analysis, the combined approach involved different analytical 

spectroscopic techniques and from the correlation between the different measurements, the 

concentration of the oxygen vacancies jointly with the zinc interstitials defects and the zinc 

vacancy defects has been observed to be positively or negatively correlated, respectively, with 

the magnitude of the photoluminescence intensity and radiative lifetimes. Furthermore, the 

oxygen vacancy defects are not only spatially located on the surface of the NW but an 

increasing fraction of the total oxygen vacancy defects connected with the green emission is 

also located in an annulus region beneath the surface as the ZnO NWs elongate. 

5.3 CAFM measurements and the derivation of the analytical model for ZnO NWs 

Conductive atomic force microscopy (CAFM) is a viable method for obtaining the current-

voltage (I-V) characteristics of the ZnO NW arrays without the prior metallization 

requirement of the ZnO NW arrays. Hence by considering the conduction mechanism of the 

reverse biased I-V characteristics in the NWs, an analytical equation (with the use of Padé 

approximations) is derived for obtaining the donor concentration of the ZnO NW arrays with 

different lengths directly from its corresponding I-V characteristics.  

The Fig 5-12a shows a schematic diagram illustrating the experimental setup of a square 

configuration for the Hall measurement. The measurements on the ZnO NW arrays has been 

carried out at room temperature by using the Van der Pauw four probe technique with a 

square configuration utilizing an Accent HL5500 system. The schematic diagram in figure 5-

12b illustrates the I-V measurement setup. The measurements of the ZnO NWs are performed 

by selecting an appropriate NW from the surface topography image first acquired in the AFM 

mode. Subsequently, the I-V curves are obtained by applying an external voltage bias (from 

+5 V to -5 V) between the 50 nm Pt-coated Si probe tip placed on top of the ZnO NW and the 

sample stage (where the Si substrate rests upon). A Schottky barrier is formed between the Pt-

coated probe tip and the ZnO NW at the contact interface[6] where the current will flow 
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vertically through the probe tip-ZnO NW Schottky interface. Silver paste is applied on the 

edge and underside of the sample to ensure better electrical connectivity of the bottom of the 

ZnO NWs on the Si substrate surface with the measurement circuit as well as to ensure that 

the sample is well grounded.[6] The typical I-V curves corresponding to the ZnO NWs of 

different lengths measured at room temperature are shown in figure  5-12c where the current 

in both the forward and reverse bias region for the longer ZnO NW is smaller as compared to 

the shorter ZnO NW. This could be due to the increased resistance for charge transport as the 

increased resistivity of the longer NWs is due to higher donor concentration (from the Hall 

measurements). 

 

 

Figure 5-12. (a) Schematic diagram of the ZnO NWs arrays sample with the Au-Zn 

electrodes for the Hall measurements. (b) Schematic diagram showing the use of an 
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AFM probe to measure the I-V characteristics corresponding to an individual ZnO NW 

in a vertical NW array. (c) I-V characteristics from a vertical ZnO NW corresponding to 

samples A to D with a conductive AFM probe. (d) Comparison of the calculated donor 

concentration as a function of the average NW length with the carrier concentration 

obtained from the Hall measurements. The error bars indicate the standard deviations 

of the donor concentration calculated from the I-V characteristics corresponding to the 

ZnO NW using eq. (5-11) 

On the other hand, the I-V characteristics in figure. 5-12c also display a rectifying behavior in 

the negative voltage region with a low rectification ratio IF/IR (ratio of forward to reverse 

current measured at V= ± 4 V) between 3 and 10 for the four different nanowires. As the 

rectification ratio depends on the interface between the probe tip and the ZnO NW, this 

observation could be correlated to the prevalence and non-negligible effects of interface states 

between the probe tip and ZnO which originates from surface imperfections such as defects 

on the ZnO NW surface (evident from the TEM images in figure 5-3).[233] From the 

determination of the saturation current, ܫௌ,௉௧ିேௐ, by extrapolating the logarithmic plot of the 

I-V characteristics in figure 5-12c under forward bias to V= 0 V, the barrier height of the 

Schottky potential barrier at the probe tip-ZnO NW interface, Ø௉௧ିேௐfor sample A to D can 

be determined and is given by[2] 

 Ø௉௧ିேௐ = ቀ
௄்

௤
ቁln

஺ౌ౪–ొ౓஺∗்మ

ூೄ,ು೟షಿೈ
                   5-6 

where ܣ୔୲–୒୛= πݎ୒୛,ୟ୴ୣ୰ୟ୥ୣ
ଶ is the effective contact area at the probe tip-ZnO NW interface 

which is assumed (for simplicity) to be equal to the average cross-sectional area of the NWs 

and ݎேௐ,௔௩௘௥௔௚௘  is the average radius of ZnO NW as estimated from the SEM images in 

figure 2-2. q is the elementary charge, k is the Boltzmann’s constant, and T is the absolute 

temperature in Kelvin. A* = 4πq ݉௘
∗ k2/h3is the effective Richardson constant (without 
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considering the effects of quantum mechanical reflection and optical phonon scattering) with 

a theoretical value of 32AK-2cm-2 for ݉௘
∗  = 0.27mo

[2] where h, and ݉௘
∗  and mo are the 

Planck’s constant, electron effective mass and rest mass respectively. 

The donor concentration of the ZnO NW indirectly affects many of its electrical properties, 

hence a simple way of obtaining the donor concentration directly from the I-V characteristics 

will be very useful for characterization purposes. Under reverse bias and in low-dimensional 

nanostructures, the Schottky potential barrier at the probe tip-ZnO NW interface, Ø୔୲ି୒୛ 

becomes narrower and the tunneling current of electrons from the probe tip to ZnO through 

the reverse biased Schottky barrier becomes more significant. At room temperature and for 

reverse bias voltage, the tunneling current is predominantly due to the thermionic field 

emission current[2, 234]and the current density through Ø୔୲ି୒୛ is given by[2] 

்∗∗௉௧ିேௐ = ஺ܬ

௄
ටπܧ଴଴ݍ[ ோܸ +

Øು೟షಿ

௖௢௦௛మ(ாబబ/௄்)
]exp(

ି௤Øು೟షಿೈ

ாబ
)exp(

௤௏ೃ

ɛˊ )     5-7 

      where ɛˊ= 
ாబబ

(ாబబ/௄்)ି୲ୟ୬  (ாబబ/௄்)
 and ܧ଴= ܧ଴଴coth(

ாబబ

௄்
)            5-8 

where ܧ଴଴ is the characteristic energy relating to the tunnelling probability 

 = ଴଴ܧ           
௤௛

ସ஠
ට

ே೏

ɛೞ௠೐ 
∗                                                        5-9 

In Eq. 5-7, A** is the reduced effective Richardson constant which takes into account of the 

effects of optical-phonon scattering and quantum mechanical reflection.[2] ɛ௦ = ɛ௥ɛ௢ is the 

permittivity of the ZnO NW, ɛ௥= 8.36[234] is the relative permittivity of the ZnO NW used in 

this study (corresponding to thin ZnO film as the quantum confinement effects in the 

synthesized ZnO NW is not significant because ݎேௐ is larger than the ZnO exciton Bohr 

radius 27) and ɛ௢ is the permittivity of free space. Firstly, eq. (5-8) is substituted into the 

exp(
௤௏ೃ

ɛˊ ) term of eq. (5-7) and the result is simplified followed by taking the natural 
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logarithms on both sides of the resultant equation. After a series of algebraic manipulations, it 

is realized that in order to obtain a mathematical expression which permits further algebraic 

evaluation, the Padé approximant technique[235] would have to be used to express one of the 

algebraic terms by an approximate rational expression. Subsequently, a long and complicated 

expression is obtained where the terms with the variable ‘‘VR’’ and ‘‘ln IR’’ can be grouped 

together. Therefore the donor concentration can be obtained directly from the slope of the 

reverse bias ln IR-VR characteristics corresponding to the ZnO NW (denoted as GR) given by 

 =ோܩ    
௖௢௦௛మ(ଵ)

଼Øು೟షಿ
 + 

௤

௄்
−

௤

ாబబ௖௢௧௛(ଵ)
                                  5-10 

and by rearranging the above equation and using the definition of Eoo, the donor concentration 

of a single ZnO NW is given by 

ௗܰ= 
ଵ଺஠మ௠೐

∗ɛೝɛ೚

௛మ௖௢௧௛మ (ଵ)[
೎೚ೞ೓మ(భ)

ఴØು೟షಿ  
 ା 

೜
಼೅

 ି ீೃ]మ
                            5-11 

It should be noted that the unit of Nd in eq. (5-11) is in m-3 and multiplying by a factor of 1 x 

10-6 is needed to convert the doping concentration to cm-3 (m-3 = 1 x 10-6 cm-3). From the 

reverse IR-VR characteristics in figure 9-12d, an almost linear variation of the reverse current 

is observed for the semi-log reverse bias ln IR-VR characteristics corresponding to the four 

sets of ZnO NW arrays. From the slope of the plots and eq. (5-11), the donor concentration of 

the ZnO NW from samples A to D is shown in figure 9-12d. The donor concentration 

calculated from the analytical model is in good agreement with the carrier concentration 

obtained from the Hall measurements for samples A and D which verifies the validity of the 

assumptions used in the analytical model. On the other hand, the concentration of Vo and Zni 

defects (from the stoichiometric analysis 5.1) is also positively correlated with the increase in 

the length and donor concentration of the synthesized ZnO NWs. This could be possibly due 
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to the attractive force between the Vo and Zni defects present in the NWs,[236] which function 

as a source of donors for the n-type conductivity in the NWs.[237] 

5.4 Synthesis and field emission properties of different ZnO nanostructures 

5.4.1 Background 

According to the Fowler-Nordheim theory, the FE characteristics are strongly influenced by 

two parameters. One is the field enhancement factor (β) that is defined by the ratio of the local 

to the applied field, which is associated with the composition, tip diameter, and aspect ratio[3, 

136, 138, 171, 238] and the other is the work function (Φ) of the emitters, which is associated with 

the external conditions (for example doping).[131, 136, 171, 239] Compared with other FE 

materials, such as carbon nanotubes,[126] WO3,[130] SnO2,[129] Si NW,[128] and In2O3,[127] ZnO 

nanostructures are much easier to realize a high aspect ratio and small tip radius.[120] In 

addition, owing to their negative electron affinity, high mechanical strength, and chemical 

stability in high vacuum environment, hence the properties of the ZnO nanostructures have 

been extensively investigated in the field emission domain. In these applications, the 

structural parameters (sizes, defects and doping of the ZnO nanostructures) can optimize the 

properties of FE. For example, a high aspect ratio is in favor of the electron emission and the 

presence of oxygen vacancies or impurities incorporation could reduce the work function.[3, 

136, 140, 141] 

In this section, the self-assembly of the ultralong ZnO nanowire arrays without any catalyst on 

a silicon (100) substrate are fabricated by the CVD method where the length of the nanowires 

is about 310 μm after a reaction time of 60 mins. The needle-like ZnO nanostructures are 

prepared by the two step methods: the first is the CVD process and the second is a modified 

low-temperature solution. In addition, there are few reports about the ZnO superlattice 

phenomenon at the presence of Indium to date. Here, without the use of catalysts (such as Sn 
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and In),[240-242] the modulated structures of the In2O3(ZnO)m by In doping are realized by the 

CVD process. 

5.4.2 Morphologies for ZnO NWs 

 

Figure 5-13 SEM images of the synthesized arrays of ultralong ZnO NWs by the CVD 

process. The image in (a) shows a film of ZnO seed layers. The SEM images in (b), (c), 

(d), (e), and (f) display the length and distribution of the ZnO NWs. The ZnO NWs with 

length of 150, 185, 220, 250, and 310 μm correspond to the reaction times of 22, 30, 40, 

50, and 60 min, respectively. 

Figure 5-13 shows the SEM images of the synthesized arrays of ultralong ZnO NWs by the 

CVD process, and the length of the NW array is in the range of 150 to 310 μm and gradually 

increases with the reaction time increasing. In figure 5-13b, c, d, e, and f, it is seen that when 

the length of the ZnO NWs increases beyond 185 μm (after a reaction time of 30 min, Figure 

5-13c), the regularity of the vertical alignment of the NWs with respect to the Si substrate 

becomes poorer.  
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5.4.3 Growth mechanism of ZnO NWs 

The growth mechanism of nanostructures is usually explained by the vapor-liquid-solid (VLS) 

and vapor-solid (VS) processes,[117] where according to the VLS growth mechanism, a droplet 

of the liquid alloy is a key role in the reaction process, and hence, the VLS mechanism is also 

known as catalysis growth.[117] In this work, catalyst is not used in the synthesis of ZnO NWs 

by the CVD route; hence, the VS mechanism is appropriate for the explanation of the growth 

process of ZnO NWs. 

In reaction process, with the reaction temperature increasing, ZnO seed layers are generated 

via Zn(AC)2 thermolysis and new ZnO vapors are generated by the carbothermal reduction of 

ZnO (s). The reaction processes are as followed:   

C(s) +1/2O2 (v)→CO(v)；                    5-12 

ZnO(s)+ C(s)→ Zn(v)+ CO(v)；              5-13 

ZnO(s) + CO (v) → Zn(v)+CO2(v)；          5-14 

2Zn(v) + O2(v) →2ZnO(s)；               5-15 

ZnO(s)+CO(v)→ZnOx(s)+CO2(v)。             5-16 

The Si substrate lies at a zone where the temperature is high for the CVD process and is close 

to the source materials with a high concentration of ZnO vapor for deposition. Since the ZnO 

seed layers have a same or well-matched lattice structure with ZnO vapor. The growth of the 

deposited crystal is oriented by the seed layers, which keeps the system at a lower surface 

energy. Therefore, with the reaction going on, ZnO vapor that deposited on the seed layers of 

the Si substrate grow along (0001) direction (the lattice orientation of the seed layers).  
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Figure 5-14. Typical SEM images of the needle-like ZnO arrays. (a) SEM image of the 

needle-like ZnO NWs; the scale bar in the inset is 500 nm. (b) Side-view SEM image of 

the needle-like ZnO NWs; the inset shows the top parts of the NWs. 

5.4.4 Morphologies for needle-like ZnO NWs 

Figure 5-14 shows the typical SEM image of the needle-like ZnO arrays first prepared by 

synthesizing arrays of long ZnO NWs followed by chemical etching in the reaction solution. 

The diameter at the top part of the etched NWs is about 100 nm. As the needle-like NWs are 

obtained by the chemical etching of the NWs previously prepared by the modified CVD 

process, hence, the synthesized NWs are also longer than those prepared by other methods. In 

addition, surfactants play a key role in the reaction process of ZnO needle-like arrays. In the 

presence of EDTA-2Na and trisodium citrate, which may preferentially adsorb onto certain 

surfaces of the ZnO NWs and thus induce the morphology change in the NWs? Hence, I 

propose that the formation of the needle-like structure may result from the strong chelation 

reaction of negatively charged EDTA and citrate ions with positively charged Zn2+ ions in the 

(0001) plane. Moreover, under the joint action of Zn2+ and surfactants, the concentration of 

Zn-EDTA and [C6H5O7]2Zn3 is much more than Zn(OH)X, and they are soluble in solution 

(Eq.5-17 and 5-18). Therefore, with the increase of the reaction time, the top part of the ZnO 
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NWs will be etched to needle-like structures under the surfactants action. With further 

reaction, as more of the complexes begin to form and dissolve into the reaction solution, the 

top part of the ZnO NWs were modified to be tapering in shape. 

EDTA-2Na + Zn2+↔ Zn-EDTA + 2Na+                    5-17 

2[C6H5O7]-3Na + 3Zn2+ ↔ [C6H5O7]2Zn3 + 6Na+                 5-18 

5.4.5 Leaf-like In-doped ZnO nanostructures 

The crystal structures of the leaf-like indium (In)-doped ZnO nanostructures are investigated 

by XRD measurements. As shown in figure 5-15a, the main diffraction peaks corresponding 

to wurtzite ZnO where a = b =3.24982 Å, c = 5.20661 Å (the red lines: JCPDS Card No.36-

1451) and the blue lines: cubic In2O3 (the blue lines: JCPDS Card No.06-0416) are observed 

in the spectrum. Figure 5-15a also shows that the (101,100) diffraction peaks are much 

stronger than the other peaks, which indicates that the crystal facets may be the main growth 

plane of the as-prepared structures. On the other hand, SEM photographs of the indium-doped 

ZnO nanostructures in figure 5-15b, c, d, e, and f are prepared with the reaction time of 5, 10, 

15, 20, and 30 mins, respectively. These figures show that, with increasing reaction time, the 

leaf-like structures become more apparent, where self-assembly flower-like structures 

composed of nanoparticles and nanobelts are observed on the seed layers as shown in figure 

5-15d and 5-15e at a longer reaction time of 15 and 20 mins (initially in figure 1b, the film is 

consisted of microparticles). The width and length of the belt-like structures are around 300 to 

600 nm and several micrometers, respectively, as shown in the figure 5-15e. Finally, after a 

reaction time of 30 mins, large-scale leaf-like structures are self-assembled on the seed layers 

as shown in figure 5-15f where the thickness of the leaf-like branches is about 100 nm. 
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Figure 5-15. (a) XRD pattern of the leaf-like In-doped ZnO nanostructures (the red lines 

are ZnO with JCPDS Card No.36-1451 and the blue lines are In2O3 with JCPDS Card 

No.06-0416). (b), (c), (d) (e), and (f) SEM images of the leaf-like nanostructures at 

different reaction times of 5, 10, 15, 20, and 30 mins, respectively.  

In order to obtain more details about the structures and compositions of the leaf-like 

nanostructures, HRTEM and EDX measurements are applied for further characterization. 

Figure 5-16a shows that TEM image is consisted of the bright field and the dark field. As 

shown in figure 5-16b, HRTEM image taken from the junction between the bright field and 

dark field parts (Figure 5-16a, square region) indicates different lattice fringes of the 

modulated and single-phase structures, respectively. Importantly, the lattice spacing of 0.283 

nm between adjacent lattice planes is consistent with the interplanar spacing of (101ത0) plane 

of ZnO wurtzite hexagonal phase. It is also demonstrated that the top and bottom surfaces of 

the leaf-like structures are the ± (0001) planes, and the growth orientation is along the a/b axis 

of the ZnO wurtzite hexagonal phase (along [101ത0] direction). For the periodic wide crystal 

fringes (the modulated structures), it could be possibly due to the reason that the Zn sites in 
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the Zn-O slab are randomly replaced by the In atoms, and thus local lattice distortions are 

produced. On the other hand, Zn, In, and O elements are observed in the energy dispersive X-

ray spectroscopy (EDX) spectrums corresponding to the bright field (Figure 5-16c) and dark 

field (Figure 5-16d) parts, respectively. In the small and big circles, the element indium is also 

observed in the bright field part (small circle) as shown in figure 5-16c. In addition, the EDX 

results indicate that a close value of molar ratio Zn and In is around 3.5:1 in the bright field 

part. 

 

Figure 5-16. (a) TEM images of the bright field and dark field parts of the leaf-like 

nanostructures. (b) HRTEM image corresponding to the square in (a); EDX patterns (c) 

and (d) corresponding to the bright field (small circle) and the dark field regions (big 

circle), respectively, in figure (a). 
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To further characterize the modulated structures, figure 5-17a shows the HRTEM image of 

the modulated structures in the bright field part where the wide white and narrow white lines 

with a width of 0.28 nm correspond to the In-O layers and In/Zn-O layers, respectively, where 

the growth direction of the In/Zn-O layers is along the [101ത0] direction (crystal ZnO growth 

direction), as indicated in the figure 5-16b and 5-17a[240]. However, due to some significant 

changes to the structures of the leaf-like indium-doped ZnO nanostructures, the stacking 

layers (wide crystal lattice lines) do not grow along the [101ത0] orientation but at an angle 

about 30°, as indicated by the arrow in the HRTEM image. The results are different from 

previous reports.[240]   

 

Figure 5-17. (a) HRTEM image of the superlattice/modulated structure (the bright 

field). (b) Room temperature UV-Vis of the (red line) leaf-like and wire-like (black line) 

ZnO nanostructures. 

In addition, Figure 5-17a illustrates that the wide white lines corresponds to the In-O layers 

consist of about seven or eight In/Zn-O layers (the narrow white lines, 0.283 nm). For the 

In2O3(ZnO)m compounds, there is a linear relationship for the width, d of the In-O layer (the 

wide white lines), given by[243]: 
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  d = Cos 30o × (6.349 + 2.602m) Å                                        5-19 

where m is the subscript in the chemical formula of the In2O3(ZnO)m compound. From the 

HRTEM image in figure 5-17a, the average value of d is about 19 to 24 Å (width of the white 

line), and hence, the value of “m” as calculated from Equation 5-19 is between 7 to 8. Thus, 

the composition of the synthesized leaf-like structures in the bright field part is estimated as 

In2O3(ZnO)7 or In2O3(ZnO)8. The results of the EDX spectrum are also applied to detect the 

component ratios of Zn and In, which shows a close value of the molar ratio of Zn: In at 

approximately 3.5:1 or 4:1. Therefore, the dark field part of as-synthesized leaf-like 

nanostructure is pure ZnO, and the bright field part is consisted of a modulated structure with 

In2O3(ZnO)7 and In2O3(ZnO)8.  

5.4.7 UV-Vis spectra for doped/un-doped ZnO nanostructures 

Figure 5-17b shows the room temperature UV-Vis spectra for leaf-like In-doped (red line) and 

wire-like (black line) ZnO nanostructures. UV-Vis band of In-doped ZnO structures shifts to a 

lower energy. According to the theory of semiconductor-metal transition, the bandgap energy 

Eg decreases when the impurity is more than the Mott critical density;[244] hence, In doping 

leads to an obvious narrowing of Eg.  

5.4.8 Growth mechanism of leaf-like In-doped ZnO nanostructures  

In addition, the growth process of leaf-like ZnO structures is given as follows: the Si substrate 

in the furnace is close to the source materials and lies at a zone where the temperature is high 

for the CVD process. Therefore, there is a higher distribution of vapor concentration near the 

substrate. In the reaction process, with increasing the reaction temperature, indium and zinc 

vapor are generated by the carbo thermal reduction of In2O3 and ZnO, respectively. Hence, a 

small binucleus structure is firstly synthesized on the substrate by the Zn and In mixture vapor 

atoms. At this condition where there is a combination of the high vapor concentration and 
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temperature, the Zn-In diphase will be supersaturated, and the seed layers gradually form. 

With the increase of the reaction time, newly formed In/Zn atoms continue to deposit on the 

seed layers and result in the morphologic evolvement from nanoparticles to belt-like and to 

leaf-like structures on the seed layers, respectively. In addition, to keep the system at a lower 

surface energy, the new arriving In/Zn atoms will react with the pumped-in oxygen gas and 

are adsorbed on the initial particle-like surfaces. Then, they tend to grow along the 

longitudinal and transverse growth directions at the same time, which forms belt-like and then 

leaf-like structures as well as keeps the system at a lower surface energy.  

As for the different lengths and widths of the leaf-like branches, it is possible that there is 

some influence of some thermal or strain instability at the gas-solid interface state which does 

not involve much energy since the free energy is the same for the equivalent [101ത0] planes. In 

addition, the doped In atoms are obtained by the process of substituting the Zn atoms with the 

In atoms in the ZnO structures so that the system can be held at a lower energy[33]. By doping 

ZnO with In, the growth orientations of the resultant nanostructures varied from the highest-

energy, low-index planes, and a fast growth along [0001] to the sideway growth [101ത 0] 

direction is observed.[25, 244] In addition, the new arriving In and Zn atoms in the vapor directly 

deposit on the surface of In-doped ZnO belt-like structure, and this direct deposition induces 

the growth of the side faces and thus further leads to the formation of leaf-like structures by 

epitaxial growth. 

5.4.9 Field emission properties of the different ZnO nanostructures 

For an analysis of the field emission properties of the different ZnO nanostructures, the 

following Fowler-Nordheim (F-N) equation would have to be used: 


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where J is the current density, E is the applied field strength, A and B are constants with the 

values of 1.56×10-10AV-2 eV and 6.83×103 V(eV)-3/2μm-1, respectively,   is the work function 

of the emitter which is taken as 5.4 eV for ZnO from the literature,[245] and β is the so-called 

field-enhancement factor, which reflects the ability of the emitters to enhance the local 

electric field. The field-enhanced factors β can be calculated from the formula β= -B3/2/S, 

where S is the slope of the F-N plot. 

 

Figure 5-18. (a) J-E curves of the long ZnO NWs at different reaction times, (b) Field-

enhanced factors of the long ZnO NWs of different lengths. (c) Field emission current 

density as a function of the applied field for the needle-like sample. The inset in the 

figure c shows the corresponding Fowler-Nordheim (F-N) plot. (d) J-E curves of the leaf-

like ZnO nanostructures at different reaction time (5, 10, and 30 min). The inset in the 

figure d shows the corresponding F-N plots. 
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Figures 5-18a and b show the plot of the emission current density versus the electric field of 

the long ZnO NWs at different reaction time and their corresponding field-enhancement 

factors, respectively. When the reaction time increases from 22 to 60 mins, the turn-on field 

(defined as the applied field at the emission current density of 10 μA/cm2) decreases from 

4.56 to 3.69 V/μm, respectively. In addition, the emission current density of the curves also 

decreases from 7.09 to 5.72 mA/cm2 at the threshold field. Hence, the 60-min sample 

possesses better field emission properties as compared to the others (22- to 50-min samples). 

Based on the formula in Eq. 2-1, the experimental β values for the 22- to 60-min samples are 

plotted in figure 5-18b showing a turning point in the plot of β value.  

The turning point of the field-enhancement factors versus the length of ZnO NWs can be 

explained as follows. To the first approximation, the field-enhancement factor, β can be given 

by β = h/r[246] where h is the length or height and r is the radius of the NWs, respectively. As a 

result, as the length of the NWs increases, this will increase the value of β. On the other hand, 

it is also experimentally observed (section 5.3) that the concentration of the oxygen vacancies 

(Vo) is positively correlated with the increase in the length of the ZnO NWs. This increase of 

the concentration of Vo corresponding to the longer ZnO NWs  will then lead to an increased 

barrier for electrons emission,[138] thus leading to a decrease of the corresponding 

experimentally observed β value for the longer ZnO NWs. Therefore, these two contrasting 

mechanism which result in the increase and decrease of the value of β, respectively, will lead 

to a turning point in figure 5-18b as the length of the ZnO NWs varies. 

Figure 5-18c shows the current density-electric field (J-E) plot corresponding to the needle-

like ZnO arrays. The turn-on electric field of the ZnO needle-like arrays is about 3.87 V/μm at 

a current density of 10 μA/cm2, while the electric field corresponding to the current density of 

1 mA/cm2 is 5.65 V/μm (the β value for the needle-like arrays is about 2,284), and these 

results are close to the 60-min ZnO NWs sample. However, although the smaller diameter at 



Results and discussions 
 

86 

 

the top part of the needle-like structures could easily induce much more electrons emission, 

the needle-like ZnO NWs are densely packed. Hence, the screening effect between the 

neighboring emitters and a lower h/r would decrease the experimentally observed value of β 

corresponding to the needle-like ZnO NWs[245] as compared to the long ZnO NWs.  

Figure 5-18d shows the typical leaf-like ZnO nanostructure field emission current density 

versus the applied field (J-E) curves and the corresponding F-N plots (the inset) at different 

reaction time, respectively. In this figure, when the reaction time increases from 5 to 30 mins, 

the turn-on field (defined as the applied field at the emission current density of 10 μA/cm2) is 

decreased to 2.94 V/μm (which is lower than the previous reports[25, 244, 247]). On the other 

hand, the emission current density of the curve corresponding to the reaction time of 30 mins 

is about 1 mA/cm2 at an applied field of about 4.35 V/μm (so-called threshold field); thus, the 

30-min sample possesses better field emission properties as compared to the 5- and 10-min 

samples. One possible reason could be that the 30-min leaf-like ZnO nanostructure is 

comprised of much more rod-shaped structures (or tips) as compared to the other two 

samples. On the other hand, the increased indium doping in the 30-min sample as compared to 

others could lead to further band gap narrowing and the moving closer of the Fermi level 

towards the bottom of the conduction band. Hence, the increased carrier concentration in the 

30-min leaf-like ZnO nanostructure could have led to the increase of the field emission 

current and better field emission properties as observed in figure 5-18d. Based on Eq. 2-1, the 

experimental β value for both the 30- and 10-min leaf-like ZnO nanostructure samples is close 

to 2,800. Conversely for the 5-min sample, the corresponding J-E curve in figure 5-18d is 

observed to be nonlinear, and it could be possibly due to the reason that the sample is 

consisted of microparticles, thus leading to a relatively high turn-on field and a nonlinear 

relationship. F-N plots are consisted of two parts linearity as shown in the inset of figure 5-

18d. The possible reasons are that the first emission from electrons captured in the defect 
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states is dominant in the lower electric field range; the second from electrons near the Fermi 

level is in the high electric field range with Indium doping. The former emission process is 

easier than the latter and are strongly dependent on the amount of lattice defects. While the 

latter emission process becomes dominant in higher electric field ranges, resulting in a drop in 

the F-N plots. 

Table 5-3 summarizes the field emission properties of the three different synthesized ZnO 

nanostructures, and it shows that the leaf-like ZnO nanostructures are most suitable for field 

emission due to its lowest turn-on and threshold field as well as its relatively high field-

enhancement factor. Hence, the synthesized leaf-like structures will be promising in the 

applications of electron sources or flat panel displays. In addition, the use of this chemical 

etching route provides a simple, convenient, and low-cost method of obtaining the needle-like 

NWs. Therefore, this fabrication technique will offer a method to prepare well-aligned, 

longer, and sharper NWs with applications in the promising devices. 

Table 5-3 Comparison of the field emission properties between the different ZnO 

nanostructures 

Type of ZnO nanostructures Turn-onfield 
(V/μm) 

Threshold field 
(V/μm) 

β 

Long NWs arrays (60 mins) 3.69 5.72 2,526 

Needle-like 3.87 5.65 2,284 

Leaf-like (30 mins) 2.94 4.35 2,800 
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6 Summary and outlook 

In this thesis, ZnO nanostructures (including ultralong NWs, needle-like NWs, and leak-like 

In-doped ZnO) and their applications on field emission are investigated. The main 

contributions can be summarized as followed: 

(1) ZnO NWs of different lengths from 2 μm to 310 μm and sizes are prepared by the aqueous 

solution method and CVD process without the assistance of a catalyst. Subsequently, using 

chemical etching process, needle-like NW arrays can be obtained, which is a relatively low-

cost and convenient method. 

(2) The SEM images show that the average diameter and length of the NWs increases with the 

reaction time increasing, thus resulting in a decreasing S/V ratio for the longer NWs. XPS, 

EDX, CPL and PL measurements exhibit a clear correlation of the increase of the Vo, Zni, PL 

intensity and decrease of the zinc vacancies, respectively, with the increase of the length of 

the ZnO NWs. In addition, the Vo defects are not only spatially located on the surface of the 

NW but also in the annulus region beneath the surface. 

(3) The green emission at different spatial locations on the ZnO NW polar (0001) and non-

polar (101ത0) surfaces is found to have maximum intensity near the NW edges, decreasing to a 

minimum near the NW center. CTRPL decay curves of the ZnO NWs could be well fitted by 

a biexponential function where the fast and slow decay lifetime of the PL radiative emission 

are most likely due to the Vo located on the surface and deeper in the ZnO NWs, respectively. 

(4) An analytical model verified by the Hall measurements is derived which can directly 

calculate the donor concentration of the NWs from the reverse biased I-V characteristics. 

Similarly, the correlation between the increasing concentration of Vo and Zni defects with the 

increase of the donor concentration and the length of the NW has been observed. 
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(5) From the field emission properties corresponding to the different kinds of ZnO 

nanostructures, the leaf-like ZnO nanostructures are most suitable for field emission due to its 

lowest turn-on and threshold field as well as its relatively high field-enhancement factor. 

Based on the above investigation and analysis, the knowledge of the correlation and inter-

relationship between the amount and type of native intrinsic defects or doping present in the 

NWs as their sizes varies is a crucial step towards optimizing and tuning the performances of 

the ZnO NW based devices. Besides ZnO nanostructures, other nanomaterials also possess 

these features. Therefore, investigation of the structural parameter with the related devices 

will be a hot area of research. 
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7 Extended Works 

7.1 Y. G. Fang, C.L. Wang, R. Xu, M. Peterlechner, L.Y. Wen, Y. Mi, G. Wilde, Y. Lei*, 

Three-dimensional ZnO/NiMoO4 core-shell nanostructures for high-performance 

supercapacitor. (Submitted) 

 

Figure 7.1.1 (a) Schematic illustration of the growth mechanism for ZnO/NiMoO4 core-

shell nanostructures. The first step for ZnO nanowires (figure d) and the second step is 

for ZnO/NiMoO4 core-shell structures via hydrthermal method (figure e and f). (d) ZnO 

nanowires grown on Ni foam. SEM images of ZnO/NiMoO4 core-shell nanostructures 

(figure e-f) after different reaction time (1h and 2h). 

Compared with other energy storage systems such as batteries and fuel cells, supercapacitors 

(SCs) are superior in the areas of high power density, fast charge/discharge process, long 

lifetime, environmental friendliness, and safety. In general, according to the mechanism of the 

charge storage, SCs can be classified into two kinds: one is electrical double-layer capacitors 

(EDLCs), whose charges are electrostatically adsorbed at the electrode/electrolyte interface; 

the other is Faradaic pseudocapacitors that stored energy in electrode materials by redox 

reactions. Compared with EDLCs, Faradaic pseudocapacitors exhibit higher specific 
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capacitance via fast and reversible redox reactions.[248] Therefore, much attention have been 

focused on improving the performance of pseudocapacitors.  

In the last few decades, various pseudocapacitive electrode materials, such as transition metal 

oxides, conducting polymers and binary metal oxides, including MnO2, NiO, Co3O4, 

Ni(OH)2, Co(OH)2, Polyaniline, Polypyrrole, NiMoO4, CoMoO4, and MnCo2O4 have been 

developed to achieve high specific capacitance and energy density.[249-257] The results show 

that the poor electrical conductivity of transition metal oxides has limited their technological 

viability and the poor stability of conducting polymers during the charge-discharge cycling 

has hindered their applications. However, binary metal oxides are considered to be potential 

materials for high-performance SCs recently because of their feasible oxidation state, high 

electrical conductivity and stability. Among them, NiMoO4 possesses higher specific 

capacitance because of its excellent electrochemical performance, low cost, and 

environmental friendliness. For example, it has been demonstrated that the specific 

capacitance of NiMoO4 could be as high as 1221.2 F g-1 at a current density of 1 A g-1. 

Daoping Cai and his co-workers[258] synthesized ultrathin mesoporous NiMoO4 nanosheets, 

which exhibited specific capacitance of 974.4 F g-1 at a current density of 1 A g-1. But the 

cycling stability may be limited due to the work electrode coated carbon black and poly 

(vinylidene difluoride). Mao-Cheng Liu[253] reported that CoMoO4-NiMoO4∙H2O bundles 

electrode material by a facile chemical co-precipitation method showed higher specific 

capacitance (1039 Fg-1) than CoMoO4 and a better rate capability than NiMoO4∙H2O, 

respectively. However, the conductivity of CoMoO4-NiMoO4∙H2O electrode need to be 

further enhanced. Therefore, it is still a big room to optimize NiMoO4 nanostructures, such as 

a larger specific area, higher electrical conductivity, and cycle performance on binder-free 

electrodes.  
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Research shows that the diffusion distance of electrolytes into the pseudocapacitor electrodes 

is around 20 nm.[259] In another word, the energy storage mechanism of SCs is widely 

considered to be a surface phenomenon. Therefore, in order to enhance the electrochemical 

energy storage properties of SCs, nanostructure engineering is one of the most effective way, 

because it has advantages of short ion transport pathways and large active surface area. 

Especially, due to the short ion diffusion distance and low conductivity, rational design of 

electrode materials, such as three-dimensional (3D) core-shell structure will be an effective 

strategy for further improving the electrochemical performance. Such a 3D core-shell 

structure can not only facilitate the electron transport but also the ion diffusion from the 

electrolyte into the inner active materials by using conductive material as the “core” and 

active material as the “shell”. The thin active material layer makes it possible to fully utilize 

the active materials and shorten the electron transport distance from the surface to the current 

collector (the core). However, till now, most of the reports about NiMoO4 were nanowire or 

nanoflake structures.[260-263] In some literatures, NiMoO4 was even used as the sacrificed 

conductive core for enhancing the electrochemical performance of other active materials.[264] 

Similarly, another active material (e.g. Co3O4, NiCo2O4 and CoMoO4 etc.)[250, 253, 254] adopted 

as the core and NiMoO4 acted as the shell were also reported with view of combining the 

advantages of the both active materials. Such architectures couldn’t fully utilize the 

advantages of NiMoO4 because of the relative low conductivity and detrimental ionic 

transport. Here, by using conductive ZnO NWs as the core and NiMoO4 nanoflakes as the 

active shell material, we will demonstrate that the electrochemical performance of NiMoO4 

could be further improved, which could be ascribed to the improvement of the electron 

transport and ion diffusion between the ZnO NWs core and the thin NiMoO4 shell. The 

experimental details are shown in figure 7.1.1. 3D ZnO/NiMoO4 nanostructures are fabricated 

via two-step hydrothermal method in figure 7.1.1e and f.  
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Figure 7.1.2a shows the typical CV curves of the hierarchical ZnO/NiMoO4 electrodes within 

the range of -0.10 and 0.65 V (vs. SCE) at the scan rates of 5, 10, 20, 50, and 100 mV s−1, 

respectively. All of them show a pair of redox peaks, demonstrating that the capacitance 

characteristics are mainly controlled by Faradaic redox mechanism and the reaction is based 

on the reversible redox reactions of Ni(II)↔Ni(III) + e-.  
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Figure 7.1.2. Cyclic voltammograms of (a) ZnO/NiMoO4 core-shell nanostructures and 

(b) NiMoO4 nanowires on Ni foam electrode in 2 M NaOH aqueous electrolyte at a scan 

rate of 5 to 100 mVs-1. Galvanostatic current charge/discharge curves of (c) 

ZnO/NiMoO4 core-shell nanostructures and (d) NiMoO4 nanowires at different current 

densities. (e) The specific areal capacitance of ZnO/NiMoO4 and NiMoO4 at different 

current densities. (f) Cycling performance of the ZnO/NiMoO4 and NiMoO4 electrodes. 

Figure 7.1.2b shows the typical cyclic voltammograms (CV) of NiMoO4 nanowires. It is 

obvious that the CV curves show lower current and smaller CV areas. What’s more, the redox 

peaks become diminishing with increase of the scan rate. These comparisons indicate that the 

introduction of ZnO scaffolds indeed facilitates the high capacitance and fast charge and 

discharge performance. 

Figure 7.1.2c and d show that the charge-discharge performances of 3D core-shell ZnO/ 

NiMoO4 electrodes are investigated at various current densities from 2 to 24 mA cm-2 at the 

voltage range of 0 to 0.45 V. Their areal specific capacitances (CSP) at different current 

densities are calculated in figure 7.1.2e. It is clear that ZnO/NiMoO4 electrodes can deliver 

high areal capacitance values of 2.09, 1.63, 1.48, 1.25, 1.21F cm-2, and specific capacitance 

values of 2612.5, 2037.5, 1850, 1562.5, and 1512.5 F g-1 at different current densities of 2, 6, 

8, 12, 24 mA cm-2, respectively. Remarkably, the areal capacitance values of ZnO/NiMoO4 

electrodes still keeps at 1.21 F cm-2 (1512.5 F g-1) when the current density is increased to 24 

mA cm-2, demonstrating the excellent rate capability. However, without ZnO scaffold, 

NiMoO4 nanowires electrodes deliver lower areal capacitances are 1.77, 1.25, 1.16, and 0.75 

F/cm-2 at the current densities of 2, 4, 8, and 12 mA cm-2, respectively (Figure 7.1.2 d). 

Moreover, under fast charge and discharge conditions, even better enhancement is observed 

for the hierarchical core-shell nanostructures (e.g. from 1.18 to 1.67 times enhancement at 

current density of 2 and 12 mA cm-2, respectively).  
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Figure7.1.3. Ragone plots of the ZnO/NiMoO4 electrode material in comparison with the 

literatures.[260, 261, 265] 

In addition, as shown in figure 7.1.3 the max energy density of core-shell ZnO/NiMoO4 

nanostructures can reach to 73.5 Wh kg-1 at a power density of 565 W kg-1.[260, 261, 265] These 

results suggest that the hierarchical ZnO/NiMoO4 structures have a high-capacity at a wide 

range of current densities, terrific rate capability, and stability.  

Such enhancement can be ascribed to the larger surface of the active shell material and the 

conductive core which effectively enhance the rate of ionic and electron transport and shorten 

the ions diffusion path. These results demonstrate that the 3D core-shell heterostructures by 

constructing “core” conductive and functional “shell” materials are an efficient route to 

improve electrochemical properties. It is believed that this kind of core-shell structures has 

great potential applications in high energy density storage systems.  

Besides this part, I also cooperate with my colleagues in other topics, such as sodium-ion 

batteries and water splitting. 

7.2 Vectorial Diffusion for Facile Solution-Processed Self-Assembly of Insoluble 

Semiconductors: A Case Study on Metal Phthalocyanines 
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Solution processibility is one of the most intriguing properties of organic semiconductors. 

However, it is difficult to find a suitable solvent and solution process for most 

semiconductors. For example, metal phthalocyanines (MPcs) are only soluble in non-volatile 

solvents, which prevent their applications from solution process. For the first time, vectorial 

diffusion is utilized for solution processing of MPcs. The obtained large F16CuPc and a-phase 

CuPc crystals and the efficient phase separation of them suggest the vectorial diffusion 

process is as slow as a self-assembly process, which is helpful to yield large crystals and 

purify the semiconductors. This method, which only uses common commercial solvents 

without any complex and expensive instruments and high-temperature operation, provides a 

facile approach for purification of organic semiconductors and growth of their crystals in 

large quantities. (Chem. Eur. J. 2014, 20, 2-7) 

 

7.3 Manipulation of Disodium Rhodizonate: Factors for Fast-Charge and Fast-

Discharge Sodium-Ion Batteries with Long-Term Cyclability 

Organic sodium-ion batteries (SIBs) are one of the most promising alternatives of current 

commercial inorganic lithium-ion batteries (LIBs) especially in the foreseeable large-scale 

flexible and wearable electronics. However, only a few reports are involving organic SIBs so 

far. To achieve fast-charge and fast-discharge performance and the long-term cycling suitable 
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for practical applications, is still challenging. Here, important factors for high performance 

SIBs especially with high capacity and long-term cyclability under fast-charge and fast-

discharge process are investigated. It is found that controlling the solubility through molecular 

design and determination of the electrochemical window is essential to eliminate dissolution 

of the electrode material, resulting in improved cyclability. The results show that poly 

(vinylidenedifl uoride) will decompose during the charge/discharge process, indicating the  

significance of the binder for achieving high cyclability. Beside of these, it is also shown that 

decent charge transport and ionic diffusion are beneficial to the fast-charge and fast-discharge 

batteries. For instance, the flake morphology facilitates the ionic diffusion and thereby can 

lead to a capacitive effect that is favorable to fast charge and fast discharge. (Adv. Funct. 

Mater. 2016, 26, 1777-1786). 

7.4 Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion 

Batteries 

Organic sodium-ion batteries (SIBs) are potential 

alternatives of current commercial inorganic lithium-ion 

batteries for portable electronics (especially wear able 

electronics) because of their low cost and flexibility, 

making them possible to meet the future flexible and large-

scale requirements. However, only a few organic SIBs 

have been reported so far, and most of them either were tested in a very slow rate or suffered 

significant performance degradation when cycled under high rate. Here, we are focusing on 

the molecular design for improving the battery performance and addressing the current 

challenge of fast-charge and -discharge. Through reasonable molecular design strategy, we 

demonstrate that the extension of the π -conjugated system is an efficient way to improve the 
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high rate performance, leading to much enhanced capacity and cyclability with full recovery 

even after cycled under current density as high as 10 A g-1. (J. Am. Chem. Soc., 2015, 137(8), 

pp 3124-3130) 

7.5 Constructing well-defined AZO/TiO2 core/shell nanocones with uniformly dispersed 

Au NPs for enhancing photoelectrochemical water splitting  

Constructing core/shell nanostructures with 

optimal structure and composition could 

maximize the solar light utilization. In this work, 

using an Al nanocone array as a substrate, well-

defined regular array of AZO/TiO2 core/shell 

nanocones with uniformly dispersed Au 

nanoparticles (AZO/TiO2/Au NCA) is successfully realized through three sequential steps of 

atomic layer deposition, physical vapor deposition and annealing processes. By tuning the 

structural and compositional parameters, the advantages of light trapping and short carrier 

diffusion from the core/shell nanocone array, as well as the surface plasmon resonance and 

catalytic effects from the Au NPs can be maximally utilized. Accordingly, a remarkable PEC 

performance could be acquired and the photocurrent density of the AZO/TiO2/Au NCA 

electrode reaches up to 1.1 mA/cm2 at 1.23 V versus RHE under simulated sunlight 

illumination, which is five times of that from flat AZO/TiO2 electrode (0.22 mA/cm2). 

Moreover, the photocon version of the AZO/TiO2/Au NCA electrode approaches to 0.73% at 

0.21 V versus RHE, which is one of the highest values with the lowest external potential that 

ever reported in Au/TiO2 PEC composites. These results demonstrate a feasible route toward 

scalable fabrication of well-modulated core/shell nanostructures and can be easily applied to 

other metal/semiconductor composites for high-performance PEC electrodes (Adv. Energy 

Mater. 2016, 6, 1501496). 
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7.6 Large-scale Highly Ordered Sb Nanorod Arrays Anode with High Capacity and 

Rate Capability for Sodium-Ion Batteries  

 Na-ion batteries are a 

potential substitute to Li-ion 

batteries for energy storage 

devices. However, their poor 

electrochemical 

performance, especially capacity and rate capability, is the major bottleneck to future 

development. Here we propose a performance-oriented electrode structure, which is 1D 

nanostructure arrays with large-scale high ordering, good vertical alignment, and large 

interval spacing. Benefiting from these structural merits, a great enhancement in 

electrochemical performance could be achieved. Taking Sb as an example, we firstly report 

large-scale highly ordered Sb nanorod arrays with uniform large interval spacing (190 nm). 

In return for this electrode design, high ion accessibility, fast electron transport, and strong 

electrode integrity are presented here. Used as additive- and binder-free anodes for Na-ion 

batteries, Sb nanorod arrays showed a high capacity of 620 mA h g−1 at the 100th cycle with 

a retention of 84% up to 250 cycles at 0.2 A g−1, and a superior rate capability for delivering 

reversible capacities of 579.7 and 557.7 mA h g−1 at 10 and 20 A g−1, respectively. A full cell 

coupled by a P2-Na2/3Ni1/3Mn2/3O2 cathode and a Sb nanorod array anode was also 

constructed, which showed good cycle performance up to 250 cycles, high rate capability up 

to 20 A g−1, and large energy density up to 130 Wh kg−1. These excellent electrochemical 

performances shall pave the way for developing more applications of Sb nanorod arrays in 

energy storage devices (Energy Environ. Sci., 2015, 8, 2954-2962). 
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